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Abstract 

We propose a novel estimator for the dynamic panel model, which solves the failure of strict 

exogeneity by calculating the bias in the first-order conditions as a function of the autoregressive 

parameter and solving the resulting equation. We show that this estimator performs well as 

compared with approaches in current use. We also propose a general method for including 

predetermined variables in fixed-effects panel regressions that appears to perform well.  
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1 Introduction

Our paper attempts to contribute to the literature on estimating linear dynamic panel data

models with lagged dependent variables. The idea that estimating the dynamic panel equa-

tion by OLS will produce biased and inconsistent estimates has been explored in the liter-

ature since Nickell (1981) and Anderson and Hsiao (1982), with Arellano and Bond (1991)

proposing an optimal GMM estimator. The Arellano-Bond estimator exhibits substantial

downward bias when the coeffi cient on the lagged dependent variable is close to unity, as

then the dependent variable follows a random walk and lagged levels correlate poorly with

lagged differences, thus creating a weak instrument problem. A strand of the literature

(Ahn and Schmidt (1995) , Blundell and Bond (1998), Hahn (1999)) solves this problem by

imposing further restrictions on the dependent variable process and exploiting the resulting

moment conditions; however, these restrictions may not hold in practice. Hahn, Hausman

and Kuersteiner (2007) follow Griliches and Hausman (1986) and take long differences of the

data to improve the correlation between levels and differences; however, this approach does

not make use of all the data available. Hence the estimation of dynamic panel models is still

an open problem.

We propose a new estimator for the dynamic panel model, which is based on computing

the bias terms in the first-order condition for the autoregressive coeffi cient that result from

the failure of strict exogeneity. The main assumption that we must maintain for this approach

is the lack of serial correlation between the model errors, as in Arellano and Bond (1991).

We find a modified version of this first-order condition, one of whose roots is a consistent

estimator of the true autoregressive parameter. We can expand our estimator to accomodate

all predetermined variables, and we develop a general method for predetermined variables

in a panel regression context that is also based on the idea of correcting the first-order

conditions to make them unbiased estimators of zero at the truth.

Simulations of the performance of our estimator against that of previous GMM-based esti-

mators suggests that our estimator nearly always has lower bias and variance in its estimates

of the coeffi cient on the lagged dependent variable, and that it is considerably more effi cient



in the estimation of the coeffi cients on the covariates, which often tend to be of primary

interest in applications. In particular, we present evidence that, unlike many instrumental-

variables based estimators, our technique performs well regardless of the distribution of the

initial values of the dependent variable. Our estimator also matches the performance of

existing estimators in terms of allowing other regressors to be predetermined but not exoge-

nous. We also compare our estimator with the factor-based approach recently proposed by

Bai (2013) and find that a modification of our estimator can accommodate the case in which

fixed effects and model errors are correlated (also matching the performance of Arellano and

Bond 1991), while the Bai (2013) estimator delivers consistent estimates on the assumption

that the two are uncorrelated.1

The rest of the paper is organized as follows. Section 2 presents a simple version of our

dynamic panel estimator. Section 3 expands the estimator to accomodate weaker assump-

tions on the data. Section 4 presents simulation evidence on the properties of our estimator.

Section 5 concludes.

2 The Estimator

We consider the problem of estimating the model

yi,t = α0yi,t−1 + x′i,tβ0 + µi,0 + εi,t (1)

where yi,t is the dependent variable, xi,t is a vector of regressors, µi,0 is a fixed effect and

εi,t is the error term. There are N panel units i, with N thought of as large, and T time

units t, with T treated as a fixed parameter. We consider combinations of the following

assumptions:

E (εi,tεj,t′) = 0 if i 6= j or t 6= t′ (NSC)

E (xi,tεj,t′) = 0 if i 6= j or t 6= t′ (GM)

E (xi,tεj,t′) = 0 if i 6= j or t′ ≥ t (PR)
1Hsiao, Pesaran and Tahmiscioglu (2002) also propose an estimator under additional assumptions on the covariates xi,t.
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Assumption NSC is the no-serial correlation assumption used by much of the literature

following Arellano and Bond (1991), and it will be maintained for this estimator. Assumption

GM states that the regressors xi,t are strictly exogenous, and assumption PR states that they

are predetermined, but not necessarily exogenous. We will see that assumption GM can be

weakened to assumption PR. We will also impose two additional assumptions for exposition,

which we will subsequently relax.

E
(
µi,0εi,t

)
= 0 (ECF)

E (yi,0εi,t) = 0 (ECI)

2.1 Notation

First, we define the empirical fixed effects as functions of estimators of α and β:

µ̂i (α, β) =
1

T

T∑
t=1

(
yi,t − αyi,t−1 − x′i,tβ

)
Suppose that we know β0 and α0. Then,

µ̂i (α0, β0) = µi,0 +
1

T

T∑
t=1

εi,t = µi,0 +Op

(
1

T

)
under any combination of the assumptions above. Hence, the empirical fixed effects are

unbiased (but not consistent) for the true fixed effects µi,0.

Now, for any variable ri,t, define

r̂i,t = ri,t −
1

T

T∑
τ=1

ri,τ

the "demeaned" version of the variable ri,t.

In particular, we have

ŷi,t = α0ŷi,t−1 + x̂′i,tβ0 + ε̂i,t

3



2.2 Coeffi cients as Functions of Autoregressive Parameter

2.2.1 Case 1: Assumption (GM)

We define

β̂GM (α) =

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

x̂i,t (ŷi,t − αŷi,t−1)
)

the OLS estimate of the coeffi cient on the regressors given an estimate of the autoregressive

parameter α.

Under assumption (GM) we have that

E (x̂i,tε̂i,t) = 0 (2)

(since xi,t is uncorrelated with the leads and lags of εi,t as well as with its current value)

so

1

NT

N∑
i=1

T∑
t=1

x̂i,tε̂i,t → E (x̂i,tε̂i,t) = 0

and

β̂GM (α0) = β0 +

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1
1

NT

N∑
i=1

T∑
t=1

x̂i,tε̂i,t → β0

Hence, if the true value of the autoregressive parameter were known, the OLS estimate for

the coeffi cient on the regressors in equation (1) would be consistent for β0. The inconsistency

in this estimate is entirely a result of having an inconsistent estimate of α0.

2.2.2 Case 2: Assumption (PR)

Under assumption (PR), equation (2) is no longer true. However, we can instead compute

β̂PR (α) =

(
1

NT

N∑
i=1

T∑
t=1

ẑi,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

ẑi,t (ŷi,t − αŷi,t−1)
)

4



where

zi,t = xi,t +
T∑

τ=t+1

(
1

T − τ − 1

)
xi,τ , t < T

= xi,T , t = T

It is straightforward to show that

β̂PR (α0)→ β0

because

E (xi,tεi,t′) = E (xi,tε̂i,t′) +
1

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ )

where ε̂i,t are the empirical residuals evaluated at α = α0 and β = β0. The complete

derivation of the form of the variable zi,t is presented in Appendix I. It is worth noting that

although β̂PR (α) is numerically identical to an instrumental variables estimator with ẑi,t

as an instrument for x̂i,t, the exclusion restriction plainly need not hold, since, for example

E (zi,T εi,1) = E (xi,T εi,1) need not be equal to zero. Once again, however, it is clear that

even if the regressors are predetermined but not exogenous, the fundamental source of the

inconsistency of their estimates lies with having an incorrect value for α.

2.3 Modified FOC for α

Consider the first-order condition for α derived from OLS. We have

Fα (α) =
1

NT

N∑
i=1

T∑
t=1

(
yi,t − αyi,t−1 − x′i,tβ (α)− µ̂i (α)

)
yi,t−1

where β (α) and µ̂i (α) = µ̂i (α, β (α)) have been definued in the previous subsection.

For consistent estimation, we need

Fα (α0) = 0

However,

5



Fα (α0) =
1

NT

N∑
i=1

T∑
t=1

(
yi,t − α0yi,t−1 − x′i,tβ (α0)− µ̂i (α0)

)
yi,t−1

=
1

NT

N∑
i=1

T∑
t=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)
yi,t−1 + op (1)

=
1

NT

N∑
i=1

T∑
t=2

(
εi,t −

1

T

T∑
τ=1

εi,τ

)(
αt−10 yi,0 +

t−1∑
τ=1

ατ−10 x′i,t−τβ0 +

(
t−1∑
τ=1

ατ−10

)
µi,0 +

t−1∑
τ=1

ατ−10 εi,t−τ

)
+ op (1)

→ 1

T

T∑
t=2

E

[(
εi,t −

1

T

T∑
τ=1

εi,τ

)
t−1∑
τ=1

ατ−10 εi,t−τ

]
(I)

+
1

T

T∑
t=2

(
t−1∑
τ=1

ατ−10

)
E

[(
εi,t −

1

T

T∑
τ=1

εi,τ

)
µi,0

]
(II)

+
1

T

T∑
t=2

E

((
εi,t −

1

T

T∑
τ=1

εi,τ

)
t−1∑
τ=1

ατ−10 x′i,t−τβ0

)
(III)

+
1

T

T∑
t=2

αt−10

(
E (εi,tyi,0)−

1

T

T∑
τ=1

E (εi,τyi,0)

)
(IV )

So the FOC evaluated at the true value of α = α0 approaches in probability a sum

of four terms, not necessarily zero. Term I will be nonzero (specifically, negative) under

any combination of assumptions discussed earlier in this section. Term II will be zero iff

assumption (ECF) holds. Term III will be zero under assumption (GM), but not under

assumption (PR). Lastly, Term IV will be zero iff assumption (ECI) holds.

The term that is always nonzero is (I). It is straightforward to see that under assumption

(NSC)

(I) = − 1

T 2

T∑
t=2

t−1∑
τ=1

αt−1−τ0 E
(
ε2i,τ
)

Define the empirical residual as

ε̂i,t (α) = ŷi,t − αŷi,t−1 − x̂′i,tβ (α)

= ŷi,t − x̂′i,tβ̂0 − α
(
ŷi,t−1 − x̂′i,tβ̂1

)
where
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β̂0 =

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

x̂i,tŷi,t

)

β̂1 =

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

x̂i,tŷi,t−1

)

or the equivalent of these terms under assumption PR,

and note that

ε̂i,t (α0) = εi,t −
1

T

T∑
τ=1

εi,τ + op (1)

Then, we can estimate the quantities E
(
ε2i,τ
)
as a function of α as follows:

E
(
ε2i,t
)
← 1

N

N∑
i=1

(
T

T − 2

(
ε̂2i,t (α0)−

1

T − 1

1

T

T∑
t=1

ε̂2i,t (α0)

))
This approach is similar to the result of Stock and Watson (2008) for the estimation of

standard errors in a panel setting with fixed T .

In particular, rather than being a potentially more complicated function, term (I) is a

polynomial in α0 of order T . We note that

ε̂i,t (α) = r0i,t − αr1i,t

where r0i,t and r
1
i,t are residuals from regressions of ŷi,t on x̂i,t and ŷi,t−1 on x̂i,t, respectively

(instrumented by ẑi,t when assumption GM is relaxed to assumption PR).

Then, we define the following moments of residuals:

R1t =
T

T − 2

1

N

N∑
i=1

[(
r1i,t
)2 − 1

T − 1

1

T

T∑
t=1

(
r1i,t
)2]

Rρ
t =

T

T − 2

1

N

N∑
i=1

[
r0i,tr

1
i,t −

1

T − 1

1

T

T∑
t=1

r0i,tr
1
i,t

]

R0t =
T

T − 2

1

N

N∑
i=1

[(
r0i,t
)2 − 1

T − 1

1

T

T∑
t=1

(
r0i,t
)2]

7



It follows straightforwardly that

P1 (α0) := − 1

T 2

(
T∑
t=2

(
T−t+1∑
τ=1

R1τ

)
αt0 − 2

T−1∑
t=1

(
T−t∑
τ=1

Rρ
τ

)
αt0 +

T−2∑
t=0

(
T−t−1∑
τ=1

R0τ

)
αt0

)
→ (I)

and we can rewrite the modified first order condition as

P1 (α0)− α0 + αOLS = 0

or

P̃1 (α0) = 0

The fact that the modified first-order condition in α takes the form of a polynomial makes

our estimator tractable, as it does not involve numerically solving an equation or maximizing

a criterion function, where the existence and uniqueness of roots, as well as the convergence

properties of most root-finding algorithms are not generally known. Instead, we obtain

exactly T roots, some imaginary and some real.

As N goes to infinity, P̃1 (α) should have at least one real root —at α0. However, in finite

samples, P̃1 (α) may not have any real roots. Therefore, we also consider values of α that

are local minima of (P1 (α))2, or, equivalently, solve P ′1 (α) = 0 subject to P ′′1 (α) > 0.

We then face the problem of finding which member of our solution set to select as our

estimate.2 One straightforward approach is to select the root that is closest to another,

consistent estimator of α0. We will present simulations using an infeasible version of the

estimator in which we select the root that is closest to the true value of the autoregressive

parameter used to construct the simulation, as well as using the root that is closest to

an estimator based on instrumenting the lagged dependent variable with lags of strictly

exogenous regressors.
2While we do not have a criterion function, as in maximum likelihood, to select the root that attains the global maximum,

we can exhaustively catalogue the candidate roots, while this is generally not possible to do with a likelihood function that is
not globally concave.
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3 Extensions of the Basic Estimator

As alluded to in the previous subsection, we can easily relax all of the assumptions under

which Terms II-IV are nonzero by approximating them in ways that are similar to the

approximation of Term I. All of the approximations are polynomials in α, because consistent

estimators of the error variances, of moments of fixed effects and of interactions between

predetermined covariates and errors are linear or quadratic in α. We discuss the construction

of these approximations as polynomials of α below:

3.1 Term II

Term (II) is nonzero iff we have E
(
µi,0εi,t

)
6= 0. It can also be estimated fairly straightfor-

wardly, since

1

N

N∑
i=1

ε̂i,t (α0) µ̂i,0 (α0) =
1

N

N∑
i=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)(
µi,0 +

1

T

T∑
t=1

εi,t

)
where we recall that

µ̂i,0 (α0) = µ̂i (α0, β (α0)) =
1

T

T∑
t=1

(
yi,t − α0yi,t−1 − x′i,tβ0

)
The second term can be further analyzed as

1

T

T∑
τ=1

1

N

N∑
i=1

(
εi,t −

1

T

T∑
t′=1

εi,t′

)
εi,τ →

1

T
E
(
ε2i,t
)
− 1

T 2

T∑
τ=1

E
(
ε2i,τ
)

and then the entire sum of second terms becomes

1

N

N∑
i=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)
µi,0 =

1

N

N∑
i=1

ε̂i,tµ̂i (α0)−
1

T

T∑
t=2

(
t−1∑
τ=1

ατ−10

)[
1

T
E
(
ε2i,t
)
− 1

T 2

T∑
τ=1

E
(
ε2i,τ
)]

where E
(
ε2i,t
)
is estimated as in term (I), so everything on the right hand-side is estimable.

We can consequently express term (II) as another polynomial in α of order T . First, we

9



define

R̃1t =
1

N

N∑
i=1

r1i,tr̃
1
i

R̃
1/2
t =

1

N

N∑
i=1

(1/2)
(
r0i,tr̃

1
i + r1i,tr̃

0
i

)
R̃0t =

1

N

N∑
i=1

r0i,tr̃
0
i

where r̃0i and r̃
1
i are the panel unit fixed effects from the regressions generating β̂0 and β̂1

respectively. Then, we define

R̄k
t =

1

N

N∑
i=1

((
r0i,t
)2−2k (

r1i,t
)2k − 1

T

T∑
τ=1

(
r0i,t
)2−2k (

r1i,t
)2k)

, k = 0, 1/2, 1

and

Zk
t = R̃k

t −
1

T
R̄k
t

It is then easy to see that

P2 (α0) :=
1

T

T∑
t=2

(
T∑
τ=t

Z1τ

)
αt0 − 2

1

T

T−1∑
t=1

(
T∑

τ=t+1

Zρ
τ

)
αt0 +

1

T

T−2∑
t=0

(
T∑

τ=t+2

Z0τ

)
αt0 → (II)

where P2 (α0) is a polynomial in α0 of order T .

3.2 Term III

Next, we may needo to estimate term (III) if assumption (GM) does not hold, but assump-

tion (PR) does. Then

(IV )→ − 1

T

T∑
t=2

(
1

T

t−1∑
τ ′=1

αt−τ
′−1

0

(
τ ′−1∑
τ=1

E
(
εi,τx

′
i,τ ′
)))

β0

and we can estimate E
(
εi,τx

′
i,τ ′

)
for τ ′ > τ by the formula

E (xi,tεi,t′) = E (xi,tε̂i,t′ (α0)) +
1

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ (α0))

10



which is derived in Appendix I as part of the general estimator for predetermined variables.

If we define

fki,t = xi,tβ̂k

where k ∈ {0, 1} as before, and we define

X̃0
t =

(
T

T − (t− 1)

)
1

N

N∑
i=1

t−1∑
t′=1

f 0i,tr
0
i,t′

X̃
1/2
t =

(
T

T − (t− 1)

)
1

N

N∑
i=1

t−1∑
t′=1

(1/2)
(
f 0i,tr

1
i,t′ + f 1i,tr

0
i,t′
)

X̃1
t =

(
T

T − (t− 1)

)
1

N

N∑
i=1

t−1∑
t′=1

f 1i,tr
1
i,t′

we can easily show that

P3 (α0) := −
(

1

T 2

T−1∑
t=2

(
T−t+1∑
τ=2

X̃1
τ

)
αt0 − 2

1

T 2

T−2∑
t=1

(
T−t∑
τ=2

X̃1/2
τ

)
αt0 +

1

T 2

T−3∑
t=0

(
T−t−1∑
τ=2

X̃1
τ

)
αt0

)
→ (III)

another polynomial of order T .

3.3 Term IV

Term (IV ) is nonzero iff we have E (yi,0εi,t) 6= 0. It can be estimated rather easily, since

E (ε̂i,t (β (α0)) yi,0) = E (εi,tyi,0)−
1

T

T∑
τ=1

E (εi,τyi,0)

and it is obvious that the left hand-side of the above equation is an estimable polynomial

in α0.

We can even simply modify the original FOC to be

Fα (α, β) =
1

NT

N∑
i=1

T∑
t=1

(
yi,t − αyi,t−1 − x′i,tβ (α)− µ̂i (α)

) (
yi,t−1 − αt−1yi,0

)

11



4 Simulations

We run simulations to illustrate the properties of our new estimator. All of these simulations

involved the model

yi,t = α0yi,t−1 + β0xi,t + µi,0 + εi,t

with various assumptions. We typically compute two versions of our estimator: an in-

feasible estimator, where we select the root that is closest to the true value of α0 to be our

estimate; and a feasible estimator, where we select the root that is closest to the estimate of

α0 provided by instrumenting the lagged dependent variable with lags of xi,t3. The second

approach requires that E (xi,tεi,s) = 0 for all s, t, which is equivalent to xi,t being strictly

exogenous. Hence, in specifications involving predetermined regressors, we instead select the

root that is closest to the estimate of α0 provided by treating the lagged dependent variable

as a general predetermined variable, as described in the Appendix.

4.1 Stationary Initial Condition

We assume that

µi˜N (0, 1) , iid

εi,t˜N (0, 1) , iid

xi,t˜N (µi, 1) , iid

We set β0 = 1 and allow α0 to take values from the set {0.25, 0.5, 0.75, 0.9, 0.95, 0.99}.

This set enables us to see the performance of our estimator for a wide variety of autoregressive

parameters,

Table I presents simulation results in which we draw yi,0 from the stationary distribution

of this process, specifically

yi,0˜N

(
1 + β0
1− α0

µi,
1 + β20
1− α20

)
iid

3Specifically, we construct our instruments as

zji,t = xi,t−j · (t ≥ j) , for j = 1, ..., T

12



It is clear that as α0 becomes larger, Arellano-Bond delivers downward biased estimates

with large standard errors. For large values of α0, the bias in α affects the measurement of

β, causing it to be biased away from β0. The method of Blundell and Bond (1998) and the

method of Bai (2013) deliver consistent estimates of α0 with fairly low MSE, as does the

infeasible version of our method (in which the closest root to the true value is picked as the

estimator). If we select the closest root to the "simple IV" estimator, our estimator remains

unbiased, but the standard errors increase, though modestly.

4.2 Nonstationary Initial Condition

Table II presents simulation results in which we draw yi,0 from the nonstationary distribution

yi,0˜N (2µi, 4/3) iid

following Blundell and Bond (1998). Here, the Arellano-Bond estimator delivers consis-

tent estimates with low bootstrapped standard errors, as does the Bai (2013) estimator,

and the infeasible and "simple-IV" based versions of our estimator. On the other hand,

the Blundell-Bond (1998) estimator performs poorly, generating upward-biased estimates

(though with low standard errors).

The virtue of our approach (which, so far, it shares with the Bai (2013) estimator) is that

it delivers consistent estimates of α0 and β0 regardless of whether the initial condition of the

dynamic process is stationary or nonstationary.

4.3 Correlated Fixed Effects and Errors

While the estimator of Bai (2013) performs as well (or slightly better) than our estimator

in the two settings considered above, both of them involve the assumption that the errors

of the dynamic process are uncorrelated with the fixed effects. In this simulation, we relax

this assumption. We use the nonstationary distribution from the nonstationary simulation

exercise, but also define the fixed effect as

µi = µ̃i + εi,1

13



and

µ̃i˜N (0, 1) iid

while drawing

xi,t˜N (µ̃i, 1) , iid

yi,0˜N (2µ̃i, 4/3) , iid

to avoid making the regressors be predetermined. Here, we no longer consider the

Blundell-Bond method as we know that it does not work well when the initial distribution

is nonstationary. We present the simulation results in Table III. We see that Arellano-Bond

delivers consistent estimates with low RMSE. On the other hand, the Bai (2013) estimator

delivers estimates that are biased downwards, with the bias being particularly severe for low

values of α0. If we do not include Term (II) in our estimator (but include only Term I), the

estimates are also biased downwards in a similar way to the Bai (2013) estimator. However,

once we include the correction (Term II), our estimates become consistent, with somewhat

smaller variance than the Arellano-Bond estimates.

4.4 Predetermined Regressors

Lastly, we investigate how our approach performs when the regressors are predetermined, but

not exogenous. The fourth table also starts with the nonstationary distribution simulation,

but makes xi,t be predetermined. Specifically, we define

x̃i,t˜N (µi, 1) , iid

and

xi,t = x̃i,t + εi,t−1

We also change the coeffi cient β0 to 0.1 to better illustrate the effects of our general

14



predetermined variables method on the coeffi cient on the covariate. Since xi,t is predeter-

mined and x̃i,t is unobservable, instead of basing our feasible estimator on the "simple IV"

estimator, we base it on the estimator that treats yi,t−1 as a general predetermined variable,

using the method described in the Appendix. We present the simulation results in Table

IV. The Arellano-Bond estimator, and the version of our estimator (feasible or infeasible)

that includes Term III deliver consistent estimates with reasonably low RMSE, although the

infeasible estimates do have lower standard errors than the feasible ones in particular cases,

such as when α0 = 0.75. On the other hand, the version of our estimator that includes

only Term I delivers estimates that are upward biased, especially for low values of α0. The

general predetermined correction described in the Appendix works very well in obtaining a

consistent estimate of β, with the mean of the estimates being essentially at the true value

of 0.1; the uncorrected estimator yields negative estimates of β on average.

5 Conclusion

We propose a new estimator for linear dynamic panel data models with serially uncorrelated

errors that is less sensitive to the distribution of initial values than are the popular Arellano

and Bond (1991) and Blundell and Bond (1998) estimators, and that does not rely on

any additional assumptions about the canonical model. This estimator performs well in

simulations.
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6 Tables

Table I (I)

Simulations of α and β for AB, BB, HP and Bai Estimators: Stationary Initial Condition
T=5, N=1000, Distribution of y0 is stationary. There are 1000 replications.

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .247 .021 .021 .247 .057 .998 .019 .019 .998 .050
0.50 .498 .032 .032 .498 .083 .998 .023 .023 .997 .060
0.75 .739 .051 .052 .741 .128 .994 .028 .029 .995 .072
0.90 .833 .126 .143 .833 .316 .968 .064 .071 .968 .161
0.95 .765 .210 .280 .783 .518 .909 .106 .139 .917 .259
0.99 .580 .308 .512 .617 .784 .795 .155 .256 .814 .395

Blundell-Bond (1998)
0.25 .254 .020 .020 .252 .049 1.003 .019 .019 1.003 .048
0.50 .506 .023 .024 .506 .058 1.002 .021 .021 1.002 .055
0.75 .758 .024 .025 .761 .062 1.002 .019 .019 1.002 .048
0.90 .918 .018 .026 .919 .040 1.005 .018 .019 1.005 .047
0.95 .968 .011 .021 .968 .027 1.005 .017 .018 1.005 .045
0.99 .994 .002 .005 .994 .005 1.001 .017 .017 1.001 .044

Hausman-Pinkovskiy (2017) Infeasible
0.25 .249 .013 .013 .249 .033 .999 .015 .015 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .043
0.75 .751 .017 .017 .750 .043 1.000 .017 .017 .999 .044
0.90 .902 .021 .021 .901 .056 1.000 .018 .018 1.000 .046
0.95 .951 .024 .024 .948 .063 1.000 .019 .019 .999 .050
0.99 .993 .027 .027 .992 .068 1.002 .020 .021 1.001 .053

Hausman-Pinkovskiy (2017) Simple IV
0.25 .249 .013 .013 .249 .033 .999 .015 .015 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .043
0.75 .751 .017 .017 .750 .043 1.000 .017 .017 .999 .044
0.90 .902 .021 .021 .901 .056 1.000 .018 .018 1.000 .046
0.95 .951 .025 .025 .949 .063 1.001 .019 .019 1.000 .050
0.99 .993 .028 .028 .992 .068 1.002 .021 .021 1.001 .053

Bai (2013)
0.25 .249 .013 .013 .248 .033 .999 .015 .016 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .042
0.75 .751 .016 .016 .750 .041 1.000 .017 .017 .999 .044
0.90 .901 .019 .019 .900 .051 1.000 .017 .017 1.000 .045
0.95 .950 .021 .021 .950 .056 1.000 .018 .018 1.000 .049
0.99 .991 .023 .023 .990 .061 1.001 .020 .020 1.001 .051

This table presents simulation results for the model described in Section 4.1. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.
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Table II (II)

Simulations of α and β for AB, BB, HP and Bai Estimators: Nonstationary Initial Condition
T=5, N=1000. Distribution of y0 is N (2µi, 4/3). There are 1000 replications.

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .246 .025 .025 .247 .067 .998 .020 .020 .998 .052
0.50 .495 .035 .035 .497 .091 .997 .025 .025 .997 .064
0.75 .749 .012 .012 .749 .033 .999 .019 .019 .998 .050
0.90 .899 .007 .007 .899 .020 1.000 .018 .018 .999 .047
0.95 .949 .006 .006 .949 .017 .999 .018 .018 1.000 .049
0.99 .989 .006 .006 .989 .015 1.000 .018 .018 1.000 .047

Blundell-Bond (1998)
0.25 .402 .012 .152 .402 .032 1.083 .018 .085 1.084 .046
0.50 .683 .007 .183 .683 .018 1.094 .019 .096 1.095 .051
0.75 .894 .004 .144 .894 .010 1.120 .017 .121 1.120 .044
0.90 1.014 .003 .114 1.014 .009 1.155 .018 .156 1.155 .046
0.95 1.054 .003 .104 1.054 .008 1.169 .018 .170 1.169 .045
0.99 1.086 .002 .096 1.086 .007 1.181 .017 .182 1.181 .044

Hausman-Pinkovskiy (2017) Infeasible
0.25 .249 .013 .013 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .013 .013 .500 .033 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .022 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .040
0.95 .949 .005 .005 .950 .014 1.000 .016 .016 1.000 .041
0.99 .989 .005 .005 .989 .013 1.000 .016 .016 1.000 .042

Hausman-Pinkovskiy (2017) Simple IV
0.25 .249 .013 .013 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .013 .013 .500 .033 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .022 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .040
0.95 .949 .005 .005 .950 .014 1.000 .016 .016 1.000 .041
0.99 .989 .005 .005 .989 .013 1.000 .016 .016 1.000 .042

Bai (2013)
0.25 .249 .012 .012 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .012 .012 .500 .032 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .021 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .041
0.95 .949 .005 .005 .949 .013 1.000 .016 .016 1.000 .041
0.99 .989 .004 .004 .989 .013 1.000 .016 .016 1.000 .042

This table presents simulation results for the model described in Section 4.2. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.

18



Table III (III)

Simulations of α and β for AB, HP and Bai Estimators: Correlation Between Errors and Fixed Effects
T=5, N=1000. NS distribution is N (2µ̃i, 4/3). Fixed effect is µi = µ̃i + εi,1. There are 1000 reps

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .247 .025 .025 .246 .064 .998 .020 .020 .998 .052
0.50 .498 .034 .034 .497 .089 .998 .024 .024 .998 .064
0.75 .749 .012 .012 .748 .032 .999 .018 .018 .998 .048
0.90 .899 .007 .007 .899 .018 .999 .018 .018 .999 .046
0.95 .950 .006 .006 .949 .015 .999 .018 .018 .999 .047
0.99 .990 .005 .005 .990 .013 1.000 .018 .018 1.000 .047

Hausman-Pinkovskiy (2017): No Correction, Infeasible
0.25 .115 .011 .134 .115 .029 .966 .015 .036 .966 .039
0.50 .366 .009 .133 .366 .025 .958 .015 .043 .958 .038
0.75 .668 .006 .082 .667 .017 .967 .014 .035 .967 .036
0.90 .848 .005 .051 .848 .012 .976 .015 .028 .977 .039
0.95 .906 .004 .043 .907 .011 .979 .015 .026 .979 .040
0.99 .952 .004 .037 .952 .010 .981 .015 .023 .981 .039

Hausman-Pinkovskiy (2017): Correlation Correction, Infeasible
0.25 .250 .016 .016 .250 .041 .999 .016 .016 .999 .042
0.50 .500 .017 .017 .501 .045 .999 .016 .016 .999 .042
0.75 .750 .011 .011 .750 .027 1.000 .015 .015 .999 .040
0.90 .900 .006 .006 .900 .016 .999 .016 .016 1.000 .039
0.95 .950 .005 .005 .950 .015 .999 .016 .016 .999 .041
0.99 .990 .005 .005 .990 .013 1.000 .016 .016 1.001 .040

Hausman-Pinkovskiy (2017): Correlation Correction, Simple IV
0.25 .250 .016 .016 .250 .041 .999 .016 .016 .999 .042
0.50 .500 .017 .017 .501 .045 .999 .016 .016 .999 .042
0.75 .750 .011 .011 .750 .027 1.000 .015 .015 .999 .040
0.90 .900 .006 .006 .900 .016 .999 .016 .016 1.000 .039
0.95 .950 .005 .005 .950 .015 .999 .016 .016 .999 .041
0.99 .990 .005 .005 .990 .013 1.000 .016 .016 1.001 .040

Bai (2013)
0.25 .111 .012 .138 .111 .032 .965 .015 .037 .965 .040
0.50 .365 .010 .135 .365 .026 .958 .015 .044 .958 .037
0.75 .672 .007 .077 .672 .019 .969 .014 .033 .969 .036
0.90 .855 .005 .044 .855 .015 .979 .015 .025 .980 .039
0.95 .913 .005 .036 .913 .013 .982 .015 .023 .982 .040
0.99 .959 .004 .031 .959 .012 .985 .015 .021 .985 .040

This table presents simulation results for the model described in Section 4.3. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.
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Table IV (IV)

Simulations of α and β for AB, and HP Estimators: Predetermined Variables
T=5, N=1000. y0 distribution is N (2µi, 4/3). Covariate is xi,t = x̃i,t + εi,t−1. There are 1000 reps. β0 = 0.1

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .246 .023 .023 .245 .059 .099 .015 .015 .099 .040
0.50 .490 .036 .037 .490 .093 .100 .016 .016 .100 .043
0.75 .737 .034 .036 .737 .084 .097 .016 .016 .097 .041
0.90 .897 .015 .015 .896 .040 .097 .015 .015 .097 .038
0.95 .948 .012 .013 .947 .032 .097 .016 .016 .098 .041
0.99 .988 .010 .011 .988 .028 .098 .015 .015 .098 .040

Hausman-Pinkovskiy (2017): No Correction, Infeasible
0.25 .358 .047 .118 .361 .080 -.054 .022 .155 -.055 .045
0.50 .672 .063 .183 .684 .157 -.072 .027 .174 -.074 .071
0.75 .800 .040 .064 .796 .096 -.026 .017 .128 -.025 .042
0.90 .908 .016 .018 .908 .040 -.013 .012 .114 -.013 .031
0.95 .954 .014 .014 .953 .035 -.012 .012 .113 -.011 .031
0.99 .991 .011 .011 .991 .029 -.011 .011 .112 -.012 .028

Hausman-Pinkovskiy (2017): Predetermined Correction, Infeasible
0.25 .250 .023 .023 .250 .059 .099 .022 .022 .099 .057
0.50 .501 .031 .031 .500 .080 .101 .021 .021 .101 .054
0.75 .751 .028 .028 .749 .070 .101 .016 .016 .101 .042
0.90 .900 .015 .015 .900 .039 .100 .015 .015 .100 .038
0.95 .950 .013 .013 .950 .033 .100 .015 .015 .100 .039
0.99 .990 .011 .011 .990 .028 .100 .014 .014 .099 .037

Hausman-Pinkovskiy (2017): Predetermined Correction, Predetermined Initial Value
0.25 .250 .023 .023 .250 .059 .099 .022 .022 .099 .057
0.50 .502 .040 .040 .500 .081 .100 .021 .021 .101 .054
0.75 .762 .070 .072 .753 .170 .104 .024 .024 .104 .054
0.90 .900 .016 .016 .900 .039 .100 .015 .015 .100 .038
0.95 .950 .013 .013 .950 .033 .100 .015 .015 .100 .039
0.99 .990 .011 .011 .990 .028 .100 .014 .014 .099 .037

This table presents simulation results for the model described in Section 4.4. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.
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7 Addendum: Proof of method of calculating β for general pre-
determined variables in fixed effect setting

Suppose that we seek to estimate the model

yi,t = x′i,tβ0 + µi + εi,t

Suppose errors are uncorrelated with each other (but heteroskedastic) but regressors are predetermined.
So we assume that

E (xi,tεi,τ ) = 0, τ ≥ t

but

E (xi,tεi,τ ) 6= 0, τ < t

The objective function is

min
β

1

NT

N∑
i=1

T∑
t=1

(
yi,t − x′i,tβ − µi

)2

Fµi (β) = −2 1
T

T∑
t=1

(
yi,t − x′i,tβ − µi

)
= 0

⇒ µ∗i (β) =
1

T

T∑
t=1t

(
yi,t − x′i,tβ

)

Fβ (β) = −2 1

NT

N∑
i=1

T∑
t=1

xi,t
(
yi,t − x′i,tβ − µ∗i

)
Fβ (β0) = −2 1

NT

N∑
i=1

T∑
t=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)
xi,t

→ −2 1
T

T∑
t=1

E

[(
εi,t −

1

T

T∑
τ=1

εi,τ

)
xi,t

]

= 2
1

T 2

T∑
t=2

t−1∑
τ=1

E (xi,tεi,τ ) 6= 0

Now, let ŷi,t and x̂i,t be de-meaned yi,t and xi,t by panel unit.

ŷi,t = yi,t −
1

T

T∑
τ=1

yi,τ

and

ε̂i,t (β) = ŷi,t − x̂′i,tβ

the detrended residuals.
Then,

ε̂i,t (β0) = εi,t −
1

T

T∑
τ=1

εi,τ
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and, for any t > 1,

E (xi,tε̂i,t′ (β0)) =
1

N

N∑
i=1

xi,t
(
ŷi,t′ − x̂′i,t′β0

)
= E

(
xi,t

(
εi,t′ −

1

T

T∑
τ=1

εi,τ

))
= E (xi,tεi,t′)−

1

T

t−1∑
τ=1

E (xi,tεi,τ )

so

1

t− 1

t−1∑
t′=1

E (xi,tε̂i,t′ (β0)) =
1

t− 1

t−1∑
t′=1

E (xi,tεi,t′)−
1

T

t−1∑
τ=1

E (xi,tεi,τ )

=
1

t− 1

(
1− t− 1

T

) t−1∑
τ=1

E (xi,tεi,τ )

Then, for any t > 1,

t−1∑
τ=1

E (xi,tεi,τ ) =
T

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ (β0))

and for t′ < t

E (xi,tεi,t′) = E (xi,tε̂i,t′ (β0)) +
1

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ (β0))

Then, the limit of the FOC is

Fβ (β0)→ 2
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
E (xi,τ ε̂i,t (β0))

Hence, we look for a β̂ satisfying

Fβ

(
β̂
)
= −2 1

NT

N∑
i=1

T∑
t=1

xi,t

(
ŷi,t − x̂′i,tβ̂

)
= 2

1

N

N∑
i=1

1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ

(
ŷi,t − x̂′i,tβ̂

)
or

1

N

N∑
i=1

[
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ ŷi,t +

1

T

T∑
t=1

xi,tŷi,t −
[
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ x̂

′
i,t +

1

T

T∑
t=1

xi,tx̂
′
i,t

]
β̂

]
= 0

Let

zi,t = xi,t +

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ , t < T

= xi,T , t = T

Define the matrices
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WXX =
1

N

N∑
i=1

[
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ x̂

′
i,t +

1

T

T∑
t=1

xi,tx̂
′
i,t

]

=
1

NT

N∑
i=1

T∑
t=1

zi,tx̂
′
i,t =

1

NT

N∑
i=1

T∑
t=1

ẑi,tx̂
′
i,t

WXY =
1

NT

N∑
i=1

T∑
t=1

zi,tŷi,t =
1

NT

N∑
i=1

T∑
t=1

ẑi,tŷi,t

(the last equalities following mechanically because of idempotence of residual maker matrix)
Then,

β̂ =W−1XXWXY

So, β0 can be estimated by IV with ẑi,t as the "instrument".
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