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HETEROGENOUS COEFFICIENTS, DISCRETE INSTRUMENTS,
AND IDENTIFICATION OF TREATMENT EFFECTS

WHITNEY K. NEWEY† AND SAMI STOULI§

Abstract. Multidimensional heterogeneity and endogeneity are important features

of a wide class of econometric models. We consider heterogenous coefficients models

where the outcome is a linear combination of known functions of treatment and

heterogenous coefficients. We use control variables to obtain identification results

for average treatment effects. With discrete instruments in a triangular model we

find that average treatment effects cannot be identified when the number of support

points is less than or equal to the number of coefficients. A sufficient condition for

identification is that the second moment matrix of the treatment functions given the

control is nonsingular with probability one. We relate this condition to identification

of average treatment effects with multiple treatments.

1. Introduction

Nonseparable and/or multidimensional heterogeneity is important. It is present in

discrete choice models as in McFadden (1973) and Hausman and Wise (1978). Mul-

tidimensional heterogeneity in demand functions allows price and income elasticities

to vary over individuals in unrestricted ways, e.g., Hausman and Newey (2016) and

Kitamura and Stoye (2016). It allows general variation in production technologies.

Treatment effects that vary across individuals require intercept and slope heterogene-

ity.

Endogeneity is often a problem in these models because we are interested in the effect

of an observed choice, or treatment variable on an outcome and the choice or treatment

variable is correlated with heterogeneity. Control variables provide an important

means of controlling for endogeneity with multidimensional heterogeneity. A control

variable is an observed or estimable variable that makes heterogeneity and treatment

independent when it is conditioned on. Observed covariates serve as control variables

Date: November 21, 2018.
† Department of Economics, MIT, wnewey@mit.edu.
§ Department of Economics, University of Bristol, s.stouli@bristol.ac.uk.
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for treatment effects (Rosenbaum and Rubin, 1983). The conditional cumulative

distribution function (CDF) of a choice variable given an instrument can serve as a

control variable in triangular economic models (Imbens and Newey, 2009).

In fully nonparametric, nonseparable models identification of average or quantile treat-

ment effects requires a full support condition, that the support of the control variable

conditional on the treatment variable is equal to the marginal support of the control

variable. This restriction is often not satisfied in practice; e.g., see Imbens and Newey

(2009) for Engel curves. In triangular models the full support cannot hold when all

instruments are discrete and the treatment variable is continuous.

One approach to this problem is to focus on identified sets for objects of interest,

as for quantile effects in Imbens and Newey (2009). Another approach is to con-

sider restrictions on the model that allow for point identification. Florens, Heckman,

Meghir, and Vytlacil (2008) gave identification results when the outcome equation is

a polynomial in the endogenous variable. Torgovitsky (2015) and D’Haultfœuille and

Février (2015) gave identification results when there is only scalar heterogeneity in

the outcome equation.

In this paper we give identification results when the outcome function is a linear com-

bination of known functions of a treatment that are not necessarily polynomials. The

coefficients in this linear combination are allowed to be heterogenous in unrestricted

ways. We give identification results for average treatment effects in triangular mod-

els with discrete instruments. We find that a necessary condition for identification

is that the number of support points of the discrete instruments is at least as large

as the number of known functions of treatment in the outcome function. A sufficient

identification condition is that the second moment matrix of the known functions con-

ditional on the control function is nonsingular with probability one. We obtain these

results from the implied varying coefficient structure of the regression of outcome on

the treatment and control variables. We also use this approach to give identification

results for average treatment effects with multidimensional treatments.

These results extend Florens, Heckman, Meghir, and Vytlacil (2008) in allowing for

nonpolynomial functions of the treatment variable in the outcome equation and in

allowing for discrete instruments. The results also show that it is possible to identify

the average treatment effect when there is multidimensional heterogeneity and discrete

instruments, in this way going beyond Torgovitsky (2015) and D’Haultfœuille and
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Février (2015). We also contribute to the literature on nonseparable models by giving

identification results based on the conditional nonsingularity of the second moment

matrix of functions of the treatment variable.

In Section 2 we introduce the model. In Section 3 we give the main identification

result and the key implications of the identification condition. In Section 4 we discuss

estimation of the model. Section 5 concludes. The proofs of all the results are given

in the Appendix.

2. The Model

Let Y denote an outcome variable of interest, X an endogenous treatment, and ε

a structural disturbance vector of finite dimension. We consider the heterogenous

coefficients model

(2.1) Y = p(X)′ε,

where p(X) is a vector of known functions. This model is linear in the known functions

p(X) of the endogenous variables with coefficients ε that need not be independent of

X. The coefficients ε characterise how p(X) affects Y and can vary over individuals.

This model generalises Florens, Heckman, Meghir, and Vytlacil (2008) to allow p(X)

to be any functions of X rather than just powers of X. When p(X) is a vector of

approximating functions such as splines or wavelets this model can be viewed as an

approximation to a general nonseparable model Y = g(X, ε) where ε are varying

coefficients in an expansion of g(x, ε) in p(x), as in Hausman and Newey (2016). In

this paper we take p(X)′ε to be a correct model.

We consider the use of control variables to identify interesting objects associated

with the function p(X)′ε. We assume that the vector ε is mean independent of the

endogenous variable X conditional on an observable or estimable control variable

denoted V .

Assumption 1. For the model in (2.1), there exists a control variable V such that

E [ε | X, V ] = E [ε | V ].

This conditional mean independence property and the form of the structural function

p(X)′ε in (2.1) together imply that X is known to affect the control regression function
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(CRF) of Y given (X, V ), E [Y | X, V ], only through the vector of known functions

p(X):

(2.2) E [Y | X, V ] = p(X)′E[ε|X, V ] = p(X)′E[ε|V ] = p(X)′q0(V ), q0(V ) ≡ E[ε|V ].

This control variable regression generalises that of Chernozhukov, Fernandez-Val,

Newey, Stouli, and Vella (2017) to allow q0(V ) to be a vector of unknown functions

of V rather than a linear combination of finitely many known transformations of V .

This restricted nonparametric regression is of the varying coefficients type considered

by Cai, Das, Xiong, and Wu (2006).

An important kind of control variable arises in a triangular system where an instru-

mental variable Z is excluded from the outcome equation (2.1) and where X is a

scalar with

(2.3) X = h(Z, η),

with h(z, η) strictly monotonic in η. If (ε, η) is jointly independent of Z, Assumption

1 is satisfied in the triangular system (2.1)-(2.3) with V = FX|Z(X | Z), the CDF of

X conditional on Z (Imbens and Newey, 2009). Alternatively, V = FX|Z(X | Z) is a

control variable in this model under the weaker conditions that η is independent from

Z and that ε be mean independent of Z conditional on η.

Theorem 1. For the triangular system (2.1)-(2.3), if η is independent from Z and

E[ε | η, Z] = E[ε | η] then E[ε | X, V ] = E[ε | V ].

Additional exogenous covariates Z1 can be incorporated straightforwardly in the

model through the known functional component of the CRF. With covariates Z1,

the CRF takes the form

E [Y | X,Z1, V ] = p(X,Z1)
′q0(V ),

where p(X,Z1) is a vector of known functions of (X,Z1). The addition of exoge-

nous covariates does not affect the identification analysis and it is straightforward to

incorporate them, so we do not include them explicitly in the rest of this paper.

An important special case of this model is treatment effects where p(X) is a vector

that includes a constant and dummy variables for various kinds of treatments. For

example the Rosenbaum and Rubin (1983) treatment effects model is included as a

special case where X ∈ {0, 1} is a treatment dummy variable that is equal to one if
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treatment occurs and equals zero without treatment and

p(X) = (1, X)′.

In this case ε = (ε1, ε2) is two dimensional with ε1 giving the outcome without treat-

ment and ε2 being the treatment effect. Here the control variables in V would be

observable variables with Assumption 1 holding, i.e., the coefficients (ε1, ε2) are mean

independent of treatment conditional on controls, which is the unconfoundedness as-

sumption of Rosenbaum and Rubin (1983). Multiple treatments could also be allowed

for by letting X be a vector of dummy variables with each variable representing a dif-

ferent kind of treatment, e.g., Imbens (2000).

A central object of interest in model (2.1) is the average structural function (ASF)

given by µ(x) ≡ p(x)′E[ε]; see Blundell and Powell (2003) and Wooldridge (2005).

When X ∈ {0, 1} is a dummy variable for treatment µ(0) gives the average outcome

for those not treated and µ(1) the average outcome for those who are treated, with

µ(1) − µ(0) being the average treatment effect. When X is continuously distributed

∂µ(x)/∂x = [∂p(x)/∂x]′E [ε] gives a derivative version of the average treatment effect.

The ASF can be expressed as a known linear combination of E [q0(V )] from equation

(2.2). By iterated expectations

p(x)′E [q0(V )] = p(x)′E [E [ε | V ]] = µ(x).

We note that identification of the ASF requires integrating over the marginal distri-

bution of the control variable V. There are other interesting structural objects that do

not rely only on the marginal distribution of V. For example, the average derivative

of the structural function is

E

[
∂{p(X)′ε}

∂x

]
= E

[
E

[
∂{p(X)′ε}

∂x
| X, V

]]
= E

[{
∂p(X)

∂x

}′
E [ε | X, V ]

]
= E

[{
∂p(X)

∂x

}′
E [ε | V ]

]
= E

[
∂E[Y | X, V ]

∂x

]
,

as shown in Imbens and Newey (2009) for general nonseparable models. This object

and others like it, including the local average response of Altonji and Matzkin (2005),

do not require the full support condition for identification in general nonseparable

models. For this reason we focus our identification results on the ASF where we

use the heterogenous coefficients structure to weaken the full support condition for

identification.
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3. Identification

3.1. Main Results. One main contribution of this paper is to highlight and show

that in the heterogenous coefficients model we consider the ASF is identified under

the following condition:

Assumption 2. E
[
‖ε‖4

]
<∞, E

[
‖p (X)‖4

]
<∞, and E

[
p (X) p (X)′ | V

]
is non-

singular with probability one.

This condition is sufficient for identification of the unknown function q0(V ).

Theorem 2. If Assumptions 1-2 hold then q0 (V ) is identified.

We discuss below conditions for nonsingularity of E
[
p (X) p (X)′ | V

]
. All those con-

ditions are sufficient for identification of q0 (V ), including those that allow for discrete

valued instrumental variables in triangular systems. We also note that identification

of q0 (V ) means uniqueness on a set of V having probability one. Thus the ASF will

be identified as

(3.1) µ (X) = p (X)′E[q0 (V )],

with probability one. In other words, the ASF is identified because p (X) is a known

function and q0 (V ) is identified, and hence E [q0 (V )] also is.

Theorem 3. If Assumptions 1-2 hold then the ASF is identified.

The identification analysis applies to other control regressions and model specifi-

cations. First, Theorems 2 and 3 also apply to models with CRF of the form

E [Y | X, V ] = p0(X)′q(V ), where p0(X) is now unknown and V affects E [Y | X, V ]

only through a vector of known functions q(V ). Identification of p0(X) then re-

quires that E
[
q (V ) q (V )′ | X

]
be nonsingular with probability one. Second, The-

orem 2 directly applies to other control regressions, such as the control conditional

quantile function QY |XV (u | X, V ) = p(X)′qu(V ), u ∈ (0, 1), and the control CDF

FY |XV (y | X, V ) = p(X)′qy(V ). Third, the identification condition also implies iden-

tification of control regressions where the functional form of both how X and V

affect the outcome is restricted, under the weaker condition that it holds on a set

of V having positive probability. A detailed exposition of all these alternative con-

trol regression specifications and the corresponding average, quantile and distribution

structural functions is given in Newey and Stouli (2018).
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3.2. Discussion of the Identification Condition. The nonsingularity condition on

E[p(X)p(X)′ | V ] allows for the support of X conditional on V to be discrete. Under

this condition, the heterogenous coefficients form of model (2.1) and identification of

q0(V ) together imply uniqueness of the CRF on a set of (X, V ) having probability

one. Therefore the integral in the definition (3.1) of the ASF is well-defined because

integration then occurs over a range of v values conditional on X where the CRF is

identified. Stronger sufficient conditions for identification are full support (Imbens and

Newey, 2009), that the support of V conditional on X equals the marginal support of

V , and measurable separability (Florens, Heckman, Meghir, and Vytlacil, 2008), that

any function of X equal to a function of V with probability one must be equal to a

constant with probability one. Both conditions require X to have continuous support

conditional on V . The formulation of an identification condition in terms of the

conditional second moment matrix of p(X) thus represents a substantial weakening

of the conditions previously available in the literature.

When X ∈ {0, 1} and p(X) = (1, X)′, the identification condition becomes the stan-

dard condition for the treatment effect model

Y = ε1 + ε2X, E [ε | X, V ] = E [ε | V ] , ε ≡ (ε1, ε2)
′.

The identification condition is that the conditional variance matrix of (1, X)′ given V

is nonsingular with probability one, which is the same as

(3.2) Var(X | V ) = P (V )[1− P (V )] > 0, P (V ) ≡ Pr(X = 1 | V ),

with probability one, where P (V ) is the propensity score. Here we can see that the

identification condition is the same as 0 < P (V ) < 1 with probability one, which is

the standard identification condition.

With multiple treatments letting X denote a vector of dummy variables X(t), t ∈ T ≡
{1, . . . , T}, taking value one if treatment t occurs and zero otherwise, the identification

condition is that the conditional second moment matrix of

p(X) = (1, X(1), . . . , X(T ))′

given V is nonsingular with probability one. For the case where V is observable, Gra-

ham and Pinto (2018) address similar issues in independent work. Considerable simpli-

fication occurs when the treatments are mutually exclusive, allowing for the character-

isation of a necessary and sufficient condition for nonsingularity of E[p(X)p(X)′ | V ]

that generalises (3.2).
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Theorem 4. Suppose that Pr(X(t) = 1 | V ) > 0 for each t ∈ T . With mutually

exclusive treatments, E[p(X)p(X)′ | V ] is nonsingular with probability one if and only

if

1− ΣT
s=1 Pr(X(s) = 1 | V ) > 0,

for each t ∈ T , with probability one.

In triangular systems with control variable V = FX|Z(X | Z), our identification

condition can equivalently be stated in terms of the first stage representation X =

QX|Z(V | Z) and the instrument Z. By independence of V from Z, a sufficient

condition for identification is that

E[p(QX|Z(v | Z))p(QX|Z(v | Z))′]

be nonsingular for almost every v ∈ V . When Z is discrete with support Z =

{z : Pr(Z = z) ≥ δ > 0} of finite cardinality |Z|, a necessary condition for nonsingu-

larity is then that the set Q(V ) of distinct values1 of z 7→ QX|Z(V | z) has cardinality

|Q(V )| greater than or equal to J ≡ dim(p(X)) with probability one.

Theorem 5. Suppose that |Z| < ∞. Then E[p(X)p(X)′ | V ] is nonsingular with

probability one only if Pr [|Q(V )| ≥ J ] = 1.

Theorem 5 formalises the intuitive notion that the complexity of the model as mea-

sured by the dimension of its known functional component p(X) is restricted by the

cardinality of the set of instrumental values. Thus only when p(X) = (1, X)′ can

identification be achieved in the presence of a binary instrument. A more primitive

condition for identification in this case is that a change in the value of the instrument

shifts the value of the conditional quantile function z 7→ QX|Z(V | z) with probability

one.

Theorem 6. Let p(X) = (1, X)′. If |Z| = 2 and Pr[QX|Z(V | z1) 6= QX|Z(V | z2)] =

1, then E
[
p (X) p (X)′ | V

]
is nonsingular with probability one.

1Formally, for v ∈ (0, 1), we define Q(v) =
{
QX|Z(v | zm)

}
m∈M(v)

, where

M(v) =
{
m ∈ {1, . . . , |Z|} : QX|Z(v | zm) 6= QX|Z(v | zm′) for all m′ ∈ {1, . . . , |Z|}/{m}

}
.
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4. Estimation

The results of the previous Section lead to direct estimation methods for the heteroge-

nous coefficients model we consider. One approach to making estimation feasible is

through the approximation of the nonparametric component q0(V ) by approximating

functions such as splines or wavelets.

For the CRF specification E [Y | X, V ] = p(X)′q0(V ), we approximate each compo-

nent q0j(V ), j ∈ J ≡ {1, . . . , J}, of the unknown functional coefficient vector q0(V )

by a linear combination of K basis functions ψK = (ψK
1 , . . . , ψ

K
K )′,

(4.1) q0j(V ) ≈
K∑
k=1

bjkψ
K
k (V ) = b′jψ

K(V ), j ∈ J ,

where bj = (bj1, . . . , bjK)′, j ∈ J , which yields an approximation of the form

E [Y | X, V ] = p(X)′q0(V ) ≈
J∑

j=1

{
b′jψ

K(V )
}
pj(X) = b′[p(X)⊗ ψK(V )],

where b = (b′1, . . . , b
′
J)′. Such an approximation is well-defined under our conditions

with b = bKLS, the coefficient vector of a least squares regression of Y on p(X)⊗ψK(V ),

(4.2) bKLS ≡ arg min
b∈RJK

E
[{
Y − b′[p(X)⊗ ψK(V )]

}2]
.

The proposed approximation is valid for the CRF E [Y | X, V ] if the specified basis

functions satisfy the following condition.

Assumption 3. For all K, E
[
||ψK(V )||2

]
< ∞, E[ψK(V )ψK(V )′] exists and is

nonsingular, and, for any J vector of functions a(V ) with E[||a(V )||2] <∞, there are

K × 1 vectors ϕK
j , j ∈ J , such that as K →∞, E[

∑J
j=1{aj(V )−ψK(V )′ϕK

j }2]→ 0.

Under this assumption we have that, as K →∞,

(4.3) E
[{
E [Y | X, V ]− [p(X)⊗ ψK(V )]′bKLS

}2]→ 0.

Therefore E [Y | X, V ] can be approximated arbitrarily well by increasing the number

of terms in the approximate specification (4.1)

Theorem 7. Suppose that E
[
‖q0 (V )‖2

]
< ∞ and supv∈V E [||p(X)||2 | V = v] ≤ C

for some finite constant C. Then (4.3) holds under Assumptions 1-3.
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An estimator for the CRF is given by taking the sample analog in (4.2), upon sub-

stituting for the control variable V by its estimated version when it is unobservable.

The properties of the corresponding ASF estimator, including convergence rates and

asymptotic normality, have been extensively analysed by Imbens and Newey (2002)

for the general case where p(X) and q(V ) both are increasing sequences of splines or

power series approximating functions and the vector of regressors is of the kronecker

product form we consider (cf. Theorems 6–8 in Imbens and Newey, 2002). Their

analysis accounts for a first step nonparametric estimate of the control variable, and

their results directly apply to the simpler case we consider here where the dimension

of p(X) is fixed, including when V is observable. In particular, we find that the con-

vergence rate for the ASF in the model is solely determined by the rate of the first

step estimator for the control variable. An immediate and remarkable corollary of this

result is that in the model average treatment effects are estimable at a parametric rate

when V is itself estimable at a parametric rate2 or observable.

5. Conclusion

This paper introduces a new, transparent nonsingularity condition for the identifica-

tion of models with heterogenous coefficients and endogenous treatments. We use this

condition to give identification results that allow for discrete instruments in triangu-

lar systems with multidimensional unobserved heterogeneity. The approach applies to

various types of treatment effects and model specifications, including average treat-

ment effects with multiple treatments, and the model can be conveniently estimated

by a series-based least squares estimator with well-understood properties.

Appendix A. Proof of Main Results

A.1. Proof of Theorem 1.

Proof. As in the proof of Theorem 1 in Imbens and Newey (2009), V is a one-to-one

function of η. Then by equation (2.3), iterated expectations, and conditional mean

2Models that allow for estimation of the CDF FX|Z(X | Z) at a parametric rate can be formulated
using quantile and distribution regression (Chernozhukov, Fernandez-Val, Newey, Stouli, and Vella,
2017) or dual regression (Spady and Stouli, 2018).
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independence,

E [ε | X, V ] = E [ε | h(Z, η), η] = E[E [ε | η, Z] | h(Z, η), η]

= E[E [ε | η] | h(Z, η), η] = E [ε | η] = E [ε | V ] ,

as claimed. �

A.2. Proof of Theorem 2.

Proof. Let λmin(V ) denote the smallest eigenvalue of E[p(X)p(X)′ | V ]. Suppose that

q̄ (V ) 6= q0 (V ) with positive probability on a set Ṽ , and note that λmin(V ) > 0 on V
by Assumption 2. Then

E
[{
p (X)′ {q̄ (V )− q0 (V )}

}2]
= E

[
{q̄ (V )− q0 (V )}′E

[
p (X) p (X)′ | V

]
{q̄ (V )− q0 (V )}

]
≥ E

[
‖q̄ (V )− q0 (V )‖2 λmin (V )

]
≥ E

[
1(V ∈ V ∩ Ṽ) ‖q̄ (V )− q0 (V )‖2 λmin (V )

]
By definition Pr(Ṽ) > 0 and Ṽ ⊆ V so that Ṽ ∩ V = Ṽ . Thus the fact that

‖q̄ (V )− q0 (V )‖2 λmin (V ) is positive on Ṽ ∩ V implies

E
[
1(V ∈ V ∩ Ṽ) ‖q̄ (V )− q0 (V )‖2 λmin (V )

]
> 0.

We have shown that, for q̄ (V ) 6= q0 (V ) with positive probability on a set Ṽ ,

E
[{
p (X)′ {q̄ (V )− q0 (V )}

}2]
> 0,

which implies p (X)′ q̄ (V ) 6= p (X)′ q0 (V ). Therefore, q0 (V ) is identified from

E [Y | X, V ]. �

A.3. Proof of Theorem 3.

Proof. Under Assumption 2, q0 (V ) is identified by Theorem 2. The result then follows

from the argument in the text. �

A.4. Proof of Theorem 4.

Proof. For each t ∈ T and a vector w ∈ Rt, let diag(w) denote the t × t diagonal

matrix with diagonal elements w1, . . . , wt, and define Xt = (X(1), . . . , X(t))′ and
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pt(X) = (1, X ′t)
′. For mutually exclusive treatments E[pt(X)pt(X)′ | V ] is of the form

(A.1) E[pt(X)pt(X)′ | V ] =

[
1 E[X ′t | V ]

E[Xt | V ] diag(E[Xt | V ])

]
.

For each t ∈ T , using that E[Xt | V ] = Pr(X(t) = 1 | V ) > 0, we have

that E[pt(X)pt(X)′ | V ] is positive definite if and only if the Schur complement of

diag(E[Xt | V ]) in (A.1) is positive definite (Boyd and Vandenberghe, 2004, Appendix

A.5.5.), i.e., if and only if

1− E[X ′t | V ] diag(E[Xt | V ])−1E[Xt | V ] = 1− Σt
s=1E[X(s) | V ] > 0.

The result now follows by 1−Σt
s=1E[X(s) | V ] ≥ 1−ΣT

s=1 Pr(X(s) = 1 | V ) and from

the fact that a matrix is positive definite if and only if all its principal minors have

strictly positive determinant. �

A.5. Proof of Theorem 5.

Proof. By definition of Z we have that Pr(Z = zm) ≥ δ > 0 for m ∈ {1, . . . , |Z|}.
Thus, upon using the identity X = QX|Z(V | Z) and by independence of V from Z,

for v ∈ (0, 1),

E[p(X)p(X)′ | V = v] =

|Z|∑
m=1

{
p(QX|Z(v | zm))p(QX|Z(v | zm))′

}
× Pr(Z = zm),

is a sum of |Q(v)| ≤ |Z| rank one J×J distinct matrices which is singular if |Q(v)| < J .

Thus if |Q(V )| < J with positive probability, then E[p(X)p(X)′ | V ] is singular with

positive probability. Therefore E[p(X)p(X)′ | V ] is nonsingular with probability one

only if Pr [|Q(V )| ≥ J ] = 1. �

A.6. Proof of Theorem 6.

Proof. By assumption QX|Z(V | Z) takes two values QX(V | z1) and QX(V | z2),
QX|Z(V | z1) 6= QX|Z(V | z2), with probability one. Moreover, by definition of Z and

by independence of V from Z, we have that Pr(Z = zm) = Pr(Z = zm | V ) ≥ δ > 0,

m = 1, 2, with probability one. It follows that Var(QX|Z(V | Z) | V ) > 0 with prob-

ability one. Therefore by p(X) = (1, X)′, we have that det
(
E
[
p (X) p (X)′ | V

])
=

Var(QX|Z(V | Z) | V ) > 0 with probability one. �
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A.7. Proof of Theorem 7.

Proof. Let qK(V, b) = (qK1 (V, b1), . . . , q
K
J (V, bJ))′, where qKj (V, bj) ≡

∑K
k=1 bjkψ

K
k (V ),

j ∈ J . Model (2.1) and Assumptions 1-2 together imply that E [Y | X, V ] =

p(X)′q0(V ), where q0(V ) is unique with probability one by Theorem 2. Thus, for

all b ∈ RJK ,

E
[{
E [Y | X, V ]− b′[p(X)⊗ ψK(V )]

}2]
= E

[{
p(X)′q0(V )− b′[p(X)⊗ ψK(V )]

}2]
= E

[{
p(X)′

[
q0(V )− qK(V, b)

]}2]
.(A.2)

Using that bKLS in (4.2) also satisfies

bKLS = arg min
b∈RJK

E
[{
E [Y | X, V ]− b′[p(X)⊗ ψK(V )]

}2]
,

equation (A.2) implies that

(A.3) bKLS = arg min
b∈RJK

E
[{
p(X)′

[
q0(V )− qK(V, b)

]}2]
.

Thus if, as K →∞,

E
[{
p(X)′

[
q0(V )− qK(V, bKLS)

]}2]→ 0,

then the result follows.

Define

b̃K ≡ arg min
b∈RJK

E
[
||q0(V )− qK(V, b)||2

]
.

We have that, as K →∞,

0 ≤ E

[{
p(X)′

[
q0(V )− qK(V, b̃K)

]}2
]
≤ E

[
||p(X)||2 ||q0(V )− qK(V, b̃K)||2

]
= E

[
E
[
||p(X)||2 | V

]
||q0(V )− qK(V, b̃K)||2

]
≤ CE

[
||q0(V )− qK(V, b̃K)||2

]
→ 0,

by Cauchy-Schwarz, iterated expectations, uniform boundedness of E[||p(X)||2 | V =

v] over v ∈ V and Assumption 3. Thus b̃K is a minimiser of (A.3) for K large

enough. We have that E[p(X)p(X)′ | V ] is nonsingular with probability one by

Assumption 2, and that E[ψK(V )ψK(V )′] is nonsingular by Assumption 3. Thus the

matrix E[{p(X) ⊗ ψK(V )}{p(X) ⊗ ψK(V )}′] is nonsingular for each K by Theorem

3 in Newey and Stouli (2018). Therefore, b̃K is the unique minimiser of (A.3) for K

large enough. Conclude that bKLS = b̃K for K large enough, and the result follows. �
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