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a b s t r a c t

Conjoint analysis has become the most used technique for measuring preferences for new products to
be launched in the market. Experimental design models are key elements for its use in market research.
Such models involve a matrix in which attributes and levels are combined, making product concepts that
respondents then evaluate.

Experimental design has emerged as a key element in conjoint analysis’ success because its application
generates statistical and reliability implications for part-worth factor estimations and for the type of
heuristics followed by respondents.
ognitive ability
onjoint analysis
reference measurement
ynamic algorithm

This paper proposes a conceptualization of both statistical and cognitive efficiency criteria for
experimental designs. A review of the most used statistical optimization criteria is presented, as well as a
methodology for optimizing cognitive efficiency. Finally, we suggest a dynamic algorithm for optimizing
the objective function in a sequential manner.

© 2015 AEDEM. Published by Elsevier España, S.L.U. This is an open access article under the CC
ntroduction

Conjoint analysis (CA) has been one of the most successful mar-
et research techniques in the last 40 years and one of the reasons
hat explains this is the continuous interaction between academic
heory and professional implementation (Bradlow, 2005; Green,
rieger, & Wind, 2001). Its success is not only due to the tech-
ical upgrade linked to its application in studies on consumer
references among products with multiple attributes, but also
o its versatility, which has permitted its application in diverse
elds such as marketing, transport management, financial services
Green et al., 2001), and even oncological studies (Beusterien et al.,
014).

Although the statistical foundations of experimental design
ere developed throughout the 1920s by Ronald Fisher, it was
ot until the 1970s that researchers began to use it in psychol-
gy and, soon after, in consumer behaviour and market research
tudies (Gustafsson, Herrmann, & Huber, 2007). However, despite

he numerous investigations in which CA has been used (e.g. when
omeone introduces the term ‘conjoint analysis’ in the ‘Web of
cience’ there are more than 3000 references) and the amount

∗ Corresponding author.
E-mail address: rhuertas@ub.edu (R. Huertas-García).
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019-6838/© 2015 AEDEM. Published by Elsevier España, S.L.U. This is an open access ar
d/4.0/).
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

of methodological innovations that have been proposed, such as
adaptive conjoint analysis (Johnson, 1987) or polyhedral designs
(Toubia, Simester, Hauser, & Dahan, 2003), there are some issues
in conjoint experimental designs that remain unresolved. These
include the criteria for choosing the number of attributes and the
reasons for using an experimental design and no other (Bradlow,
2005).1

This paper attempts to deepen the analysis of these two prob-
lems from a dual perspective: firstly, through the consideration of
an efficient statistical solution and, secondly, taking into account
the cognitive burden of these designs and its effect on responses.
The literature proposes different criteria and ways to qualify an
experimental design as efficient and each criterion determines the
type of design recommended and the type of analysis to be used on
the data gathered. Although different methods have different struc-
tures and philosophies, they nevertheless share some common
elements: firstly, they all use the statistical design of experiments to
develop the experimental design and, secondly, they all consider a

compensatory model of consumer behaviour that, moreover, con-
siders this behaviour as independent of the experimental design
(Johnson & Meyer, 1984). Although the first common element

1 Although Bradlow (2005) points out nine problems in the use of conjoint anal-
ysis, in this study we have focused our analysis on two of them.
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n experimental design appears to remain valid, the second has
eceived numerous criticisms (Olshavsky, 1979; Payne, Bettman,
Johnson, 1988). In this paper, we review the most common crite-

ia used to determine experimental design efficiency, as well as
heir advantages and disadvantages, and, in addition, we propose a

ethodology to estimate the cognitive efficiency of experimental
esigns.

The study is arranged in the following sections. Firstly, we
resent some of the most important concepts of experimental
esign in CA. Secondly, we describe the most common methods for
etermining statistical efficiency in experimental designs. We then
ropose a system for evaluating the cognitive efficiency of experi-
ental designs, which is illustrated with an example. Finally, some

onclusions and possibilities for further research are presented.

xperimental design in conjoint analysis

Experimental design is a numerical arrangement that combines
ttributes and levels to form stimuli (concepts of products or ser-
ices), which later, in field work, must be evaluated by respondents.
here are several ways of organizing stimuli, with full factorial
esigns being the easiest because they simply require presenting
ll possible level and factor combinations.

Experimental design is represented by an n × k matrix, where n
re rows indicating the profiles generated and k are columns indi-
ating the level variations of the attributes. If you use combinatory
aws in the design, it is called a statistical design (Box, Hunter, &
unter, 2005). However, statistical designs pose a major problem

ince as new attributes are added to the experimental design (even
f they have only 2 or 3 levels), the number of combinations grows
xponentially. For example, a statistical design in which there are
attributes with 3 levels each generates an experimental design

f 81 profiles (34 = 81). Such a number of alternatives can over-
helm the cognitive ability of any interviewee (Green & Srinivasan,

990). For this reason, researchers use fractional factorial designs,
hich are simply portions of a full factorial design. This reduces

he number of alternatives that each interviewee has to assess, but
esearchers must pay the price of sacrificing the ability to estimate
ertain interactions. A price which, in some cases, could be very
igh, as for example in the research of new products associated
ith the sensory perceptions of respondents (haircare and cosmetic
roducts) where two-factor interactions are very important (Green
Srinivasan, 1990).
Therefore, it has been shown that CA works quite well when

moderate number of attributes is considered for each profile
ithin the experimental design, for example, less than 8 (Bradlow,

005). But when the number of attributes is high, for example, more
han 15, respondents’ cognitive capacity is overwhelmed and they
se non-compensatory heuristics to choose profiles (Hauser, 2014;

ohnson & Meyer, 1984). However, many technological products,
uch as laptops, digital cameras, and even cars or tourist services,
se a large amount of attributes in their advertising to differentiate
hemselves from competitors (Bradlow, 2005; Netzer & Srinivasan,
011).

In order to address this problem, several solutions have been
roposed, in some cases hybrid solutions using a combination of
echniques in a single study. For example, this is the case in the
se of adaptive conjoint analysis (Johnson, 1987) or, more recently,
daptive self-explicated approaches (Netzer & Srinivasan, 2011).
hese methods follow two stages: in the first stage, respondents
ust complete a self-explicated survey (compositional study)

here different attributes and levels are measured with the aim

f reducing their number to the most relevant and, in the second
tage, there is a conjoint experiment (decompositional study) to
stimate the part-worth of the factors.
ent and Business Economics 25 (2016) 142–149 143

Now, for any of these experimental designs to generate valid
and reliable data they must follow two basic principles: orthogo-
nality and balance (Chrzan & Orme, 2000). An experimental design
is orthogonal if all main effects and interactions can be calculated
as independent variables (i.e. without correlation between them),
and it is balanced when each level of each factor is repeated the
same number of times in the overall experiment. When an exper-
imental design is orthogonal and balanced at the same time, it is
said that it is optimal (Kuhfeld, Tobias, & Garrat, 1994). However,
when an experimental design is formed by factors with different
ranges of levels (i.e. factors have 2, 3, 4, or 5 levels combined in
the same design), it is very difficult to make fractions that are both
orthogonal and balanced. Therefore, there is no other option than
to use quasi-orthogonal designs (Kuhfeld, 1997) and, in this case, it
is necessary to have some measure of their efficiency.

Criteria of efficiency

In recent years, the literature has shown great concern around
finding and developing efficient statistical designs (Vermeulen,
Goos, & Vandebroek, 2008). A design is considered efficient when it
gets the most and best information possible with the least number
of interviewees and with the shortest time dedicated to field work
(Louviere, Islam, Wasi, Street, & Burgess, 2008). However, know-
ing the researcher’s objectives and assumptions is a prerequisite
for trying to achieve efficiency in an experimental design. That is,
whether the researcher considers interactions between factors or
not, and the extent of these interactions, or, if they take into account
the type of protocol used to gather information; i.e. if she or he uses
verbal descriptions, images, or combinations of both. This means
that the same experimental design can be efficient with regard
to one criterion but not another. But the literature that discusses
design efficiency only considers statistical efficiency (Kuhfeld et al.,
1994; Vermeulen et al., 2008).

Kiefer (1959) was the first to propose the statistical efficiency
concept as an instrument to compare and evaluate experimental
designs and he described it using the so-called ‘theory of optimal
design’. The idea was to try to gather all of a statistical design’s
goodness-of-fit in a figure, i.e. to transform design variance and
covariance into a number, facilitating the comparison of various
experimental designs and choosing the design that minimizes or
maximizes that number. In addition, there are some criteria that
depend on the objectives pursued by each researcher. For example,
the researcher might only be interested in the estimation of main
factors or she might also be interested in two-factor interactions,
and in each case she must use different criteria to optimize the
design.

The different criteria are represented by letters following alpha-
betical order, among the most cited are criteria A and D (Kuhfeld
et al., 1994; Vermeulen et al., 2008) and, moreover, they are also
the most used by the software packages (Kuhfeld, 1997; Myers,
Montgomery, & Anderson-Cook, 2009). However, although the
enormous virtues offered by computer-generated designs are rec-
ognized, especially because they are easy to get, there are some
authors who criticize how they are used indiscriminately and
without taking into account the criteria behind the design or, there-
fore, the type of adjustment that can be achieved with the design
obtained (Myers et al., 2009). Thus, knowing the basic characteris-
tics of these designs can help researchers to select one criterion or
another depending on the main purpose of the research and bearing
in mind the limitations that each criterion entails.
The optimization criteria are based on the moment matrix. To
illustrate its operation, we assume that a conjoint experiment was
carried out, it was coded following a vectorial form, and in it respon-
dents rated each profile from 1 to 10. In addition, it was assumed
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hat these scores reflected respondents’ preferences in a linear
odel of part-worth attributes (Johnson & Meyer, 1984). In this

ase, the easiest way to estimate the part-worth of factors is to
djust them by linear regression, where the dependent variable �j
athers the scores assigned to each profile for j = {1, . . ., n}:

j = ˇ0 +
q∑

i=1

ˇixij + εj, (1)

here xij are experimental design combinations, ˇi are part-worth
stimates representing factor slopes, and εj is the error. In matrix
otation, it can be expressed as � = ˛ + ˇX + e, X being the exper-

mental design matrix coded in vector form (−1, 0, 1). Efficiency
riteria are based on the so-called moment matrix M, which is
efined as:

= X′X
N

, (2)

here X′X is the product of the transposed matrix multiplied by the
ormal matrix from the experimental design and N is the number
f profiles.

The A-optimal criterion only considers variance as a relevant
lement for defining efficiency. This criterion consists of calculat-
ng the sum of variances of the model parameters and it is the same
s the sum of diagonal parameters, or the trace, of (X′X)−1. This
eans that the A-optimal criterion prioritizes main factor estima-

ions without taking into account interactions that are reflected in
ovariance. Therefore, the optimization criterion consists of choos-
ng the experimental design that minimizes the trace of the inverse

oment matrix and it will be defined by:

in
�

tra[M(�)]−1, (3)

here tra represents the trace of the moment matrix, i.e. the sum
f coefficient variance, and � represents the design used.

The other most used criterion is the D-optimal criterion (Toubia
Hauser, 2007; Vermeulen et al., 2008). This also seeks to find

he experimental design that improves parameter estimation, but
n this case, besides the main factors, it also includes interactions.
his criterion requires calculating the determinant of the moment
atrix:

M| = |X′X|
Np

, (4)

here p is the number of model parameters (which can be main
actors, two-factor interactions, three-factor interactions, etc.) and
is the number of profiles analysed. If we assume that errors follow
normal distribution, independent and with constant variance,

he determinant of the moment matrix (X′X) is inversely propor-
ional to the confidence intervals of coefficients in the regression

odel, and this reflects how well these coefficients are estimated.
n this case, a small value in |X′X| implies a poor estimate of ˇ
Myers et al., 2009). Thus, a design is D-optimal if it minimizes
he determinant of the moment matrix (4), which is the same
s the inverse of the determinant of the variance and covariance
atrix:

X′X) = 1

|(X′X)−1|
, (5)

Therefore, the aim of the D-optimal criterion is to establish
hich experimental design minimizes both variance and covari-

nce. Furthermore, due to the fact that this criterion uses the power

(number of parameters to be estimated) in the calculation of

he determinant of the moment matrix, it allows for use of the
-optimal efficiency criterion to compare experimental designs of
ifferent sizes.
ent and Business Economics 25 (2016) 142–149

In short, whether we use A-optimal or D-optimal criteria, if we
have a balanced and orthogonal experimental design its efficiency
will be optimal for both, and when we analyse quasi-orthogonal
designs they will be more efficient as they tend towards balance and
orthogonality. These criteria measure the design’s goodness-of-fit
in relation to a hypothetical orthogonal design, which it is not pos-
sible to use for multiple reasons. However, these measures should
not be considered as absolute measures of design efficiency, but
as relative tools to compare one design with another. An efficient
design must fulfil the following requirements (Kuhfeld, 1997):

• A design is orthogonal and balanced when the moment matrix M
is diagonal.

• A design is orthogonal when the sub-matrix M, excluding the row
and column for the intercept variable, that is to say ˛, is diagonal.

• A design is balanced when all off-diagonal elements, all row and
column interceptions, are zero.

• A design’s efficiency increases as diagonal absolute values
become smaller, that is to say, as Np becomes larger.

If a full factorial design is orthogonal and balanced (i.e. the
moment matrix M is diagonal), it is possible to use the A-optimal or
D-optimal criteria indifferently. However, if the design is fractional
factorial will be some off-diagonal values, it must be the researcher
who decides if she is interested only in main factor estimations,
thus using the A-optimal criterion, or if she is also interested in
two-factor interactions, in which case the best approach would be
to use the D-optimal criterion.

The goal pursued by Kiefer (1959) of reducing the statistical
goodness-of-fit of an experimental design to a single number has
been criticized as overly ambitious and, therefore, these criteria
should be considered as one of many other relevant aspects, but
not as a definitive measure (Myers et al., 2009). On the other hand,
CA literature has also criticized that accepting these criteria as valid
involves the assumption that respondents value profiles using an
algebraic utility function, where the assessment of each profile is
based exclusively on the observed attributes, and that their assess-
ment is independent of the number of profiles to be evaluated
(Johnson & Meyer, 1984). In the same vein, but in choice-based
conjoint analysis, Louviere (2001) warns that the use of increas-
ingly efficient designs can generate unintended consequences in
respondents’ answers due to their cognitive limitations, and they
may therefore use heuristics other than the compensatory model
during their selection process (Hauser, 2014).

In short, a statistically efficient experimental design does not
guarantee the responses’ reliability or good predictive capability,
since these will depend on the effort and sincerity of interview-
ees’ answers. CA is also used by academic researchers and market
researchers who highly value the predictive capability of the mod-
els obtained. On the other hand, if the data gathered are not
accurate, they can lead to misdiagnoses and, thus, to erroneous
advice about management policies (Salisbury & Feinberg, 2010).
Therefore, when an experimental design is developed we should
not only take into account its statistical efficiency, but should also
incorporate some criteria to measure its cognitive efficiency.

Determinants of cognitive effort in experimental designs

A common issue in CA literature is understanding how exper-
imental designs determine the cognitive effort that respondents
have to make and how their effort affects response reliability and

its predictive capability. In particular, from a cognitive perspective,
what would be the optimum size of a choice set?

Different theoretical approaches have proposed different
behavioural models depending on their theoretical axioms. For
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xample, economic theory considers that if a consumer has a large
umber of profiles to choose from, this large choice set improves
er likelihood of finding a profile with level-factor combinations
hat better fit her preferences (Lancaster, 1990). However, this
ational model has been criticized from the perspective of other
heoretical frameworks. Johnson and Meyer (1984) advocate the
pposite: that it is better to maintain choice sets with a small
umber of profiles because a larger amount would have negative
tatistical and cognitive effects (see also DeShazo & Fermo, 2002;
ouviere et al., 2008). From the statistical point of view, having
any attributes (whether profiles or levels) in a choice set reduces

he amount of data available for each attribute, undermining their
eight and the accuracy of estimates (DeShazo & Fermo, 2002). In

act, as noted above, Bradlow (2005) considers that CA works rela-
ively well with around 8 attributes per profile and that problems
egin to be generated from 15 attributes and beyond.

Regarding cognitive effects, information processing theory con-
iders that people have limited rational capacity and that when
hey face a decision-making process, the greater the number of
lternatives, the greater the difficulty in processing, calculating,
nd storing all the information generated throughout the process
Simon, 1990). According to Johnson and Meyer (1984), the com-
lexity of a choice is determined by the number of cognitive steps
hat each respondent has to take to carry out an evaluation and

ake the appropriate decision, comparing all of the alternatives.
or example, if a consumer compares two photographic cameras
efined by two attributes (one has ‘the capacity to take 300 pictures’
nd one is ‘pocket-size’) the respondent has to make at least three
ssessments or ‘cognitive steps’ in Johnson and Meyer’s terms: (1)
ssess if ‘the capacity to take 300 pictures’ is a good attribute; (2)
valuate if ‘pocket-size’ is also a good attribute; and (3) compare
he two attributes and decide which one is best; as the number
f attributes increases, the number of assessments and ‘cognitive
teps’ also increases. Because the respondent comes to have dif-
culties in her evaluation of attributes one by one, she begins to
se an alternative criterion of simplified heuristics such as the lex-

cographic heuristic or elimination by aspect (Hauser, 2014; Payne,
982). As a result of using inconsistent responses and of not using
he compensatory model, the linear model estimates will generate
poor fit (Payne et al., 1988).

proposal to optimize cognitive effort in experimental
esigns

In this study, we make use of the cognitive complexity concept
roposed by Johnson and Meyer (1984) and we also use the infor-
ation acquisition cost function proposed by Grether and Wilde

1984). Both criteria where considered for optimizing an experi-
ental design taking into account all steps taken by a respondent in
aking the appropriate decision. To achieve this optimum it is nec-

ssary to determine the number of profiles, factors, and levels that
inimize the cost of the whole assessment process of a choice set.
One useful criterion for estimating the cost of cognitive effort

as been the time spent on making a decision (Dellaert, Donkers, &
oest, 2012; Grether & Wilde, 1984; Johnson & Meyer, 1984). The
ime spent on a decision remains a recurring issue both in con-
umer behaviour studies (East, Wright, & Vanhuele, 2013) and in
xperimental design studies (Louviere et al., 2008). For example, in
classic experiment, East (1973) showed that respondents needed
ore time to choose between two alternatives than between three
hen the choice task was difficult and less time when the choice
ask was easier. This means that choosing between a larger num-
er of profiles does not always require more time than choosing
etween a smaller number. However, time is a variable that is very
losely related to effort (Grether & Wilde, 1984).
ent and Business Economics 25 (2016) 142–149 145

Besides, it is also important to consider the time taken to
complete the questionnaire, because this can have negative conse-
quences on respondents’ behaviour: the longer the time required
to do the interview, the lower the willingness to participate and the
greater the chance of it being left unfinished (Netzer & Srinivasan,
2011; Scholz, Meissnery, & Decker, 2010). It is clear that as the
experimental design’s complexity increases (the choice set changes
from 2 to 4 and then to 6 cameras), so does its duration (Grether
& Wilde, 1984). In the formation of the cognitive complexity of an
experimental design three variables are involved: the number of
scenarios, the number of attributes, and the number of levels. In
most cases, these three variables can have different weights dur-
ing the time required to fill in the questionnaire (Johnson & Meyer,
1984).

Every factorial design, whether fractional or arranged in blocks,
draws from a full factorial design. If we define the subset of profiles
that form the choice set as Sr, r = 1, . . ., q, the number of factors of
each profile as Ci, i = 1, . . ., n, and the number of levels of each fac-
tor as Wj, j = 1, . . ., m, the number of Johnson and Meyer’s cognitive
steps would be determined by Sr˘Wj, ˘ being the product from j
to q levels. Since time is related to effort (Grether & Wilde, 1984),
the time required to evaluate the choice set will depend on the
number of cognitive steps. Moreover, in the case that all the factors
have the same number of levels, the time taken can be expressed
as a function of the three elements: time = f(Wj, Ci, Sr) = Wj × Ci × Sr.
Nevertheless, if we apply logarithmic transformation the model
becomes additive:

Tj =
P∑

p=1

ˇpyjp (6)

where Tj is the Napierian logarithm of time, ˇp is the part-worth of
variable p, indicating the slope, and yjp is the Napierian logarithm
of the three independent variables.

Given the diversity of subjects and ways to present profiles to
respondents (described by text, by paragraphs, by pictures, etc.)
and the variety of contexts in which the research can be based
(Payne, 1982), it is reasonable to think that a way to estimate the
weight each item has in the experiment’s duration is by trial and
error, because the models estimated in one context can hardly be
appropriate in another context (Johnson & Meyer, 1984). In the
present study, we follow this logic and we propose response sur-
face methodology (RSM) as an algorithm to optimize the cognitive
effort in an experimental design.

RSM is a statistical technique used in the development,
improvement, and optimization of industrial processes and it has
recently been incorporated into market research studies (Huertas-
Garcia, Gázquez-Abad, Martinez-Lopez, & Esteban-Millat, 2013).
The methodology was proposed in the early 1950s by Box and
Wilson (1951), who justified its use on the basis of the need for
efficient experimental procedures that were able to determine the
operating conditions of a set of controllable variables. It was con-
sidered as a methodology with which an optimal response could be
achieved (Box & Draper, 1987). However, it was not developed until
the 1970s when some statistical restrictions were overcome and
the use of software packages for calculation became widespread
(Myers et al., 2009).

RSM is an experimental process that involves sequential stages
in which the information obtained in the first stage serves for
planning and executing the following stages (Raghavarao, Wiley,
& Chitturi, 2011). Nowadays, with the development of market
research on the Internet, these sequential models are particularly

suitable because they allow for programming questions based on
previous answers and, also, can be tailored in real time (Netzer &
Srinivasan, 2011; Scholz et al., 2010). The experimental sequence of
RSM consists of several stages, beginning with a first-order model
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Table 1
Codification of factorial design 23.

Variables −1 0 +1

1 Profiles 6 8 10
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Table 2
Attributes and levels of digital cameras.

Attributes Levels

1. Brand Canon, Nikon, Olympus, Sony
2. Battery life 150, 300, 450, 600 photographs
3. Internal memory 8 MB, 16 MB, 32 MB, 64 MB
4. LCD Size 3.81 cm, 5.08 cm, 6.35 cm, 7.62 cm
5. Optical zoom 2×, 3×, 4×, 5×
6. Price D 500, D 400, D 300, D 200
7. Resolution 2, 3, 4, 5 megapixels

T
E

2 Attributes 4 6 8
3 Levels 2 3 4

i.e. a flat representation) to delimit the slope toward the optimal
egion and, next, further experiments are developed until reaching
he optimum. The algorithm can be summarized in the following
ve steps (Myers et al., 2009):

. A first exploratory experimental design of an orthogonal type is
proposed and is fitted with a first-order model. For this, two-level
vector encoding including a centre point is recommended.

. Steps are calculated using the first stage’s estimated values and
‘the fastest route to the minimum’ is delimited.

. Several experiments are carried out throughout the process, not-
ing that the response values decrease, until reaching a point
where they begin to grow again; that is, until reaching a turning
point.

. In the case that greater precision were required, the turning point
is taken as the basis for developing new experiments to better fit
the trend. The adjustment model may continue to be a first-order
model.

. However, if it is noticed that the curvature degree is high, using
a second-order model is recommended.

The procedure is designed to achieve independent variable
ombinations that allow for obtaining highly accurate optimum
esponse values. However, market studies usually do not require
uch extreme degrees of accuracy given the subjective nature of
esponses and, therefore, with few experiments it is possible to
chieve reasonably accurate approximations to the optimum.

xperiment

The experiment was inspired by the work of Netzer and
rinivasan (2011), who propose the assessment of digital cam-
ra profiles (Table 1 shows the attributes and levels considered),
lthough they use a completely different methodology to ours.
hile they rely on an adaptive self-explicated model for measur-

ng part-worth attributes (a compositional model), in our case we
ropose the RSM algorithm (a type of decompositional model). In
rder to arrange the experimental design we departed from a frac-
ional factorial design, specifically from a half factorial design (as
an be seen in the first four columns of Table 2). This experimen-
al design has enough variations of profiles, attributes, and levels
o contribute to a significant estimation of the factors’ part-worth
sing, as a response variable, the time taken by respondents to
ssess the camera choice set (Table 3).

In the experiment, we considered three-factor combinations

ccording to the experimental design to gather data from respon-
ents’ time spent on making their assessments. In addition, we
lso manipulated all three factors (profiles, attributes, and levels)
round their mean value. These items of information were taken

able 3
xperiment results.

Experiment number Profiles Attributes Levels

2 1 −1 −1
3 −1 1 −1
5 −1 −1 1
8 1 1 1
9 0 0 0
8. Warranty 6 months, 1, 2 or 3 years

Source: Adapted from Netzer and Srinivasan (2011).

from the work of Netzer and Srinivasan (2011), in which the aver-
age number of profiles was 8, for attributes it was 6, and for levels
it was 3. This sets a 23 factorial experiment around the average
point, that is, nine experiments (8 derived from the factorial design
plus the central point), and all of them are encoded in vector form
(the coding arrangement of the three factors is shown in Table 1).
However, due to resource constraints, we have estimated a half fac-
torial design, 23−1 plus the centre point, i.e. 5 profiles. The literature
recommends thinking about this first result as the point of origin,
‘as a confirmation test, to ensure that conditions experienced dur-
ing the original experiment have not changed’ (Myers et al., 2009,
p. 186) (Table 2).

In order to gather data, a sample of 250 undergraduate students
from a large university in Barcelona was used, it was randomly
divided into 5 groups and 234 valid questionnaires were obtained
(45–48 per group). Each respondent was invited to a computer
room and, following researchers’ instructions, evaluated a set of
digital camera profiles, to which attributes and levels were assigned
following the experimental design in Table 2. At the begin of this
exercise, respondents had to indicate the exact time registered on
the computer clock, then make their assessment of the choice set
of digital cameras using a rating score of 1–10 (1 being the least
preferred and 10 the most preferred), after their evaluation they
had to indicate, once again, the exact time on the questionnaire,
and, finally, fill in some identification information and other con-
trol questions. Among the control questions, one asked respondents
their assessment of the study and another was related to what
they thought the objective of the study was. In order to arrange
all the different choice set scenarios, which ranged from 6 to 10
profiles, the SPSS orthogonal design generator was used. The study
was carried out between February and March 2014. No respondents
thought that the study’s objective was to measure the time taken;
all of them thought it was for measuring their preferences in the
digital camera set.

As a dependent or response variable, we used the stated time
taken to perform the assessment of the digital camera choice set.
To make the calculation easier, the time measured in 60 s was trans-
formed into 100 s, we then calculated the average time of each
group, measured in centesimal seconds. Next, this was converted
into its natural logarithm and, finally, to calculate the part-worth

values the table of contrast coefficients was used. This is a very sim-
ple method for estimating the slope of the main factors, given that
when the vectorial coding system used with independent variables
(a combination of −1 and 1) is transformed into the moment matrix

Mean time (in centesimal seconds) Standard deviation

150.378629 50.6857802
138.75024 50.5166211

58.4159032 32.3333863
362.383978 97.5260192
157.857452 49.5892357
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Table 4
Contrast coefficients calculation table.

Experiment number Constant Profiles Attributes Levels Nap-log mean time

2 5.01315631 5.01315631 −5.01315631 −5.01315631 5.01315631
3 4.93288265 −4.93288265 4.93288265 −4.93288265 4.93288265
5 4.06758817 −4.06758817 −4.06758817 4.06758817 4.06758817
8 5.89270436 5.89270436 5.89270436 5.89270436 5.89270436
9 0 0 0 0 5.06169242

Sum 19.9063315 1.90538985 1.74484254 0.01425357
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Divisor 4 4
Average 4.97658287 0.47634746
Standard error 0.03442457 0.06884913

t becomes an identity matrix and, therefore, the regression model
o fit is simply y = Xb. In other words, the coding matrix is multi-
lied by the vector of results to obtain a finding matrix, then, by
dding the values of each column and dividing them by the num-
er of positive and negative coded levels, it is possible to obtain the
art-worth values as though adjusted by OLS (Table 4 illustrates
he calculations). In order to calculate the standard error, we fol-
owed the process of estimating the average variance proposed by
ox et al. (2005).

The first-order model derived from the experiment is as follows:

ˆj = 4.976 + 0.476y1 + 0.436y2 + 0.003y3 (7)

here Tj is the Napierian logarithm of average time spent on the
ssessment process, y1 is the number of profiles, y2 is the number of
ttributes, and y3 is the number of levels. As we can see in Table 4,
nly the number of profiles and the number of attributes have a
ignificant impact on the time used for assessment and both have
similar weight (ˇ1 = 0.476 and ˇ2 = 0.436), while the number of

evels does not seem to have any effect on the amount of time used
y respondents.

Once the model has been fitted and the weight of the main fac-
ors has been estimated (7), we need to set the path to achieve the

inimum value of Tj. To calculate the path to reach the minimum
e followed the algorithm proposed by Myers et al. (2009):

In the first stage, we need to estimate the length of the steps that
ill be taken to reach the minimum; usually the length of the step

s 1, say �xi. This length is assigned to the independent variable
hose part-worth is the highest in absolute value, in our case it is

ˇ1 = 0.476).
We then estimate the length of the other variables’ steps, whose

elative longitude will depend on the weight of each factor, follow-
ng this function:

xj = ˇj

ˇi/�xi
, j = 1, 2, . . ., k, i /= j (8)
�x2 = 0.436
0.476

= 0.915

�x3 = 0.003
0.476

= 0.007

able 5
imulation process of RSM algorithm.

Coding variables

Profiles Attributes Levels

Base 0 0 0
Step length 1 0.91574044 0.00748066
Base – 1 step −1 −0.91574044 −0.00748066
Base – 2 steps −2 −1.83148088 −0.01496132
Base – 3 steps −3 −2.74722132 −0.02244198

* Values estimated from Eq. (2).
4 4
0.43621063 0.00356339
0.06884913 0.06884913

Finally, coded variables are transformed into their normal val-
ues. Each part-worth measures the slope degree that represents a
change from 0 to 1 in the rating scale. For example, ˇ1 represents
the change from 0 to 1 that meant a change from 8 to 10 profiles, i.e.
an increase of 2 profiles. In the case of ˇ2, the slope represents the
change from 6 to 8 attributes, i.e. an increase of 2 attributes, and,
finally, ˇ3 represents the change from 3 to 4 levels, this time with
an increase of 1 level. As defined above, the step length for the main
important factor (number of profiles) is 1, and this step generated
an increase of 0.476 in the amount of time, which corresponds to
a change in two profiles. For the other independent variables, the
length of their steps is proportional to the values resulting from
Eq. (3), as shown in Table 5.

In many cases, it is possible to find a good approximation to the
optimum simply with the first simulation. Particularly in the case
when all values are discrete levels, as in this study. As shown in
Table 5, with the ‘base – 2 steps’, the simulation table finds a good
approximation to the optimal solution. This is obtained with the
combination of 4 profiles with 2 attributes each and 3 levels per
attribute, and to complete this assessment respondents take 25.15
centesimal seconds (e3.22 = 25.15). In the following simulation, the
‘base – 3 steps’, the model suggests an impossible solution because
in the combination of profiles, attributes, and levels it considers less
than one attribute in the choice set. However, if instead of working
with discrete values we were working with continuous values, it
could be possible to obtain greater accuracy, simply by developing
new experiments around the last point estimated. It could also be
possible to use a second-order equation to fit the model, trying to
cover the degree of curvature that is usually near the optimum.

In short, developing an experimental design to carry out CA
research is not an easy task as it must fulfil two contradictory
objectives: firstly, achieve statistical efficiency, helping to improve
the parameters’ estimation, and, secondly, ensure effective and
trusted answers from respondents taking into account their
limited cognitive capability. With these arguments, using software
for generating experimental designs is not a panacea, because
the type of protocol used to collect data and the context in which

the experiment is developed determine the behavioural pattern
followed by consumers in evaluating profiles (Johnson & Meyer,
1984; Payne, 1982; Payne et al., 1988). Therefore, according to the
advice of Kuhfeld et al. (1994), the best strategy for building an

Natural variables Nap-log time*

Profiles Attributes Levels

8 6 3 5.06169242
2 1.83148088 0.00748066
6 4.16851912 2.99251934 4.10075303
4 2.33703824 2.98503868 3.2249232
2 0.50555737 2.97755802 2.34909336
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xperimental design is to combine computer tools, which provide
esigns quickly and easily, with the researcher’s insight to select
he most appropriate design option for the context of the study.

onclusions

CA has been one of the most common market research tech-
iques used by researchers and practitioners to measure consumer
references for more than four decades. This technique emerged
o overcome some shortcomings in the use of self-explicated
uestionnaires, which had been criticized for being vague and
nrealistic (Hauser & Rao, 2004; Sattler & Hensel-Börner, 2007).
o implement CA, a fundamental step is building the experimen-
al design, which determines the number of profiles that form
he choice set and the pattern for arranging them by combining
ttributes and levels. To make these designs statistically efficient,
hey must be orthogonal and balanced, and this is only possible with
ery simple designs; i.e. those which require few variables and few
evels. Therefore, most experimental designs are quasi-orthogonal
nd, in this case, it is necessary to measure their degree of statistical
fficiency.

There are several ways to measure statistical efficiency. In this
aper, we have reviewed the two most common optimization crite-
ia in the literature: A-Optimal and D-optimal criteria. However,
hese criteria are based on the underlying assumption that an alge-
raic relationship between product attributes and utility explain
onsumer behaviour, and that this relationship is independent of
he number of alternatives and of the experimental context. These
ssumptions have been criticized as unrealistic from the perspec-
ive of consumer cognitive behaviour theories. To overcome these
ognitive limitations a cognitive efficiency criterion is proposed
hich can act as a complement to the statistical efficiency crite-

ion. In addition, we have also proposed a function to estimate this
fficiency and an algorithm to optimize it. The function is inspired
y the cognitive steps proposed by Johnson and Meyer (1984),
here the number of profiles, factors, and levels are independent

ariables, and the length of time to fill in the questionnaire is the
ependent variable (Grether & Wilde, 1984). Using the time taken
or the choice set assessment as an estimate of cognitive effort is
ompletely appropriate since market research uses the Internet and
ebsites where respondents’ patience tends to be low (Deutskens,
e Ruyter, Wetzels, & Oosterveld, 2004) and their willingness to
articipate decreases as the length of the survey extends (Scholz
t al., 2010). In addition, the algorithm proposed to optimize this
unction is RSM and to illustrate this whole process we carried out
n experiment using digital cameras as stimuli for respondents to
hoose among them.

This study responds to the request made by Bradlow (2005) to
evelop techniques to assess consumer preferences, allowing, at
he same time, for the evaluation of a large number of attributes
ithout cognitively burdening respondents. Its contribution to the

iterature is threefold: firstly, experimental designs are conceptu-
lized using both statistical and cognitive efficiency; secondly, a
unctional relationship between all the components of an experi-

ental design (profiles, factors, and levels) is established, as well
s an estimator of cognitive effort as target function; and thirdly,
sequential and dynamic algorithm is proposed that allows the

bjective function reach an acceptable optimum.
Hybrid proposals have emerged, such as adaptive conjoint anal-

sis, with the aim of balancing statistical efficiency and cognitive
ffort. However, the fact of using partial profiles during the com-

ensatory phase has been criticized by both scholars and market
esearchers for the inability to obtain stable factor estimations in
ndividual studies (Orme, 2007). There have been some proposals
for example, Huertas-Garcia, Gázquez-Abad, & Forgas-Coll, 2016)
ent and Business Economics 25 (2016) 142–149

in which partial profile scenarios are replaced with full profiles, but
this solution is only viable for a small number of factors.

One limitation of this study is that the analysis has only focused
on classical CA without considering discrete choice experiments,
which are characterized by each respondent only choosing the best
option from the choice set. Although choice has been defined as
much more natural behaviour in consumption than ranking and
rating (Louviere, Hensher, & Swait, 2007), the items of informa-
tion gathered by the researcher from each respondent are minimal
(1, if x alternative was chosen from the entire choice set, and 0
otherwise), therefore its use is restricted to studies that use very
large samples. Another limitation in our study is that only the exist-
ence of a compensatory model in consumer choice processes was
considered, regardless of the existence of other non-compensatory
heuristic models (lexical, qualifying, etc.) that could explain the
process of choosing among many alternatives.

Furthermore, due to lack of resources, the experiment was car-
ried out with the following restrictions: firstly, it was performed
once, so more replicas are needed to verify the results; secondly,
in the initial phase of RSM only a half factorial design was devel-
oped and with this restriction it was not possible to estimate all
two-factor interactions, which would have contributed to more
interesting results; thirdly, the sequential experiments needed to
follow the steps to reach the minimum were simulated assum-
ing a linear trend between the factors. Therefore, possible further
research could involve conducting new tests using a full factorial
design in the first phase and carrying out all the necessary steps
until reaching the optimum.
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