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Abstract 

Platforms that are understood as a place or system coordinating the interaction of different 

stakeholders (e.g., service consumers and providers) may enable widespread adoption of IoT services 

and applications. However, the lack of interoperability between platforms may inhibit the diffusion 

of IoT services by preventing reaching a critical mass and reducing competition as it makes consumer 

switching and service provider multihoming prohibitively expensive. Moreover, network effects 

inherent in multisided platforms may lead to a monopoly power in IoT market.  

This paper analyzes the effect of consumer switching costs and provider multihoming on market 

structure and competition by means of agent-based modelling. Simulation results suggest that service 

provider multihoming plays a key role in increasing market competition when switching costs 

decrease due to, for example, consumer data portability.        

Keywords: IoT, interoperability, network effect, data sharing, consumer switching, service provider 

multihoming, coopetition 

Introduction 

The widespread adoption of IoT services and technologies requires an ecosystem typically built 

around a platform to facilitate the interaction of the involved players. Since IoT covers an extremely 

wide area of applications, multiple platforms emerge; however, they are often sector specific and lack 

interoperability, forming isolated silos. From this perspective, a main regulatory concern is the lack 

of cooperation between the existing platforms.    

In the field of platform economics, Rochet and Tirole (2003) suggest that in markets with network 

externalities and two or more interacting sides, a dominant platform will emerge and the market will 

exhibit high market concentration and monopoly power. In such a scenario, platforms compete 

aggressively to rapidly get those users who are most sensitive to price, which in turn can attract the 

users on the other side of the platform.  

Boudreau and Hagiu (2009) highlight the importance of platform rules, beyond pricing, to achieve a 

socially desirable outcome. Such rules include legal, technological and informational aspects. For 

assuring competition, many authors have emphasized the importance of interoperability between 

platforms (Manyika et al., 2015; O’Halloran & Kvochko, 2015). For instance, Schiff (2003) argues 

that a compatible duopoly achieves higher social benefits than a noncompatible one. Moreover, 

Rochet and Tirole (2003) argue that the existence of multihoming1 on one side of the platform 
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incentivizes the competition on the other side. However, platform owners may utilize exclusive 

contracts to prevent service provider multihoming (Armstrong & Wright, 2007). 

In a future IoT scenario, platform interoperability is needed to achieve a critical mass of users. 

Platform interoperability may enable data sharing, which allows users to switch from one platform 

provider to another without losing their data. Furthermore, recently introduced European Union 

General Data Protection Regulation (EU GDPR) established a requirement for consumer data 

portability, which promotes the development of tools or mechanisms to ease data transfer from one 

platform to another (De Hert et al., 2017) decreasing consumer switching costs. In consumer IoT, 

such data transfer may take place either between service providers or between IoT platforms, 

depending on the entity managing consumer data. In any case, seamless implementation of data 

portability requires higher interoperability between exchanging parties (De Hert et al., 2017). In 

addition to enabling user switching, platform interoperability can facilitate service provider 

multihoming as it can decrease the cost of application development for multiple platforms.   

In networked markets, regulatory authorities incentivize competition through decreasing consumer 

switching costs, which are traditionally seen as a barrier to enter a market (Klempeter, 1987). For 

example, in the mobile telecommunications industry the implementation of mobile number portability 

(which diminishes switching costs) resulted in lower retail prices in many countries (Sánchez & 

Asimakopoulos, 2012). However, this may not be always the case. For instance, Chen (2016) and 

Lam (2017) found that decreasing switching costs may negatively affect competition in industries 

with high network effects. Chen (2016) suggests that lowering consumer switching costs may 

increase market concentration under high network effect and without a viable outside option (i.e., an 

alternative service or platform), but at the same time may decrease market concentration if such option 

exists. On the other hand, Lam (2017) argues that the decreasing switching costs on one side of the 

platform (e.g., consumers) may increase the price on the other side of the platform (e.g., service 

providers) and thus may not have the expected positive effect on social welfare.  

The relation between competition and cooperation (i.e. coopetition2) has been understudied in the IoT 

literature. While many authors agree that interoperability (i.e. cooperation) is required for reaching a 

critical mass of users, it may also lead to a decrease in switching cost which incentivises competition. 

On the other hand, interoperability facilitates provider multihoming. The overall effect of user 

switching and provider multihoming has not been properly studied. However, there have been some 

recent attempts in the mobile telecommunications industry to study the dynamics of coopetition. For 

example, Karhu, Tang & Hämäläinen (2014) compared the level of competition and collaboration in 

mobile operating systems (Apple, Microsoft and Android), arguing that both strategies are widely 

utilized in the mobile ecosystem.  In this study, cooperation is measured by the number of services a 

platform offers through third parties, while competition is measured by the number of services a 

platform produces by itself. Also, Basaure, Suomi & Hämmäinen (2016) compared the main 

competitive mechanisms (end-user multihoming) against cooperative mechanisms (roaming and 

dynamic spectrum access) in the mobile telecommunications, concluding that both cooperative and 

competitive mechanisms increase economic efficiency in a similar manner.   

                                                           
2 Coopetition is a relationship between actors (i.e. firms) which are simultaneously competing and cooperating 



This study aims to further contribute to analysing the dynamics of coopetition by means of agent-

based modelling. The starting point of this study is that both competition (incentivized through 

consumer switching) and cooperation (achieved through interoperability, which enables data sharing 

and service provider multihoming) are needed to optimize social welfare created by emerging IoT 

applications. Thus, this paper addresses the following research question: how do consumer switching 

costs and provider multihoming affect market structure and competition of emerging IoT platforms? 

In practice, this work aims to evaluate the effect of different policy decisions on the competition of 

IoT platforms. 

Background  

IoT platform 

With the increasing attention paid to the IoT, a growing number of products and services are marketed 

as IoT platforms. Such platforms are often a core component of an IoT solution; they provide 

interconnection between heterogeneous sensors and actuators, help to manage them, and finally store 

and analyze the data they produce (Mineraud, Mazhelis, Su, & Tarkoma, 2016). Apart from the IoT 

platform, a typical IoT solution includes four other layers - sensors and actuators, device, gateway, 

and application (Guth, Breitenbucher, Falkenthal, Leymann, & Reinfurt, 2016). Although on an 

abstract level IoT solutions are often similar, due to the lack of widely accepted standards, their 

implementations often differ in architecture thereby hindering interoperability. To combat this 

problem, several standardized reference architectures for IoT were introduced (Weyrich and Ebert, 

2016), which specify structure and functions of IoT platforms. In this work, the modeled platforms 

form a multi-sided market enabling service providers to build applications based on the data collected 

by IoT devices, although current IoT platforms often lack an open marketplace for third-party 

developers (Mineraud et al., 2016). The data is assumed to belong to consumers, who therefore have 

the power to grant service providers access to it. The core functions of an IoT platform is to enable 

the data collection, storage and utilization. Such platform can be exemplified by GSMA IoT Big Data 

Framework Architecture (GSM Association, 2016). Unlike many others mostly industrial internet-

focused reference architectures for IoT, such as the ones proposed by ISO (draft) (ISO/IEC, 2016) 

and Industrial Internet Consortium (Lin et al., 2017), GSMA IoT architecture explicitly focuses on 

data and supports an ecosystem of third party developers. To abstract technical complexities 

unnecessary for this research, this paper takes a high-level view of a platform, as illustrated by Figure 

1. Therefore, the platform also fits to some extent other IoT reference architectures, such as ISO and 

Industrial Internet Consortium, which provide more detailed views.  



 

Figure 1:  Abstracted view of GSMA IoT big data framework architecture (GSM Association, 2016) 

Further sections present the state of the art development of mobile Health IoT platforms as a way to 

illustrate the dynamics of consumer IoT applications.  

Mobile Health 

Wearable and digital health devices can be viewed as an early and advanced consumer IoT vertical. 

Already in 2016, the number of connected wearable devices globally reached 325 million, and it is 

expected to increase to 929 million by 2021 (Cisco, 2017). Wearable and digital health devices enable 

tracking of multiple physiological parameters, including heart rate, electrocardiogram, activity, and 

blood pressure, thereby forming a part of mobile health (mHealth) – a field that uses mobile devices 

to support achieving health targets (Olla and Shimskey, 2015).  

Large mobile health device producers typically have a proprietary web API (Application 

Programming Interface) platform that enables third-party complementors (software developers and 

other service providers) to access the data of consumers upon receiving their consent. Such data 

sharing can potentially increase device sales, which therefore motivates producers to invest in 

platform development. Since various health and wellness-related data are complementary, data 

sharing enables combining the data and enhancing the value it creates.  

Figure 2 illustrates the architecture of data platforms in mobile health. As mentioned above, device 

producers, such as Garmin, Polar, and Fitbit, have vendor-specific platforms, which allow querying 

a web platform database and copying user data to service provider cloud or mobile application. 

Furthermore, there are data aggregator platforms, such as Google Fit, Apple Health, and Samsung 

Health that offer to consumers a single point of storing their mHealth data, and to device producers 

and other service providers – a hub for sharing the data together with the tools to assist in application 

development (e.g., Farshchian and Vilarinho, 2017). However, mHealth companies often share with 



the aggregators only basic summary data due to various reasons, including the unsuitability of data 

models and unwillingness to lose control over the data sharing. Some platform providers, such as 

Fitbit, Google Fit, and Samsung Health, allow third parties utilizing their cloud platforms as the 

primary data storage location. While most of the mHealth platforms are web-based, Apple Health is 

one of the few exceptions that provide a local platform to store and share the data on the iPhone 

(Farshchian and Vilarinho, 2017).  

PolarGarmin Fitbit

Google Fit 
(Android only)

Apple Health 
(iOS only)

Garmin Polar Fitbit
Android 

Wear
Apple 
Watch

IoT devices

Vendor-specific 
platforms

Data aggregator 
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Figure 2:  Data sharing platforms in mobile health 

Despite the high interconnectedness of service and platform providers in the mHealth domain 

(Grundy et al., 2017), a consumer willing to change a platform still incurs considerable switching 

costs associated with the device and data. Thus, currently, many platforms are vertically integrated 

with the device and service, which prevents using the same device with another platform. Even if a 

device producer shares the data with a data aggregator, which gives the consumer some freedom in 

choosing a platform and service provider, such data sharing and its related decrease in switching costs 

are limited. Another switching cost is associated with the historical data, which is typically lost after 

switching from one platform to another and it represents a cost for the consumer. Moreover, some 

applications require the data for feeding the algorithms and providing better service. Currently, 

although some platform and device providers, such as Garmin, provide tools for migrating the data 

from some other platforms, such as Fitbit, these tools are limited to some types of data (DC 

Rainmaker, 2016). 

Service providers that use mHealth platforms are also subjects to a platform switching cost. Thus, 

when the license agreement with a data platform provider is terminated, the terms typically require 

complementors to remove all data that was received from the platform (e.g., Nokia, 2017), which in 

some cases constitutes a switching cost since maintaining the data may be important for improving 

the algorithms and services. Furthermore, service providers that used a platform for storing own data 

have a switching cost associated with moving the data to another platform. Such a switching cost may 

be high due to the lack of standardized data formats and web API implementations (de Arriba-Pérez 

et al., 2016).  



To increase the reach of potential customers, large mHealth companies often multihome on several 

data sharing platforms as, e.g., the providers of applications Noom and Fatsecret, as well as wearable 

device manufacturer Polar (Figure 2). In this case, Polar acts as a service provider connected to 

Google’s and Apple’s platforms, although it has own platform.  

Potential evolution  

Although currently mHealth platforms are mostly used for sharing the data inside consumer health 

and fitness domain, in future the stakeholders of the traditional healthcare industry, such as doctors 

and payers, may start using the platform (Comstock, 2014).  

Presently, consumer and service provider switching costs are high. In future, device-related switching 

cost can be decreased if higher interoperability between devices, service providers and platforms is 

achieved. This is possible, for example, if Bluetooth Generic Attributes (GATT) specifications, which 

are intended to ensure interoperable data structures (Bluetooth, n.d.) are widely adopted. Currently, 

GATT profiles are implemented in, e.g. some heart rate sensors, which enables their use with any 

compatible Bluetooth device. Moreover, the EU GDPR should decrease data-related switching cost. 

Finally, the development of standards and specifications for data exchange, such as FHIR3, can ease 

the data transfer between platforms and enable service provider multihoming through the 

standardization of data formats and APIs.  

For the purpose of this analysis, mHealth data sharing platforms, such as Google Fit or Samsung 

Health, are viewed as IoT platforms. Consumers select the platform, which collects their data to the 

cloud database, and upon obtaining the consent, provides access to this data to third party service 

providers, such as application developers, doctors, and insurance companies, which use the data in 

own service provisioning. Both consumers and service providers are subjects to the terms and 

conditions that they have to accept for using the platform, which may include, e.g. the requirement 

for service providers to remove the data upon the termination of the license agreement with a platform 

owner.  

Methodology 

This work utilizes agent-based modelling and simulation for describing the interaction between 

different stakeholders in a platform. Agent-based modelling performs a bottom-up study of complex 

adaptive systems, which emphasizes the adaptation of individuals given a simple set of rules. This 

study defines consumers, platforms and service providers as main interacting roles (i.e. agents) 

formalized in a horizontally differentiated simulation area4. They interact given different switching 

costs and multihoming conditions.  

Agent-based modelling is especially suitable when decision making is distributed at micro (agent) 

level, even though some rules are still applied in a centralized fashion. Therefore, this simulation 

                                                           
3 http://hl7.org/fhir/ 
4 Horizontal differentiation refers to those differences between products and services which are not affecting price and quality 



technique is appropriate for analysing the impact of different interoperability and multihoming 

scenarios on platform competition considering the interaction of micro-level agents.  

The main advantage of agent-based modelling is high flexibility for describing the interaction of 

heterogeneous agents, bringing together micro-individual behaviours, interaction patterns and global 

regularities. Agent-based modelling carries some disadvantages, such as scalability constraint with 

large-scale systems with thousands of agents and the difficulty of validating the models against 

empirical data. However, for this study these drawbacks are not critical since we focus on competition 

dynamics rather than on detailed system performance. 

Agent-based modelling has been recently utilized to analyse the ICT ecosystem. For example, 

Basaure, Suomi & Hämmäinen (2016) and Finley & Basaure (2018) modelled the interaction between 

networks and mobile users. The interaction between different agents in a two-sided platform has been 

modelled by Meyer (2012), who paid particular attention to path dependence in the mobile ecosystem. 

Model  

This section proposes a model for analyzing the interaction between the involved stakeholders in a 

cloud-based IoT platform: consumers, platform providers and service providers. The model 

distinguishes two types of service providers - main service providers and complementary service 

providers - to describe a multi-sided platform, since emerging IoT platforms are often intended for 

multiple types of users (Porter & Heppelmann, 2015). Thus, a consumer values a main service 

provider more if a complementary service provider is also available (e.g., a health service provider 

or a car maintenance service is more valuable for the consumer if an insurance service is also 

available). 

The proposed model analyses consumers and service providers by locating them in a simulation area 

that is horizontally differentiated. The horizontal differentiation is based on the Hotelling model of 

spatial competition (Hotelling, 1929), which basic form describes firms competing in a one-

dimensional characteristic space and has been expanded into a two-dimensional by several authors 

(Eaton & Lipsey, 1975; Economides, 1986 and Veendorp & Majeed, 1995) to represent a more 

realistic situation in which firms compete by more than one characteristic. Thus, agents are located 

in a two-dimensional characteristic space and they move in this area according to changes in supply 

(i.e. service providers) and demand (user preferences and needs). The simulation setup is described 

in Figure 3 :, where triangles depict a platform, persons depict consumers, faces depict main service 

providers and stars depict complementary service providers. Each dimension represents an important 

characteristic of the product and the resulting differentiation cost is defined by the Euclidean distance; 

in other words, both characteristics are equally important and the cost of differentiation is linear.  



 
Figure 3 :(left) simulation setup for a horizontally differentiated area. (right) model implementation by Repast Symphony 2.4 

For the user, the value of joining a platform depends on the type of network effect, which may change 

from case to case. In general terms, each user will make the decision on switching to another platform 

considering the net benefits obtained from the new platform minus the switching costs of changing 

from one platform to another. Thus, the value of joining a platform can be expressed as follows: 

(1) 𝑉 =  𝑈𝑠𝑎 +  𝑈𝑛𝑒 − 𝑠𝑐 − 𝑝, 

where V is the value of joining a platform, 𝑈𝑠𝑎 is the standalone utility or net valuation of the platform 

without externalities and switching costs, 𝑈𝑛𝑒 is the utility due to network effect, sc are the switching 

costs and p is the price of service subscription (per service, per platform or both). The standalone 

utility 𝑈𝑠𝑎 can be defined as the utility the user assigns to the platform quality ( 𝑈𝑞) minus the costs 

due to horizontal differentiation 𝑐𝑑 (distance between the user and the platform):  

(2) 𝑈𝑠𝑎 =  𝑈𝑞 − 𝑐𝑑 

The network effect can be modelled by negative exponential functions, as depicted by Evans and 

Schmalensee (2010). These functions describe the existence of a critical mass, after which the user is 

more likely to join the platform. This model utilizes the following functions: 

(3)   
  

(4)  

𝑈𝑛𝑒_𝑙𝑜𝑤 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑠𝑠 = 1 −  𝑒
−𝑘0∗

𝑁𝑢
𝑁𝑚𝑎𝑥 

𝑈𝑛𝑒 ℎ𝑖𝑔ℎ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑠𝑠 = 1 −  𝑒
−𝑘1∗

𝑁𝑢
2  

𝑘2+ 𝑁𝑢 



 
Figure 4: utility function for 40 users (Nmax), where k0 = 10, k1 = 1, k2=62 

Equation 3 represents a general negative exponential function, where Nmax is the total number of users 

in the relevant side(s) of the platform, Nu is the actual number of users and k0 is a parameter giving 

the shape to the curve. Equation 4 represents an S-shaped curve, in which Nu is the actual number of 

users in the relevant side(s), while k1 and k2 give the shape to the curve. Graphical representation of 

these equation with example parameters are shown in Figure 4. For the simulation, high critical mass 

means that a 75% of the total value is achieved by 25% of users, while low critical mass means that 

a 90% of the total value is achieved with the same amount of users. This model describes a multi-

sided platform in which each side values all other sides of the platform. Thus, a consumer values a 

main service provider if a complementary service provider is also available. In the same way, service 

providers value both consumers and complementary service providers, and complementary service 

providers value consumers and main service providers. In practice, the total value of network effect 

is taken as the minimum between the value of the network due to different types of users at other 

sides of the platform as expressed by equation 5. Thus, the value of the network effect is calculated 

separately for each agent type and then defined by the side with least users, indicating that the weakest 

side behaves as a bottleneck.     

(5) 𝑈𝑡𝑜𝑡𝑎𝑙 𝑛𝑒 = min (𝑈𝑛𝑒 𝑜𝑓 𝑠𝑖𝑑𝑒 1, 𝑈𝑛𝑒 𝑜𝑓 𝑠𝑖𝑑𝑒 2) 

Switching costs are modelled by describing the lock-in effect due to technology and data. On the 

consumer side, the user gets locked-in when buying a new device (e.g., wearable). When the value of 

the device depreciates over time, the lock-in effect diminishes. At the same time, the consumer gets 

locked-into the data obtained by the service. The data generated by the consumer improves the quality 

of service and after some time causes a considerable switching cost, if upon switching to another 

platform this data is totally or partially lost. Consumer switching costs are depicted in Figure 5.   

On the other side, the service provider also gets locked into a platform. The initial investment for 

developing the service (e.g., application development) represent an irreversible cost (i.e. sunk cost), 

which acts as a switching cost for the service provider. For changing from one platform to another, 

the service provider should duplicate the initial investment if platforms are not compatible. In 

addition, a service provider gets locked into the data as well. A service provider utilizes the aggregated 

data from consumers to offer an improved service. By switching from one platform to another, the 
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service provider is not able to easily reutilize this information if data sharing is not possible due to 

the differences in data formats or other reasons. Service provider switching costs are depicted in 

Figure 6. 

 
Figure 5: Graphical representation of consumer switching costs 

 
Figure 6: Graphical representation of service provider switching costs 

The model in this paper assumes that service providers multihome; i.e. they may enter to more than 

one platform simultaneously to increase customer reach. Typically, large service providers have 

higher probability of multihoming (Hyrynsalmi et al., 2012). To describe such a situation, this model 

assumes that service provider budgets are uniformly distributed (~U(a, 2a)), where a is the investment 

required for entering a platform (i.e. costs of developing an application). If platforms are not 

interoperable, most service providers will enter one platform only, since the expenses of entering two 

platforms would be 2a. If interoperability increases, the costs of developing an application can be 

shared between platforms. For instance, if 50% of the investment can be reutilized, the costs of 

entering two platforms will decrease to 1,5a and half of the service providers will multihome.  
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Figure 7: Adoption curve, where y axis indicates the number of adopters in percentage 

Scenarios 

This analysis defines five scenarios describing possible switching cost situations, as specified below 

and summarised in Table 1: 

1. Base or first scenario: High switching costs and no interoperability. The industry is vertically 

integrated and consumer devices are integrated to one platform. Data sharing is not possible 

or very expensive. For example, this means that a wearable device is locked into a specific 

platform. In this scenario, data format is not standardized. 

2. Second scenario: consumer device is unbundled from the platform. Consumer devices may 

easily switch from one platform to another, but data cannot be easily transferred. For example, 

Bluetooth GATT-compatible sensors are nowadays unbundled from platforms.  

3. Third scenario: consumer data portability (e.g. in line with EU GDPR). Regulatory 

requirements push service or platform providers to supply the tools for migrating consumer 

data. In this scenario the device is bundled with the platform, meaning that platform switching 

requires acquiring a new device (wearable) 

4. Fourth scenario: device unbundling and consumer data portability. This scenario combines 

the second and the third scenarios. In this scenario, consumer switching costs are in their 

minimum level, since devices are unbundled from the platforms and consumer data can be 

easily transferred.   

5. Fifth scenario: full data sharing including consumer and service provider data. As an extension 

of the consumer data portability, service providers storing data at a platform cloud may easily 

transfer their data to another platform cloud. For instance, a health service provider or 

insurance company can easily transfer their data or reutilize their stored data across different 

platforms.  
Table 1: Summary of analysed scenarios 
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Each switching cost scenario is run for different cases and compared to the base case (Table 1):  

1. Network effect: The first case tests the impact of the network effect by utilizing the equations 

3 and 4 and by performing an additional sensitivity analysis of network effect strength by 

variating parameters k1 and k2 of equation 4.  

2. Multihoming: The second case explores the impact of service provider multihoming on 

market concentration by analysing the impact of high reutilization rate (70%) to all scenarios, 

and additionally by looking at different reutilization rates for selected scenarios. Finally, the 

impact of multihoming is tested for a high initial market concentration.  

3. Differentiation: In the third case, the simulation is run with different distance costs; in other 

words, with different differentiation levels. In the base case (i.e. lower differentiation), the 

maximum distance cost is as high as the maximum value caused by network effect. In the 

higher differentiation case, cost of distance is doubled as compared with the base case. The 

distance cost is further variated until the it reaches three times as much as the base case.  

4. Adoption: In the last case, consumers and service providers are gradually adopting the 

platform service following an s-shaped curve as depicted in Figure 7, where the market 

achieves a 50% of saturation during the first 5 years and 90% during the first 10 years. For 

this case, service providers enter the market a little earlier than consumers. 

The simulation scenarios and cases are summarized in the following Table 2. 

Table 2: Summary of simulated cases and scenarios 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

High switching 
costs 

Device 
unbundling 

Consumer data 
portability 

Scenarios 2 
and 3 
combines 

Full data 
portability 

Base case High critical mass, no multihoming, low differentiation, saturated (not growing) market 
and low initial market concentration (HHI equals approx. 0.35) 

Network effect High versus low critical mass (as defined in Eq. 3 and 4 and Fig. 4) 

 An additional sensitivity analysis 
on critical mass for scenarios 4 

and 5 

Multihoming No multihoming versus multihoming (70% reutilization rate). Additionally, both 
multihoming and no multihoming are tested with a high initial market concentration 

 Additional sensitivity analysis for 
reutilization rate for scenarios 4 

and 5 

Differentiation Low versus high differentiation (where unit cost of distance is two times in the higher 
than in the lower differentiation case) 

 
 Additional sensitivity analysis for 

differentiation for scenarios 4 
and 5 

Adoption Growing (Fig. 7) versus saturated market 

 

 



Simulation setup 

This work simulates the evolution of the market over 20 years, each iteration describing a time period 

of one month. For each scenario, each simulation run is repeated 100 times to obtain average values 

and related standard errors. The model considers 40 consumers, 20 main service providers, and 20 

complementary service providers. Thus, each consumer in the simulation represents several thousand 

consumers in the real world. The adoption case begins with 20 consumers, 10 main service providers 

and 10 complementary service providers, and the number of agents is increased following the s-

shaped curve of Figure 7 until reaching a saturation point of 80 consumers, 40 main service providers 

and 40 complementary service providers.  

In some cases, a service provider may exit the market if it is serving too little consumers in its location. 

In this case, the simulation allows new service providers to enter the market until it reaches its 

saturation point. When entering the market, a new service provider chooses the location with the 

highest consumer-service provider ratio. Consumers move faster than service providers (10 times 

faster), since consumer needs and tastes are dynamic, and the reaction of service providers lags. 

Figure 8 describes one simulation iteration. At the beginning of a simulation run, all agents are 

initialized. At each iteration (which equals one month) consumers and service providers may enter 

the market, if the saturation point has not been reached (consumers enter gradually only in the 

adoption case, service providers enter gradually constantly since they may exit the market). After 

that, they move following a random walk. Then, consumers and service providers evaluate whether 

to stay in the same platform or to change to another. They consider the utility obtained from each 

platform including the costs of switching.  

Begin Initialize 
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service 

providers and 

platforms

Consumers 

and service 

providers 

move
Finish 

simulation?

Finish

yes
Change 

platform
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and service 
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Iteration (equals one month)

service 
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market

Consumers 
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the market

no

no

yes

 
Figure 8: Simulation diagram describing one simulation iteration 

At each iteration, the total number of users is computed for each platform. At the end of one 

simulation (20 years), the average number of users (i.e. consumers and service providers) is calculated 

for each platform and concentration index (Herfindahl-Hirschman Index, HHI) is assessed for the 

whole period. Each simulation run is repeated 100 times for each scenario for achieving low error 

margins. Each repetition has the same initial parameters (including seed number), except the location 

of consumers and service providers, which is randomly assigned following a uniform distribution. 

In Figure 9 depicts the number of users in each platform during one run (left) and the resulting HHIs 

for hundred runs with equal parameters (right). Since the number of users of each platform may 

typically vary in time around an average, the HHI is calculated by averaging the number of users at 



each platform during the whole simulation period. However, in each simulation run, the first 2 years 

are not considered in the results to remove the transient state. This way of computing the HHI 

describes better the dynamics of competition. Figure 9 (right) shows that HHI may significantly 

change from one run to another, evidencing that results are dependent on the initial conditions. To 

express that volatility in the results, this analysis calculates the mean and standard deviation of the 

obtained results.   

 

Figure 9: Simulation calibration: one run (left) and 100 results for HHI (right) 

Results 

The simulation results are presented as follows. Figure 10 depicts how the HHI varies for the five 

scenarios with different critical mass levels. The figure shows average values with standard error 

margins (left) and standard deviation values (right). These results suggest that decreasing switching 

costs results in higher market concentration. In the first scenario (high switching costs), the 

concentration index remains near the starting point (approx. 0.35 HHI with low standard deviation) 

indicating that market shares are stable. As switching costs are decreased, the concentration index 

increases especially on the consumer side. Note that the consumer concentration index shows a higher 

variation (both in average and standard deviation values) because the consumer is far more agile than 

a service provider, in line with the assumptions of the model. A higher standard deviation reflects a 

market with higher fluctuations in market concentration over 100 simulated runs (scenarios 2, 3 and 

4). In scenario 5 (full data portability), the winner platform rapidly obtains the whole market. This 

dynamic suggests that after diminishing switching costs at all sides of the platforms, consumers and 

service providers will favour the platform with higher number of users, which will result in higher 

market concentration if network effect is strong. This observation is highly relevant, considering the 

effort from regulatory authorities for diminishing switching costs related to data portability.   
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Figure 10: Simulation results for high versus low critical mass: (left) average and (right) standard deviation values 

Additionally, a sensitivity analysis on network effect is depicted in Figure 11, where scenarios fourth 

and fifth are tested with different strengths of network effect. With this purpose, the model utilizes 

critical mass variations of equation 4, measured as the number of users required to achieve a 75% of 

the maximum utility value. Figure 11 (left) illustrates such critical mass variations with a total number 

of 40 users. The results are depicted in the right graph of the same Figure, in which market 

concentration increases almost linearly with critical mass.   

 
Figure 11: Simulation results for different degrees of network effect: (left) different critical mass cases, (right) HHI index for 

scenarios 4th and 5th. 

In Figure 12 five scenarios are tested for a case in which interoperability allows multihoming. With 

this purpose, all scenarios are run with a reutilization rate of 0.7, meaning that 0.7 of the investment 

can be reutilized and therefore 70% of the service providers will multihome and 40% will multihome 

in all three platforms. A multihoming case is compared with a no-multihoming case, both with high 

critical mass. The results indicate that service provider multihoming helps to avoid high market 

concentration on both sides of a platform when switching costs are low. Comparing Figure 12 with a 

similar analysis on the network effect (Figure 11), the results suggest that multihoming can neutralize 

the high market concentration due to network effect and its influence is comparable with decreasing 

the critical mass of users.  
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Figure 12: Simulation results for multihoming versus no multihoming cases 

Figure 13 (left) performs a sensitivity analysis on multihoming for scenarios 4 and 5, with different 

reutilization rates, and high critical mass. This figure shows that the positive effect of multihoming 

in decreasing market concentration is more pronounced from a reutilization rate of 70%. Before this 

point, the effect is much lower. In practice, this means that most service providers should multihome 

to avoid high market concentration. In other words, there is a minimum level of interoperability, 

which promotes market competition. Figure 13 (right) depicts a case where unlike in other scenarios, 

initial market concentration is high. The five scenarios are run for multihoming (reutilization rate of 

70%) and no multihoming. The results for scenario 1 with multihoming (HHI of 0.75) represent an 

approximation of the initial market concentration. The results for scenarios 3, 4 and 5 shows that 

lowering switching costs results in lower market concentration when multihoming is allowed. 

Without multihoming, lowering switching costs when market concentration is high will result in even 

higher market concentration.   

 

Figure 13: Sensitivity analysis of multihoming 

Finally, the five scenarios are run with higher differentiation costs (Figure 14 and Figure 15) and for 

an adoption case (Figure 16), as introduced earlier in Figure 7. Both cases are run with high critical 

mass. For the differentiation case, the results show that higher differentiation lightly decreases market 

concentration with high critical mass. In Figure 15, the distance costs related to differentiation is 

further variated from low differentiation base case (distance costs equal 1) to a very high 

differentiation case (distance costs equal 3). These results are intuitive since higher differentiation 

allows platforms to maintain local monopolies. Figure 16 shows that an adoption process slightly 
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diminishes market concentration. A reason for this may be that such process adds further dynamisms 

to the market, since new consumers and service providers entering the market are not locked-in and 

have more willingness to join the platform which better fits to own needs. However, this figure shows 

that an adoption process is not significantly varying the results, especially considering the scenario 5.  

 
Figure 14: Simulation results for high versus low differentiation 

 

Figure 15: Sensitivity analysis for distance costs (differentiation) 

 
Figure 16: Simulation results for an adoption case 

The following  

Table 3 summaries the simulation results.  
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Table 3: Summary of simulation results 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

High switching 
costs 

Device 
unbundling 

Consumer data 
portability 

Scenarios 2 
and 3 
combines 

Full data 
portability 

Network effect High critical mass increases market concentration when switching costs are low, 
especially for scenario 5 (Figure 10) 

 The strength of critical mass is 
proportional to an increase in 

market concentration (Figure 11) 

Multihoming Multihoming has a strong impact in decreasing market concentration for all scenarios, 
including scenario 5. When starting from a high market concentration, multihoming 

even decreases market concentration with low switching costs. (Figure 12, Figure 13) 

 There is an inflection point from 
which multihoming causes high 

impact (approx. 70% reutilization 
in Figure 13)   

Differentiation Higher differentiation (and unit costs of distance) decreases market concentration by 
providing to each platform local market power. Its impact is comparatively lower than 

other market forces (Figure 14) 

 
 Differentiation costs are 

proportional to a decrease in 
market concentration (Figure 15) 

Adoption An adoption process decreases market concentration for some scenarios (2, 3 and 4) 
by increasing the dynamics of platform competition (Figure 16) 

Discussion and Conclusions 

Internet of things brings new opportunities for established industries and may represent a new source 

of welfare and efficiency for producers and consumers. However, platform competition creates the 

risk of monopoly power due to network effects. In this context, cooperation and interoperability 

provide means to achieve higher social welfare through lower market concentration. 

First of all, lowering switching costs may increase market concentration. This is mainly due to 

network effects. The classic economic theory states that a decrease in switching costs facilitates 

competition. According to our results, lowering switching costs incentivizes users from different sides 

to choose the same platform because users on each side value the number of users on the other side 

and this effect is further stimulated with a stronger network effect. These results are in line with the 

latest literature in this domain (Chen, 2016; Lam, 2017), even though this is still a recent finding in 

the economic literature.    

The main finding of this work is that provider multihoming can potentially decrease market 

concentration and thus soften the unwanted effect of decreased switching costs in a scenario with 

high network effects. This is an important observation since currently regulatory authorities are 

actively enforcing consumer data sharing, which diminishes switching costs. Moreover, wider 

interoperability is typically a hard challenge in emerging IoT platforms. This work emphasizes that 

along with decreasing switching costs, service provider multihoming plays an important role for 



assuring a competitive market. In this line, exclusive dealing and similar practices may negatively 

affect market competition.   

While enforcing consumer data sharing may be easier from a regulatory perspective than achieving 

higher level of interoperability between platforms, this work emphasizes that facilitating data sharing 

is not enough for assuring a competitive outcome in IoT platforms. In fact, a wider interoperability is 

needed for incentivizing service provider multihoming. In short, both competition based on 

decreasing switching costs and cooperation based on platform interoperability are needed for a 

competitive outcome. In emerging IoT platforms, competitive mechanisms, such as consumer data 

portability which diminishes consumer switching costs requires cooperative mechanisms, such as 

provider multihoming which increase the cooperation between platforms. Their effects are not 

substituting to each other, but they are complementary.  

Although mobile health and other emerging IoT platforms such as connected cars can be viewed as 

advanced IoT domains, they are still in the initial stages of a lifecycle, with low level of industry 

collaboration and high fragmentation. However, the need for common data formats and 

communication standards has been realized, and the first attempts of sharing the data between the 

companies have been made at least in the mHealth domain, as explained earlier. Although data 

sharing gives more freedom to consumers in choosing a platform provider, according to this study, it 

may result in winner-takes-all situation. After acquiring a high market power, the monopoly platform 

provider may stop sharing the data with other platforms and lock-in the users to protect own position 

from potential innovative entrants. On the other hand, a monopoly platform may also have positive 

implications, since gathering large amounts of data on a single platform may enable more efficient 

development of machine learning algorithms-based services and applications that would use the data 

from e.g. wearables. At the same time, industry collaboration required for the implementation of 

seamless data sharing will have to introduce standardized data models, which will inevitably reduce 

the cost of service provider multihoming (expressed as a reutilization rate in the model), which, as 

shown, will decrease the market concentration. Therefore, more attention should be paid to the 

standardization of data models and devices in mHealth and other verticals. 
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