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NONPARAMETRIC MAXIMUM LIKELIHOOD METHODS

FOR BINARY RESPONSE MODELS WITH RANDOM COEFFICIENTS

JIAYING GU AND ROGER KOENKER

Abstract. Single index linear models for binary response with random coefficients have
been extensively employed in many econometric settings under various parametric specifi-
cations of the distribution of the random coefficients. Nonparametric maximum likelihood
estimation (NPMLE) as proposed by Cosslett (1983) and Ichimura and Thompson (1998),
in contrast, has received less attention in applied work due primarily to computational dif-
ficulties. We propose a new approach to computation of NPMLEs for binary response mod-
els that significantly increase their computational tractability thereby facilitating greater
flexibility in applications. Our approach, which relies on recent developments involving
the geometry of hyperplane arrangements, is contrasted with the recently proposed decon-
volution method of Gautier and Kitamura (2013). An application to modal choice for the
journey to work in the Washington DC area illustrates the methods.

1. Introduction

Consider the linear index, random coefficient binary response model,

(1) yi = 1{x>i βi +w
>
i θ0 > 0}.

We observe covariates xi ∈ Rd+1, wi ∈ Rp, and the binary response, yi. We will assume
that the random parameters βi are independent of both xi and wi and are drawn iidly from
an unknown distribution F0. The remaining Euclidean parameters, θ0 ∈ Θ ⊂ Rp are fixed
and also unknown. Our objective is to estimate the pair (θ0, F0) by maximum likelihood.
This model encompasses many existing single index binary choice models in the literature.
When the covariates xi contain only an intercept term we have the simplest version of the
semiparametric single index model considered in Cosslett (1983). When d > 1 and there
are no other covariates wi, it is the random coefficient single index model of Ichimura and
Thompson (1998).

It is immediately apparent that the distribution of the βi’s is only identified up to a scale
transformation of the coordinates of β, so without loss of generality we could impose the
normalization that ‖β‖ = 1. An additional identification requirement noted by Ichimura
and Thompson (1998) is that the distribution of βi must have support on some hemisphere.
This requirement will be fulfilled if the sign of one of the β coordinates is known, we will
assume henceforth that the last entry of β is positive, so βi’s would be restricted to lie in
the northern hemisphere. Under this additional assumption an alternative normalization
simply takes the coordinate with the known sign to be 1 and focuses attention on the joint
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2 RANDOM COEFFICIENTS FOR BINARY RESPONSE

distribution of the remaining coordinates relative to it. In our modal choice application
for example the price effect can be normalized to 1, and remaining covariate effects are
interpreted relative to the effect of price. Henceforth, we shall assume that x = (1, z>i ,−vi)

and βi = (η>i , 1) with η ∈ Rd, and estimation F0 = Fβ is reduced to estimation of F0 = Fη.
Finally, it should be stressed from the outset that identification requires sufficient variability
in xi to trace out F0 on its full support. These conditions will be made more explicit in the
sequel.

We begin with a brief discussion of the simplest case in which there is only a univariate
random coefficient as considered in the seminal paper of Cosslett (1983), a formulation that
already illustrates many of the essential ideas. This is followed by a general treatment of the
multivariate setting that draws on recent developments in combinatorial geometry involving
“hyperplane arrangements.” A discussion of identification and consistency is then followed
by a brief description of some simulation experiments. Performance comparisons are made
with the deconvolution approach of Gautier and Kitamura (2013). We conclude with an
illustrative application to modal choice of commuters in the Washington DC area based on
data from Horowitz (1993).

2. Univariate Randomness

In our simplest setting we have only a univariate random component and we observe
thresholds, vi, and associated binary responses,

(2) yi = 1(ηi > vi) i = 1, · · · ,n,

with ηi’s drawn iidly from the distribution Fη and independently of the vi. In economic
applications, with vi taken as a price the survival curve, 1 − Fη(v) can be interpreted
as a demand curve, the proportion of the population willing to pay, v. More generally,
the single index model, might express vi = v(wi, θ) depending on other covariates, wi
and unknown parameters, θ. This is the context of Cosslett (1983) who focuses most of
his attention on estimation of the distribution Fη employing the nonparametric maximum
likelihood estimator (NPMLE) of Kiefer and Wolfowitz (1956). Estimation of the remaining
parameters can be carried out by some form of profile likelihood, but we will defer such
considerations. In biostatistics (2) is referred to as the current status model: we observe
inspection times, vi, and a binary indicator, yi, revealing whether an unobserved event
time, ηi, has occurred prior to its associated inspection time, vi. Again, the objective is to
estimate the distribution of the event times, Fη, by nonparametric maximum likelihood as
described, for example, by Groeneboom, Jongbloed, and Witte (2010).

The geometry of maximum likelihood in this univariate setting is quite simple and helps
to establish a heuristic for the general multivariate case. To illustrate the role of these
intervals under the standard convention of the current status model, we can write,

P(y = 1|v) =

∫
1(η 6 v)dFη(η).

Given a sample {(yi, vi) i = 1, · · · ,n}, this relation defines n+ 1 intervals as illustrated for
n = 10 in the upper panel of Figure 1. Each point defines a half line on R; if yi = 1 then
the interval is Ri = (−∞, vi], while if yi = 0 the interval is Ri = (vi,∞). Neglecting for
the moment the possibility of ties, the Ri’s form a partition of n+ 1 intervals of R, We will
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denote these intervals by Ij, for j = 1, · · · ,n + 1; they can be either closed, open or half
open. We now define the associated counts,

cj =

n∑
i=1

1{Ri ∩ Ij 6= ∅}

=

{∑
i:yi=0 1{vi < v(j)}+

∑
i:yi=1 1{vi > v(j)} for 1 6 j 6 n∑

i:yi=0 1{vi 6 v(n)} for j = n+ 1

where v(j) is the j-th order statistic of the sample {v1, . . . , vn}. Now suppose we assign
probability mass, pj to each of the intervals Ij, so that p = {p1, . . . ,pn+1} in the n di-
mensional unit simplex, Sn. Then the contribution of the i-th data point to the likelihood
is
∑
j pj1{Ri ∩ Ij 6= ∅}. The nonparametric maximum likelihood estimator of Fη has the

following essential features:

(1) Since the pj’s are assigned to intervals, it does not matter where mass is located
within the intervals, as long as it is assigned to a point inside, in this sense the
NPMLE, F̂η, is defined only on the sigma algebra of sets formed from the intervals,
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Figure 1. Intervals for a sample of 10 observations in the univariate Cosslett
model. The intervals demarcated by the heavier (red) segments are local maxima,
the number of counts for each interval is illustrated in the lower portion of the

figure.
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Ij. By convention we could assign the mass to the right end of each interval, but
we should remember that this is only a convention. The MLE assigns mass to sets,
not to points.

(2) Potential non-zero elements of p correspond to intervals Ij with corresponding cj
being a local maximum. Were this not the case, the likelihood could always be
increased by transferring mass to adjacent intervals containing larger counts. Figure
1 plots values for the vector c. It is quite efficient to generate the vector c and find
these local maxima even when n is very large.

These features suggest a convex optimization strategy for estimation of Fη. Since mass
needs only to be assigned to the right endpoint of intervals that correspond to local maxima
of the counts, we only need consider those potential support points. This serves as a
dimension reduction device compared to considering all n original data points. However, in
our experience, the number of potential support points of the distribution Fη identified in
this manner still grows linearly with the sample size n, while the number of optimal support
points identified by the maximum likelihood estimator grows more slowly. To determine
which of our locally maximal intervals deserves positive mass and if so how much, we must
solve,

max
f∈Sm−1

{ n∑
i=1

log gi | Af = g
}
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Figure 2. Number of local maxima of interval counts (black circles) and number
of points of support of the optimal NPMLE solution (red pluses). The local maxima
grow essentially linearly with sample size, while the number of support points in
the NPMLE grow roughly logarithmically.
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where f = (fj) denotes the mass assigned to the j-th order statistic of our reduced set of
potential v of cardinality m. The i-th coordinate of Af equals to

∑
j 1{v(j) 6 vi}fj if yi = 1

and
∑
j 1{v(j) > vi}fj if yi = 0. As first noted by Cosslett (1983), this problem turns out

to be a special instance of the nonparametric maximum likelihood estimator described in
Kiefer and Wolfowitz (1956). Noting that the problem is strictly concave in the gi and
subject only to linear equality and inequality constraints, it can be solved very efficiently,
as noted by Koenker and Mizera (2014), by interior point methods as implemented for
example in Mosek, the optimization framework developed by Andersen (2010). When this

is carried out one finds that the number of support points of the estimated distribution, F̂η,
is considerably smaller than the number of local maxima identified as candidates. Indeed,
in contrast to the linear growth of the local maxima, the number of support points of the
solutions to the NPMLE problem grows roughly like

√
n. This is illustrated in Figure 2,

where we have generated standard Gaussian vi’s and ηi’s, for samples of size, n = exp(ξ)
with ξ ∼ U[5, 9]; round black points indicate the number of local maxima, while red plus
points depict the number of optimal support points. This slow growth in the number of mass
points selected by the NPMLE is consistent with prior experience with related methods for
estimating smooth mixture models as described in Koenker and Mizera (2014) and Gu and
Koenker (2016).

When we admit the possibility of ties in the vi’s increased care is required to correctly
count the number of observations allocated to each of the intervals. This is especially
true when conflicting binary responses are observed at tied values of v. In such cases it is
convenient to shift locations, vi of the tied yi = 0 observations slightly thereby restoring
the uniqueness of the intervals.

3. Multivariate Randomness

The convenience of the univariate case is that there is a clear ordering of vi on R, hence
the partition is very easy to be characterized and enumerated. This seems to be lost once we
encounter the multivariate case, however the bivariate current status and bivariate interval
censoring models considered by Groeneboom and Jongbloed (2014) provide a valuable con-
ceptual transition in which the intervals of the univariate setting are replaced by rectangles
in the bivariate setting. Maathuis (2005) describes an effective algorithm for these models
that shares some features with our approach.

To help visualize the geometry of the NPMLE in our more general setting with mul-
tivariate random coefficients we will first consider the bivariate case without any auxil-
iary covariates, wi, and maintain the small sample focus of the previous section. Now,
xi = (1, zi,−vi)

> where zi is a random scalar and ηi ∼ F0. The binary response is gener-
ated as,

P(yi = 1|xi) = P(η1i + z>i η2i − vi > 0).

Each pair, (zi, vi), defines a line that divides R2 into two halfspaces, an “upper” one cor-
responding to realizations of yi = 1, and a “lower” one for yi = 0. Let Ri denote these
halfspaces and F(Ri) be the probability assigned to each Ri by the distribution F. Our
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objective is to estimate the distribution, F0. The log likelihood of the observed sample is,

`(F) =

n∑
i=1

log F(Ri).

As in the univariate case, the Ri partition the domain of β, however, now rather than
intervals the partition consists of polygons formed by intersections of the Ri halfspaces.
Adapting our counting method for intervals to these polygons, we seek to identify polygons
whose counts are locally maximal. Within these maximal polygons the data is uninformative
so again there is some inherent ambiguity about the nature of the NPMLE solutions. As
in the one dimensional case this ambiguity can be resolved by adopting a selection rule
for choosing a point within each polygon. As long as there is sufficient variability in the
pairs (zi, vi)’s this ambiguity will vanish as the sample size grows as we will consider more
formally in Section 4.

Figure 3 illustrates this partition with n = 5. The data for this example are given in
Table 1.

(Intercept) zi vi yi
i = 1 1.00 0.41 1.22 1
i = 2 1.00 0.40 0.36 0
i = 3 1.00 0.17 0.24 1
i = 4 1.00 -0.79 0.99 0
i = 5 1.00 -0.94 0.55 0

Table 1. Data for a toy example with n = 5

The half spaces {R1, . . . ,Rn} partition R2 into disjoint polygons C1, . . . ,CM. Since for
each i, it has to be that Cm ∩ Ri = ∅ or Cm ∩ Ri = Cm, we can represent

F(Ri) =

M∑
j=1

pj1{Cj ⊂ Ri}

where pj denotes the probability assigned to Cj, and we can express the log likelihood in
terms of these probabilities, p = (pj)j=1:M,

`(p) =

n∑
i=1

log
( M∑
j=1

pj1{Cj ⊂ Ri}
)

.

The vector p must lie in the M− 1 dimensional unit simplex so we have a strictly concave
objective function defined on a convex set that yields a unique solution. Just as in the
univariate setting where we need not consider all intervals only those with locally maximal
counts, we now need only consider polygons with locally maximal counts, thereby reducing
the dimension, M, of the vector p.

We now illustrate how to find the maximal polygons for our toy example with n =
5. Figure 3 shows that there are three maximal polygons, all shaded and denoted as
{C1,C2,C3}. Polygon C1 is the intersection of {R1,R3,R4,R5}, C2 is the intersection of
{R1,R2,R4,R5} and C3 is the intersection of {R1,R2,R3}. Each is locally maximal in the
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Figure 3. The polygons defined by a toy example with n = 5.

sense that they are formed by more intersecting halfspaces than any of their neighbours.
The maximum likelihood estimator for p is defined as the maximizers of,

max
p∈S2

log
{
(p1 + p2 + p3)(p2 + p3)(p1 + p3)(p1 + p2)(p1 + p2)

}
which leads to the unique solution, p1 = p2 = 1/2 and p3 = 0, and the optimal log-likelihood
of log(1/4) = −1.3863. We should again stress that although the mass associated with the
two optimal polygons is uniquely determined by maximizing the likelihood, the position of
the mass is ambiguous, confined only to the regions bounded by the two polygons.

As n grows the number of maximal polygons grows rapidly and finding all of them in the
informal manner described above quickly becomes impractical. Fortunately, there is an ex-
tensive, relatively recent, combinatorial geometry literature on “hyperplane arrangements”
that allows for efficient and tractable enumeration of the partition induced by any set of n
hyperplanes in Rd.

3.1. Hyperplane Arrangement and Cell Enumeration. Given a set of hyperplanes
H := {H1,H2, . . . ,Hn} in Rd, it defines a partition of the space. In the computational geom-
etry literature, this partition is called a hyperplane arrangement A(H). We first characterize
the complexity of an arrangement by the following Lemma.

Lemma 1. The number of cells of an arrangement of n hyperplanes in Rd is O(nd).

Proof. See Buck (1943), or for further elaboration Zaslavsky (1975).
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Remark. The worst case occurs when all n hyperplanes are in general position: a hy-
perplane arrangement H = {H1, · · · ,Hn} in Rd is in general position if for 1 6 k 6< n
any collection of k of them intersect in a d− k dimensional hyperplane if 1 6 k 6 d and if
k > d they have an empty intersection. In such cases the number of cells generated by the

n hyperplanes is given by
∑d
i=0

(
n
i

)
.

When d = 2 we have lines not hyperplanes. There are three basic elements in a line
arrangement: vertices, edges and polygons. Vertices are the zero-dimensional points at
which two or more lines intersect. Edges are the one-dimensional open line segments or
open infinite rays that connect the vertex points. Faces, or cells, are the two-dimensional
interiors of the bounded or unbounded convex polygons formed by the arrangement. If all
lines {H1, . . . ,Hn} are in general positions, then the number of vertices is

(
n
2

)
, the number

of edges is n2 and the number of cells is
(
n
2

)
+ n + 1 = O(n2). When lines are not in

general position, which is likely to occur in many empirical settings, the complexity of the
line arrangement is characterized in Alexanderson and Wetzel (1981). We return to this
possibility in Section 3.4 below.

Our first objective is to enumerate all the polytopes, or cells, formed by a given arrange-
ment, denoted as {C1,C2, . . . ,CM}. For each cell Cj we can define a sign vector sj ∈ {±1}n

whose i-th element is,

sij :=

{
1 for Z>i η− vi > 0

−1 for Z>i η− vi < 0,

where Zi := {1, z>i }
> and η is an arbitrary interior point of Cj. In this form the sign vector

ignores the information in yi, but this can easily be rectified by flipping the sign of the i-th
element in the sign vector. We will define the modified sign vector to be s̃j with

s̃ij :=


1 for yi = 1,Z>i η− vi > 0

−1 for yi = 1,Z>i η− vi < 0

1 for yi = 0,Z>i η− vi < 0

−1 for yi = 0,Z>i η− vi > 0

Each cell is uniquely identified by its sign vector and an associated interior point η. The
interior point η is arbitrary, but since the likelihood is determined only by the probability
mass assigned to each cell, we need only find a valid interior point ηj for each polytope Cj.
This can be accomplished by examining solutions to the linear program,

(3) {η∗j , ε
∗
j } = argmax

η,ε

{
Sj(Zη− v) > ε1n, 0 6 ε 6 1

}
.

Here, Sj is a n×n diagonal matrix with diagonal elements {s1j, s2j, . . . , snj}. It can be seen
that ηj is a valid interior point of Cj if and only if ε∗j > 0. The upper bound for ε can be
changed to any arbitrary positive number, thereby influencing which interior point found
as the optimal solution.

The linear program (3) thus provides a means to check if a particular configuration of
the sign vector is compatible with a given hyperplane arrangement. A brute force way
to enumerate all cells in the arrangement is to exhaust all possible sign vectors in the
set {±1}n, of which there are 2n elements. For each element we could solve the linear
programming problem and check the existence of a valid interior point. This is obviously
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computationally ridiculous and unnecessary since the maximum number of cells generated
by a n-hyperplane arrangement in Rd is only of order nd as stated in Lemma 1. Avis
and Fukuda (1996) were apparently the first to develop an algorithm for cell enumeration
that runs in time proportional to the maximum number of polygons of an arrangement.
Sleumer (1998) improved upon their reverse search algorithm. More recently, Rada and
Černý (2018) have proposesd an incremental enumeration algorithm that is asymptotically
equivalent to the Avis-Fukuda’s reverse search algorithm, but is demonstrably faster in
finite samples. The most costly component of the Rada-Černý algorithm involves solving
the linear programs (3). We will briefly describe the Rada-Černý Incremental Enumeration
(IE) algorithm and then discuss a modified version that we have developed that reduces the
complexity of IE algorithm by an order of magnitude n.

As the name suggests the IE algorithm adds hyperplanes one at a time to enumerate all
sign vectors of an arrangement in n iterations. Let sk denote a sign vector of length k in
the set of possible vectors {±1}k. In the k-th step of the algorithm with 1 < k 6 n, we have
as input the sign vectors sk−1 for all existing cells formed by the first k − 1 hyperplanes
and their associated interior points collected in the set ηk−1; we will index its elements by
`. At each iteration we do the following:

Algorithm 1: Iteration of the Incremental Enumeration algorithm

input : The existing sets of sign vectors sk−1 and interior points ηk−1 and the new
hyperplane Hk.

output: The new sets of sign vectors sk and the interior points ηk.

(a) For each elements in the set sk−1, say sk−1
` , define the new sign vector

sk` := {sk−1
` , 2× 1{Z>k η

k−1
` − vk > 0}− 1}}.

(b) For each element sk` obtained from (a), solve the linear program defined in (3)

with the sign vector šk` := {sk−1
` , 1 − 2× 1{Z>k η

k−1
` − vk > 0}}, store the optimal

solutions η̌k` and ε̌k` .

(c) Define the set sk := {sk` , ∀l} ∪ {šk` ,∀` such that ε̌k` > 0} and the set

ηk := {ηk` , ∀`} ∪ {η̌k` ,∀` such that ε̌k` > 0}.

The algorithm can be initiated with an arbitrary point η11, as long as it does not fall
exactly on any of the hyperplane. When the first hyperplane H1 is added, it necessarily
partitions the space Rd into two parts. Since η11 has to belong to one of the parts, we define
s11 = 2 × 1{Z>1 η

1
1 − v1 > 0} − 1. For the other half, one solves the linear program (3) with

S = s12 = −s11 and records the solution as η12; defining s1 := {s11, s
1
2} and η1 := {η11,η

1
2} which

become the input for the first iteration of the IE algorithm. The order of addition of the
hyperplanes does not influence the final output.

Figure 3.1 illustrates the idea of the iterative algorithm for a linear arrangement. The
input at the third iteration is illustration in the left panel. There are four polygons that
partition R2 determined by the arrangement {H1,H2}. The interior points are labeled by
their associated sign vector represented by the symbols ±. When H3 is added, step one of
the algorithm determines s3` for ` = 1, . . . , 4. Step two looks for the new polygons created
by adding H3, which crosses through polygons A,C,D, dividing each into two parts, and
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Figure 4. Illustration of the IE algorithm: the left panel plots the output
of the second iteration. The two hyperplane involves are H1 = {(η1,η2) |

−η1+η2−1 = 0} and H2 = {(η1,η2) | η1+η2−1 = 0}. The right panel plots
the output of the third iteration, the additional hyperplane H3 = {(η1,η2) |
0.2η1 + η2 + 2 = 0}.

leads to the three new polygons E,F and G. Polygon B lies strictly on one side of H3, hence
it is not divided.

The most time-consuming step is (b) in each iteration, although each LP problem can be

very quickly solved as long as the dimension d is moderate. We have to solve
∑d
i=0

(
k−1
i

)
=

O((k − 1)d) such problems in the worst case as a consequence of Lemma 1. Together, for
all n iterations, this requires O(nd+1) for any arrangement in Rd.

3.2. Dimension reduction based on locally maximal polygons. Once we have enu-
merated all the cells, an adjacency matrix A can be created with dimension n ×M and
elements taking values in {0, 1}. The j-th column of the A matrix is the corresponding mod-
ified sign vector s̃j of cell Cj, except that we replace all −1 values by 0. As we have already

noted the number of columns of the A matrix, M is of order nd which increases rapidly as
n increases, so it is important to try to reduce the number of candidate cells as much as
possible. To achieve a dimension reduction we need to eliminate cells that are not locally
maximal, that is cells that have neighbours with larger cell counts. Define the M-vector c
whose elements denote the column sums of the adjacency matrix A. corresponding to each
cell {C1, . . . ,CM}. The cells Cj and Ck are neighbours if their sign vector differ by exactly
one sign. For each cell Cj we can define its set of neighbours Nj. The cardinality of any set



RANDOM COEFFICIENTS FOR BINARY RESPONSE 11

Nj is at most n. The following result determines the set of columns in the matrix A that
will be locally maximal and therefore constitute candidate supporting cells of the NPMLE.

Theorem 1. Any cell Cj with associated count, cj, that is strictly smaller than any of
the counts of the cells in its neighbouring set Nj is assigned zero probability mass by the
NPMLE.

Proof. Suppose the NPMLE assigned positive probability mass p to such an Cj. By re-
assigning the probability mass p to the cell in the set Nj with a larger count the likelihood
could be strictly increased, hence p must be zero.
Remark. It is perhaps worth noting at this point that the cell, or cells, possessing the
globally maximal cell count constitute an exhaustive solution to the maximum score problem
posed in Manski (1975), that is, any element of the set {Ck : k ∈ K} for K = {k : ck =
max{cj : j = 1, · · · ,M}} is an argmax of the maximum score objective function. Likewise,
any other locally maximal cell is a region in which the maximal score estimator may become
marooned in the search for a global maximum.

3.3. Acceleration of the Rada-Černý algorithm. The main motivation of our modifi-
cation of the IE algorithm is to reduce the number of LP problems that need to be solved.
To this end we apply a “zone theorem” for hyperplane arrangements of Edelsbrunner, Sei-
del, and Sharir (1993) to show that the number of necessary LP problems in step (b) of the
IE algorithm can be reduced from O(nd+1) to O(nd).

Theorem 2. For any set of H of n hyperplanes in Rd and any hyperplane H ′ /∈ H, denote
the total number of cells in the arrangement of A(H) that intersects with H ′ as h, then

h 6
d−1∑
i=0

(
n

i

)
with the equality achieved when all hyperplanes in the set H ∪ {H ′} are in general position.
Proof. Theorem 2.1 in Edelsbrunner, Seidel, and Sharir (1993) with k = 0, yields,

h 6

(
d− 1

0

)(
n

d− 1

)
+

∑
06j<d−1

(
j

0

)(
n

j

)
=

d−1∑
i=0

(
n

i

)
.

Theorem 2 implies that when we add a new distinct hyperplane to an existing arrange-
ment with k− 1 hyperplanes, it crosses at most O((k− 1)d−1) cells. For line arrangements
this implies that a newly added distinct line crosses at most k polygons. Only these k poly-
gons will generate a new cell, hence in step (b) of the k-th iteration of the IE algorithm, we
need only to solve at most k LPs provided we can efficiently find the relevant k sign vectors
for these crossed cells. We first give details for line arrangement in Algorithm 2 and then
discuss how to extend this approach to general case in Rd.

Algorithm 2 describes how to achieve this when all lines are in general position. In
each iteration, Step (b.1) finds the subset of sign vectors in sk−1 whose corresponding cell
intersects with the new line Hk. Step (b.2) then finds the interior points for all the newly
created cells by solving the associated LPs. When lines are not in general position (i.e.
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Algorithm 2: Accelerated Incremental Enumeration algorithm (d = 2)

input : The existing set of sign vectors sk−1 and interior points ηk−1 and the new
line Hk.

output: The new set of sign vectors sk and interior points ηk.

(a) For each element in the set sk−1, say sk−1
` , define the new sign vector

sk` := {sk−1
` , 2× 1{Z>k η

k−1
` − vk > 0}− 1}}.

(b.1) Find the set of vertices {t1, t2, . . . , tk−1}, where tj is the vertex of the intersection

of Hk and Hj for 1 6 j < k. Let uk−1
j := {sgn{Z>i tj − vi}}i=1,2,...,k−1. By the

definition of a vertex, the j-th entry of uk−1
j is zero and the remainder take values

in {+1,−1}. Define uk−1
j+ to be identical to uk−1

j except that its j-th entry is

replaced by +1 and uk−1
j− to be identical to uk−1

j except that its j-th entry is

replaced by −1. Let uk−1 := {uk−1
j− ,uk−1

j+ }j=1,2,...,k−1 and Zk−1 := uk−1 ∩ sk−1 and

denote the corresponding set of interior points as η̌k−1.
(b.2) For each element in the set Zk−1, say Z`k−1, solve the linear program defined in

(3) with the sign vector s̃k` := {Z`k−1, 1 − 2× 1{Z>k η̌
k−1
` − vk > 0}}, store the

optimal solutions η̃k` .

(c) Define the set sk := {sk` , ∀l} ∪ {s̃k` ,∀`} and the set ηk := {ηk` ,∀`} ∪ {η̃k` ,∀`}.

more than two lines cross at the same vertex) more entries in the vector uk−1
j will be zero,

and the set Zk−1 can be constructed in a similar fashion, as noted in the next subsection.
The AIE algorithm is easily adapted to the general case with hyperplanes in Rd, at least

when the arrangement is in general position. When a new hyperplane Hk is added, the set
of vertices is determined by the intersection of Hk and any d − 1 hyperplanes in the set
{H1,H2, . . . ,Hk−1}. When hyperplanes are in general positions, there will be

(
k−1
d−1

)
of these

for k > d. Each of these vertices provide sign constraints on the cells that hyperplane Hk
crosses, which allows us to determine a subset of sk−1 to be passed into step (b.2). For
1 < k < d the set of vertices is empty and we proceed to step (b.2) to process all elements
in sk−1.

3.4. Treatment of various forms of degeneracy. If the arrangement H is not in general
position, Algorithm 2 must be adapted to cope with this. Alexanderson and Wetzel (1981)
consider cell enumeration for d = 2 and d = 3, our implementation of the algorithm provi-
sionally treats only the d = 2 case of line arrangements. In higher dimensions, degeneracy
becomes quite delicate and constitutes a subject for future research. Random perturbation
of the covariate data is an obvious alternative strategy for circumventing such degeneracy.
Even for line arrangements there are several cases to consider:

(1) If Hk ∈ {H1, . . . ,Hk−1} for any k, then (b.1) and (b.2) can be skipped since if the
new line coincides with one of the existing ones since no new cells are created.

(2) If Hk is parallel to any existing lines {H1, . . . ,Hk−1} the cardinality of the set of
vertices will be smaller than k− 1, but no modification of the algorithm is required.
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(3) If Hk crosses a vertex that already exists, then more than one entry in uk−1
j will be

zero. Suppose there are a such zeros, then the zero entries must be replaced with
elements in {±1}a to construct the set uk−1.

4. Identification and Strong Consistency

We now introduce formal conditions needed for identification of the parameters of interest
(θ0, F0) for model (1) and to establish consistency of the nonparametric maximum likelihood

estimator (θ̂n, F̂n). In this section, we will revert to the notation of our original model 1
with the normalization that ‖β‖ = 1.

Assumption 1. The random vectors (xi,wi) and βi are independent and the matrix [X
...W]

has full column rank.

Assumption 2. The parameter space Θ is a compact subset of a Euclidean space and
θ0 ∈ Θ. Let the set F be space of probability distribution for βi supported on a d-dimensional
unit sphere. Furthermore, there exists a vector c 6= 0 such that PF(c>βi > 0) = 1 for all
F ∈ F.

Assumption 3. The distribution of (zi, vi) is absolutely continuous on Rd and w>θ is
absolutely continuous; both possess an everywhere positive density.

Versions of the foregoing assumptions are commonly invoked in the semiparametric single
index binary choice model literature. Some relaxation of Assumption 1 is possible while still
securing point identification of (θ0, F0). The normalization in Assumption 2 is commonly
imposed in all binary choice models including the parametric models. This turns out to be
convenient since the space F is then compact. The restriction that the distribution of βi
allocates all its probability mass to some hemisphere is specific for the random coefficient
model to secure point identification. This is also imposed in Ichimura and Thompson (1998).
Assumption 3 requires sufficient variability of the covariates to trace out F0 on its full
support. Note that it does not require all elements in wi to have an absolutely continuous
distribution with full support hence it allows for discrete covariates to be included in the
model.

Theorem 3. Under Assumptions 1-3, (θ0, F0) is identified.

Proof. Define p(y = 1|x,w, θ, F) = PF({β : x>β > −w>θ}) for any (θ, F) ∈ Θ × F. We
first show that if θ0 is known, then p(y = 1|x,w, θ0, F) = p(y = 1|x,w, θ0, F0) almost surely
implies F = F0. The argument follows the proof of Theorem 1 in Ichimura and Thompson
(1998), mainly elaborating it to incorporate the profile likelihood estimation of the fixed
parameter, θ0.

Under Assumption 1, the equality p(y = 1|x,w, θ0, F) = p(y = 1|x,w, θ0, F0) implies that
for all (x, t) where t := −w>θ0,

PF({β : x>β > t}) = PF0({β : x>β > t})

as long as the support of t contains zero which holds under Assumption 3, we can apply
the Cramér-Wold device and conclude that F = F0.
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Now suppose there exists θ 6= θ0 such that for some F ∈ F

(4) p(y = 1|x,w, θ, F) = p(y = 1|x,w, θ0, F0) almost surely.

Consider initially d = 1, and denote x = (1, z) so the support of β is the unit circle in R2.
Notice that the orientation of the line {β : β1+ zβ2 = −w>θ} is solely determined by z and
its intersection with the horizontal axis is solely determined by −w>θ. Fix z and choose
w = w1 such that w>1 θ > 0, w>1 (θ− θ0) > 0 and the hyperplane {β : β1 + zβ2 = −w>1 θ} is
tangent to the unit circle as illustrated by the solid red line in Figure 5. Such a w1 always
exists under Assumption 3 that w>θ has full support. Then equality (4) implies that

1 = PF({β : β1 + zβ2 > −w>1 θ}) = PF0({β : β1 + zβ2 > −w>1 θ0})

Since w>1 (θ− θ0) > 0, the line {β : β1 + zβ2 = −w>1 θ0} indicated by the dashed red line in
Figure 5 intersects with the unit circle at two points, say a and b. The above equality also
implies that the distribution F0 puts zero probability mass on the shortest arc that connects
a and b on the unit circle. Now since z has full support under Assumption 3, we can change
z such that the two parallel hyperplanes rotate together to cover all directions. Applying
the above argument for all such z leads to the conclusion that the distribution F0 puts zero
probability on the entire support of β, leading to a contradiction. Extending the argument
to d > 1 is straightforward since under Assumption 3 z has full support. Together with

the full column rank condition on [X
...W] under Assumption 1, we conclude that z covers all

possible directions in Rd.
Remark. If elements of xi are endogenous but there exists a vector of instruments ri and
a complete model relating xi and ri is specified, for instance xi = Ψri + ei, then we can
rewrite model (1) as

yi = 1{β1i + e
>
i β−1,i + r

>
i Ψ
>β−1,i +w

>
i θ > 0}

Thus, we can redefine the random intercept as β1i + e
>
i β−1,i and the remaining random

coefficients accordingly, denoting by β−1,i the vector of β excluding the first component,
and we are back to the original model (1). There is also a recent literature emphasizing on
set identification of (θ0, F0) where an explicit model between xi and ri is not imposed. See
Chesher and Rosen (2014) for a detailed discussion.

Having established identification of the model structure (θ0, F0), we now turn our atten-
tion to the asymptotic behavior of the maximum likelihood estimator of (θ0, F0),

(θ̂n, F̂n) = argmax
Θ×F

1

n

n∑
i=1

yi log[PF(H(xi,wi, θ))] + (1 − yi) log[1 − PF(H(xi,wi, θ))]

where we denote the set {β : x>i β + w>i θ > 0} by H(xi,wi, θ). For any fixed n and θ,
the collection of half spaces H(xi,wi, θ) defines a partition on the support of β, denoted
as {C1, . . . ,CM}. Define a matrix A of dimension n ×M, whose entries takes the form
aij = 1{Cj ⊂ H(xi,wi, θ)} for yi = 1 and aij = 1 − 1{Cj ⊂ H(xi,wi, θ)} for yi = 0. Let p
be a vector in the unit simplex such that pj corresponds to the probability assigned to the
polytope Cj, the maximum likelihood estimator for F for a fixed θ, denoted as Fθ, is the



RANDOM COEFFICIENTS FOR BINARY RESPONSE 15

β1
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b

Figure 5. Joint identification of (θ0, F0).

solution to the following constrained optimization problem,

min
{
−

1

n

n∑
i=1

log gi | gi =
∑
j

aijpj,
∑
j

pj = 1,pj > 0
}

The dual problem, which is usually more efficiently solved since M is typically much larger
than n, can be shown to be

max
{ n∑
i=1

log vi |

n∑
i=1

aijvi 6 n for all j
}

In this formulation the problem appears to resemble the dual form of the NPMLE for general
mixture models as considered by Lindsay (1983) and Koenker and Mizera (2014). Despite
this resemblance, there are several fundamental differences that lead to special features of
the binary response NPMLE. First, in classical mixture models the number of constraints
in the dual problem is typically infinite dimensional. As a consequence it is conventional
to impose a finite grid for the potential mass points of the mixing distribution to obtain
a computationally practical approximation. The number of grid points should typically
grow together with sample size n to achieve a good approximation. In contrast, in the
binary response setting once n is fixed, the matrix A is determined by the arrangement
and the solution of p is exact for any n. There is no need to impose a grid on the support
of the parameters which is very convenient especially when the dimension of β is large.
Second, the arrangement also provides a unique geometric underpinning which leads to
an equivalence class of solutions for the maximum likelihood estimator. Once the convex
program determines the optimal allocation p̂, the data offers no information on how the
probability masses p̂j, should be distributed on the polytope Cj. In this sense the NPMLE

F̂n yields a set-valued solution; in the application section we illustrate the implications of
this fact for prediction of marginal effects. The maximum likelihood estimator for θ is found
by maximizing the profile likelihood.

We now establish the consistency of the maximum likelihood estimator. The argument
follows Kiefer and Wolfowitz (1956) and Chen (2017). Our argument relaxes some of the
assumptions employed in prior work, in particular Assumption 4, in Ichimura and Thompson
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(1998). Let F0 be the set of all absolutely continuous distribution on the support of β; F0

is a dense subset of F.

Lemma 2. Under assumption 1-3, for any given γ = (θ, F) ∈ Θ×F0, let γn = (θn, Fn) be
any sequence in Θ× F such that γn → γ, then

lim
γn→γ

PFn(H(x,w, θn)) = PF(H(x,w, θ)) a.s.

Proof. For all F ∈ F0, since w>θ is continuous in θ, then there exists an N1 > 0 such that
for n > N1, |PF(H(x,w, θn)) − PF(H(x,w, θ))| < ε. By the Portmanteau Theorem, for any
F ∈ F0, we also have that Fn → F implies PFn(H(x,w, θ)) → PF(H(x,w, θ)). That means
there exists N2 > 0 such that for n > N2, |PFn(H(x,w, θ))−PF(H(x,w, θ))| < ε. Therefore,
|PFn(H(x,w, θn)) − PF(H(x,w, θ))| < 2ε for n large enough. Since ε is arbitrary, it follows
that lim

γn→γ
PFn(H(x,w, θn)) = PF(H(x,w, θ)) almost surely.

Define the function p(y, x,w,γ) := yPF(H(x,w, θ))+ (1−y)(1−PF(H(x,w, θ))), and for
any subset Γ ⊂ Θ × F, let p(y, x,w, Γ) = sup

γ∈Γ
p(y, x,w,γ). Let ρ be a distance on Θ × F.

This ρ can be the Euclidean distance on Θ together with any metric on F that metrises
weak convergence of F. For any ε > 0 let Γε(γ

∗) = {γ : ρ(γ,γ∗) < ε} be an open ball of
radius ε centered at γ∗.

Lemma 3. Under Assumption 1-3, for any γ 6= γ∗, there exists an ε > 0 such that

E∗{[log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)}]+} <∞
where E∗ denotes expectations taken with respect to p(y, x,w,γ∗).

Proof. Since 0 6 PF(H(x,w, θ)) 6 1 for all (θ, F) ∈ Θ× F, we have

p(1, x,w, Γε(γ))/p(1, x,w,γ∗) 6 1/PF0(H(x,w, θ0)

and

p(0, x,w, Γε(γ))/p(0, x,w,γ∗) 6 1/(1 − PF0(H(x,w, θ0))

and consequently,

E∗{[log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)}]+} 6
∫ {

− PF0(H(z,w, θ0) logPF0(H(z,w, θ0)

− (1 − PF0(H(z,w, θ0)) log(1 − PF0(H(z,w, θ0))
}
dG(z) <∞

where G denotes the joint distribution of (x,w).

Theorem 4. If {(yi, xi,wi) : i = 1, 2, · · · ,n} is an i.i.d sample from p(y, x,w, θ0, F0), under

Assumptions 1-3, then (θ̂n, F̂n) is strongly consistent.

Proof. Let γ 6= γ∗. Note that log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)} is a monotone increasing
function of ε. Lemma 2 implies that lim

ε↓0
p(y, x,w, Γε(γ)) = p(y, x,w,γ), and dominated

convergence implies that

lim
ε↓0
E∗{[log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)}]+} = E∗{[log{p(y, x,w,γ)/p(y, x,w,γ∗)}]+}.
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Lemma 2 and Fatou’s Lemma then imply that

lim inf
ε↓0

E∗{[log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)}]−} > E∗{[log{p(y, x,w,γ)/p(y, x,w,γ∗)}]−}.

Monotonicity of log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)} in ε ensures that the limit exists, so,

lim
ε↓0
E∗[log{p(y, x,w, Γε(γ))/p(y, x,w,γ∗)}] 6 E∗[log{p(y, x,w,γ)/p(y, x,w,γ∗)}] < 0.

Strict inequality holds by Jensen’s inequality and the identification result in Theorem 3.
Thus, for any γ 6= γ∗, there exists εγ > 0 such that

E∗[log{p(y, x,w, Γεγ(γ))/p(y, x,w,γ∗)}] < 0

Now for any ε > 0, the complementary set (Γε(γ
∗))c is compact and is covered by

∪γ∈(Γε(γ∗))cΓεγ(γ), hence there exists a finite subcover, Γ1, Γ2, . . . , ΓJ such that for each j,

E∗[log{p(y, x,w, Γj)/p(y, x,w,γ∗)}] < 0.

By the strong law of large numbers, as n→∞,

sup
γ∈(Γε(γ∗))c

1

n

∑
i

log{p(yi, xi,wi,γ)/p(yi, xi,wi,γ
∗)}

6 max
j=1,...,J

1

n

∑
i

log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ
∗)}

a.s→ max
j=1,...,J

E∗[log{p(y, x,w, Γj)/p(y, x,w,γ∗)}] < 0.

Since ε is arbitrarily chosen, this implies that (θ̂n, F̂n) → (θ0, F0) almost surely when
n → ∞. Note that we allow E∗[log{p(y, x,w, Γj)/p(y, x,w,γ∗)}] to be minus infinity when
invoking the strong law based on the following argument. For any j,

1

n

∑
i

log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ
∗)}

=
1

n

∑
i

[
log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ

∗)}
]+

−
1

n

∑
i

[
log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ

∗)}
]−

.

Lemma 3 implies that

1

n

∑
i

[
log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ

∗)}
]+ a.s.→ E∗{[log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ

∗)}]+}.

It remains to show that

1

n

∑
i

[
log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ

∗)}
]− a.s.→ E∗{[log{p(y, x,w, Γj)/p(y, x,w,γ∗)}]−}.

Suppose the right hand side is finite, then we can invoke the strong law. Alternatively,
suppose E∗{[log{p(y, x,w, Γj)/p(y, x,w,γ∗)}]−} =∞. Denote the random variable

R := [log{p(y, x,w, Γj)/p(y, x,w,γ∗)}]−,
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we have R > 0 and ER = ∞. Let M be a constant, we have E[min{R,M}] < ∞ if M < ∞
and E[min{Z,M}]→∞ as M→∞. Then for every M,

1

n

∑
i

Zi >
1

n

∑
i

min{Zi,M}
a.s.→ E[min{Z,M}].

Assembling the foregoing, we have,

1

n

∑
i

[
log{p(yi, xi,wi, Γj)/p(yi, xi,wi,γ

∗)}
]− a.s.→ E∗{[log{p(y, x,w, Γj)/p(y, x,w,γ∗)}]−}

as required.

5. Some Simulation Evidence

In this section we report on some very limited simulation experiments designed to com-
pare performance of our NPMLE method with the recent proposal by Gautier and Kitamura
(2013). The Gautier and Kitamura estimator may be viewed as a deconvolution procedure
defined on a hemisphere in Rd, and has the notable virtue that it can be computed in
closed form via elegant Fourier-Laplace inversion formulae. A downside of the approach
is that it involves several tuning/truncation parameters that seem difficult to select. In
contrast the optimization required by our NPMLE is tuning parameter free, and the like-
lihood interpretation of the resulting convex optimization problem offers the opportunity
to formulate extended versions of the problem containing additional fixed parameters that
may be estimated by conventional profile likelihood methods.

To facilitate the comparison with Gautier and Kitamura (2013) we begin by consider-
ing the simulation setting of their paper. Rows of the design matrix, X are generated as
(1, x1i, x2i) with standard Gaussian xij, and then normalized to have unit length. The ran-
dom coefficients, β are generated from the two point distribution that puts equal mass on
the points, (0.7,−0.7, 1) and (−0.7, 0.7, 1). The sample size is 500. Estimation imposes the
condition that the third coordinate of β is 1, and interest focuses on estimating the distri-
bution of the first two coordinates. After some experimentation with the author’s Matlab
code we have implemented a version of the Gautier and Kitamura (2013) estimator in R.
We initially set the truncation and trimming parameters for the estimator as suggested in
Gautier and Kitamura (2013), and we plot contours of the resulting density estimator in
Figure 6. The discrete mass points of the data generating process are depicted as red circles
in this figure. It may be noted that the estimated GK contours tend to concentrate the
mass too much toward the origin. In an attempt to correct this bias effect, we experimented
with increasing the truncation parameters to increase the flexibility of the sieve expansion.
Figure 8 illustrates the contours of the fit with T = 3 replaced by T = 7. The two most
prominent modes are now much closer to the discrete mass points of the process generating
the data, but there is some cost in terms of increased variability. In Figure 7 we illustrate
estimated mass points as well as contours of the NPMLE of the random coefficient density
after convolution with a bivariate Gaussian distribution with diagonal covariance matrix
with entries (0.04, 0.04). The NPMLE is extremely accurate in this, somewhat artificial
discrete setting. ‘

A somewhat more challenging setting for the NPMLE, also taken from Gautier and
Kitamura (2013), involves random coefficients that are generated from a mixture of two
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Figure 6. Contour plots of Gautier and Kitamura estimated density for
the discrete simulation setting with η generated with equal probability from
the two points (0.7,−0.7) and (−0.7, 0.7) indicated by the red circles. In the
left panel the sieve dimension is set at the default value T = 3, while in the
right panel it is increase to T = 7.

bivariate Gaussians with the same centers as in the previous case, but now both with
variances 0.3, and covariance 0.15 for each of the equally weighted components. In Figure
8 we depict the density contours of the Gautier-Kitamura estimator with the contours of
the true density of the random coefficients shown in grey. Again, it is apparent that the
truncated basis expansion tends to shrink the mass of the estimated distribution toward the
origin. In Figure 9 we illustrate estimated mass points as well as contours of the smoothed
NPMLE density after convolution with a bivariate Gaussian distribution with diagonal
covariance matrix with entries (0.04, 0.04). The contours of the true density of the random
coefficients are again depicted by the grey contours with centers indicated by the two red
circles. The unsmoothed NPMLE has discrete mass points indicated by the blue circular
regions in the figure. The smoothing introduces a tuning parameter into the NPMLE fit,
but it should be stressed that prior to the convolution step to impose the smoothing there is
no tuning parameter selection required. Clearly, there is more dispersion as we might expect
in the NPMLE discrete solution, but the smoothed estimate quite accurately captures the
two modes of the random coefficient density.

One swallow doesn’t make a summer, so we have carried out two small simulation exper-
iments to compare performance of the various estimators under consideration under both
of the foregoing simulation settings. In the first experiment data is generated in accordance
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Figure 7. Msss points and smoothed contours of the NPMLE for the
discrete Gautier-Kitamura simulation setting with mass concentrated at
(0.7,−0.7) and (−0.7, 0.7) as indicated by the red circles. The mass points
of the NPMLE are indicated by the solid blue circles, and contours of a
smoothed version of the NPMLE based a Gaussian kernel with bandwidth
0.2.

with the two point discrete distribution taken from Gautier and Kitamura with sample
size n = 500. Four estimators are considered: two variants of the NPMLE, one smoothed
the other not, the Gautier-Kitamura estimator with default tuning parameter selection,
and the classical logistic regression estimator. For each estimator we compute predicted
probabilities for a fresh sample of 500 x observations also drawn from the same Gaussian
distribution generating the data used for estimation. Table 2 reports mean absolute and
root mean squared errors for the predicted probabilities for the 100 replications of the ex-
periment. The discrete NPMLE is the clear winner, with its smoothed version performing
only slightly better than the Gautier-Kitamura deconvolution procedure, the logit estimator
is the clear loser.

Skeptical minds may, correctly, regard the two point distribution simulation setting as
“too favorable” to the NPMLE since it is known to deliver a relatively sparse discrete
estimate. Thus, it is of interest to see how our comparison would look when the true
random coefficient distribution is itself smooth.
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Figure 8. Gautier-Kitamura contours for a sample from the smooth bi-
modal bivariate distribution: The true distribution of the random coefficients
is a Gaussian location mixture with two components each with variance 0.3,
covariance 0.15 and means (0.7,−0.7) and (−0.7, 0.7). Contours of the true
density are indicated in grey with respective means by the solid red circles.

GK NPMLE NPMLEs Logit
MAE 0.1333 0.0868 0.1274 0.1753
RMSE 0.1705 0.1576 0.1726 0.2150

Table 2. Bivariate Point Mass Simulation Setting: Mean Absolute and
Root Mean Squared Errors of Predicted Probabilities
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Figure 9. The NPMLE for a sample from a smooth bivariate distribution:
The true distribution of the random coefficients is a Gaussian location mix-
ture with two components each with variance 0.3, covariance 0.15 and means
(0.7,−0.7) and (−0.7, 0.7). Contours of the true density are indicated in grey
with respective means by the solid red circles. The mass points of the un-
smoothed NPMLE are indicated by the solid blue circles whose areas depict
associated mass. Contours of the smoothed NPMLE are shown in black.

Table 3 reports mean absolute and root mean squared errors for the predicted proba-
bilities for the 100 replications of the new setting with the location mixture of Gaussians.
Again, the NPMLE is the clear winner, but now its smoothed version performs somewhat
better than the unsmoothed version although both do better than the Gautier-Kitamura
deconvolution procedure.
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GK NPMLE NPMLEs Logit
MAE 0.1288 0.0592 0.0475 0.0709
RMSE 0.1440 0.0748 0.0594 0.0896

Table 3. Bivariate Gaussian Simulation Setting: Mean Absolute and Root
Mean Squared Errors of Predicted Probabilities

6. An Application to Modal Choice

In this section we revisit the modal choice model of Horowitz (1993). The data consists
of 842 randomly sampled observations of individuals’ transportation choices for their daily
journey to work in the Washington DC metro area. Following Horowitz, we focus on the
binary choice of commuting to work by automobile versus public transit. In addition to
the individual mode choice variable, yi, taking the value 1 if an automobile is used for
the journey to work and 0 if public transit is taken, we observe the number of cars owned
by the traveller’s household (AUTOS ), the difference in out-of-vehicle (DOVTT ) and in
in-vehicle travel time (DIVTT ). Differences are expressed as public transit time minus au-
tomobile time in minutes per trip. The corresponding differences in transportation cost,
DCOST, public transit fare minus automobile travel cost is measured in cents per trip. We
have omitted the variable DIVTT from our analysis since it had no significant impact on
modal choice in prior work, see Table 2 of Horowitz (1993) for estimation results using
various parametric and semiparametric models. Although our methodology can accommo-
date additional xi variables with random coefficients it becomes considerably more difficult
to visualize distributions of random coefficients Fη in higher dimensions. Other control
variables in the vector wi could also be accommodated, but the application doesn’t offer
obvious candidates.

We consider the following random coefficient binary choice model:

P(yi = 1 | xi, vi, AUTOSi = k) =

∫
1{x>i ηi − vi > 0}dFη,k

where xi = (1, DOVTTi) and vi = DCOSTi/100 and ηi = {η1i,η2i}. We have normalized
the coefficient of vi to be 1, since vi represents a negative price, transit fare minus auto-
mobile cost. Under this normalization, the coefficient η2i has a direct interpretation as the
commuter’s value of travel time in dollars/hour. The coefficient η1 obviously has the same
units as vi, and can be interpreted as a threshold – setting a critical value for vi above which
the subject decides to commute by automobile, and below which he chooses to take public
transit, assuming that the time differential is negligble. Auto ownership is a discrete vari-
able, taking values between 0 and 7. Households with 3 cars or more commute exclusively
by automobile, so we only consider subjects with fewer than 3 cars, a subsample containing
about 90% of the data. Since car ownership is plausibly an endogenous decision and may
act as a proxy for wealth of the household and potential constraint on the travellers’ mode
choices, we estimate distinct distributions of the random coefficients for subjects with zero,
one and two cars. Figure 10 provides scatter plots of DOVTT and DCOST for k ∈ {0, 1, 2},
distinguishing auto and transit commuters by open and filled circles.
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Figure 10. Scatter plot of DOVTT and DCOST for commuters with dif-
ferent number of cars at home: the open circles correspond to subjects that
commute by auto while the solid (blue) points represent those who use public
transit.

We briefly report results for the subsamples, k ∈ {0, 1, 2}, separately, focusing initially on
the shape and dispersion of the estimated Fη distributions. For each subsample we contrast
the discrete distribution delivered by the NPMLE with the contours of the smooth density
produced by the Gautier and Kitamura estimator.

6.1. Commuters without an Automobile. There are 79 observations for commuters
without a car. Despite having no car 16 still manage to commute to work by automobile.
The lines determined by these realizations of (xi, vi) lead to a partition of R2 into 2992
polygons, of these only 112 are locally maximal and therefore act as potential candidates
for positive mass assigned by the NPMLE of Fη. In Figure 11 we compare the estimates
of Fη produced by the NPMLE and the deconvolution estimator of Gautier and Kitamura.
The solid (red) points in the figure represent the locations of the mass points identified by
the NPMLE; the mass associated with each of these points is reported in Table 6. Only 11
of the 112 candidate polygons achieve mass greater that 0.001, determined by the NPMLE.

In contrast, the Gautier-Kitamura density contours are entirely concentrated near the
origin. We have experimented quite extensively with the choice of tuning parameters for
the Gautier-Kitamura estimator, eventually adopting a likelihood criterion for the choice of
the sieve dimensions, T and TX, that are required. This criterion selects rather parsimonious
models in this application, choosing T = 2 and TX = 3 for this subsample. See Table 5 of the
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Appendix for further details on this selection. Selection of lower dimensional Fourier-Laplace
expansions obviously yield more restrictive parametric specifications, however this greater
degree of regularization seems to be justified by the commensurate reduction in variability
of the estimator. Although the comparison is inherently somewhat unfair we note that the
NPMLE achieves a log-likelihood of -28.16, while the Gautier-Kitamura estimate achieves
-37.58.

The two points on the far left of Figure 11 constitute about 0.05 mass each and represent
individuals who seem to be committed transit takers. A coefficient of, say η1 = −8 would
mean that the transit fare per trip would have to be 8 dollars per trip higher than the
corresponding car fare to induce them to travel by car. The fact that the η2 coordinates
associated with these extreme points is about one, means that, since the z variable measures
the transit time differential in its original scale of minutes, for such individuals a 10 minute
time differential would be sufficient to induce them to commute by automobile.
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Figure 11. Two Estimates of the Random Coefficient Distribution Fη
Based on the Subsample of Commuters with No Automobile: Shaded circles
represent the interior points of polygons with positive mass as estimated by
the NPMLE. The area inside the circles is proportional to estimated mass.
Table 6 in the Appendix reports the NPMLE results in greater detail. Grey
contour lines depict the density contours of the Gautier-Kitamura estimator
using Fourier-Laplace tuning parameters T = 2 and TX = 3 selected by the
log-likelihood criterion.

6.2. Commuters with One Automobile. There are 355 commuters who have one au-
tomobile of which 302 commute by car. The hyperplane arrangement determined by this
subsample of pairs (xi, vi) yields a tessellation of R2 into 55549 distinct polygons of which
there are 1272 with locally maximal counts. Figure 12 displays the estimated mass points of
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the NPMLE and the contour plot the Gautier-Kitamura density estimate as in the preceed-
ing figure. As for the subsample without an automobile, the NPMLE mass is considerably
more dispersed than the Gautier-Kitamua contours. This may be partly attributed to the
rather restrictive choice of the tuning parameters, T = 3 and TX = 3, dictated by the like-
lihood criterion. Again, a more detailed tabulation of how the NPMLE mass is allocated
is available in Table 6. It may suffice here to note that while most of the NPMLE mass is
again centered near the origin, there is about 0.10 mass at (η1,η2) ≈ (9.7,−0.24) and an-
other, roughly, 0.05 probability with η1 < −12. The Gautier-Kitamura contours are again
much more concentrated around the origin. These differences are reflected in substantial
differences in predicted outcomes and estimated marginal effects.
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Figure 12. Two Estimates of the Random Coefficient Distribution Fη
Based on the Subsample of Commuters with One Automobile: Shaded circles
represent the interior points of polygons with positive mass as estimated by
the NPMLE. The area inside the circles is proportional to estimated mass.
Table 6 in the Appendix reports the NPMLE results in greater detail. Grey
contour lines depict the density contours of the Gautier-Kitamura estimator
using Fourier-Laplace tuning parameters T = 2 and TX = 3 selected by the
log-likelihood criterion.

6.3. Commuters with Two Automobiles. There are 316 travellers with 2 cars of which
303 commute to work by automobile. Of the 44662 polygons for this subsample there are
only 288 with locally maximal counts. Figure 13 depicts the mass points of the NPMLE
and the contours of the Gautier-Kitamura estimate for this subsample. The disperson of
the threshhold parameter η1 is considerably smaller than for the zero and one car subsam-
ples, but it is still the case that the NPMLE is more dispersed that the Gautier-Kitamura
estimate in this dimension. Curiously, the Gautier-Kitamura estimate places most of its
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Figure 13. Two Estimates of the Random Coefficient Distribution Fη
Based on the Subsample of Commuters with Two Automobiles: Shaded cir-
cles represent the interior points of polygons with positive mass as estimated
by the NPMLE. The area inside the circles is proportional to estimated mass.
Table 6 in the Appendix reports the NPMLE results in greater detail. Grey
contour lines depict the density contours of the Gautier-Kitamura estimator
using Fourier-Laplace tuning parameters T = 2 and TX = 3 selected by the
log-likelihood criterion.

mass well above any of the NPMLE mass points. This may again be a consequence of the
low dimensionality of the Fourier-Laplace expansion, which is selected as T = 2 and TX = 3
by the likelihood criterion.

6.4. Marginal Effects. We consider two scenarios for evaluating marginal effects based
on estimates of the quantities,

∆z(z0, v0,∆z) = P(y = 1 | v = v0, z = z0) − P(y = 1 | v = v0, z = z0 − ∆z)

∆v(z0, v0,∆v) = P(y = 1 | v = v0, z = z0) − P(y = 1 | v = v0 − ∆v, z = z0).

The value ∆z(z0, v0,∆z) measures the marginal effect of reducing out-of-vehicle travel time
by ∆z minutes/trip; the value ∆v(z0, v0,∆v) measures the marginal effect of reducing the
transit fare by ∆v dollars holding transportation time constant. In each case, we fix the
initial values (z0, v0) at the 75-th quantiles for the subsample of individuals who drive to
work. Figures 14 and 15 depict the marginal effect of fare reduction and commute time
reduction, respectively, conditional on automobile ownership.

As discussed in Section 4, for any fixed n, the NPMLE F̂n assigns probability mass
{p̂j}j=1:M to polytopes {Cj}j=1:M that define the partition of the parameter space de-
termined by the hyperplane arrangement, not to specific points. This feature of the
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Figure 14. Set Valued Estimates of Marginal Effect for Transit Fare Reduc-
tion: The shaded solid regions represent the NPMLE set-valued estimates of
the marginal effect of reducing the transit fare on the probability of choosing
the transit option, the (red) line represents the corresponding estimates from
the Gautier-Kitamura fit.

NPMLE naturally leads to a set valued estimator for marginal effects. Suppose we would
like estimate ∆z(z0, v0,∆z). Denoting the halfspace determined by any point (1, z, v) by
H+(v, z) := 1{(η1,η2) : η1 + η2z − v > 0}, it is easy to see that the set estimator for
P(y = 1 | v = v0, z = z0) can be expressed as,

P
F̂n
(H+(v0, z0)) ∈ [L̂n(v0, z0), Ûn(v0, z0)]

with

L̂n =

M∑
j=1

1{Cj ⊆ H+(v0, z0))p̂j

and

Ûn =

M∑
j=1

1{Cj ⊆ H+(v0, z0))p̂j +

M∑
j=1

1{Cj * H+(v0, z0),Cj ∩H+(v0, z0) 6= ∅}p̂j

The set valued estimator for the marginal effect is therefore,

∆̂z(z0, v0,∆z) ∈ [L̂n(z0, v0) − Ûn(z0 − ∆z, v0), Ûn(z0, v0) − L̂n(z0 − ∆z, v0)]

Figures 14 and 15 report these bounds for different values of ∆z and ∆v.
The corresponding marginal effects for the Gautier-Kitamura estimates are depicted as

the dotted red curves in this figure. The concentration of the Gautier-Kitamura F̂η near
the origin implies marginal effects that are considerably smaller than those implied by the
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reduction in transit time (mins)

C
ha

ng
e 

in
 tr

an
si

t p
ro

ba
bi

lit
y

0.0

0.1

0.2

0.3

5 10 15

 : k 0

5 10 15

 : k 1

5 10 15

 : k 2

Figure 15. Set Valued Estimates of Marginal Effect for Transit Time Re-
duction: The shaded solid regions represent the NPMLE set-valued estimates
of the marginal effect of reducing the transit time in minutes on the probabil-
ity of choosing the transit option, the (red) line represents the corresponding
estimates from the Gautier-Kitamura fit.

NPMLE results. For both the fare and transit time effects the Gautier-Kitamura esti-
mates. Car ownership is clearly an important influence especially on the marginal effects of
time savings for commuters without a car; while there is essentially no marginal effect for
commuters with two cars.

6.5. Single Index Model. As a final comparison, we reconsider the single index model
described in Section 2 where the parameter η2 is treated as fixed and there is only a random
intercept effect,

P(yi = 1 | xi, vi,AUTOSi = k) =

∫
1{η1i + ziη2 − vi > 0}dFη1,k.

We consider several semiparametric estimators that make no distributional assumption
on Fη1,k as well as the parametric probit estimator that presumes that Fη1,k is standard
Gaussian. Since we can only identify Fη1,k up to scale, we again normalize the coefficient
for vi to be 1. We consider the kernel-smoothing based estimator proposed by Klein and
Spady (1993) and the score estimator proposed in Groeneboom and Hendrickx (2018) based
on the nonparametric maximum likelihood estimator of Fη1,k as in Cosslett (1983). The
former estimator requires a choice of a bandwidth for the kernel estimate, whereas the latter
is free of tuning parameters. The Klein-Spady estimates are based on the implementation
in the R package np of Hayfield and Racine (2008) using a Gaussian kernel. The bandwidth
is chosen automatically via a likelihood-based cross-validation criterion. The estimation
results are reported in Table 4 together with the probit model estimates. In comparison,
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we also include in the last column the log-likelihood of the random coefficient model where
η2 is allowed to be heterogeneous across individuals.

A virtue of the single index representation is that it is possible to estimate standard
errors for the fixed parameter estimate η̂2, which appear in the table in parentheses under
their coefficients. However, as is clear from the foregoing figures and the log likelihood
values of Table 4 these standard errors require a willing suspension of disbelief in view of
the apparent heterogeneity of the NPMLE estimates of the bivariate model.

Cars Groeneboom-Hendrickx Klein-Spady Probit NPMLE(η1,η2)
η̂2 logL η̂2 logL η̂2 logL logL

0 0.026
(0.022)

-32.87 −0.396
(0.026)

-37.60 0.034
(0.021)

-37.420 -29.55

1 0.018
(0.006)

-121.71 0.034
(0.007)

-131.71 0.028
(0.010)

-130.84 -112.32

2 0.030
(0.009)

-47.33 0.003
(0.003)

-51.85 0.048
(0.019)

-51.80 -46.13

Table 4. Estimates for η2 of the single index model for households having
different numbers of vehicles. The semiparametric and parametric probit
estimates normalize the coefficient of v to be 1. The last column reports the
log-likelihood of the NPMLE for the bivariate model in which η2 is allowed to
be individual specific. The Klein-Spady estimator is implemented with the
npindexbw and npindex functions of the np package. We use a Gaussian ker-
nel and the bandwidth is chosen based on optimizing the likelihood criteria
for both parameters and the bandwidth through leave-one-out cross valida-
tion. The BFGS method was used for optimization with 20 randomly chosen
starting initial values. The Groeneboom-Hendrickx results were computed
with the GH function from the R package RCBR.

7. Conclusion

Random coefficient binary response models estimated by the nonparametric maximum
likelihood methods of Kiefer and Wolfowitz (1956) as originally proposed by Cosslett (1983)
and extended by Ichimura and Thompson (1998) offer a flexible alternative to established
parametric binary response methods. Modern convex optimization methods combined with
recent advances in the algebraic geometry of hyperplane arrangements provide efficient
computational techniques for the implementation of these methods. Further investigation
of these methods is clearly warranted.
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Appendix A. Computational Details

All of the figures and tables presented here can be reproduced in the R language, R
Core Team (2018), with code provided by the second author. Full algorithmic details and
documentation are available in the R package RCBR, of Gu and Koenker (2018), which in
turn relies upon the R packages REBayes and Rmosek of Koenker and Gu (2017) and Friberg
(2012).

Appendix B. Supplementary Tables

Two supplementary tables are provided in this section. Table 5 reports log likelihood
values for various choices of the tuning parameters of the Gautier-Kitamura estimator for the
modal choice application. The contour plots for the Gautier-Kitamura estimates appearing
in the main text are based on tuning parameters maximizing log likelihood as reported
in this table. Table 6 reports the location and mass of the NPMLE estimates for each
subsample of the modal choice data; only points with mass greater than 0.001 are reported.
Note, once again, that locations are arbitrary interior points within the polygons optimizing
the log likelihood.
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T TX = 3 TX = 5 TX = 10 TX = 15 TX = 20
0 Cars
1 −39.33 −41.27 −40.94 −41.54 −41.13
2 −39.16 −40.28 −41.23 −40.18 −39.13
3 −39.54 −40.64 −40.75 −39.51 −39.07
4 −40.45 −41.12 −40.47 −40.13 −40.25
5 −41.29 −41.83 −41.02 −41.19 −41.58
7 −41.96 −43.46 −43.73 −42.81 −42.56
9 −42.81 −45.48 −47.13 −45.96 −45.25

1 Cars
1 −223.33 −158.55 −178.90 −195.51 −163.35
2 −179.44 −153.06 −157.35 −165.20 −153.68
3 −145.51 −146.91 −162.93 −165.86 −166.01
4 −148.49 −151.01 −162.31 −162.19 −180.44
5 −151.37 −154.96 −169.23 −168.51 −198.44
7 −161.38 −170.41 −191.81 −206.85 −229.93
9 −168.29 −179.99 −198.82 −211.48 −230.02

2 Cars
1 −91.20 −164.31 −167.78 −126.56 −93.70
2 −89.88 −126.42 −172.32 −143.76 −115.74
3 −110.17 −141.13 −185.35 −165.72 −142.57
4 −128.33 −152.74 −188.94 −162.99 −143.09
5 −135.02 −154.10 −177.19 −148.85 −132.89
7 −135.22 −146.45 −155.38 −132.70 −123.55
9 −137.42 −145.49 −155.21 −139.99 −128.56

Table 5. Log-likelihood of the Gautier-Kitamura estimator for various val-
ues of the Fourier-Laplace series truncation parameters



34 RANDOM COEFFICIENTS FOR BINARY RESPONSE

No Car One Car Two Cars
η1 η2 p η1 η2 p η1 η2 p

−1.4300 0.0429 0.2743 0.6917 0.1217 0.1300 1.1200 0.0000 0.5000
−0.6625 −0.6700 0.1955 0.8446 −0.0008 0.1153 1.1550 0.1400 0.2533
−1.0942 0.0830 0.1194 9.7600 −0.2400 0.0999 0.4495 0.0580 0.0918

0.3900 0.0400 0.1099 0.6666 0.0081 0.0999 0.4540 0.0143 0.0777
−0.8019 0.0628 0.0757 0.6790 0.0430 0.0875 −0.8889 0.0928 0.0254
−1.0500 0.0520 0.0680 −0.1271 0.0385 0.0717 −0.1170 0.0157 0.0216
−8.8900 1.0750 0.0512 0.2500 0.0800 0.0624 0.6216 −0.0045 0.0160
−7.1750 0.9850 0.0482 −12.7050 1.0350 0.0538 −0.1280 0.0455 0.0123
−0.1994 −0.0078 0.0437 0.9422 −0.0441 0.0475 0.4450 0.0175 0.0019
−0.4663 0.2275 0.0086 −0.0081 0.0588 0.0415
−0.3177 0.0018 0.0055 0.5825 0.0650 0.0407

−1.0050 0.0967 0.0362
0.7086 0.0042 0.0346

14.6300 −0.4400 0.0291
−0.2789 0.0536 0.0271

0.1650 0.0942 0.0196
0.8411 −0.0077 0.0027

Table 6. Mass points of the estimated distribution of coefficients for com-
muters: The first two columns in each panel indicate interior points of cells
containing the estimated mass given by the third column of each panel. Only
mass points with mass greater than 0.001 are displayed.
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