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Abstract

Production capital and technology, fundamental to understanding output and productivity
growth, are unobserved except at disaggregated levels and must be estimated prior to being
used in empirical analysis. We develop and apply a new estimation method, based on
advances in economics, statistics, and applied mathematics, which involves estimating a
structural dynamic economic model of a representative production firm and using the
estimated model to compute Kalman-filtered estimates of capital and technology for the
sample period. We apply the method to annual data from 1947-97 for U.S. total
manufacturing and compare the estimates with those reported by the Bureau of Labor
Statistics.
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1. Introduction.

Time series of production capital and total factor productivity (or
"technology,” as we call the latter here) are fundamental to understanding
the processes of output and productivity growh. Unfortunately, capital and
technology are unobserved except at the nost disaggregated |evels of
production units and capital components and nust be estimated prior to being
used in enpirical analysis. Standard nmethods for estimating capital and
technol ogy were devel oped decades ago (Jorgenson, 1963; Solow, 1957) and are
based on analytical and conputational nethods of that era. W develop and
apply a new nethod for estimating production capital and technol ogy, based on
advances in econonics, dynam c optimzation, statistics, and conputing over
the intervening years.

W apply the method to annual data from 1947-97 for U S. tota
manuf acturing industries and conpare its nodel -based estimates of capital and
technology with standard estimates reported by the Bureau of Labor Statistics
(1997). W offer the method and its results as a fresh approach for
under standi ng and estinmating capital and technol ogy using nodern nethods. The
four major findings of the application are: (1) The nodel-based capital
estimates are 10 times nore uncertain than the nodel-based technol ogy
estimates. (2) The trends of the nobdel -based capital and technol ogy estinates
are simlar to the trends of standard estimates. (3) The nodel -based capita
and technol ogy estinmates inply that above average capital growmh in the 1990s -
- not above average technology growh -- explains above average growth in
manufacturing output in the 1990s. (4) Changes in paraneter estinmates to suit
prior views can cause |arge and unreasonabl e changes in the nodel -based capita
and technol ogy estimates and, therefore, should be nmade cautiously.

W are interested in estimating aggregate capital, i.e., at the leve
of total production capital (equipnent and structures) of all manufacturing
i ndustries. The present nethod has two mmjor steps, a nodel-paraneter
estimation step followed by an unobserved-variable estimation step. In the
first step, we specify and estinmate by maxinmum likelihood a structura
dynam ¢ econonmi ¢ nodel of a representative production firmin an industry. W
assune the firm solves a dynanmic optinization problem which is a standard
adjustment cost problem except that adjustnment costs on capital and
technology are derived from a parsinoniously paraneterized production
function, rather than being stated directly as is wusually done. W conpute



and incorporate the resulting optinmal decision rules into the two estimation
steps. W estimate the nodel's structural parameters w thout wusing any
observations on capital or technology. W use only observations on prices and
guantities of output, i nvest ment , research (short for “"research and
devel opnent "), labor, and materials inputs. W overcone the lack of capital
and technology data by using a missing-data variant of the Kalnman filter to
conpute the likelihood function and by using the overidentifying restrictions
on reduced-form paraneters in terns of structural paraneters inplied by the
optimal decision rules. The reduced-form equations of the estimted nodel
imply correl ati ons between unobserved capital and technol ogy and the observed
variables in the nodel. In the second step, we use these correlations to
conpute linear |east squares estinates (LLSE) of capital and technol ogy, and
their standard errors, in terns of the observed variables in the nodel. The
LLSEs are inplenmented using a version of the Kalman filtering algorithm
(Anderson and Mbore, 1979).

W now review the standard nethods for estimating aggregate production
capital and technology and, then, discuss the relative advantages of the
present estimation nethod. Aggregate production capital stocks are often
estimated using the perpetual inventory equation (PIE), ki = ocki.s + iy, where
ki is the capital stock being estimated, iy i s observed investnment flow, and &
is one mnus a constant capital depreciation rate. Variants of the PIE can
accommpdate non-constant or non-geonetric depreciation (Bureau of Labor
Statistics, 1997). Aggregate production capital is also estimated as an i ndex
of the service flows of capital conponents (equipnent, structures, and other
di saggregates). The conponent service flows are estimted using Jorgenson's
(1963) rental prices and are indexed using expenditure weights. Accordingly,
di saggregated data are used in estinmating aggregate capital, but, in either
case, the estimates depend entirely on investnent flows and capital
depreciation rates and do not depend on other possible factors such as
decision errors (msallocations), which the present nmethod accounts for
inmplicitly. Technology is usually estimated in percentage growh form as the

Sol ow (1957) residual, dt, = dg. - > _ s, dX

i=1

i«» Wwhere dr, dg, and dx;; are
percentage growth of technology, output, and production inputs, and s;; are
i nput cost shares.

Cenerally, the relative advantages of the present nethod over standard
net hods are those of an el aborate econonetric nodel over a sinple econonetric

nodel . The advantages are greater generality (fewer restrictions) and nore



details, hence, nore inplications. The disadvantages are the need for nore
and better data, hence, a greater risk of specification error in practice,
and greater mathematical and conputational conplexity. The standard nethods
for estimating capital and technol ogy, while not in theoretical conflict with
each other, are conputationally independent. The present nethod takes the
view that capital and technology are jointly determned as the result of
pur poseful, coordinated, investnent and research decisions driven by the sane
val ue-maxi m zing notive. Thus, the nodel inplicitly "disenbodi es" technol ogy
from capital (Jorgenson, 1966b; Hercowitz, 1998). In the standard nmethod,
technol ogy is an unexpl ai ned residual. \Wereas the present method allows for
adj ustment costs, the standard nethods do not. However, the standard methods
are nonparanmetric, except for having to specify capital depreciation, and are
much easier to apply.

The present nethod automatically produces standard errors of the
estimates of capital and technology and, therefore, quantifies uncertainty
about the estimates. The standard nethods have no neasures of uncertainty
and, therefore, in effect, present their estinmates as being certain. W
i ntroduce uncertainty by adding disturbances to the PIEs of capital and
technol ogy. The disturbances may be viewed as representing subjective
uncertainty or exogenous shocks. In practice, mpst of the uncertainty about
capital concerns its depreciation. As the paper shows, adding disturbances to
the PIEs has |arge consequences for the estinmates of capital and technol ogy.
When the PIE disturbances are excluded, the estinmates follow snmooth trends,
very simlar to the standard estinmates. Wen the disturbances are included,
the estimates exhibit short-run variations -- random noises and economnc
cycles -- around their trends and the standard estimates. The economi c cycles
are transmtted fromobserved variabl es through the PlIE disturbances.

Recently econom sts have estimated technology as filtered or snoothed
estimates of an unobserved, estinmated, exogenous process (Slade, 1989;
French, 2000). The present paper goes further by treating capital and
technol ogy as joint endogenous processes. W are unaware of other attenpts to
estimate joint, endogenous, capital and technol ogy processes using filtering
or snoothing nethods, although these nethods have been used to estimte
endogenous (rational) inflationary expectations (Burneister and WVall, 1982;
Ham | ton, 1985; Zadrozny, 1997). Regression nethods have been wused to
estimate GNP, aggregate capital, and other nacroeconom c variables (Romer,
1989; Levy and Chen, 1994; Levy, 2000) but they have nore Ilinited
applicability and are less efficient. Unlike filtering or snpothing nethods,



regression nethods require the estimated variables to be observed in sone
peri ods and cannot exploit correlations at all leads and |ags. Qur approach
to nmodelling capital and technology as joint endogenous processes could be
seen as an extension of Lucas (1967), with the benefit of nodern anal ytical
and conputational methods. Finally, we note Jorgenson, GCollop, and Frauneni
(1987), Adans (1990), Giliches (1995), Caballero (1999), Nadiri and Prucha
(1999), and references therein as recent exanples of work on production
capital and technol ogy.

The paper continues as follows. Section 2 specifies the nodel and
explains how the representative firms dynamic optimzation problem is
solved. Section 3 prepares the nodel for estimation of paraneters, capital,
and technology by assenbling its equations as a vector autoregression (VAR
and, then, restating the VAR as a state representation. Section 3 also
di scusses the paranmeter identification and reconstructibility conditions
underlying the estimations. Section 4 discusses the application to aggregated
U S. manufacturing data. It discusses sources and properties of the data,
statistical and econom c properties of the estinmated nodel, and conpares the
estimates of capital and technology with those published by the Bureau of
Labor Statistics. Section 5 contains concluding remarks. Sone technical
details are in the appendix.

2. Specification and Solution of the Model.

Fol |l owi ng Zadrozny (1996), we describe an industry in ternms of a
representative firm (henceforth, "the firm'). Except for scale differences,
firm and industry-level variables are identical. Every period, t, the firm

maxi m zes the expected present value of profits,

(2.1) vi = B 8ma,

with respect to a feedback decision rule, where the maxim zation is subject to
equations to be specified, E denotes expectation conditional on the firms
information in period t, 8 € (0,1) denotes a constant real discount factor, and
m = rq — (Cq + Cit + Cr;) denotes real profits equal to revenues mnus costs,
such that c¢q 1is the cost of production and c¢;; and ¢, are direct
(nonadj ustnent) costs of investnent in capital and research in technol ogy.
Throughout, a real value is a nom nal (current dollar) value divided by the GDP



deflator. The firnis optimzation problem is stated precisely at the end of
this section.
To obtain a conpetitive rational-expectations-equilibrium solution

followi ng Lucas and Prescott (1971), we set revenues in m to the area under
the inverse output-demand curve as rg = jfiop4x,dgdx, where pq() is the

i nverse output-denmand curve, q; is the production of saleable output, and d; is
the output-demand state. Alternately, when rg = pg(a;, di)qg, the solution
represents the nonopoly equilibrium

To obtain linear solution equations, which facilitate estimation and to
which the Kalman filter or smoother can be applied, we specify rg, Cq, Cit, and
Crt as quadratic forms (constant and linear terns can be ignored). Accordingly,
we assune the industry's inverse output-demand curve is

(2.2) Pgt = -M0e + di + Cpgts

where n > 0 is the slope paraneter, d; is the demand state generated by the

second-order autoregressive (AR(2)) process
(2.3) di = ¢ardi-1 + Ga2di-2 + Cat,

and Cpq ¢ and (g are disturbances. Actually, & is introduced for purely
technical reasons. Its variance is set small enough so that it has no practica
effect on the results but large enough so that it nunerically stabilizes the
Kalman filter. The full set of distributional assunptions on disturbances is
stated in section 3.

To specify cq, we first assume that the firmuses capital (k), l[abor (),
and materials (m, to produce saleable output (q), install investnent goods
(i), and conduct research activities (r) (subscript t is omtted sonmetines). W
assunme that the "output activities," qgq, i, and r, are restricted according to
t he separabl e production function

(2.4) h(q,i,r) = =g(k, ¢, m,

where 1 is the Hicks-neutral stock of technology. Although t is also total-
factor productivity, because g(:) and h(:) are indexes of inputs and outputs,

we refer to t as technology. If 1t were capital augnenting or |abor augnenting,



the production function would be witten as h(q,i,r) = g(<k, ¢, m or h(q,i,r) =
g(k, t¢, m. More specifically, following Kydland and Prescott's (1982)

treatment of the utility function, we assunme g(-) and h(-) are the constant
elasticity functions,

(2.5) g(k,0,m = (oukP + 0P + ognf) VP,

h(a,i,r) = (y10° + yai ® + yar?) V7,

where o > 0, oy + ap + a3 =1, <1, vy >0, yv + vy +y3 =1, and p > 1. CES
(B-1)"* is the constant elasticity of substitution anong inputs, and CET =
(p-1)"* is the constant elasticity of transformation anong outputs. Including i

and r in h(:) is a parsinmonious way of specifying internal adjustment costs. The
idea is that positive rates of investnment and research use capital, |abor, and
materials resources, which could otherwi se be used to produce nore output, and
that this trade-off sacrifices ever nore output per unit increases in
i nvest ment and research.

W need the adjustnment costs to generate dynami c decision rules for the
firm which determine correlations anmong current and |agged variables, which
are used to estimate unobserved variables in ternms of observed variables.
Adj ust ment costs are commonly specified as convex investnent costs, which are
incurred in addition to purchase costs of investnent goods. Here "investnent"
neans investment in production capital and research in technology. In the next
step, we derive a quadratic approximation of the dual variable production cost
function (DVPCF) from production function (2.4)-(2.5). The DVPCF includes
convex, investnent and research, adjustnent costs. Thus, having already
i ntroduced investnent and research purchase costs, pijiiy + piify, We obtain a
conventional ly structured specification of investnent and research adjustment

costs. Although the DVPCF is conventionally structured, it is unconventionally

paraneterized. W derive the DVPCF from (2.4)-(2.5) to ensure that structural

paraneters are identifiable. If we had specified a general DVPCF, subject only
to symetry, honobgeneity, and curvature restrictions, it would have 28 free
paraneters, too many for the structural paraneters to be identified, hence,
estimated. The identification problem arises because 4 of 13 variables in the
nodel are conpletely unobserved. The mssing-data and identification problens
are solved by specifying the DVPCF in terns of the 6 free paraneters of (2.4)-



(2.5). For recent reviews of the investnent adjustnent cost literature, see,
for exanple, Caballero (1999) and Nadiri and Prucha (1999).

Mat hematically, convex internal adjustnment costs arise in (2.4)-(2.5)
when, for given technology, 1, and inputs, (k,¢ n), the transformation surfaces
of the outputs, (gq,i,r), are concave to the origin. The adjustnent costs are
"convex" because the derived DVPCF is convex in (q,i,r). Hall's (1973) anal ysis
shows that the division of the production function into two separate input and

output parts, g() and h(), is a necessary condition for the output

transformati on surfaces to be concave to the origin. Here, p > 1 is a necessary
and sufficient condition for the transformation surfaces to be concave. The
transformation surfaces beconme nore curved, hence, adjustment costs increase,
as p increases. Simlarly, B <1 is a necessary and sufficient condition for the
i nput isoquants to be convex to the origin, and the isoquants becone nore
curved, hence, input substitutability decreases, as P decreases.

Let ¢q = p/ + pdn where p, is the real hiring price of |abor and pn,is
the real purchase price of materials. Let ¢; = p;ji and ¢, = p,r, where p; and p,
are the real purchase prices of investment and research goods and services.
Because 7/ and m are variable (not subject to adjustment costs) and k and t are
quasi -fixed (subject to adjustnent costs), we refer to cq as the variable cost
and to c¢; + ¢, as the fixed cost. Let cqw denote the dual variable cost
function: given w = (w, ..., w)'" = (q, i, r, k., 1, p, Pw' (superscript T
denotes transposition), cq(w = mninmum of p/ + pJdn with respect to ¢ and m
subj ect to production function (2.4)-(2.5).

In the standard approach to nultifactor productivity analysis (Bureau of
Labor Statistics, 1997), all inputs are treated symetrically, as variable

flows. Accordingly, cq would include all input costs as cq = pkk + p.t + pt +

psm where px and p. are rental prices of capital and technology stocks,
obtained wusing appropriate versions of Jorgenson's (1963) fornula for
converting investnent purchase prices into capital rental prices. Jorgenson's
formula is based on nore restrictive assunptions, notably that all inputs are
variable. In this paper, we instead work with the purchase prices of investnent
and research because this allows greater flexibility for handling adjustnent
costs in the firms dynanmic optinization problem It is the explicit solution
of this problem that generates the identifying conditions that allow us to
estimate the structural paraneters of the nodel in the face of unobserved
capital and technol ogy.



The constant term in = does not affect optinal decisions in the
approximate linear-quadratic dynamic optimzation problem Linear terns in =
contribute only an additional constant termto the optinal decision rule, which
is renoved by nean adjustnent of the data. Therefore, ignoring constant and
linear terms, cq(w) = (1/2)Ww'-Vicq(W) W, Wwhere VZcq(w) denotes the Hessian
matrix of second partial derivatives of c, evaluated at w = w. VZcq(w) is
stated in the appendix, for w = (1, 1, 1, 1, 1, oy o3)', a value which results

in the sinplest expression for VZce(w). Therefore,

(2.6) m = -(U2)Nq® + qu(de + Cpgt) — (12)WTVZCq(Wo) W — Pigi¢ — Prefe.

The Hessian matrix, VZcq(w), is symetric (henceforth, for sinplicity, we
often wite V’cq(w) as Vicy). Ideally, (1/2)w"Vicq(wo) W should inherit the
following properties from the exact cq(w function, for all values of w (i)
i near homogeneity in (q,i,r,k); (ii) convexity in (q,i,r,k); (iii) strict
convexity in (q,i,r), (q,i,k), (q,r,k), and (i,r,k); (iv) linear honogeneity in
(pspm; and (v) strict concavity in p, and p, In fact, w'-Vicq(w) w satisfies
hormogeneity restrictions (i) and (iv) for w = w and curvature restrictions
(ii), (iii), and (v) for all w

The difference between (1/2)w"V?cq(Ww) w and the translog cost function

(Christensen, Jorgenson, and Lau, 1971, 1973) is that V?cq(w) is not stated in
logs of variables and that its elenents are tightly restricted in terns of the
paraneters of the nodel, whereas the translog cost function is stated in |ogs
of variables and its elenments are unrestricted except for the honbgeneity,
convexity, and concavity restrictions. The present nodel could be specified in
logs of variables, but the results would be simlar because the data are
standardized prior to estimation. As noted above and discussed nore bel ow,
estimating paraneters wthout any capital and technology data and, then,
estimating the unobserved capital and technol ogy requires having sufficient
identifying paraneter restrictions on the cost function. A though we do not
know and would have difficulty determning the full set of identifying cost-
function paraneterizations, we do know that the general translog cost function
is not inthis set.

W assune p;, p, P, and p, are exogenous to the industry and are
generated by the AR(2) processes



(2.7) Pi ¢ Opi 1Pi,t-1 + Opi,2Pit-2 + Goi s

prt ¢pr,1pr,t-l + ¢pr,2pr,t-2 + Cpr,ta

Pr = Gpr1Prt-1 ¥ Ppr2Pnt-2 + Couts

Pnt Opm 1Pmt-1 + Ppm2Pme-2 + Comt,

where &ty Gorts Gpnt, and Come are disturbances. Processes (2.7) need not be
stationary. A constant-coefficient autoregressive process is stationary or
asynptotically stable if and only if its characteristic roots are | ess than one
in absolute value. For exanple, the p;; process is stationary if and only if the
roots, A; and X, which solve the characteristic equation, A? - Gpi, 1A - dpi,2 = 0,
are less than one in absolute value. The only restriction which we need on

processes (2.7) in order to solve the firmis dynamic optim zation problemis

that | 2] < 1/ /5, where | | is the largest absolute characteristic root of any
equation in processes (2.7).

We assune that capital accunulates according to the continuous-tine |aw
of notion

(2.8) ok (s)/os = -fik(s) +i(s) + &9,

where fy > 0 is a depreciation paraneter and Eg@ is a continuous-tine

di sturbance. Integrating equation (2.8) over the sanpling period s € [t-1,1),

on the assunption that i(s) is constant in [t-1,t), we obtain the discrete-tine
capital law of notion

(2.9) Ki = Okaki-r + diol ¢ + Cies

where ¢ = exp(-fi), d¢io = [(1-exp(-fi)]/fr, and G = Lio eXp['fk(l'S)]Ek(t'

1+s)ds is the inplied discrete-tine disturbance. It is customary to specify

(2.9) directly, such that ¢, = 1. However, this specification understates the
depreciation of investnments undertaken early in a sanpling period conpared to

those undertaken later in the period. The problem could be avoided by treating

o1 and ¢jo as separate paraneters, but this specification is |less natural and
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introduces an additional parameter. Thus, assuming that &; ~ NIDO, o), we
paraneterize (2.9) in ¢q € (0,1) and o > 0, such that ¢io = (dx-21)/1n( k1) .

Simlarly, we obtain the discrete-tinme technol ogy | aw of notion

(2.10) T = $atior T Grole T Ca,

paraneterized in ¢5 € (0,1) and o > 0, such that ¢ = (¢a=1)/In(dq) and &; ~

NI D(O, ¢%).

Equations (2.9)-(2.10) inply geonetrical depreciation, in which nost of
capital and technol ogy's depreciation occurs in early periods of their use. A
rational -distributed-lag (RDL) specification (Jorgenson, 1966a) could describe
nore general depreciation patterns, in particular, in which nost depreciation
occurs in late periods of use. A RDL could also include gestation or tinme-to-
build | ags as additional sources of capital and technology fixity. However, the
need for parsinonious paraneterization precludes RDL capital and technol ogy
equations, at least for the present data. Most RDLs could al so be derived from
underlying continuous-time specifications (Zadrozny, 1988).

The nodel's structural conponents have now been specified. It remains to
explain how to solve the firmis dynamic optimzation problem and how to
assenble specified laws of notion and solved optinal decision rules into a
system of linear simultaneous equations that are the equilibrium equations of
t he nodel

To simplify the dynamc optimzation problem we elimnate q; by
maximzing m with respect to g,. Because g; is not a control variable in the
laws of notion of ki or 1, conditional on iy and r, being at their optinal
values, the optinmal value of q is given by maximzing m with respect to q.

The first-order condition, om/og, = 0, yields the output supply rule

(2.11) Oc = -(Cu + M) *(Crai ¢ + Caaf¢ + Cugky + C15T + C16 P + Ci7Pm - ) + Cqi,

where (C11, ..., C17) is the first row of Vﬂcq and {q is an added disturbance

In addition to adding (p: to output-demand curve (2.2) and {; to output
supply rule (2.11), we also add disturbances to |labor and materials decision
rules (2.12)-(2.13) so that each of the 13 variables in the nodel has its own
di sturbance. Al though the disturbances are added for purely technical reasons,
to ensure that the variables in the nmodel have a nonsingular joint probability
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distribution, as usual, they represent our specification errors or the firms
deci sion errors, or both.

Simlar elimnation of ¢ and m from the dynamic optimzation problemis
justified because ¢ and m are not control variables in the laws of notion of
ki or t. Optimal values of ¢ and m, conditional on q;, i and r, being at their
optinmal values, are recovered using Shepard's lema (a special case of the
envel ope theorem Diewert 1971, p. 495),

(2.12) ly = 0Cq/ Opx = Cer0t *+ Ce2it + Cealt + CesKi + CgsTt + CegPp + CerPm + Cit,
(2.13) M = 0Cqt/ OPm = C710;t + Cyai¢ + Cyaly + C7aKy + C75T¢ + C76Psx + C77Pm + Cuis
where (Cg, ..., Cg7) and (cy;, ..., Cy7) are the sixth and seventh rows of Vch,

and (. and (. are added di sturbances.

Ootinmality of labor and materials decision rules (2.12) and (2.13) also
depends on cq = (1/2)w'-V’cq(W) W being a good approximation of production
function (2.4)-(2.5). It is easy to derive decision rules for ¢4 and m fromthe
exact cost function inplied by (2.4)-(2.5). However, such rules are nonlinear
in variables, which conplicates paraneter estimation and snoothing. Wether
exact or approximate rules are used for decisions on ¢ and m the approxi nate
i near-quadratic dynam c optin zati on probl emremai ns unchanged.

To solve the remainder of the firmis dynanmic optinization problem we
restate it as a linear optimal regulator problem W define the 2x1 control
vector u; = (i, r{)" and the 14x1 state vector x; = (K¢, T, Pit» Prt» Pa> Pm, i,
K1, Tt-1, Pit-1» Prot-1, Prt-1, Pmt-1, dio1) . W assenble the laws of notion of
out put demand, input prices, capital, and technology, (2.3), (2.7), (2.9), and

(2.10), as the state equation

(2.14) X¢ = Fxer + Qug,

V\here Fl = dl ag[ (I)kll (I)’Ell ¢pi,li (I)pr,li (I)p/;,li (I)pmli (I)dl]y FZ = dl ag[ Or 01 ¢pi,25 ¢pr,21
Opr 2, Ppm2, Oa2l, G = diag[dio, d0], Imis the mmidentity matrix, and Oy, is the

nkn zero matrix. W suppress disturbances in equation (2.14) because the
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regul ator problemis certainty equivalent. W use the output-supply rule (2.11)

to elimnate g frommn, and wite n, as the quadratic form
(2.15) T = U RUp + 2U'SX¢.1 + Xeo1 QK1

The matrices R S, and Q are stated in the appendix in terms of m and the
el enents of VZc,.

The regul ator probl em maxi m zes expected present value, (2.1), stated in
terms of the quadratic form (2.15), with respect to the feedback nmatrix K in
the linear decision rule u, = Kx;.;, subject to the state equation (2.14). Under
concavity, stabilizability, and detectability conditions (Kwakernaak and Sivan,
1972), we conpute the optimal K matrix by solving an algebraic matrix Riccati
equation using a Schur deconposition method (Laub, 1979). Finally, we wite the
i nvest nent -research decision rule as

(2.16) U = Kxen + (G, Go)

where (&, &) " is an added 2x1 di sturbance vector
3. Estimation Strategy.

3.1. State Representation of the Model.

To estimate the nodel's paranmeters by nmaxi num |ikelihood, wusing the
Kalman filter, and, then, to estimate unobserved capital and technol ogy, also
using the Kalman filter, we express the reduced form of the nodel in a state

representation. To this end, we collect the variables of the nodel in the 13x1
vector y; = (Pq, G, 4, M, i, re, Ko T, Pits Pris Py Pris d)" and their
di sturbances in the 13x1 vector & = (&pqtr Catv Gty Gmr Giow Gtv Geor Gus Gpists
Cortr Cornts Comts Car) . W assune that the disturbances are nutually independent,

normal |y distributed, stationary processes, such that the first 6 disturbances
are AR(1l) processes and the last 7 disturbances are serially independent. That

is, we assune § = (li3 — OL) 'g, where & ~ NID(0,%), L is the |lag operator,
©® = diag(6y, 64, 6, 6m 6, 6, 0, 0, 0 0, 0, 0, 0), such that the 0's e
(-1,1), and %, = diag( o, o5, o, O o, o, o, &, Oy, GCu: OCu: OCom Oa)-

q’ m? i 1! pi?
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The set of equations which formthe basis of the paraneter and capital -
technol ogy estimation are (2.2), (2.3), (2.7), (2.9)-(2.13), and (2.16), or
nore concisely, (2.2), (2.11)-(2.14), and (2.16). These 13 scalar-Ievel
equations constitute the conplete set of |inear simultaneous equations which,
for given values of paranmeters, past variables, and current and past
di sturbances, determ ne unique values of the 13 variables of the nodel. W
assenbl e the equations concisely as

(3.1) Ay: = Ayier + Ao + (s — OL) g,

such that the elenments of Ay, A, and A, are stated in the appendix. W
prenul tiply equation (3.1) by Aj'(li3 — ©OL), such that A, is nonsingular for
adm ssi bl e val ues of paraneters. Because the autocorrelation coefficients in ©

are nonzero only in equations with single lags of variables, the resulting
VAR(2) reduced-form system

(3.2) Yi = Biyio1 + Bayio + &,

has only two lags of y,, where B, = AJ'(A + OA), B, = A (A - BA), & = Alg
~ NIDO, %), and I ~ A'ZA . Because the input-price equations map unchanged
into equation (3.2), they are both structural and reduced-form equations.

A conplete state representation conprises a state equation, which
expresses the dynamcs of the nodel, and an observation equation, which

accounts for how variables in the nodel are observed. Corresponding to state
equation (2.14), we wite the reduced-formequation (3.2) as the state equation

(3 3) Zy = ?Zt_]_ + GE_,t,
_ |B B, _ |15
F = , G = ,
I 13 013><13 Ol3><13
where z, = (y!, y/,)T is the 26x1 state vector. Associated with the state

equation is the observation equation

(34) Vt = HZt,
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where y, is the vector of variables observed in period t. H is called the
observation matri x.

Because H is conpletely flexible in assuming any values in any
dinensions, including the null matrix if no observations are available,
observation equation (3.4) can account for any pattern of mssing data. For
most sanpling periods in the present application, H = [J, 0], where J = I3
with rows of unobserved variables deleted and O is the equival ently dinensi oned
zero matrix. Thus, when variables 4, 7, 8, and 13 are unobserved, J = I3 with
rows 4, 7, 8, and 13 deleted and O = 0Oggs. Also, H accounts for observations
on different observed variables starting and ending in different periods. W
call the Kalman filter applied to such a state representation the m ssing-data
Kal man filter.

The missing-data Kalman filter conputes the nornal distribution (or

Gaussi an) likelihood function of the observations as follows. Let y, = Vy, -
E[V,| Y _,] denote the innovation vector, where Y, = (y/, ..., y;)" denotes the
vector of observations through period t, and let & = E ¥, -y/] denote the

i nnovation covariance matrix. In general, the reduced-form disturbance vectors,
&, and the innovation vectors, Yy,, coincide only when all variables are
observed throughout the sanple. Then, except for terns independent of

paraneters, -2 tines the | og-likelihood function of the sanple Y, is given by

N

(3.5) L(8, V) = 2, [InlQ] + §7oy.],

\mere 8 = (82)—1 811 8;1 8;)1—! 80 = (61 o1, O2, Y1, Y2, 62 G?v Gz)Ta 8l = (¢pi,ly

pq ’ m

2 2 2 2 T —
pr, 1, pr, 1s pm 1, pi, 21 pr, 2, e, 23 pm 2 i ro 0 m/) 2 - pq» qr ] m
bor.t Gont Gpmau Gpi2e Gorze Gpn2e Gomze Ohs Ohs Ons Opm) s 92 = (6 6, 0, O

6, 6)7, and 95 = (n, B, p, d1 O, Gar, Pa2, 0§= oi, o, o, o, o).

As expl ained further in subsection 3.2, the unidentified 8 paraneters in
9 are nornalized and the remaining 31 paraneters in 95, 9, and 93 are
estimated in three steps: 9; in an ordinary-Ileast-squares (OLS) step, 3, in a

prelimnary maxi mum|ikelihood (M) step, and 93 in a final M step. The Kal nan
filtering recursions for conputing (3.5), starting values for the recursions,
and other details about inplenenting the conputations accurately and
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efficiently are discussed in Anderson and Mbore (1979), Zadrozny (1988, 1990),

and references therein. In the M steps, L(9,Y,) was nininzed using the

trust-region nethod (More et al., 1980). Although the likelihood could be
conputed in other ways, the mssing-data Kalman-filter nmethod proved to be very
effective for handling the various m ssing-data problens. In particular, in the
conputer program we needed only to indicate mssing values in the data matrix
with a mssing-data indicator and did not need to transformthe reduced-form or
state equations, (3.2) or (3.3), as we would using other mnethods.

3.2. Parameter ldentification and Reconstructibility Conditions.

The hallmark of the present nmethod is a |large nunber of overidentifying
restrictions on the reduced-form paraneters, B;, B, and X, in terns of the
structural paraneters, 9, although the structural paraneters are unidentified
unl ess additional normalizing restrictions are inposed. Estimation of capita
and technology requires that a reconstructibility condition hold. Thus, to
estimate the nodel and use its estinmate to estimate capital and technol ogy, the
nodel nust satisfy the paraneter identification and reconstructibility
conditions. W comrent no further on the conplicated rel ationship between these
conditions, except to note that in our experience paraneter identification
implies reconstructibility.

The paraneter identification condition is standard in econonetrics: the

unnormal i zed paranmeters in 9 to be estinated are identified when the Hessian

matrix of L(9,Y,) wth respect to them evaluated at the normalized and

estimated val ues of paraneters, is positive definite, i.e., V2L( @,ﬁ@) > 0. The
chal l enge is having enough identifying restrictions on reduced-form paraneters
in terms of the structural paranmeters to conpensate for the unobservability of
sone variables. In this case, with S normalized, the nodel inposes enough
restrictions to identify 9;, 9, and 83 The conplexity of the mapping from
structural to reduced-form paraneters precludes analytically deriving the
condi tions under which 8;, 9,, and 9; are identified. Fortunately, doing this is

unnecessary, because after terminating at an estinmate, the M. estination

program nunerical ly checks if VZL(E),WQ) > 0.

W estimated the 31 paraneters in 95, 9, and 93 in three steps because

initial attenpts to estimte them sinultaneously resulted in numerica
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breakdown. Al though the estimation program converged successfully, it was
unable to conpute standard errors of the estimated paraneters because

VZL(Q, Y,) was poorly conditioned for inversion. Therefore, we followed the

three-step strategy which is consistent but (in theory) inefficient conpared to
a simultaneous (or full information) estimation strategy. In all three steps

99 is normalized as described below In step 1, we estimated the 12 input-price

process coefficients and disturbance variances in 8; using QLS. |In step 2,

condi tional on Ql, we estimated the 19 paraneters in 39, and 93 using M.. In

step 2, VZL(QW Y,) was positive definite but numerically very close to
i ndefiniteness, resulting in very large standard errors of the autocorrelation

coefficients in @2. Therefore, in step 3, conditional on @1 and éé, we

reestimated 93 using M.. Thus, the final estimates of § are 51 fromstep 1, 39,

fromstep 2, and 93 fromstep 3.

W inposed nornmalizing restrictions on 9 to ensure that 9;, 9, and 9;

are identified. W enphasize that this is nornalization, not calibration in the

sense of setting paraneters so that the nodel natches selected nonents in the
data. Being unidentified, the normnalized paraneters cannot be calibrated in
this sense. W verified nunerically that the normalized paraneters are
uni dentified by attenpting to estimate al | structural par ameters
simul taneously. The estinmation algorithm nmade no noves from given initia
paraneter values, indicating a flat |ikelihood function.

W set the discount factor to & = .935, which corresponds to the interest
rate &' - 1 = .0695. W set the weighting paraneters in the production function
to the "neutral" values o = op = a3 = 71 = y2 = yz = 1/3. W considered

alternative weighting-paraneter nornalizations. These resulted in different
estimates of 93 but in the sanme estinmates of reduced-form paraneters, hence, in
the sane estinmates of capital and technol ogy. W expected that one disturbance
variance would have to be restricted for each unobserved variable. Three
variables are genuinely unobserved, k, =, and d. To maintain nunerical

stability of the Kalman filter and snoother, all disturbance variances nust be

positive. Therefore, we set o, = o = o, = 10*° Athough setting o, =0 is

natural , because cﬁ is redundant relative to o in output-demand curve (2.2),

q

I

setting o = o 10'° is arbitrary. W could have set these disturbance

variances to other values, indeed, could have set any three disturbance
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variances. It makes no difference, because each choice results in the sane
estimated reduced form W checked this result by estinmating the nodel under
alternative variance normalizations. As described in section 4.1, after sone
initial estimations, we decided to treat materials quantity, m as unobserved.
It would seem then, that another disturbance variance would have to be noved
from 9 to 9 and nornalized. But this turned out not to be the case.
Conditional on 8 and 9;, under the initial definitions of the §s, 9 and 93
were still identified. Therefore, we conducted the final estimations using the
origi nal nornalizations.

To explain reconstructibility, for normally distributed variables, |et

21|s = E[z,| Y,] denote the linear expectation of z, conditional on Y, and | et

(3.6) R =[H, FFH, ... (F)TH],

where F is the state-transition matrix in (3.3) and H is the observation

matrix in (3.4). The state vector, z; = (y:, V1), is said to be
reconstructible if there is a t, such that R has full rank equal to the

di rension of z,, for t >t,. Reconstructibility neans that, for t > t,,
(3.7) 2, = (RR)'RY,,

where R'R is nonsingular, so that unique filtered estimtes of z, (i.e., for
t|s = t|t), for t =1, ..., N can be conputed. If (3.7) is feasible, an
associ ated fornula conputes the error covariance matrix E(Zt-im)-(zt-im)T in
terms of R and the disturbance covariances. The snoothed estimtes of z
(i.e., for t|s = t|N, for t =1, ..., N nmay be expressed sinlarly. The
Kal man smoother is an accurate and efficient recursive algorithm for
conputing Z,, and E(zt-ith)-(zt—ith)T, for t =1, ..., N (Anderson and More,
1979) .

In the application, the dinmension of z; is 26, so that if H is tine
invariant and z; is reconstructible, t, < 26. This follows from the Cayl ey-
Ham lton theorem which says that every square nmatrix satisfies its own
characteristic equation. In such case, for t > 26, the rows of F' are
linearly dependent on the rows of F?*, F*, ..., F. Therefore, if H is tinme

invariant, z, is reconstructible if Ry, called the reconstructibility matrix,
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has full rank 26. It is difficult to determne an upper bound for t, if H is

time varying. For a conplete discussion of reconstructibility and related
concepts, see Kwakernaak and Sivan (1972) or Anderson and More (1979). The
estimation algorithmnunerically checks the reconstructibility condition.

4. Estimation Results.

4_.1. Sources and Properties of the Data.

In estimation, we used annual U. S. total nmanufacturing data on prices and
guantities of output and inputs, from 1947-97. Investnment and GDP-defl ator data
were obtained from the Bureau of Economc Analysis, research data from the
Nati onal Science Foundation (1998), and all other data fromthe Bureau of Labor
Statistics. Al data were obtained in nonseasonal form Al data that were used
were previously released to the public and are not confidential. Thus, we
obt ai ned observations on 10 of the 13 variables in the nodel: pg and q; from
1958-96, p, and ¢ from 1948-97, p;j; and i,y from1947-96, p,; and r; from 1953- 95,
prt from 1958-96, and m from 1958- 89.

Except for the quantity of labor, which is neasured as the nunber of
production workers, all other prices and quantities were obtained as a nom nal
price index or a real quantity index coupled with nom nal expenditures. W
conputed the unavail able quantity or price indexes by dividing expenditures by
the available price or quantity index, so that in each case the price index x
gquantity index = nomnal expenditures. Al obtained or conputed nominal price
i ndexes were, then, converted into real form by dividing them by the GDP
def | at or.

The resulting real prices and quantities of U S. total manufacturing
output and inputs are depicted in figures la-j. For graphing convenience, the
data were scaled to lie between 0 and 10. The graphs suggest the follow ng
economc interpretation, which is consistent with sinmulations of the nodel in
figures 2a-b. Increasing demand for output driven partly by a declining real
price of output induced nanufacturers to increase production capacity.
Increasing quantities of investment and research built increasing stocks of
capital and technol ogy, hence, increased production capacity. As the price of
| abor increased, manufacturers saved on labor inputs, resulting in flat or

declining | abor use and increasing |abor productivity.
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Figures la to 1j
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Initially, we considered total hours worked (total production workers
multiplied by average hours worked per worker) as an alternate |abor input
neasure. The graph of total hours worked (not shown) is very simlar to that of
total production workers in figure 1f. The main difference is that total hours
worked is a somewhat noisier series. W chose total production workers as the
| abor input because it resulted in a slightly better fitting, but
insignificantly different, estinmated nodel. Choosing total production workers
as the labor input caused the RPs of output price and quantity, investment, and
research to increase by .01 to .02 and that of labor to increase by .16.
Throughout, an R refers to the reduced-formequation of a variable.

Initially, we estimated the nobdel using the data described above, but
this resulted in a nearly zero R2 for labor. The problem appeared to be
m sspecification of naterials in the production function. The nodel's
sinmulations and the production function’s form indicate symretrical roles for
| abor and materials, while the data in figures la and 1c show the tine path of
materials matching closely that of output, not that of |abor. The solution
options were: (i) drop materials price and quantity from the analysis; (ii)
assune naterials quantity is in fixed proportions to the output good; or (iii)
keep naterials price and quantity in the nodel, as they are, continue to use
materials price data in the paraneter estimation and snoothing, but treat
materials quantity as unobserved. Options (i) and (ii) would be inplenented
implicitly by measuring the output good as val ue added i nstead of shipnments and
dropping materials as a production input. W chose option (iii), which was al so
the easiest to inplenment, because it required only that the materials quantity
colum in the data matrix be filled in with the mssing-value indicator.
Therefore, in the final round of estimation, nmaterials quantity was treated as
unobserved, along with actually unobserved capital, technology, and output-
dermand state.

4_2_. Statistical Properties of the Estimated Model.

Table 1 reports first-step OS estimates of the input-price process
paranmeters in 39;. By conventional standards, the estimated equations fit the
data well, having R*s greater than .90. Residuals show no significant
aut ocorrel ations, having p values of Ljung-Box Q statistics greater than .25.
The estimated p;, p;, and p, processes have characteristic roots near one, with

maxi mum absol ute characteristic roots, | A|, between .785 and 1.02. A process
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is stationary if and only if its | x| < 1. The conplete estimted reduced-form
VAR(2), (3.2), has 5 absolute characteristic roots between .98 and 1.02 for
13 variables. Although a cointegration analysis might seem appropriate, we
did not attenpt this for two reasons. The input-price processes serve only
the subsidiary purpose of providing forecasts for the dynamic optimzation
problem and their AR(2) specifications are adequate for this task. It is not
clear how a standard cointegration analysis, designed for systens in which
all variables are observed and coefficients are unrestricted except for unit-
root restrictions, applies in this case, in which paraneters are restricted
by the solution of the dynam c optimnization problem and 4 of 13 variables are
unobserved. W allowed wunit roots insofar as residual autocorrelation

coefficients, 6, may be very close to one. Table 2 reports second-step M

estimates of épq = é/ = ém = .999.

Table 1: Step 1 OLS Estimates of Input-Price Process Parameters in 9;

Var . Parameter Estimates Fit Statistics
9.1 9. 121 S R® Q

Pj 1.45 -.441 1.02 . 178 . 971 5. 64

(11.1) | (3.30) (.933)

P . 652 . 282 . 949 . 126 . 979 4.67

(4.01) | (1.81) (.968)

Py 1.88 -.883 1.01 . 019 . 999 14.8

(24.8) | (11.3) (.254)

P 1.49 -.617 . 785 . 334 . 903 9.13

(9.79) | (4.06) (.692)
Conments: Colums 2-7, respectively, show estimates of ¢, and ¢.,, Wth
their absolute t statistics in parentheses, inplied maximm absolute
characteristic roots (solutions of A* - ¢,A - ¢, = 0), estimted standard

devi ati ons of disturbances, unadjusted R’s (defined as 1 - sanple variance of

the innovation of a variable + sanple variance of the variable), and Ljung-
Box Q statistics for testing absence of residual autocorrelations at |ags
from 1 to 10, with their narginal significance levels or p values in
par ent heses.

Table 2 also reports third-step M. estimates of the remaining paraneters

in 93. Their absolute t statistics are |ess than about .50 and are not reported
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because the snall sanple size makes them unreliable and uninformative (Sins,
1980, p. 19, fn. 19). The inplied estinated reduced-form equations show
unsurprisingly good fits by conventional standards, given that the data are
used in original levels form Mderate (= .50) and high (> .90) R's of |abor
and the nonlabor wvariables reflect labor's noisiness and the nonlabor
vari abl es' unit-root-Ilike snoot hness. The hi gh esti mat ed resi dua

autocorrel ation coefficients (é's > .84) maght suggest that the residua
autocorrel ation corrections and not the econom c part of the nodel account for

nost of the observed endogenous variables' sanple variations, but this is not

the case. M. estimation with all 0 s set to zero produced R; = .918, Rz =

.879, R = .436, R = .772, and R = .944, so that the economc part of the

14
nodel accounts for these fractions of the endogenous variables' sanple
variations. Mst inportantly, as we now discuss in detail, the nodel's
overidentifying restrictions are not rejected by a likelihood ratio test.

Table 2: Step 2 and 3 ML Estimates of Structural Parameters in 9, and 9;

Production Function Parameters

B =-9.14 (CES = -.099), p = 267 (CET = .004)

Output-Demand Curve Parameters
n =.605 ¢, =1.39, ¢, = -.518

Capital and Technology Equation Coefficients
¢, = .589, &, = .774, ¢, = .161, ¢, = .459

Residual Autocorrelation Coefficients

6, =.999, 6, = .914, 0, = .999, 0, = .999, O = .840, 0, = .920

Structural Disturbance Standard Deviations
6, = .514, 5, = .362, o, = .994, & = .055 o, = .465

a’
11
N
[
N

Reduced-Form Equation Fit Statistics

=.945 R =.948, R = .498, R =.926, R = .957

pggoq =10.8, Q =596 Q =597, Q =18.6, Q = 21.4
(. 378) (.819)  (.818) (.158)  (.019)

Conment: The sanple span is 1947-1997 (51 years). R and Q statistics are

defined as in table 1.
For large N abstracting from terns independent of paraneters, the

maxi m zed 1og-likelihood function can be expressed as L(@),ﬁ@) = NlnlfiM,
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wher e sz = (1/N)ZtN:1)7[VIT- The likelihood-ratio statistic for testing the
nmodel 's restrictions is LR = N(In| szRI - In| f)NUI), wher e szR and f)NU are sz
based on restricted and unrestricted innovations, i.e., from maxinzing the

likelihood function with the nodel's restrictions, respectively, inposed and
relaxed. The missing-data Kalnman filter automatically produces restricted
i nnovations as part of the M. estinmation. W obtained unrestricted innovations
as follows. We perforned the test using the subsanple 1960-1990, because only
during this period were observations available for the 9 observed variabl es.
For this period, the observation matrix, H, is time invariant and given by H =
[J, Ogaz], where J = I3 with rows 4, 7, 8, and 13 deleted. Then, conbining the
state and observation equations, (3.3)-(3.4), we obtain the infinite
autoregressive representation for y,, hence, the finite p-lag approxinmation of

this representation,
(4.1) Vo = @y 0+ Oy, Y

where the residual i is an approxination of the innovation y,. W want to

test the economic restrictions of the nodel and not the nutual independence of
i nput - price processes (2.7). Therefore, except for the zero restrictions which
nake the input-price processes nutually independent, we considered the ®' s to
be free paraneters. For p = 2, we estimated the individual equations of (4.1)
by applying OLS to the period 1960-1990. Thus, we reestinmated the input-price
processes using the shorter sanple. The resulting residuals were serially

uncorrel ated and were used to conpute Q.

LR is distributed asynptotically as y* k), in the limt as N — o, where
k denotes the nunber of overidentifying restrictions. The statistic rejects the
nul | hypothesis that the overidentifying restrictions are valid when it exceeds
the critical value, ¢, for the significance level «. The period 1960-1990
implies the small values N = 31 and Nx = .15, for « = 118. For such
situations, Sins (1980, p. 17, fn. 18) suggested replacing Nwith N- v in LR
where, in this case, v is the nunber of estimated paraneters divided by the
nunber of observed endogenous variables. Thus, N - v = 31 - (143/9) = 15.1 and
k = 118, inply LR = 142, with a p value of .067, so that the overidentifying

restrictions are not rejected at a conventional 5% significance |evel.
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4_3. Economic Properties of the Estimated Model.

Because the estimates of capital and technology depend critically on
the economic nodel, to be confident in the estimtes we should be confident
in the economic properties of the nobdel. Therefore, we present and briefly
di scuss sone structural variance deconpositions (Sins, 1986) and inpulse
responses of the estinmated nodel.

W& begi n by expl aining how the variance deconpositions are conputed. Let
M = I3 with colums 1, 3, and 4 deleted. Then, conbining the state and

observation equations, (3.3)-(3.4), we obtain the structural infinite noving-

average representation of y,, i.e., in terms of the structural disturbance
vector, g,
(4.2) Vo = W(De = (X W )e = X7 W e,
B, B, 13 . . .
where ¥ = J M and J is defined as in (4.1). M has been
I 13 013><13 013><13
introduced to delete the three structural disturbances, ey, &, and gy,

whose variances are nornalized to near zero. Let E[y, .| Y] denote the k-step-
ahead forecast of y,,.; let ¥, = Vi, - E V.| Y] denote the forecast error

of E[y,.|Y]; and, let Vi = Ey,, ¥,/ denote the covariance matrix of ¥ _,.

Then, Vi is given by
(4.3) Vi = Y Wy

W deconpose the k-step-ahead forecast-error variances of the 8
endogenous variables, and their sum in terns of the 9 unnornalized estimated

structural disturbance variances. That is, we deconpose vg;i, for i =1, ...,
8, and Zg:lvk'”, where vy is the (i,i) diagonal element of V, in ternms of
sz, for j =2, 5 6, ..., 13. Let si;,; and §,; denote the fractions of vy;; and

ziS:le,n due to o; let x}'?> be the square-root of %, obtained by replacing

the diagonal elenments of X, with their positive square roots; let e denote the
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13x1 vector with one in position i and zeroes el sewhere; and, let € denote the
13x1 vector with ones in the first 8 positions and zeroes el sewhere. Then, for

i =1, ..., 8andj =2, 5 6, ..., 13, the percentage variance deconpositions
of vii; and Y/ v, are given by

(4.4) S = el I Teelm e / e(X) , HE e,

(4.5) S = 8(X , ¥E ez 2we/ B Y wE Y.

i“e i

g

Table 3: Structural Variance Decomposition of the Estimated Model

o’ c; o’ ol o’ oo oo | o3 | o5 c;
S10,pq,j | 4.5 2.8 T .2 .0 5.2 .1 .0 3.0 [83.5
S0y | 194|122 31| .8 | .2 |27.5] .7 | .0 |15.9]20.2
S10,¢,j .9 3.9 .0 |92.7 .2 .0 .0 .0 1.6 .1
Swomi| .9 | 39| .0]927|.8] 0| .0].0|16]| .1

S10,i,j .0 [44.5| .1 |14.3| .1 |17.5| .4 .0 |11.5]|11.6

S| .0 | .0 | 54| 1.1 | .2 [39.3/1.0] .1 [258]27.1
Sowj| .0 | 40| .0]953] . 0| .3 |.0] .01 .2 ] .2
Sw.j | 0 | -0 [1.9]1.1]1.6[3.9|1.1| .1 |26.5|27.8

S 10, | 1.3 5.2 .7 |69.6| .4 7.4 .2 .0 5.4 1 9.8

Comment: Rows 2-9 show the percentage deconpositions of the 10-step-ahead
forecast-error variances of the 8 endogenous variables in terns of the
variances of the 10 unnornmalized estimated structural disturbances. Row 10
shows the percentage deconposition of the sum of the variances of the eight
endogenous vari abl es. Each row s nunbers sumto one hundred.

Table 3 shows the structural deconpositions of k = 10 year ahead
forecast-error variances. Rows 2-9 show decompositions of variances of
endogenous variables; row 10 shows the deconposition of the sum of variances
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of endogenous variables. For exanple, elenments 1, 2, 6, and 10 in row 2
indicate that, according to the estimated nodel, 4.5, 2.8, 5.2, and 83.5

percent of the variance of pg is, respectively, due to 55' o, <ﬁi, and o.

Because the nodel is estinmated using standardi zed data, the deconpositions are
unit free. However, different nornmalizations of disturbance variances in 9
will result in different deconpositions. Al disturbances, except disturbances
of research, technology, price of research, and price of Ilabor, explain
significant (> 6% fractions of sone individual variances or the sunmed
variances. Interestingly, the small inpacts of research and technol ogy
di sturbances run contrary to the real business cycle literature which
attributes significant nacroecononmic fluctuations to technology shocks
Overall, the deconpositions suggest that the capital, output-denand, and
i nvestnent-price disturbances are the |eading sources of variations of the 8
endogenous vari abl es.

Figure 2a: Responses to Impulse in Output-Demand Disturbance

Price of Output Output Labor Materials
15 15 15
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
0.0 0.0 0.0 0.0
0.5 0.5 0.5 | 0.5 |
1.0 1.0 -1.0 1.0
1.5 T T T 1.5 T T ™ 1.5 T T T 1.5 T T T
5 10 15 5 10 15 5 10 15 5 10 15
Investment Research Capital Technology
15 15 15 15
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
0.0 0.0 0.0 0.0
0.5 0.5 0.5 | -0.5—
1.0 1.0 1.0 1.0 —|
1.5 T T T 1.5 T T ™ 1.5 T T T 1.5 T T T
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Figure 2b: Responses to Impulse in Technology Disturbance

Price of Output Output Labor Materials
15 15 1.5 15
1.0—| 1.0 1.0 —| 1.0
0.5 0.5 | 0.5 0.5 |
0.0 0.0 0.0 0.0
0.5 0.5 —| 0.5 0.5 —|
1.0 —| 1.0+ -1.0— 1.0
1.5 T T T 1.5 T T T -1.5 T T T 1.5 T T T
5 10 15 5 10 15 5 10 15 5 10 15
Investment Research Capital Technology
15 15 15 15
1.0—| 1.0 1.0 1.0
0.5 0.5 —| 0.5 0.5 —|
0.0 0.0 0.0 0.0
0.5 0.5 —| 0.5 0.5
1.0 —| 1.0 -1.0— 1.0
1.5 T T T 1.5 T T T -1.5 T T T 1.5 T T T
5 10 15 5 10 15 5 10 15 5 10 15

The simulations in figures 2a-b display the dynanm c adjustnent-cost
behavior in the nodel in response to unit inpulses in output-demand and
technol ogy disturbances. The sinulations in figure 2a match the genera
interpretation of figures la-j. The sinulations depict responses to a unit one-
peri od shock (inmpulse) to the output-demand state in period 1, starting froman

initial long-run equilibriumrepresented by the origin. The estimate m = .605
inmplies a noderately sloped output-demand curve. The estimates B = -9.14 and p
= 267 inmply CES = -.099 and CET = .004, hence, low input substitutability and

very high adjustment costs on capital and technol ogy. H gh adjustnent costs
imply a steep nmarginal-cost-of-production curve. Therefore, after the output-
demand shock occurs, the price of output rises sharply but output increases
only slightly. Initially, the extra output is produced using additional freely-
adjusted labor and materials inputs and pre-shock stocks of <capital and
t echnol ogy. Because the shocked demand state declines noderately slowy, firns
have an incentive to increase their production capacities. Thus, they increase
their investnment and research rates and substitute capital and technol ogy for
| abor and materials. Figure 2b depicts responses to a unit one-period shock to
technology in period 1, again starting froman initial long-run equilibrium at
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the origin. In figure 2b, output-denmand conditions remain unchanged so there is
little change in price or quantity of output. The shock nminly causes
technology to be substituted for labor and naterials until the w ndfall
addition to technol ogy has depreciated fully.

4_4_. Model-Based versus Standard Estimates of Capital and Technology.

By applying the Kalman filter to the estimated nodel and the data, we

conpute the filtered state estimates, 2z, , and their error covariance matrices,
E(z.-2,,)-(z-2,)" for t = 1958, ..., 1997, so that the 7th and 8th el enents of
2Ht are the model-based production capital and technology estimates, R”t and
%”t, and the square roots of the 7th and 8th elements of the principal

diagonal of the error covariance matrix are the estimated standard errors of

Ky, and 7, . Figures 3a-b and 4a-b display the nodel-based and standard

(production) capital and technol ogy estimates of aggregated U. S. manufacturing
i ndustries from 1958-97. The solid graphs depict the nodel -based estinmtes and
their 2-standard-error confidence intervals. The dashed graphs of capital
depict the sum of estimates of the stocks of equipment and structures by the
Bureau of Labor Statistics (BLS), based on nonstochastic perpetual inventory
equations (PIEs). The dashed graphs of technology depict BLS estinmates of
mul tifactor productivity conputed as Solow residuals. In addition, the BLS
estimates the service flows of equipnment and structures and the Bureau of
Econonmic Analysis (BEA) estimates the stocks of equipnent and structures.
Because the BLS capital-service-flow estimates and the BEA capital-stock
estimates are sufficiently simlar to the BLS capital-stock estimates, the
alternative estimates are not displayed or considered further and the BLS
capital-stock and nultifactor productivity estimtes are considered as
representative of standard capital and technol ogy esti nates.

Because M. estimation of the nodel is tractable only if all the data are
scaled simlarly, the data were standardized prior to estimation, by
subtracting sanple neans and dividi ng by sanple standard deviations. Therefore,
being based on standardized data, the nodel-based estinates are in
correspondi ngly standardi zed units. The BLS estimates are in arbitrarily scal ed
real units. To conpare the two sets of estimates, one set nmust be converted to
the units of the other. Therefore, prior to graphing, we standardi zed each set
of estimates. Also, in each figure, we translated all graphs up by the sane
amount so that all values are graphed as positive nunbers. Because the units of



29

the graphs are arbitrary, vertical differences in a graph cannot be interpreted
as percentage changes. However, differences between graphs in the same figure
are in conparable standardi zed units. The graphs start in 1958 because output,
a critical determnant of the estimates, is first available in 1958.

Figures 3a-b depict graphs of nodel-based capital and technol ogy
estinmates based on the paraneter estinates in tables 1 and 2. The capital and
technol ogy estimates have, respectively, sanple average estinmated standard
errors of 1.03 and .089, which inplies that capital's 2-standard-error
confidence intervals are over 10 times larger than technology's. Suppose
"short-run" means variations with average periodicities of |less than about 8
years, which are the suns of unpredictable noises and business cycles, and
"l ong-run" means variations with greater average periodicities, which reflect
trends. Then, the nodel-based capital estimates exhibit frequent and
significant short-run variations and the nodel-based technology estinates
exhibit less frequent and less significant short-run variations. Standard
filtering or snoothing formulas can deconpose the short-run variations into
suns of noises, cycles, and trends. However, because the formulas ignore the
sanpling variability of parameter estimates and nodel misspecification, the
deconpositions thenselves are uncertain. To the extent that short-run
variations reflect cycles, not noises, we can often explain themin terns of
identifiable events, such as the Vietnam War (1965-73) and oil-price increases
(1973, 1979), and in terns of cyclical fluctuations of the overall econony. The
nodel -based capital and technology estinmates exhibit cycles passed from the
observed variables through the estinmated nodel. Because they are based on
nonstochastic PIEs, the BLS capital estimates exhibit mniscule short-run

vari ati ons.
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Figures 3a and 3b: Model-Based versus BLS Estimates of Capital and Technology

Figure 3a: Model-Based vs. BLS Estimates of Capital
phik = .589, phit = .161, sek = .994, set = .055
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Figure 3b: Model-Based vs. BLS Estimates of Technology
phik = .589, phit = .161, sek = .994, set = .055
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Figures 4a and 4b: Model-Based versus BLS Estimates of Capital and Technology

Figure 4a: Model-Based vs. BLS Estimates of Capital
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Figure 4b: Model-Based vs. BLS Estimates of Technology

as phik = .589, phit = .161, sek = .0001, set = .0001
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The question arises how the nodel -based capital and technol ogy estinates
change when the estimates of the variances of their disturbances in the PIEs
are overriden and set to near zero. (The disturbance variances cannot be set
exactly to zero because the estimation algorithm collapses unless all
structural disturbance variances are least slightly positive.) Thus, figures
4a-b depict alternate nodel -based capital and technol ogy estinates based on

their disturbances set to near zero (o = o = .0001), such that all the other

structural paraneters remain at their estimated values in tables 1 and 2. Going
from figure 3a to 4a, the sanple average of the estinmated standard errors of
the nodel -based capital estimates decline 5-fold, from 1.03 to .205. Setting
the capital disturbance variances to near zero does not entirely reduce the
capital standard errors to zero because they depend on all structura
di sturbance variances, but it does reduce them considerably. Thus, going from
figure 3a to 4a, the short-run variations of the capital estimates al so decline
5-fold, causing the estinates to becone nore trend-like and to conform better
to the BLS estimates. Going fromfigure 3b to 4b, causes the sanple average of
the estimated standard errors of the technology estimates to decline only
slightly, from.089 to .060, and, correspondingly, the technology estinmates to
change little.

Bei ng estimates based on PlIEs, the nodel-based and BLS capital estinates
could be considered available capital stocks. However, apparently large short-

run variations in the nodel-based estimates in figure 3a mght seem to
contradict this notion. Aren't available aggregate capital stocks |arge
relative to investnent flows and capital disturbances and don't they depreciate
slowy, so that their graphs should be very snmooth, like the BLS capital
estimates in figure 3a? W could informally interpret short-run variations in
the nodel -based capital estimates as variations in utilized capital stocks or

as variations in effective capital stocks, i.e., adjusted for msallocations

Standard estinmation nmethods treat all capital investnents as being equally
successful, regardless of nisallocations, nmarket realizations, and narket
val uations. Thus, in the standard accounting, an optimally located factory is
considered to add the sane ampbunt to capital as a mislocated factory built
using the same resources. However, in order to formally interpret the short-
run capital variations as utilized or effective capital, we would have to
extend the nodel to include sone notion of capacity utilization or nmarket
val uati on of capital.

Bei ng Sol ow residuals, the BLS technology estimates in figure 3b exhibit
| arger short-run variations than the BLS capital estinmates, especially during
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the oil price rises in the 1970s. The BLS technology estimates are usually
considered to be the residuals of the production function in the analysis.
Here, because both capital and technology are unobserved, either of their
estimates could be considered residuals, but, because the nopdel -based capital
estimates exhibit larger short-run variations, they are nore naturally
considered residuals. This is also consistent with capital's role as the
resi dual incone earning factor. Technol ogy should reflect nore snoothly varying
know edge. Because Sol ow residuals are noisy, they are often snoothed prior to
bei ng considered technology estimtes (French, 2000). Being constructed as
filtered estimates the nodel -based technol ogy estimates need not be snoothed
further and, in fact, in figures 3b, 4b, and 5b are as snooth or snoother than
the BLS Sol owresidual estinates.

There has been a debate about whether capital growh or technol ogy growth
account for above average output growh in the 1990s (Gordon, 2000; diner and
Sichel, 2000; Stiroh, 2001). Figure 1h indicates above average growh of
investnent in the 1990s; figure 1j indicates first brief above trend growth and
then decline of research in the 1990s. Figures 3a-b show correspondingly
simlar gromh patterns of nodel -based capital and technology estimates in the
1990s. Thus, the nodel-based estinates indicate that above average capital
growt h accounts for above average manufacturing output growh in the 1990s. By
contrast, for the BLS estinates figures 3a-b indicate that above average
technol ogy growth accounts for the recent above average nanufacturing output
gr owt h.

The paraneter estimates in tables 1 and 2 seem reasonable, except
possibly for the seemngly |ow annual capital and technol ogy persistence rates

of ;1>k1 = .589 and &rl = .161. By contrast, Jorgenson and Stephenson (1967)
reported a quarterly depreciation rate for equipnent and structures in U S
manuf acturing industries from 1947-60, which translates to a higher annual
capital persistence rate of a;kl = .895. In figure 5 to guage the effects of

hi gher capital and technol ogy persistence rates on nodel -based capital and
technol ogy estinates, we set both capital and technol ogy persistence rates to

the inplied Jorgenson-Stephenson annual capital persistence rate, a>k1 = o,

. 895, kept the capital and technol ogy disturbance variances at their figure 4
val ues, and kept all other paranmeters at their figure 3 val ues.
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Figures 5a and 5b: Model-Based versus BLS Estimates of Capital and Technology

Figure 5a: Model-Based vs. BLS
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TT 1T T 1T T T T 1T T 1 T T T 1 T T T 1 T T T 1 T T T T T T T T T T T T T 1T 11
58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

FirgiureVSb:rModeI-Based vs. BLS Estimates
phik =P,h,iF =.895, sek =.0001,

T T T T T T T T T T T T T T T T 1T T T T T T T T T T T T T T T T T T T 111
58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96



35

Going from figures 4a-b to figures 5a-b shows relatively little change
in the overall tine profiles of the nodel-based capital and technol ogy
estimates, a significant increase in their snoothness, and a corresponding
narrowing of their confidence intervals. The exception is the odd initial
decline, from 1958 to 1965, in the nodel -based technology estimate in figure
5b. Although it is unclear why the decline occurs, it tells us that we should

be cautious about resetting apparently unsatisfactory estinmated paraneter

values to preferred ones. In this case, resetting &M = .589 and &d = .161 to

ﬁd = ¢, = .895 causes the reasonable initial mnonotonically-increasing

technol ogy estimate to becone an unreasonabl e sharp decline. Thus, we accept
t he nodel -based capital and technology estimates in figures 3a-b and, even
though the capital estimates in figure 3a are very noisy, we conclude that
this sinmply reflects uncertainty about capital's true val ues.

Table 4: Nonlinear Least-Squares Estimates of Capital and Technology Egs.

Capital Equation

[N b R
Model-Based Data B, = .336 &, = .608 R, = .730
(22.2) (9. 14)
BLS Data a)kl = 363 ’(i)io = 629 R, = .981
(78. 1) (29. 3)
Technology Equation
Model-Based Data b, = .376 &, = .638 R = .992
(118.) (42.2)
BLS Data :1%1 = 323 :bro = 599 R = .945
(50. 8) (21.7)

Comment: Colums 2-3 show estimates of the ¢'s, wth their absolute 't
statistics in parentheses. The ¢'s were estimated in ternms of their underlying

continuous-time paranmeters, f, and f,. The standard errors in the t statistics
were conputed based on |inear approxinmations of the nonlinear mappings from
the f's to the ¢'s.
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As a further check on the reasonableness of the maxi mum |ikelihood

esti mates :bkl = .589 and :|>T1 = .161, we estinated the capital and technol ogy

equations separately using nonlinear |east-squares (NLLS). As in the system
wide M estimation, the wequations are paraneterized in terns of their
underlying continuous-tine paraneters. W estinmated the equations using the
initial nodel-based and BLS, capital and technol ogy, estinmates as real data.
The results are reported in table 4. Although the NLLS estimates of ¢n and ¢q
intable 4 differ fromthe M. estimates in table 2, the NLLS estimates are very
simlar for both the nodel -based data and the BLS data. As expected, the fit of
the estimated equations depends on the noisiness of the dependent variable.

Thus, the capital equation fits better when using BLS data (R = .891) than

when using the nodel -based data (R = .730), and the reverse is true for the

technol ogy equation. In essence, table 4 confirnms what we see in figures 3 and
4, that the trends of the nodel -based and BLS capital and technol ogy estinates

are simlar. Athough the M. estimates, &kl = .589 and :I%l = .161, might seem

low in ternms of prior econom c notions, they are acceptable econonetrically,
because, along with other paraneter estimates, they inply an acceptably
fitting nodel, wth overidentifying restrictions which are not rejected.

Moreover, the M. estimtes of :bkl and zbﬂ and of the other paraneters, result

i n nodel -based capital and technol ogy estimates which broadly conformto the
standard capital and technology estimates. |In sum because the estimation of
capital and technology is a systemw de estination, a seemngly reasonable
nodi fication of M. estimates of certain paranmeters to conform better to prior
notions can result in unreasonable capital and technol ogy estinates.

5. Conclusion.

The paper has developed a new nethod for estimating unobserved econonic
vari ables based on an estimated dynamic econonmic nodel and applies it to
estimating production capital and technology (total-factor productivity) of
aggregated U.S. nmanufacturing industries from 1958-97. The nethod illustrates
how nodern estimation, control, and filtering nethods can be applied to a
par si noni ous dynami ¢ economni ¢ nodel to produce estinmates and standard errors
of unobserved variables. Standard nethods for estimating capital and
t echnol ogy, devel oped forty years ago, are appealing in their theoretical and
conputational sinplicity, but are unnecessarily restrictive in sone respects,
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for exanple, ignore adjustment costs. The present nethod admts adjustnent
costs of capital and technol ogy, but is nore conplex analytically,
econonetrically, and conputationally. Because the paper shows that the nethod
is feasible, we urge applying it to other nodels and data sets. The method is
feasi ble when the econom c nodel inposes enough identifying restrictions to
conpensate for the unobservability of some of the variables.

The four major findings of the application are: (1) The nodel-based
capital estimates are 10 times nore uncertain than the nodel -based technol ogy
estimates as neasured by estimated standard errors. (2) The trends of the
nodel - based capital and technology estimates are simlar to the trends of the
standard estimates. (3) The nodel -based capital and technol ogy estimates inply
that above average capital growh in the 1990s -- not above average technol ogy
growh -- explains above average growth in manufacturing output in the 1990s
(4) Changes in paranmeter estimates to suit prior views can cause unexpectedly
large and unreasonable changes in the nodel-based capital and technol ogy
estimates and, therefore, should be nmade cautiously.

Sorting out the conpeting interpretations of the nodel-based capital
estinates as available, wutilized, or effective capital stocks requires
formally introducing sone notion of capacity utilization or market valuation
of capital. The variance deconpositions in table 3 assign principa
explanatory roles to capital and investnent-price disturbances, which
suggests nodelling investnent and research decisions in nore detail. For
exanpl e, the discount rate mght be time-varying, as & = 1/(1 + ny), where n;
is an observed exogenous interest rate whose generating process is also
estimated. Also, the capital and technol ogy equations m ght be specified nore
generally as rational distributed lags, which mght include tinme-to-built
gestation lags or non-geonetrical depreciation rates of capital and
t echnol ogy.

Appendix: Statement of Cost, Profit, and Reduced-Form Parameters.

Because VZcq(w) is symetric, it suffices to state its upper triangular
part. Let c;; denote elenent (i,j) of V4 (w). Then, for w = (1, 1, 1, 1, 1,

ap, o4) ', We have:

-1yl -1 + aa(1-B)/ (1-01)]

11(1-71) (p-1) + y2%aa(1-B)/ (1- o) Ci3

C1u1

-y104( 1- B) / (1- o)

-yl -1+ 0a(1-B)/ (1- )] Cis

Ci12
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Cis = -v1(1- auP) / (1- o) Cis = 73l (1- )

Cie = 71/ (1- ) Caz = 73l (1- )

Ciz = v/ (1- ) Cas = ou(1-B)[1 + ou(2- )/ (1-a)]
C2 = 72(1-72) (p-1) + yoou(1-B)/ (1-au) Cas = -0 + a1(2-0u-B)/(1-0a)
Coz = -vaysl p-1 + ou(1-B)/ (1-ou)] Cao = -ou/ (1- o)

Cos = -y20u(1-B)/ (1- aur) Car = -0/ (1-oy)

Cos = -7v2(1- auP) / (1- o) Css = (2-ou-ouP)/ (1-ay)

Cos = 72l (1- ) Cse = -1/ (1- o)

Cor = 7ol (1- ) Cs7 = -1/ (1- o)

Cas = 73(1-73) (p-1) + ysPaa(1-B)/ (1- o) Cos = -0l [az(1-a1) (1-B)]

Cas = -ys0u(1-B)/ (1- o) Cr7 = - ool [as(1-ag) (1-P)].
Cas = -7v3(1-auf)/ (1-ou)

Next, we state the elements of the 2x2, 2x14, and 14x14 coefficient
matrices R, S, and Q which define quadratic form (2.15). Because R and Q are
symmetric, we state only their upper-triangular parts. Rj, S§;, and Q; denote
(i,j) elements of the matrices. To elimnate the common factor 1/2, we scale m
up by the factor of 2, which is allowable because optimal decisions are
invariant to the scale of m. For sinplicity, we state only nonzero el enents of
R S and Q so that all wunstated elenents are zero. Thus, setting co =

(n+c11) "t we have

Ri; = CoC12 — C2 Sis = CoC12C17 - Cp7 S,7 = -CoCus

Riz = C¢C12€C13 — C23 Si7 = -CoC12 Qu = CoCly - Cus

R», = coc2 — ¢C S;1 = CoC13C14 - Cag _

02 0Cy3 33 Q2 = CoC14C15 — Cys

Sll = C0012C14 - C24 822 = COCI3015 ) 035 Q5 = COC]_AC:LG - C46
_ = -1 —

Si12 = CoC12C15 - Cps Sas Qs = CoC14C17 — Cy7

Sz = -1 S5 = CoC13C16 — Cz6 Q7 = -CoCus

— = CoC13C - C
815 - COC]_ZC]_G - CZG 826 o-13%17 37
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Q, = Cocf5 — Css Qs CoC15C17 - Cs7

Q

- CoC1s.

Qs

CoC15C16 — Cse

Finally, we state the structural coefficient matrices A, for k = 0, 1,
2. Let A¢i,; and K ;, respectively, denote elenents (i,j) of A and K the
opti mal investnent-research feedback nmatrix. As before, only nonzero el enents
are stated. Al so, because the diagonal elenments of Ay, are all one, they are not
stated. Proceedi ng roww se across the matri ces,

PAo12 =M Ao 32 = -Cig Ay a6 = -Ca
Ao 113 = -1 Ao, 35 = -Cop Ao a7 = -Car
Ao,2,5 = CoC12 Ao,36 = -Cszp Ao 48 = -Cs7
Ao, 2,6 = CoC13 Ao 37 = -Cue Ao 411 = -Cer
Ao, 2,7 = CoCus Ao38 = - Cse Ao 4,12 = -Cp7
Ao 2,8 = CoCis Ao, 3,11 = -Ces Pors = -dio
Ao,2,11 = CoCie Ao,3,12 = - Cer Poses = -dro
Ao 2,12 = CoC17 Ao, 42 = -Cuz

Ao, 2,13 = -Co Ao 4,5 = - Co7

[Aus 7 ooy Agsias] = [Kon o0, K7l

[Ave7, -y Arsisl = [Koa, ..y Kool

[Avz7, o0 Avizas]l = [da s pivn dprone Pprts Qpmas ol

[Aes7 ooy Agsasl = [Kus -ooy Kiad]

[Aee7n - -y Aoeaal = [Kos ..y Ko ud

[A 77, ooy Aazaz]l =10, O, dpiar Gpro2e Gpr2e Gpma2r Oao] -



40

REFERENCES

Adans, J.D. (1990), "Fundanental Stocks of Know edge and Productivity Gowh,"
Journal of Political Econony 98: 673-702.

Anderson, B.D.O and J.B. More (1979), Optinal Filtering, Englewod diffs,
NJ: Prentice Hall.

Bureau of Labor Statistics (1997), BLS Handbook of Methods, Washington, DC
Covernnent Printing Ofice.

Burneister, E. and K D. Wall (1982), "Kalman-Filtering Estimati on of Unobserved
Rati onal Expectations with an Application to the German Hyperinflation,"
Journal of Econoretrics 20: 255-284.

Cabal l ero, R J. (1999), "Aggregate Investnent," pp. 813-862 in Handbook of
Macr oeconomi cs, J.B. Taylor and M Wodford (eds.), Amsterdam The Netherl ands:
El sevi er.

Christensen, L.R, D.W Jorgenson, and L.J. Lau (1971), "Conjugate Duality and
the Transcendental Logarithm c Production Function," Econonetrica 39: 255-256.

Christensen, L.R, D W Jorgenson, and L.J. Lau (1973), "Transcendental
Logarithm c Production Frontiers," Review of Economics and Statistics 55: 28-
45.

Diewert, WE (1971), "An Application of the Shepard Duality Theorem A
General i zed Leontief Production Function,” Journal of Political Econony 79:
481-507.

French, MW (2000), "Estinmating Changes in Trend Gowth of Total Factor
Productivity: Kalman and HP Filters versus a Markov Sw tching Framework,"
Working Paper, Division of Research and Statistics, Federal Reserve Board,
Washi ngt on, DC.

Gordon, R J. (2000), "Does the 'New Econony' Measure up to the Great |nventions
of the Past?" Journal of Econom c Perspectives 14 (Fall): 49-74.

Giliches, Z  (1995), "R& and Productivity: Econonmetric Results and
Measurement |ssues,” pp. 52-89 in Handbook of the Econonics of |nnovations and
Technol ogi cal Change, P. Stonenan (ed.), Canbridge, MA: Bl ackwell.

Hall, RE (1973), "The Specification of Technology with Several Kinds of
Qut put, " Journal of Political Econony 81: 878-892.

Ham I ton, J.D. (1985), "Uncovering Financial Market Expectations of Inflation,"
Journal of Political Econonmy 93: 1224-1241.

Hercowitz, Z (1998), "The Enbodi ment Controversy: A Review Essay," Journal of
Monet ary Econom cs 41: 217-224.

Jorgenson, D.W (1963), "Capital Theory and Investment Behavior,” American
Econoni ¢ Revi ew 53: 247-259.

Jorgenson, D.W (1966a), "Rational Distributed Lag Functions," Econonetrica 32:
135- 149.



41

Jorgenson, D.W (1966b), "The Enbodinment Hypothesis,” Journal of Political
Econony 74: 1-17.

Jorgenson, DW, F.M Collop, and B.M Fraumeni (1987), Productivity and U.S.
Econom ¢ Grow h, Canbridge, MA: Harvard University Press.

Jorgenson, D.W and J.A Stephenson (1967), "The Tine Structure of I|nvestnent
Behavior in United States Mnufacturing, 1947-1960," Review of Econom cs and
Statistics 49: 16-27.

Kwakernaak, H and R Sivan (1972), Linear Optinal Control Systens, New York,
NY: W/ ey-Interscience.

Kydland, F.E. and E C  Prescott (1982), "Time to Build and Aggregate
Fl uctuations,"” Econonetrica 50: 1345-1370.

Laub, A J. (1979), "A Schur Method for Solving A gebraic R ccati Equations,"”
| EEE Transactions on Automatic Control 24: 913-921.

Levy, D. and H Chen (1994), Estimates of the Aggregate Quarterly Capital Stock
for the Post-War U S. Econony," Review of Income and Walth 40: 317-349.

Levy, D. (2000), "Ilnvestnent-Saving Conovenent and Capital Mbility: Evidence
fromCentury Long U S. Tine Series," Review of Econom c Dynamcs 3: 100-136.

Lucas, RE., Jr. (1967), "Tests of a Capital-Theoretic Mdel of Technol ogi cal
Change, " Revi ew of Econom c Studies 34: 175-189.

Lucas, RE, Jr. and E.C Prescott (1971), "Investnent Under Uncertainty,"
Econonetrica 39: 659-681.

More', J.J., B.S Garbow, and KE Hllstrom (1980), "User Quide for M NPACK-
1," Report ANL-80-74, Argonne National Laboratory, Argonne, IL.

Nadiri, MI. and |.R Prucha (1999), "Dynamic Factor Denand Moddels and
Productivity Analysis,” forthcomng in New Directions in Productivity Analysis,
E. Dean, M Harper, and C. Hulten (eds.), Chicago, IL: University of Chicago
Press.

National Science Foundation (1998), National Patterns of R&D Resources: 1998,
Speci al Report, Division of Science Resources Studies, Arlington, VA posted on
internet site http://ww. nsf.gov/sbe/srs/nprdr/start.htm

Ainer, S.D. and D E Sichel (2000), "The Resurgence of Gowh in the Late
1990s: Is Information Technol ogy the Story?" Journal of Econonmic Perspectives
14 (Fall): 3-22.

Rormer, C.D. (1989), "The Prewar Business Cycle Reconsidered: New Estimates of
G oss National Product, 1869-1908," Journal of Political Econony 97: 1-37.

Sins, C A (1980), "Macroeconomcs and Reality," Econonetrica 48: 1-48.

Sins, C A (1986), "Are Forecasting Mdels Usable for Policy Analysis?" Federal
Reserve Bank of M nneapolis Quarterly Review 70: 250-257.




42

Slade, ME. (1989), "Mdeling Stochastic and Cyclical Conponents of Technical
Change: An Application of the Kalman Filter," Journal of Econonetrics 41: 363-
381.

Solow, R (1957), "Technical Change and the Aggregate Production Function,"
Revi ew of Economics and Statistics 39: 312-320.

Stiroh, K J. (2001), "Wat Drives Productivity G owh?" Federal Reserve Bank of
New Yor k Econom c Policy Review 7: 37-59.

Zadrozny, P.A (1988), "Gaussian Likelihood of Continuous-Tinme ARMAX Mbodels
when Data are Stocks and Flows at Different Frequencies," Econonetric Theory 4:
109-124.

Zadrozny, P.A (1990), "Estimating a Miltivariate ARVA Mdel wth M xed-
Frequency Data: An Application to Forecasting U S. GNP at Monthly Intervals,"”
Wirki ng Paper No. 90-6, Research Departnent, Federal Reserve Bank of Atlanta.

Zadrozny, P.A  (1996), "A Continuous-Time Method for Mdelling Optinal
I nvestment Subject to Adjustment Costs and Gestation Lags," pp. 231-260 in
Dynamic Disequilibrium Mdeling, W Barnett, G Gandolfo, and C Hillinger
(eds.), Canbridge, UK. Canbridge University Press.

Zadrozny, P.A (1997), "An Econonetric Analysis of Polish Inflation Dynamcs
wi th Learning about Rational Expectations,” Econom cs of Planning 30: 221-238.




CESifo Working Paper Series

(for full list see www.cesifo-group.de)

1461 Steffen Huck, Kai A. Konrad and Wieland Miiller, Merger without Cost Advantages,
May 2005

1462 Louis Eeckhoudt and Harris Schlesinger, Putting Risk in its Proper Place, May 2005

1463 Hui Huang, John Whalley and Shunming Zhang, Trade Liberalization in a Joint Spatial
Inter-Temporal Trade Model, May 2005

1464 Mikael Priks, Optimal Rent Extraction in Pre-Industrial England and France — Default
Risk and Monitoring Costs, May 2005

1465 Frangois Ortalo-Magné and Sven Rady, Heterogeneity within Communities: A
Stochastic Model with Tenure Choice, May 2005

1466 Jukka Pirttild and Sanna Tenhunen, Pawns and Queens Revisited: Public Provision of
Private Goods when Individuals make Mistakes, May 2005

1467 Ernst Fehr, Susanne Kremhelmer and Klaus M. Schmidt, Fairness and the Optimal
Allocation of Ownership Rights, May 2005

1468 Bruno S. Frey, Knight Fever — Towards an Economics of Awards, May 2005

1469 Torberg Falch and Marte Renning, The Influence of Student Achievement on Teacher
Turnover, May 2005

1470 John Komlos and Peter Salamon, The Poverty of Growth with Interdependent Utility
Functions, May 2005

1471 Hui Huang, Yi Wang, Yiming Wang, John Whalley and Shunming Zhang, A Trade
Model with an Optimal Exchange Rate Motivated by Current Discussion of a Chinese
Renminbi Float, May 2005

1472 Helge Holden, Lars Holden and Steinar Holden, Contract Adjustment under
Uncertainty, May 2005

1473 Kai A. Konrad, Silent Interests and All-Pay Auctions, May 2005

1474 Ingo Vogelsang, Electricity Transmission Pricing and Performance-Based Regulation,
May 2005

1475 Spiros Bougheas and Raymond Riezman, Trade and the Distribution of Human Capital,
June 2005


http://www.cesifo.de.)/

1476 Vesa Kanniainen, Seppo Kari and Jouko Yli-Liedenpohja, The Start-Up and Growth
Stages in Enterprise Formation: The “New View” of Dividend Taxation Reconsidered,
June 2005

1477 M. Hashem Pesaran, L. Vanessa Smith and Ron P. Smith, What if the UK had Joined
the Euro in 1999? An Empirical Evaluation Using a Global VAR, June 2005

1478 Chang Woon Nam and Doina Maria Radulescu, Effects of Corporate Tax Reforms on
SMEs’ Investment Decisions under the Particular Consideration of Inflation, June 2005

1479 Panos Hatzipanayotou, Sajal Lahiri and Michael S. Michael, Globalization, Cross-
Border Pollution and Welfare, June 2005

1480 John Whalley, Pitfalls in the Use of Ad valorem Equivalent Representations of the
Trade Impacts of Domestic Policies, June 2005

1481 Edward B. Barbier and Michael Rauscher, Trade and Development in a Labor Surplus
Economy, June 2005

1482 Harrie A. A. Verbon and Cees A. Withagen, Tradable Emission Permits in a Federal
System, June 2005

1483 Hendrik Hakenes and Andreas Irmen, On the Long-Run Evolution of Technological
Knowledge, June 2005

1484 Nicolas Schmitt and Antoine Soubeyran, A Simple Model of Brain Circulation, June
2005

1485 Carsten Hefeker, Uncertainty, Wage Setting and Decision Making in a Monetary Union,
June 2005

1486 Ondiej Schneider and Jan Zapal, Fiscal Policy in New EU Member States — Go East,
Prudent Man!, June 2005

1487 Christian Schultz, Virtual Capacity and Competition, June 2005

1488 Yvan Lengwiler and Elmar Wolfstetter, Bid Rigging — An Analysis of Corruption in
Auctions, June 2005

1489 Johannes Becker and Clemens Fuest, Does Germany Collect Revenue from Taxing
Capital Income?, June 2005

1490 Axel Dreher and Panu Poutvaara, Student Flows and Migration: An Empirical Analysis,
June 2005

1491 Bernd Huber and Marco Runkel, Interregional Redistribution and Budget Institutions
under Asymmetric Information, June 2005

1492 Guido Tabellini, Culture and Institutions: Economic Development in the Regions of
Europe, July 2005



1493 Kurt R. Brekke and Michael Kuhn, Direct to Consumer Advertising in Pharmaceutical
Markets, July 2005

1494 Martin Gonzalez-Eiras and Dirk Niepelt, Sustaining Social Security, July 2005
1495 Alfons J. Weichenrieder, (Why) Do we need Corporate Taxation?, July 2005
1496 Paolo M. Panteghini, S-Based Taxation under Default Risk, July 2005

1497 Panos Hatzipanayotou and Michael S. Michael, Migration, Tied Foreign Aid and the
Welfare State, July 2005

1498 Agata Antkiewicz and John Whalley, BRICSAM and the Non-WTO, July 2005

1499 Petr Hedbavny, Ondifej Schneider and Jan Zapal, A Fiscal Rule that has Teeth: A
Suggestion for a ‘Fiscal Sustainability Council’ underpinned by the Financial Markets,
July 2005

1500 J. Atsu Amegashie and Marco Runkel, Sabotaging Potential Rivals, July 2005

1501 Heikki Oksanen, Actuarial Neutrality across Generations Applied to Public Pensions
under Population Ageing: Effects on Government Finances and National Saving, July

2005

1502 Xenia Matschke, Costly Revenue-Raising and the Case for Favoring Import-Competing
Industries, July 2005

1503 Horst Raff and Nicolas Schmitt, Why Parallel Trade may Raise Producers Profits, July
2005

1504 Alberto Bisin and Piero Gottardi, Efficient Competitive Equilibria with Adverse
Selection, July 2005

1505 Peter A. Zadrozny, Necessary and Sufficient Restrictions for Existence of a Unique
Fourth Moment of a Univariate GARCH(p,q) Process, July 2005

1506 Rainer Niemann and Corinna Treisch, Group Taxation, Asymmetric Taxation and
Cross-Border Investment Incentives in Austria, July 2005

1507 Thomas Christiaans, Thomas Eichner and Ruediger Pethig, Optimal Pest Control in
Agriculture, July 2005

1508 Biswa N. Bhattacharyay and Prabir De, Promotion of Trade and Investments between
China and India: The Case of Southwest China and East and Northeast India, July 2005

1509 Jean Hindriks and Ben Lockwood, Decentralization and Electoral Accountability:
Incentives, Separation, and Voter Welfare, July 2005

1510 Michelle R. Garfinkel, Stergios Skaperdas and Constantinos Syropoulos, Globalization
and Domestic Conflict, July 2005



1511 Jesus Crespo-Cuaresma, Balazs Egert and Ronald MacDonald, Non-Linear Exchange
Rate Dynamics in Target Zones: A Bumpy Road towards a Honeymoon — Some
Evidence from the ERM, ERM2 and Selected New EU Member States, July 2005

1512 David S. Evans and Michael Salinger, Curing Sinus Headaches and Tying Law: An
Empirical Analysis of Bundling Decongestants and Pain Relievers, August 2005

1513 Christian Keuschnigg and Martin D. Dietz, A Growth Oriented Dual Income Tax, July
2005

1514 Fahad Khalil, David Martimort and Bruno Parigi, Monitoring a Common Agent:
Implications for Financial Contracting, August 2005

1515 Volker Grossmann and Panu Poutvaara, Pareto-Improving Bequest Taxation, August
2005

1516 Lars P. Feld and Emmanuelle Reulier, Strategic Tax Competition in Switzerland:
Evidence from a Panel of the Swiss Cantons, August 2005

1517 Kira Boerner and Silke Uebelmesser, Migration and the Welfare State: The Economic
Power of the Non-Voter?, August 2005

1518 Gabriela Schiitz, Heinrich W. Ursprung and Ludger W6Bmann, Education Policy and
Equality of Opportunity, August 2005

1519 David S. Evans and Michael A. Salinger, Curing Sinus Headaches and Tying Law: An
Empirical Analysis of Bundling Decongestants and Pain Relievers, August 2005

1520 Michel Beine, Paul De Grauwe and Marianna Grimaldi, The Impact of FX Central Bank
Intervention in a Noise Trading Framework, August 2005

1521 Volker Meier and Matthias Wrede, Pension, Fertility, and Education, August 2005

1522 Saku Aura and Thomas Davidoff, Optimal Commodity Taxation when Land and
Structures must be Taxed at the Same Rate, August 2005

1523 Andreas Haufler and Seren Bo Nielsen, Merger Policy to Promote ‘Global Players’? A
Simple Model, August 2005

1524 Frederick van der Ploeg, The Making of Cultural Policy: A European Perspective,
August 2005

1525 Alexander Kemnitz, Can Immigrant Employment Alleviate the Demographic Burden?
The Role of Union Centralization, August 2005

1526 Baoline Chen and Peter A. Zadrozny, Estimated U.S. Manufacturing Production Capital
and Technology Based on an Estimated Dynamic Economic Model, August 2005



	Abstract



