
Salanié, Bernard; Wolak, Frank A.

Working Paper

Fast, "robust", and approximately correct: Estimating
mixed demand systems

cemmap working paper, No. CWP64/18

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Salanié, Bernard; Wolak, Frank A. (2018) : Fast, "robust", and
approximately correct: Estimating mixed demand systems, cemmap working paper, No.
CWP64/18, Centre for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2018.6418

This Version is available at:
https://hdl.handle.net/10419/189813

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2018.6418%0A
https://hdl.handle.net/10419/189813
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Fast, "robust", and approximately correct: 
estimating mixed demand systems

Bernard Salanié
Frank A. Wolak

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP64/18



Fast, “Robust”, and Approximately Correct:

Estimating Mixed Demand Systems∗
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Abstract

Many econometric models used in applied work integrate over unobserved

heterogeneity. We show that a class of these models that includes many random

coefficients demand systems can be approximated by a “small-σ” expansion

that yields a straightforward 2SLS estimator. We study in detail the models of

market shares popular in empirical IO (“macro BLP”). Our estimator is only

approximately correct, but it performs very well in practice. It is extremely fast

and easy to implement, and it accommodates to misspecifications in the higher

moments of the distribution of the random coefficients. At the very least, it

provides excellent starting values for more commonly used estimators of these

models.
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Introduction

Many econometric models are estimated from conditional moment conditions that

express the mean independence of random unobservable terms η and instruments Z:

E pη|Zq “ 0.

In structural models, the unobservable term is usually obtained by solving a set of

equations—often a set of first-order conditions—that define the observed endogenous

variables as functions of the observed exogenous variables and unobservables. That

is, we start from

Gpy, η, θ0q “ 0 (1)

where y stands for the observed data and θ0 for the unknown parameters, while the

function G is to be known and can depend on observed exogenous variables. Then

(assuming that the solution exists and is unique) we invert this system into

η “ F py, θ0q

and we seek an estimator of θ0 by minimizing an empirical analog of a norm

‖E pF py, θqZq‖.

Inversion often is a step fraught with difficulties. Even when a simple algorithm exists,

inversion is still costly: it must be done with a high degree of numerical precision,

as errors may jeopardize the “outer” minimization problem. One alternative is to

minimize an empirical analog of the norm

‖E pηZq‖

subject to the structural constraints (1). This “MPEC approach” has met with

some success in dynamic programming and empirical industrial organization (Su–

Judd 2012, Dubé et al 2012.) It still requires solving a nonlinearly constrained,

nonlinear minimization problem; convergence to a solution can be a challenging task

in the absence of very good initial values.

We propose an alternative that derives a linear model from a very simple series

expansion. To fix ideas, suppose that θ0 can be decomposed into a pair pβ0, σ0q, where
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σ0 is a scalar that we have reasons to think is not too far from zero. We rewrite (1)

as

Gpy, F py, β0, σ0q, β0, σ0q “ 0.

We expand σ Ñ F py, β0, σq in a Taylor series around 0 and re-write F py, β0, σ0q as:

F py, β0, σ0q “ F py, β0, 0q ` Fσpy, β0, 0qσ0 ` . . .` Fσσ...σpy, β0, 0q
σL0
L!
`OpσL`10 q,

where the subscript σ denotes a partial derivative with respect to the argument σ.

This suggests a sequence of “approximate estimators” that minimize the analogs

of the following norms

‖E pF py, β, 0qZq‖
‖E ppF py, β, 0q ` Fσpy, β, 0qsqZq‖
›

›

›
E

ˆˆ

F py, β, 0q ` Fσpy, β, 0qs` Fσσpy, β, 0q
σ2

2

˙

Z

˙

›

›

›

. . .

If the true value σ0 is not too large, one may hope to obtain a satisfactory estimator

with the third of these “approximate estimators.” In general, this still requires solving

a nonlinear minimization problem. However, suppose that the function F satisfies

the following three conditions:

C1: Fσpy, β0, 0q ” 0

C2: F py, β, 0q ” f0pyq ´ f1pyqβ is affine in β

C3: the second derivative Fσσpy, β, 0q does not depend on β.

Denote f2pyq “ ´Fσσpy, β, 0q. Then we would minimize

›

›

›
E

ˆˆ

f0pyq ´ f1pyqβ ´ f2pyq
σ2

2

˙

Z

˙

›

›

›
.

Taking the parameters of interest to be pβ0, σ
2
0q, this is simply a two-stage least squares

regression of f0pyq on f1pyq and f2pyq with instruments that are functions of Z. As

this is a linear problem, the optimal1 instruments Z˚ are simply

Z˚ “ pE pf1pyq|Zq , E pf2pyq|Zqq .

1In the sense of Amemiya (1975).
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They could be estimated directly from the data using nonparametric regressions. Or

more simply, we can include flexible functions of the columns of Z in the instruments

used to compute the 2SLS estimates.

The resulting estimators of β0 and σ2
0 are only approximately correct, because

they consistently estimate an approximation of the original model. On the other

hand, they can be estimated in closed form using linear 2SLS. Moreover, because

they only rely on limited features of the data generating process, they are “robust”

in interesting and useful ways that we will explore later.

Conditions C1–C3 extend directly to a multivariate parameter σ0. They may

seem very demanding. Yet as we will show, under very weak conditions the Berry,

Levinsohn, and Pakes (1975) (macro-BLP) model that is the workhorse of empirical

IO satisfies all three. In this application, σ0 is taken to be the square root of the

variance–covariance matrix Σ of the random coefficients in the mixed demand model.

More generally, we will characterize in Section 6.4 a general class of models with

unobserved heterogeneity to which conditions C1–C3 apply.

Our approach builds on “small-Σ” approximations to construct successive approx-

imations to the inverse mapping (from market shares to product effects). Kadane

(1971) pioneered the “small-σ” method. He applied it to a linear, normal simulta-

neous equation system and studied the asymptotics of k-class estimators2 when the

number of observations n is fixed and σ goes to zero. He showed that when the num-

ber of observations is large, under these “small-σ asymptotics” the k-class estimators

have biases in σ2, and that their mean-squared errors differ by terms of order σ4.

Kadane argued that small σ, fixed n asymptotics are often a good approximation to

finite-sample distributions when the estimation sample is large enough.

The small-σ approach was used by Chesher (1991) in models with measurement er-

ror. Most directly related to us, Chesher and Santos-Silva (2002) used a second-order

approximation argument to reduce a mixed multinomial logit model to a “heterogene-

ity adjusted” unmixed multinomial logit model in which mean utilities have additional

terms. They suggested estimating the unmixed logit and using a score statistic based

on these additional covariates to test for the null of no random variation in preferences.

Like them, we introduce additional covariates. Unlike them, we develop a method to

2Which include OLS and 2SLS.
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estimate jointly the mean preference coefficients and parameters characterizing their

random variation; and we only use linear instrumental variables estimators. To some

degree, our method is also related to that of Harding and Hausman 2007, who use a

Laplace approximation of the integral over the random coefficients in a mixed logit

model without choice-specific random effects. Unlike them, we allow for endogeneous

prices; our approach is also much simpler3.

Section 1 presents the model popularized by Berry–Levinsohn–Pakes (1995) and

discusses some of the difficulties that practitioners have encountered when taking it

to data. We give a detailed description of our algorithm in section 2; readers not in-

terested in the derivation of our formulæ in fact can jump directly to our Monte Carlo

simulations in section 7. The rest of the paper justifies our algorithm (sections 3 and

4); studies its properties (section 5); and discusses a variety of extensions (section 6).

1 The macro-BLP model

Our leading example is taken from empirical IO. Much work in this area is based on

market share and price data. It has followed Berry et al (1995—hereafter BLP) in

specifying a mixed multinomial logit model with product-level random effects that

deals with the endogeneity of prices implied by these product-level random effects.

BLP use a Generalized Method Moments (GMM) estimator that relies on the mean

independence of the product-level random effects and a set of instruments.

To fix ideas, we define “the standard model” as follows4. Let J products be

available on each of T markets. Each market contains an infinity of consumers who

choose one of J products. Consumer i in market t is assumed to derive utility

Xjt pβ0 ` εiq ` ξjt ` uijt

from choosing product j. There is also a good 0, the “outside good”, whose utility for

consumer i is simply ui0t. The random variables ε represent individual variation in

tastes for observed product characteristics, while the u stand for idiosyncratic errors

3Harding and Hausman Ketz (2018) builds on a quadratic expansion in σ0 “ 0 to derive asymp-

totic distributions when the true σ0 is on the boundary.
4While some of our exposition relies on it for simplicity, our methods apply to a more general

model— see section 6.4.
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observed by the individual, but unobserved by the econometrician. The vector ε and

u are independent of each other, and of the covariates X and product random effects

ξ. The vector uit “ pui0t, ui1t, . . . , uiJtq is independently and identically distributed

(iid) as standard type-I Extreme Value (EV); the product effects ξjt are unknown

mean zero random variables conditional on a set of instruments, and the random

variation in preferences εi has a mean-zero distribution which is known up to its

variance-covariance matrix Σ0. For instance, Berry et al. (1995) assume that the εi

are independent, identically distributed Np0,Σ0q random vectors.

Some of the covariates in Xjt may be correlated with the product-specific random

effects. The usual example is a model of imperfect price competition where the prices

firms set in market t depend on the value of the vector of unobservable product

characteristics, ξt.

The parameters to be estimated are the mean coefficients β0 and the variance-

covariance matrix of the random coefficients Σ0. We collect them in θ0 “ pβ0,Σ0q.

The data available consists of the market shares ps1t, . . . , sJtq and prices pp1t, . . . , pJtq
1

of the J varieties of the good, of the covariates Xt, and of additional instruments

Zt, all for market t. Note that the market shares do not include information on

the proportion S0t of consumers who choose to buy good 0. Typically the analyst

estimates this from other sources. Let us assume that this is done, so that we can deal

with the augmented vector of market shares pS0t, S1t, . . . , SJtq, with Sjt “ p1´S0tqsjt

for j P J “ t1, . . . , Ju.

The market shares for market t are obtained by integration over the variation in

preferences ε: for j P J ,

Sjt “ Eε

„

exp pXjt pβ ` εq ` ξjtq

1` ΣJ
k“1 exp pXkt pβ ` εq ` ξktq



(2)

and S0t “ 1´
řJ
j“1 Sjt.

Berry et al. (1995) assume that

E pξjt|Zjtq “ 0

for all j P J and t. The instruments Zjt may for instance be the characteristics

of competing products, or cost-side variables. The procedure is operationalized by

showing that for given values of θ, the system (2) defines an invertible mapping5 in

5See Berry (1994).
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IRJ . Call ΞpSt,Xt,θq its inverse; a GMM estimator obtains by choosing functions

Z˚jt of the instruments and minimizing a well-chosen quadratic norm of the sample

analogue of:

E
`

ΞpSt,Xt,θqZ
˚
jt

˘

over θ.

These models have proved very popular; but their implementation has faced a

number of problems. Much recent literature has focused on the sensitivity of the

estimates to the instruments used in GMM estimation of the mixed multinomial

logit model. Reynaert–Verboven (2014) showed that using linear combinations of

the instruments can lead to unreliable estimates of the parameters of interest. They

recommend using the optimal instruments given by the Amemiya formula (1975):

Z˚jt “ E

ˆ

BΞ

Bθ
pSt,Xt,θ0q|Zjt

˙

.

Since the Amemiya formula relies on a consistent first-step estimate of the parame-

ters, this is still problematic. Gandhi-Houde (2016) propose “differentiation IVs” to

approximate the optimal instruments for the parameters Σ of the distribution of the

random preferences ε. They also suggest a simple regression to detect weak instru-

ments. An alternative is to use the Continuously Updating Estimator to build up the

optimal instruments as minimization progresses. Armstrong (2016) points out that

instruments based on the characteristics of competing products achieve identification

through correlation with markups. But when there are a large number of products,

many models of the cost-side of the market yield markups just do not have enough

variation, relative to sampling error. This can give inconsistent or just uninformative

estimates6.

Computation has also been a serious issue. The original BLP approach used a

“nested fixed point“ (NFP) approach: every time the objective function to be mini-

mized was evaluated for the current parameter values, a contraction mapping/fixed

pointed algorithm must be employed to compute the implied product effects ξt from

the observed market shares St and current value of θ. This was both very costly and

6Instruments that shift marginal cost directly (if available) do not need variation in the markup

to shift prices, and therefore do not suffer from these issues. Variation in the number of products

per market may also be used to restore identification, data permitting.
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prone to numerical errors that propagate from the nested fixed point algorithm to

the minimization algorithm. Dubé et al (2012) proposed a nonlinearly-constrained,

nonlinear optimization problem to estimate θ. Their simulations suggest that this

“MPEC” approach often outperforms the NFP method, sometimes by a large factor.

Lee and Seo (2015) proposed an “approximate BLP” method that inverts a linearized

approximation of the mapping from ξt to St. They argue that this can be even faster

than MPEC.

Petrin and Train (2010) have proposed a maximum likelihood estimator that re-

places endogeneous regressors with a control function. This circumvents the need to

compute the implied value of ξ for each value of θ, but still requires solving a nonlinear

optimization problem to compute an estimate of θ0. Solving a nonlinear optimiza-

tion problem for a potentially large set of parameters is time-consuming and typically

requires starting values in the neighborhood of the optimal solution, closed-form gra-

dients, and careful monitoring of optimization algorithm by the analyst because the

objective function is not globally concave. The method we propose in this paper

completely circumvents the need to solve a nonlinear optimization problem.

Our estimator relies on an approximate model that is exactly valid when there

is no random variation in preferences, and becomes a coarser approximation as the

amplitude of random variation grows. As such, our estimator is not a consistent

estimator of the parameters of the BLP model. On the other hand, it has some very

real advantages that may tip the scale in its favor. First, it requires a single linear

2SLS regression that can be computed in microseconds with off-the-shelf software.

Second, our estimator needs to assume very little about the form of the distribution

of the random variation in preferences ε (beyond its limited amplitude), justifying the

“robust” in our title—where the quotes reflect our awareness that we are taking some

liberties with the definition of robustness. Finally, because our estimating equation is

linear, computing the “optimal” instruments for our estimator is also straightforward.

For those who find the “approximate correctness” of our estimator unsatisfying, it

at least yields “nearly consistent” starting values for the classical nested-fixed point

and MPEC nonlinear optimization procedures at a minimal cost. It also provides

useful diagnoses about how well different parameters can be identified with a particu-

lar model and dataset; and a very simple way to select between models, as we discuss

below.
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2 2SLS Estimation in the Standard BLP Model

For the reader primarily interested in applying our method, this section provides a

step-by-step guide to implementing the estimator in the standard macro-BLP model.

This requires some notation. The dimensions of the vectors and matrices are as

follows:

• for each j P J and t, Xjt is a row vector with nX components

• β is a column vector with nX components

• for each i, εi is a row vector with ne components; in the standard model,

ne ď nX .

We denote I the set of pairs of indices pm,nq such that the variance-covariance

element Σmn “ covpεim, εinq is not restricted to be zero7. For notational simplicity,

we also assume that we use all conditional moment restrictions:

E pξjt|Zjtq “ 0,

for j P J and t “ 1, . . . , T .

Our procedure runs as follows:

Algorithm 1. FRAC estimation of the standard BLP model

1. on every market t, augment the market shares from ps1t, . . . , sJtq to pS0t, S1t, . . . , SJtq

2. for every product-market pair pj P J , tq :

(a) compute the market-share weighted covariate vector et “
řJ
k“1 SktXkt;

(b) for every pm,nq in I, compute the “artificial regressor”

Kjt
mn “

ˆ

Xjtm

2
´ etm

˙

Xjtn.

(c) for every j “ 1, . . . , J , define yjt “ logpSjt{S0tq

7E.g. if ne “ nX and Σ is assumed to be diagonal, I “ tp1, 1q, . . . , pnX , nXqu.
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3. run a two-stage least squares regression of y on X and K, taking as instruments

a flexible set of functions of the columns of Z

4. (optional) run a three-stage least squares (3SLS) regression across the T markets

stacking the J equations for each product with a weighting matrix equal to the

inverse of the sample variance of the residuals from step 3.

Ideally, the “flexible set of functions of the columns of Z” in step 3 should be

able to span the space of the optimal instruments EpX|Zq and EpK|Zq for our

approximate model. Alternatively, these optimal instruments can be estimated by a

nonparametric regressions of each the column of X on the columns of Z.

As is well-known, misspecification of one equation of the model can lead to incon-

sistency in 3SLS parameter estimates of all equations of the model. It is therefore

unclear whether Step 4 is worth the additional effort. We intend to explore it in

future work.

It is important to note here that e is not a simple weighted average, as the weights

do not sum to one, but only to p1´S0tq. To illustrate, if Xjtm ” 1 is the constant, then

etm is p1 ´ S0tq and the artificial regressor that identifies the corresponding variance

parameter is

Kjt
mm “ S0t ´

1

2
.

More generally, if Xjtn “ 11pj P J0q is a dummy that reflects whether variety j belongs

to group J0 Ă J , then it is easy to see that the corresponding variance parameter is

the coefficient of the artificial regressor

Kjt
nn “ 11pj P Kq

ˆ

1

2
´ SJ0t

˙

where SJ0t is the market share of group J0 on market t.

3 Second-order Expansions

The rest of the paper justifies algorithm 1 and discusses extensions. We first derive

the small-σ expansions of the introduction.
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We start from a specification of the utility of variety j for consumer i on market

t as

Xjtβ ` g pXjt, εiq ` ξjt ` uijt (3)

for j P J ; and Ui0t “ ui0t. Define the vectors uit “ pui0t, ui1t, . . . , uiJtq; Xt “

pX1t, . . . ,XJtq; and ξt “ pξ1t, . . . , ξJtq. We assume that

1. the random terms εi are i.i.d. across i with finite variance;

2. they are distributed independently of pXt, ξtq;

3. EgpXjt, εiq “ 0 for all Xjt;

4. the random vectors uit are i.i.d. across i and t; and they are distributed inde-

pendently of pεi,Xt, ξtq.

These assumptions are all standard, except for the third one which is only a mild

extension of the usual normalization Eεi “ 0. They allow for any type of codepen-

dence between the product effects ξt and the covariates Xt. Note that the additive

separability between β and ε is not as strict as it seems. If for instance we start from

a multiplicative model with utilities

nX
ÿ

k“1

Xjtkβkζki ` ξjt ` uijt

we can always redefine εki “ βkpζki ´ 1q to recover (3).

Our crucial assumption, which we maintain throughout, is that the utilities are

affine in β, and additive in the product effects ξ and in the idiosyncratic terms u. On

the other hand, we allow for any kind of distribution for εi and uit. This encompasses

most empirical specifications used, as well as many more. We will refer to three special

cases for illustrative purposes:

1. The standard model, also known as the mixed multinomial logit model, has

g pX, εq “Xε; and the vector uit is distributed as standard type-I EV iid.

2. The standard binary model (or mixed logit model) further imposes J “ 1.

3. The standard symmetric model is a standard model with ε distributed symmet-

rically around 0;
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4. The standard Gaussian model is a standard model with ε jointly normal. It is

probably the most commonly used in applications of the macro-BLP method.

5. Finally, the standard Gaussian binary model imposes both 2 and 4.

In order to do small-σ expansions, we need to introduce a scale parameter σ.

We do this with Assumption 1, which fits the usual understanding of what a scale

parameter is8 and also imposes that all moments of ε are finite-valued. The most

common specification of the ”macro-BLP” model has a Gaussian ε and of course

obeys Assumption 1.

Assumption 1. For some integer L ě 2, all moments of order 1 ď l ď L ` 1 of

the vector ε are finite; they are of order l in some non-negative scalar σ. The first

moment is zero: Eε “ 0. We denote Σ “ Eεε1 the variance-covariance matrix of ε,

and µl (for l ě 3) its (uncentered) higher order moments.

It will be convenient to write ε ” σBv with v a random vector of mean zero and

variance identity, so that σB is a square root of the variance-covariance matrix of ε:

Σ “ σ2BB1. We only use this decomposition for intermediate results. Note that B is

an neˆnv matrix, where v is a row vector with nv components. Our final expansions

do not depend on how σ and B are normalized, and we won’t need to specify it.

We drop the index t from the notation in most of this section as we will only need

to deal with one market at a time.

3.1 Second-order Expansions in the Standard Model

Much of the rest of the remainder of the paper focuses on the standard model, where

the u’s have iid Type I extreme value distributions. We will show in section 6.1 how

to extend our results to more general distributions.

Recall that in the standard model, market shares are given by (2). If the scale

parameter σ was zero, inverting (2) would simply give us

ξj “ log
Sj
S0

´Xjβ for j P J . (4)

8In principle it should be possible to use several scale parameters, say σ1 for one part of the

variance-covariance matrix and σ2 for another one.
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This is the starting point of the contraction algorithm described in Berry et al (1995).

Now let σ be positive. With ε “ σBv, a Taylor expansion of (4) at σ “ 0 would

give (assuming that the expansion is valid9)

ξj “ log
Sj
S0

´Xjβ ` ΣL
l“1aljpS,X,βq

σl

l!
`OpσL`1q. (5)

In this equation, X regroups the covariates of all products and S is the vector of

market shares. Market-share weighted sums will play a crucial role in what follows:

Definition 1. For any J-dimensional vector T of J components, we define the scalar

eST “
J
ÿ

k“1

SkTk.

By extension, if m is a matrix with J columns pm1, . . . ,mJq, we define the vector

eSm “

J
ÿ

k“1

Skmk.

Finally, we denote T̂j “ Tj ´ eST and m̂j “mj ´ eSm.

Note that we are using the observed market shares of the J goods, so that these

weighted sums are very easy to compute from the data. It is important to emphasize

that the operator eS is not an average, as the augmented market shares Sk for k P J
do not sum to one but to p1 ´ S0q. Similarly, the T̂j terms are not residuals, and

eST̂ ‰ 0 in general.

Our first goal is to find explicit formulæ for the coefficients alj in (5). While this

can be done at a high level of generality, let us start with a result that covers a large

majority of applications.

In the standard model, g pXj, εq is simply Xjε. Denote xj “ pXjBq
1, a vector of

nv components; and x the matrix whose J columns are px1, . . . ,xJq. Then

g pXj, εq “ σx1jv.

We first derive the second-order expansion in σ in the standard model.

9We return to this point in section 5.1.
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Theorem 1 (Intermediate expansion in the standard model). In the standard model,

(i) the alj coefficients only depend on S and on x;

(ii) the first-order coefficients are zero: a1j ” 0 for all j;

(iii) the second-order coefficients are given by

a2j “ 2xj ¨ eSx´ ‖xj‖2 “ ´xj ¨

˜

xj ´ 2
J
ÿ

k“1

Skxk

¸

; (6)

(iv) in the standard symmetric model, alj “ 0 for all j and odd l ď L. Therefore if

L ě 3,

ξj “ log
Sj
S0

´Xjβ `
a2j
2
σ2
`Opσ4

q. (7)

Proof. See Appendix A.

3.2 The Artificial Regressors in the Standard Model

When truncated of its remainder term, equation (7) becomes linear in the parame-

ters pβ, σ2q. The coefficients a2j, however, are quadratic combinations of the vectors

xj, which are themselves linear in the unknown coefficients of the matrix B. Fortu-

nately, the formula that gives a2j can be transformed so that it becomes linear in the

coefficients of the variance-covariance matrix Σ of ε.

To see this, note that since xk “ B
1X 1

k,

x1kxl “XkBB
1X 1

l .

But since Σ “ σ2BB1, we have

σ2x1kxl “
nX
ÿ

m,n“1

ΣmnXkmXln “ Tr pΣXlX
1
kq

where Trp¨q is the trace operator.

Plugging this into (6) gives

σ2a2j
2
“ Tr

ˆ

Σ

ˆ

eSX ´
Xj

2

˙

X 1
j

˙

.
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Define the nX ˆ nX matrices Kj by

Kj
“

ˆ

Xj

2
´ eSX

˙

X 1
j

so that we can also write σ2 a2j
2
“ ´TrrΣKjs. The matrices Kj can be constructed

straightforwardly from the covariates X and the market shares S. We call their

elements the “artificial regressors”, for reasons that will soon become clear. Given

that Σ is symmetric,

TrrΣKj
s “

nX
ÿ

m“1

ΣmmK
j
mm `

ÿ

măn

Σmn

`

Kj
mn `K

j
mn

˘

.

Additional a priori restrictions can be accommodated very easily. It is for instance

common to restrict Σ to be diagonal. Then only nX artificial regressors enter in this

sum; moreover,

Kj
mm “

˜

Xjm

2
´

J
ÿ

k“1

SkXkm

¸

Xjm.

If Σ is not diagonal, then we need to also use the artificial regressors

Kj
mn “

˜

Xjm

2
´

J
ÿ

k“1

SkXkm

¸

Xjn.

To summarize, we have:

Theorem 2 (Final expansion in the standard model). In the standard model,

ξj “ log
Sj
S0

´Xjβ ´
nX
ÿ

m“1

ΣmmK
j
mm ´

ÿ

măn

Σmn

`

Kj
mn `K

j
mn

˘

`Op‖Σ‖k{2q, (8)

where k “ 4 if the model is symmetric, and k ě 3 otherwise; and the artificial

regressors are given by

Kj
mm “

˜

Xjm

2
´

J
ÿ

k“1

SkXkm

¸

Xjm

Kj
mn `K

j
nm “ XjmXjn ´

˜

J
ÿ

k“1

SjXkm

¸

Xjn ´

˜

J
ÿ

k“1

SjXkn

¸

Xjm.
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4 2SLS Estimation

Equation (8) is linear in the parameters of interest θ “ pβ,Σq, up to the remainder

term. This immediately suggests neglecting the remainder term and estimating the

approximate model ξj “ log
Sj

S0
´Xjβ ´ TrrΣKjs.

More precisely, assume we are given a sample of T markets, and instruments

Zjt such that E pξjt|Zjtq for all j and t. Then our proposed estimator θ̂ fits the

approximate linear set of conditional moment restrictions:

E

ˆ

log
Sjt
S0t

´
`

Xjtβ ` TrrΣKjt
s
˘

|Zjt

˙

“ 0

which only differs from the original model by a term of order σ3 (or σ4 if the dis-

tribution of ε is symmetric). This can simply be done by choosing vector functions

Z˚jt of the instruments and running two-stage least squares: for each j “ 1, . . . , J ,

on the sample t “ 1, . . . , T , we linearly regress logpSjt{S0tq on Xjt and the relevant10

variables Kjt, with instruments Z˚jt.

5 Pros and Cons of the 2SLS Estimation Approach

The drawback of our method is obvious: since this is only an approximate model, the

resulting estimator θ̂ will not converge to the true values as the number of markets

T goes to infinity. We discuss this in much more detail in section 5.1. For now,

let us note that this drawback is tempered by several considerations. First, the

number of markets available in empirical IO is typically small, so that finite-sample

performance of the estimator is most relevant, and we will examine that in Section 7.

More importantly, our estimator has several useful features. Let us list six of them:

1. because the estimator is linear 2SLS, computing it is extremely fast and can be

done in microseconds with any of-the-shelf software.

2. we do not have to assume any distributional form for the random variation

in preferences v. This is a notable advantage over other methods: while they

10E.g. only the nX variables Kjt
mm if Σ is restricted to be diagonal, or even a subset if some

coefficients are non random.
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yield inconsistent estimates if the distribution of v is misspecified, our estimator

remains consistent for the parameters of the approximate model.

3. computing the optimal instruments does not require any first-step estimate

because the estimating equation is linear. We can just use a flexible set of

functions of the columns of Z that span the space of the optimal instruments

EpX|Zq and EpK|Zq .

4. even if the econometrician decides to go for a different estimation method, our

proposed 2SLS estimates obtained should provide a set of very good initial

parameter values for a nonlinear optimization algorithm.

5. the confidence regions on the estimates will give useful diagnoses about the

strength of identification of the parameters, both mean coefficients β and their

random variation Σ. This would be very hard to obtain otherwise, except by

trying different specifications.

6. there has been much interest in systematic specification searches in recent years;

see e.g. Horowitz–Nesheim 2018 for a Lasso-based selection approach in discrete

choice models. With our method any number of variants can be tried in seconds,

and model selection is drastically simplified

5.1 The Quality of the Approximation

Ideally, we would be able to bound the approximation error in the expansion of ξj,

and use this bound to majorize the error in our estimator. While we have not gone

that far, we can justify the local-to-zero validity of the expansion in the usual way.

We are taking a mapping

S “ G pξ,X, σq

that is differentiable in both ξ and σ; inverting it to ξ “ Ξ pS,X, σq; and taking

an expansion to the right of σ “ 0 for fixed market shares S and covariates X. The

validity of the expansion for small σ and fixed pX,Sq depends on the invertibility of

the Jacobian Gξ.

First consider the standard model. It follows from Berry 1994 that Gξ is invertible

if no observed market share hits zero or one. Applying the Implicit Function Theorem
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repeatedly shows that in fact the Taylor series of ξ converges over some interval r0, σ̄s

if all moments of ε are finite; and that the expansion is valid at order L if the moments

of ε are bounded to order pL ` 1q. Characterizing this range of validity is trickier.

Figure 1 in Appendix B plots the first four coefficients of the expansion in pσX1q
2

for the standard Gaussian binary model (that is, the Gaussian mixed logit) with one

covariate X1 as market shares vary between zero and one. While this simple example

can only be illustrative, we find the figure encouraging as to the practical range of

validity of the approximation.

5.2 “Robustness”

Our expansions only rely on the properties of the derivatives of the logistic cdf Lptq “
1

1`expp´tq
and on the first two moments of ε. This has a distinct advantage over

competing methods: the lower-order moments of ε can be estimated by 2SLS, and

nothing more needs to be known about its distribution.

Suppose for instance that the analyst does not want to assume that ε has a

symmetric distribution. Then the coefficients a1j are still zero, and the coefficients

a2j are unchanged. In the absence of symmetry, the approximate model is only valid

up to Opσ3q; but running Algorithm 1 may still provide very useful estimators of the

elements of Σ.

6 Extensions

Our technique can easily be extended to different models as long as the utility remains

additive in the product effects ξ. Morerover, the calculations of these and higher-order

terms can be automated with the help of a symbolic algebra system.

6.1 The Two-level Nested Logit

Campioni (2018) applies a nonparametric approach to the choice among a very large

set of products. He shows that the mixed logit specification forces the price elasticity

to become “too small” at high price levels. This raises the question of the appropriate

choice of a distribution for the idiosyncratic terms uijt.

18



For the mixed logit (J “ 1), it is very easy to compute the artificial regressors

for any distribution of the idiosyncratic terms; we give the formulæ in Appendix B.3.

When J ą 1, the space of possible distributions increases dramatically. The compu-

tations also become more complicated. Finally, estimating the additional parameters

of the distribution of u requires (simple) nonlinear optimization.

For illustrative purposes, we give the estimating equation for the two-level nested

logit model. Assume that there is a nest for good 0, and K nests N1, . . . , NK for the

varieties of the good. For k “ 1, . . . , K, we denote λk the corresponding distribution

parameter—with the usual interpretation that p1 ´ λkq proxies for the correlation

between choices within nest k, and that the multinomial logit model obtains when all

λk “ 1.

We denote the market share of nest k by SNk
“

ř

jPNk
Sj. Take any variable

T “ pT0, T1, . . . , TJq. We define the within-nest-k share-weighted average as

T̄k “
ÿ

jPNk

Sj
SNk

Tj.

Note in particular that eST “
řK
k“1 SNk

T̄k.

Appendix C derives the equivalent of (6): for j P Nk,

a2j “ xj ¨

ˆ

2eSx´
xj
λk
` 2

1´ λk
λk

x̄k

˙

´
1´ λk
λk
‖x̄k‖2.

Reintroducing the market index t, the corresponding artificial regressors are

Kjt
mn “

ˆ

Xjt,m

2
´

1´ S0tλk
1´ S0t

etm ´ 2
1´ λk
λk

X̄kt,m

˙

Xjt,n

λk

`
1´ λk
λk

X̄kt,mX̄kt,n

where as in section 3, etm “
řJ
j“1 SjtXjtm.

If the λk parameters are known, then our procedure becomes:

Algorithm 2. FRAC estimation of the two-level nested logit BLP model

1. on every market t, augment the market shares from ps1t, . . . , sJtq to pS0t, S1t, . . . , SJtq

2. for every product-market pair pj P J , tq :
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(a) compute the market-share weighted covariate vector et “
řJ
l“1 SltXlt and

the within-nest weighted average covariate vector

X̄kpjq,t “
ÿ

lPNkpjq

Slt
SNkpjq,t

Xlt

where kpjq is the nest that variety j belongs to.

(b) for every pm,nq in I, compute the “artificial regressor”

Kjt
mn “

ˆ

Xjt,m

2
´

1´ S0tλkpjq
1´ S0t

etm ´ 2
1´ λkpjq
λkpjq

X̄kpjq,t,m

˙

Xjt,n

λkpjq

`
1´ λkpjq
λkpjq

X̄kpjq,t,mX̄kpjq,t,n

(c) define

yjt “ log
SNkpjq,t

S0t

` λkpjq log
Sjt

SNkpjq,t

3. run a two-stage least squares regression of y on X and K, taking as instruments

a flexible set of functions of Z

4. (optional) run a three-stage least squares (3SLS) regression across the T markets

stacking the J equations for each product with a weighting matrix equal to the

inverse of the sample variance of the residuals from step 4.

If the parameters λ are not known, then things are slightly more complicated:

the formulæ cannot be made linear in λ, and there are no corresponding artificial

regressors. Estimation of pβ,Σ,λq requires numerical minimization over the λ.

More general distributions in the GEV family could also be accommodated. As

the nested logit example illustrates, there is a cost to it: the approximate model

becomes nonlinear in some parameters11. Note however that if there is reason to

believe that the true distribution is close to the multinomial logit (say λ » 1 in the

example above), then one can take expansions in the same way we did for the random

coefficients and use a 2SLS estimate again.

11Technically, condition C1 in the introduction still holds, but conditions C2 and C3 do not.
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6.2 Higher-order terms

In Appendix B, we study in more detail the standard binary model. For this simpler

case, calculations are easily done by hand for lower orders of approximation, or using

symbolic software for higher orders.

More generally, return to the standard model and assume (as is often done in

practice) that the εm are independent across the covariates m “ 1, . . . , nX . We

denote as before Σmm “ Epε2mq, and µlm the expected value of εlm for l ě 3. Tedious

calculations12 show that the second- to fourth-order terms of the expansion in σ are

ξj “ log
Sj
S0

´Xjβ `
4
ÿ

l“2

Alj `Opσ
5
q

with

A2j “
ÿ

m

Xjm peSXm ´Xjm{2qΣmm;

A3j “
ÿ

m

Xjm

ˆ

Xjm
eSXm

2
`
eS pX

2
mq

2
´
X2
jm

6
´ peSXmq

2

˙

µ3m;

and

A4j “
ÿ

m

µ4mXjm

ˆ

peSXmq
3
´ peSXmqpeSpX

2
mqq ´Xjm

peSXmq
2

2
´
X3
jm

24

`
eSpX

3
mq

6
`Xjm

eSpX
2
mq

4
`X2

jm

eSXm

6

˙

`
A2

2j

2
`
ÿ

m

ΣmmXjm

ˆ

eSpA2Xmq ` peSA2q

ˆ

Xjm

2
´ 2peSXmq

˙˙

.

First consider the third-order term A3j. It is a linear function of the unknown skew-

nesses µ3m; in fact it can be rewritten as

´
ÿ

m

T jmµ3m

where we introduced new artificial regressors

T jm ” Xjm

ˆ

X2
jm

6
` peSXmq

2
´Xjm

eSXm

2
´
eSpX

2
mq

2

˙

.

12Available from the authors.
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Algorithm 1 can be adapted in the obvious way to take possible skewness of ε into

account. Note that the procedure remains linear in the parameters pβ,Σ,µ3q, for

which it generates approximate estimates by 2SLS.

The fourth-order term, on the other hand, contains terms that are linear in the

µ4m (the first two lines of the formula) as well as terms that are quadratic in Σ (the

last line). The first group suggests introducing more artificial regressors

Qj
m ” Xjm

ˆ

peSXmqpeSpX
2
mqq ´ peSXmq

3
`Xjm

peSXmq
2

2
`X3

jm{24

´
eSpX

3
mq

6
´Xjm

eSpX
2
mq

4
´X2

jm

eSXm

6

˙

,

whose coefficients are the µ4m. The second group yields

´
ÿ

m,n“1

ΣmmΣnnW
j
mn

where new artificial regressors W are assigned products of the elements of Σ. Esti-

mating the resulting regression requires nonlinear optimization (albeit a very simple

one).

6.3 Bias correction

If the analyst is willing to make more distributional assumptions, she can resort to

bootstrap or asymptotic approximations to correct for the bias of our 2SLS estimators.

6.3.1 Bootstrapping

Once we have approximate estimators β̂ and Σ̂, we can use them to solve the market

shares equations for estimates of the product effects ξ and boostrap them, provided

that we are willing to impose a distribution for v (beyond the normalization of its

first two moments.)

We use Berry inversion to solve for ξ̂t in the system

Sjt “ Ev
exp

´

Xjt

´

β̂ ` Σ̂1{2v
¯

` ξ̂jt

¯

1` ΣJ
k“1 exp

´

Xkt

´

β̂ ` Σ̂1{2v
¯

` ξ̂kt

¯ .
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Even if the ξjt that generated the data are iid across varieties and markets, our

approximation method necessarily induces heteroskedasticity at least as the remainder

terms in the approximations depend on covariates. Therefore we use wild bootstrap

to resample from the ξ̂. For any resample ξ˚, we simulate the market shares from

S˚jt “ Ev
exp

´

Xjt

´

β̂ ` Σ̂1{2v
¯

` ξ˚jt

¯

1` ΣJ
k“1 exp

´

Xkt

´

β̂ ` Σ̂1{2v
¯

` ξ˚kt

¯

and we use our 2SLS method to get new estimates β˚,Σ˚. Finally, we compute

bias-corrected estimates in the usual way, e.g.

βC “ 2β̂ ´
1

B

B
ÿ

b“1

β˚b .

More generally, the resampled estimates can be used to estimate the distribution of

β̂ and Σ̂.

6.3.2 Asymptotic bias correction

Another way to use the third- and fourth-order terms is as a corrective term: that is,

we run 2SLS on the second-order expansion and we use the formulæ for the higher-

order terms to evaluate the bias due to the approximation.

Denote θ “ pΣ,βq, and θ0 its true value. Let θ̂2 be our 2SLS estimator based on

a second-order expansion. That is, we estimate the approximate model Epξ2Zq “ 0

with instruments Z and weighting matrix W , where

ξ2j “ log
Sj
S0

´Xjβ ´ Tr ΣKj . (9)

As the number of markets T gets large, θ̂2 converges to the solution θ2 of Ef2pθ2q “ 0,

with

f2pθq ”
Bξ2
Bθ
pθ,X,Sq1ZWZ 1ξ2pθ,X,Sq.

Alternatively, we could have estimated the model using inversion or MPEC, with an

“exact” ξ8. Let λ0 denote additional parameters of the model (such as higher-order

moments of the distribution of ε) that are identified using the exact ξ8 but not13

with our approximate ξ2.

13If the only free parameters of the distribution of ε are the elements of Σ, then λ0 will be empty.
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Since by assumption E pξ8pθ0,λ0,X,SqZq “ 0, a fortiori Ef8pθ0;λ0q “ 0 with

f8pθ;λ0q ”
Bξ8
Bθ
pθ,λ0,X,Sq1ZWZ 1ξ8pθ,λ0,X,Sq.

The dominant term in the asymptotic bias is given by expanding Ef8pθ;λ0q around

θ “ θ2, keeping λ0 fixed. It is

θ2 ´ θ0 »

ˆ

E
Bf8
Bθ
pθ2;λ0q

˙´1

Ef8pθ2;λ0q.

Denote X the matrix with terms Xjm and K the matrix whose row j “ 1, . . . , J

contains the artificial regressors Kj
mn. We define e2pθ;λ0q “ ξ8pθ;λ0q ´ ξ2pθq, the

approximation error on ξ. Under any assumption about the parameters in λ0, we

can compute the higher-order terms ξ3, ξ4, . . . to approximate e2. If for instance we

maintain the assumption that the model is symmetric, we can approximate e2 »

ξ4 ´ ξ2.

Let us suppose then that we have a reliable estimator ê2pθ;λ0q of e2pθ;λ0q. Define

V by the Cholesky decomposition ZWZ 1 “ V V 1, so that V is a pJ, Jq matrix. We

prove in Appendix D that asymptotic bias correction yields the following formula:

θ0 » θ2 `

˜

E pX 1V V 1Xq E pX 1V V 1Kq

E pK 1V V 1Xq E pK 1V V 1Kq

¸´1˜

E pX 1V V 1ê2q

E pK 1V V 1ê2q ´ E
`

Bê2
BΣ
V V 1ξ2

˘

¸

.

To interpret this formula, note that if ê2 did not depend on Σ the corrective term

on the right-hand-side would simply be the 2SLS estimate of the regression of ê2 on

pX,Kq with instruments V . In fact if we are only interested in bias correction on

β2, we can simply keep the corresponding part of the 2SLS estimate. The correction

on Σ2 has an additional term as higher order terms in the expansion of ξ typically

depend on Σ. (Recall from Theorem 1.(i) that they do not depend on β.)

6.4 Other Models with Random Coefficients

Let us return to our original structural equations (1).
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6.4.1 Quasi-linear Random Coefficients Models

Consider the following class of models, whose defining characteristic is that the error

term η and the mean coefficients β only enter via a linear combination η ´ f1pyqβ:

Gpy,η,β, σq ” G˚
py, EvA

˚
py,η ´ f1pyqβ, σBvqq . (10)

where v is unobserved heterogeneity distributed independently of y and η and nor-

malized by Ev “ 0 and V v “ I; and both functions G˚ and A˚ are assumed to be

known.

Note that the macro–BLP model takes this form, with y “ pS,Xq; f1pyq “ ´X;

η “ ξ; and

A˚j “ Pr

ˆ

j “ arg max
J“0,1,...,J

pXkβ ` ξk ` σXkBvq |X, ξ,v

˙

so that, denoting aj ”Xj and bj “Xjβ ` ξj,

A˚pa, b, cq ”
exp pbj ` ajcq

1`
řJ
k“1 exp pbk ` akcq

;

and G˚j ” Sj ´ EvA
˚
j .

We continue to assume that E pη|Zq “ 0. The quasi-linear structure in (10) allows

this class of models to be approximately estimated by 2SLS.

Theorem 3. Consider a model of the class defined by (10) and assume that

• G˚ is twice differentiable with respect to its second argument

• A˚ is twice differentiable with respect to its last two arguments

• the matrices G˚
2py,A

˚py,η´f1pyqβ,0qq and A˚2py,η´f1pyqβ,0q are invertible

for all py,η,βq.

Any such model satisfies the conditions C1–C3 in the introduction. Moreover,

• f1pyq appears directly in (10)

• the variables f0pyq are defined by the system of equations

G˚
py,A˚py,f0pyq,0qq “ 0
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• and the variables f2pyq solve the linear system

A˚33py,f0pyq,0qq f2pyq “ ´A
˚
2py,f0pyq,0qq.

Proof: See Appendix E.

As explained in the introduction, these models can be estimated by regressing

f0pyq on f1pyq and f2pyq with a set of flexible functions of Z as instruments. Since

the macro–BLP model belongs to this class, this confirms that conditions C1–C3

hold in the BLP model; we had shown it implicitly in section 3 by deriving the

expansions. Note also that we did not use any distributional assumption on the

random coefficients and the idiosyncratic shocks—although of course the terms in

the expansions do depend on these distributions. We give an illustration for a one-

covariate mixed binary model without any distributional assumption in Appendix B.3.

6.4.2 Examples

It is easy to generate models in the quasi-linear class (10). Starting from any GLM

model gpyq “ Xβ ` η, we can for instance transform the right-hand side by adding

additive unobserved heterogeneity and another link function:

gpyq “ Eεh pXβ ` η, σεq .

When the link functions g and h are both assumed to be known, all such models obey

conditions C1–C3 and can therefore be studied with our method. Note that in these

models f1pyq ” ´X and f2pyq “ ´ph1{h22qpf0pyq, 0q where

f0pyq “ hp¨, 0q´1pgpyqq

(assuming the inverse is well-defined.)

The nested logit of section 6.1 shows that our method remains useful beyond

the class of quasi-linear models, at the cost of breaking condition C2 and C3 and

requiring numerical optimization.
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7 Simulations

This section presents the results of a Monte Carlo study of an aggregate discrete choice

demand system with random coefficients. It compares the finite sample performance

of our estimator of the parameters to estimators computed using the mathematical

programming with equilibrium constraints (MPEC) approach recommended by Dubé,

Fox and Su (2012) and the control function approach of Petrin and Train (2010). We

also show results demonstrating some of the “robustness” of our estimation procedure

to assumptions about the distribution of the random coefficients. Specifically, we find

that even if the distribution of random coefficients is misspecified, our procedure still

yields very good estimates of the means and variances of the random coefficients.

The basic set-up of our Monte Carlo study follows that in Dubé, Fox and Su

(2012). It is a standard static aggregate discrete choice random coefficients demand

system with T “ 50 markets and J “ 25 products in each market, and K “ 3

observed product characteristics. Following Dubé, Fox, and Su (2012), let Mt denote

the mass of consumers in market t “ 1, 2, . . . , T . Each product is characterized by the

vector pX 1
jt, ξjt, pjtq

1, where Xjt is a K ˆ 1 vector of observable attributes of product

j “ 1, 2, . . . , J in market t, ξjt is the vertical product characteristic of product j

in market t that is observed by producers and consumers, but unobserved by the

econometrician, and pjt is the price of product j in market t. Collect these variables

for each product into the following market-specific variables: Xt “ pX
1
1t, . . . ,X

1
Jtq

1,

ξt “ pξ1t, ξ2t, . . . , ξJtq
1, and pt “ pp1t, p2t, . . . , pJtq

1.

The conditional indirect utility of consumer i in market t from purchasing product

j is

uijt “ β0 `X
1
jtβ

x
i ´ β

p
i pjt ` ξjt ` εijt

The utility of the j “ 0 good, the “outside” good, is equal to u0jt “ εi0t. Each

element of βxi “ pβ
x
i1, . . . , β

x
iKq

1 is assumed to be drawn independently from Npβ̄xk , σ
2
kq

distributions, and each βpi is assumed to be drawn independently from Npβ̄p, σ
2
pq. We

denote βi “ pβ
x
i
1, βpi q

1.

We collect all parameters into

θ “ pβ0, β̄x1 , . . . , β̄
x
K , β̄p, σ

2
1, . . . , σ

2
K , σ

2
pq
1.
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Our simulations have

pβ0, β̄x1 , β̄
x
2 , β̄

x
3 , β̄pq “ p´1, 1.5, 1.5, 0.5,´1q

and varying variances pσ2
1, σ

2
2, σ

2
3, σ

2
pq. We also experiment with varying β̄p.

To compute the market shares for the J products, we assume that the εijt are

independently and identically distributed Type I extreme value random variables, so

that the probability that consumer i with random preferences βi purchases good j in

market t is equal to

sijtpXt,pt, ξt|βiq “
exppβ0 `X 1

jtβ
x
i ´ β

p
i pjt ` ξjtq

1`
řJ
k“1 exppβ0 `X 1

ktβ
x
i ´ β

p
i pkt ` ξktq

We compute the observed market share for all goods in market t by drawing ns “

1, 000 draws pζiktq from four Np0, 1q random variables and constructing 1, 000 draws

from βi|θ as follows:

βxikt “ β̄xk ` σkζikt and βpit “ β̄p ` σpζipt.

We then use these draws to compute the observed market share of good j in market

t as:

sjtpXt,pt, ξt|θq “
1

ns

ns
ÿ

i“1

sijtpXt,pt, ξt|βiq

given the vectors Xt, pt, and ξt for each market t.

Consistent with the experimental design in Dubé, Fox and Su (2012), we generate

the values of Xt, pt, ξt and a vector of 6 instruments Zjtas follows. First we draw

Xt for all markets t “ 1, 2, . . . , T from a multivariate normal distribution:

»

—

–

x1j

x2j

x3j

fi

ffi

fl

„ N

¨

˚

˝

»

—

–

0

0

0

fi

ffi

fl

,

»

—

–

1 ´0.8 0.3

´0.8 1 0.3

0.3 0.3 1

fi

ffi

fl

˛

‹

‚

The price of good j in market t is equal to

pjt “ |0.5ξjt ` ejt ` 1.1px1j ` x2j ` x3jq|,

where ejt „ Np0, 1q, distributed independently across products and markets. The

ξjt are Np0, σ2
ξ q random variables drawn independently across products and markets
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for different values of σ2
ξ described below. The data generating process for the vector

of instruments is:

zjtd „ Up0, 1q ` 0.25pejt ` 1.1px1j ` x2j ` x3jqq

where d “ 1, . . . , 6.

For a specified value of the parameter vector θ, following this process for T “ 50

markets yields the dataset for one Monte Carlo draw.

7.1 MPEC Approach

The MPEC approach solves a nonlinear minimization problem subject to nonlin-

ear equilibrium constraints. The first step of the estimation process constructs the

following instrumental variables for all the products in all the markets. There are

42 instruments in total; they are constructed from product characteristics xj and

excluded instruments zjt:

1, xkj, x
2
kj, x

3
kj, x1jx2jx3j, zjtd, z

2
jtd, z

3
jtd, zjtdx1j, zjtdx2j,

6
ź

d“1

zjtd

Let W denote this pJ ˆ T q ˆ 42 matrix of instruments. In our case J ˆ T “ 1, 250

since J “ 25 and T “ 50.

The MPEC approach solves for θ by minimizing

η1W pW 1W q´1W 1η

subject to the “equilibrium constraints”

spη, θq “ S

where S is the vector of observed market shares computed as described above given

the values of xt, pt and ξt and η is a pJ ˆ T q ˆ 1 vector defined by the following

equation:

sjtpη, θq “
1

Ns

Ns
ÿ

i“1

exppθ1 ` x1jβ
x
1i ` x2jβ

x
2i ` x3jβ

x
3i ` pjtβ

p
i ` ηjtq

1`
řJ
k“1 exppθ1 ` x1kβx1i ` x2kβ

x
2i ` x3kβ

x
3i ` pktβ

p
i ` ηktq
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where each pβxi , β
p
i q is a random draw from the following normal distribution:

N

¨

˚

˚

˚

˝

»

—

—

—

–

θ2

θ3

θ4

θ5

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

θ6 0 0 0

0 θ7 0 0

0 0 θ8 0

0 0 0 θ9

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

Note that θ1 (like β0) is not allowed to be random. For purposes of estimation we set

Ns “ 1, 000. For each Monte Carlo simulation, we start the optimization with the

following initial point: true values for θ, and a vector of zeros for the η vector.

7.2 A Control Function Approach

To implement the Petrin and Train (2010) control function approach, we first run a

linear regression of the price p on all 42 instruments. We denote the residuals from

this regression by ε̂jt.

We then solve the following maximum likelihood problem:

max
θ,ρ

J
ÿ

j“0

T
ÿ

t“1

Sjt ¨ logps
1
jtpθ, ρqq

where j “ 0 refers to the outside product, Sjt is the observed market share, and s1jt
is defined by

s1jtpθ, ρq “
1

NS

NS
ÿ

i“1

exppβ0 ` x1jβ
x
1i ` x2jβ

x
2i ` x3jβ

x
3i ` pjtβ

p
i ` ρε̂jtq

1`
řJ
k“1 exppβ0 ` x1kβx1i ` x2kβ

x
2i ` x3kβ

x
3i ` pktβ

p
i ` ρε̂ktq

where β0 and the pβxi , β
p
i q are generated as we did with MPEC.

7.3 Our 2SLS Approach

Our 2SLS approach resorts to a slight modification of the standard linear 2SLS esti-

mator to account for the fact that the estimates of the σ2
k and σ2

p cannot be negative.

First, we construct the instrumental variables as the MPEC approach. We then con-

struct the artificial regressors K1, K2, K3, Kp of Theorem 2 for each product in each
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market by applying

X̄it “

J
ÿ

k“1

xikSkt

Kjt
i “ xijpxij{2´ X̄itq

for i “ 1, 2, 3, p.

The next step performs an instrumental variable regression of yjt “ logp
Sjt

S0t
q on

1, x1, x2, x3, x4, K1, K2, K3, Kp using all 42 instruments. If any coefficient for the

last four variables is negative, we set that coefficient to 0 and rerun the regression

without that variable. We iterate this process until all the coefficients are positive,

or all four variables are excluded from the instrumental variables regression.

In addition to this standard 2SLS estimator, we compute a bias correction as

explained in section 6.3.2. To evaluate it, we replace yjt, the dependent variables for

2SLS estimates, with yjt ´ ξ2,jt ` ξinf,jt, where

• ξ2,jt is the residual from our initial 2SLS estimation procedure

• ξinf,jt is the value of ξjt that results from solving the equation stpξt, θ̂q “ St,

where θ̂ is the initial 2SLS estimate of θ.

We found that it worked as well as the bootstrap, at a lower computational cost. We

also experimented with using the optimal instruments, obtained by a kernel regression

of X and of K on the variables x1, x2, x3, z1, . . . , z6.

7.4 Pseudo True Values for the 2SLS Approach

As explained earlier, the 2SLS estimator is not consistent for the true parameter

values, as it estimates an approximate model. We constructed estimates of the pseudo

true values to which our 2SLS estimators converge by simulating their probability

limit. A first approach increases the number of markets and computes our 2SLS

estimates for this large number of markets. The second approach computes estimates

of the population values of the moments of our 2SLS estimator.
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7.4.1 Increasing-number-of-markets Approach

For each simulation, we keep the size and distribution of product characteristics for

each market fixed, but increase the number of markets. For each scenario, we cal-

culate the pseudo true value (and its standard error) by 20 simulations of 100,000

markets. Note that across different simulations, we generate different product char-

acteristics. Also, when calculating market shares, we use different random draws of

βi across different simulations, but the same random draws of βi within a simulation.

Estimates are calculated by the sample mean of the 20 simulations. Standard errors

are calculated by the sample standard errors of the 20 simulations.

7.4.2 Moment-based Approach

We can also calculate the pseudo true values in a different way. We first run the first

stage projection: Π̂ “ pW 1W q´1W 1X for each simulation, where W is our matrix of

instruments and X is our matrix of regressors. We then take the average across all

the simulations to get our estimate of the population value of Π. Then in the second

stage, we calculate pWΠq1X and pWΠq1Y for each simulation, and then take averages

across all the simulations to get two matrices A and B. The final estimate is then

A´1B. In short, we have

Π “ Eall simulationsrpW
1W q´1W 1Xs

A “ Eall simulationsrpWΠq1Xs

B “ Eall simulationsrpWΠq1Y s

Estimate “ A´1B

With this method, we only have the estimates but cannot get the standard errors.

We used 1000 simulations of 10,000 markets.

7.5 Monte Carlo Simulation Results

We used the SNOPT optimization package available from the Stanford Systems Op-

timization Laboratory to solve the nonlinear optimization problems for the MPEC

estimator and the control function estimator. The software employs a sparse sequen-
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tial quadratic programming (SQP) algorithm with limited-memory quasi-Newton ap-

proximations to the Hessian of the Lagrangian.

We run simulations for 9 scenarios obtained by setting three values for the variance

of the product random effects: σ2
ξ “ Varpξq “ 0.1, 0.5, 1 and three values for the vector

of variances of the coefficients βi “ pβ0, β
x
1i, β

x
2i, β

x
3i, β

p
i q
1:

Varpβiq “ p0, 0.1, 0.1, 0.1, 0.05q, p0, 0.2, 0.2, 0.2, 0.1q, p0, 0.5, 0.5, 0.5, 0.2q.

Note that the square roots of the elements of Varpβjq represent the relative values of

the scale parameter σ of models 1, 2, and 5.

It is worth noting here that we explored other scenarii in which MPEC often failed

to converge, even though we are starting it from the true values of the parameters. In

particular, larger variances of ξ are problematic. It is also the reason why we reduced

the highest value of σ2
p from 0.25 to 0.2.

All the other parameter specifications are as described above.

7.5.1 Distribution of the Estimates

We summarize the estimation results in Tables 1 to 9, where density plots are grouped

by parameter for all scenarii. These plots suggest that if the researcher is interested

in a precise estimate of the mean of the random coefficients, then using our 2SLS

approach does not imply any significant bias or loss in efficiency relative to the MPEC

approach. In constrast, the control function approach exhibits substantial bias in the

estimate of the means of the random coefficients; and this bias increases with the

variance of ξjt. This makes sense since the control function estimator in fact uses an

invalid control function.

The MPEC approach appears to dominate the 2SLS approach for the variance of

the random coefficients. The 2SLS estimators of the variances have a downward bias

that increases with the variance of the random coefficients. However, larger values of

the variance of ξjt do seem to improve the performance of the 2SLS estimator of the

variance of the random coefficients.

The control function estimators of the variances of the random coefficients are

often less biased than the 2SLS estimators. However, their distributions tend to have
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a larger spread than those of the estimates from the MPEC estimation procedure, or

of our 2SLS estimation procedure.

7.5.2 Starting Values

We are giving a big advantage to MPEC in our comparisons, since we allow the

algorithm to start from the true values of the parameters. This is of course infeasible

in practice. With this initial boost, MPEC converges 100% of the time, after 1,030

iterations on average; the minimization takes 110 seconds on average. Our 2SLS

approach provides a more realistic alternative, in which we start MPEC from the

results of our 2SLS regression. This appears to work very well: MPEC converges

after an average 125 seconds and 1,280 iterations, again with a 100% success rate.

The resulting estimates are very close to those obtained when staring from the true

values: the difference is between 10´6 and 10´7.

These results are very encouraging for the use of our approach as a method for

finding very good starting values for the MPEC and nested-fixed point estimation

procedures. Given that 2SLS takes no time at all, we would strongly recommend

running it before a more sophisticated algorithm.

7.5.3 Price Elasticities

Based on the parameter estimates, we can estimate the own price elasticity of the

demand for each product. The graphs in table 12 plot the distribution of the difference

between the true price elasticity and the estimated price elasticity for the MPEC

approach, our standard 2SLS approach, and our bias-corrected 2SLS approach. For

space reasons, we only presents the results for five products: numbers 5, 10, 15, 20, 25.

Our simulations have variances pσ2
1, σ

2
2, σ

2
3, σ

2
pq “ p0, 0.4, 0.4, 0.4, 0.2q with Varpξq “ 1.

Table 12 demonstrates that our procedure recovers nearly identical mean own-price

elasticities for products as the MPEC approach, although the spread for our estimates

is slightly larger than in the MPEC approach.

We also performed a set of simulations (with the same variances) to determine

if changing the true value of the price coefficient β̄p changes the performance of the

estimators. The results in tables 13 and 14. reinforce our previous conclusions about

our 2SLS approach. For a range of values of the mean value of the price coefficient,
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our approach introduces minimal bias in the estimates of the means of the random

coefficients. In constrast, the control function approach continues to show significant

bias. The estimates of the variances of the random coefficients for our 2SLS estimate

continue to be downwards biased in general, but the bias is smaller for larger price

coefficients.

7.5.4 Pseudo-true Values

Tables 10 and 11 demonstrate that for most scenarii and coefficients, the pseudo true

values implied by our 2SLS procedure are not substantially different from the true

values. Based on these results, it is difficult to argue that a researcher would draw

conclusions from 2SLS estimates that differ in an economically or even statistically

meaningful way from those obtained with MPEC estimates.

7.5.5 Variable Selection Tests

Researchers in empirical IO have little guidance on the list of characteristics X they

should include, or how to specify the matrix Σ. Experimenting with different speci-

fications is costly with the usual estimators. Our 2SLS approach, on the other hand,

makes variable selection very easy. We can decide whether a characteristic simply

by testing whether the corresponding covariate can be dropped from the estimating

equation; and to decide whether we should allow for a random coefficient, we only

need to test whether the associated artificial regressor can be dropped from the equa-

tion. We experimented with this approach to detecting random coefficients by setting

β̄x1 “ σx1 “ 0 in the data generating process and applying standard tests that that

the covariate x1 and/or the artificial regressor K1 has a zero coefficient in the 2SLS

regression. We also performed this test using our bias-corrected 2SLS estimates. Ta-

bles 17 to 20 give the probability that the null hypothesis is not rejected, where the

null hypothesis is

• β̄x1 “ 0 (Tables 15 and 16)

• σx1 “ 0 (Tables 17 and 18)

• β̄x1 “ σx1 “ 0 (Tables 19 and 20).
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The row labelled “2SLS with heteroskedasticity-robust standard error” is our 2SLS

estimate, using a standard heteroskedasticity-robust covariance matrix to compute

standard errors. The row labelled “GLS estimator and standard errors” uses Cragg’s

(1983) generalized least squares estimator and his recommended standard error es-

timates. The row labelled “2SLS with clustered standard errors” uses our 2SLS

estimates with standard errors clustered at market level.

Since the null hypothesis is true, each row in Tables 15-20 would ideally contain

0.99, 0.95, and 0.90. Clearly, our test rejects the null too often. In this particular ap-

plication, this is probably better than the alternative: better to include more variables

and lose some efficiency than to incur bias by leaving them out. The size distortion

is smaller for tests on the means (Tables 15 and 16); it is also smaller when we use

bias-corrected estimates. The clustered standard error estimates appear to have the

largest size distortions. On the whole, we take this to suggest that demonstrate that

our estimator can be used to good effect in order to decide which coefficients should

be modelled as random.

7.6 Lognormal Distribution for β

As explained in section 5.2, our estimating equation is the same whether the dis-

tribution of the random coefficients is normal or not. To illustrate this, we modify

the data-generating process so that the consumer preference parameters βi have a

lognormal distribution:

βi “ β̄iεi

β̄i “ p1, 1.5, 1.5, 0.5, 1q

lnpεiq „ Np´0.5σ2, σ2
q.

We study several cases, with σ “ 0.3, 0.4, 0.5 and ξjt „ Np0, 0.1q. The rest of the

specification is as before. Lognormality induces significant skewness and kurtosis into

the distribution of the random coefficients. The standard 2SLS approach gives us

estimates of the first and second moments. We can also introduce the additional

artificial regressors T of section 6.2, either to control for skewness or to estimate it.

We experimented with both possibilities. Each plot in Tables 21, 22, and 23 shows

the distributions when we use only X and K (“only include 2nd moment”) and when
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we add T (“include third moment”). These three tables report the distributions of

the estimates of the first, second, and third moments of β1, β2, β3, and βp. Table 24

provides the corresponding summary statistics.

For a variety of values for the parameter σ of our lognormal distribution, the

2SLS estimates are just as good as they were in the normal setup. The additional

information in the third moment of the random coefficients does not appreciably

increase the precision in our estimates of the means and variances of the random

coefficients. In fact, for some of the coefficients, including the third-order artificial

regressors T leads to significantly less efficient estimates. This is likely due to the fact

that our procedure has a difficult time estimating the third moment of the random

coefficients, as Table 23 shows.

7.6.1 Bias Correction and Kernel

Our paper suggested two potential improvements to the standard 2SLS regression:

bias correction, and using a kernel regression to estmate the optimal instruments

EpX|Zq and EpK|Zq. We compare both methods, when coefficients are normal

with variances p0, 0.5, 0.5, 0.5, 0.2q and when they are lognormally distributed with

σ “ 0.4 for lnpεiq „ Np´0.5σ2, σ2q. In both cases we took V arpξq “ 0.1.

Tables 25 and 26 plot the distributions of the estimators. They suggest that our

bias-correction does to reduce the bias, both for the means and the variances. This

holds whether the random coefficients are normally or log-normally distributed. Using

kernel regressions to approximate the optimal instruments appears to slightly reduce

both the bias and the variance of some of the estimates.

Concluding Comments

Our FRAC estimation procedure applies directly to the random coefficients demand

models commonly used in empirical IO. For the most part, our Monte Carlo results

confirm the findings from the expansions. The 2SLS approach yields reliable estimates

of the parameters of the model and of economically meaningful quantities such as price

elasticities; and it does so at a very minimal cost. It is “robust” to variations on the

distribution of the random coefficients. In addition, it provides straightforaward tests
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that help in for variable selection, especially as a guide to determine which coefficients

in the demand system should be modeled as random.

Some of our simulation results are unexpected and point to directions for future

research. We hope to report more general analytical results that illuminate these

findings.
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A Proof of Theorem 1

Proof. We start from (2); we drop the market index t and the bold letters. Since we

now denote Xε “ σx ¨ v, we can rewrite (2) in the standard model as

Sj “ Ev
exppXjβ ` σxj ¨ v ` ξjq

1`
řJ
k“1 Sk exppXkβ ` σxk ¨ v ` ξkq

.

Given that

ξj “ log
Sj
S0

´Xjβ ` a1jσ ` a2j
σ2

2
`Opσ3

q,

we get

Sj “ Ev
Sj exp

´

σ pxj ¨ v ` a1jq ` a2j
σ2

2
`Opσ3q

¯

S0 `
řJ
k“1 Sk exp

`

σ pxk ¨ v ` a1kq ` a2k
σ2

2
`Opσ3q

˘

Eliminating Sj gives

1 “ Ev
exp

´

σ
`

x1jv ` a1j
˘

` σ2

2
a2j `Opσ

3q

¯

S0 `
řJ
k“1 Sk exp

`

σ px1kv ` a1kq `
σ2

2
a2k `Opσ3q

˘ . (11)

In this form, Theorem 1.(i) is obvious since only the vectors xk and market shares Sk

enter the system of equations.

Now use the notation eSZ ”
řJ
k“1 SkZk and Ẑj “ Zj ´ eSZ to rewrite (11) as

0 “ Ev

˜

V̂j
1` eSV

¸

(12)

where Vj ” fj ` αj ` fjαj, with

fj ” exppσxj ¨ vq ´ 1 “ σxj ¨ v `
σ2

2
pxj ¨ vq

2
`OP pσ

3
q

and

αj “ exppa1jσ ` a2jσ
2
{2`Opσ3

qq ´ 1 “ a1jσ ` pa2j ` a
2
1jq
σ2

2
`Opσ3

q.

We note that fj is OP pσq and αj is Opσq, so that Vj is also OP pσq.

Now expanding (12) gives

Opσ3
q “ EvV̂j ´ Ev

´

V̂jpeSV q
¯

(13)

“ Evf̂j ` α̂j (14)

` {αjEvfj ´ peSαqEvf̂j ´ α̂jEvpeSfq ´ α̂jpeSαq ´ Evf̂jpeSfq. (15)
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Only the terms on line (14) can be of order 1 in σ. But using Evv “ 0 and Evpxj ¨

vqpxk ¨ vq “ xj ¨xk gives us Evfj “
σ2

2
‖xj‖2`Opσ3q. Therefore the only term of order

1 is in α̂j “ pa1jσ`Opσ
2q, and we must have pa1j “ 0. We note that the “hat” operator

is linear and invertible:

Lemma 1. If Ẑj “ Ŵj for all j and S0 ă 1, then Zj “ Wj.

Proof. Zj ´ eSZ “ Wj ´ eSW implies Zj “ Wj `λ, where λ “ eSZ ´ eSW . But then

eSZ “ eSW ` eSλ “ p1´ S0qλ, so that λ “ p1´ S0qλ “ 0.

Applying the lemma gives a1j “ 0. As a consequence, αj “ a2jσ
2{2`Opσ3q; and

all terms on line (15) except the last one are of order at least 3 in σ. Since

Evf̂j ` α̂j “
σ2

2
z‖xj‖2 `

σ2

2
pa2j `Opσ

3
q

and

Evf̂jpeSfq “ σ2Evpx̂j ¨ vqppeSxq ¨ vq `Opσ
3
q “ σ2

px̂j ¨ peSxqq `Opσ
3
q

applying the lemma again gives us p‖xj‖2 ` a2jq{2´ xj ¨ peSxq “ 0.

Finally, if the distribution of v is symmetric around 0 changing σ to ´σ in (2)

must leave all market shares unchanged; therefore all expansions can only contain

even-degree terms in σ.

B Detailed Examination of the Mixed Logit

The standard binary model is simply a mixed logit. Applying Theorem 1 with J “ 1

and using S0 ` S1 “ 1, we obtain

a21 “ p2S1 ´ 1q‖x1‖2

and K1 “ p1{2´ S1qX1X
1
1. Therefore

ξ1 “ log
S1

S0

´X1β ´

ˆ

1

2
´ S1

˙

Tr ΣX1X
1
1 `Opσ

k
q

where k “ 3 in general, and k “ 4 if the distribution of ε is symmetric around zero.
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The presence of the term p1{2´ S1q in this formula is a consequence of the sym-

metry of the distribution of v around 0 and of the logistic distribution around 0.

Taken together, this implies that market shares around one half vary very little with

σ. The random variation in tastes can only be identified from nonlinearities in the

market shares; but since the cdf of the logistic has an inflexion point when its value

is one half, market shares are essentially linear around that point. It is easy to check

that this is specific to the one-product case; when J ą 1, the mixed multinomial logit

does not face any such difficulty.

Let us focus for simplicity on the case when random variation in preferences is

uncorrelated across covariates: Σ is the nXˆnX diagonal matrix with elements Σmm.

Then given instruments such that E pξ1|Zq “ 0, the approximate model is

E

˜

log
S1

S0

´X1β ´

ˆ

1

2
´ S1

˙ nX
ÿ

m“1

ΣmmX
2
1m

ˇ

ˇ

ˇ
Z

¸

“ 0. (16)

B.1 Identification

The form of the estimating equation holds interesting insights about identification.

First note that the optimal instruments are

fpZq “ E pX1|Zq , E

ˆˆ

1

2
´ S1

˙

X2
1 |Z

˙

where X2
1 is the vector with components X2

1m. The asymptotic variance-covariance

matrix of our estimator θ̂ is given by the usual formula:

T Vasθ̂ » J
´1V pξ1fpZqqJ

´1,

where

J “ E

ˆˆ

X1,

ˆ

1

2
´ S1

˙

X2
1

˙

fpZq

˙

.

The identifying power of the (approximate) model relies on the full-rank of the ma-

trix J . Suppose for instance that after projecting (via nonparametric regression)

the regressors on the instruments, the residual variation in the artificial regressor

p1{2 ´ S1qX
2
1m is very well explained in a linear regression on the other covariates.

Then the estimate of Σmm will be very imprecise, and random taste variation on the

characteristic X1m is probably best left out of the model. Of course, this can be

diagnosed immediately by looking at the precision of the 2SLS estimates.
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B.2 Higher-order terms

It is easy to program a symbolic algebra system to compute higher-order terms alj for

l ą 2. We show here how to compute the fourth-order term in the mixed logit model.

This will also illustrate the “robustness” of our method to distributional assumptions.

Assume that ε has a distribution that is symmetric around zero, and that its com-

ponents are independent of each other with variances Σmm and fourth-order moments

km. As before, we assume that Σmm is of order σ2 and km is of order σ4. We also

assume that we can take expansions to order L ě 5.

Since the distribution is symmetric, we already know that

ξ1 “ log
S1

S0

´X1β `
a21
2
σ2
`
a41
24
σ4
`Opσ6

q.

Define Lptq “ 1{p1 ` expp´tqq the cdf of the logistic distribution. Note that L1 “

Lp1´ Lq, and that higher-order derivatives follow easily:

L2 “ Lp1´ Lqp1´ 2Lq

Lp3q “ Lp1´ Lqp1´ 6L` 6L2
q

Lp4q “ Lp1´ Lqp1´ 2Lqp1´ 12L` 12L2
q.

Since the market share of good 1 is

S1 “ EεL pX1pβ ` εq ` ξ1q

we obtain, much as in Appendix A,

S1 “ EεL

ˆ

log
S1

S0

`X1ε` α2σ
2
` α4σ

4
`Opσ6

q

˙

where we defined αl “ al1{l! for l “ 2, 4.

Let a 0 subscript indicate that we take the value and derivatives of Lptq at t “

logpS1{S0q. Defining upεq “X1ε` α2σ
2 ` α4σ

4 `Opσ6q and expanding gives

L

ˆ

log
S1

S0

` u

˙

“ L0 ` L
1
0u`

L20
2
u2 `

L
p3q
0

6
u3 `

L
p4q
0

24
u4 `Opu5q.
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Incorporating L0 “ S1, L
1
0 “ S1p1´ S1q, up to L

p4q
0 gives

S1 “ Eε

ˆ

S1 ` S1p1´ S1qupεq ` S1p1´ S1qp1´ 2S1q
upεq2

2

` S1p1´ S1qp1´ 6S1 ` 6S2
1q
upεq3

6
` S1p1´ S1qp1´ 2S1qp1´ 12S1 ` 12S2

1q
upεq4

24
`Opupεq5q

˙

;

dividing by S1p1´ S1q yields

Eεu`p1´2S1qEεu
2
{2`p1´6S1`6S2

1qEεu
3
{6`p1´2S1qp1´12S1`12S2

1qEεu
4
{24 “ EεOpu

5
q.

(17)

Finally, up to order 6 in σ:

Eεu “ α2σ
2
` α4σ

4

Eεu
2
“ σ2Eε pX1εq

2
` α2

2σ
4
“

nX
ÿ

m“1

Σmmx
2
1m ` α

2
2σ

4

Eεu
3
“ 3α2σ

4Eε pX1εq
2
“ 3α2

nX
ÿ

m“1

Σmmx
2
1m

Eεu
4
“ σ4Eε pX1εq

4
“

nX
ÿ

m“1

kmx
4
1m.

Regrouping terms in σ2 in (17) confirms that

α2σ
2
“ pS1 ´ 1{2q

nX
ÿ

m“1

Σmmx
2
1m,

which we knew from Theorem 1. The terms in σ4 give us

α4σ
4
“ α2

2σ
4
pS1 ´ 1{2q ´ α2σ

2
p1´ 6S1 ` 6S2

1q

nX
ÿ

m“1

Σmmx
2
1m{2

´ p1´ 2S1qp1´ 12S1 ` 12S2
1q

nX
ÿ

m“1

kmx
4
1m{24.

This simplifies to

α4σ
4
“

ˆ

1

2
´ S1

˙

ˆ

¨

˝

ˆ

1

4
´ 2S1p1´ S1q

˙

˜

nX
ÿ

m“1

Σmmx
2
1m

¸2

´

ˆ

1

12
´ S1p1´ S1q

˙ nX
ÿ

m“1

kmx
4
1m

˛

‚.
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This formula may not seem especially enlightening, but it shows several impor-

tant points. First, terms of higher orders can be computed without much difficulty.

Second, each additional term adds information on lower-order moments (here σ2
m), as

well as on the moments of higher order (here km). The model remains linear in the

highest order moments; here for km we have new artificial regressors
ˆ

1

2
´ S1

˙ˆ

1

12
´ S1p1´ S1q

˙

x41m.

On the other hand, the higher-order expansions introduce nonlinear functions of the

lower-order moments, here represented by

ˆ

1

2
´ S1

˙ˆ

1

4
´ 2S1p1´ S1q

˙

˜

nX
ÿ

m“1

Σmmx
2
1m

¸2

,

and the model is not linear in these parameters any more. This could be dealt with

in several ways: by nonlinear optimization (of a very simple kind), or by iterative

methods. In any case, we will see in our simulations that stopping with the second-

order expansion often gives results that are already very reliable.

Finally, while the estimator based on the second-order expansion is “robust” to

any (well-behaved) distribution, the estimator based on this fourth-order expansion

also assumes symmetry: a skewed distribution would generate terms in σ3. Making

more assumptions changes the form of the artificial regressors. To illustrate this,

consider a mixed logit with one covariate only (nX “ 1). The expansion to order 8

can be written

ξ1 “ log
S1

S0

´ βX1 `

4
ÿ

k“1

tkpS1q
`

Σ11X
2
1

˘k
`Opσ10

q.

Assume that ε has normal kurtosis. Then k1 “ 3Σ2
11 and we find the simpler formula

t2 “ α4 “

ˆ

1

2
´ S1

˙

S1p1´ S1q.

Specializing further, Figure 1 plots the terms tkpSq for k “ 1, 2, 3, 4 as the market

share goes from zero to one for the particular case of a Gaussian ε. The visual

impression is clear: the coefficients damp quickly. Beyond the first term (which

corresponds to our 2SLS method), the coefficients are always smaller than 0.05 in
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Figure 1: Coefficients t1,2,3,4pSq

absolute value. Of course, the approximation error also depends on the values taken

by the covariates.

To be more precise, if the components of ε are independently distributed and have

third moments ps1, . . . , snX
q, then it is easy to see that an additional term

ˆ

S1p1´ S1q ´
1

6

˙ nX
ÿ

m“1

smX
3
1m

enters the expansion. To test for skewness on covariate m, one could simply test for

the significance of the regressor
`

S1p1´ S1q ´
1
6

˘
řnX

m“1 smX
3
1m.

B.3 Beyond Logit and Gaussian

The properties of the logistic function may seem to have been more central to our

calculations; but in fact they are quite ancillary. Suppose that ui1t ´ ui0t has some

distribution with cdf Q instead of L. While the derivatives of Q may not obey the

nice polynomial formulæ we used for L, it is still true that if Q is invertible and

smooth then we can define functions Fk by

Qpkqptq “ FkpQptqq.
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This is all we need to carry out the expansions. One can show for instance that the

factor pS1 ´
1
2
q that appears in (16) just needs to be replaced with

´
F2pS1q

2F1pS1q
.

Take for instance a mixed binary model with such a general distribution for u1 ´

u0, and a distribution of the random coefficient on the single covariate X1 that has

successive moments 0,Σ, µ3, µ4. Then it is easy to derive the following fourth-order

expansion, which could perhaps serve as the basis for a semiparametric estimator:

ξ2 “ log
S1

S0

´ βX1 ´
F2pS1q

F1pS1q
X2

1Σ

´
F3pS1q

F1pS1q
X3

1µ3

`
F2pS1q

F1pS1q

˜

3
F3pS1q

F1pS1q
´

ˆ

F2pS1q

F1pS1q

˙2
¸

X4
1Σ2

´
F4pS1q

F1pS1q
µ4X

4
1 `Opσ

5
q.

This can be extended in the obvious way to make v heteroskedastic (just replace Σ

with Epε2|X1q and µm with Epεm|X1q in the above formula.)

C The Two-level Nested Logit

In the unmixed model (σ “ 0) the mean utility of alternative j is Uj “ Ik`λk logSj|Nk

if j P Nk, with Ik ” logpSNk
{S0q and Sj|Nk

” Sj{SNk
.This gives

ξ0j “ ´Xjβ ` logpSNk
{S0q ` λk logSj|Nk

.

We write (imposing a1j “ 0 from the start as this is a general property of models

with Ev “ 0)

Ujpvq “ logpSNk
{S0q ` λk logSj|Nk

` σxj ¨ v `
σ2

2
a2j

and

exppIkpvq{λkq “
ÿ

jPNk

exppUjpvq{λkq “ pSNk
{S0q

1{λk f̄kpvq
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where we denote X̄k “
ř

jPNk
Sj|Nk

Xj and

fjpvq “ exp

ˆ

σ

λk

´

xj ¨ v ` σ
a2j
2

¯

˙

» 1`
σ

λk
pxj ¨ vq `

σ2

2λ2k

`

λka2j ` pxj ¨ vq
2
˘

so that

f̄kpvq » 1`
σ

λk
sxk ¨ v `

σ2

2λ2k

`

λkā2k ` Ğpx ¨ vq2k
˘

.

Now using

Sj “ Ev expppUjpvq ´ Ikpvqq{λkq
exppIkpvqq

1`
řK
l“1 exppIlpvqq

we get

1 “ Ev

˜

fjpvq

f̄kpvq

`

f̄kpvq
˘λk

S0 `
řK
l“1 SNl

`

f̄lpvq
˘λl

¸

.

We note that

1` aσ ` bσ2

1` cσ ` dσ2
“ 1` pa´ cqσ ` pb´ d´ cpa´ cqqσ2

`Opσ3
q. (18)

Denote Âj|k “ Aj ´ Āk. Applying (18) gives

fjpvq

f̄kpvq
» 1`

σ

λk
Cjpvq `

σ2

2λ2k
Djpvq.

with

Cjpvq “ x̂j|k ¨ v

and

Djpvq “ λk pa2j|k `
{px ¨ vq2j|k ´ 2px̄k ¨ vqpx̂j|k ¨ vq.

Moreover,

`

f̄lpvq
˘λl
» 1` σx̄l ¨ v `

σ2

2

˜

λl ´ 1

λl
px̄l ¨ vq

2
` ā2l `

Ğpx ¨ vq2l
λl

¸

and

`

f̄kpvq
˘λk

S0 `
řK
l“1 SNl

`

f̄lpvq
˘λl

»

1` σx̄k ¨ v `
σ2

2

´

ā2k `
λk´1
λk
px̄k ¨ vq

2 `
Ğpx¨vq2k
λk

¯

1` σeSx ¨ v `
σ2

2

´

eSa2 `
řK
l“1 SNl

´

λl´1
λl
px̄l ¨ vq2 `

Ğpx¨vq2l
λl

¯¯

where as usual eST “
řJ
j“1 SjTj “

řK
k“1 SNk

T̄k.
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Then, using (18) again,

`

f̄kpvq
˘λk

S0 `
řK
l“1 SNl

`

f̄lpvq
˘λl

» 1` σEkpvq `
σ2

2
Fkpvq

with

Ekpvq “ px̄k ´ eSxq ¨ v

and

Fkpvq “ ā2k ´ eSa2

`
λk ´ 1

λk
px̄k ¨ vq

2
´

K
ÿ

l“1

SNl

λl ´ 1

λl
px̄l ¨ vq

2

`
Ğpx ¨ vq2k
λk

´

K
ÿ

l“1

SNl

Ğpx ¨ vq2l
λl

´ 2peSx ¨ vqppx̄k ´ eSxq ¨ vq.

This allows us to write

1 » Ev

ˆ

1`
σ

λk
Cj `

σ2

2λ2k
Dj

˙ˆ

1` σEk `
σ2

2
Fk

˙

» Ev

ˆ

1` σ

ˆ

Cj
λk
` Ek

˙

`
σ2

2λ2k

`

Dj ` λ
2
kFk ` 2λkCjEk

˘

˙

.

We have EvCj “ EvEk “ 0; also,

EDj “ λk pa2j|k ` ‖xj‖2 ´Ę‖x‖2k ´ 2x̄k ¨ x̂j|k

EFk “ ā2k ´ eSa2

`
λk ´ 1

λk
‖x̄k‖2 ´

K
ÿ

l“1

SNl

λl ´ 1

λl
‖x̄l‖2

`
Ę‖x‖2k
λk

´

K
ÿ

l“1

SNl

Ę‖x‖2l
λl

´ 2peSxq ¨ px̄k ´ eSxq

EpCjEkq “ x̂j|k ¨ px̄k ´ eSxq.

Writing EpDj ` λ
2
kFk ` 2λkCjEkq “ 0 gives us an equation of the form

λkpa2j ´ ā2kq ` λ
2
kpā2k ´ eSa2q “ λ2kM ` νk ` µj
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where

M “

K
ÿ

l“1

SNl

λl ´ 1

λl
‖x̄l‖2 `

K
ÿ

l“1

SNl

Ę‖x‖2l
λl

´ 2‖eSx‖2

νk “ Ę‖x‖2k ´ 2‖x̄k‖2 ´ λkpλk ´ 1q‖x̄k‖2 ´ λkĘ‖x‖2k ` 2λ2keSx ¨ x̄k ` 2λk‖x̄k‖2 ´ 2λkx̄k ¨ eSx

“ p1´ λkq
`

Ę‖x‖2k ´ p2´ λkq‖x̄k‖
2
´ 2λkx̄k ¨ eSx

˘

(19)

µj “ ´‖xj‖2 ` 2xj ¨ x̄k ´ 2λkxj ¨ px̄k ´ eSxq

“ xj ¨ p2λkeSx´ xj ` 2p1´ λkqx̄kq . (20)

It is easy to aggregate from a2j “ p1´ λkqā2k ` λkeSa2 ` λkM ` pνk ` µjq{λk to

ā2k “ eSa2 `M `
νk ` µ̄k
λ2k

and then to

S0eSa2 “ p1´ S0qM `

K
ÿ

k“1

SNk

νk ` µ̄k
λ2k

,

which gives

a2j “ eSa2 `M ` p1´ λkq
νk ` µ̄k
λ2k

`
νk ` µj
λk

“
M

S0

`
1

S0

K
ÿ

l“1

SNl

νl ` µ̄l
λ2l

` p1´ λkq
νk ` µ̄k
λ2k

`
νk ` µj
λk

“
M

S0

`
1

S0

K
ÿ

l“1

SNl

νl ` µ̄l
λ2l

`
νk ` p1´ λkqµ̄k

λ2k
`
µj
λk
.

Finally, using equations (19) and (20) we aggregate

µ̄k “ 2λkx̄k ¨ eSx` 2p1´ λkq‖x̄k‖2 ´Ę‖x‖2k,

which gives

νk ` µ̄k “ 2λ2kx̄k ¨ eSx` λkp1´ λkq‖x̄k‖2 ´ λkĘ‖x‖2k
and

νk ` p1´ λkqµ̄k “ ´λkp1´ λkq‖x̄k‖2.
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Putting everything together, we get

a2j “
M

S0

`
1

S0

K
ÿ

l“1

SNl

νl ` µ̄l
λ2l

`
νk ` p1´ λkqµ̄k

λ2k
`
µj
λk

“
1

S0

˜

K
ÿ

l“1

SNl

λl ´ 1

λl
‖x̄l‖2 `

K
ÿ

l“1

SNl

Ę‖x‖2l
λl

´ 2‖eSx‖2
¸

`
2

S0

‖eSx‖2 `
1

S0

K
ÿ

l“1

SNl

´Ę‖x‖2l ` p1´ λlq‖x̄l‖2

λl

“ xj ¨

ˆ

2eSx´
xj
λk
` 2

1´ λk
λk

x̄k

˙

´
1´ λk
λk
‖x̄k‖2.

D Bias Correction Formula

Remember from section 6.3.2 that

θ0 » θ2 ´

ˆ

E
Bf8
Bθ
pθ2;λ0q

˙´1

f8pθ2;λ0q. (21)

The term in the inverse is easily proxied:

E
Bf8
Bθ
pθ2;λ0q » E

Bf2
Bθ
pθ2q “ E

ˆ

Bξ2
Bθ
pθ2q

˙1

V V 1Bξ2
Bθ
pθ2q,

since ξ2 is linear in θ. Note that this is EX 1X , where

X ” V 1Bξ2
Bθ
pθ2q “ ´V

1
pX,Kq

and row j “ 1, . . . , J of pX,Kq lists the covariates and artificial regressors for this

product. It follows that

E
Bf8
Bθ
pθ2;λ0q »

˜

E pX 1V V 1Xq E pX 1V V 1Kq

E pK 1V V 1Xq E pK 1V V 1Kq

¸

.

To the second-order in e2, Ef8pθ2;λ0q equals

E

ˆ

Bξ2
Bθ
pθ2q

1V V 1ê2pθ2;λ0q

˙

` E

ˆ

Bê2
Bθ
pθ2;λ0q

1V V 1ξ2pθ2q

˙

. (22)
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The first term in (22) is simply E pX 1V 1ê2q. Going back to (21), we get

θ0 » θ2 ´

˜

E pX 1V V 1Xq E pX 1V V 1Kq

E pK 1V V 1Xq E pK 1V V 1Kq

¸´1
ˆ

E pX 1V 1ê2q ` E

ˆ

Bê2
Bθ

1

V V 1ξ2

˙˙

.

Finally, using Theorem 1(i), we know that Bê2
Bβ
“ 0. Therefore

E pX 1V 1ê2q ` E

ˆ

Bê2
Bθ

1

V V 1ξ2

˙

“

˜

´E pX 1V V 1ê2q

´E pK 1V V 1ê2q ` E
´

Bê2
BΣ

1
V V 1ξ2

¯

¸

.

E Proof of Theorem 3

We drop the bold letters in this proof to alleviate the notation, and without loss of

generality we normalize B “ 1.

Remember thatGpy, F py, β, σq, β, σq “ 0, so thatGpy, F py, β, 0q, β, 0q “ 0. Given (10),

this gives G˚py, A˚py, F py, β, 0q ´ f1pyqβ, 0q “ 0 for all β. This can only hold if

F py, β, 0q ´ f1pyqβ does not depend on β, which implies condition C2. Denoting

f0pyq “ F py, β, 0q ´ f1pyqβ, we obtain

G˚py, A˚py, f0pyq, 0qq “ 0.

Now writing G˚py, EvA
˚py, F py, β, σq´f1pyqβ, σvqq “ 0 as an identity in σ and taking

derivatives with respect to σ, we get

G˚2Ev pA
˚
2Fσ ` A

˚
3vq “ 0

G˚22rEv pA
˚
2Fσ ` A

˚
3vqsrEv pA

˚
2Fσ ` A

˚
3vqs

`G˚2Ev pA
˚
2Fσσ ` A

˚
22rFσ, Fσs ` 2A˚23rFσ, vs ` A

˚
33rv, vsq “ 0.

Fortunately, this simplifies greatly at σ “ 0. The first equation gives

G˚2Ev pA
˚
2Fσpy, β, 0q ` A

˚
3vq “ 0,

where the derivatives A˚2 and A˚3 do not depend on v since σ “ 0. It follows that

G˚2A
˚
2Fσpy, β0, 0q “ 0 since Ev “ 0. Given our invertibility assumption, condition C1

also holds. Using the second equation at σ “ 0, and given that Fσpy, β0, 0q “ 0, we

get

G˚2Ev pA
˚
22rFσ, Fσs ` 2A˚23rFσ, vsq “ 0
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so that

G˚2 pA
˚
2Fσσ ` A

˚
33q “ 0.

Given that G˚2 is invertible, this gives (reintroducing the arguments)

A˚2py, f0pyq, 0qFσσpy, β, 0q ` A
˚
33py, f0pyq, 0q “ 0.

Therefore Fσσpy, β, 0q is independent of β and condition C3 holds. Noting that

f2pyq “ ´Fσσpy, β, 0q completes the proof.
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Table 1: Distribution of the Estimates of β0

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 2: Distribution of the Estimates of β̄x1

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 3: Distribution of the Estimates of Varpβx1 q

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

57



Table 4: Distribution of the Estimates of β̄x2

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 5: Distribution of the Estimates of Varpβx2 q

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

59



Table 6: Distribution of the Estimates of β̄x3

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 7: Distribution of the Estimates of Varpβx3 q

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 8: Distribution of the Estimates of β̄p

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 9: Distribution of the Estimates of Varpβpq

Var(ξ)=0.1 Var(ξ)=0.1 Var(ξ)=0.1
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=0.5 Var(ξ)=0.5 Var(ξ)=0.5
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)

Var(ξ)=1.0 Var(ξ)=1.0 Var(ξ)=1.0
Var(β)=(0,0.1,0.1,0.1,0.05) Var(β)=(0,0.2,0.2,0.2,0.1) Var(β)=(0,0.5,0.5,0.5,0.2)
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Table 10: Pseudo True Value: Increasing-number-of-markets Approach

Parameter Scenarios
True Varpβq : p0, 0.1, 0.1, 0.1, 0.05q p0, 0.2, 0.2, 0.2, 0.1q p0, 0.5, 0.5, 0.5, 0.2q
True Varpξq : 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

β0 “ ´1
-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.02 -1.03 -1.03

(.0043) (.0050) (.0058) (.011) (.012) (.013) (.032) (.035) (.038)

β̄x1 “ 1.5
1.51 1.51 1.51 1.53 1.53 1.53 1.56 1.57 1.57

(.022) (.023) (.024) (.050) (.050) (.050) (.13) (.13) (.13)

β̄x2 “ 1.5
1.51 1.51 1.51 1.52 1.52 1.52 1.55 1.56 1.56

(.023) (.024) (.025) (.048) (.049) (.049) (.12) (.12) (.12)

β̄x3 q “ 0.5
0.487 0.487 0.487 0.465 0.465 0.464 0.403 0.400 0.398
(.022) (.022) (.022) (.048) (.047) (.047) (.12) (.12) (.11)

β̄p “ ´1
-0.999 -0.999 -0.999 -0.990 -0.990 -0.990 -0.954 -0.955 -0.956
(.0086) (.0088) (.0090) (.0184) (.0186) (.0188) (.043) (.044) (.045)

Varpβx1 q
0.0857 0.0856 0.0856 0.152 0.152 0.152 0.288 0.290 0.291
(.011) (.011) (.011) (.028) (.027) (.027) (.078) (.076) (.075)

Varpβx2 q
0.0863 0.0865 0.0866 0.152 0.152 0.153 0.284 0.286 0.288
(.0086) (.0086) (.0087) (.0205) (.020) (.020) (.059) (.057) (.056)

Varpβx3 q
0.0952 0.0949 0.0946 0.182 0.181 0.181 0.400 0.399 0.397
(.0097) (.010) (.010) (.024) (.023) (.023) (.063) (.063) (.062)

Varpβpq
0.0480 0.0479 0.0478 0.0888 0.088 0.088 0.148 0.147 0.147
(.0056) (.0057) (.0059) (.013) (.013) (.014) (.031) (.032) (.033)
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Table 11: Pseudo True Value: Moment-based Approach

Parameter Scenarios
True Varpβq : p0, 0.1, 0.1, 0.1, 0.05q p0, 0.2, 0.2, 0.2, 0.1q p0, 0.5, 0.5, 0.5, 0.2q
True Varpξq : 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1
β0 “ ´1 -1.01 -1.01 -1.01 -1.04 -1.04 -1.04 -1.11 -1.11 -1.12
β̄x1 “ 1.5 1.49 1.49 1.49 1.48 1.48 1.48 1.43 1.43 1.43
β̄x2 “ 1.5 1.49 1.49 1.49 1.48 1.48 1.48 1.43 1.43 1.43
β̄x3 “ 0.5 0.496 0.496 0.496 0.486 0.486 0.486 0.455 0.455 0.455
β̄p “ ´1 -0.989 -0.988 -0.988 -0.958 -0.957 -0.955 -0.873 -0.869 -0.864
Varpβx1 q 0.0854 0.0855 0.0855 0.149 0.149 0.149 0.275 0.275 0.276
Varpβx2 q 0.0855 0.0855 0.0856 0.149 0.149 0.149 0.273 0.274 0.274
Varpβx3 q 0.0938 0.0938 0.0937 0.176 0.175 0.175 0.369 0.368 0.366
Varpβpq 0.0421 0.0421 0.0419 0.0685 0.0681 0.0676 0.0920 0.0906 0.0888
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Table 12: Distribution of the Difference between True and Estimated Elasticity

Product 5 Product 10 Product 15

Product 20 Product 25 Legend
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Table 13: Distribution of the Estimates of the Means — Different β̄p

β̄p “ ´1 β̄p “ ´2 β̄p “ ´3
Distribution of β0 Distribution of β0 Distribution of β0

Distribution of β̄x1 Distribution of β̄x1 Distribution of β̄x1

Distribution of β̄x2 Distribution of β̄x2 Distribution of β̄x2

Distribution of β̄x3 Distribution of β̄x3 Distribution of β̄x3

Distribution of β̄p Distribution of β̄p Distribution of β̄p
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Table 14: Distribution of the Estimates of the Variances — Different β̄p

β̄p “ ´1 β̄p “ ´2 β̄p “ ´3
Distribution of Varpβx1 q Distribution of Varpβx1 q Distribution of Varpβx1 q

Distribution of Varpβx2 q Distribution of Varpβx2 q Distribution of Varpβx2 q

Distribution of Varpβx3 q Distribution of Varpβx3 q Distribution of Varpβx3 q

Distribution of Varpβpq Distribution of Varpβpq Distribution of Varpβpq
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Table 15: Testing for Zero Means — Standard 2SLS

Significance level 1% 5% 10%
2SLS with heteroskedasticity-robust standard error 0.904 0.793 0.711
GLS estimator and standard errors 0.889 0.765 0.678
2SLS with clustered standard error 0.904 0.780 0.702
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Table 16: Testing for Zero Means — Bias Corrected 2SLS

Significance level 1% 5% 10%
2SLS with heteroskedasticity-robust standard error 0.915 0.819 0.725
GLS estimator and standard errors 0.882 0.767 0.669
2SLS with clustered standard error 0.906 0.809 0.731

70



Table 17: Testing for Zero Variances — Standard 2SLS

Significance level 1% 5% 10%
2SLS with heteroskedasticity-robust standard error 0.746 0.625 0.556
GLS estimator and standard errors 0.738 0.618 0.542
2SLS with clustered standard error 0.740 0.617 0.547
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Table 18: Testing for Zero Variances — Bias Corrected 2SLS

Significance level 1% 5% 10%
2SLS with heteroskedasticity-robust standard error 0.792 0.688 0.626
GLS estimator and standard errors 0.773 0.680 0.613
2SLS with clustered standard error 0.775 0.679 0.620
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Table 19: Joint Test of Zero Means and Variances — Standard 2SLS

Significance level 1% 5% 10%
2SLS with heteroskedasticity-robust standard error 0.731 0.578 0.507
GLS estimator and standard errors 0.699 0.545 0.483
2SLS with clustered standard error 0.702 0.565 0.498
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Table 20: Joint Test of Zero Means and Variances — Bias-Corrected 2SLS

Significant level 1% 5% 10%
2SLS with heteroskedasticity-robust standard error 0.756 0.642 0.568
GLS estimator and standard errors 0.738 0.631 0.548
2SLS with clustered standard error 0.749 0.617 0.546
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Table 21: Distribution of the Estimates of the Means (Lognormal Case)

σ “ 0.3 σ “ 0.4 σ “ 0.5
Distribution of β0 Distribution of β0 Distribution of β0

Distribution of β̄x1 Distribution of β̄x1 Distribution of β̄x1

Distribution of β̄x2 Distribution of β̄x2 Distribution of β̄x2

Distribution of β̄x3 Distribution of β̄x3 Distribution of β̄x3

Distribution of β̄p Distribution of β̄p Distribution of β̄p
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Table 22: Distribution of the Estimates of the Variances (Lognormal Case)

σ “ 0.3 σ “ 0.4 σ “ 0.5
Distribution of Varpβx1 q Distribution of Varpβ1q Distribution of Varpβ1q

Distribution of Varpβx2 q Distribution of Varpβ2q Distribution of Varpβ2q

Distribution of Varpβx3 q Distribution of Varpβ3q Distribution of Varpβ3q

Distribution of Varpβpq Distribution of Varpβpq Distribution of Varpβpq
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Table 23: Distribution of the Estimates of the Third-order Moments (Lognormal
Case)

σ “ 0.3 σ “ 0.4 σ “ 0.5
Distribution of βx1 3rdM Distribution of βx1 3rdM Distribution of βx1 3rdM

Distribution of βx2 3rdM Distribution of βx2 3rdM Distribution of βx2 3rdM

Distribution of βx3 3rdM Distribution of βx3 3rdM Distribution of βx3 3rdM

Distribution of βp 3rdM Distribution of βp 3rdM Distribution of βp 3rdM
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Table 24: Summary Statistics for the Lognormal Case

Parameter Scenarios
σ σ “ 0.3 σ “ 0.4 σ “ 0.5

Moments included: 2 3 2 3 2 3

β0 “ ´1
-1.03 -1.01 -1.06 -1.03 -1.10 -1.06

(0.013) (0.080) (0.021) (0.092) (0.031) (0.107)

β̄x1 “ 1.5
1.49 1.49 1.47 1.48 1.44 1.45

(0.032) (0.057) (0.056) (0.072) (0.086) (0.096)

β̄x2 “ 1.5
1.49 1.49 1.47 1.47 1.44 1.45

(0.033) (0.054) (0.057) (0.070) (0.088) (0.093)

β̄x3 “ 0.5
0.499 0.502 0.497 0.502 0.496 0.501

(0.020) (0.039) (0.036) (0.047) (0.056) (0.060)

β̄p “ ´1
-0.976 -0.991 -0.946 -0.972 -0.906 -0.940
(0.014) (0.076) (0.020) (0.084) (0.027) (0.095)

Varpβx1 q “ 0.212{0.390{0.639
0.153 0.159 0.229 0.241 0.295 0.316

(0.020) (0.030) (0.039) (0.048) (0.062) (0.072)

Varpβx2 q “ 0.212{0.390{0.639
0.153 0.160 0.228 0.244 0.294 0.319

(0.020) (0.028) (0.038) (0.045) (0.060) (0.067)

Varpβx3 q “ 0.04{0.043{0.071
0.025 0.030 0.045 0.036 0.068 0.056

(0.014) (0.033) (0.025) (0.041) (0.038) (0.059)

Varpβpq “ 0.094{0.174{0.284
0.0579 0.077 0.081 0.115 0.099 0.145

(0.007 ) (0.095) (0.011) (0.11) (0.016) (0.12)

3rdMpβx1 q “ 0.093{0.322{0.894
0.044 0.096 0.160

(0.067) (0.091) (0.135)

3rdMpβx2 q “ 0.093{0.322{0.894
0.043 0.097 0.161

(0.082) (0.101) (0.130)

3rdMpβx3 q “ 0.003{0.012{0.033
-0.0073 -0.012 -0.015
(0.070) (0.084) (0.120)

3rdMpβpq “ ´0.027{ ´ 0.096{ ´ 0.265
-0.0095 -0.018 -0.024
(0.050) (0.058) (0.066)
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Table 25: Distribution of Three Estimates of the Means — Normal and Lognormal

Normal Lognormal
Distribution of β0 Distribution of β0

Distribution of β̄x1 Distribution of β̄x1

Distribution of β̄x2 Distribution of β̄x2

Distribution of β̄x3 Distribution of β̄x3

Distribution of β̄p Distribution of β̄p
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Table 26: Distribution of Three Estimates of the Variances — Normal and Lognormal

Normal Lognormal
Distribution of Varpβx1 q Distribution of Varpβx1 q

Distribution of Varpβx2 q Distribution of Varpβx2 q

Distribution of Varpβx3 q Distribution of Varpβx3 q

Distribution of Varpβpq Distribution of Varpβpq
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