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Abstract 
 
Production capital and technology, fundamental to understanding output and productivity 
growth, are unobserved except at disaggregated levels and must be estimated prior to being 
used in empirical analysis. We develop and apply a new estimation method, based on 
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structural dynamic economic model of a representative production firm and using the 
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manufacturing and compare the estimates with those reported by the Bureau of Labor 
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1. Introduction. 

 

Time series of production capital and total factor productivity (or 

"technology," as we call the latter here) are fundamental to understanding 

the processes of output and productivity growth. Unfortunately, capital and 

technology are unobserved except at the most disaggregated levels of 

production units and capital components and must be estimated prior to being 

used in empirical analysis. Standard methods for estimating capital and 

technology were developed decades ago (Jorgenson, 1963; Solow, 1957) and are 

based on analytical and computational methods of that era. We develop and 

apply a new method for estimating production capital and technology, based on 

advances in economics, dynamic optimization, statistics, and computing over 

the intervening years. 

We apply the method to annual data from 1947-97 for U.S. total 

manufacturing industries and compare its model-based estimates of capital and 

technology with standard estimates reported by the Bureau of Labor Statistics 

(1997). We offer the method and its results as a fresh approach for 

understanding and estimating capital and technology using modern methods. The 

four major findings of the application are: (1) The model-based capital 

estimates are 10 times more uncertain than the model-based technology 

estimates. (2) The trends of the model-based capital and technology estimates 

are similar to the trends of standard estimates. (3) The model-based capital 

and technology estimates imply that above average capital growth in the 1990s -

- not above average technology growth -- explains above average growth in 

manufacturing output in the 1990s. (4) Changes in parameter estimates to suit 

prior views can cause large and unreasonable changes in the model-based capital 

and technology estimates and, therefore, should be made cautiously. 

We are interested in estimating aggregate capital, i.e., at the level 

of total production capital (equipment and structures) of all manufacturing 

industries. The present method has two major steps, a model-parameter 

estimation step followed by an unobserved-variable estimation step. In the 

first step, we specify and estimate by maximum likelihood a structural 

dynamic economic model of a representative production firm in an industry. We 

assume the firm solves a dynamic optimization problem, which is a standard 

adjustment cost problem except that adjustment costs on capital and 

technology are derived from a parsimoniously parameterized production 

function, rather than being stated directly as is usually done. We compute 
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and incorporate the resulting optimal decision rules into the two estimation 

steps. We estimate the model's structural parameters without using any 

observations on capital or technology. We use only observations on prices and 

quantities of output, investment, research (short for "research and 

development"), labor, and materials inputs. We overcome the lack of capital 

and technology data by using a missing-data variant of the Kalman filter to 

compute the likelihood function and by using the overidentifying restrictions 

on reduced-form parameters in terms of structural parameters implied by the 

optimal decision rules. The reduced-form equations of the estimated model 

imply correlations between unobserved capital and technology and the observed 

variables in the model. In the second step, we use these correlations to 

compute linear least squares estimates (LLSE) of capital and technology, and 

their standard errors, in terms of the observed variables in the model. The 

LLSEs are implemented using a version of the Kalman filtering algorithm 

(Anderson and Moore, 1979). 

We now review the standard methods for estimating aggregate production 

capital and technology and, then, discuss the relative advantages of the 

present estimation method. Aggregate production capital stocks are often 

estimated using the perpetual inventory equation (PIE), kt = δkkt-1 + it, where 

kt is the capital stock being estimated, it is observed investment flow, and δk 

is one minus a constant capital depreciation rate. Variants of the PIE can 

accommodate non-constant or non-geometric depreciation (Bureau of Labor 

Statistics, 1997). Aggregate production capital is also estimated as an index 

of the service flows of capital components (equipment, structures, and other 

disaggregates). The component service flows are estimated using Jorgenson's 

(1963) rental prices and are indexed using expenditure weights. Accordingly, 

disaggregated data are used in estimating aggregate capital, but, in either 

case, the estimates depend entirely on investment flows and capital 

depreciation rates and do not depend on other possible factors such as 

decision errors (misallocations), which the present method accounts for 

implicitly. Technology is usually estimated in percentage growth form as the 

Solow (1957) residual, dτt = dqt - , where dτ, dq, and dx∑ =

n

1i ititdxs it are 

percentage growth of technology, output, and production inputs, and sit are 

input cost shares. 

Generally, the relative advantages of the present method over standard 

methods are those of an elaborate econometric model over a simple econometric 

model. The advantages are greater generality (fewer restrictions) and more 
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details, hence, more implications. The disadvantages are the need for more 

and better data, hence, a greater risk of specification error in practice, 

and greater mathematical and computational complexity. The standard methods 

for estimating capital and technology, while not in theoretical conflict with 

each other, are computationally independent. The present method takes the 

view that capital and technology are jointly determined as the result of 

purposeful, coordinated, investment and research decisions driven by the same 

value-maximizing motive. Thus, the model implicitly "disembodies" technology 

from capital (Jorgenson, 1966b; Hercowitz, 1998). In the standard method, 

technology is an unexplained residual. Whereas the present method allows for 

adjustment costs, the standard methods do not. However, the standard methods 

are nonparametric, except for having to specify capital depreciation, and are 

much easier to apply. 

The present method automatically produces standard errors of the 

estimates of capital and technology and, therefore, quantifies uncertainty 

about the estimates. The standard methods have no measures of uncertainty 

and, therefore, in effect, present their estimates as being certain. We 

introduce uncertainty by adding disturbances to the PIEs of capital and 

technology. The disturbances may be viewed as representing subjective 

uncertainty or exogenous shocks. In practice, most of the uncertainty about 

capital concerns its depreciation. As the paper shows, adding disturbances to 

the PIEs has large consequences for the estimates of capital and technology. 

When the PIE disturbances are excluded, the estimates follow smooth trends, 

very similar to the standard estimates. When the disturbances are included, 

the estimates exhibit short-run variations -- random noises and economic 

cycles -- around their trends and the standard estimates. The economic cycles 

are transmitted from observed variables through the PIE disturbances. 

Recently economists have estimated technology as filtered or smoothed 

estimates of an unobserved, estimated, exogenous process (Slade, 1989; 

French, 2000). The present paper goes further by treating capital and 

technology as joint endogenous processes. We are unaware of other attempts to 

estimate joint, endogenous, capital and technology processes using filtering 

or smoothing methods, although these methods have been used to estimate 

endogenous (rational) inflationary expectations (Burmeister and Wall, 1982; 

Hamilton, 1985; Zadrozny, 1997). Regression methods have been used to 

estimate GNP, aggregate capital, and other macroeconomic variables (Romer, 

1989; Levy and Chen, 1994; Levy, 2000) but they have more limited 

applicability and are less efficient. Unlike filtering or smoothing methods, 
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regression methods require the estimated variables to be observed in some 

periods and cannot exploit correlations at all leads and lags. Our approach 

to modelling capital and technology as joint endogenous processes could be 

seen as an extension of Lucas (1967), with the benefit of modern analytical 

and computational methods. Finally, we note Jorgenson, Gollop, and Fraumeni 

(1987), Adams (1990), Griliches (1995), Caballero (1999), Nadiri and Prucha 

(1999), and references therein as recent examples of work on production 

capital and technology. 

The paper continues as follows. Section 2 specifies the model and 

explains how the representative firm's dynamic optimization problem is 

solved. Section 3 prepares the model for estimation of parameters, capital, 

and technology by assembling its equations as a vector autoregression (VAR) 

and, then, restating the VAR as a state representation. Section 3 also 

discusses the parameter identification and reconstructibility conditions 

underlying the estimations. Section 4 discusses the application to aggregated 

U.S. manufacturing data. It discusses sources and properties of the data, 

statistical and economic properties of the estimated model, and compares the 

estimates of capital and technology with those published by the Bureau of 

Labor Statistics. Section 5 contains concluding remarks. Some technical 

details are in the appendix. 

 

2.  Specification and Solution of the Model. 

 

Following Zadrozny (1996), we describe an industry in terms of a 

representative firm (henceforth, "the firm"). Except for scale differences, 

firm- and industry-level variables are identical. Every period, t, the firm 

maximizes the expected present value of profits, 

 

(2.1)      vt  =  Et∑∞

= +πδ
0k kt

k , 

 

with respect to a feedback decision rule, where the maximization is subject to 

equations to be specified, Et denotes expectation conditional on the firm's 

information in period t, δ ∈ (0,1) denotes a constant real discount factor, and 

πt = rqt – (cqt + cit + crt) denotes real profits equal to revenues minus costs, 

such that cqt is the cost of production and cit and crt are direct 

(nonadjustment) costs of investment in capital and research in technology. 

Throughout, a real value is a nominal (current dollar) value divided by the GDP 
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deflator. The firm's optimization problem is stated precisely at the end of 

this section. 

 To obtain a competitive rational-expectations-equilibrium solution, 

following Lucas and Prescott (1971), we set revenues in πt to the area under 

the inverse output-demand curve as rqt = , where p∫ =

tq

ox tq dx)d,x(p q(⋅) is the 

inverse output-demand curve, qt is the production of saleable output, and dt is 

the output-demand state. Alternately, when rqt = pq(qt,dt)qt, the solution 

represents the monopoly equilibrium. 

 To obtain linear solution equations, which facilitate estimation and to 

which the Kalman filter or smoother can be applied, we specify rqt, cqt, cit, and 

crt as quadratic forms (constant and linear terms can be ignored). Accordingly, 

we assume the industry's inverse output-demand curve is 

 

(2.2)     pqt = -ηqt + dt + ζpq,t, 

 

where η > 0 is the slope parameter, dt is the demand state generated by the 

second-order autoregressive (AR(2)) process 

 

(2.3)     dt = φd1dt-1 + φd2dt-2 + ζd,t, 

 

and ζpq,t and ζd,t are disturbances. Actually, ζpq,t is introduced for purely 

technical reasons. Its variance is set small enough so that it has no practical 

effect on the results but large enough so that it numerically stabilizes the 

Kalman filter. The full set of distributional assumptions on disturbances is 

stated in section 3. 

 To specify cqt, we first assume that the firm uses capital (k), labor (l), 

and materials (m), to produce saleable output (q), install investment goods 

(i), and conduct research activities (r) (subscript t is omitted sometimes). We 

assume that the "output activities," q, i, and r, are restricted according to 

the separable production function 

 

(2.4)     h(q,i,r)  =  τ⋅g(k,l,m), 

 

where τ is the Hicks-neutral stock of technology. Although τ is also total- 

factor productivity, because g(⋅) and h(⋅) are indexes of inputs and outputs, 

we refer to τ as technology. If τ were capital augmenting or labor augmenting, 
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the production function would be written as h(q,i,r) = g(τk,l,m) or h(q,i,r) = 

g(k,τl,m). More specifically, following Kydland and Prescott's (1982) 

treatment of the utility function, we assume g(·) and h(·) are the constant 

elasticity functions, 

 

(2.5)     g(k,l,m)  =  (α1k
β + α2l

β + α3m
β)1/β, 

 

          h(q,i,r)  =  (γ1qρ + γ2iρ + γ3rρ)1/ρ, 

 

where αi > 0, α1 + α2 + α3 = 1, β < 1, γi > 0, γ1 + γ2 + γ3 = 1, and ρ > 1. CES = 

(β-1)-1 is the constant elasticity of substitution among inputs, and CET = 

(ρ-1)-1 is the constant elasticity of transformation among outputs. Including i 

and r in h(⋅) is a parsimonious way of specifying internal adjustment costs. The 

idea is that positive rates of investment and research use capital, labor, and 

materials resources, which could otherwise be used to produce more output, and 

that this trade-off sacrifices ever more output per unit increases in 

investment and research. 

We need the adjustment costs to generate dynamic decision rules for the 

firm, which determine correlations among current and lagged variables, which 

are used to estimate unobserved variables in terms of observed variables. 

Adjustment costs are commonly specified as convex investment costs, which are 

incurred in addition to purchase costs of investment goods. Here "investment" 

means investment in production capital and research in technology. In the next 

step, we derive a quadratic approximation of the dual variable production cost 

function (DVPCF) from production function (2.4)-(2.5). The DVPCF includes 

convex, investment and research, adjustment costs. Thus, having already 

introduced investment and research purchase costs, pitit + prtrt, we obtain a 

conventionally structured specification of investment and research adjustment 

costs. Although the DVPCF is conventionally structured, it is unconventionally 

parameterized. We derive the DVPCF from (2.4)-(2.5) to ensure that structural 

parameters are identifiable. If we had specified a general DVPCF, subject only 

to symmetry, homogeneity, and curvature restrictions, it would have 28 free 

parameters, too many for the structural parameters to be identified, hence, 

estimated. The identification problem arises because 4 of 13 variables in the 

model are completely unobserved. The missing-data and identification problems 

are solved by specifying the DVPCF in terms of the 6 free parameters of (2.4)-
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(2.5). For recent reviews of the investment adjustment cost literature, see, 

for example, Caballero (1999) and Nadiri and Prucha (1999). 

 Mathematically, convex internal adjustment costs arise in (2.4)-(2.5) 

when, for given technology, τ, and inputs, (k,l,m), the transformation surfaces 

of the outputs, (q,i,r), are concave to the origin. The adjustment costs are 

"convex" because the derived DVPCF is convex in (q,i,r). Hall's (1973) analysis 

shows that the division of the production function into two separate input and 

output parts, g(⋅) and h(⋅), is a necessary condition for the output 

transformation surfaces to be concave to the origin. Here, ρ > 1 is a necessary 

and sufficient condition for the transformation surfaces to be concave. The 

transformation surfaces become more curved, hence, adjustment costs increase, 

as ρ increases. Similarly, β < 1 is a necessary and sufficient condition for the 

input isoquants to be convex to the origin, and the isoquants become more 

curved, hence, input substitutability decreases, as β decreases. 

 Let cq = pll + pmm, where pl is the real hiring price of labor and pm is 

the real purchase price of materials. Let ci = pii and cr = prr, where pi and pr 

are the real purchase prices of investment and research goods and services. 

Because l and m are variable (not subject to adjustment costs) and k and τ are 

quasi-fixed (subject to adjustment costs), we refer to cq as the variable cost 

and to ci + cr as the fixed cost. Let cq(w) denote the dual variable cost 

function: given w = (w1, ..., w7)T = (q, i, r, k, τ, pl, pm)
T (superscript T 

denotes transposition), cq(w) = minimum of pll + pmm, with respect to l and m, 

subject to production function (2.4)-(2.5). 

 In the standard approach to multifactor productivity analysis (Bureau of 

Labor Statistics, 1997), all inputs are treated symmetrically, as variable 

flows. Accordingly, cq would include all input costs as cq = pkk + pττ + pll + 

pmm, where pk and pτ are rental prices of capital and technology stocks, 

obtained using appropriate versions of Jorgenson's (1963) formula for 

converting investment purchase prices into capital rental prices. Jorgenson's 

formula is based on more restrictive assumptions, notably that all inputs are 

variable. In this paper, we instead work with the purchase prices of investment 

and research because this allows greater flexibility for handling adjustment 

costs in the firm's dynamic optimization problem. It is the explicit solution 

of this problem that generates the identifying conditions that allow us to 

estimate the structural parameters of the model in the face of unobserved 

capital and technology. 
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 The constant term in π does not affect optimal decisions in the 

approximate linear-quadratic dynamic optimization problem. Linear terms in π 

contribute only an additional constant term to the optimal decision rule, which 

is removed by mean adjustment of the data. Therefore, ignoring constant and 

linear terms, cq(wt) ≅ (1/2)wtT⋅∇2cq(w0)⋅wt, where ∇2cq(w0) denotes the Hessian 

matrix of second partial derivatives of cq evaluated at w = w0. ∇2cq(w0) is 

stated in the appendix, for w0 = (1, 1, 1, 1, 1, α2, α3)T, a value which results 

in the simplest expression for ∇2cq(w0). Therefore, 

 

(2.6)     πt = -(1/2)ηqt2 + qt(dt + ζpq,t) – (1/2)wtT⋅∇2cq(w0)⋅wt – pitit – prtrt. 

 

 The Hessian matrix, ∇2cq(w0), is symmetric (henceforth, for simplicity, we 

often write ∇2cq(w0) as ∇2cq). Ideally, (1/2)wtT⋅∇2cq(w0)⋅wt should inherit the 

following properties from the exact cq(w) function, for all values of w: (i) 

linear homogeneity in (q,i,r,k); (ii) convexity in (q,i,r,k); (iii) strict 

convexity in (q,i,r), (q,i,k), (q,r,k), and (i,r,k); (iv) linear homogeneity in 

(pl,pm); and (v) strict concavity in pl and pm. In fact, wt
T⋅∇2cq(w0)⋅wt satisfies 

homogeneity restrictions (i) and (iv) for w = w0 and curvature restrictions 

(ii), (iii), and (v) for all w. 

 The difference between (1/2)wtT⋅∇2cq(w0)⋅wt and the translog cost function 

(Christensen, Jorgenson, and Lau, 1971, 1973) is that ∇2cq(w0) is not stated in 

logs of variables and that its elements are tightly restricted in terms of the 

parameters of the model, whereas the translog cost function is stated in logs 

of variables and its elements are unrestricted except for the homogeneity, 

convexity, and concavity restrictions. The present model could be specified in 

logs of variables, but the results would be similar because the data are 

standardized prior to estimation. As noted above and discussed more below, 

estimating parameters without any capital and technology data and, then, 

estimating the unobserved capital and technology requires having sufficient 

identifying parameter restrictions on the cost function. Although we do not 

know and would have difficulty determining the full set of identifying cost-

function parameterizations, we do know that the general translog cost function 

is not in this set. 

 We assume pi, pr, pl, and pm are exogenous to the industry and are 

generated by the AR(2) processes 
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(2.7)     pit = φpi,1pi,t-1 + φpi,2pi,t-2 + ζpi,t, 

 

          prt = φpr,1pr,t-1 + φpr,2pr,t-2 + ζpr,t, 

 

          plt = φpl,1pl,t-1 + φpl,2pl,t-2 + ζpl,t, 

 

          pmt = φpm,1pm,t-1 + φpm,2pm,t-2 + ζpm,t, 

 

where ζpi,t, ζpr,t, ζpl,t, and ζpm,t are disturbances. Processes (2.7) need not be 

stationary. A constant-coefficient autoregressive process is stationary or 

asymptotically stable if and only if its characteristic roots are less than one 

in absolute value. For example, the pit process is stationary if and only if the 

roots, λ1 and λ2, which solve the characteristic equation, λ2 - φpi,1λ - φpi,2 = 0, 

are less than one in absolute value. The only restriction which we need on 

processes (2.7) in order to solve the firm's dynamic optimization problem is 

that | λ | < 1/ δ , where | λ | is the largest absolute characteristic root of any 

equation in processes (2.7). 

 We assume that capital accumulates according to the continuous-time law 

of motion 

 

(2.8)     ∂k (s)/∂s = -fk⋅k(s) + i(s) + , )s(
~
kζ

 

where fk > 0 is a depreciation parameter and  is a continuous-time 

disturbance. Integrating equation (2.8) over the sampling period s ∈ [t-1,t), 

on the assumption that i(s) is constant in [t-1,t), we obtain the discrete-time 

capital law of motion, 

)s(
~
kζ

 

(2.9)     kt = φk1kt-1 + φi0it + ζkt, 

 

where φk1 = exp(-fk), φi0 = [(1–exp(-fk)]/fk, and ζkt = exp[-f∫ =

1

0s k(1-s)] (t-

1+s)ds is the implied discrete-time disturbance. It is customary to specify 

(2.9) directly, such that φ

k

~
ζ

i0 ≡ 1. However, this specification understates the 

depreciation of investments undertaken early in a sampling period compared to 

those undertaken later in the period. The problem could be avoided by treating 

φk1 and φi0 as separate parameters, but this specification is less natural and 
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introduces an additional parameter. Thus, assuming that ζkt ~ NIID(0, ), we 

parameterize (2.9) in φ

2
kσ

k1 ∈ (0,1) and  > 0, such that φ2
kσ i0 = (φk1-1)/ln(φk1). 

Similarly, we obtain the discrete-time technology law of motion 

 

(2.10)    τt = φτ1τt-1 +  φr0rt + ζτt, 

 

parameterized in φτ1 ∈ (0,1) and  > 0, such that φ2
τσ r0 = (φτ1–1)/ln(φτ1) and ζτt ~ 

NIID(0, ). 2
τσ

Equations (2.9)-(2.10) imply geometrical depreciation, in which most of 

capital and technology's depreciation occurs in early periods of their use. A 

rational-distributed-lag (RDL) specification (Jorgenson, 1966a) could describe 

more general depreciation patterns, in particular, in which most depreciation 

occurs in late periods of use. A RDL could also include gestation or time-to-

build lags as additional sources of capital and technology fixity. However, the 

need for parsimonious parameterization precludes RDL capital and technology 

equations, at least for the present data. Most RDLs could also be derived from 

underlying continuous-time  specifications (Zadrozny, 1988). 

The model's structural components have now been specified. It remains to 

explain how to solve the firm's dynamic optimization problem and how to 

assemble specified laws of motion and solved optimal decision rules into a 

system of linear simultaneous equations that are the equilibrium equations of 

the model. 

To simplify the dynamic optimization problem, we eliminate qt by 

maximizing πt with respect to qt. Because qt is not a control variable in the 

laws of motion of kt or τt, conditional on it and rt being at their optimal 

values, the optimal value of qt is given by maximizing πt with respect to qt. 

The first-order condition, ∂πt/∂qt = 0, yields the output supply rule 

 

(2.11)    qt = -(c11 + η)-1(c12it + c13rt + c14kt + c15τt + c16 plt + c17pmt - dt) + ζqt, 

 

where (c11, ..., c17) is the first row of  ∇2cq and ζqt is an added disturbance. 

In addition to adding ζpq,t to output-demand curve (2.2) and ζqt to output 

supply rule (2.11), we also add disturbances to labor and materials decision 

rules (2.12)-(2.13) so that each of the 13 variables in the model has its own 

disturbance. Although the disturbances are added for purely technical reasons, 

to ensure that the variables in the model have a nonsingular joint probability 
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distribution, as usual, they represent our specification errors or the firm's 

decision errors, or both. 

 Similar elimination of lt and mt from the dynamic optimization problem is 

justified because lt and mt are not control variables in the laws of motion of 

kt or τt. Optimal values of lt and mt, conditional on qt, it and rt being at their 

optimal values, are recovered using Shepard's lemma (a special case of the 

envelope theorem; Diewert 1971, p. 495), 

 

(2.12)    lt = ∂cqt/∂plt = c61qt + c62it + c63rt + c64kt + c65τt + c66plt + c67pmt + ζlt, 

 

(2.13)    mt = ∂cqt/∂pmt = c71qt + c72it + c73rt + c74kt + c75τt + c76plt + c77pmt + ζmt, 

 

where (c61, ..., c67) and (c71, ..., c77) are the sixth and seventh rows of ∇2cq, 

and ζ lt and  ζmt are added disturbances. 

 Optimality of labor and materials decision rules (2.12) and (2.13) also 

depends on cqt = (1/2)wtT⋅∇2cq(w0)⋅wt being a good approximation of production 

function (2.4)-(2.5). It is easy to derive decision rules for lt and mt from the 

exact cost function implied by (2.4)-(2.5). However, such rules are nonlinear 

in variables, which complicates parameter estimation and smoothing. Whether 

exact or approximate rules are used for decisions on l and m, the approximate 

linear-quadratic dynamic optimization problem remains unchanged. 

 To solve the remainder of the firm's dynamic optimization problem, we 

restate it as a linear optimal regulator problem. We define the 2×1 control 

vector ut = (it, rt)T and the 14×1 state vector xt = (kt, τt, pit, prt, plt, pmt, dt, 

kt-1, τt-1, pi,t-1, pr,t-1, pl,t-1, pm,t-1, dt-1)
T. We assemble the laws of motion of 

output demand, input prices, capital, and technology, (2.3), (2.7), (2.9), and 

(2.10), as the state equation 

 

(2.14)    xt = Fxt-1 + Gut, 

 

          F = ,  G = , 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

×777

21

0I

FF

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

×212

0

0

G

 

where F1 = diag[φk1, φτ1, φpi,1, φpr,1, φpl,1, φpm,1, φd1], F2 = diag[0, 0, φpi,2, φpr,2, 

φpl,2, φpm,2, φd2], G0 = diag[φi0, φτ0], Im is the m×m identity matrix, and 0m×n is the 

m×n zero matrix. We suppress disturbances in equation (2.14) because the 
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regulator problem is certainty equivalent. We use the output-supply rule (2.11) 

to eliminate qt from πt and write πt as the quadratic form 

 

(2.15)    πt =  utTRut + 2utTSxt-1 + xt-1TQxt-1. 

 

The matrices R, S, and Q are stated in the appendix in terms of η and the 

elements of ∇2cq. 

The regulator problem maximizes expected present value, (2.1), stated in 

terms of the quadratic form (2.15), with respect to the feedback matrix K in 

the linear decision rule ut = Kxt-1, subject to the state equation (2.14). Under 

concavity, stabilizability, and detectability conditions (Kwakernaak and Sivan, 

1972), we compute the optimal K matrix by solving an algebraic matrix Riccati 

equation using a Schur decomposition method (Laub, 1979). Finally, we write the 

investment-research decision rule as 

 

(2.16)    ut = Kxt-1 + (ζit, ζrt)T, 

 

where (ζit, ζrt)T is an added 2×1 disturbance vector. 

 

3. Estimation Strategy. 

 

3.1. State Representation of the Model. 

 

To estimate the model's parameters by maximum likelihood, using the 

Kalman filter, and, then, to estimate unobserved capital and technology, also 

using the Kalman filter, we express the reduced form of the model in a state 

representation. To this end, we collect the variables of the model in the 13×1 

vector yt = (pqt, qt, lt, mt, it, rt, kt, τt, pit, prt, plt, pmt, dt)
T and their 

disturbances in the 13×1 vector ζt = (ζpq,t, ζqt, ζlt, ζmt, ζit, ζrt, ζkt, ζτt, ζpi,t, 

ζpr,t, ζpl,t, ζpm,t, ζdt)T. We assume that the disturbances are mutually independent, 

normally distributed, stationary processes, such that the first 6 disturbances 

are AR(1) processes and the last 7 disturbances are serially independent. That 

is, we assume ζt  = (I13 – ΘL)-1εt, where εt ∼ NIID(0,Σε), L is the lag operator, 

Θ = diag(θpq, θq, θl, θm, θi, θr, 0, 0, 0, 0, 0, 0, 0), such that the θ's ∈ 

(-1,1), and Σε = diag( , , , , , , , , , , , , ). 2
pqσ 2

qσ 2
lσ 2

mσ 2
iσ 2

rσ 2
kσ 2

τσ 2
piσ 2

prσ 2
plσ 2

pmσ 2
dσ
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 The set of equations which form the basis of the parameter and capital-

technology estimation are (2.2), (2.3), (2.7), (2.9)-(2.13), and (2.16), or 

more concisely, (2.2), (2.11)-(2.14), and (2.16). These 13 scalar-level 

equations constitute the complete set of linear simultaneous equations which, 

for given values of parameters, past variables, and current and past 

disturbances, determine unique values of the 13 variables of the model. We 

assemble the equations concisely as 

 

(3.1)     A0yt = A1yt-1 + A2yt-2 + (I13 – ΘL)-1εt, 

 

such that the elements of A0, A1, and A2 are stated in the appendix. We 

premultiply equation (3.1) by (I1
0A
−

13 – ΘL), such that A0 is nonsingular for 

admissible values of parameters. Because the autocorrelation coefficients in Θ 

are nonzero only in equations with single lags of variables, the resulting 

VAR(2) reduced-form system, 

 

(3.2)     yt = B1yt-1 + B2yt-2 + ξt, 

 

has only two lags of yt, where B1 = (A1
0A
−

1 + ΘA0), B2 = (A1
0A
−

2 - ΘA1), ξt = ε1
0A
−

t 

∼ NIID(0,Σξ), and Σξ ∼ Σ1
0A
−

εA0-T. Because the input-price equations map unchanged 

into equation (3.2), they are both structural and reduced-form equations. 

 A complete state representation comprises a state equation, which 

expresses the dynamics of the model, and an observation equation, which 

accounts for how variables in the model are observed. Corresponding to state 

equation (2.14), we write the reduced-form equation (3.2) as the state equation 

 

(3.3)     zt = F zt-1 + G ξt, 

 

          F  = ,  
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

×131313

21

0I

BB
G = , 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

×1313

13

0

I

 

where zt = ( , )T
ty

T
1ty −

T is the 26×1 state vector. Associated with the state 

equation is the observation equation 

 

(3.4)     ty   =  tH zt, 
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where ty  is the vector of variables observed in period t. tH  is called the 

observation matrix. 

Because tH  is completely flexible in assuming any values in any 

dimensions, including the null matrix if no observations are available, 

observation equation (3.4) can account for any pattern of missing data. For 

most sampling periods in the present application, tH  = [J, 0], where J = I13 

with rows of unobserved variables deleted and 0 is the equivalently dimensioned 

zero matrix. Thus, when variables 4, 7, 8, and 13 are unobserved, J = I13 with 

rows 4, 7, 8, and 13 deleted and 0 = 09×13. Also, tH  accounts for observations 

on different observed variables starting and ending in different periods. We 

call the Kalman filter applied to such a state representation the missing-data 

Kalman filter. 

The missing-data Kalman filter computes the normal distribution (or 

Gaussian) likelihood function of the observations as follows. Let  = ty
~

ty  - 

E[ ty | 1tY − ] denote the innovation vector, where  tY = ( T
ty , ..., T

1y )T denotes the 

vector of observations through period t, and let Ωt = E[ ⋅ ] denote the 

innovation covariance matrix. In general, the reduced-form disturbance vectors, 

ξ

ty
~ T

ty
~

t, and the innovation vectors, , coincide only when all variables are 

observed throughout the sample. Then, except for terms independent of 

parameters, -2 times the log-likelihood function of the sample 

ty
~

NY  is given by 

 

(3.5)     L(ϑ, NY ) = [ln|Ω∑ =

N

1t t| + ΩT
ty

~
t
-1

ty
~ ], 

 

where ϑ = ( , , , )T
0ϑ T

1ϑ T
2ϑ T

3ϑ T, ϑ0 = (δ, α1, α2, γ1, γ2, , , )2
pqσ 2

lσ 2
mσ T, ϑ1 = (φpi,1, 

φpr,1, φpl,1, φpm,1, φpi,2, φpr,2, φpl,2, φpm,2, , , , )2
piσ 2

prσ 2
plσ 2

pmσ T, ϑ2 = (θpq, θq, θl, θm, 

θi, θr)T, and ϑ3 = (η, β, ρ, φk1, φτ1, φd1, φd2, , , , , , )2
qσ 2

iσ 2
rσ 2

kσ 2
τσ 2

dσ T. 

As explained further in subsection 3.2, the unidentified 8 parameters in 

ϑ0 are normalized and the remaining 31 parameters in ϑ1, ϑ2, and ϑ3 are 

estimated in three steps: ϑ1 in an ordinary-least-squares (OLS) step, ϑ2 in a 

preliminary maximum-likelihood (ML) step, and ϑ3 in a final ML step. The Kalman 

filtering recursions for computing (3.5), starting values for the recursions, 

and other details about implementing the computations accurately and 
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efficiently are discussed in Anderson and Moore (1979), Zadrozny (1988, 1990), 

and references therein. In the ML steps, L(ϑ, NY ) was minimized using the 

trust-region method (More  et al., 1980). Although the likelihood could be 

computed in other ways, the missing-data Kalman-filter method proved to be very 

effective for handling the various missing-data problems. In particular, in the 

computer program we needed only to indicate missing values in the data matrix 

with a missing-data indicator and did not need to transform the reduced-form or 

state equations, (3.2) or (3.3), as we would using other methods. 

′

 

3.2. Parameter Identification and Reconstructibility Conditions. 

 

 The hallmark of the present method is a large number of overidentifying 

restrictions on the reduced-form parameters, B1, B2, and Σξ, in terms of the 

structural parameters, ϑ, although the structural parameters are unidentified 

unless additional normalizing restrictions are imposed. Estimation of capital 

and technology requires that a reconstructibility condition hold. Thus, to 

estimate the model and use its estimate to estimate capital and technology, the 

model must satisfy the parameter identification and reconstructibility 

conditions. We comment no further on the complicated relationship between these 

conditions, except to note that in our experience parameter identification 

implies reconstructibility. 

The parameter identification condition is standard in econometrics: the 

unnormalized parameters in ϑ to be estimated are identified when the Hessian 

matrix of L(ϑ, NY ) with respect to them, evaluated at the normalized and 

estimated values of parameters, is positive definite, i.e., ∇2L( ,ϑ̂ NY ) > 0. The 

challenge is having enough identifying restrictions on reduced-form parameters  

in terms of the structural parameters to compensate for the unobservability of 

some variables. In this case, with ϑ0 normalized, the model imposes enough 

restrictions to identify ϑ1, ϑ2, and ϑ3. The complexity of the mapping from 

structural to reduced-form parameters precludes analytically deriving the 

conditions under which ϑ1, ϑ2, and ϑ3 are identified. Fortunately, doing this is 

unnecessary, because after terminating at an estimate, the ML estimation 

program numerically checks if ∇2L( ,ϑ̂ NY ) > 0. 

 We estimated the 31 parameters in ϑ1, ϑ2, and ϑ3 in three steps because 

initial attempts to estimate them simultaneously resulted in numerical 
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breakdown. Although the estimation program converged successfully, it was 

unable to compute standard errors of the estimated parameters because 

∇2L( ,ϑ̂ NY ) was poorly conditioned for inversion. Therefore, we followed the 

three-step strategy which is consistent but (in theory) inefficient compared to 

a simultaneous (or full information) estimation strategy. In all three steps, 

ϑ0 is normalized as described below. In step 1, we estimated the 12 input-price 

process coefficients and disturbance variances in ϑ1 using OLS. In step 2, 

conditional on , we estimated the 19 parameters in ϑ1ϑ̂ 2 and ϑ3 using ML. In 

step 2, ∇2L(ϑ ,ˆ NY ) was positive definite but numerically very close to 

indefiniteness, resulting in very large standard errors of the autocorrelation 

coefficients in . Therefore, in step 3, conditional on  and , we 

reestimated ϑ

2ϑ̂ 1ϑ̂ 2ϑ̂

3 using ML. Thus, the final estimates of ϑ are  from step 1,  

from step 2, and  from step 3. 

1ϑ̂ 2ϑ̂

3ϑ̂

We imposed normalizing restrictions on ϑ0 to ensure that ϑ1, ϑ2, and ϑ3 

are identified. We emphasize that this is normalization, not calibration in the 

sense of setting parameters so that the model matches selected moments in the 

data. Being unidentified, the normalized parameters cannot be calibrated in 

this sense. We verified numerically that the normalized parameters are 

unidentified by attempting to estimate all structural parameters 

simultaneously. The estimation algorithm made no moves from given initial 

parameter values, indicating a flat likelihood function. 

We set the discount factor to δ = .935, which corresponds to the interest 

rate δ-1 - 1 = .0695. We set the weighting parameters in the production function 

to the "neutral" values α1 = α2 = α3 = γ1 = γ2 = γ3 = 1/3. We considered 

alternative weighting-parameter normalizations. These resulted in different 

estimates of ϑ3 but in the same estimates of reduced-form parameters, hence, in 

the same estimates of capital and technology. We expected that one disturbance 

variance would have to be restricted for each unobserved variable. Three 

variables are genuinely unobserved, k, τ, and d. To maintain numerical 

stability of the Kalman filter and smoother, all disturbance variances must be 

positive. Therefore, we set  =  =  ≅ 102
pqσ 2

lσ 2
mσ -10. Although setting  ≅ 0 is 

natural, because  is redundant relative to  in output-demand curve (2.2), 

setting  =  ≅ 10

2
pqσ

2
pqσ 2

dσ

2
lσ 2

mσ -10 is arbitrary. We could have set these disturbance 

variances to other values, indeed, could have set any three disturbance 
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variances. It makes no difference, because each choice results in the same 

estimated reduced form. We checked this result by estimating the model under 

alternative variance normalizations. As described in section 4.1, after some 

initial estimations, we decided to treat materials quantity, m, as unobserved. 

It would seem, then, that another disturbance variance would have to be moved 

from ϑ3 to ϑ0 and normalized. But this turned out not to be the case. 

Conditional on ϑ0 and ϑ1, under the initial definitions of the ϑ's, ϑ2 and ϑ3 

were still identified. Therefore, we conducted the final estimations using the 

original normalizations. 

 To explain reconstructibility, for normally distributed variables, let 

 = E[zs|tẑ t| sY ] denote the linear expectation of zt conditional on sY  and let 

 

(3.6)     Rt = [
T
1H , TF T

2H , ..., ( 1tF − )T T
tH ]T, 

 

where F  is the state-transition matrix in (3.3) and tH  is the observation 

matrix in (3.4). The state vector, zt = (ytT, yt-1T)T, is said to be 

reconstructible if there is a tr such that Rt has full rank equal to the 

dimension of zt, for t ≥ tr. Reconstructibility means that, for t ≥ tr, 

 

(3.7)      = t|tẑ t
T
t

1
t

T
t YR)RR( − , 

 

where  is nonsingular, so that unique t
T
tRR filtered estimates of zt (i.e., for 

t|s = t|t), for t = 1, ..., N, can be computed. If (3.7) is feasible, an 

associated formula computes the error covariance matrix E(zt- )⋅(zt|tẑ t- )t|tẑ
T in 

terms of Rt and the disturbance covariances. The smoothed estimates of zt 

(i.e., for t|s = t|N), for t = 1, ..., N, may be expressed similarly. The 

Kalman smoother is an accurate and efficient recursive algorithm for 

computing  and E(z$ |zt N t- )⋅(zN|tẑ t- )N|tẑ
T, for t = 1, ..., N (Anderson and Moore, 

1979). 

In the application, the dimension of zt is 26, so that if Ht is time 

invariant and zt is reconstructible, tr ≤ 26. This follows from the Cayley-

Hamilton theorem, which says that every square matrix satisfies its own 

characteristic equation. In such case, for t ≥ 26, the rows of tF  are 

linearly dependent on the rows of 25F , 24F , ..., F . Therefore, if tH  is time 

invariant, zt is reconstructible if R26, called the reconstructibility matrix, 
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has full rank 26. It is difficult to determine an upper bound for tr if tH  is 

time varying. For a complete discussion of reconstructibility and related 

concepts, see Kwakernaak and Sivan (1972) or Anderson and Moore (1979). The 

estimation algorithm numerically checks the reconstructibility condition. 

 

4. Estimation Results. 

 

4.1. Sources and Properties of the Data. 

 

In estimation, we used annual U.S. total manufacturing data on prices and 

quantities of output and inputs, from 1947-97. Investment and GDP-deflator data 

were obtained from the Bureau of Economic Analysis, research data from the 

National Science Foundation (1998), and all other data from the Bureau of Labor 

Statistics. All data were obtained in nonseasonal form. All data that were used 

were previously released to the public and are not confidential. Thus, we 

obtained observations on 10 of the 13 variables in the model: pqt and qt from 

1958-96, plt and lt from 1948-97, pit and it from 1947-96, prt and rt from 1953-95, 

pmt from 1958-96, and mt from 1958-89. 

Except for the quantity of labor, which is measured as the number of 

production workers, all other prices and quantities were obtained as a nominal 

price index or a real quantity index coupled with nominal expenditures. We 

computed the unavailable quantity or price indexes by dividing expenditures by 

the available price or quantity index, so that in each case the price index × 

quantity index = nominal expenditures. All obtained or computed nominal price 

indexes were, then, converted into real form by dividing them by the GDP 

deflator. 

 The resulting real prices and quantities of U.S. total manufacturing 

output and inputs are depicted in figures 1a-j. For graphing convenience, the 

data were scaled to lie between 0 and 10. The graphs suggest the following 

economic interpretation, which is consistent with simulations of the model in 

figures 2a-b. Increasing demand for output driven partly by a declining real 

price of output induced manufacturers to increase production capacity. 

Increasing quantities of investment and research built increasing stocks of 

capital and technology, hence, increased production capacity. As the price of 

labor increased, manufacturers saved on labor inputs, resulting in flat or 

declining labor use and increasing labor productivity. 
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Figures 1a to 1j 

U.S. Total Manufacturing, Prices and Quantities of Output and Inputs, 1947-97 
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Initially, we considered total hours worked (total production workers 

multiplied by average hours worked per worker) as an alternate labor input 

measure. The graph of total hours worked (not shown) is very similar to that of 

total production workers in figure 1f. The main difference is that total hours 

worked is a somewhat noisier series. We chose total production workers as the 

labor input because it resulted in a slightly better fitting, but 

insignificantly different, estimated model. Choosing total production workers 

as the labor input caused the R2s of output price and quantity, investment, and 

research to increase by .01 to .02 and that of labor to increase by .16. 

Throughout, an R2 refers to the reduced-form equation of a variable. 

 Initially, we estimated the model using the data described above, but 

this resulted in a nearly zero R2 for labor. The problem appeared to be 

misspecification of materials in the production function. The model's 

simulations and the production function’s form indicate symmetrical roles for 

labor and materials, while the data in figures 1a and 1c show the time path of 

materials matching closely that of output, not that of labor. The solution 

options were: (i) drop materials price and quantity from the analysis; (ii) 

assume materials quantity is in fixed proportions to the output good; or (iii) 

keep materials price and quantity in the model, as they are, continue to use 

materials price data in the parameter estimation and smoothing, but treat 

materials quantity as unobserved. Options (i) and (ii) would be implemented 

implicitly by measuring the output good as value added instead of shipments and 

dropping materials as a production input. We chose option (iii), which was also 

the easiest to implement, because it required only that the materials quantity 

column in the data matrix be filled in with the missing-value indicator. 

Therefore, in the final round of estimation,  materials quantity was treated as 

unobserved, along with actually unobserved capital, technology, and output-

demand state. 

 

4.2. Statistical Properties of the Estimated Model. 

 

Table 1 reports first-step OLS estimates of the input-price process 

parameters in ϑ1. By conventional standards, the estimated equations fit the 

data well, having R2's greater than .90. Residuals show no significant 

autocorrelations, having p values of Ljung-Box Q statistics greater than .25. 

The estimated pi, pr, and pl processes have characteristic roots near one, with 

maximum absolute characteristic roots, | λ |, between .785 and 1.02. A process 
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is stationary if and only if its | λ | < 1. The complete estimated reduced-form 

VAR(2), (3.2), has 5 absolute characteristic roots between .98 and 1.02 for 

13 variables. Although a cointegration analysis might seem appropriate, we 

did not attempt this for two reasons. The input-price processes serve only 

the subsidiary purpose of providing forecasts for the dynamic optimization 

problem and their AR(2) specifications are adequate for this task. It is not 

clear how a standard cointegration analysis, designed for systems in which 

all variables are observed and coefficients are unrestricted except for unit-

root restrictions, applies in this case, in which parameters are restricted 

by the solution of the dynamic optimization problem and 4 of 13 variables are 

unobserved. We allowed unit roots insofar as residual autocorrelation 

coefficients, θ, may be very close to one. Table 2 reports second-step ML 

estimates of  =  =  = .999. pqθ̂ lθ̂ mθ̂

 
 

Table 1: Step 1 OLS Estimates of Input-Price Process Parameters in ϑ1 

 
 

Var. 
 

Parameter Estimates 
 

Fit Statistics 
  

1,
ˆ

⋅φ  

 

2,
ˆ

⋅φ  

 

| λ | 
 

σ̂  
 
2R  

 
Q 

 
p  i
 

 
1.45 
(11.1) 

 
-.441 
(3.30) 

 
1.02 

 
.178 

 
.971 

 
5.64 
(.933) 

 
p  r
 

 
.652 
(4.01) 

 
.282 
(1.81) 

 
.949 

 
.126 

 
.979 

 
4.67 
(.968) 

 
pl 
 

 
1.88 
(24.8) 

 
-.883 
(11.3) 

 
1.01 

 
.019 

 
.999 

 
14.8 
(.254) 

 
p  m
 

 
1.49 
(9.79) 

 
-.617 
(4.06) 

 
.785 

 
.334 

 
.903 

 
9.13 
(.692) 

 

Comments: Columns 2-7, respectively, show estimates of φ⋅,1 and φ⋅,2, with 
their absolute t statistics in parentheses, implied maximum absolute 
characteristic roots (solutions of λ2 - λ -  = 0), estimated standard 

deviations of disturbances, unadjusted  R
1,

ˆ
⋅φ 2,

ˆ
⋅φ

2s (defined as 1 - sample variance of 
the  innovation of a variable ÷ sample variance of the variable), and Ljung-
Box Q statistics for testing absence of residual autocorrelations at lags 
from 1 to 10, with their marginal significance levels or p values in 
parentheses. 
 

 Table 2 also reports third-step ML estimates of the remaining parameters 

in ϑ3. Their absolute t statistics are less than about .50 and are not reported 



 22

because the small sample size makes them unreliable and uninformative (Sims, 

1980, p. 19, fn. 19). The implied estimated reduced-form equations show 

unsurprisingly good fits by conventional standards, given that the data are 

used in original levels form. Moderate (≅ .50) and high (> .90) R2's of labor 

and the nonlabor variables reflect labor's noisiness and the nonlabor 

variables' unit-root-like smoothness. The high estimated residual 

autocorrelation coefficients ( 's ≥ .84) might suggest that the residual 

autocorrelation corrections and not the economic part of the model account for 

most of the observed endogenous variables' sample variations, but this is not 

the case. ML estimation with all θ's set to zero produced  = .918,  = 

.879,  = .436,  = .772, and  = .944, so that the economic part of the 

model accounts for these fractions of the endogenous variables' sample 

variations. Most importantly, as we now discuss in detail, the model's 

overidentifying restrictions are not rejected by a likelihood ratio test. 

θ̂

2
pq

R 2
q

R

2R
l

2
iR

2
rR

 

 

Table 2: Step 2 and 3 ML Estimates of Structural Parameters in ϑ2 and ϑ3 

 

Production Function Parameters 

β̂  = -9.14 (CES = -.099), ρ̂  = 267 (CET = .004) 

Output-Demand Curve Parameters 

η̂ = .605,  = 1.39,  = -.518 1dφ̂ 2dφ̂

Capital and Technology Equation Coefficients 

1kφ̂  = .589,  = .774,  = .161,  = .459 0iφ̂ 1
ˆ

τφ 0rφ̂

Residual Autocorrelation Coefficients 

pqθ̂  = .999,  = .914,  = .999,  = .999,  = .840,  = .920 qθ̂ lθ̂ mθ̂ iθ̂ rθ̂

Structural Disturbance Standard Deviations 

qσ̂  = .417,  = .514, iσ̂ rσ̂  = .362, kσ̂  = .994, τσ̂  = .055,  = .465 dσ̂

Reduced-Form Equation Fit Statistics 
2
pq

R  = .945,  = .948,  = .498,  = .926,  = .957 2
q

R 2R
l

2
i

R 2
rR

Qpq = 10.8, Qq = 5.96, Ql = 5.97, Qi = 18.6, Qr = 21.4 
     (.378)     (.819)    (.818)     (.158)    (.019) 

 
Comment: The sample span is 1947-1997 (51 years). R2 and Q statistics are 
defined as in table 1. 
 For large N, abstracting from terms independent of parameters, the 

maximized log-likelihood function can be expressed as L( ,ϑ̂ NY ) = N⋅ln| |, NΩ̂
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where  = (1/N) . The likelihood-ratio statistic for testing the 

model's restrictions is LR = N(ln| | - ln| |), where  and  are  

based on restricted and unrestricted innovations, i.e., from maximizing the 

likelihood function with the model's restrictions, respectively, imposed and 

relaxed. The missing-data Kalman filter automatically produces restricted 

innovations as part of the ML estimation. We obtained unrestricted innovations 

as follows. We performed the test using the subsample 1960-1990, because only 

during this period were observations available for the 9 observed variables. 

For this period, the observation matrix, H

NΩ̂ ∑ =

N

1t
T
tty
~y~

R,NΩ̂ U,NΩ̂ R,NΩ̂ U,NΩ̂ NΩ̂

t, is time invariant and given by H = 

[J, 09×13], where J = I13 with rows 4, 7, 8, and 13 deleted. Then, combining the 

state and observation equations, (3.3)-(3.4), we obtain the infinite 

autoregressive representation for ty , hence, the finite p-lag approximation of 

this representation, 

 

(4.1)     ty  = Φ1 1ty −  + ... + Φp pty −  + , ty
~~

 

where the residual  is an approximation of the innovation . We want to 

test the economic restrictions of the model and not the mutual independence of 

input-price processes (2.7). Therefore, except for the zero restrictions which 

make the input-price processes mutually independent, we considered the Φ's to 

be free parameters. For p = 2, we estimated the individual equations of (4.1) 

by applying OLS to the period 1960-1990. Thus, we reestimated the input-price 

processes using the shorter sample. The resulting residuals were serially 

uncorrelated and were used to compute . 

ty
~~

ty
~

U,NΩ̂

LR is distributed asymptotically as χ2(κ), in the limit as N → ∞, where 

κ denotes the number of overidentifying restrictions. The statistic rejects the 

null hypothesis that the overidentifying restrictions are valid when it exceeds 

the critical value, cα, for the significance level α. The period 1960-1990 

implies the small values N = 31 and N/κ = .15, for κ = 118. For such 

situations, Sims (1980, p. 17, fn. 18) suggested replacing N with N - ν in LR, 

where, in this case, ν is the number of estimated parameters divided by the 

number of observed endogenous variables. Thus, N - ν = 31 - (143/9) = 15.1 and 

κ = 118, imply LR = 142, with a p value of .067, so that the overidentifying 

restrictions are not rejected at a conventional 5% significance level. 
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4.3. Economic Properties of the Estimated Model. 

 

 Because the estimates of capital and technology depend critically on 

the economic model, to be confident in the estimates we should be confident 

in the economic properties of the model. Therefore, we present and briefly 

discuss some structural variance decompositions (Sims, 1986) and impulse 

responses of the estimated model. 

We begin by explaining how the variance decompositions are computed. Let 

M = I13 with columns 1, 3, and 4 deleted. Then, combining the state and 

observation equations, (3.3)-(3.4), we obtain the structural infinite moving-

average representation of ty , i.e., in terms of the structural disturbance 

vector, εt, 

 

(4.2)     ty  = Ψ(L)εt = ( )ε∑∞

=
Ψ

0i
i

iL t = ε∑ ∞

=
Ψ

0i i t-i, 

 

where Ψi = J M and J is defined as in (4.1). M has been 

introduced to delete the three structural disturbances, ε

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

×× 1313

13

i

131313
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0

I

0I

BB

pq,t, εlt, and εmt, 

whose variances are normalized to near zero. Let E[ kty + | tY ] denote the k-step-

ahead forecast of kty + ; let  = k,ty
~

kty +  - E[ kty + | tY ] denote the forecast error 

of E[ kty + | tY ]; and, let Vk = E  denote the covariance matrix of . 

Then, V

k,ty
~ T

k,ty
~

k,ty
~

k is given by 

 

(4.3)     Vk = . T
i

k

0i i ΨΣΨ ε=∑
 

We decompose the k-step-ahead forecast-error variances of the 8 

endogenous variables, and their sum, in terms of the 9 unnormalized estimated 

structural disturbance variances. That is, we decompose vk,ii, for i = 1, ..., 

8, and , where v∑ =

8

1i ii,kv k,ii is the (i,i) diagonal element of Vk, in terms of 

, for j = 2, 5, 6, ..., 13. Let s2
jσ k,i,j and j,ks  denote the fractions of vk,ii and 

 due to ; let  be the square-root of Σ∑ =

8

1i ii,kv
2
jσ 2/1

εΣ ε, obtained by replacing 

the diagonal elements of Σε with their positive square roots; let ei denote the 
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13×1 vector with one in position i and zeroes elsewhere; and, let e denote the 

13×1 vector with ones in the first 8 positions and zeroes elsewhere. Then, for 

i = 1, ..., 8 and j = 2, 5, 6, ..., 13, the percentage variance decompositions 

of vk,ii and  are given by ∑ =

8

1i ii,kv

 

(4.4)     sk,i,j = / , i
T
i

2/1T
jj

k

0i
2/1

i
T
i e)ee(e ΨΣΣΨ ε= ε∑ i

T
i

k

0i i
T
i e)(e ΨΣΨ∑ = ε

 

(4.5)     j,ks  = e)ee(e T
i

2/1T
jj

k

0i
2/1

i
T ΨΣΣΨ ε= ε∑ / e)(e T

i
k

0i i
T ΨΣΨ∑ = ε . 

 

 

Table 3: Structural Variance Decomposition of the Estimated Model 
 

  
2
qσ  

 
2
iσ  

 
2
rσ  

 
2
kσ  

 
2
τσ  

 
2
piσ  

 
2
prσ  

 
2
plσ  

 
2
pmσ  

 
2
dσ  

 
s10, ,jpq

 
4.5 

 
2.8 

 
.7 

 
.2 

 
.0 

 
5.2 

 
.1 

 
.0 

 
3.0 

 
83.5

 
s10,q,j⋅

 
19.4 

 
12.2 

 
3.1 

 
.8 

 
.2 

 
27.5

 
.7 

 
.0 

 
15.9 

 
20.2

 
s10 ,j,l

 
.9 

 
3.9 

 
.0 

 
92.7

 
.2 

 
.0 

 
.0 

 
.0 

 
1.6 

 
.1 

 
s10,m,j

 
.9 

 
3.9 

 
.0 

 
92.7

 
.8 

 
.0 

 
.0 

 
.0 

 
1.6 

 
.1 

 
s10,i,j

 
.0 

 
44.5 

 
.1 

 
14.3

 
.1 

 
17.5

 
.4 

 
.0 

 
11.5 

 
11.6

 
s10,r,j

 
.0 

 
.0 

 
5.4 

 
1.1 

 
.2 

 
39.3

 
1.0 

 
.1 

 
25.8 

 
27.1

 
s10,k,j

 
.0 

 
4.0 

 
.0 

 
95.3

 
.0 

 
.3 

 
.0 

 
.0 

 
.2 

 
.2 

 
s10 τ,j,

 
.0 

 
.0 

 
1.9 

 
1.1 

 
1.6 

 
39.9

 
1.1 

 
.1 

 
26.5 

 
27.8

 
s 10,j

 
1.3 

 
5.2 

 
.7 

 
69.6

 
.4 

 
7.4 

 
.2 

 
.0 

 
5.4 

 
9.8 

 
Comment: Rows 2-9 show the percentage decompositions of the 10-step-ahead 
forecast-error variances of the 8 endogenous variables in terms of the 
variances of the 10 unnormalized estimated structural disturbances. Row 10 
shows the percentage decomposition of the sum of the variances of the eight 
endogenous variables. Each row's numbers sum to one hundred. 
 

 

 

 

Table 3 shows the structural decompositions of k = 10 year ahead 

forecast-error variances. Rows 2-9 show decompositions of variances of 

endogenous variables; row 10 shows the decomposition of the sum of variances 



 26

of endogenous variables. For example, elements 1, 2, 6, and 10 in row 2 

indicate that, according to the estimated model, 4.5, 2.8, 5.2, and 83.5 

percent of the variance of pq is, respectively, due to , , , and . 

Because the model is estimated using standardized data, the decompositions are 

unit free. However, different normalizations of disturbance variances in ϑ

2
qσ 2

iσ 2
piσ 2

dσ

0 

will result in different decompositions. All disturbances, except disturbances 

of research, technology, price of research, and price of labor, explain 

significant (> 6%) fractions of some individual variances or the summed 

variances. Interestingly, the small impacts of research and technology 

disturbances run contrary to the real business cycle literature which 

attributes significant macroeconomic fluctuations to technology shocks. 

Overall, the decompositions suggest that the capital, output-demand, and 

investment-price disturbances are the leading sources of variations of the 8 

endogenous variables. 

 

Figure 2a: Responses to Impulse in Output-Demand Disturbance 

Price of Output
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Figure 2b: Responses to Impulse in Technology Disturbance 
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The simulations in figures 2a-b display the dynamic adjustment-cost 

behavior in the model in response to unit impulses in output-demand and 

technology disturbances. The simulations in figure 2a match the general 

interpretation of figures 1a-j. The simulations depict responses to a unit one-

period shock (impulse) to the output-demand state in period 1, starting from an 

initial long-run equilibrium represented by the origin. The estimate  = .605 

implies a moderately sloped output-demand curve. The estimates  = -9.14 and 

η̂

β̂ ρ̂  

= 267 imply CES = -.099 and CET = .004, hence, low input substitutability and 

very high adjustment costs on capital and technology. High adjustment costs 

imply a steep marginal-cost-of-production curve. Therefore, after the output-

demand shock occurs, the price of output rises sharply but output increases 

only slightly. Initially, the extra output is produced using additional freely-

adjusted labor and materials inputs and pre-shock stocks of capital and 

technology. Because the shocked demand state declines moderately slowly, firms 

have an incentive to increase their production capacities. Thus, they increase 

their investment and research rates and substitute capital and technology for 

labor and materials. Figure 2b depicts responses to a unit one-period shock to 

technology in period 1, again starting from an initial long-run equilibrium at 
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the origin. In figure 2b, output-demand conditions remain unchanged so there is 

little change in price or quantity of output. The shock mainly causes 

technology to be substituted for labor and materials until the windfall 

addition to technology has depreciated fully. 

 

4.4. Model-Based versus Standard Estimates of Capital and Technology. 

 

By applying the Kalman filter to the estimated model and the data, we 

compute the filtered state estimates, , and their error covariance matrices, 

E(z

t|tẑ

t- )⋅(zt|tẑ t- )t|tẑ
T, for t = 1958, ..., 1997, so that the 7th and 8th elements of 

 are the model-based production capital and technology estimates,  and 

, and the square roots of the 7th and 8th elements of the principal 

diagonal of the error covariance matrix are the estimated standard errors of 

 and . Figures 3a-b and 4a-b display the model-based and standard 

(production) capital and technology estimates of aggregated U.S. manufacturing 

industries from 1958-97. The solid graphs depict the model-based estimates and 

their 2-standard-error confidence intervals. The dashed graphs of capital 

depict the sum of estimates of the stocks of equipment and structures by the 

Bureau of Labor Statistics (BLS), based on nonstochastic perpetual inventory 

equations (PIEs). The dashed graphs of technology depict BLS estimates of 

multifactor productivity computed as Solow residuals. In addition, the BLS 

estimates the service flows of equipment and structures and the Bureau of 

Economic Analysis (BEA) estimates the stocks of equipment and structures. 

Because the BLS capital-service-flow estimates and the BEA capital-stock 

estimates are sufficiently similar to the BLS capital-stock estimates, the 

alternative estimates are not displayed or considered further and the BLS 

capital-stock and multifactor productivity estimates are considered as 

representative of standard capital and technology estimates. 

t|tẑ t|tk̂

t|tτ̂

t|tk̂ t|tτ̂

Because ML estimation of the model is tractable only if all the data are 

scaled similarly, the data were standardized prior to estimation, by 

subtracting sample means and dividing by sample standard deviations. Therefore, 

being based on standardized data, the model-based estimates are in 

correspondingly standardized units. The BLS estimates are in arbitrarily scaled 

real units. To compare the two sets of estimates, one set must be converted to 

the units of the other. Therefore, prior to graphing, we standardized each set 

of estimates. Also, in each figure, we translated all graphs up by the same 

amount so that all values are graphed as positive numbers. Because the units of 
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the graphs are arbitrary, vertical differences in a graph cannot be interpreted 

as percentage changes. However, differences between graphs in the same figure 

are in comparable standardized units. The graphs start in 1958 because output, 

a critical determinant of the estimates, is first available in 1958. 

Figures 3a-b depict graphs of model-based capital and technology 

estimates based on the parameter estimates in tables 1 and 2. The capital and 

technology estimates have, respectively, sample average estimated standard 

errors of 1.03 and .089, which implies that capital's 2-standard-error 

confidence intervals are over 10 times larger than technology's. Suppose 

"short-run" means variations with average periodicities of less than about 8 

years, which are the sums of unpredictable noises and business cycles, and 

"long-run" means variations with greater average periodicities, which reflect 

trends. Then, the model-based capital estimates exhibit frequent and 

significant short-run variations and the model-based technology estimates 

exhibit less frequent and less significant short-run variations. Standard 

filtering or smoothing formulas can decompose the short-run variations into 

sums of noises, cycles, and trends. However, because the formulas ignore the 

sampling variability of parameter estimates and model misspecification, the 

decompositions themselves are uncertain. To the extent that short-run 

variations reflect cycles, not noises, we can often explain them in terms of 

identifiable events, such as the Vietnam War (1965-73) and oil-price increases 

(1973, 1979), and in terms of cyclical fluctuations of the overall economy. The 

model-based capital and technology estimates exhibit cycles passed from the 

observed variables through the estimated model. Because they are based on 

nonstochastic PIEs, the BLS capital estimates exhibit miniscule short-run 

variations. 



 30

Figures 3a and 3b: Model-Based versus BLS Estimates of Capital and Technology 

Figure 3a: Model-Based vs. BLS Estimates of Capital
phik = .589, phit = .161, sek = .994, set = .055
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Figure 3b: Model-Based vs. BLS Estimates of Technology
phik = .589, phit = .161, sek = .994, set = .055
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Figures 4a and 4b: Model-Based versus BLS Estimates of Capital and Technology 

Figure 4a: Model-Based vs. BLS Estimates of Capital
phik = .589, phit = .161, sek = .0001, set = .0001
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Figure 4b: Model-Based vs. BLS Estimates of Technology
phik = .589, phit = .161, sek = .0001, set = .0001
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 The question arises how the model-based capital and technology estimates 

change when the estimates of the variances of their disturbances in the PIEs 

are overriden and set to near zero. (The disturbance variances cannot be set 

exactly to zero because the estimation algorithm collapses unless all 

structural disturbance variances are least slightly positive.) Thus, figures 

4a-b depict alternate model-based capital and technology estimates based on 

their disturbances set to near zero (  =  = .0001), such that all the other 

structural parameters remain at their estimated values in tables 1 and 2. Going 

from figure 3a to 4a, the sample average of the estimated standard errors of 

the model-based capital estimates decline 5-fold, from 1.03 to .205. Setting 

the capital disturbance variances to near zero does not entirely reduce the 

capital standard errors to zero because they depend on all structural 

disturbance variances, but it does reduce them considerably. Thus, going from 

figure 3a to 4a, the short-run variations of the capital estimates also decline 

5-fold, causing the estimates to become more trend-like and to conform better 

to the BLS estimates. Going from figure 3b to 4b, causes the sample average of 

the estimated standard errors of the technology estimates to decline only 

slightly, from .089 to .060, and, correspondingly, the technology estimates to 

change little. 

2
kσ 2

τσ

Being estimates based on PIEs, the model-based and BLS capital estimates 

could be considered available capital stocks. However, apparently large short-

run variations in the model-based estimates in figure 3a might seem to 

contradict this notion. Aren't available aggregate capital stocks large 

relative to investment flows and capital disturbances and don't they depreciate 

slowly, so that their graphs should be very smooth, like the BLS capital 

estimates in figure 3a? We could informally interpret short-run variations in 

the model-based capital estimates as variations in utilized capital stocks or 

as variations in effective capital stocks, i.e., adjusted for misallocations. 

Standard estimation methods treat all capital investments as being equally 

successful, regardless of misallocations, market realizations, and market 

valuations. Thus, in the standard accounting, an optimally located factory is 

considered to add the same amount to capital as a mislocated factory built 

using the same resources. However, in order to formally interpret the short-

run capital variations as utilized or effective capital, we would have to 

extend the model to include some notion of capacity utilization or market 

valuation of capital. 

Being Solow residuals, the BLS technology estimates in figure 3b exhibit 

larger short-run variations than the BLS capital estimates, especially during 
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the oil price rises in the 1970s. The BLS technology estimates are usually 

considered to be the residuals of the production function in the analysis. 

Here, because both capital and technology are unobserved, either of their 

estimates could be considered residuals, but, because the model-based capital 

estimates exhibit larger short-run variations, they are more naturally 

considered residuals. This is also consistent with capital's role as the 

residual income earning factor. Technology should reflect more smoothly varying 

knowledge. Because Solow residuals are noisy, they are often smoothed prior to 

being considered technology estimates (French, 2000). Being constructed as 

filtered estimates the model-based technology estimates need not be smoothed 

further and, in fact, in figures 3b, 4b, and 5b are as smooth or smoother than 

the BLS Solow-residual estimates. 

There has been a debate about whether capital growth or technology growth 

account for above average output growth in the 1990s (Gordon, 2000; Oliner and 

Sichel, 2000; Stiroh, 2001). Figure 1h indicates above average growth of 

investment in the 1990s; figure 1j indicates first brief above trend growth and 

then decline of research in the 1990s. Figures 3a-b show correspondingly 

similar growth patterns of model-based capital and technology estimates in the 

1990s. Thus, the model-based estimates indicate that above average capital 

growth accounts for above average manufacturing output growth in the 1990s. By 

contrast, for the BLS estimates figures 3a-b indicate that above average 

technology growth accounts for the recent above average manufacturing output 

growth. 

The parameter estimates in tables 1 and 2 seem reasonable, except 

possibly for the seemingly low annual capital and technology persistence rates 

of  = .589 and  = .161. By contrast, Jorgenson and Stephenson (1967) 

reported a quarterly depreciation rate for equipment and structures in U.S. 

manufacturing industries from 1947-60, which translates to a higher annual 

capital persistence rate of  = .895. In figure 5, to guage the effects of 

higher capital and technology persistence rates on model-based capital and 

technology estimates, we set both capital and technology persistence rates to 

the implied Jorgenson-Stephenson annual capital persistence rate,  =  = 

.895, kept the capital and technology disturbance variances at their figure 4 

values, and kept all other parameters at their figure 3 values. 

1kφ̂ 1
ˆ

τφ

1kφ̂

1kφ̂ 1
ˆ

τφ
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Figures 5a and 5b: Model-Based versus BLS Estimates of Capital and Technology 

Figure 5a: Model-Based vs. BLS
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Figure 5b: Model-Based vs. BLS Estimates
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  0001

58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96
0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

 



 35

 Going from figures 4a-b to figures 5a-b shows relatively little change 

in the overall time profiles of the model-based capital and technology 

estimates, a significant increase in their smoothness, and a corresponding 

narrowing of their confidence intervals. The exception is the odd initial 

decline, from 1958 to 1965, in the model-based technology estimate in figure 

5b. Although it is unclear why the decline occurs, it tells us that we should 

be cautious about resetting apparently unsatisfactory estimated parameter 

values to preferred ones. In this case, resetting  = .589 and  = .161 to 

 =  = .895, causes the reasonable initial monotonically-increasing 

technology estimate to become an unreasonable sharp decline. Thus, we accept 

the model-based capital and technology estimates in figures 3a-b and, even 

though the capital estimates in figure 3a are very noisy, we conclude that 

this simply reflects uncertainty about capital's true values. 

1kφ̂ 1
ˆ

τφ

1kφ̂ 1
ˆ

τφ

 
 

Table 4: Nonlinear Least-Squares Estimates of Capital and Technology Eqs. 
 

 
Capital Equation 

 
1

ˆ
⋅φ  0

ˆ
⋅φ  

2R ⋅  

Model-Based Data 
1

(22.2) 
kφ̂  = .336 0

(9.14) 
iφ̂  = .608 2

kR  = .730 

BLS Data 
1

(78.1) 
kφ̂  = .363 0

(29.3) 
iφ̂  = .629 

2
kR  = .981 

 
Technology Equation 

Model-Based Data 
1

(118.) 

ˆ
τφ  = .376 0

(42.2) 
rφ̂  = .638 

2R τ  = .992 

BLS Data 
1

(50.8) 

ˆ
τφ  = .323 0

(21.7) 
rφ̂  = .599 2R τ  = .945 

 
Comment: Columns 2-3 show estimates of the φ's, with their absolute t 
statistics in parentheses. The φ's were estimated in terms of their underlying 
continuous-time parameters, fk and fτ. The standard errors in the t statistics 
were computed based on linear approximations of the nonlinear mappings from 
the f's to the φ's. 
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As a further check on the reasonableness of the maximum likelihood 

estimates  = .589 and  = .161, we estimated the capital and technology 

equations separately using nonlinear least-squares (NLLS). As in the system-

wide ML estimation, the equations are parameterized in terms of their 

underlying continuous-time parameters. We estimated the equations using the 

initial model-based and BLS, capital and technology, estimates as real data. 

The results are reported in table 4. Although the NLLS estimates of φ

1kφ̂ 1
ˆ

τφ

k1 and φτ1 

in table 4 differ from the ML estimates in table 2, the NLLS estimates are very 

similar for both the model-based data and the BLS data. As expected, the fit of 

the estimated equations depends on the noisiness of the dependent variable. 

Thus, the capital equation fits better when using BLS data (  = .891) than 

when using the model-based data (  = .730), and the reverse is true for the 

technology equation. In essence, table 4 confirms what we see in figures 3 and 

4, that the trends of the model-based and BLS capital and technology estimates 

are similar. Although the ML estimates,  = .589 and  = .161, might seem 

low in terms of prior economic notions, they are acceptable econometrically, 

because, along with other parameter estimates, they imply an acceptably 

fitting model, with overidentifying restrictions which are not rejected. 

Moreover, the ML estimates of  and  and of the other parameters, result 

in model-based capital and technology estimates which broadly conform to the 

standard capital and technology estimates. In sum, because the estimation of 

capital and technology is a system-wide estimation, a seemingly reasonable 

modification of ML estimates of certain parameters to conform better to prior 

notions can result in unreasonable capital and technology estimates. 

2
kR

2
kR

1kφ̂ 1
ˆ

τφ

1kφ̂ 1
ˆ

τφ

 

5. Conclusion. 

 

The paper has developed a new method for estimating unobserved economic 

variables based on an estimated dynamic economic model and applies it to 

estimating production capital and technology (total-factor productivity) of 

aggregated U.S. manufacturing industries from 1958-97. The method illustrates 

how modern estimation, control, and filtering methods can be applied to a 

parsimonious dynamic economic model to produce estimates and standard errors 

of unobserved variables. Standard methods for estimating capital and 

technology, developed forty years ago, are appealing in their theoretical and 

computational simplicity, but are unnecessarily restrictive in some respects, 
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for example, ignore adjustment costs. The present method admits adjustment 

costs of capital and technology, but is more complex analytically, 

econometrically, and computationally. Because the paper shows that the method 

is feasible, we urge applying it to other models and data sets. The method is 

feasible when the economic model imposes enough identifying restrictions to 

compensate for the unobservability of some of the variables. 

The four major findings of the application are: (1) The model-based 

capital estimates are 10 times more uncertain than the model-based technology 

estimates as measured by estimated standard errors. (2) The trends of the 

model-based capital and technology estimates are similar to the trends of the 

standard estimates. (3) The model-based capital and technology estimates imply 

that above average capital growth in the 1990s -- not above average technology 

growth -- explains above average growth in manufacturing output in the 1990s. 

(4) Changes in parameter estimates to suit prior views can cause unexpectedly 

large and unreasonable changes in the model-based capital and technology 

estimates and, therefore, should be made cautiously. 

Sorting out the competing interpretations of the model-based capital 

estimates as available, utilized, or effective capital stocks requires 

formally introducing some notion of capacity utilization or market valuation 

of capital. The variance decompositions in table 3 assign principal 

explanatory roles to capital and investment-price disturbances, which 

suggests modelling investment and research decisions in more detail. For 

example, the discount rate might be time-varying, as δt = 1/(1 + nt), where nt 

is an observed exogenous interest rate whose generating process is also 

estimated. Also, the capital and technology equations might be specified more 

generally as rational distributed lags, which might include time-to-built 

gestation lags or non-geometrical depreciation rates of capital and 

technology. 

 

Appendix: Statement of Cost, Profit, and Reduced-Form Parameters. 

 

 Because ∇2cq(w0) is symmetric, it suffices to state its upper triangular 

part. Let cij denote element (i,j) of  ∇2cq(w0). Then, for w0 = (1, 1, 1, 1, 1, 

α2, α4)T, we have: 

 

c11 =  γ1(1-γ1)(ρ-1) + γ12α1(1-β)/(1-α1) 

c12 = -γ1γ2[ρ-1 + α1(1-β)/(1-α1)] 

c13 = -γ1γ3[ρ-1 + α1(1-β)/(1-α1)] 

c14 = -γ1α1(1-β)/(1-α1) 
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c15 = -γ1(1-α1β)/(1-α1) 

c16 =  γ1/(1-α1) 

c17 =  γ1/(1-α1) 

c22 =  γ2(1-γ2)(ρ-1) + γ22α1(1-β)/(1-α1) 

c23 = -γ2γ3[ρ-1 + α1(1-β)/(1-α1)] 

c24 = -γ2α1(1-β)/(1-α1) 

c25 = -γ2(1-α1β)/(1-α1) 

c26 =  γ2/(1-α1) 

c27 =  γ2/(1-α1) 

c33 =  γ3(1-γ3)(ρ-1) + γ32α1(1-β)/(1-α1) 

c34 = -γ3α1(1-β)/(1-α1) 

c35 = -γ3(1-α1β)/(1-α1) 

c36 =  γ3/(1-α1) 

c37 =  γ3/(1-α1) 

c44 =  α1(1-β)[1 + α1(2-α1)/(1-α1)] 

c45 = -α1 + α1(2-α1-β)/(1-α1) 

c46 = -α1/(1-α1) 

c47 = -α1/(1-α1) 

c55 =  (2-α1-α1β)/(1-α1) 

c56 = -1/(1-α1) 

c57 = -1/(1-α1) 

c66 = -α3/[α2(1-α1)(1-β)] 

c77 = -α2/[α3(1-α1)(1-β)]. 

 

 Next, we state the elements of the 2×2, 2×14, and 14×14 coefficient 

matrices R, S, and Q, which define quadratic form (2.15). Because R and Q are 

symmetric, we state only their upper-triangular parts. Rij, Sij, and Qij denote 

(i,j) elements of the matrices. To eliminate the common factor 1/2, we scale πt 

up by the factor of 2, which is allowable because optimal decisions are 

invariant to the scale of πt. For simplicity, we state only nonzero elements of 

R, S, and Q, so that all unstated elements are zero. Thus, setting c0 = 

(η+c11)-1, we have 

 

R11 = c0c12 – c22

R12 = c0c12c13 – c23

R22 = c0
2
13c  – c33

S11 = c0c12c14 - c24

S12 = c0c12c15 - c25

S13  = -1 

S15 = c0c12c16 - c26

S16 = c0c12c17 - c27

S17 = -c0c12

S21 = c0c13c14 - c34

S22 = c0c13c15 - c35

S24 = -1 

S25 = c0c13c16 – c36

S26 = c0c13c17 – c37

S27 = -c0c13

Q11 = c0
2
14c  - c44

Q12 = c0c14c15 – c45

Q15 = c0c14c16 – c46

Q16 = c0c14c17 – c47

Q17 = -c0c14
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Q22 = c0
2
15c  – c55

Q25 = c0c15c16 – c56

Q26 = c0c15c17 - c57

Q27 = -c0c15. 

 

Finally, we state the structural coefficient matrices Ak, for k = 0, 1, 

2. Let Ak,i,j and Ki,j, respectively, denote elements (i,j) of Ak and K, the 

optimal investment-research feedback matrix. As before, only nonzero elements 

are stated. Also, because the diagonal elements of A0 are all one, they are not 

stated. Proceeding row-wise across the matrices, 

 

A0,1,2 = η 

A0,1,13 = -1 

A0,2,5 = c0c12

A0,2,6 = c0c13

A0,2,7 = c0c14

A0,2,8 = c0c15

A0,2,11 = c0c16

A0,2,12 = c0c17

A0,2,13 = -c0

A0,3,2 = -c16

A0,3,5 = -c26

A0,3,6 = -c36

A0,3,7 = -c46

A0,3,8 = -c56

A0,3,11 = -c66

A0,3,12 = -c67

A0,4,2 = -c17

A0,4,5 = -c27

A0,4,6 = -c37

A0,4,7 = -c47

A0,4,8 = -c57

A0,4,11 = -c67

A0,4,12 = -c77

A0,7,5 = -φi0

A0,8,6 = -φr0

 

 

[A1,5,7, ..., A1,5,13] = [K1,1, ..., K1,7] 

[A1,6,7, ..., A1,6,13] = [K2,1, ..., K2,7] 

[A1,7,7, ..., A1,13,13] = [φk1, φτ1, φpi,1, φpr,1, φpl,1, φpm,1, φd1] 

[A2,5,7, ..., A2,5,13] = [K1,8, ..., K1,14] 

[A2,6,7, ..., A2,6,13] = [K2,8, ..., K2,14] 

[A2,7,7, ..., A2,13,13] = [0, 0, φpi,2, φpr,2,  φpl,2, φpm,2, φd2]. 
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