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Összefoglaló 

 

A klasszikus stabil szobatársprobléma két fokszámkorlátozott változatát 

tanulmányozzuk. Az első változat az egalitáriánus d-SRI probléma, amely 

egalitáriánus stabil párosítás keresését írja elő olyan gráfon, amelyben minden csúcs 

foka legfeljebb d. Bebizonyítjuk, hogy a probléma már d=3-ra is NP-teljes. Pozitív 

eredményként adunk egy (2d+3)/7-közelítő algoritmust minden d=3,4,5-re, ami az 

eddig ismert legjobb 2-közelítő algoritmust javítja. A második tanulmányozott 

változat d-SRTI névre hallgat és az a sajátossága, hogy a legfeljebb d hosszú listák 

tartalmazhatnak döntetleneket is.  Bebizonyítjuk, hogy a probléma már d=3-ra is NP-

teljes. Ugyanezen problémának a „legstabilabb” változatát is megvizsgáljuk és egy 

erős közelíthetetlenségi korlátot adunk a d=3 esetre. Ugyanakkor azt is belátjuk, hogy 

a d=2 eset polinomidőben megoldható. 
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The Stable Roommates problem with short lists

Ágnes Cseh · Robert W. Irving · David F. Manlove

Abstract We consider two variants of the classical Stable Roommates prob-
lem with Incomplete (but strictly ordered) preference lists (sri) that are degree
constrained, i.e., preference lists are of bounded length. The first variant, egal
d-sri, involves finding an egalitarian stable matching in solvable instances of
sri with preference lists of length at most d. We show that this problem is
NP-hard even if d = 3. On the positive side we give a 2d+3

7 -approximation
algorithm for d ∈ {3, 4, 5} which improves on the known bound of 2 for the
unbounded preference list case. In the second variant of sri, called d-srti,
preference lists can include ties and are of length at most d. We show that the
problem of deciding whether an instance of d-srti admits a stable matching is
NP-complete even if d = 3. We also consider the “most stable” version of this
problem and prove a strong inapproximability bound for the d = 3 case. How-
ever for d = 2 we show that the latter problem can be solved in polynomial
time.
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Keywords stable matching · bounded length preference lists · complexity ·
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1 Introduction

In the Stable Roommates problem with Incomplete lists (sri), a graph G =
(A,E) and a set of preference lists O are given, where the vertices A =
{a1, . . . , an} correspond to agents, and O = {≺1, . . . ,≺n}, where ≺i is a linear
order on the vertices adjacent to ai in G (1 ≤ i ≤ n). We refer to ≺i as ai’s
preference list. The agents that are adjacent to ai in G are said to be acceptable
to ai. If aj and ak are two acceptable agents for ai where aj ≺i ak then we
say that ai prefers aj to ak.

Let M be a matching in G. If aiaj ∈ M then we let M(ai) denote aj . An
edge aiaj /∈ M blocks M , or forms a blocking edge of M , if ai is unmatched
or prefers aj to M(ai), and similarly aj is unmatched or prefers ai to M(aj).
A matching is called stable if no edge blocks it. Denote by sr the special case
of sri in which G = Kn. Gale and Shapley [9] observed that an instance of
sr need not admit a stable matching. Irving [15] gave a linear-time algorithm
to find a stable matching or report that none exists, given an instance of sr.
The straightforward modification of this algorithm to the sri case is described
in [12]. We call an sri instance solvable if it admits a stable matching.

In practice agents may find it difficult to rank a large number of alterna-
tives in strict order of preference. One natural assumption, therefore, is that
preference lists are short, which corresponds to the graph being of bounded
degree. Given an integer d ≥ 1, we define d-sri to be the restriction of sri in
which G is of bounded degree d. This special case of sri problem has poten-
tial applications in organising tournaments. As already pointed out in a paper
of Kujansuu et al. [18], sri can model a pairing process similar to the Swiss
system, which is used in large-scale chess competitions. The assumption on
short lists is reasonable, because according to the Swiss system, players can
be matched only to other players with approximately the same score.

A second variant of sri, which can be motivated in a similar fashion, arises
if we allow ties in the preference lists, i.e., ≺i (1 ≤ i ≤ n) is now a strict
weak ordering. That is, ≺i is a strict partial order in which incomparability
is transitive. We refer to this problem as the Stable Roommates problem with
Ties and Incomplete lists (srti) [17]. As in the sri case, define d-srti to be
the restriction of srti in which G is of bounded degree d. Denote by srt
the special case of srti in which G = Kn. In the context of the motivating
application of chess tournament construction as mentioned in the previous
paragraph, d-srti is naturally obtained if a chess player has several potential
partners of the same score and match history in the tournament.

In the srti context, ties correspond to indifference in the preference lists.
In particular, if aiaj ∈ E and aiak ∈ E where aj 6≺i ak and ak 6≺i aj then ai

is said to be indifferent between aj and ak. Thus preference in the sri context
corresponds to strict preference in the case of srti. Relative to the strict weak
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orders in O, we can define stability in srti instances in exactly the same way
as for sri. This means, for example, that if aiaj ∈ M for some matching M ,
and ai is indifferent between aj and some agent ak, then aiak cannot block M .
The term solvable can be defined in the srti context in an analogous fashion to
sri. Using a highly technical reduction from a restriction of 3-sat, Ronn [23]
proved that the problem of deciding whether a given srt instance is solvable
is NP-complete. A simpler reduction was given by Irving and Manlove [17].

For solvable instances of sri there can be many stable matchings. Often it
is beneficial to work with a stable matching that is fair to all agents in a precise
sense [11,16]. One such fairness concept can be defined as follows. Given two
agents ai, aj in an instance I of sri, where aiaj ∈ E, let rank(ai, aj) denote
the rank of aj in ai’s preference list (that is, 1 plus the number of agents that
ai prefers to aj). Let AM denote the set of agents who are matched in a given
stable matching M . (Note that this set depends only on I and is independent
of M by [12, Theorem 4.5.2].) Define c(M) =

∑
ai∈AM

rank(ai,M(ai)) to be
the cost of M . An egalitarian stable matching is a stable matching M that
minimises c(M) over the set of stable matchings in I. Finding an egalitarian
stable matching in sr was shown to be NP-hard by Feder [7]. Feder [7,8] also
gave a 2-approximation algorithm for this problem in the sri setting. He also
showed that an egalitarian stable matching in sr can be approximated within
a factor of α of the optimum if and only if Minimum Vertex Cover can be
approximated within the same factor α. It was proved later that, assuming the
Unique Games Conjecture, Minimum Vertex Cover cannot be approximated
within 2− ε for any ε > 0 [19].

Given an unsolvable instance I of sri or srti, a natural approximation to
a stable matching is a most-stable matching [1]. Relative to a matching M in
I, define bp(M) to be the set of blocking edges of M and let bp(I) denote
the minimum value of |bp(M ′)|, taken over all matchings M ′ in I. Then M
is a most-stable matching in I if |bp(M)| = bp(I). The problem of finding a
most-stable matching was shown to be NP-hard and not approximable within
nk−ε, for any ε > 0, unless P = NP, where k = 1

2 if I is an instance of sr and
k = 1 if I is an instance of srt [1].

To the best of our knowledge, there has not been any previous work pub-
lished on either the problem of finding an egalitarian stable matching in a
solvable instance of sri with bounded-length preference lists or the solvability
of srti with bounded-length preference lists. This paper provides contribu-
tions in both of these directions, focusing on instances of d-sri and d-srti for
d ≥ 2, with the aim of drawing the line between polynomial-time solvability
and NP-hardness for the associated problems in terms of d.

Our contribution. In Section 2 we study the problem of finding an egalitarian
stable matching in an instance of d-sri. We show that this problem is NP-
hard if d = 3, whilst there is a straightforward algorithm for the case that
d = 2. We then consider the approximability of this problem for the case that
d ≥ 3. We give an approximation algorithm with a performance guarantee of
9
7 for the case that d = 3, 11

7 if d = 4 and 13
7 if d = 5. These performance
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finding a stable matching finding an egalitarian stable matching

d-sri in P [15,12]

in P for d = 2 (∗)
NP-hard even for d = 3 (∗)

2d+3
7 -approximation for d ∈ {3, 4, 5} (∗)

2-approximation for d ≥ 6 [7,8]

d-srti in P for d = 2 (∗)
NP-hard even for d = 3 (∗) not well-defined (see Section 4)

Table 1 Summary of results for d-sri and d-srti.

guarantees improve on Feder’s 2-approximation algorithm for the general sri
case [7,8]. In Section 3 we turn to d-srti and prove that the problem of
deciding whether an instance of 3-srti is solvable is NP-complete. We then
show that the problem of finding a most-stable matching in an instance of
d-srti is solvable in polynomial time if d = 2, whilst for d = 3 we show that
this problem is NP-hard and not approximable within n1−ε, for any ε > 0,
unless P = NP. Due to various complications, as explained in Section 4, we do
not attempt to define and study egalitarian stable matchings in instances of
srti. Some open problems are presented in Section 5. A structured overview of
previous results and our results (marked by ∗) for d-sri and d-srti is contained
in Table 1.

Related work. Degree-bounded graphs, most-stable matchings and egalitarian
stable matchings are widely studied concepts in the literature on matching
under preferences [21]. As already mentioned, the problem of finding a most-
stable matching has been studied previously in the context of sri [1]. In ad-
dition to the results surveyed already, the authors of [1] gave an O(mk+1)
algorithm to find a matching M with |bp(M)| ≤ k or report that no such
matching exists, where m = |E| and k ≥ 1 is any integer. Most-stable match-
ings have also been considered in the context of d-sri [4]. The authors showed
that, if d = 3, there is some constant c > 1 such that the problem of finding
a most-stable matching is not approximable within c unless P = NP. On the
other hand, they proved that the problem is solvable in polynomial time for
d ≤ 2. The authors also gave a (2d−3)-approximation algorithm for the prob-
lem for fixed d ≥ 3. This bound was improved to 2d− 4 if the given instance
satisfies an additional condition (namely the absence of a structure called an
elitist odd party). Most-stable matchings have also been studied in the bipar-
tite restriction of sri called the Stable Marriage problem with Incomplete lists
(smi) [14,5]. Since every instance of smi admits a stable matching M (and
hence bp(M) = ∅), the focus in [14,5] was on finding maximum cardinality
matchings with the minimum number of blocking edges.

Regarding the problem of finding an egalitarian stable matching in an in-
stance of sri, as already mentioned Feder [7,8] showed that this problem is
NP-hard, though approximable within a factor of 2. A 2-approximation algo-
rithm for this problem was also given independently by Gusfield and Pitt [13],
and by Teo and Sethuraman [26]. These approximation algorithms can also
be extended to the more general setting where we are given a weight function
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on the edges, and we seek a stable matching of minimum weight. Feder’s 2-
approximation algorithm requires monotone, non-negative and integral edge
weights, whereas with the help of LP techniques [25,26], the integrality con-
straint can be dropped, while the monotonicity constraint can be partially
relaxed.

2 The Egalitarian Stable Roommates problem

In this section we consider the complexity and approximability of the problem
of computing an egalitarian stable matching in instances of d-sri. We begin
by defining the following problems.

Problem 1. egal d-sri
Input: A solvable instance I = 〈G,O〉 of d-sri, where G is a graph and O is a
set of preference lists, each of length at most d.
Output: An egalitarian stable matching M in I.

The decision version of egal d-sri is defined as follows:

Problem 2. egal d-sri dec
Input: I = 〈G,O,K ′〉, where 〈G,O〉 is a solvable instance I ′ of d-sri and K ′

is an integer.
Question: Does I ′ admit a stable matching M with c(M) ≤ K ′?

In the following we give a reduction from the NP-complete decision version
of Minimum Vertex Cover in cubic graphs to egal 3-sri dec, deriving the
hardness of the latter problem.

Theorem 1 egal 3-sri dec is NP-complete.

Proof. Clearly egal 3-sri dec belongs to NP. To show NP-hardness, we begin
by defining the NP-complete problem that we will reduce to egal 3-sri dec.

Problem 3. 3-vc
Input: I = 〈G,K〉, where G is a cubic graph and K is an integer.
Question: Does G contain a vertex cover of size at most K?

3-vc is NP-complete [10,20].

Construction of the egal 3-sri dec instance. Let 〈G,K〉 be an instance
of 3-vc, where G = (V,E), E = {e1, . . . , em} and V = {v1, . . . , vn}. For each
i (1 ≤ i ≤ n), suppose that vi is incident to edges ej1 , ej2 and ej3 in G,
where without loss of generality j1 < j2 < j3. Define ei,s = ejs (1 ≤ s ≤ 3).
Similarly for each j (1 ≤ j ≤ m), suppose that ej = vi1vi2 , where without loss
of generality i1 < i2. Define vj,r = vir

(1 ≤ r ≤ 2). The use of this notation is
illustrated in Figure 1.

We now construct an instance I of 3-sri as follows. We define the following
sets of vertices.
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vi

ei,1 = ej1 ei,3 = ej3

ei,2 = ej2

vi1 = vj,1 vi2 = vj,2

ej

Fig. 1 Notation derived from the 3-vc instance 〈G, K〉.
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Fig. 2 Part of the constructed instance of egal 3-sri dec.

V ′ = {vr
i : 1 ≤ i ≤ n ∧ 1 ≤ r ≤ 4}

E′ = {es
j : 1 ≤ j ≤ m ∧ 1 ≤ s ≤ 2}

W = {wr
i : 1 ≤ i ≤ n ∧ 1 ≤ r ≤ 4}

Z = {zr
i : 1 ≤ i ≤ n ∧ 1 ≤ r ≤ 4}

Intuitively, vr
i ∈ V ′ corresponds to vertex vi and its incident edge ei,r,

whilst es
j ∈ E′ corresponds to edge ej and its incident vertex vj,s. The set

V ′ ∪ E′ ∪W ∪ Z constitutes the set of agents in I, and the preference lists
of the agents are as shown in Figure 2. In the preference list of an agent vr

i

(1 ≤ i ≤ n and 1 ≤ r ≤ 3), the symbol e(vr
i ) denotes the agent es

j ∈ E′ such
that ej = ei,r and vi = vj,s (that is, ej is the rth edge incident to vi and
vi is the sth end-vertex of ej). Similarly in the preference list of an agent es

j

(1 ≤ i ≤ m and 1 ≤ s ≤ 2), the symbol v(es
j) denotes the agent vr

i ∈ V ′ such
that vi = vj,s and ej = ei,r (that is, vi is the sth end-vertex of ej and ej is the
rth edge incident to vi).

Finally we define some further notation in I. Let K ′ = 7m + 19n + K.
The following edge sets play a particular role in our proof. Addition is taken
modulo 4 here.
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V c
i = {vr

iw
r
i : 1 ≤ i ≤ n ∧ 1 ≤ r ≤ 4}

V u
i = {vr

iw
r+1
i : 1 ≤ i ≤ n ∧ 1 ≤ r ≤ 4}

E1
j = {e1

je
2
j , e

3
je

4
j : 1 ≤ j ≤ m}

E2
j = {e1

je
4
j , e

2
je

3
j : 1 ≤ j ≤ m}

MZ = {z1
i z

2
i , z

3
i z

4
i : 1 ≤ i ≤ n}

This finishes the construction of the egal 3-sri dec instance I. In the
remainder of the proof we show that G has a vertex cover C where |C| ≤ K if
and only if I has a stable matching M where c(M) ≤ K ′.

Claim 2. If G has a vertex cover C such that |C| = k ≤ K, then there is a
stable matching M in I such that c(M) ≤ K ′.

Proof. Suppose that G has a vertex cover C such that |C| = k ≤ K. We
construct a matching M in I as follows. For each i (1 ≤ i ≤ n), if vi ∈ C, add
V c

i to M , otherwise add V u
i to M . For each j (1 ≤ j ≤ m), if vj,1 ∈ C, add

E2
j to M , otherwise add E1

j to M . Finally add the pairs in MZ to M .
We now argue that M is stable. Suppose that e1

je
4
j ∈ M for some j (1 ≤

j ≤ m). Then E2
j ⊆ M , so vj,1 ∈ C. Let vi = vj,1. Then by construction,

V c
i ⊆M , and hence vr

i has his first choice for each r (1 ≤ r ≤ 4). Thus e1
j does

not form a blocking edge of M with v(e1
j ). The argument is similar if e1

je
2
j ∈M

for some j (1 ≤ j ≤ m). Then E1
j ⊆ M , so vj,2 ∈ C. Let vi = vj,2. Then by

construction, V c
i ⊆M , and hence vr

i has his first choice for each r (1 ≤ r ≤ 4).
Thus e2

j does not form a blocking edge of M with v(e1
j ). Now suppose that

vr
iw

r+1
i ∈ M for some i (1 ≤ i ≤ n) and r (1 ≤ r ≤ 3). Then V u

i ⊆ M , so
vi /∈ C. Let es

j = e(vr
i ). If s = 1 then vi = vj,1. Hence by construction of

M , E1
j ⊆ M . Then e1

j has his first-choice partner, so vr
i does not block M

with e(vr
i ). If s = 2 then vi = vj,2. As vj,2 /∈ C, it follows that vj,1 ∈ C as

C is a vertex cover. Hence by construction of M , E2
j ⊆ M . Then e2

j has its
first-choice partner, so vr

i does not block M with e(vr
i ). It is straightforward

to verify that M cannot admit any other type of blocking edge, and thus M
is stable in I.

Clearly every agent in I is matched in M . We note that Theorem 4.5.2
of [12] implies that every stable matching in I matches every agent in I – we
will use this fact in the next claim. We finally note that c(M) = 4k + 12k +
9(n− k) + 2(n− k) + 4(n− k) + 7m+ 4n = 7m+ 19n+ k ≤ K ′, considering
the contributions from the agents matched in V c

i , V u
i (1 ≤ i ≤ n), E1

j , E2
j

(1 ≤ j ≤ m) and MZ respectively.

Claim 3. If there is a stable matching M in I such that c(M) ≤ K ′ then G
has a vertex cover C such that |C| = k ≤ K.

Proof. Suppose that M is a stable matching in I such that c(M) ≤ K ′. We
construct a set of vertices C in G as follows. As M matches every agent in I,
then for each i (1 ≤ i ≤ n), either V c

i ⊆ M or V u
i ⊆ M . In the former case

add vi to C. Also, for each j (1 ≤ j ≤ m), as M matches every agent in I,
either E1

j ⊆M or E2
j ⊆M . Finally, it follows that MZ ⊆M .
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We now argue that C is a vertex cover. Let j (1 ≤ j ≤ m) be given
and suppose that vj,1 /∈ C and vj,2 /∈ C. Suppose firstly that E1

j ⊆ M . Let
vi = vj,2. Then V u

i ⊆M by construction of C, so that e2
j blocks M with v(e2

j ),
a contradiction. Now suppose that E2

j ⊆ M . Let vi = vj,1. Then V u
i ⊆ M by

construction of C, so that e1
j blocks M with v(e1

j ), a contradiction. Hence C
is a vertex cover in G.

Moreover if k = |C| then given the composition of M , as noted in the
previous claim, c(M) = 7m + 19n + k, and since c(M) ≤ K ′ it follows that
k ≤ K.

Theorem 1 immediately implies the following result.

Corollary 4. egal 3-sri is NP-hard.

We remark that egal 2-sri is trivially solvable in polynomial time: the
components of the graph are paths and cycles in this case, and the cost of
a stable matching selected in one component is not affected by the matching
edges chosen in another component. Therefore we can deal with each path
and cycle separately, minimising the cost of a stable matching in each. Paths
and odd cycles admit exactly one stable matching (recall that (i) the instance
is assumed to be solvable, and (ii) the set of matched agents is the same in
all stable matchings [12, Theorem 4.5.2]), whilst even cycles admit at most
two stable matchings (to find them, test each of the two perfect matchings
for stability) – we can just pick the stable matching with lower cost in such a
case. The following result is therefore immediate.

Proposition 5. egal 2-sri admits a linear-time algorithm.

Corollary 4 naturally leads to the question of the approximabilty of egal d-
sri. As mentioned in the Introduction, Feder [7,8] provided a 2-approximation
algorithm for the problem of finding an egalitarian stable matching in an
instance of sri. As Theorems 6, 8 and 10 show, this bound can be improved
for instances with bounded-length preference lists.

Theorem 6 egal 3-sri is approximable within 9/7.

Proof. Let I be an instance of 3-sri and let Megal denote an egalitarian sta-
ble matching in I. First we show that any stable matching in I is a 4/3-
approximation to Megal. We then focus on the worst-case scenario when this
ratio 4/3 is in fact realised. Then we design a weight function on the edges
of the graph and apply Teo and Sethuraman’s 2-approximation algorithm [25,
26] to find an approximate solution M ′ to a minimum weight stable matching
Mopt for this weight function. This weight function helps M ′ to avoid the worst
case for the 4/3-approximation for a significant amount of the matching edges.
We will ultimately show that M ′ is in fact a 9/7-approximation to Megal.

Claim 7. In an instance of egal 3-sri, any stable matching approximates
c(Megal) within a factor of 4/3.
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Proof. Let M be an arbitrary stable matching in I. Call an edge uv an (i, j)-
pair (i ≤ j) if v is u’s ith choice and u is v’s jth choice. By Theorem 4.5.2
of [12], the set of agents matched in Megal is identical to the set of agents
matched in M . We will now study the worst approximation ratios in all cases
of (i, j)-pairs, given that 1 ≤ i ≤ j ≤ 3 in 3-sri.

• If uv ∈Megal is a (1, 1)-pair then u and v contribute 2 to c(Megal) and also
2 to c(M) since they must be also be matched in M (and in every stable
matching).

• If uv ∈ Megal is a (1, 2)-pair then u and v contribute 3 to c(Megal) and
at most 4 to c(M). Since, if uv /∈ M , then v must be matched to his 1st
choice and u to his 2nd or 3rd, because one of u and v must be better off
and the other must be worse off in M than in Megal.

• If uv ∈ Megal is a (1, 3)-pair then u and v contribute 4 to c(Megal) and at
most 5 to c(M). Since, if uv /∈ M , then v must be matched to his 1st or
2nd choice and u to his 2nd or 3rd.

• If uv ∈ Megal is a (2, 2)-pair then u and v contribute 4 to c(Megal) and at
most 4 to c(M). Since, if uv /∈ M , then one must be matched to his 1st
choice and the other to his 3rd.

• If uv ∈ Megal is a (2, 3)-pair then u and v contribute 5 to c(Megal) and at
most 5 to c(M). Since, if uv /∈ M , then v must be matched to his 1st or
2nd choice and u to his 3rd.

• If uv ∈Megal is a (3,3)-pair then u and v contribute 6 to c(Megal) and also
6 to c(M) since they must be also be matched in M (and in every stable
matching – this follows by [12, Lemma 4.3.9]).

It follows that, for every pair uv ∈Megal,

rank(u,M(u)) + rank(v,M(v))
rank(u,Megal(u)) + rank(v,Megal(v)) = rank(u,M(u)) + rank(v,M(v))

rank(u, v) + rank(v, u)
≤ 4/3.

Hence c(M)/c(Megal) ≤ 4/3 and Claim 7 is proved.

As shown in Claim 7, the only case when the approximation ratio 4/3
is reached is where Megal consists of (1,2)-pairs exclusively, while the stable
matching output by the approximation algorithm contains (1,3)-pairs only. We
will now present an algorithm that either delivers a stable solution M ′ con-
taining at least a significant amount of the (1,2)-pairs in Megal or a certificate
that Megal contains only a few (1,2)-pairs and thus any stable solution is a
good approximation.

To simplify our proof, we execute some basic pre-processing of the input
graph. If there are any (1,1)-pairs in G, then these can be fixed, because they
occur in every stable matching and thus can only lower the approximation
ratio. Similarly, if an arbitrary stable matching contains a (3,3)-pair, then this
edge appears in all stable matchings and thus we can fix it. Those (3,3)-pairs
that do not belong to the set of stable edges can be deleted from the graph.
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From this point on, we assume that no edge is ranked first or last by both of
its end vertices in G and prove the approximation ratio for such graphs.

Take the following weight function on all uv ∈ E:

w(uv) =
{

0 if uv is a (1,2)-pair,
1 otherwise.

We designed w(uv) to fit the necessary U-shaped condition of Teo and
Sethuraman’s 2-approximation algorithm [25,26]. This condition on the weight
function is as follows. We are given a function fp on the neighbouring edges
of a vertex p. Function fp is U-shaped if it is non-negative and there is a
neighbour q of p so that fp is monotone decreasing on neighbours in order of
p’s preference until q, and fp is monotone increasing on neighbours in order of
p’s preference after q. The approximation guarantee of Teo and Sethuraman’s
algorithm holds for an edge weight function w(uv) if for every edge uv ∈ E,
w(uv) can be written as w(uv) = fu(uv) + fv(uv), where fu and fv are U-
shaped functions.

Our w(uv) function is clearly U-shaped, because at each vertex the se-
quence of edges in order of preference is either monotone increasing or it is
(1, 0, 1). Since w itself is U-shaped, it is easy to decompose it into a sum of
U-shaped fv functions, for example by setting fv(uv) = fu(uv) = w(uv)

2 for
every edge uv.

Let M denote an arbitrary stable matching and M (1,2) be the set of (1,2)-
pairs in a matching M and Mopt be a minimum weight stable matching with
respect to the weight function w(uv). Since Mopt is by definition the stable
matching with the largest number of (1,2)-pairs, |M (1,2)

opt | ≥ |M
(1,2)
egal |. We also

know that w(M) = |M | − |M (1,2)| for every stable matching M .
Due to Teo and Sethuraman’s approximation algorithm [25,26], it is possi-

ble to find a stable matching M ′ whose weight approximates w(Mopt) within
a factor of 2. Formally,

|M | − |M ′(1,2)| = w(M ′) ≤ 2w(Mopt) = 2|M | − 2|M (1,2)
opt |.

This gives us a lower bound on |M ′(1,2)|.

|M ′(1,2)| ≥ 2|M (1,2)
opt | − |M | ≥ 2|M (1,2)

egal | − |M | (1)

We distinguish two cases from here on, depending on the sign of the term
on the right. In both cases, we establish a lower bound on c(Megal) and an
upper bound on c(M ′). These will give the desired upper bound of 9/7 on

c(M ′)
c(Megal) .

1) 2|M (1,2)
egal | − |M | ≤ 0

The derived lower bound for |M ′(1,2)| is negative or zero in this case. Yet we
know that at most half of the edges in Megal are (1,2)-pairs, and c(e) ≥ 4
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for the rest of the edges in Megal. Let us denote |M | − 2|M (1,2)
egal | ≥ 0 by x.

Thus, |M (1,2)
egal | =

|M |−x
2 .

c(Megal) ≥
|M | − x

2 · 3 + |M |+ x

2 · 4 = 3.5|M |+ 0.5x (2)

We use our arguments in the proof of Claim 7 to derive that an arbitrary
stable matching approximates c(Megal) on the |M |−x

2 (1,2)-edges within a
ratio of 4

3 , while its cost on the remaining |M |+x
2 edges is at most 5. These

imply the following inequalities for an arbitrary stable matching M .

c(M) ≤ |M | − x2 · 3 · 4
3 + |M |+ x

2 · 5 = 4.5|M |+ 0.5x (3)

We now combine (2) and (3). The last inequality holds for all x ≥ 0.

c(M)
c(Megal)

≤ 4.5|M |+ 0.5x
3.5|M |+ 0.5x ≤

9
7

2) 2|M (1,2)
egal | − |M | > 0

Let us denote 2|M (1,2)
egal | − |M | by x̂. Notice that |M (1,2)

egal | =
x̂+|M |

2 . We can
now express the number of edges with cost 3, and at least 4 in Megal.

c(Megal) ≥ 3 · x̂+ |M |
2 + 4 ·

(
|M | − x̂+ |M |

2

)
= 3.5|M | − 0.5x̂ (4)

Let |M ′(1,2)| = z1. Then exactly z1 edges in M ′ have cost 3. It follows from
(1) that z1 ≥ x̂. Suppose that z2 ≤ z1 edges in M ′(1,2) correspond to edges
in M (1,2)

egal . Recall that |M (1,2)
egal | =

x̂+|M |
2 . The remaining |M |+x̂

2 −z2 edges in
M

(1,2)
egal have cost at most 4 in M ′. This leaves |M | − |M (1,2)

egal | − (z1 − z2) =
|M |−x̂

2 − z1 + z2 edges in Megal that are as yet unaccounted for; these have
cost at most 5 in both Megal and M ′. We thus obtain:

c(M ′) ≤ 3z1 + 4
(
|M |+ x̂

2 − z2

)
+ 5

(
|M | − x̂

2 − z1 + z2

)
= 4.5|M | − 0.5x̂− 2z1 + z2

≤ 4.5|M | − 1.5x̂ (5)

Combining (4) and (5) delivers the following bound.

c(M ′)
c(Megal)

≤ 4.5|M | − 1.5x̂
3.5|M | − 0.5x̂ <

9
7

The last inequality holds for every x̂ > 0.
We derived that M ′, the 2-approximate solution with respect to the weight

function w(uv) delivers a 9
7 -approximation in both cases.
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uv worst case cost at u worst case cost at v cost ratio
(1,2) 4 1 5/3
(1,3) 4 2 6/4
(1,4) 4 3 7/5
(2,2) 4 1 5/4
(2,3) 4 2 6/5
(2,4) 4 3 7/6
(3,3) 4 2 6/6
(3,4) 4 3 7/7

Table 2 uv edges and the corresponding costs in egal 4-sri.

Using analogous techniques we can establish similar approximation bounds
for egal 4-sri and egal 5-sri, as follows.

Theorem 8 egal 4-sri is approximable within 11/7.

Proof. We start with a statement analogous to Claim 7.

Claim 9. In an instance of egal 4-sri, any stable matching approximates
c(Megal) within a factor of 5/3.

Proof. As earlier, we can fix all (1,1)-pairs and eliminate all (4,4)-pairs from
the instance. Table 2 contains all cases for uv edges in Megal and the corre-
sponding costs in an arbitrary stable matching.

We define the same weight function w(uv) as in the proof of Theorem 6.
We remark here that w(uv) remains U-shaped for preference lists of length 4,
because at each vertex the sequence of edges in order of preference is either
monotone increasing or it is (1,0,1,1). Since we derived Inequality (1) with-
out using the bounded degree property, it holds for egal 4-sri as well. We
distinguish two cases based on the sign of 2|M (1,2)

egal | − |M |.

1) 2|M (1,2)
egal | − |M | ≤ 0

Let us denote |M | − 2|M (1,2)
egal | ≥ 0 by x. Thus, |M (1,2)

egal | =
|M |−x

2 . Further-
more, let y denote the number of edges with cost at least 5 in Megal.

c(Megal) ≥
|M | − x

2 · 3 +
(
|M |+ x

2 − y
)
· 4 + 5y

= 3.5|M |+ 0.5x+ y

c(M) ≤ |M | − x2 · 3 · 5
3 +

(
|M |+ x

2 − y
)
· 6 + 7y = 5.5|M |+ 0.5x+ y

c(M)
c(Megal)

≤ 5.5|M |+ 0.5x+ y

3.5|M |+ 0.5x+ y
≤ 11

7
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2) 2|M (1,2)
egal | − |M | > 0

Let x̂ denote 2|M (1,2)
egal | − |M | and y the number of edges with cost at least

5 in Megal. Due to Inequality (1), we know that at least x̂ (1, 2)-pairs in
Megal correspond to edges of cost 3 in M ′. The remaining |M |−x̂

2 (1, 2)-pairs
in Megal correspond to edges of cost at most 5 in M ′.

c(Megal) ≥
x̂+ |M |

2 · 3 + 4 · ( |M | − x̂2 − y) + 5y = 3.5|M | − 0.5x̂+ y

c(M ′) ≤ 3x̂+ 5 · |M | − x̂2 + 6 · ( |M | − x̂2 − y) + 7y = 5.5|M | − 2.5x̂+ y

c(M ′)
c(Megal)

≤ 5.5|M | − 2.5x̂+ y

3.5|M | − 0.5x̂+ y
<

11
7

Theorem 10 egal 5-sri is approximable within 13/7.

Proof. Again we start with a statement analogous to Claim 7.

Claim 11. In an instance of egal 5-sri, any stable matching approximates
c(Megal) within a factor of 2.

Proof. As earlier, we can fix all (1,1)-pairs and eliminate all (5,5)-pairs from
the instance. Table 3 contains all cases for uv edges in Megal and the corre-
sponding costs in an arbitrary stable matching.

We remark that w(uv) remains U-shaped for preference lists of length 5,
because at each vertex the sequence of edges in order of preference is either
monotone increasing or it is (1,0,1,1,1). We observe that Inequality (1) holds
for egal 5-sri as well. Thus we distinguish two cases based on the sign of
2|M (1,2)

egal | − |M |.

1) 2|M (1,2)
egal | − |M | ≤ 0

Let us denote |M | − 2|M (1,2)
egal | ≥ 0 by x. Thus, |M (1,2)

egal | =
|M |−x

2 . Further-
more, let y be the number of edges with cost 5 and z the number of edges
with cost at least 6 in Megal.

c(Megal) ≥
|M | − x

2 · 3 +
(
|M |+ x

2 − y − z
)
· 4 + 5y + 6z

= 3.5|M |+ 0.5x+ y + 2z

c(M) ≤ |M | − x2 · 3 · 6
3 +

(
|M |+ x

2 − y − z
)
· 7 + 8y + 9z

= 6.5|M |+ 0.5x+ y + 2z
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uv worst case cost at u worst case cost at v cost ratio
(1,2) 5 1 6/3
(1,3) 5 2 7/4
(1,4) 5 3 8/5
(1,5) 5 4 9/6
(2,2) 5 1 6/4
(2,3) 5 2 7/5
(2,4) 5 3 8/6
(2,5) 5 4 9/7
(3,3) 5 2 7/6
(3,4) 5 3 8/7
(3,5) 5 4 9/8
(4,4) 5 3 8/8
(4,5) 5 4 9/9

Table 3 uv edges and the corresponding costs in egal 5-sri.

c(M)
c(Megal)

≤ 6.5|M |+ 0.5x+ y + 2z
3.5|M |+ 0.5x+ y + 2z ≤

13
7

2) 2|M (1,2)
egal | − |M | > 0

Let x̂ denote 2|M (1,2)
egal | − |M |, y the number of edges with cost 5 and z the

number of edges with cost at least 6 in Megal.

c(Megal) ≥
x̂+ |M |

2 ·3+4·( |M | − x̂2 −y−z)+5y+6z = 3.5|M |−0.5x̂+y+2z

c(M ′) ≤ 3x̂+6· |M | − x̂2 +7·( |M | − x̂2 −y−z)+8y+9z = 6.5|M |−3.5x̂+y+2z

c(M ′)
c(Megal)

≤ 6.5|M | − 3.5x̂+ y + 2z
3.5|M | − 0.5x̂+ y + 2z <

13
7

Using a similar reasoning for each d ≥ 6, our approach gives a cd-approxi-
mation algorithm for egal d-sri where cd > 2. In these cases the 2-approxi-
mation algorithm of Feder [7,8] should be used instead.

3 Solvability and most-stable matchings in d-srti

In this section we study the complexity and approximability of the problem
of deciding whether an instance of d-srti admits a stable matching, and the
problem of finding a most-stable matching given an instance of d-srti.

We begin by defining two problems that we will be studying in this section
from the point of view of complexity and approximability.
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Problem 4. solvable d-srti
Input: I = 〈G,O〉, where G is a graph and O is a set of preference lists, each
of length at most d, possibly involving ties.
Question: Is I solvable?

Problem 5. min bp d-srti
Input: An instance I of d-srti.
Output: A matching M in I such that |bp(M)| = bp(I).

We will show that solvable 3-srti is NP-complete and min bp 3-srti is
hard to approximate. In both cases we will use a reduction from the following
satisfiability problem:

Problem 6. (2,2)-e3-sat
Input: I = B, where B is a Boolean formula in CNF, in which each clause com-
prises exactly 3 literals and each variable appears exactly twice in unnegated
and exactly twice in negated form.
Question: Is there a truth assignment satisfying B?

(2,2)-e3-sat is NP-complete, as shown by Berman et al. [2]. We begin with
the hardness of solvable 3-srti.

Theorem 12 solvable 3-srti is NP-complete.

Proof. Clearly solvable 3-srti belongs to NP. To show NP-hardness, we
reduce from (2,2)-e3-sat as defined in Problem 6. Let B be a given instance
of (2,2)-e3-sat, where X = {x1, x2, . . . , xn} is the set of variables and C =
{c1, c2, . . . , cm} is the set of clauses. We form an instance I = (G,O) of 3-
srti as follows. Graph G consists of a variable gadget for each xi (1 ≤ i ≤ n),
a clause gadget for each cj (1 ≤ j ≤ m) and a set of interconnecting edges
between them; these different parts of the construction, together with the
preference orderings that constitute O, are shown in Figure 3 and will be
described in more detail below.

When constructing G, we will keep track of the order of the three literals
in each clause of B and the order of the two unnegated and two negated
occurrences of each variable in B. Each of these four occurrences of each
variable is represented by an interconnecting edge.

A variable gadget for a variable xi (1 ≤ i ≤ n) of B comprises the 4-cycle
〈v1

i , v
2
i , v

3
i , v

4
i 〉 with cyclic preferences. Each of these four vertices is incident to

an interconnecting edge. These edges end at specific vertices of clause gadgets.
The clause gadget for a clause cj (1 ≤ j ≤ m) contains 20 vertices, three of
which correspond to the literals in cj ; these vertices are also incident to an
interconnecting edge.

Due to the properties of (2,2)-e3-sat, xi occurs twice in unnegated form,
say in clauses cj and ck of B. Its first appearance, as the rth literal of cj

(1 ≤ r ≤ 3), is represented by the interconnecting edge between vertex v1
i in

the variable gadget corresponding to xi and vertex ar
j in the clause gadget

corresponding to cj . Similarly the second occurrence of xi, say as the sth
literal of ck (1 ≤ s ≤ 3) is represented by the interconnecting edge between v3

i
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y3
j y4

j

y2
j y1

j p3
j b3

j a3
j q3

j z1
j z2

j

z3
jz4

j

p2
j

b2
j a2

j

q2
j

p1
j b1

j a1
j q1

j

1 2

2

2 3

1

12

2

23

1

1 2 1 3 12132 1 1 1 3 2

1 1 1 1 3 1

2

1

1 1

3

23

1

2

1

3

1

2

1

v1
i v2

i

v3
i

v4
i

1 3

1

3

13

1

3

22

2

2

2

2

2

Fig. 3 Clause and variable gadgets for 3-srti. The dotted edges are the interconnecting
edges. The notation used for edge a1

j v4
i implies that the first literal of the corresponding

clause cj is the second occurrence of the corresponding variable xi in negated form.

MT
i = {v1

i v2
i , v3

i v4
i }

MF
i = {v1

i v4
i , v2

i v3
i }

M1
j = {a1

j q1
j , b1

j p1
j , a2

j b2
j , a3

j b3
j , q2

j q3
j , p2

j p3
j , y1

j y2
j , y3

j y4
j , z1

j z2
j , z3

j z4
j }

M2
j = {a2

j q1
j , b2

j p1
j , a1

j b1
j , a3

j b3
j , q2

j q3
j , p2

j p3
j , y1

j y2
j , y3

j y4
j , z1

j z2
j , z3

j z4
j }

M3
j = {a3

j q3
j , b3

j p3
j , a1

j b1
j , a2

j b2
j , q1

j q2
j , p1

j p2
j , y1

j y2
j , y3

j y4
j , z1

j z2
j , z3

j z4
j }

Fig. 4 The matchings corresponding to variable xi if it is set to be true and false, respec-
tively, and to the first, second or third literal being true in a fixed clause cj .

and as
k. The same variable xi also appears twice in negated form. Appropriate

a-vertices in the gadgets representing those clauses are connected to v2
i and v4

i .
We remark that this construction involves a gadget similar to one presented
by Biró et al. [4] in their proof of the NP-hardness of min bp 3-sri.

Now we prove that there is a truth assignment satisfying B if and only if
there is a stable matching M in I.

Claim 13. For any truth assignment satisfying B, a stable matching M can
be constructed in I.

Proof. In Figure 4, we define two matchings, MT
i and MF

i , on the variable
gadgets and three matchings, M1

j ,M
2
j and M3

j , on the clause gadgets.
If a variable xi (1 ≤ i ≤ n) is assigned to be true, MT

i is added to M ,
otherwise MF

i is added. Similarly, since at least one literal in cj (1 ≤ j ≤ m)
is true, let r (1 ≤ r ≤ 3) be the minimum integer such that the literal at
position r of cj is true; add Mr

j to M . The intuition behind this choice is
that if a literal is true, then the vertex representing it in the variable gadget
is matched to its best choice. On the other hand, if some literals in a clause
are true, then the vertex representing the appearance of one of them in that
clause is matched to its last-choice vertex.
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We claim that no edge blocks M . Checking the edges in the clause and
variable gadgets is easy. The five special matchings were designed in such
a way that no edge within the gadgets blocks them. More explanation is
needed regarding the interconnecting edges. Suppose one of them, ar

jv
s
i , (r ∈

{1, 2, 3} , s ∈ {1, 2, 3, 4}) blocks M . Since M is a perfect matching, ar
j needs to

be matched to its last choice, a q-vertex. Similarly, vs
i has to be matched to its

worst partner. While the partner of ar
j indicates that the literal represented

by vs
i (xi or x̄i) is true in the clause, the partner of vs

i means that the literal
is false.

Claim 14. For any stable matching M in I, there is a truth assignment
satisfying B.

Proof. In the next three paragraphs we show that the restriction of M to any
variable or clause gadget is one of the above listed special matchings, and no
interconnecting edge is in M .

First of all, if a vertex u is the only first choice of another vertex, then u
certainly needs to be matched in M . This property is fulfilled for all vertices
of all clause gadgets except for y3

j and z3
j for each cj (1 ≤ j ≤ m). Let us

first study clause gadget cj . If y4
j is matched to y2

j , then y2
j y

3
j blocks M . Thus,

y3
j y

4
j , and similarly, z3

j z
4
j are part of M for all clause gadgets.

Our proof for clause gadgets from this point involves considering matchings
covering all twelve remaining vertices. We differentiate two possible cases, de-
pending on the partner of p3

j . In the first case, p3
jb

3
j ∈M . Therefore, p2

jp
1
j ∈M

too, because p2
j has to be matched. For similar reasons, {b1

ja
1
j , b

2
ja

2
j , q

1
j q

2
j , q

3
ja

3
j}

⊆ M . This gives us matching M3
j . In the second case, if p3

j is matched to p2
j ,

then {b3
ja

3
j , q

3
j q

2
j } ⊆ M . There are two possible matchings on the remaining

six vertices: {p1
jb

1
j , a

1
jq

1
j , b

2
ja

2
j} and {p1

jb
2
j , q

1
ja

2
j , b

1
ja

1
j}. These two matchings to-

gether with the lower part of the gadget form M1
j and M2

j .
Since all a-vertices have a partner within their clause gadgets, no intercon-

necting edge can be a part of M . For the variable gadgets, it is straightforward
to see that MT

i and MF
i are the only matchings covering all vertices of the

4-cycles.
The truth assignment to B is then defined in the following way. Each

variable whose gadget has the edges of MT
i in M is assigned to be true, while

all other variables with MF
i on their gadgets are false.

All that remains is to show that this is indeed a truth assignment. Suppose
that there is an unsatisfied clause cj in B. Since all three of cj ’s literals are
false, every vertex vr

i (1 ≤ i ≤ n) such that vr
i a

s
j is an interconnecting edge

prefers as
j to its partner in M (1 ≤ s ≤ 3). Hence a blocking edge can only be

avoided if a1
jb

1
j , a2

jb
2
j and a3

jb
3
j are all in M , which never occurs in any stable

matching as shown above.

This finishes the proof of Theorem 12.
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Our construction shows that the complexity result holds even if the pref-
erence lists are either strictly ordered or consist of a single tie of length two.
Moreover, Theorem 12 also immediately implies the following result.

Corollary 15. min bp 3-srti is NP-hard.

The following result strengthens Corollary 15.

Theorem 16 min bp 3-srti is not approximable within n1−ε, for any ε > 0,
unless P = NP, where n is the number of agents.

Proof. The core idea of the proof is to gather several copies of the 3-srti
instance created in the proof of Theorem 12, together with a small unsolvable
3-srti instance. By doing so, we create a min bp 3-srti instance I in which
bp(I) is large if the Boolean formula B (originally given as an instance of
(2,2)-e3-sat) is not satisfiable, and bp(I) = 1 otherwise. Therefore, finding a
good approximation for I will imply a polynomial-time algorithm to decide the
satisfiability ofB. Our proof is similar to that of an analogous inapproximabilty
result for the problem of finding a most-stable matching in an instance of the
Hospitals / Residents problem with Couples [3].

The smallest unsolvable instance of 3-srti is a 3-cycle with cyclic strict
preferences. Aside from this, we add k disjoint copies of 3-srti instance created
in the proof of Theorem 12 (from the same Boolean formula B), for large
enough k. In particular we let c = d2/εe and k = nc

0, where n0 is the number
of variables in B. We use m0 to denote the number of clauses in B. Let I
be the instance of 3-srti that has been constructed. Due to the proof of
Theorem 12 above, if B is satisfiable then bp(I) = 1, and if B is not satisfiable
then bp(I) ≥ k + 1. Hence a k-approximation algorithm for min bp 3-srti
could be used to solve (2,2)-e3-sat in polynomial time.

In the remainder of the proof we show that n1−ε ≤ k, where n is the
number of agents in I, which will imply the statement of the theorem. With
Inequalities (6)-(9) we give an upper bound for n. This is used in Inequali-
ties (11)-(14) as we establish k as an upper bound for n1−ε. Explanations for
the steps are given as and when it is necessary after each set of inequalities.

n = k(4n0 + 20m0) + 3 (6)

= k(4n0 + 204n0

3 ) + 3 (7)

≤ 32kn0 (8)
= 32nc+1

0 (9)

In Equality (6) can be deduced by inspection of the 3-srti instance con-
structed in the proof of Theorem 12. In step (7) we substitute m0 = 4n0

3 , which
follows from the structure of B. We can assume without loss of generality that
kn0 ≥ 3, which we use in Inequality (8). Finally, in Equality (9) we substitute
k = nc

0.
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Since c = d2/εe, the following inequality also holds.

c− 1
c+ 1 = 1− 2

c+ 1 ≥ 1− ε (10)

We can now establish the desired upper bound for n1−ε.

n1−ε ≤ n
c−1
c+1 (11)

≤ 32
c−1
c+1 nc−1

0 (12)
≤ nc

0 (13)
= k (14)

Inequality (11) is obtained by raising n to the power of each side of Inequal-
ity (10). Inequality (12) follows from the bound for n established in Inequal-
ities (6)-(9). Now in Inequality (13) we can assume without loss of generality
that n0 ≥ 32 and use that c−1

c+1 < 1. In the last step, we use the definition
of k.

To complete the study of cases of min bp d-srti, we establish a positive
result for instances with degree at most 2.

Theorem 17 min bp 2-srti is solvable in O(|V |) time.

Proof. For an instance I of min bp 2-srti, clearly every component of the
underlying graph G is a path or cycle. We claim that bp(I) equals the number
of odd parties in G, where an odd party is a cycle C = 〈v1, v2, ..., vk〉 of odd
length, such that vi strictly prefers vi+1 to vi−1 (addition and subtraction are
taken modulo k).

Since an odd party never admits a stable matching, bp(I) is bounded below
by the number of odd parties [24]. This bound is tight: by taking an arbitrary
maximum matching in an odd party component, a most-stable matching is
already reached. Now we show that a stable matching M can be constructed
in all other components.

Each component that is not an odd cycle is therefore a bipartite subgraph
(indeed either a path or an even cycle). Such a subgraph therefore gives rise
to the restriction of srti called the Stable Marriage problem with Ties and
Incomplete lists (smti). An instance of smti always admits a stable solution
and it can be found in linear time [22]. Thus these components contribute no
blocking edge.

Regarding odd-length cycles that are not odd parties, we will show that
there is at least one vertex not strictly preferred by either of its adjacent
vertices. Leaving this vertex uncovered and adding a perfect matching in the
rest of the cycle results in a stable matching.

Assume that every vertex along a cycle Ck (where k is an odd number) is
strictly preferred by at least one of its neighbours. Since each of the k vertices
is strictly preferred by at least one vertex, and a vertex v can prefer at most one
other vertex strictly, every vertex along Ck has a strictly ordered preference
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list. Now every vertex can point at its unique first-choice neighbour. To avoid
an odd cycle, there must be a vertex pointed at by both of its neighbours.
This implies that there is also a vertex v pointed at by no neighbour, and v is
hence ranked second by both of its neighbours.

4 Egalitarian stable matchings in srti

In this section we outline the difficulties that would be encountered by at-
tempting to define and study the concept of an egalitarian stable matching in
instances of srti.

• When considering the approximability of egal d-sri, we restricted atten-
tion to the case of solvable instances, in the knowledge that solvability can
be determined in linear time [15]. However in the case of srti, we can no
longer assume this, since solvable 3-srti is NP-complete as Theorem 12
shows.

• In instances of egal d-sri, not all agents are necessarily matched in all
stable matchings, but due to Theorem 4.5.2 of [12], which states that the
same agents are matched in all stable matchings, we can discard unmatched
agents and consider only the remaining agents when reasoning about ap-
proximation algorithms. There is no analogue of Theorem 4.5.2 in the case
of d-srti (indeed, stable matchings can be of different sizes in a given in-
stance of srti [17]). This means that any approximation algorithm for the
problem of finding an egalitarian stable matching in an instance of srti
would need to consider the cost of an unmatched agent in a given stable
matching, and the choice of value for such a case is not universally agreed
upon in the literature.

• Similarly in the case of srti, the choice of value for the rank of an agent
aj in a given agent ai’s preference list is again not universally agreed upon
– for example if ai has a tie of length 2 at the head of her preference list,
followed strictly by aj , then rank(ai, aj) could reasonably be defined to be
either 2 or 3 depending on the definition adopted.

5 Open questions

Theorems 6, 8 and 10 improve on the best known approximation factor for
egal d-sri for small d. It remains open to come up with an even better
approximation or to establish an inapproximability bound matching our al-
gorithm’s guarantee. A more general direction is to investigate whether the
problem of finding a minimum weight stable matching can be approximated
within a factor less than 2 for instances of d-sri for small d.

Chen et al. [6] consider different costs for an unmatched agent when finding
egalitarian stable matchings in srti.
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