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Abstract. In this paper, we show that a concept of aggregation can hold in network

games. Breaking up large networks into smaller pieces, which can be replaced by rep-

resentative players, leads to a coarse-grained description of strategic interactions. This

method of summarizing complex strategic interactions by simple ones can be applied to

compute Nash equilibria. We also provide an application to public goods in networks

to show the usefulness of our results. In particular, we highlight network architectures

that cannot prevent free-riding in public good network games. Finally, we show that

aggregation enhances the stability of a Nash equilibrium.
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NON-TECHNICAL SUMMARY 

 

 

Understanding, and making sense of, large economic networks is an increasingly important 

problem from an economic perspective, due to the ever-widening gap between technological 

advances in constructing such networks, and our ability to predict and estimate their 

properties. Throughout history, various concepts have been developed to reduce the inherent 

complexity found in large economic systems, thereby rendering them more amenable to 

economic analysis. One prominent example is aggregation, which aims to devise 

representative concepts that can be analyzed in a more tractable manner. For instance, a key 

question, which appeared in the seminal contributions of von Neumann and Morgenstern 

(1944), Chapter IX, Gorman (1953, 1961), and Shapley (1964, 1967), is: when does a group 

of individuals behave as if it were a single individual? 

 

 Our investigation of aggregation in network games is quite similar in motivation. Often, the 

reason such an argument holds in the above literature appears to hinge on having identical 

preferences or compositions. Our approach suggests that aggregation holds for a similar 

reason in network games; however, the homogeneity is brought about by the network 

architecture rather than behavior or structure. 

 

Our findings could potentially have empirical applications to many network models in 

economics, including public goods and targeting/finding the key players’ policies. 

Nonetheless, it remains to be seen whether other approaches from the vast and important 

literature on network position similarity, across myriad disciplines, ranging from biology and 

sociology to computer science - see, for example, Gagneur et al. (2004) and Newman (2006) 

- could be useful to further analyze complex strategic interactions. 
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1. Introduction

The economics of networks, which focuses on modeling and understanding varied eco-

nomic interactions, has recently become one of the most active and dynamic fields in

economics. It has the potential for important and lasting policy implications—see, for

example, Goyal (2007) and Jackson (2008)—but it is notable that most economic in-

teractions take place in large networks, whose sheer sizes and complex structures make

economic analysis quite a challenging task. Nevertheless, it is well known that economic

networks have a rich degree of symmetry due to similar linkage patterns for individuals

having similar economic characteristics such as income, education, and preferences, for

firms facing the same competitors, and for countries having similar bilateral agreement

policies.

In this paper, we show that advantage can be taken of the symmetric features of eco-

nomic networks. More specifically, we show that a concept of aggregation that ensures a

group of players behaves like a single player holds for network games, a subject of ongoing

research as in Ballester, Calvó-Armengol, and Zenou (2006) for externalities, Bramoullé

and Kranton (2007) for public good provision, and Bramoullé, Kranton, and D’Amours

(2014) for various economic interactions.1 A key ingredient of our analysis is a group of

players, called a module, such that players in the group have exactly the same neighbors

outside the group.2 In interpretation, since players in a module are indistinguishable by

players outside the module in terms of their network position, outside players are affected

either by their aggregate action or by nothing and hence one can substitute players in the

group with a single representative player.

A concrete example, which arises naturally, is a set of firms competing domestically

while facing the same overseas competition, which can then be replaced by just one big

firm. Another concrete example is several countries privately providing a public good,

such as cybersecurity, which could be made accessible via bilateral agreements. Assume

that there is a group of countries with identical outside bilateral agreements. Therefore

the group of countries can be represented by a single country regardless of the group’s

architecture of bilateral agreements.

1For recent related contributions, see also Acemoglu, Malekian, and Ozdaglar (2016), Elliott and Golub
(2016), Günther and Hellmann (2017), and Kinateder and Merlino (2017).
2The notion of a modular set has been rediscovered several times in many fields including cooperative
game theory by Shapley (1967) under the name of committee.
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We first establish that a partition of players of a network game into modules gives rise to

two-level nested games—a module game played within each module and a composite game

played between representative players of the modules—such that each Nash equilibrium

of the network game corresponds to a combination of Nash equilibria of the nested games.

More specifically, the composite game determines the participation rates of the various

modules, whose actions are the Nash equilibria of the module games. Thereby, we establish

a systematic relationship between each player’s network position in a module, and his Nash

equilibrium actions in the network game.

Furthermore, we show that a network game can be decomposed into a unique hierarchy

of nested games. Key to this are the modules that overlap with no other modules, called

strong modules, which, when ordered by inclusion, define a unique tree, called the modular

decomposition tree, whose root is the set of players and whose leaves are the single players.3

By fitting nested games into each other along the nodes of the modular decomposition

tree, we obtain a unique hierarchical decomposition of the network game, which is useful

for the analysis of strategic interactions. First, it determines the nature of strategic

interactions between the representative players, ranging from strategic complements to

strategic substitutes. Second, it can be used to carry out a recursive computation of Nash

equilibria, which could be of great algorithmic interest.

We provide an application of our results to the model of public goods in networks,

introduced in Bramoullé and Kranton (2007). The key question addressed in Bramoullé

and Kranton (2007) is how the network architecture of spillovers influences public goods

provision, in the absence of coordination. Our aggregation approach complements the

analysis of Bramoullé and Kranton (2007), as it provides a necessary condition in order

to have a Nash equilibrium with strictly positive contributions—that is, with no free-

riders. Despite the attractive normative feature of sharing the burden of public goods

among all players, such an equilibrium is not always guaranteed to exist. The necessary

condition rules out the simultaneous presence of a single player and a non-single player

in fully connected strong modules since this presence brings about a mismatch between

what these players contribute and consume of the public goods, leading one of them to

become a free-rider. This necessary condition for the existence of an equilibrium without

free-riders, which also becomes sufficient for a special class of networks, illustrates the

role played by the strong modules of the network in determining public goods provision.

3The concept of the modular decomposition tree was introduced in Gallai (1967). A similar decomposition
also appeared in Shapley (1967).
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In the last part of the paper, we provide another application of our results to games

of strategic substitutes. We first relax the uniformity of link requirement of the modules

so that outside players are affected by the same proportion of aggregate action or by

nothing. Then, we investigate the stability of a Nash equilibrium. Interestingly, we show

that aggregation increases the range of stability of a Nash equilibrium. A key finding

of Bramoullé, Kranton, and D’Amours (2014) is that the stability range of symmetric

Nash equilibria, which have received much attention in the literature, is relatively small.

Therefore, aggregation can be especially useful for enlarging the range of stability of

symmetric equilibria.

The paper is organized as follows. In Section 2, we present the basic model of network

games. In Section 3, we introduce the concept of aggregation and nested games. In

Section 4, we show that aggregation yields a unique hierarchy of nested games. In Section

5, we provide an application of our results to public goods in networks. Section 6 relates

the stability of the various Nash equilibria. Section 7 concludes the paper.

2. The model

We consider a strategic form game Γ(g, δ) with N = {1, . . . , n} players embedded on

an undirected and unweighted network g of interactions, and where δ ∈ [0, 1] measures

how much player i’s action is affected by his neighbors’ actions. Each player i chooses an

action xi ∈ R+. Given a subset of players I and a profile of actions x = (x1, . . . , xn), let

xI = (xi)i∈I denote the actions of the players in I and xI =
∑

i∈I xi denote their sum.

As usual, let x−i = xN\{i} denote the actions of all other players than i. The payoffs of

player i for the profile of actions x = (x1, . . . , xn) are Ui(x) = Ui(xi,x−i). Player i seeks

to maximize his payoffs and has a best-reply function

xi = fi(x−i)
def
= max{1− δ xNi(g), 0},

where Ni(g) denotes i’s neighbors in g and 1 is the action player i chooses in isolation.

As shown in Bramoullé, Kranton, and D’Amours (2014), this type of game, Γ(g, δ),

can be used to represent various types of economic interactions, including the model of

public goods in networks, introduced in Bramoullé and Kranton (2007), and the model

of negative externalities with linear-quadratic payoffs, introduced in Ballester, Calvó-

Armengol, and Zenou (2006).
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At a Nash equilibrium x∗ = (x∗1, . . . , x
∗
n) of the game Γ(g, δ), each player’s action is

a best-reply to his neighbors’ actions, that is, x∗i = fi(x
∗
−i) for each player i ∈ N. The

existence of a Nash equilibrium of Γ(g, δ) is guaranteed by Brouwer’s fixed point theorem

by restricting strategies of players to [0, 1]n. As usual, let A denote the set of active

players at the Nash equilibrium.

3. Modular aggregation

We now introduce a network position similarity of a group of players, which ensures

that it can behave like a single player. A group of players M is called a module if they

have exactly the same neighbors outside the module, that is, for any player i ∈ N \M ,

either i is adjacent to every player in M or i is adjacent to no player in M. It is easy to

notice that each single player {1}, . . . , {n} and the entire set of players N = {1, . . . , n}
are always modules, called trivial modules, which may well be the only modules for some

networks. Connected components are also always modules.

A partition p = {M1, . . . ,MK} of the set of players N is called a modular partition if

Mk is a module of g, for each k = 1, . . . , K.4 Given two disjoint modules Mk and Mh of

p, either every player in Mk is a neighbor of every player in Mh or no player in Mk is

adjacent to a player in Mh. Thus, the relationship between two disjoint modules is either

adjacent or nonadjacent. Hence the modular partition p gives rise to a new network, g/p,

called the quotient network, whose vertices are the modules of the partition p and links

are the adjacencies of these modules.

Now we define a composite game played on the quotient network g/p, denoted by

Γ(g/p, δ; z), where z = (z1, . . . , zK) ∈ RK
+ is a vector of weights determined exogenously.

This set-up means that in the quotient network, players positions are filled by representa-

tive players of the modules. For each module Mk, there is a representative player k, who

chooses an action rk ∈ [0, 1]. Representative player k’s payoffs depend on his own action

rk and the actions of the other representative players r−k. We denote the payoffs of the

representative player k by Vk, which are assumed to yield the best-reply function:

rk = Fk(r−k)
def
= max{1− δ

∑
h∈Nh(g/p)

zhrh, 0}.

The following result shows that a Nash equilibrium of the network game corresponds to

a combination of Nash equilibria of the (smaller) nested games—that is, a module game

4Note that the modular partition may not be unique.
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played within each module and a composite game played between the representative

players of the modules.

Theorem 1. Given a modular partition p = {M1, . . . ,MK} of the set of players N, the

following are equivalent:

(1) x∗ is a Nash equilibrium of Γ(g, δ)

(2) x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) such that

(a) y∗Mk
is a Nash equilibrium of Γ(gMk

, δ), for each k = 1, . . . , K, and

(b) r∗ is a Nash equilibrium of Γ(g/p, δ; y∗M1
, . . . , y∗MK

).

Hence, it follows from Theorem 1 that finding the Nash equilibria of the nested games

could provide significant insights into the Nash equilibria of the network game. In particu-

lar, note that players’ actions in a Nash equilibrium of the network game are proportional

to their actions at a Nash equilibrium of the module game.

The following example illustrates a network game and the corresponding nested games.

Example 1. Consider the network with eleven players depicted in Figure 1. Clearly,

the partition p = {M1,M2,M3,M4,M5}, where M1 = {1}, M2 = {2, 6}, M3 = {7, 11},
M4 = {3, 4, 5}, and M5 = {8, 9, 10}, is modular since each group is a module. Below, we

depict the underlying networks of the various games.

(1) The network game Γ(g, δ).

2

1

5

6

3

4

11

9

10

7

8

Figure 1: The network g.

(2) The nested games.

(a) The module game Γ(gMk
, δ), for each k = 1, . . . , 5.
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2

1

5

6

3

4

11

9

10

7

8

Figure 2: The module network gMk
, for each k = 1, . . . , 5.

(b) The composite game Γ(g/p, δ; y∗M1
, . . . , y∗M5

).

{1}{7, 11} {2, 6}{8, 9, 10} {3, 4, 5}

Figure 3: The quotient network g/p.

4. Hierarchical decomposition

Now, we will further exploit the decomposition of the network game into nested games.

More specifically, we will establish that the network game can be arranged into a unique

hierarchy of nested games. Key to this is the concept of strong modules. A module M is

called a strong module if, for any module M ′ 6= M, it holds that either M ′ ∩M = ∅ or

one module is included in the other. We say that a strong module M is a descendant of

another strong module M ′ if M ⊂M ′ and there is no other strong module M∗ such that

M ⊂M∗ ⊂M ′.

The descendant relation yields a tree on the set of strong modules, called the modular

decomposition tree of the network, where the set of players {1, . . . , n} is the root, the

single players {1}, . . . , {n} are the leaves, and any other strong module is an internal

node. The nodes of the modular decomposition tree are labeled in three ways: parallel

when the descendants are all non-neighbors of each other, series when the descendants

are all neighbors of each other, and prime otherwise. The modular decomposition tree of

a network is unique, as illustrated in the example in Figure 4.5

5In fact, the modular decomposition tree constitutes an exact alternative representation of the network
whenever the structure of each prime module is depicted.
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a f

b c d e

series

prime

parallel

a b

c d e

f

Figure 4: Modular decomposition tree of a network.

The following result relates a Nash equilibrium of a strong module game to the Nash

equilibria of the nested games of the descendants’ partition.

Theorem 2. Given a strong module M with descendants’ partition pM = (D1, . . . , DT ),

the following are equivalent:

(1) x∗ is a Nash equilibrium of Γ(gM , δ)

(2) x∗ = (r∗1 y∗D1
, . . . , r∗T y∗DT

) such that

(i) y∗t is a Nash equilibrium of Γ(gDt , δ), for each t = 1, . . . , T,

(ii) If M is parallel, then for each t = 1, . . . , T, it holds that r∗t = 1,

(iii) If M is series, then for almost every δ,6 either for each t ∈ A it holds that

y∗Dt
> 1

δ
, or for each t ∈ A = {1, . . . , T} it holds that y∗Dt

< 1
δ
, and

r∗t =

1
1−δy∗Dt

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

, and

(iv) If M is prime, then r∗M is a Nash equilibrium of Γ(g/p, δ; y∗D1
, . . . , y∗DT

).

Theorem 2 provides insights into the strategic interactions between the representative

players of descendants of a strong module. In interpretation, the representative players of

descendants of a parallel module can be thought of as strategic complements, those of a

series module can be thought of as strategic substitutes, and those of a prime module can

be thought of as an intermediate case of strategic substitutes and strategic complements.

Given that the network game can be decomposed along the nodes of the modular

decomposition tree into a unique hierarchy of nested games, Theorem 2 can be used to

6We say that a property holds for almost every δ if it holds for every δ except a finite number of values.
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compute Nash equilibria using the bottom-up technique along the modular decomposition

tree.

ba

c d e

series

parallel

a b

parallel

c d e

Figure 5: A cograph network.

In particular, for the special class of networks known as cographs, which consist of

networks with only parallel and series modules in their modular decomposition tree,7 it

follows that, for almost every δ, Nash equilibria can be computed immediately. The

following example illustrates this point.

Example 2. Consider the cograph network with five players depicted in Figure 5.

Observe that the entire set of players {a, b, c, d, e} is a series module with descendants

D1 = {a, b} and D2 = {c, d, e}, which in turn are both parallel modules with only single

players as descendants. Therefore, it holds that yD1 = 2 and yD2 = 3, which constitute the

thresholds of (2)(iii) in Theorem 2. Then using the computation in Theorem 2 bottom-up

along the modular decomposition tree, we can compute all Nash equilibria as depicted in

Figure 6.

1−3δ
1−6δ2

1−3δ
1−6δ2

1−2δ
1−6δ2

1−2δ
1−6δ2

1−2δ
1−6δ2

00

1 1 1

11

0 0 0

δ ∈ [0,
1

3
[∪]

1

2
, 1] δ ∈]

1

3
, 1] δ ∈]

1

2
, 1]

Figure 6: Nash equilibria of a cograph network.

7The class of cographs has been intensively studied since it was discovered independently by several
authors in the 1970s.
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Observe that neither an interior equilibrium nor a corner equilibrium exists for the whole

range of δ ∈ [0, 1]. Moreover, observe that at the interior equilibrium for (low) δ ∈ [0, 1
3
[

the aggregate action of the large representative player D2 is higher than that of the small

representative player D1 and quite interestingly this gets reversed for (high) δ ∈]1
2
, 1].

The intuition is as follows. Recall the parameter δ gives the substitutability between own

and neighbors’ actions. Therefore, for a low δ players substitute other players’ actions

little, resulting in large representative players becoming more active, whereas for a high

δ players substitute other players’ actions more, resulting in large representative players

becoming less active.

5. An application: public goods in networks

Now, we provide an application of our results to the public goods in a network model,

introduced in Bramoullé and Kranton (2007), which can be investigated as a Γ(g, 1) game.

Recall that for a profile of contributions to be a Nash equilibrium, it has to be the case

that every player contributes nothing to the public good if the sum of his neighbors’

contributions exceeds 1 or contributes exactly the difference between 1 and the sum of

his neighbors’ contributions. Therefore, at a Nash equilibrium, we may distinguish three

types of players: free-riders, who contribute nothing; experts, who make full contribu-

tions; and the others. Bramoullé and Kranton (2007) insightfully show that specialized

equilibria—that is, equilibria with only experts and free-riders—correspond to maximal

independent sets of the network and therefore are always guaranteed to exist.

Specialized equilibria are of interest as they illustrate in an acute form how the net-

work can lead to specialization. However, beyond specialized equilibria, very little is

known about other equilibria such as distributed equilibria, where all players make pos-

itive contributions, and hybrid equilibria, which are neither specialized nor distributed.

Distributed equilibria can be especially of interest given their normative importance, be-

cause all players share the burden of contributing to the public good, but they are not

always guaranteed to exist. For instance, distributed equilibria are not possible in star

networks. Moreover, even when distributed equilibria exist, very little is known about

their properties beyond the symmetric contribution equilibrium in regular networks.

In the following, we will provide a condition on the modular decomposition of the

network that is necessary for the existence of a distributed equilibrium. We say that a

series module is uncentered if all (or none) of its descendants are single players. More
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specifically, an uncentered series module rules out the possibility of having both a single

player and a non-single player as descendants, which, as shown below, precludes the

distributed equilibrium.

Proposition 1. If a distributed equilibrium exists, then all series modules are uncentered.

The intuition for the necessary condition of Proposition 1 can be explained as follows.

In a distributed equilibrium, it must be the case that every player makes a strictly positive

contribution. However, the (simultaneous) presence of a single player and a non-single

player as descendants of a series module brings about a mismatch between what these

players contribute and consume of the public goods, leading one of them to become a

free-rider. The next result shows that the necessary condition becomes also sufficient for

a special class of networks.

Proposition 2. If the network is a cograph, then a distributed equilibrium exists if and

only if all series modules are uncentered.

It is worth noting that Sun (2012) also provides a sufficient and necessary condition for

the existence of a distributed equilibrium for a general class of networks. Our analysis

differs from Sun (2012) in at least two key aspects. First, it highlights the role intermediate

network architectures play in determining public goods provision. Second, it provides an

algorithm to compute the distributed equilibria for the special class of cographs. The

following example illustrates these points.

a

b c

d

e

f

series

parallel

a b

parallel

series

c d

e

f

Figure 7: Cograph network with six players.

Example 3. Consider the cograph network with six players depicted in Figure 7. Then

using the computation in Theorem 2 bottom-up along the modular decomposition tree, we
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can compute all Nash equilibria as shown in Figure 8. Observe that there is no distributed

equilibrium, which can be explained by the fact that the series module consisting of the

entire set of players has both a single player and a non-single player as descendants.

1

1 0

0

0

0

0

0 0

0

0

1

0

0 λ

1− λ

1

0

1
3

1
3

λ

1
3
− λ

1
3

0

λ ∈ [0, 1] λ ∈ [0,
1

3
]

Figure 8: Nash equilibria of a cograph network.

6. Aggregation and stability

We now consider the issue of stability, which is often invoked to refine the set of Nash

equilibria. In this respect, we closely follow Bramoullé, Kranton, and D’Amours (2014)

and consider a myopic adjustment process defined, for each consumer i = 1, . . . , n, by

.
xi = fi(x−i)− xi,

where fi(x−i) is player i’s best-reply function. The Nash equilibrium x∗ is “locally asymp-

totically stable” if there exists a neighborhood of x∗ such that if the above system starts

at any point inside this neighborhood, it converges back to x∗. In interpretation, stable

equilibria are robust to small perturbations in players’ actions.
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Before investigating stability, we first relax the uniformity of links between groups of

players in a modular partition. Given a partition p = {M1, . . . ,MK} of the set of players

N , we now define the quotient network, g/p, in the following way: two disjoint groups of

players Mk and Mh are linked in the quotient network if a player in Mk is adjacent to a

player in Mh.

We say a profile of actions x = (x1, . . . , xn) is aggregate with respect to the partition

p = {M1, . . . ,MK} if there exists α ∈ [0, 1] such that for each k, i inMk, and h ∈ Nk(g/p),

it holds that8

x∗Ni(gMh
) = α x∗Mh

.

In interpretation, at an aggregate profile, players in each group Mh affect players in any

linked group Mk in the same way—that is, by the same proportion of aggregate play.

Theorem 3. Given an aggregate profile x∗ with respect to the partition p = {M1, . . . ,MK},
the following are equivalent:

(1) x∗ is a Nash equilibrium of Γ(g, δ)

(2) x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) such that

(a) y∗Mk
is a Nash equilibrium of Γ(gMk

, δ), for each k = 1, . . . , K, and

(b) r∗ is a Nash equilibrium of Γ(g/p, δ;αy∗M1
, . . . , αy∗MK

).

Theorem 3 shows that an aggregate profile is a Nash equilibrium if and only if it is a

combination of Nash equilibria of the nested games. For simplicity, from now on, we will

call such a profile an aggregate equilibrium.

Note that if p = {M1, . . . ,MK} is a modular partition, then every Nash equilibrium

is an aggregate equilibrium corresponding to α = 1. The following example lists an

aggregate equilibrium without the partition being modular.

Example 4. Consider the regular network with six players depicted in Figure 9. Clearly,

the partition p = {M1,M2}, where M1 = {1, 2, 3} and M2 = {4, 5, 6}, is not modular

since neither M1 nor M2 is a module. Now consider the symmetric Nash equilibrium

x∗ = 1
1+3δ

(1, 1, 1, 1, 1, 1) of Γ(g, δ). It can be easily checked that x∗ is aggregate with

respect to the partition p = {M1,M2} since, for each i in M1 and j in M2, it holds that

x∗Ni(gM2
) = x∗Nj(gM1

) =
1

3
x∗M1

=
1

3
x∗M2

=
1

1 + 3δ
.

8By abuse of notations, Ni(gMh
) denotes i’s neighbors in Mh.
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Therefore, x∗ is an aggregate equilibrium. Moreover, observe that x∗ = (r∗1y
∗
M1
, r∗2y

∗
M2

),

where for each k = 1, 2, y∗Mk
= 1

1+2δ
(1, 1, 1) is a Nash equilibrium of Γ(gMk

, δ) and

r∗ = 1+2δ
1+3δ

(1, 1) is a Nash equilibrium of Γ(g/p, δ; 1
3
y∗M1

, 1
3
y∗M2

).

2

1

43

5

6

Figure 9: Regular network with six players.

The following result relates the stability of the aggregate equilibrium to the stability

of the Nash equilibria of the nested games. For simplicity, we assume that all inactive

players are strictly inactive. Let us also consider the set K ′ of groups that contain active

players.

Theorem 4. If the aggregate equilibrium x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) is stable, then the

Nash equilibrium y∗Mk
, for each k ∈ K ′, and r∗ are stable.

Theorem 4 shows that the stability of the aggregate equilibrium implies the stability of

the Nash equilibria of the nested games. The opposite, however, is not true: the stability

of the aggregate equilibrium cannot be deduced from the stability of the Nash equilibria

of the nested games. The following example illustrates this point.

Example 5. Consider again the aggregate equilibrium x∗ = 1
1+3δ

(1, 1, 1, 1, 1, 1) in Ex-

ample 4. Since λmin(G) = −2, it holds that x∗ is stable for δ ∈ [0, 1
2
[ and unstable for

δ ∈ [1
2
, 1]. Note that, for each k = 1, 2, y∗Mk

= 1
1+2δ

(1, 1, 1) is stable for δ ∈ [0, 1[ since

λmin(GMk
) = −1 and r∗ = 1+2δ

1+3δ
(1, 1) is stable for δ ∈ [0, 1] since λmin(G/p) = − 1

1+2δ
>

−1. Therefore the stability range is larger for the Nash equilibria of the nested games

than for the aggregate equilibrium. In the following, we depict the underlying network

and the stability range of the various Nash equilibria.

(1) The aggregate equilibrium x∗ = 1
1+3δ

(1, 1, 1, 1, 1, 1) is stable for 0 ≤ δ < 1
2
.
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2

1

43

5

6

Figure 10: The network game.

(2) The Nash equilibria of the nested games x∗ = (r∗1y
∗
M1
, r∗2y

∗
M2

).

(a) The Nash equilibria y∗M1
= y∗M2

= 1
1+2δ

(1, 1, 1) are stable for 0 ≤ δ < 1.

2

1

43

5

6

Figure 11: The group games.

(b) The Nash equilibrium r∗ = 1+2δ
1+3δ

(1, 1) is stable for 0 ≤ δ ≤ 1.

{4, 5, 6}{1, 2, 3}

Figure 12: The composite game.

Our analysis shows that the stability of an aggregate equilibrium can be enhanced

via the nested games.9 Intuitively, there are fewer possible small perturbations of the

Nash equilibria actions of the nested games than of the aggregate equilibrium actions. As

a consequence, it may well be the case that small perturbations of the Nash equilibria

actions of the nested games do not lead the system away from those equilibria, while (the

larger set of) small perturbations of the aggregate equilibrium actions do lead the system

away from equilibrium.

9Actually, it can be shown that the coarser is the partition of the set of players, the larger is the range
of stability of the Nash equilibria of the nested games.
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A key finding of Bramoullé, Kranton, and D’Amours (2014) is that the stability range

of symmetric Nash equilibria, which have received much attention in the literature, is

relatively small since, beyond a threshold, stable equilibria always involve some inactive

players. Therefore, aggregation can be especially useful for enlarging the range of stability

of symmetric equilibria.

7. Conclusion

Understanding, and making sense of, large economic networks is an increasingly im-

portant problem from an economic perspective, due to the ever-widening gap between

technological advances in constructing such networks, and our ability to predict and es-

timate their properties. Throughout history, various concepts have been developed to

reduce the inherent complexity found in large economic systems, thereby rendering them

more amenable to economic analysis. One prominent example is aggregation, which aims

to devise representative concepts that can be analyzed in a more tractable manner. For

instance, a key question, which appeared in the seminal contributions of von Neumann

and Morgenstern (1944), Chapter IX, Gorman (1953, 1961), and Shapley (1964, 1967), is:

when does a group of individuals behave as if it were a single individual? In fact, amongst

others, Shapley (1964) writes

“An important question in the application of n-person game theory is the extent

to which it is permissible to treat firms, committees, political parties, labor unions,

nations, etc., as though they were individual players. Behind every game model

played by such aggregates, there lies another, more detailed model: a compound

game of which the original is the quotient. Given any solution concept, it is legit-

imate to ask how well it stands up under the aggregation -or disaggregation- of its

players.”

Our investigation of aggregation in network games is quite similar in motivation. Often,

the reason such an argument holds in the above literature appears to hinge on having

identical preferences or compositions. Our approach suggests that aggregation holds for

a similar reason in network games; however, the homogeneity is brought about by the

network architecture rather than behavior or structure.
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Our findings could potentially have empirical applications to many network models in

economics, including public goods and targeting/finding the key players policies. Nonethe-

less, it remains to be seen whether other approaches from the vast and important litera-

ture on network position similarity, across myriad disciplines, ranging from biology and

sociology to computer science—see, for example, Gagneur et al. (2004) and Newman

(2006)—could be useful to further analyze complex strategic interactions.

8. Appendix

Proof of Theorem 1. First, observe that a profile of actions x∗ = (x∗1, . . . , x
∗
n) is a Nash

equilibrium of Γ(g, δ) if and only if for each player i ∈ N

x∗i =

{
1− δx∗Ni(g)

if δx∗Ni(g)
≤ 1

0 if δx∗Ni(g)
> 1.

(8.1)

Since Mk is a module, for each i ∈ Mk and for each h 6= k, it holds that the set of

neighbors of i in Mh, that is, Ni(gMh
), is independent of the choice of i ∈ Mk. Let us

posit

r∗k
def
= max{1− δ

∑
h∈Nh(g/p)

x∗Ni(gMh
), 0}.

Then, since for each i ∈Mk

Ni(g) =
⋃

h∈k∪Nh(g/p)

Ni(gMh
),

it holds that

δ x∗Ni(g)
= δ

∑
h∈k∪Nh(g/p)

x∗Ni(gMh
) = δ x∗Ni(gMk

) + r∗k. (8.2)

Also let

y∗Mk

def
=


x∗Mk

r∗k
if r∗k > 0

a Nash equilibrium of Γ(gMk
, δ) if r∗k = 0.

Hence, in view of (8.1) and (8.2), x∗ is a Nash equilibrium of Γ(g, δ) if and only if for

each module k = 1, . . . , K

r∗k = max{1− δ
∑

h∈Nh(g/p)

y∗Ni(gMh
)r
∗
h, 0}

and for each player i ∈Mk it holds that
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x∗i =

r∗k − δ x∗Ni(gMk
) if δ x∗Ni(gMk

) ≤ r∗k

0 if δ x∗Ni(gMk
) > r∗k

or, equivalently,

y∗i =

1− δ y∗Ni(gMk
) if δ y∗Ni(gMk

) ≤ 1

0 if δ y∗Ni(gMk
) > 1.

Therefore, x∗ is a Nash equilibrium of Γ(g, δ) if and only if x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) such

that r∗ is a Nash equilibrium of Γ(g/p, δ; y∗M1
, . . . , y∗MK

) and y∗Mk
is a Nash equilibrium of

Γ(gMk
, δ), for each k = 1, . . . , K.�

Proof of Theorem 2. From Theorem 1, it holds that x∗M is a Nash equilibrium of

Γ(gM , δ) if and only if x∗M = (r∗1 y∗D1
, . . . , r∗T y∗DT

) such that r∗M is a Nash equilibrium

of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

) and y∗Dt
is a Nash equilibrium of Γ(gDt , δ), for each t =

1, . . . , T .

If M is prime, then the equivalence follows from the result above.

If M is parallel, then r∗M is a Nash equilibrium of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

) is equiva-

lent to

r∗t = 1 for each t = 1, . . . , T,

since Nt(gM/pM) = ∅ for each t = 1, . . . , T.

If M is series, then r∗M is a Nash equilibrium of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

) is equivalent

to

r∗t = 1− δ
∑

s∈A\{t}

y∗Ds
r∗s for each t ∈ A (8.3)

and

δ
∑
s∈A

y∗Ds
r∗s ≥ 1 if A 6= {1, . . . , T}. (8.4)

Let

v
def
= (

δy∗Ds

1− δy∗Ds

)s∈A and U
def
= diag(1− δy∗Ds

)s∈A.

Then (8.3) is equivalent to

(I + 1vT )Ur∗A = 1.

From the Sherman–Morrison formula, provided that 1 + vT1 6= 0, it holds that

r∗A = U−1(I + 1vT )−11 = U−1(I− 1vT

1 + vT1
)1 = U−1(1− vT1

1 + vT1
1) =

1

1 + vT1
U−11.



19

Hence, for each t ∈ A, it holds that

r∗t =

1
1−δy∗Dt

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

.

Note that since r∗t > 0 for each t ∈ A, it follows from above that either y∗Dt
> 1

δ
for

each t ∈ A or y∗Dt
< 1

δ
for each t ∈ A. Moreover, in view of (8.4), if A 6= {1, . . . , T} then∑

s∈A
δy∗Ds

1−δyDs

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

= 1− 1

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

≥ 1,

which implies that ∑
s∈A

δy∗Ds

1− δy∗Ds

< −1.

Hence if A 6= {1, . . . , T}, then it holds that y∗Dt
> 1

δ
for each t ∈ A.

Conversely, it is easy to check that if either for each t ∈ A it holds that y∗Dt
> 1

δ
, or for

each t ∈ A = {1, . . . , T} it holds that y∗Dt
< 1

δ
, and

r∗t =

1
1−δy∗Dt

1 +
∑

s∈A
δy∗Ds

1−δy∗Ds

,

then r∗M is a Nash equilibrium of Γ(gM/pM , δ; y
∗
D1
, . . . , y∗DT

).�

Proof of Proposition 1. Let x∗ be a Nash equilibrium of Γ(g, 1) such that x∗i > 0,

for each i ∈ N . Let M be a series module. From Theorem 1, there exists a real number

rM > 0 such that x∗ = rMy∗M , where y∗M is a Nash equilibrium of Γ(gM , 1). Suppose that

M is not uncentered. Let pM = (D1, . . . , DT ) denote the descendants’ partition of M .

Then, there exists 1 ≤ t1 6= t2 ≤ T such that Dt1 = {i1} is a single player and Dt2 is not

a single player. Note that each player in Dt2 is not connected to all other players in Dt2 .

Otherwise, Dt2 is not a direct descendant of M .

At the Nash equilibrium y∗M , each player’s action is a best reply to his neighbors’

actions. In particular, it holds for player i1 that

y∗i1 +
∑
i∈Dt2

y∗i +
∑
t6=t1,t2

y∗Dt
= 1
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and for a player i2 ∈ Dt2 that

y∗i2 +
∑

i∈Ni2
(gM)∩Dt2

y∗i + y∗i1 +
∑
t6=t1,t2

y∗Dt
= 1,

which together imply ∑
i∈{i2∪Ni2

(gM)}c∩Dt2

y∗i = 0.

This is a contradiction since {i2 ∪Ni2(gM)}c ∩Dt2 6= ∅ and y∗i > 0, for each i ∈M.�

Proof of Proposition 2. Suppose the network g is a cograph. Therefore, the network

g has only parallel and series modules in its modular decomposition tree. If all series

module are uncentered, then, given a series module M , with direct descendants’ partition

pM = (D1, . . . , DT ), either all or none of the direct descendants are single players. If

all direct descendants are single players, then the symmetric contribution 1
T+1

is a Nash

equilibrium of Γ(gM , 1). If none of M ’s direct descendants is a single player, then for

each t = 1, . . . , T and for any Nash equilibrium y∗t of Γ(gDt , δ), it holds that y∗Dt
≥ 2

since Dt is a parallel module with at least two direct descendants. From (2)(iii) in

Theorem 2, it follows that there exists a Nash equilibrium of the composite game such

that r∗t > 0 for each t = 1, . . . , T. Therefore one can use (2)(ii) and (3)(iii) in Theorem

2 recursively along the nodes of the modular decomposition tree in order to construct a

distributed equilibrium.�

Proof of Theorem 3. The proof is similar to the proof of Theorem 1.�

Proof of Theorem 4. The proof relies on the Brouwer and Haemers (2011) version of

the generalized interlacing eigenvalue theorem, as stated below.

Theorem. (Brouwer and Haemers). Let S be a real n × m matrix such that STS = I.

Let K be a real symmetric matrix of order n. Define J = STKS. Then the eigenvalues of

J interlace those of K.

Note that the classical interlacing eigenvalue theorem holds as a special case of the

generalized interlacing eigenvalue theorem if one takes S = [I,0]. For each k ∈ K ′, let

M ′
k = Mk ∩ A and p′ = {M ′

k}k∈K′ . The aggregate equilibrium x∗ is stable if and only

if all eigenvalues of the matrix I + δGA have positive real parts, which is equivalent to

λmin(GA) > −1
δ

since all the eigenvalues of GA are real.
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First observe that from the classical interlacing eigenvalue theorem it follows that

λmin(GM ′k
) ≥ λmin(GA) > −1

δ
, for each k ∈ K ′. Therefore y∗Mk

is stable, for each k ∈ K ′.
Second observe that rows and columns of GA can be partitioned as

GA = (Gkh)k,h∈(K′)2 ,

where Gkh lists the links connecting players in Mk to players in Mh.
10 Let S be the A×K ′

matrix defined as follows:

sik
def
=


yi

‖yM′
k
‖ if i ∈M ′

k

0 otherwise
,

U = diag(
‖yM ′k‖√
yM ′k

)k∈K′ ,

and

V = diag(
√
yM ′k)k∈K′ .

Since (I + δGkk)yM ′k = 1 and GkhyM ′k = αyM ′k1, it follows that

VUST (I + δGA)SUV−1 = I + δGA/p
′,

where GA/p
′ denotes the adjacencies of active groups in the Nash equilibrium r∗.

Observe that STS = I. Hence, it follows from the generalized interlacing eigenvalue

theorem that the eigenvalues of ST (I + δGA)S are positive since they interlace those

of I + δGA. From the sharp bounds provided by Ostrowski (1959), it holds that the

eigenvalues of the symmetric matrix UST (I+δGA)SU are also positive since they are given

by ψiλi, where λi is an eigenvalue of ST (I + δGA)S and ψi lies between the smallest and

the largest eigenvalues of U. Hence, the matrix I + δGA/p
′ also has positive eigenvalues,

being similar to UST (I + δGA)SU. Therefore, r∗ is a stable Nash equilibrium.�
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