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Abstract

Exponential smooth transition autoregressive (ESTAR) models are widely
used in the international finance literature, particularly for the modelling of
real exchange rates. We show that the exponential function is ill-suited as a
regime weighting function because of two undesirable properties. Firstly, it
can be well approximated by a quadratic function in the threshold variable
whenever the transition function parameter γ, which governs the shape of the
function, is ‘small’. This leads to an identification problem with respect to the
transition function parameter and the slope vector, as both enter as a prod-
uct into the conditional mean of the model. Secondly, the exponential regime
weighting function can behave like an indicator function (or dummy variable)
for very large values of the transition function parameter γ. This has the effect
of ‘spuriously overfitting’ a small number of observations around the location
parameter µ. We show that both of these effects lead to estimation problems
in ESTAR models. We illustrate this by means of an empirical replication of a
widely cited study, as well as a simulation exercise.
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‘Asymptotic results often provide but cold comfort for practical econometricians, who
perforce live in a finite-sample world’ (Johnston and DiNardo, 2001, page 264)

1. Introduction

The Exponential Smooth Transition Autoregressive (ESTAR) model has become one of the

workhorse econometric models in the international finance literature, particulary for the

modelling of real exchange rates. ESTAR models were introduced by Granger and Teräsvirta

(1993) and Teräsvirta (1994) into the economics literature as a generalization of the (non-

linear) exponential autoregressive model of Haggan and Ozaki (1981) and threshold time

series models of Tong (1983). They have been extended to multivariate and vector error

correction settings, as well as to models allowing for fractional integration and time varying

conditional heteroskedasticity (see, for instance, the studies by Rothman et al. (2001), Milas

and Legrenzi (2006), Smallwood (2008), Chan and McAleer (2002), among many others).

Despite being widely used, the exponential function employed in ESTAR models is ill-

suited as a regime weighting function, or when used in a general non-linear autoregressive

specification as in Haggan and Ozaki (1981). The reason for this ill-suitability is due to two

undesirable features of the exponential function. The first feature is that for small values of

the transition function parameter γ, which governs the shape of the function, the exponen-

tial function can be well approximated by a quadratic function in the threshold variable zt.

The consequence of this is that the slope vector attached to the non-linear regime and the

transition function parameter can be shown to enter as a product into the first part of the

non-linear conditional mean obtained from a Taylor series approximation of the exponential

function, which leads to identification issues. In the empirical and simulation examples that

we show, it can be seen that there is a nearly perfect off-setting effect of these two parame-

ters on the conditional mean. What is particularly problematic with this scenario is that it is

not a small sample issue that vanishes as the sample size increases, but rather a population

property of the model.

The second feature that makes the exponential function unsuitable for econometric mod-

elling is that for extremely large values of the transition function parameter γ, the exponen-

tial weighting function will be equal to unity for nearly all values of the transition variable,

except at the point where the transition variable itself is equal to the location parameter µ,

that is, at zt = µ. The effect of this on the model is that only a very small number of observa-

tions around µ receive a weight different from 1. This leads to an ‘outlier fitting effect’ of the
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exponential function, which is similar to the way that a dummy variable is used to remove

the influence of aberrant observations on the conditional mean of a model. Furthermore,

in ‘small samples’, searching over µ with potentially large values in the γ parameter results

in an extremely ill-behaved log-likelihood function, with many local maxima and frequent

abrupt changes.1 Although this is ‘only’ a small sample problem, our simulation results indi-

cate that it can be pervasive for sample sizes as large as 500 observations, resulting in ‘large’

γ estimates in over 70% of the simulations.

There exists ample evidence of these problems with ESTAR models in the empirical lit-

erature. For instance, Michael et al. (1997) fit ESTAR models to real exchange rate data for

a number of countries on a bilateral basis. In panels (a) and (b) of Figure 1 on page 875

in their paper, one can see that for the UK-US series, the weighting function remains well

below 0.3 for the entire range of the data, while for the UK-France series, only 4 data points

receive a weight in excess of 0.3, with both functions being quadratic ‘looking’ in shape. Tay-

lor and Peel (2000) use monetary fundamentals to study the evolution of exchange rates and

utilize the ESTAR model to capture non-linearities in the data. From the regime weighting

functions plotted in Figure 2 on page 45 of their paper, it can be seen that the transition

function weights remain below 0.4 over the entire range of the data and are again quadratic

looking in shape. The study by Baum et al. (2001) provides even stronger symptoms of a

weakly identified model. The estimates of the transition function parameter γ that Baum et

al. (2001) report in Tables 4 and 5 on page 391 of their paper are — with the exception of the

WPI based real exchange rate for Norway — between 0.0042 and 0.0833! The corresponding

transition function plots on pages 392 and 393 show again a quadratic looking shape.

Similar issues are evident in Sarantis (1999), Taylor et al. (2001), Kilian and Taylor (2003),

Kapetanios et al. (2003), Sarno et al. (2006), Paya and Peel (2006), Sollis (2008), Taylor and

Kim (2009), Cerrato et al. (2010), Pavlidis et al. (2011), Beckmann et al. (2015) and many oth-

ers. The study by Beckmann et al. (2015) is particularly noteworthy to single out here, as

the estimation results reported in Table 3 of their paper provide first hand empirical evi-

dence of both estimation problems that we outline above. Beckmann et al. (2015) estimate

ESTAR models on gold returns, using stock returns from 23 different equity markets as re-

gressor and threshold variables. The model is complicated by the addition of a GARCH

type volatility process on the error term in the ESTAR models that are fitted. As can be seen

from the results reported in Table 3 on page 22 of their paper, the estimates of the transition

1The danger of a local sharp peak in the likelihood is that it gives the false impression of having obtained very
precise parameter estimates and that the model fits the data rather well.
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function parameter γ hit the lower bound of 0 of the admissible parameter space for 5 out

of the 23 results, with the corresponding slope parameters becoming extremely large in ab-

solute value, reaching a magnitude of over 22 000 for Turkey, for instance.2 For 3 of the 23

results, the γ estimates are very large, with the one for the World equity market being over

27 000! These findings show clear symptoms of the identification and estimation issues that

make ESTAR models unsuitable for econometric modelling.

The objective of this study is to outline and discuss these identification and estimation

issues with ESTAR models when the transition function parameter γ takes on either ‘small’

or ‘large’ values. We begin by showing analytically through a Taylor series approximation

of the exponential function that if the higher order terms in the expansion which enter the

conditional mean are zero, the model is not identified with respect to the slope vector and

the transition function parameter. We show how to use existing LM type tests applied to the

higher order terms in the auxiliary regression to test for identification. We then proceed to

illustrate the identification and estimation problems in an empirical setting using real world

data by replicating the well known and widely cited study of Taylor et al. (2001). Lastly,

we present a simulation analysis, where we assess the severity of the above discussed is-

sues with regards to increasing values in the transition function parameter γ and increasing

sample sizes.

The remainder of the paper is organised as follows. Section 2 describes the ESTAR model

and the asymptotic properties of standard estimators that are utilized to estimate STAR

models in general. In Section 3, we formalise the identification issue in ESTAR models,

defining also some of the tools used to measure weak identification and a simple way to

test for it. In Section 4 we provide an empirical replication as well as a simulation study.

Section 5 concludes the paper.

2. Smooth Transition Autoregressive Models

Let yt be a scalar time series which follows a general Smooth Transition Autoregressive

(STAR) model, taking the form:3

yt = xtα + xtβG(zt;γ,µ) +εt, (1)
2The actual value that is reported for γ̂ is 0.00.
3It is common to interpret STAR type models either within a regime switching framework, where the tran-

sition from one regime to the other is smooth, or they can be viewed as a continuum of regimes, yielding a
general parametric non-linear conditional mean function. In this paper, we will stick to the regime narrative
as it fits well with the economic motivation and data that STAR models have been fitted to (see also van Dijk
et al. (2002) for a discussion of this view and Buncic (2012) for an out-of-sample forecast evaluation.
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where α and β are (k × 1) vectors of regime specific slope parameters and εt is a distur-

bance term assumed to follow a martingale difference sequence (MDS) with respect to the

information set Ft−1, with mean 0 and variance σ2. The (1 × k) vector of control (or re-

gressor) variables at time t is denoted by xt.4 The regime weighting function G(zt;γ,µ) is a

continuous and smooth function, which is bounded between [0, 1]. When it takes the form

of an exponential function defined as G(zt;γ,µ) = 1− exp
{
−γ(zt −µ)2

}
, the model in (1)

is known as the Exponential STAR (ESTAR) model. The parameter γ ∈ R+ in G(zt;γ,µ)

determines the smoothness of the transition function, while µ ∈ R is a threshold location

parameter. The transition variable zt can be a deterministic variable, an exogenous vari-

able known at time t− 1, or, as is quite frequently the case in empirical studies, the lagged

endogenous variable, that is, zt = yt−q, for some integer q > 0.

A plot of the exponential function is shown in Figure 1 below. In the plot, we have

normalized µ to 0, and show the function over a commonly encountered interval from −0.4

to 0.4 for threshold variable zt and an equally spaced grid of 101 points, for 5 different

different γ values (γ = {0.5, 5, 50, 500, 50000}). The limiting properties of the exponential

weighting functions are visible graphically. For instance, we have limγ→∞ G (zt;γ,µ) = 1

except at zt = µ, which yields 0 for G (zt;γ,µ), and limγ→0 G (zt;γ,µ) = 0, for all zt. One can

notice that the shape of the exponential function is the same as that of an inverted Gaussian

density. Moreover, for the two ‘small’ values of γ of 0.5 and 5, the exponential function

G (zt;γ,µ) takes the shape of a quadratic looking function in zt. For very large values of γ,

G (zt;γ,µ) is equal to 1 for all values of zt, except for 3 points, of which 2 are close 1, and 1

is exactly equal to 0.

ESTAR models can be estimated by non-linear least squares (NLS) by solving the follow-

ing minimisation problem:

θ̂ = arg min
θ

1
2

T∑
t=1

(
yt − C(xt, zt;θ)

)2
. (2)

where θ = [α; β; γ; µ] and C(xt, zt;θ) = xtα + xtβG(zt;γ,µ) is the conditional mean of

yt given information up to time t− 1. The NLS estimator defined in (2) is equivalent to a

4Note here that, in order to simplify the description of the model, we do not use different notation for the
regressors xt in the two ‘regimes’. That is, we do not write x1,t and x2,t to emphasize that they could be different.
It is implicitly assumed that these regressors can be a subset of the global regressor set xt = [1 yt−1 wt−1 dt],
where yt−1 is a vector of lagged dependent variables, wt−1 is a vector of lagged exogenous variables, and
dt is a vector of predetermined or deterministic time trend polynomials, dummy variables and/or seasonal
indicators known for all t. In empirical applications, the appropriate regressor set for each regime is commonly
determined by variable selection procedures (see van Dijk et al. (2002) for additional discussion) and is allowed
to differ between the two regimes.
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Figure 1: Transition weighting function G(zt;γ,µ) for a logistic function (left panel) and an exponential
function (right panel) over a grid of 101 equally spaced zt values in the interval -0.4 to 0.4, with µ fixed at
0. The transition function is evaluated over 5 different γ values. These are: γ = {0.5, 5, 50, 500, 50000}.

Quasi Maximum Likelihood Estimator (QMLE) if the distributional properties of εt are un-

known, but are assumed to be N(0,σ2) for estimation purposes, where N(·) denotes a Nor-

mal (or Gaussian) random variable. Under standard regularity conditions (see Wooldridge

(1994) and Pötscher and Prucha (1997) and for more general error process Chan and McAleer

(2002)), the NLS/QMLE estimator θ̂ in (2) will be consistent and asymptotically Normal dis-

tributed, that is,
√

T(θ̂−θ0)→N
(
0,V(θ̂)

)
, whereθ0 denotes the true parameter vector and

V(θ̂) is the asymptotic variance-covariance matrix of θ̂.

A consistent estimate ofV(θ̂) can be computed from a sandwich form variance-covariance

matrix estimator as V̂(θ̂) = Â−1 B̂ Â−1,where Â is an estimate of the Hessian evaluated at θ̂:

Â = T−1
T∑

t=1

(
∇θC(xt, zt; θ̂)∇θC(xt, zt; θ̂)′ −∇2

θC(xt, zt; θ̂)ε̂t
)

, (3)

and B̂ is an estimate of the outer product of the gradient evaluated at θ̂:

B̂ = T−1
T∑

t=1

ε̂2
t∇θC(xt, zt; θ̂)∇θC(xt, zt; θ̂)′, (4)

with ∇θ = ∂C
∂θ

and ∇2
θ = ∂2C

∂θ∂ θ′ denoting gradient and Hessian differentiation operators,

respectively, and ε̂t = yt − C(xt, zt; θ̂) are the fitted residuals.
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Given the non-linear structure of the objective function in (2), NLS/QMLE estimation of

STAR models requires the use of (standard) numerical optimization procedures. Moreover,

since the conditional mean function C(xt, zt;θ) = xtα + xtβG(zt;γ,µ) is linear in the slope

parametersα and β, once γ and µ are fixed at some admissible values, the estimation prob-

lem can be substantially simplified by concentrating the sum of squares function in (2) with

respect toα and β. The numerical optimisation problem is then reduced to two dimensions

only, that is, along the γ and µ parameter dimensions, which, in the simplest scenario can be

obtained by a trivial two dimensional grid search (see section 5.2 in van Dijk et al. (2002) for

a more elaborate discussion). These grid search estimates can then be used as initial values

in the preferred numerical routine.5 In all estimations, we set the upper and lower bounds

on the initial grid search for γ at 1× 10−6 and 1× 106, respectively, to allow the transition

parameter to take on very large and small values, and use 300 equally space points from the

10th to the 90th percentiles of the threshold variable zt. Analytic first and second derivatives

are used in the numerical routines that follow.

3. Identification and Estimation Issues

This section discusses identification and estimation issues that arise with the exponential

function in ESTAR models when γ takes on either ‘small’ or ‘extremely large’ values.

3.1. Outline of the identification problem

We begin by illustrating that identification problems arises when G (zt;γ,µ) is well approx-

imately by a quadratic function in zt over the range of the observable threshold variable zt.

Consider the general ESTAR specification for yt in (1), where for simplicity and without loss

of generality, we can restrictα to 0, to yield:6

yt = xtβG(zt;γ,µ) +εt, (5a)

G(zt;γ,µ) = 1− exp
{
−γ(zt −µ)2} . (5b)

5Note here also that it is quite common to standardize the γ parameter in G(qt−1;γ,µ) by deflating it by the
standard deviation (or variance) of the threshold variable. The motivation for doing this is to have a better
overview of the initial values to choose when starting the numerical optimisation procedure. We do not do
this in our implementation as, firstly, we specify a fairly wide grid of γ and µ values to get initial estimates, and
secondly, we want to maintain transparency with the values of γ that are used, as they are directly comparable
to those parameter values estimated in the international finance literature.

6Alternatively, one can restrict α at ᾱ and then define ỹt = yt − xtᾱ, and then proceed as in (5) above, but
now with ỹt in place of yt.
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Expanding G(zt;γ,µ) aroundγ = 0 by a second order Taylor series (denoted by G̃2(zt;γ,µ)),

yields:

G̃2(zt;γ,µ) = γ(zt −µ)2 − 1
2
γ2(zt −µ)4 +R2(zt;γ,µ), (6)

whereR2(zt;γ,µ) is the remainder term, taking the form:

R2(zt;γ,µ) =
∞∑

i=3

(−1) j−1 1
j!
γ j(zt −µ)2 j. (7)

Replacing G(zt;γ,µ) in (5) with G̃2(zt;γ,µ) from the expansion in (6) leads to the relation:

yt = xtβ G̃2(zt;γ,µ) +εt (8)

yt = xtβ

(
γ(zt −µ)2 − 1

2
γ2(zt −µ)4

)
+ xtβR2(zt;γ,µ) +εt︸ ︷︷ ︸

νt

(9)

yt = (zt −µ)2xtβγ −
1
2
(zt −µ)4xtβγ

2 + νt. (10)

The relation in (10) becomes a regression model with two sets of regression vectors, ie.,

(zt − µ)2xt and (zt − µ)4xt, and two sets of slope parameters, a = βγ and b = − 1
2βγ

2,

which can be written as:

yt = (zt −µ)2xta + (zt −µ)4xtb + νt, (11)

or in compact matrix form:

Y = XB + V , (12)

where Y is the (time dimension) stacked vector form of yt, the parameter matrix B = [a; b]

is of dimension (2k× 1), X is the (T × 2k) stacked matrix form of [(zt − µ)2xt (zt − µ)4xt],

and V is the (T × 1) stacked vector form of νt. Notice here that β and γ enter as a product

into a.

Suppose now that a and b are known. To be able to identify the separate effects from γ

and β in (10) on yt, we need to be able to recover γ and β from a and b. This is the model

source of identification. We can see that

a = βγ (13)

−1
2

aγ = −1
2
βγ2︸ ︷︷ ︸

=b
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−1
2

aγ = b

aγ = −2b, (14)

where the last relation in (14) is a system of k equations of the form

a1γ = −2b1

a2γ = −2b2 (15)
...

akγ = −2bk,

so that γ can be recovered from either one of the following relations:

γ = −2
bi

ai
, ∀i = 1, . . . , k. (16)

Once γ is known, β can be obtained by inverting the a = βγ relation in (13), that is, from

β = γ−1a. (17)

Hence, provided that at least one of the bi is non-zero (and |ai| < ∞) ∀i = 1, . . . , k, we will

be able to recover γ from (16), and then plug that value into (17) to find β. Nevertheless,

if bi = 0 ∀i = 1, . . . , k, then γ = 0, and β → ∞. When this is the case, we will not able

to identify the separate effects of β and γ on the conditional mean C(xt, zt;θ) of yt, and the

parameters of the ESTAR model in (5) will not be estimable.

In practice, a and b are not known and need to be estimated from (11). For a and b

to be estimable, we need the design matrix X ′X required to solve for B in (12) to be non-

singular, so that the inverse (X ′X )−1 exist. From the empirical examples that we will discuss

below, it is clear that the inverse (X ′X )−1 can be found without any numerical difficulties.

For instance, the smallest eigenvalue is around 0.01 for the real exchange rate data used in

Taylor et al. (2001), with the correlation between the two column entries in X being around

0.95, which is somewhat high, but does not pose any numerical difficulties. There generally

thus seems to exist enough structure in the data for a and b to be estimable.

Nevertheless, even if a and b are estimable, the key question for identification of the

γ and β parameters when working with empirical data is to determine if b is statistically

different from zero. Such a hypothesis can be easily tested in the given set-up, as it can be
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implemented in the same manner that standard tests of linearity against ESTAR (or Logistic

STAR in the broader context) non-linearity are implemented (see Saikkonen and Luukkonen

(1988) for the general testing framework and the suggestion in Escribano and Jordá (1999)

for ESTAR models). That is, the standard approach to test the null hypothesis of linearity in

ESTAR models, is to take the formulation in (1), ie.,

yt = xtα + xtβG(zt;γ,µ) +εt, (18)

where we again replace G(zt;γ,µ) by its second-order Taylor series expansion aroundγ = 0,

to yield as before

yt = xtα +

Part I: standard test for non-linear︷ ︸︸ ︷
(zt −µ)2xta + (zt −µ)4xtb︸ ︷︷ ︸

Part II: higher order terms

+ νt. (19)

The expression in (19) and the relations for a, b, and νt are the same as in (11) above,

however with theα parameter on the linear part left unrestricted. A test of linearity that de-

termines if γ = 0 is then formulated as a Lagrange Multiplier (LM) type test in the auxiliary

regression model in (19), where the null hypothesis is H0 : a = b = 0 with the alterna-

tive that at least one is non-zero (Saikkonen and Luukkonen, 1988). To warrant a non-linear

model specification, at least one of the terms under Part I in (19) has to be non-zero. For

the ESTAR model parameters to be identifiable, however, we need the higher order terms in

Part II of (19) to be statistically different from zero, that is, b has to be non-zero in popula-

tion. Given the current set-up, it is again possible to use the LM testing framework to test for

identification in ESTAR models with the null hypothesis of interest now beingH0 : b = 0.7

To formalise the concept of identification, let θ be defined as the parameter vector of in-

terest (ie., θ = [α; β; γ; µ] with dimension [(2k + 2) × 1] as before), and let Y denote the

full vector of observable random variables needed to formulate a probabilistic model for

{yt}T
t=1, that is, Y = {yt, xt, zt}T

t=1. The likelihood function that describes the probabilistic

model is then denoted by p(Y;θ). Further, let Θ represent the admissible parameter space

for θ, so that θ ∈ Θ. Following from Definition 2 in Rothenberg (1971, page 578), a pa-

rameter θ1 ∈ Θ is said to be globally identifiable if there exists no other θ2 ∈ Θ which is

observationally equivalent. More specifically,θ1 ∈ Θ is said to be globally identifiable if for

any other θ2 ∈ Θ, we have that p(Y;θ1) 6= p(Y;θ2) for some observable data Y. To obtain

7Note here that standard inference is valid under the null hypothesis, because the remainder termR2(zt;γ,µ)
that enters νt is zero under the null hypothesis of γ = 0. Also, the only way that b = − 1

2βγ
2 can be zero is if

γ = 0, given that β is non-zero and a non-linear model is justified.
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local identification, we only require p(Y;θ1) to be unique around some neighbourhood of

θ1.

From Theorem 1 in Rothenberg (1971, page 579), it follows that a necessary and suf-

ficient condition for local identifiability of θ is that the Fisher information matrix I(θ) is

non-singular when evaluated at the trueθ0 parameter value, where

I(θ) = −IE
[(

∂2L(θ|Y)
∂θ∂θ′

)]
, (20)

IE[·] is again the expectation operator, and L(θ|Y) = log [p(Y;θ)] is the log-likelihood

function. Local identification of the ESTAR model can then be determined by checking the

rank of I(θ) for all admissible points in the parameter space Θ.

Before we discuss how to numerically assess identification issues when working with

empirical data, it will be useful here to highlight that, in general, there will be two types

of unidentifiable parameter scenarios to consider. The first is the case where we change

one parameter (or a subset of parameters) θ(i) and there is no change in the log-likelihood

function, that is,
∂L(θ|Y)

∂θ(i)
= 0 (21)

for all observable data Y, whereθ(i) denotes the subset vector of parameters of interest. This

is a common scenario when nuisance parameters are present in the testing model.8 The

second scenario occurs when the change in the log-likelihood function due to a change in

one parameter (or set of parameters) θ(i) can be offset entirely by a combination (function)

of changes in the remaining parametersθ(−i), that is:

∂L(θ|Y)
∂θ(i)

= f
(

∂L(θ|Y)
∂θ(−i)

)
, (22)

for all observable Y, where f (·) denotes this off-setting function. In our context, the off-

setting case in (22) is the problem, because if b in (11) is equal to zero (and a is non-zero),

then a = βγ, and we will not be able to identify the separate effects from β and γ on the

conditional mean xtα + (zt − µ)2xta of the model, and thus its impact on the likelihood

function.

8For instance, when wanting to formulate a test for linearity in the ESTAR model, there are two ways the
ESTAR model collapses to a linear one. In the formulation that we have in (1), that would be either if β = 0
or if γ = 0. Under either of these two scenarios, the other parameter that is not restricted to 0, ie., β or γ,
together with µ, becomes a nuisance parameter, which under the null can take on any value in the admissible
parameter space.
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3.1.1. Identification in models fitted to empirical data

When working with models fitted to empirical data, the relations in (21) and (22) will not

hold exactly, but rather only approximately, as they depend also on the random variation

in Y. In terms of the information matrix, this means that I(θ) will be nearly singular or

rank deficient. For a given observable sample Y, the likelihood function L(θ|Y) will be

flat and un-informative over certain regions of the permissable parameter space θ ∈ Θ.

Consequences of near singularity will be that small changes in the sample data Y or the

parameter vector θ will lead to substantial changes in the estimates of θ. Moreover, as is

well known with weakly identified models, parameter estimates will be highly correlated,

resulting in large standard errors, and finite sample distributions will be very different from

their asymptotic approximations (see Pagan and Robertson (1998)).

Weak identification is generally much harder to characterise, as it is parameter as well

as data specific. To assess issues related to weak identification, it is necessary to formulate

a specific parameter scenario θ0 and then assess numerically how close to singularity I(θ)
is, conditional on the observed data Y. How close I(θ) is to singularity, and thus how

weakly identified our parametric model is, can then be measured by the size of the condition

number of the information matrix I(θ). For a non-singular matrix A, the condition number

is defined as:

cond(A) =
∥∥A∥∥∥∥A−1

∥∥, (23)

where ‖·‖ denotes the norm. If the Euclidean or 2-norm is used, then (23) becomes

cond2(A) =
λmax

λmin
, (24)

where λ denotes the singular value of A. When λmin is small and λmax is large, then

cond2(A) can become extremely large, indicating that the inverse of matrix A is badly con-

ditioned. In general, when cond2(A) is large, then A will be nearly singular, which in our

case will mean weak identification. The closer cond2(A) is to its minimum value of 1, the

further away A is from singularity, and the stronger identified the model is.9

How large a condition number is needed for A to be considered singular? There ex-

ist not direct guidelines in the numerical computing literature to narrow down the mag-

nitude of values, as it depends on the numerical precision of the computing environment.

9For a positive definite matrix A, all the singular values will be positive and so the smallest value that
cond2(A) in (24) can take is 1.
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For instance, in Matlab (64bit), the machine precision is double, that is, 2.2204 × 10−16.10

Whenever the inverse or reciprocal of the 1-norm is less then machine precision, matrixA is

deemed to be poorly conditioned and a warning of the form: ‘Warning: Matrix is close

to singular or badly scaled. Results may be inaccurate’ will be displayed.11 In

the econometrics literature, Greene (2011, page 999) suggests that if the 2-norm cond2(A)
in (24) is greater than 202 = 400, then the condition number is considered to be extremely

large and the matrix A is singular numerically, which is indicative of a weakly identified

model.12 We will use the condition number of the information matrix to determine how

well identified the ESTAR model is for different values of the γ parameter, and observed

data Y.

Another quantity that is frequently computed to examine identification issues in the lit-

erature on DSGE models (see for instance Iskrev (2010), among others) is the correlation of

the information matrix. This matrix is defined as:

Ĩ(θ) = D(θ)−1/2I(θ)D(θ)−1/2, (25)

where D(θ) = diag[I(θ)]. The correlation matrix is a useful quantity to examine in the

current setting, as it provides extra insights into which components of the parameter vector

θ are the ones causing identification problems. Having computed the condition number

condenses the information down to determine whether identification in a model could be a

problem, but does not reveal which parameters are affected.

3.2. Some other issues

Two other issues that frequently arise when estimating ESTAR models in finite samples are

the spurious overfitting of outlier observations resulting from extremely large γ values and

the severe finite sample bias of the estimates of the transition function parameter γ, when

the true parameter is close to its boundary of 0. The first issue is of particular concern when

working with empirical financial and/or macroeconomic series. It nevertheless also arises

when estimating ESTAR models on well behaved simulated data. The problem is that the

10The function eps in Matlab provides this numerical value.
11In Matlab, the LAPACK reciprocal condition number is called by the function rcond.
12In Greene (2011), the condition number is formulated as the square root of the ratio of the maximum eigen-
value to the minimum eigenvalue. If this condition number is greater than 20, then the matrix is deemed
nearly singular and thus difficult to invert numerically. Since we do not take the square root of the ratios, we
take 202 as the threshold value. Note here also that the cond2(A) definition in (24) in terms of the singular
values is more general. For positive semi-definite matrices such as the information matrix I(θ), eigenvalues
and singular values are identical.
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exponential regime weighting function G(zt;γ,µ) will be equal to 1 in the limit whenγ → ∞
for all values of zt, except at the single point where zt = µ. In finite samples, it will nearly

always be possible to find a data point (or set of points) that needs to be downweighed to

improve on the fit of a linear model. In such an instance, the exponential regime weighting

function acts as on outlier or dummy variable fitting function, attempting to accommodate

as good as possible the features of only a small number of observations around µ. We illus-

trate how this is omnipresent in the empirical real exchange rate series analysed in Taylor

et al. (2001), but also when fitting ESTAR models to simulated data, which are ‘well behaved’

and by construction free from outliers.

The severe finite sample bias in the estimate of γ arises due to a decisive positive skew in

its sampling distribution. This bias remains even for well identified models when β in (18)

is known or fixed. Intuitively, the positive skew is due to the true γ value that determines

the data generating process being close to its lower bound of 0 of the admissible parameter

space. It is well known in the econometrics literature that parameters that are close to their

boundaries are likely to have finite sample distributions that are highly skewed and non-

normal in general (see, for instance, the papers by Berry et al. (1995) and Abrevaya and Shen

(2014) in the literature on random coefficient models).

4. Empirical and simulation evidence

We begin with a replication of the well known and widely cited study by Taylor et al. (2001)

on the speed of mean reversion in real exchange rates. We then proceed with a simulation

study and examine how varying the magnitude of γ and the sample size impacts on the

strength of identification in ESTAR models. To keep this section as concise as possible, we

have delegated the description of the real exchange rate data of Taylor et al. (2001) and some

additional estimation results for all 4 countries to the Appendix of this paper. In Section A.2.

of the Appendix, we repeat our analysis and illustrate these same problems in another study

by Teräsvirta and Anderson (1992) using ESTAR models for industrial production data.

4.1. Replication of Taylor et al. (2001)

Taylor et al. (2001) fit the following ESTAR model to the real exchange rate qt:

(qt −µ) = α(qt−1 −µ) +β(qt−1 −µ)G(qt−1;γ,µ) +εt (26a)

G(qt−1;γ,µ) = 1− exp
{
−γ(qt−1 −µ)2} , (26b)
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where εt is a zero mean disturbance term with variance σ2. The relation in (26) is a simple

first order version of the general form that was given in (1), with yt = (qt −µ), xt = (qt−1 −
µ) and threshold variable zt = qt−1. Through standard statistical tests, Taylor et al. (2001,

page 1030) conclude that: “... in no case could we reject at the five percent significance level the

restrictions thatα = −β = 1.”13 The final restricted model that is estimated is:

∆qt = −(qt−1 −µ)G(qt−1;γ,µ) +εt. (27)

Our replicated results for all 4 currency pairs are reported below in Table 1. These estimates

are extremely close to the ones listed in Table 3 on page 1029 in Taylor et al. (2001).

Table 1: Replicated parameter estimates of the restricted model reported in Taylor et al. (2001).

Parameter Estimates UK Germany France Japan

γ̂ 0.50500170 0.29408812 0.35362630 0.18286403
µ̂ −0.11243280 0.00895991 −0.00591922 −0.51083432
σ̂ 0.03320309 0.03448975 0.03286561 0.03331077

Log-like. ESTAR 570.03185026 559.12033546 572.96391675 569.10258492
Log-like. Cubic model 570.06613111 559.14958988 572.99204741 569.13408243
Log-like. AR(1) model 568.99987094 557.92278405 571.80528152 567.46500061

Notes: This table reports our replicated parameter estimates of the restricted ESTAR model of Taylor et al. (2001)
(see their estimates reported in Table 3 on page 1029 for comparison). The restricted ESTAR model takes the form:
∆qt = −(qt−1 − µ)G(qt−1;γ,µ) +εt. Log-likelihood functions of the AR(1) and Cubic models are based on the
two regression equations: ∆qt = δ1(qt−1 −µ) +εt and ∆qt = δ3(qt−1 −µ)3 +εt.

As can be seen from Table 1, the estimates of γ are rather small. To understand how the

conditional mean and the regime weighting function look like for these parameter estimates

over the range of the data that we observe, we show plots of the conational mean and the

weighting function for the UK series in Figure 2.14 The green line (with circles) shows the

implied conditional mean and weighting function at the ESTAR parameter estimates, while

the black dashed lines show corresponding cubic and quadratic fits in (qt−1 − µ).15 Exam-

ining the plot of the weighting function in Panel (b) of Figure 2, we can see how flat and

weakly curved the weighting function is over the range of the threshold variable qt−1. Such

a shape is well approximated by a quadratic function in (qt−1 −µ). The fitted model is thus

likely to be unidentified.

13In their notation, the text on page 1030 is β1 = −β∗1 = 1.
14We use the UK real exchange rate series results here as a representative to illustrate our point, and report
results for all 4 series in the Appendix. In the conditional mean plot in the left hand Panel (a), we also superim-
pose a linear AR(1) fit, a non-parametric fit using a local linear kernel regression estimate with 95% confidence
bands, as well as a scatter of the data.
15The log-likelihood of a cubic regression of the form ∆qt = δ3(qt−1 − µ)3 +εt is reported in the second last
row of Figure 2 for all 4 series. The quadratic fit of the exponential weighting function in Panel (b) is obtained
as −δ̂3(qt−1 −µ)2, while that of the cubic plotted in Panel (a) is from the fit δ̂3(qt−1 −µ)3.
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(a) Conditional mean
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(b) Exponential weighting function
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Figure 2: Plots of the conditional mean and the weighting function for the UK series.

4.1.1. Identification in Taylor et al. (2001)

To formally examine how strongly identified the model is with respect to the γ and β pa-

rameters at their estimates, we compute the condition number of the information matrix as

outlined in Section 3. To illustrate this computation, let I3(θ̂) be the (3× 3) dimensional

information matrix defined by Â3, where θ̂ = [β̄; γ̂; µ̂], with β̄ = −1 and γ̂, µ̂ the ML esti-

mates reported in Table 1. The Hessian matrix Â is given in (3).16 Computing the condition

number of I3(θ̂) as the ratio of the largest to the smallest singular values as defined in (24)

for the four countries of interest yields values of 833, 1436, 1507, and 1875 for the UK, Ger-

many, France and Japan, respectively.17 These condition numbers are substantially larger

than the threshold value of 202 = 400 suggested in Greene (2011). The correlation matrix of

the information matrix as defined in (25) at θ̂ = [β̄; γ̂; µ̂], is shown in Table 2. The correla-

16The 3 subscript on Â3 signifies that the first row and first column entries of Â pertaining to the α parameter
that is considered fixed or known at α = 0 have been removed. Also, to be exact, considering a Normal
likelihood function, the information matrix I(θ̂) is equal to −H(θ̂), where H(θ̂) is the Hessian defined as
1
σ2

∑T
t=1
(
∇2

θC(xt, zt; θ̂)ε̂t −∇θC(xt, zt; θ̂)∇θC(xt, zt; θ̂)′
)

evaluated at the ML estimate θ̂. Given the way that

Â in (3) is defined, that is, from the NLS minimisation as opposed to log-likelihood maximisation, we have
that I(θ̂) = Â, ignoring the scaling by σ2. We use the analytic Hessian in all calculations of the information
matrix.
17These condition numbers were computed after re-scaling the columns of I3(θ̂) by each column’s norm to
have unit length. This is done to avoid any issues related to the scaling of the information matrix (see also the
discussion on page 999 in Greene (2011)).
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tion between the first two elements of θ̂ corresponding to the β and γ parameters exceeds

0.99 in absolute value for all 4 real exchange rate series. Movements in these two parameters

off-set one another (nearly) one for one.

Table 2: Correlation matrix Ĩ3(θ̂).

UK Germany France Japan
1 − −

−0.9948 1 −
−0.2346 −0.2371 1




1 − −
−0.9949 1 −
−0.4365 0.4412 1




1 − −
−0.9952 1 −
−0.4132 −0.4171 1




1 − −
−0.9959 1 −
−0.4010 −0.4053 1


Notes: This table reports the correlation matrix Ĩ3(θ̂) of the parameter estimates with β̄ = −1 and γ and µ

evaluated at their ML estimates. The parameter ordering of the Ĩ3(θ̂) matrix is [β̄; γ̂; µ̂].

We can now more formally test for identification by examining the importance of the

higher order terms on the conditional mean using the LM framework discussed in Section 3.

Substituting G(qt−1;γ,µ) in (26) with G̃2(qt−1;γ,µ) defined in (6) yields the auxiliary regres-

sion model:

∆qt = β(qt−1 −µ)

[
γ(qt−1 −µ)2 − 1

2
γ2(qt−1 −µ)4

]
+ νt

= a(qt−1 −µ)3 + b(qt−1 −µ)5︸ ︷︷ ︸
Part II: higher order terms

+ νt, (28)

where a = βγ and b = − 1
2βγ

2. For the ESTAR model to be identified, the higher order terms

above Part II in (28) need to be significantly contributing to the likelihood function, that is,

b has to be non-zero in population. Using the LM testing framework, we compute the χ2

version of the LM test as LM = T(SSR0− SSR1)/SSR0, where SSR0 and SSR1 are the sum of

squared residuals (SSR) from the restricted and unrestricted models of (28). These test results

are reported in Table 3 below. Comparing the magnitudes of the SSR0 and SSR1 values, it

is clear that the higher order term adds very little to the conditional mean and hence the

likelihood of the model, suggesting that the null hypothesis of a lack of identification cannot

be rejected.18

4.1.2. Can we estimate the model without the β = −1 restriction?

We predict that γ → 0, and β becomes very large in absolute value to accommodate the

cubic structure of the unidentified conditional mean of the model. Estimation results for the
18Note here, that since we are only testing one restriction (ie., b = 0), we have one degree of freedom in the χ2

critical values. This test coincides with a standard t−test, whose values can be recovered from the square root
of the LM test values provided in the second last row of Table 3.
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Table 3: LM test results of significance of higher order terms.

Test statistic UK Germany France Japan

SSR0 0.346801 0.369092 0.335987 0.353700
SSR1 0.345935 0.368579 0.335496 0.353126
LM 0.717104 0.399049 0.418899 0.465982
p−value 0.397096 0.527581 0.517487 0.494842

Notes: This table reports the LM test significance results of the higher order terms in (28). The terms SSR0
and SSR1 are the sum of squared residuals of the restricted and unrestricted models, respectively, and LM is
the Lagrange-Multiplier test statistic computed as T(SSR0 − SSR1)/SSR0. The last row reports asymptotic
p−values of the LM test, with 1 degree of freedom.

model:

∆qt = β(qt−1 −µ)G(qt−1;γ,µ) +εt. (29)

are reported in Table 4. As can be seen from the β and γ estimates, there is an offsetting

effect. The estimate of the γ parameter converges towards 0, while β̂ goes towards a large

negative value. Note that the lower bound in the initial grid search for γ was set at 1× 10−6,

so the values that are estimated are only marginally lower than that. What is important to

point out here is that the log-likelihood function of the ESTAR and the cubic models are

numerically identical up to 6 decimal points. Relating this to the identification discussion

of Section 3, the situation that we have here is γ̂ → 0, β̂ → −∞, with β̂γ̂ → δ̂3 6= 0, where

δ̂3 is the coefficient obtained from a cubic regression, ie., of ∆qt on (qt−1 − µ)3. The higher

order terms in the second order approximation listed in (28) related to β̂γ̂2 go to 0 due to

γ̂ → 0. Given the information in the data, the conditional means of the cubic regression

and the ESTAR model provide the same fit. This is also evident visually from Panel (a) of

Figure 2.

Table 4: Replicated parameter estimates of the Taylor et al. (2001) model with the unit-root restriction
only.

Parameter Estimates UK Germany France Japan

β̂ −504662.45687917 −305284.18535728 −368394.40126473 −184561.06430017
γ̂ 0.00000098 0.00000096 0.00000095 0.00000098
µ̂ −0.11230079 0.00924026 −0.00571998 −0.51121351
σ̂ 0.03319913 0.03448624 0.03286239 0.03330712

Log-like. ESTAR 570.06613104 559.14958979 572.99204734 569.13408227
Log-like. Cubic model 570.06613111 559.14958988 572.99204741 569.13408243
Log-like. AR(1) model 568.99987094 557.92278405 571.80528152 567.46500061

Notes: This table reports the replicated parameter estimates of the ESTAR model of Taylor et al. (2001) which
only imposes the unit-root restriction on the inner regime. This ESTAR model takes the form: ∆qt = β(qt−1 −
µ)G(qt−1;γ,µ) + εt. Log-likelihood functions of the AR(1) and Cubic models are based on the two regression
equations: ∆qt = δ1(qt−1 −µ) +εt and ∆qt = δ3(qt−1 −µ)3 +εt.
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4.1.3. Estimating the model without any restrictions

To illustrate that the exponential weighting function has a propensity to overfit outliers by

acting like a dummy variable function, we estimate the unrestricted ESTAR model of Taylor

et al. (2001) defined in (26a), and re-parameterised here as:

∆qt = (α − 1)(qt−1 −µ) +β(qt−1 −µ)G(qt−1;γ,µ) +εt, (30)

where (qt−1 − µ) is subtracted from both sides of the original relation in (26) to visualise

the conditional mean IE(∆qt|qt−1) in the same way as before. These estimation results are

reported in Table 5. As can be seen from the estimates reported in Table 5, γ̂ attains extremely

large values. The slope coefficients (α̂ − 1) and β̂ are mirror images, in the sense that their

absolute magnitudes are very similar, differing only in their sign. All log-likelihoods are

larger than the estimates from the restricted models of Taylor et al. (2001).

Table 5: Replicated parameter estimates of the entirely unrestricted Taylor et al. (2001) model.

Parameter Estimates UK Germany France Japan

(α̂ − 1) 14183.23931549 −80.43652137 4895.09914479 340594.58805192
β̂ −14183.25851544 80.41534978 −4895.11461596 −340594.59946710
γ̂ 1937108.34779812 220354.95060881 1129966.10535952 1587721.65109557
µ̂ −0.27437231 −0.15258840 −0.02174839 −0.70815477
σ̂ 0.03272230 0.03387141 0.03223191 0.03256410

Log-like. ESTAR 574.21811145 564.31246531 578.55178003 575.60897466
Log-like. Cubic model 570.06613111 559.14958988 572.99204741 569.13408243
Log-like. AR(1) model 568.99987094 557.92278405 571.80528152 567.46500061

Notes: This table reports the replicated parameter estimates of the unreported (entirely) unrestricted ESTAR model
of Taylor et al. (2001). The unrestricted ESTAR model takes the form: ∆qt = (α − 1)(qt−1 − µ) + β(qt−1 −
µ)G(qt−1;γ,µ) + εt. Log-likelihood functions of the AR(1) and Cubic models are based on the two regression
equations: ∆qt = δ1(qt−1 −µ) +εt and ∆qt = δ3(qt−1 −µ)3 +εt.

What do these models fit? We plot the implied conditional means IE(∆qt|qt−1) as well

as weighting functions G(qt−1;γ,µ) at the estimates of Table 5 to obtain a visual feel for

the models. In Figure 3 we show these for the UK real exchange rate series, where the

figure has the same format as Figure 2.19 The fitted exponential weighting function for

the UK series in Panel (b) of Table 5 shows that G(qt−1;γ,µ) is numerically equal to 1 (up

to 8 decimal places) for all but two observations. One is 0.99668679, which is also quite

close to 1, with the second being 0.00005427. The function thus assigns a zero weight to

one observation, effectively acting as a dummy indicator for that observation. The effect of

this on the implied conditional mean is visible from Panel (a) of Table 5. The conditional

19To conserve space and avoid repetition, plots for all 4 series are shown in the Appendix.
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mean is a linear function of qt−1 over the entire range of the threshold variable, with the

only exception being two data points around µ̂, where it spikes up and down. The AR(1)

conditional mean (shown by the solid blue line in Panel (a) of Table 5) largely overlaps with

the ESTAR model’s fit.

(a) Conditional mean

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.15

-0.10

-0.05

0

 0.05

 0.10

 0.15
NP
95% CI
ESTAR
Cubic
AR(1)

(b) Exponential weighting function
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Figure 3: Conditional mean and transition weighting function plots for the estimated unrestricted ESTAR
model defined in (30) for the real exchange rate series of the UK and Germany, shown respectively in panels
(a) and (b).

In Figure 4 we show surface plots from various angles of the concentrated log-likelihood

function over the γ and µ grids that we consider in the initialisation of the numerical rou-

tines for the UK real exchange rate series. What is evident from these plots is that the concen-

trated log-likelihood function is extremely ill-behaved, with a large number of local maxima.

This ill-behaviour is not only visible for extremely large values of γ, but also for more mod-

erately sized values. Searching over the threshold location parameter µ allows for large γ

values and therefore admits the fitting of a very few extreme observations, which results in

the highly irregular shape of the concentrated log-likelihood function and the conditional

means that we observe.
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(a) 3-D view of concentrated log-likelihood function
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(b) µ-axis view
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Figure 4: Plot of the concentrated log-likelihood function of the unrestricted ESTAR models defined in
(30) for the UK real exchange rate series over the µ and γ search grids. The top Panel (a) shows the 3-D
axis view, the two bottom Panels (b) and (c) show the µ−axis and γ−axis views.

4.2. Simulation evidence

We proceed to study the above outlined problems within a controlled simulation experi-

ment to abstract from issues that could arise due to particular features in the empirical real

exchange rate data. To keep the considered calibrations limited, we take the UK parameter
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estimates as our baseline ‘true’ model, and then consider increasing values of γ as additional

parameter scenarios to examine its effect on identification. The model that we simulate

from is given in (26). The true set of parameters used in the simulation are: µ0 = −0.1124,

α0 = 1,β0 = −1, and σ0 = 0.0332. The error term εt is drawn from a standard Normal dis-

tribution. The 6 different γ values that we consider are γ0 = {0.505, 5, 50, 250, 500, 1000}.
The 0.505 value is the empirical estimate. The other γ values approximate various shapes in

the transition function and also the implied conditional mean of the ESTAR model. In total,

we simulate S = 10 000 sequences, with samples of size T = {288, 500, 1500, 5000}.

As the shape of the transition weighting function is important for understanding iden-

tification issues in ESTAR models, we find it informative here to provide a visual overview

of the various shapes that G(qt−1;γ,µ) and the conditional mean can take under the above

considered true model calibrations.20 These plots are shown in the left and right hand panels

of Figure 5, respectively. Each of the weighting function and conditional mean plots under

the different γ values are drawn over the maximal range of simulated qt−1 values obtained

under that particular γ0 simulation. The overall x−axis range in Figure 5 is set to the widest

range of (simulated) qt−1 values obtained from the γ0 = 0.505 calibration. This range is

from about −0.65 to 0.4, which is somewhat wider than the range observed in the empirical

UK real exchange rate series from −0.45 to 0.3.

From the plots in Figure 5 we can see that the lowest γ value generates the widest range

for qt−1, while for larger γ values, the qt−1 range becomes narrower. This is particularly

evident for γ values of 250, 500 and 1000, where the transition weighting function covers all

feasible values in the [0, 1] interval of G(qt−1;γ,µ), with the qt−1 range being rather narrow

between −0.35 and 0.1. The key point to take away from these plots is that the calibrations

that we choose for the simulations cover a wide range of possible shapes of the transition

weighting function G(qt−1;γ,µ). As the shape of G(qt−1;γ,µ) determines how weakly iden-

tified the ESTAR model is, we can see that there is a fairly wide coverage of different shapes

and hence identification scenarios.

4.2.1. Identification results

In Table 6 we report arithmetic averages of the correlations between the β and γ parameters

and the condition numbers of the (3× 3) information matrix I3(θ̂), where we follow again

20To plot the different possible shapes, we generate an equally spaced grid of 100 data points over the range
of the simulated qt−1 series, ie., from min(qt−1) to max(qt−1), for the 6 considered calibrations for γ. We
then evaluate G(qt−1;γ,µ) as well as the conditional mean IE(∆qt|qt−1) = −(qt−1 − µ)G(qt−1;γ,µ) over this
equally spaced grid.
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(b) Implied conditional mean

-0.65 -0.5 -0.35 -0.2 -0.05 0.1  0.25 0.4  
-0.20

-0.15

-0.10

-0.05

0

 0.05

 0.10

 0.15

 0.20

(a) Transition weigthing function

-0.65 -0.5 -0.35 -0.2 -0.05 0.1  0.25 0.4  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Exponential transition function weights G(zt;γ,µ) and implied conditional means of the ESTAR
models that we simulate from. These are evaluated and plotted over an equally spaced grid of 101 points
from min (qt) to max (qt) for each of the considered γ grid values. Each line in the plots is drawn over
the maximum range of possible qt values from the simulated data for a given γ value.

the same computational approach as in Section 4.1 with the empirical data. The estimated

ESTAR model is the restricted model in (27). The (3 × 3) information matrix is denoted

by I3(θ̂) with θ̂ = [β̄; γ̂; µ̂], where β̄ = −1 is the Taylor et al. (2001) restriction, and γ̂

and µ̂ are the estimates obtained from the simulated data. All averages are computed over

S = 10 000 simulated sequences. Row entries in Table 6 correspond to the six different

γ calibrations that are used, ie., {0.505, 5, 50, 250, 500, 1000}, while column entries list the

considered sample sizes T = {288, 500, 1500, 5000}.

Table 6: Correlation and condition numbers.

γ0

T 288 500 1500 5000
corr(β,γ) cond2(I3) corr(β,γ) cond2(I3) corr(β,γ) cond2(I3) corr(β,γ) cond2(I3)

0.505 −0.9970 7241.19 −0.9978 4780.68 −0.9987 10686.76 −0.9993 14630.15
5 −0.9939 1607.43 −0.9953 2201.88 −0.9971 7583.23 −0.9983 5614.71

50 −0.9780 606.54 −0.9818 844.88 −0.9867 520.60 −0.9889 349.06
250 −0.9011 57.34 −0.9065 40.80 −0.9086 23.21 −0.9089 21.50
500 −0.8064 15.10 −0.8108 13.00 −0.8125 10.12 −0.8127 9.80

1000 −0.6634 6.60 −0.6679 5.66 −0.6711 5.23 −0.6717 5.14

Notes: This table reports averages of the correlation between the β and γ parameter estimates and the condition
number of the (3× 3) information matrix I3(θ̂) for various sample sizes and γ0 values. We consider γ0 values over
the grid ∈ {0.505, 5, 50, 250, 500, 1000} and sample sizes of T ∈ {288, 500, 1500, 5000}. These results are based
on arithmetic averages computed over 10 000 simulations. The correlation between β and γ, denoted by corr(β,γ), is

computed as the {2,1} element of the correlation matrix Ĩ3(θ̂) defined in (25), with θ̂ = [β̄; γ̂; µ̂] and β̄ = −1. The
condition number, denoted by cond2(I3) in the table, is defined in (24) and is also evaluated at θ̂.
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From the correlation and condition number entries in Table 6 we can see that for the

smaller γ0 values, the identification problem is not a finite sample issue, but persists for all

sample sizes we consider. For instance, when γ takes the value 0.505 obtained in Taylor

et al. (2001), the average correlation between β and γ increases (in absolute value) steadily

toward 1 as the sample size increases from 288 observations to 5000. At the same time, the

condition number more than doubles, suggesting that the model becomes ‘less identified’ as

the sample size increases. With an increasingγ0 size, the correlations as well as the condition

numbers decrease steadily. This result is most clearly seen from the change in the size of

the correlations and condition numbers when moving from a γ0 value of 50 to 250. The

correlations decrease in absolute value from around 0.98 to about 0.90, with the condition

numbers dropping more than ten fold to values of about 57 or less, which are well below

the threshold value of 202 = 400 suggested by Greene (2011). For γ0 values of 5 and 50,

the correlations and condition numbers are still rather large, while for higher γ0 values of

500 and 1000, these numbers decrease, suggesting that β and γ can now be identified from

the data. Overall, these results confirm our hypothesis of identification problems in ESTAR

models being linked to the magnitude of the γ parameter, which determines the shape of

the transition weighting function G(qt−1;γ,µ).

4.2.2. Finite sample distribution and bias

In Figure 6 and Table 7 we plot the finite sample distribution, and report the finite sample

bias γ̂ under the 6 different γ0 calibrations and 4 sample sizes that we consider. Figure 6

is arranged in 4 rows and 6 columns corresponding to the considered sample sizes and γ0

values, respectively. In each plot in Figure 6, we show histogram as well as Kernel density

estimates of γ̂ over the 10 000 {γ̂s}S
s=1 sequences of simulated data. We also superimpose

a Normal distribution centered at the sample average and scaled by the sample variance

of {γ̂s}S
s=1. Vertical red lines mark the location of the sample means. As can be seen from

the plots in Figure 6, for small γ0 values of 0.505 and 5, the sampling distributions of γ̂

are severely skewed to the right. The skew can persist for sample sizes as large as 1500

observations. For larger γ0 values and sample sizes, the sampling distributions become

more symmetric and Normal looking. What is interesting to see here, nevertheless, is that

the skew is still quite noticeable for even the two largest γ0 values of 500 and 1000, and

samples of size 288 and 500 observations.

Table 7 is arranged in 6 rows and 4 columns, with each column reporting the bias in ab-

solute terms, as well as percentage of γ0. Bias is computed as: Biasγ0 [γ̂] = IEγ[γ̂] − γ0,
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where IEγ[γ̂] is approximated by 1
S
∑S

s=1 γ̂s, with γ̂s the estimate of the transition func-

tion parameter from the sth simulated ESTAR model. Bias in percent is computed as 100×
(Biasγ0 [γ̂]/γ0). The results in Table 7 show that bias can be extremely large. For the smallest

γ0 calibration (the estimate found in Taylor et al. (2001)), and a sample size of 288 obser-

vations, it can be as high as 0.62 in absolute terms or 122 percent, dropping to 0.26 (or 51

percent) when the sample size increases to 500 observations. Even at 1500 observations,

bias remains at well over 10%. As the sample size and γ0 increase, bias reduces gradually

towards 0.

Table 7: Small sample bias of γ estimates.

γ0

T 288 500 1500 5000
Biasγ0 [γ̂] (in %) Biasγ0 [γ̂] (in %) Biasγ0 [γ̂] (in %) Biasγ0 [γ̂] (in %)

0.505 0.6180 122.37 0.2613 51.74 0.0614 12.15 0.0170 3.36
5 1.0561 21.12 0.5633 11.27 0.1699 3.40 0.0517 1.03

50 3.0524 6.10 1.8237 3.65 0.6013 1.20 0.1628 0.33
250 10.4064 4.16 5.3328 2.13 1.4249 0.57 0.3383 0.14
500 22.3257 4.47 12.7391 2.55 3.6151 0.72 1.3355 0.27

1000 80.3915 8.04 40.7419 4.07 11.8851 1.19 3.9210 0.39

Notes: This table reports the small sample bias of the estimates of the regime weighting function parameter γ for
various sample sizes and γ0 values. We consider values of γ0 ∈ {0.505, 5, 50, 250, 500, 1000} and sample sizes of
T ∈ {288, 500, 1500, 5000}. These results are based on arithmetic averages computed over 10 000 simulations. The

bias is computed as: Biasγ0 [γ̂] = IEγ [γ̂]− γ0, where IEγ [γ̂] is approximated by 1
S
∑S

s=1 γ̂s, with S = 10 000 being
the number of simulations that are averaged over. The column with the heading (in %) shows the bias as a percentage
of the size of γ. This is computed as: 100× (Biasγ0 [γ̂]/γ0).

4.2.3. Estimating the unrestricted models

We now illustrate what happens when attempting to estimate the two unrestricted models

of Taylor et al. (2001), that is,

∆qt = β(qt−1 −µ)G(qt−1;γ,µ) +εt, (31)

∆qt = (α − 1)(qt−1 −µ) +β(qt−1 −µ)G(qt−1;γ,µ) +εt, (32)

on the simulated data. We again use the same simulation set-up as above. Since the transi-

tion function parameter is key in determining the shape of G(qt−1;γ,µ), and therefore the

stability as well as identification in the ESTAR model, we report estimation results forγ only.

In Figure 7 and Figure 8 we show relative frequency plots or ‘histograms’ of the log10 (log

to base 10) transformed γ estimates from fitting the two unrestricted models in (31) and (32)

above, respectively.21 The figures are again arranged in 4 rows and 6 columns corresponding

21We plot log10 transformed histograms of γ̂ to be able to better illustrate graphically the large dispersion as
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to the 4 different sample sizes and 6 γ0 values that we simulate from. We superimpose a

thin green vertical line to mark the true γ0 value that the models were simulated from. The

histogram plots in Figure 7 show that for about 70% of the simulated ESTAR processes, the

estimates of the γ parameter hit the lower bound of the grid of 1× 10−6 when estimating

(31) and γ0 = 0.505, for all sample sizes that are considered. When γ0 = 5, this drops to

about 57%. For γ0 = 50, between 20% and 13% of the simulations hit the lower parameter

bound for sample sizes of 288 and 500 observations, while for the two larger sample sizes,

the estimates are concentrated closer to the true parameter value (in log10 scale). For larger

γ0 values (and all considered sample sizes) this also holds true, without a single one of the

estimated models hitting the lower or upper search bounds.

Figure 8 shows analogous histogram plots of γ̂ obtained from the various simulation

scenarios that we consider, but now with the unrestricted ESTAR model in (32) being the

model that is estimated.22 From these histograms, we can see that under the γ0 = 0.505

scenario, the majority of estimates are in the 1× 104 to 1× 107 range, even for sample sizes as

large as T = 1500. At T = 5000, over 55% of the γ estimates hit the lower bound of 1× 10−6.

When the true parameter is equal to 5, there remain a large number of extreme values that

are obtained for γ̂, that is, either extremely low are high estimates, with γ̂ converging to

0 about 50% of the time for samples of size 1500 and 5000. As the sample size and true

γ0 values increase, the estimates tend to stabilize in the sense that they are away from the

bounds and center at γ0. These results highlight our earlier findings based on the empirical

real exchange rate data that it is extremely difficult to estimate unrestricted ESTAR models

due to the problematic shape the exponential function can take for small and large γ values.

One final point that we would like to make here is that the concentrated log-likelihood

function of the unrestricted ESTAR model in (32) remains extremely ill-behaved with many

local maxima and abrupt changes, even when the model is estimated on simulated data.

In Figure 9 we show graphically the evolution of the concentrated log-likelihood surface to

provide some visual evidence of this finding. The smoothness of the log-likelihood function

tends to increases not only with the sample size, but also with the magnitude of ‘true’ γ0

used to generate the data.

well as the clustering at the boundaries of the estimates, and how these vanish with increasing γ0 values and
sample sizes. We have therefore intentionally left the axis scaling the same across the histogram plots.
22This is the starting model in Taylor et al. (2001), which was used to statistically test the unit-root inner regime
restriction as well as the β = −1 constraint on the slope of the outer regime.
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(a) T = 288 (b) T = 500 (c) T = 1500 (d) T = 5000

Figure 11: Log-likelihood function surface plots from the simulated date for various sample sizes and γ0 values. Column entries show the 4 different sample sizes that
we consider. Row entries correspond to γ0 = {0.505, 5, 50}.
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(a) T = 288 (b) T = 500 (c) T = 1500 (d) T = 5000

Figure 12: Log-likelihood function surface plots from the simulated date for various sample sizes and γ0 values. Column entries show the 4 different sample sizes that
we consider. Row entries correspond to γ0 = {250, 500, 1000}.
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Figure 9: Log-likelihood surface plots from the simulated date for various sample sizes and γ0 values.
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5. Conclusion

Exponential Smooth transition autoregressive models have been widely used in the interna-

tional finance literature, particulary for the modelling of real exchange rates.

In this paper we show that the exponential function is ill-suited as a regime weighting

function because of two undesirable properties. First, the exponential function can be well

approximated by a quadratic function in the threshold variable zt whenever the transition

function parameter γ takes on ‘small’ values. The consequence of this is that the slope vector

attached to the non-linear regime and the transition function parameter will enter as a prod-

uct into the conditional mean of the model, which leads to identification issues. Using an

empirical example and an extensive simulation analysis, we show that there is a nearly per-

fect off-setting effect of these two parameters on the conditional mean when the quadratic

approximation of the exponential function is ‘good’. What is particularly problematic with

this scenario is that it is not a small sample issue that vanishes as the sample size increases,

but rather a population property of the model.

Second, the exponential function can behave like an ‘outlier fitting function’. That is, for

extremely large values of the transition function parameter γ, the exponential function will

be equal to one for all values of the transition variable, except at zt = µ. The effect of this on

the conditional mean of the model is that only a very small number of observations around

the location parameter receive a weight that is different from one. The exponential function

can thus act in the same way as a dummy variable which is designed to remove the influ-

ence of aberrant observations. From our empirical replication exercise we see that this is

precisely the case for the real exchange rate data that is analysed in Taylor et al. (2001). The

unrestricted ESTAR model always fits an extremely large γ estimate, rendering the condi-

tional mean to be a linear function of the threshold variable for nearly the entire zt range,

with the only exception being the part that is close to µ. Using simulated data, we show that

this occurs well over 70% of the time for the two smaller (true) γ0 values that we consider,

and for sample sizes as large as 500 observations. Contrary to the identification issue, the

simulation results indicate that this is a ‘small sample’ problem and vanish as the sample size

increases.
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Appendix to:

‘Identification and Estimation issues in Exponential Smooth
Transition Autoregressive Models’

Daniel Buncic

October 19, 2017

This appendix provides additional details on the replication of the study by Taylor et al. (2001). We also
add a second empirical example, that is, the one by Teräsvirta and Anderson (1992) that utilizes industrial
production data to study the dynamics of business cycles using smooth transition autoregressive models.

A.1. Replication of Taylor et al. (2001)

Taylor et al. (2001) estimate non-linear ESTAR models for the real exchange rates of the UK, Germany,
France and Japan, relative to the US, where the real exchange qt is defined as:

qt = st − pt + p∗t , (A.1)

with pt and p∗t being respectively the logarithms of the US and foreign CPIs, and st is the US dollar price
of one unit of the foreign currency of interest. The full sample period is from January 1973 to December
1996. As in Taylor et al. (2001), we normalize the log real exchange rate series to be equal to 0 in January
1973. Following Taylor et al. (2001), we obtain all CPI and exchange rate data from the IMF’s international
financial statistics database. For descriptive purposes, we show a time series plot of the normalised real
exchange rate data in Figure A.1.
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Figure A.1: Time series plots of the (normalised) real exchange rate date from Taylor et al. (2001).

Plots of the conditional means IE(∆qt|qt−1) = −(qt−1 − µ)G(qt−1;γ,µ) and the weighting functions
G(qt−1;γ,µ) of the restricted model in (27) for all 4 real exchange rate series, at the parameter estimates
reported in Table 1, are shown in Figure A.2 and Figure A.3, respectively.

A-1

http://www.danielbuncic.com


IE
(∆

q t
|q
t−

1
)

qt−1

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

(a) UK

IE
(∆

q t
|q
t−

1
)

qt−1

−0.4 −0.2 0 0.2 0.4
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

(b) Germany

IE
(∆

q t
|q
t−

1
)

qt−1

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

(c) France

IE
(∆

q t
|q
t−

1
)

qt−1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

NP

95% CI

ESTAR

Cubic

AR(1)

(d) Japan

Figure A.2: Plots of the conditional means IE(∆qt|qt−1) of the ESTAR models in (27).
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Figure A.3: Plots of the transition function weights of the estimated ESTAR models in (27).

Corresponding conditional mean and weighting function plots of the unrestricted model in (30) for all
4 real exchange rate series, at the parameter estimates reported in Table 5, are shown in Figure A.4 and
Figure A.5, perspectively.
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Figure A.4: Plots of the estimated conditional means IE(∆qt|qt−1) of the unrestricted ESTAR model in (30).
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Figure A.5: Plots of the estimated transition function weights of the unrestricted ESTAR model in (30).
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A.2. Teräsvirta and Anderson (1992) ESTAR model for industrial production

Teräsvirta and Anderson (1992) apply non-linearities time series models to international business cycle
data. The study is interesting as it uses a mix of logistic as well as exponential regime weighting func-
tions to model the dynamics of industrial production. We focus on replicating the ESTAR models fitted to
Japanese and Italian industrial production (IP). We obtain industrial production data from the St. Louis
FRED Database, using the mnemonics ITAPROINDQISMEI and JPNPROINDQISMEI for Japan and Italy, re-
spectively. Following Teräsvirta and Anderson (1992), we transform the series using fourth differences
of logged industrial production. The sample period is from 1962:Q1 to 1988:Q4, yielding around 100 ob-
servations for econometric analysis. Time series plots of the constructed series are shown in Figure A.6.1

Comparing these plots visually to Figures 6 and 8 of Teräsvirta and Anderson (1992), it is evident that they
are very similar.
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Figure A.6: Four-quarter log-differences of industrial production from 1962:Q2 to 1988:Q4.

To avoid any additional uncertainty related to specification search (ie., finding the appropriate thresh-
old variable and/or the dynamics in each regime) when replicating the models, we estimate the same
formulations as in equations (12) and (16) in Teräsvirta and Anderson (1992). Our estimates (without stan-

1For Italy, due to widespread industrial action, 1970:Q1, is classified as an outlier observation by Teräsvirta and
Anderson (1992) and ‘adjusted’. Since it is not clear how the adjustment was performed, we simply used linear
interpolation to replace the series as the arithmetic average of the series from one quarter earlier and one quarter
later. Also, note that macroeconomic data are frequently revised over time, resulting in different vintages of data
being available. It is thus unlikely that the data that we obtained from FRED will be exactly the same as the one used
in Teräsvirta and Anderson (1992).
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dard errors) are:

yt = 0.0047 + 4.08yt−1 − 1.87yt−2 − 0.53∆yt−4 (A.2a)

+ (−2.67yt−1 + 1.39yt−2 − 0.32∆yt−8) Ĝ + ût (A.2b)

Ĝ = [1− exp{−919(yt−1 + 0.0984)2}], s = 0.0156. (A.2c)

for Japan, and

yt = 0.55yt−1 + 0.53yt−2 + (0.0092 + 0.79yt−1 (A.3a)

− 0.92yt−2 − 1.06yt−4 + 0.88yt−5 − 0.29yt−8 + 0.14yt−9) Ĝ + ût (A.3b)

Ĝ = [1− exp{−294.23(yt−3 − 0.0290)2}], s = 0.0251. (A.3c)

for Italy. Comparing our estimates to those in Teräsvirta and Anderson (1992), we can see that they are
largely in line with their estimates reported in equations (12) and (16).2

Since our motivation for the replication of the study by Teräsvirta and Anderson (1992) is to highlight
that the same type of ill-behaved likelihood function as with the real exchange rate data is obtained, we now
show plots of the concentrated log-likelihood surfaces corresponding to the fitted ESTAR models in (A.2)
and (A.3). These are show in Figure A.7. As can be seen from these plots, the likelihood functions contain
again many local maxima. Although the obtained ‘global’ maxima seem to be away from the extremes of
the γ bounds, we should stress here that this is not guaranteed and appears to be a matter of ‘chance’.
For instance, with the Italian IP dataset that is available to us, using yt−1 instead of yt−3 as the threshold
variable in the transition function G(·) in (A.3) leads to a γ estimate of over 84658, while producing a
better fit (that is, a larger value of the log-likelihood function). We can see, therefore, that the same type of
problems as with the real exchange rate data are encountered when estimating ESTAR models as specified
in Teräsvirta and Anderson (1992) for industrial production data.

To provide some additional evidence that the ill-behaviour is a property of the exponential function,
we implement again a simulation exercise following the same structure as for the real exchange rate
data. That is, we take the estimated parameter values form the original estimates in (12) and (16) of
Teräsvirta and Anderson (1992) as the data generating process and then estimate ESTAR models with
exactly the same lag and transition variable specification to the simulated data. We consider sample sizes
of T = {100, 200, 500, 1000}, with a total of 10 000 simulated sequences. In Figure A.8 we show, as was
done earlier for the real exchange rate simulations, relative frequency plots of the (log to base 10 trans-
formed) estimates of γ from the Japanese ESTAR parameterisations for the four different sample sizes that
we consider. For the sake of brevity, we do not report results from the Italian simulations, which are quali-
tatively the same. Also, typical log-likelihood surface plots based on the simulated data for the 4 different
sample sizes that we consider are shown in Figure A.9. These are shown for illustrative purposes and are
not discussed.

As can be seen from theses plots, there is once again a sizable portion of γ estimates that become very
large for the two smaller sample sizes that we consider in the simulations. For instance, for T = 100, 20%
of the simulations return a γ estimate in excess of 5000. Also, 0.5% of the estimates hit the lower bound
on the γ threshold of 1× 10−6. At T = 200, these proportions drop to 10% and 0.25%, respectively. With
a sample size of T = 500 observations, only 1% of the simulations return a γ estimate of over 5000, while
only 1 out of the 10 000 estimates hits the 1× 10−6 lower bound. At T = 1000, such extreme estimates for
γ are not attained anymore. Although these distortions are smaller than the ones encountered earlier with
the ESTAR parameterisations for real exchange rates, it should be kept in mind that we have assumed the
true lag structure capturing the dynamics in each regime as well as the transition variable to be known.
Results are considerably worse when these are determined by the data.

2The largest differences are for the γ estimates for the Japanese series (reported value in Teräsvirta and Anderson
(1992) is 1.54× 196 = 301.84, as well as the estimates on yt−1 in both regimes, which are 3.03 and −1.68, instead of
our estimated values of 4.08 and −2.67.
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Figure A.7: Concentrated log-likelihood function plots of the fitted ESTAR models in (A.2) and (A.3).
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