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Abstract
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1 Introduction

Our paper attempts to contribute to the literature on estimating linear dynamic panel data
models with lagged dependent variables. The idea that estimating the dynamic panel equa-
tion by OLS will produce biased and inconsistent estimates has been explored in the liter-
ature since Nickell (1981) and Anderson and Hsiao (1982), with Arellano and Bond (1991)
proposing an optimal GMM estimator. The Arellano-Bond estimator exhibits substantial
downward bias when the coefficient on the lagged dependent variable is close to unity, as
then the dependent variable follows a random walk and lagged levels correlate poorly with
lagged differences, thus creating a weak instrument problem. A strand of the literature
(Ahn and Schmidt (1995) , Blundell and Bond (1998), Hahn (1999)) solves this problem by
imposing further restrictions on the dependent variable process and exploiting the resulting
moment conditions; however, these restrictions may not hold in practice. Hahn, Hausman
and Kuersteiner (2007) follow Griliches and Hausman (1986) and take long differences of the
data to improve the correlation between levels and differences; however, this approach does
not make use of all the data available. Hence the estimation of dynamic panel models is still
an open problem.

We propose a new estimator for the dynamic panel model, which is based on computing
the bias terms in the first-order condition for the autoregressive coefficient that result from
the failure of strict exogeneity. The main assumption that we must maintain for this approach
is the lack of serial correlation between the model errors, as in Arellano and Bond (1991).
We find a modified version of this first-order condition, one of whose roots is a consistent
estimator of the true autoregressive parameter. We can expand our estimator to accomodate
all predetermined variables, and we develop a general method for predetermined variables
in a panel regression context that is also based on the idea of correcting the first-order
conditions to make them unbiased estimators of zero at the truth.

Simulations of the performance of our estimator against that of previous GMM-based esti-
mators suggests that our estimator nearly always has lower bias and variance in its estimates

of the coefficient on the lagged dependent variable, and that it is considerably more efficient



in the estimation of the coefficients on the covariates, which often tend to be of primary
interest in applications. In particular, we present evidence that, unlike many instrumental-
variables based estimators, our technique performs well regardless of the distribution of the
initial values of the dependent variable. Our estimator also matches the performance of
existing estimators in terms of allowing other regressors to be predetermined but not exoge-
nous. We also compare our estimator with the factor-based approach recently proposed by
Bai (2013) and find that a modification of our estimator can accommodate the case in which
fixed effects and model errors are correlated (also matching the performance of Arellano and
Bond 1991), while the Bai (2013) estimator delivers consistent estimates on the assumption
that the two are uncorrelated.!

The rest of the paper is organized as follows. Section 2 presents a simple version of our
dynamic panel estimator. Section 3 expands the estimator to accomodate weaker assump-
tions on the data. Section 4 presents simulation evidence on the properties of our estimator.

Section 5 concludes.

2 The Estimator

We consider the problem of estimating the model

Yit = 0Yit—1 + x;,tﬁo + Mot Ei (1)

where y;; is the dependent variable, z;; is a vector of regressors, y; o is a fixed effect and
€;+ is the error term. There are N panel units ¢, with N thought of as large, and 7" time
units ¢, with T treated as a fixed parameter. We consider combinations of the following

assumptions:

E(gisejpv) = 0ifi# jort#t (NSC)
E(ziej0) = 0ifi#jort#t (GM)
E(zie0) = 0ifi#jort' >t (PR)

! Hsiao, Pesaran and Tahmiscioglu (2002) also propose an estimator under additional assumptions on the covariates Tit-



Assumption NSC is the no-serial correlation assumption used by much of the literature
following Arellano and Bond (1991), and it will be maintained for this estimator. Assumption
GM states that the regressors x; ; are strictly exogenous, and assumption PR states that they
are predetermined, but not necessarily exogenous. We will see that assumption GM can be
weakened to assumption PR. We will also impose two additional assumptions for exposition,

which we will subsequently relax.

E (pi0eit) = 0 (ECF)

E(yi,OEi,t) = O(ECI)
2.1 Notation

First, we define the empirical fixed effects as functions of estimators of o and f:

) 1 «
f; (v, B) = T Z (?Jz‘,t — QY1 — I;,tﬁ)
t=1

Suppose that we know 3, and ap. Then,

T
. 1 1
ft; (o, By) = Mio T T Z it = Mo T+ Op (f)
t=1
under any combination of the assumptions above. Hence, the empirical fixed effects are

unbiased (but not consistent) for the true fixed effects i, .

Now, for any variable 7;;, define

T
. 1
Tit =Tit — E Tir
) ) T )
T=1

the "demeaned" version of the variable 7 ;.

In particular, we have

~ ~ Al A~
Uit = aolit—1+ ;B0 + Eix



2.2 Coefficients as Functions of Autoregressive Parameter

2.2.1 Case 1: Assumption (GM)
We define

-1 N T
Bou @ (NTZZ s ) (%zz@—y))
=1

i=1 t=1 t=1

the OLS estimate of the coefficient on the regressors given an estimate of the autoregressive
parameter .

Under assumption (GM) we have that

E (.@iﬂgéiﬂg) - 0 (2)

(since z;; is uncorrelated with the leads and lags of ¢;; as well as with its current value)

SO

and

=1 t=1

| NI -1 | N
Bam (o) = By + (W Z > did ”) NT > D disie = B
Hence, if the true value of the autoregressive parameter were known, the OLS estimate for

the coefficient on the regressors in equation (1) would be consistent for §,. The inconsistency

in this estimate is entirely a result of having an inconsistent estimate of «y.

2.2.2 Case 2: Assumption (PR)

Under assumption (PR), equation (2) is no longer true. However, we can instead compute

L N -1 1 MT
Bpp (@) = (ﬁ Z Z éi,t:%;t> (ﬁ Z Z Zit (Yig — aﬂi,t—l))

i=1 t=1 =1 t=1



where

Zit = fL‘zt+Z( —7‘—1) Tir, t<T

T=t+1
= XiT, t="1T

It is straightforward to show that

BPR (o) — By

because

t—1
E (xi,tgi,t’) =F (xi,téi,t ) t — 1 Z E xz th T
7':1

where &;, are the empirical residuals evaluated at @« = oy and 8 = [,. The complete
derivation of the form of the variable z; is presented in Appendix I. It is worth noting that
although fpp () is numerically identical to an instrumental variables estimator with Zit
as an instrument for Z;;, the exclusion restriction plainly need not hold, since, for example
E(zirei1) = E(x;rei1) need not be equal to zero. Once again, however, it is clear that
even if the regressors are predetermined but not exogenous, the fundamental source of the

inconsistency of their estimates lies with having an incorrect value for a.

2.3 Modified FOC for o
Counsider the first-order condition for « derived from OLS. We have

1 N T )
= 20D (s — a1 — B (@) = i (@) g

i=1 t=1
where () and 1, (o) = f1; (o, B («)) have been definued in the previous subsection.

For consistent estimation, we need

F,() =0

However,



T
1
F, (Oéo) = NT ZZ Yit — QolYit—1 — CUZ tﬂ (Cm) it (Oéo)) Yit—1

1 le t;l 1 .
= N it — Eir | Yit— +o (1)
=0 ] I ol IV
1 N T 1 T t—1 t—1
= T <€u -7 Z&n) ( "io + Zoﬁ Yy B+ (Z a8‘1> i + Zaa‘lei,t_7> +0p (1)
i=1 t=2 r=1 —1 —_
1 T 1 T t—1
- TZE E’Lt_TZE’i,T>ZaO 51157] (I)
t=2 T=1 T=1

1 T t—1
<<5i,tTZ€i,r> OZT ! Qt ‘rﬂ()) (111)

T=1

So the FOC evaluated at the true value of & = «( approaches in probability a sum
of four terms, not necessarily zero. Term I will be nonzero (specifically, negative) under
any combination of assumptions discussed earlier in this section. Term II will be zero iff
assumption (ECF) holds. Term IIT will be zero under assumption (GM), but not under
assumption (PR). Lastly, Term IV will be zero iff assumption (ECI) holds.

The term that is always nonzero is (I). It is straightforward to see that under assumption

(NSC)

1 T t-—1
D=5 B ()
t=2

=2 =1

Define the empirical residual as

Eig (@) = Bix — g1 — i;tﬁ ()
= @z‘,t - i’;,tﬁo -« <,@z‘,t—1 - ifi,tﬁl)

where



or the equivalent of these terms under assumption PR,

and note that

T
. 1
Eip (o) = €ip — T Z Ei,r +0p (1)
=1

Then, we can estimate the quantities £ (5?77) as a function of « as follows:

1L T 1 1<
E(e},) «— N (ﬂ <§it (@) =~ 77 > (040))>

=1

This approach is similar to the result of Stock and Watson (2008) for the estimation of

standard errors in a panel setting with fixed T
In particular, rather than being a potentially more complicated function, term ([) is a

polynomial in «g of order 7. We note that

it (a) = rgt = arit

where Tﬁt and rz{t are residuals from regressions of ; ; on ;; and ¢; ;1 on ;, respectively
(instrumented by Z;; when assumption GM is relaxed to assumption PR).

Then, we define the following moments of residuals:

2
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N
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It follows straightforwardly that
1 T /T—t+1 T—1 /T—t T-2 (T—t—1
t=2 T=1 t=1 =1 t=0 =1

and we can rewrite the modified first order condition as
Pl (Oéo) — -+ aoLs — 0
or

P (ag) =0

The fact that the modified first-order condition in « takes the form of a polynomial makes
our estimator tractable, as it does not involve numerically solving an equation or maximizing
a criterion function, where the existence and uniqueness of roots, as well as the convergence
properties of most root-finding algorithms are not generally known. Instead, we obtain
exactly T' roots, some imaginary and some real.

As N goes to infinity, P, (o) should have at least one real root — at og. However, in finite
samples, P (o) may not have any real roots. Therefore, we also consider values of a that
are local minima of (P, (a))?, or, equivalently, solve P/ (o) = 0 subject to P/ (a) > 0.

We then face the problem of finding which member of our solution set to select as our
estimate.? One straightforward approach is to select the root that is closest to another,
consistent estimator of ag. We will present simulations using an infeasible version of the
estimator in which we select the root that is closest to the true value of the autoregressive
parameter used to construct the simulation, as well as using the root that is closest to
an estimator based on instrumenting the lagged dependent variable with lags of strictly

€X0gEeNnous regressors.

2While we do not have a criterion function, as in maximum likelihood, to select the root that attains the global maximum,
we can exhaustively catalogue the candidate roots, while this is generally not possible to do with a likelihood function that is
not globally concave.



3 Extensions of the Basic Estimator

As alluded to in the previous subsection, we can easily relax all of the assumptions under
which Terms II-IV are nonzero by approximating them in ways that are similar to the
approximation of Term I. All of the approximations are polynomials in «, because consistent
estimators of the error variances, of moments of fixed effects and of interactions between
predetermined covariates and errors are linear or quadratic in . We discuss the construction

of these approximations as polynomials of a below:

3.1 Term II

Term (I1) is nonzero iff we have E (p1;4¢;4) # 0. It can also be estimated fairly straightfor-

wardly, since

1 & 1 & 1 <
N Zéz’,t (o) fio () = N Z <€z’,t T €”> (/1%0 + 5 Z€zt>

i=1 =1

where we recall that

T
. . 1
i (00) = i (00, B (00)) = 5 > (uia — g1 = ;,80)
t=1

The second term can be further analyzed as

and then the entire sum of second terms becomes

N

1w 1 1«
N Z <5i,t Z&r) Hio = €z s (040)—? Z (Z 0461>
i=1

where I/ (ef’t) is estimated as in term (), so everything on the right hand-side is estimable.

We can consequently express term (/1) as another polynomial in « of order 7T'. First, we



define

RE = LS am i)
N
RO= oY
where 70 and 7! are the panel unit fixed effects from the regressions generating 3, and 3,
respectively. Then, we define
T

SR N (COUP RS SIENEN) IR

T=1

and

~ 1 -
Zf:Rf—TRf

It is then easy to see that

5@@::%2(22) —2;,2:(;120)% %;(;220> — (I1)

where P, (o) is a polynomial in «q of order 7.

3.2 Term III

Next, we may needo to estimate term (/1) if assumption (GM) does not hold, but assump-

tion (PR) does. Then

1 T 1 t—1 , -1
a3 (f 2 (Z ’ ()>> !
t=2 T'=1 T=1

and we can estimate F (Ez‘;xé;/) for 7 > 1 by the formula

~+
|
—

1
T—(t—1)

T

E(xii0) = E(viéip (o)) + E (x4 ()

1

10



which is derived in Appendix I as part of the general estimator for predetermined variables.

If we define
fft = xi,tBk

where k € {0,1} as before, and we define

} N -1
X) = (T > ZZ tht/

i=1 t'=1

N -1
th/2 _ (T—) ;ﬂz (1/2) ( Ztr”/+ trlt,)
N t-—1

X = (T ) S flarly

i=1 t'=1

we can easily show that

T—1 /T—t+1 | T2 T | I3 (Tt
P; () == ( Z ( Z ) — 2 < X1/2> + = ( ;) ag> — (I11)
T= t=1 T=2 t=0 T=2
another polynomial of order 7.

3.3 Term IV
Term (IV') is nonzero iff we have E (y;0¢;:) # 0. It can be estimated rather easily, since

1 T

E it (B () yio) = E(€iyio) — T Z E (giryi0)

=1
and it is obvious that the left hand-side of the above equation is an estimable polynomial
in «ay.
We can even simply modify the original FOC to be
1

N T
Fo (o, ) = - NT Z Z (Wir — Y1 — 27,8 (@) = f1; (@) (Yie-1 — @' 'yio)

=1 t=1

11



4 Simulations

We run simulations to illustrate the properties of our new estimator. All of these simulations

involved the model

Yit = QYit—1 + ﬁoﬂfi,t + Wi+ Eig

with various assumptions. We typically compute two versions of our estimator: an in-
feasible estimator, where we select the root that is closest to the true value of agy to be our
estimate; and a feasible estimator, where we select the root that is closest to the estimate of
g provided by instrumenting the lagged dependent variable with lags of z;*. The second
approach requires that E (z;.6;5) = 0 for all s,¢, which is equivalent to x;; being strictly
exogenous. Hence, in specifications involving predetermined regressors, we instead select the
root that is closest to the estimate of ay provided by treating the lagged dependent variable

as a general predetermined variable, as described in the Appendix.

4.1 Stationary Initial Condition

We assume that

p N (0,1), iid
e N (0,1), iid

xit” N (p;, 1), iid

We set 5, = 1 and allow o to take values from the set {0.25,0.5,0.75,0.9,0.95,0.99}.
This set enables us to see the performance of our estimator for a wide variety of autoregressive
parameters,

Table I presents simulation results in which we draw y; o from the stationary distribution

of this process, specifically

1 1+ B2
yi,0~N( +/60,LL +BO> lld

l—ap "1—a}

3Speciﬁcally, we construct our instruments as

Z{t =x4—5-(t>7), forj=1,..,T

12



It is clear that as ag becomes larger, Arellano-Bond delivers downward biased estimates
with large standard errors. For large values of o, the bias in « affects the measurement of
B, causing it to be biased away from f,. The method of Blundell and Bond (1998) and the
method of Bai (2013) deliver consistent estimates of o with fairly low MSE, as does the
infeasible version of our method (in which the closest root to the true value is picked as the
estimator). If we select the closest root to the "simple IV" estimator, our estimator remains

unbiased, but the standard errors increase, though modestly.

4.2 Nonstationary Initial Condition

Table II presents simulation results in which we draw y; o from the nonstationary distribution

following Blundell and Bond (1998). Here, the Arellano-Bond estimator delivers consis-
tent estimates with low bootstrapped standard errors, as does the Bai (2013) estimator,
and the infeasible and "simple-IV" based versions of our estimator. On the other hand,
the Blundell-Bond (1998) estimator performs poorly, generating upward-biased estimates
(though with low standard errors).

The virtue of our approach (which, so far, it shares with the Bai (2013) estimator) is that
it delivers consistent estimates of oy and 3, regardless of whether the initial condition of the

dynamic process is stationary or nonstationary.

4.3 Correlated Fixed Effects and Errors

While the estimator of Bai (2013) performs as well (or slightly better) than our estimator
in the two settings considered above, both of them involve the assumption that the errors
of the dynamic process are uncorrelated with the fixed effects. In this simulation, we relax
this assumption. We use the nonstationary distribution from the nonstationary simulation

exercise, but also define the fixed effect as

i = [+ €ia

13



and

i 7N (0,1) iid

while drawing

zi N (f1;,1), iid

vio N (2[1;,4/3), iid

to avoid making the regressors be predetermined. Here, we no longer consider the
Blundell-Bond method as we know that it does not work well when the initial distribution
is nonstationary. We present the simulation results in Table III. We see that Arellano-Bond
delivers consistent estimates with low RMSE. On the other hand, the Bai (2013) estimator
delivers estimates that are biased downwards, with the bias being particularly severe for low
values of . If we do not include Term (II) in our estimator (but include only Term I), the
estimates are also biased downwards in a similar way to the Bai (2013) estimator. However,
once we include the correction (Term II), our estimates become consistent, with somewhat

smaller variance than the Arellano-Bond estimates.

4.4 Predetermined Regressors

Lastly, we investigate how our approach performs when the regressors are predetermined, but
not exogenous. The fourth table also starts with the nonstationary distribution simulation,

but makes z;; be predetermined. Specifically, we define

Tit N (p, 1), iid

and

Tip = Tit T Eit—1

We also change the coefficient 3, to 0.1 to better illustrate the effects of our general

14



predetermined variables method on the coefficient on the covariate. Since z;; is predeter-
mined and Z;, is unobservable, instead of basing our feasible estimator on the "simple IV"
estimator, we base it on the estimator that treats y;, 1 as a general predetermined variable,
using the method described in the Appendix. We present the simulation results in Table
IV. The Arellano-Bond estimator, and the version of our estimator (feasible or infeasible)
that includes Term III deliver consistent estimates with reasonably low RMSE, although the
infeasible estimates do have lower standard errors than the feasible ones in particular cases,
such as when ag = 0.75. On the other hand, the version of our estimator that includes
only Term I delivers estimates that are upward biased, especially for low values of ay. The
general predetermined correction described in the Appendix works very well in obtaining a
consistent estimate of 3, with the mean of the estimates being essentially at the true value

of 0.1; the uncorrected estimator yields negative estimates of 5 on average.

5 Conclusion

We propose a new estimator for linear dynamic panel data models with serially uncorrelated
errors that is less sensitive to the distribution of initial values than are the popular Arellano
and Bond (1991) and Blundell and Bond (1998) estimators, and that does not rely on
any additional assumptions about the canonical model. This estimator performs well in

simulations.
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6 Tables

Table I )
Simulations of « and 5 for AB, BB, HP and Bai Estimators: Stationary Initial Condition
T=5, N=1000, Distribution of yg is stationary. There are 1000 replications.
Qo \ Mean, « SD, @« RMSE, @ Median, « IDR, « Mean, 5 SD, RMSE, 3 Median, 3 IDR,
Arellano-Bond (1991)
0.25 .247 .021 .021 .247 .057 .998 .019 .019 998 .050
0.50 .498 .032 .032 .498 .083 .998 .023 .023 .997 .060
0.75 .739 .051 .052 .741 128 .994 .028 .029 .995 .072
0.90 .833 126 .143 .833 .316 .968 .064 071 .968 161
0.95 765 .210 .280 783 518 .909 .106 .139 917 .259
0.99 .580 .308 512 617 784 .795 .155 .256 .814 .395
Blundell-Bond (1998)
0.25 .254 .020 .020 .252 .049 1.003 .019 .019 1.003 .048
0.50 .506 .023 .024 .506 .058 1.002 021 .021 1.002 .055
0.75 .758 .024 .025 761 .062 1.002 .019 .019 1.002 .048
0.90 918 .018 .026 919 .040 1.005 .018 .019 1.005 .047
0.95 .968 .011 .021 .968 .027 1.005 .017 .018 1.005 .045
0.99 .994 .002 .005 .994 .005 1.001 .017 .017 1.001 .044
Hausman-Pinkovskiy (2017) Infeasible
0.25 .249 .013 .013 .249 .033 .999 .015 .015 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .043
0.75 751 .017 .017 .750 .043 1.000 .017 .017 .999 .044
0.90 .902 .021 .021 901 .056 1.000 .018 .018 1.000 .046
0.95 951 .024 .024 .948 .063 1.000 .019 .019 .999 .050
0.99 993 .027 .027 992 .068 1.002 .020 .021 1.001 .053
Hausman-Pinkovskiy (2017) Simple IV
0.25 .249 .013 .013 .249 .033 .999 .015 .015 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .043
0.75 751 .017 .017 750 .043 1.000 017 .017 .999 .044
0.90 .902 .021 .021 901 .056 1.000 .018 .018 1.000 .046
0.95 951 .025 .025 .949 .063 1.001 .019 .019 1.000 .050
0.99 .993 .028 .028 .992 .068 1.002 .021 .021 1.001 .053
Bai (2018)
0.25 .249 .013 .013 .248 .033 .999 .015 .016 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .042
0.75 751 .016 .016 .750 .041 1.000 .017 .017 .999 .044
0.90 .901 .019 .019 .900 .051 1.000 .017 .017 1.000 .045
0.95 .950 .021 .021 .950 .056 1.000 .018 .018 1.000 .049
0.99 991 .023 .023 .990 .061 1.001 .020 .020 1.001 .051

This table presents simulation results for the model described in Section 4.1. IDR refers to the difference between the 90th

and the 10th percentiles of the coefficient in question.

17




Table I1 (I1)
Simulations of « and  for AB, BB, HP and Bai Estimators: Nonstationary Initial Condition
T=5, N=1000. Distribution of yo is N (2u;,4/3). There are 1000 replications.
Qo \ Mean, « SD, @« RMSE, @ Median, « IDR, @ Mean, 5 SD, RMSE, 5 Median, 3 IDR,
Arellano-Bond (1991)
0.25 .246 .025 .025 .247 .067 .998 .020 .020 .998 .052
0.50 .495 .035 .035 497 .091 .997 .025 .025 .997 .064
0.75 .749 .012 .012 .749 .033 .999 .019 .019 .998 .050
0.90 .899 .007 .007 .899 .020 1.000 .018 .018 .999 .047
0.95 .949 .006 .006 .949 .017 .999 .018 .018 1.000 .049
0.99 .989 .006 .006 .989 .015 1.000 .018 .018 1.000 .047
Blundell-Bond (1998)
0.25 .402 .012 152 402 .032 1.083 .018 .085 1.084 .046
0.50 .683 .007 .183 .683 .018 1.094 .019 .096 1.095 .051
0.75 .894 .004 144 .894 .010 1.120 .017 121 1.120 .044
0.90 1.014 .003 114 1.014 .009 1.155 .018 .156 1.155 .046
0.95 1.054 .003 .104 1.054 .008 1.169 .018 170 1.169 .045
0.99 1.086 .002 .096 1.086 .007 1.181 .017 182 1.181 .044
Hausman-Pinkovskiy (2017) Infeasible
0.25 .249 .013 .013 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .013 .013 .500 .033 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .022 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .040
0.95 .949 .005 .005 .950 .014 1.000 .016 .016 1.000 .041
0.99 .989 .005 .005 .989 .013 1.000 .016 .016 1.000 .042
Hausman-Pinkovskiy (2017) Simple IV
0.25 .249 .013 .013 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .013 .013 .500 .033 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .022 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .040
0.95 .949 .005 .005 .950 .014 1.000 .016 .016 1.000 .041
0.99 .989 .005 .005 .989 .013 1.000 .016 .016 1.000 .042
Bai (2013)
0.25 .249 .012 .012 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .012 .012 .500 .032 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .021 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .041
0.95 .949 .005 .005 .949 .013 1.000 .016 .016 1.000 .041
0.99 .989 .004 .004 .989 .013 1.000 .016 .016 1.000 .042

This table presents simulation results for the model described in Section 4.2. IDR refers to the difference between the 90th

and the 10th percentiles of the coefficient in question.
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Table 11T (11

Simulations of o and § for AB, HP and Bai Estimators: Correlation Between Errors and Fixed Effects
T=5, N=1000. NS distribution is N (2f;,4/3). Fized effect is p; = fi; + €;1. There are 1000 reps
Qo \ Mean, « SD, @ RMSE, @ Median, « IDR, @« Mean, 5 SD, 5 RMSE, 3 Median, IDR, 5
Arellano-Bond (1991)
0.25 .247 .025 .025 .246 .064 .998 .020 .020 998 .052
0.50 .498 .034 .034 .497 .089 .998 .024 .024 .998 .064
0.75 .749 .012 .012 748 .032 .999 .018 .018 998 .048
0.90 .899 .007 .007 .899 .018 .999 .018 .018 .999 .046
0.95 .950 .006 .006 .949 .015 .999 .018 .018 999 .047
0.99 .990 .005 .005 .990 .013 1.000 .018 .018 1.000 .047
Hausman-Pinkouvskiy (2017): No Correction, Infeasible
0.25 115 011 134 115 .029 .966 .015 .036 .966 .039
0.50 .366 .009 133 .366 .025 .958 .015 .043 .958 .038
0.75 .668 .006 .082 .667 .017 .967 .014 .035 967 .036
0.90 .848 .005 .051 .848 .012 976 .015 .028 977 .039
0.95 .906 .004 .043 .907 .011 .979 .015 .026 979 .040
0.99 .952 .004 .037 .952 .010 .981 .015 .023 .981 .039
Hausman-Pinkovskiy (2017): Correlation Correction, Infeasible
0.25 .250 .016 .016 .250 .041 .999 .016 .016 .999 .042
0.50 .500 .017 .017 .501 .045 .999 .016 .016 .999 .042
0.75 750 011 .011 .750 .027 1.000 .015 .015 .999 .040
0.90 .900 .006 .006 .900 .016 .999 .016 .016 1.000 .039
0.95 .950 .005 .005 .950 .015 .999 .016 .016 .999 .041
0.99 .990 .005 .005 .990 .013 1.000 .016 .016 1.001 .040
Hausman-Pinkovskiy (2017): Correlation Correction, Simple IV
0.25 .250 .016 .016 .250 .041 .999 .016 .016 999 .042
0.50 .500 .017 .017 .501 .045 .999 .016 .016 .999 .042
0.75 .750 .011 .011 .750 .027 1.000 .015 .015 999 .040
0.90 .900 .006 .006 .900 .016 .999 .016 .016 1.000 .039
0.95 .950 .005 .005 .950 .015 .999 .016 .016 .999 .041
0.99 .990 .005 .005 .990 .013 1.000 .016 .016 1.001 .040
Bai (20183)

0.25 111 .012 138 111 .032 .965 .015 .037 .965 .040
0.50 .365 .010 135 .365 .026 .958 .015 .044 .958 .037
0.75 .672 .007 077 .672 .019 .969 .014 .033 .969 .036
0.90 .855 .005 .044 .855 .015 .979 .015 .025 .980 .039
0.95 913 .005 .036 913 .013 .982 .015 .023 .982 .040
0.99 .959 .004 .031 .959 .012 .985 .015 .021 .985 .040

This table presents simulation results for the model described in Section 4.3. IDR refers to the difference between the 90th

and the 10th percentiles of the coefficient in question.
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Table IV (IV)
Simulations of o and 5 for AB, and HP Estimators: Predetermined Variables

T=5, N=1000. yo distribution is N (2u,;,4/3). Covariate is x;, = &;; + €;,,—1. There are 1000 reps. 8, = 0.1

Qo \ Mean, « SD, @« RMSE, @ Median, « IDR, @ Mean, 5 SD, RMSE, 5 Median, 3 IDR,
Arellano-Bond (1991)
0.25 .246 .023 .023 .245 .059 .099 .015 .015 .099 .040
0.50 .490 .036 .037 .490 .093 .100 .016 .016 .100 .043
0.75 737 .034 .036 137 .084 .097 .016 .016 .097 .041
0.90 .897 .015 .015 .896 .040 .097 .015 .015 .097 .038
0.95 .948 .012 .013 947 .032 .097 .016 .016 .098 .041
0.99 .988 .010 .011 .988 .028 .098 .015 .015 .098 .040
Hausman-Pinkovskiy (2017): No Correction, Infeasible
0.25 .358 .047 118 .361 .080 -.054 .022 .155 -.055 .045
0.50 .672 .063 .183 .684 157 -.072 .027 174 -.074 .071
0.75 .800 .040 .064 .796 .096 -.026 .017 128 -.025 .042
0.90 .908 .016 .018 .908 .040 -.013 .012 114 -.013 .031
0.95 .954 .014 .014 .953 .035 -.012 .012 113 -.011 .031
0.99 991 011 011 991 .029 -.011 011 112 -.012 .028
Hausman-Pinkovskiy (2017): Predetermined Correction, Infeasible
0.25 .250 .023 .023 .250 .059 .099 .022 .022 .099 .057
0.50 .501 .031 .031 .500 .080 101 .021 .021 101 .054
0.75 751 .028 .028 .749 .070 101 .016 .016 .101 .042
0.90 .900 .015 .015 .900 .039 .100 .015 .015 .100 .038
0.95 .950 .013 .013 .950 .033 .100 .015 .015 .100 .039
0.99 .990 .011 .011 .990 .028 .100 .014 .014 .099 .037
Hausman-Pinkovskiy (2017): Predetermined Correction, Predetermined Initial Value

0.25 .250 .023 .023 .250 .059 .099 .022 .022 .099 .057
0.50 .502 .040 .040 .500 .081 .100 .021 .021 101 .054
0.75 762 .070 .072 753 170 .104 .024 .024 104 .054
0.90 .900 .016 .016 .900 .039 .100 .015 .015 .100 .038
0.95 .950 .013 .013 .950 .033 .100 .015 .015 .100 .039
0.99 .990 011 .011 .990 .028 .100 .014 .014 .099 .037

This table presents simulation results for the model described in Section 4.4. IDR refers to the difference between the 90th

and the 10th percentiles of the coefficient in question.
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7 Addendum: Proof of method of calculating J for general pre-
determined variables in fixed effect setting

Suppose that we seek to estimate the model
Yit = wé,tﬁo €

Suppose errors are uncorrelated with each other (but heteroskedastic) but regressors are predetermined.
So we assume that

but

The objective function is

1 N 2
mﬁin NT Z Z (Wit — 2548 — ;)

T
1
Fu(B) = =250 (vie — 1,8 — ) =0
t=1
T
= :uz Z Yit — Ltﬁ
1
Fﬁ (ﬂ) = 727 int Yit — ;,tﬂf,u';k)

zlfl

1 N T 1 X
Fs(Bo) = —2ﬁ ZZ (Ei,t T Z&‘;) Tit
i=1 t= =1

=1 t=1

Now, let §;+ and Z;; be de-meaned y; ; and z; ¢ by panel unit.

1 T
Uit = Yit — T 72::1 Yir

and

éi,t (ﬂ) = gi,t - 33";,755
the detrended residuals.
Then,

Eit (Bo) = 2517
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and, for any ¢t > 1,

E (931 € R Bo Z Ti,t yz t = i’;,t/ﬂo) =F (IEz‘,t <5i,t’

SO

t—1

—1 E(xz tEit! (ﬂo)) = T
t'=1

Then, for any t > 1,

T
> E(wieir) = T—@-1

and for ¢/ <t

E(zise,4) = E (x84 (By)) +

Then, the limit of the FOC is

T-1

1 T
Fs (By) — 2f Z Z (T—(T—l)

t=1 T=t+1

Hence, we look for a B satisfying

£ (3) = 277 3 Lo (- ) =2y 27

i=1 t=1 %

or

T-1

T
Z ( T_1)>1’z7'y1t+TZ$ztylt

t=1 7=t+1 t=1

Nl

1 N
Epe

Let

Zit = Tip+ E (
T=t+1
= xr, t=T

Define the matrices
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t—1

j2F

T=1

1

1

T
1
-7 Z €¢,T)> =F (Sﬂi,t&,t')*f Z E(xiqi€i7)

(zit8i,r (Bo))

t—1

T=1

) E (zir201 (Bo))

> (o
r=t+1 T—(r-1
) Tir, t< T

XT:I <T—<1T—1

T-(-1 > E(wikir (By))

)> 2ior (ii0 = 35)

T
R 1 R -
) xi,fl’;,t + T t_zlxztx;t] 5:| =0



LN [T T 1 T
= =1 7=t+1 t=1
;] T 1 LI
= ﬁzzzz,t‘%;,t:ﬁzzéztiZt
i=1 t=1 i=1 t=1

L, N L, N
Wxy = NT Z Z Zi 1l = NT Z Z Zit0it

(the last equalities following mechanically because of idempotence of residual maker matrix)
Then,

8= WixWxy

So, By can be estimated by IV with Z; ; as the "instrument".
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