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COUNTERFACTUAL ANALYSIS IN R: A VIGNETTE

MINGLI CHEN, VICTOR CHERNOZHUKOV, IVÁN FERNÁNDEZ-VAL, AND BLAISE MELLY

Abstract. The R package Counterfactual implements the estimation and inference methods

of Chernozhukov et al. (2013) for counterfactual analysis. The counterfactual distributions con-

sidered are the result of changing either the marginal distribution of covariates related to the

outcome variable of interest, or the conditional distribution of the outcome given the covariates.

They can be applied to estimate quantile treatment effects and wage decompositions. This vi-

gnette serves as an introduction to the package and displays basic functionality of the commands

contained within.

1. Introduction

Using econometric terminology, we can often think of a counterfactual distribution as the

result of a change in either the distribution of a set of covariates X that determine the outcome

variable of interest Y , or the relationship of the covariates with the outcomes, that is, a change

in the conditional distribution of Y given X. Counterfactual analysis consists of evaluating

the effects of such changes. The R package Counterfactual implements the methods of Cher-

nozhukov et al. (2013) for counterfactual analysis. It contains commands to estimate and make

inference on quantile effects constructed from counterfactual distributions. The counterfactual

distributions are estimated using regression methods such as classical, duration, quantile and

distribution regressions. The inference on the quantile effect function can be pointwise at a

specific quantile index or uniform over a range of specified quantile indexes.

We start by giving a simple example of counterfatual analysis. Suppose we would like to

analyze the wage differences between men and women. Let 0 denote the population of men

and let 1 denote the population of women. The variable Yj denotes wages and Xj denotes

job market-relevant characteristics that affect wages for populations j = 0 and j = 1. The

conditional distribution functions FY0|X0
(y|x) and FY1|X1

(y|x) describe the stochastic assignment

of wages to workers with characteristics x, for men and women, respectively. Let FY 〈0|0〉 and

FY 〈1|1〉 represent the observed distribution function of wages for men and women, and let FY 〈0|1〉

represent the distribution function of wages that would have prevailed for women had they faced

the men’s wage schedule FY0|X0
:

FY 〈0|1〉(y) :=

∫

X1

FY0|X0
(y|x)dFX1

(x).

The latter distribution is called counterfactual, since it does not arise as a distribution from any

observable population. Rather, this distribution is constructed by integrating the conditional
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distribution of wages for men with respect to the distribution of characteristics for women. This

quantity is well defined if X0, the support of men’s characteristics, includes X1, the support of

women’s characteristics, namely X1 ⊂ X0.

Let F← denote the quantile or left-inverse function of the distribution function F . The

difference in the observed wage quantile function between men and women can be decomposed

in the spirit of Oaxaca (1973) and Blinder (1973) as

F←Y 〈1|1〉 − F←Y 〈0|0〉 = [F←Y 〈1|1〉 − F←Y 〈0|1〉] + [F←Y 〈0|1〉 − F←Y 〈0|0〉], (1)

where the first term in brackets is due to differences in the wage structure and the second term

is a composition effect due to differences in characteristics. These counterfactual effects are

well defined econometric parameters and are widely used in empirical analysis, for example,

the first term of the decomposition is a measure of gender wage discrimination. In Section 3.2

we consider an empirical example where 0 denotes the population of nonunion workers and 1

denotes the population of union workers. In this case the the wage structure effect corresponds

to the treatment effect of union or union premium. It is important to note that these effects do

not necessarily have a causal interpretation without additional conditions that are spelled out

in Chernozhukov et al. (2013).

2. The Counterfactual Package

2.1. Getting Started. To get started using the package Counterfactual for the first time,

issue the command

> install.packages("Counterfactual")

into your R browser to install the package in your computer. Once the package has been installed,

you can use the package Counterfactual during any R session by simply issuing the command

> library(Counterfactual)

Now you are ready to use the function counterfactual and data sets contained in Counter-

factual. For general questions about the package you may type

> help(package = "Counterfactual")

to view the package help file, or for more questions about a specific function you can type

help(function-name ). For example, try:

> help(counterfactual)

or simply type

> ?counterfactual

The command counterfactual has the general syntax:

> counterfactual(formula, data, weights, na.action = na.exclude,

+ group, treatment = FALSE, decomposition = FALSE,

+ counterfactual_var, transformation = FALSE,

+ quantiles = c(1:9)/10, method = "qr", discrete = FALSE,

+ trimming = 0.005, nreg = 100, scale_variable,
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+ counterfactual_scale_variable,

+ censoring = 0, right = FALSE, nsteps = 3,

+ firstc = 0.1, secondc = 0.05, noboot = FALSE,

+ weightedboot = FALSE, seed = 8, robust = FALSE,

+ reps = 100, alpha = 0.05, first = 0.1,

+ last = 0.9, cons_test = 0, printdeco = TRUE,

+ sepcore = FALSE, ncore=1)

To describe the different options of the command we need to provide some background on

methods for counterfactual analysis.

2.2. Setting for Counterfactual Analysis. Consider a general setting with two populations

labeled by k ∈ K = {0, 1}. For each population k there is the dx-vector Xk of covariates and the

scalar outcome Yk. The covariate vector is observable in all populations, but the outcome is only

observable in populations j ∈ J ⊆ K. Let FXk
denote the covariate distribution in population

k ∈ K, and FYj |Xj
and QYj |Xj

denote the conditional distribution and quantile functions in

population j ∈ J . We denote the support of Xk by Xk ⊆ R
dx , and the region of interest for

Yj by Yj ⊆ R. The refer to j as the reference population(s) and to k as the counterfactual

population(s).

The reference and counterfactual populations in the wage examples correspond to different

groups such as men and women or nonunion and union workers. We can also generate counter-

factual populations by artificially transforming a reference population. Formally, we can think

of Xk as being created through a known transformation of Xj :

Xk = gk(Xj), where gk : Xj → Xk. (2)

This case covers adding one unit to the first covariate, X1,k = X1,j + 1, holding the rest of the

covariates constant. The resulting quantile effect becomes the unconditional quantile regression,

which measures the effect of a unit change in a given covariate component on the unconditional

quantiles of Y . For example, this type of counterfactual is useful for estimating the treatment

effect of smoking during pregnancy on infant birth weights. Another possible transformation is

a mean preserving redistribution of the first covariate implemented as X1,k = (1− α)E[X1,j ] +

αX1,j . These and more general types of transformation defined in (2) are useful for estimating

the effect of a change in taxation on the marginal distribution of food expenditure or the effect

of cleaning up a local hazardous waste site on the marginal distribution of housing prices (Stock

(1991)). We give an example of this type of transformation in Section 3.1.

The reference and counterfactual populations can be specified to counterfactual in two ways

that accomodate the previous two cases:

(1) If the option group has been specified, then j is the population defined by group=0 and

k is the population defined by group=1. This means that both X and Y are observed

in group=0, but only X needs to be observed in group=1. When both X and Y are ob-

served in group=1, the option treatment=TRUE specifies that the structure or treatment
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effect should be computed, whereas the dafault option treatment=FALSE specifies that

the composition effect should be computed; see the definition of the structure and com-

position effects in the decomposition (1). If in addition to treatment=TRUE the option

decomposition=TRUE is selected, then the entire decompostion (1) is reported including

the composition, structure and total effects. Note that we can reverse the roles of the

populations defined by an indicator variable vargroup by setting either group=vargroup

or group=1-vargroup.

(2) Alternatively, the option counterfactual_var can be used to specify the covariates in

the counterfactual population. In this case, the names on the right handside of formula

contain the variables in Xj and counterfactual_var contains the variables in Xk. The

option transformation=TRUE should be used when Xk is generated as a transformation

of Xj , e.g., equation (2). The list passed to counterfactual_var must contain exactly

the same number of variables as the list of independent variables in formula and the

order of the variables in the list matters.

Counterfactual distribution and quantile functions are formed by combining the conditional

distribution in the population j with the covariate distribution in the population k, namely:

FY 〈j|k〉(y) :=
∫

Xk
FYj |Xj

(y|x)dFXk
(x), y ∈ Yj ,

QY 〈j|k〉(τ) := F←
Y 〈j|k〉(τ), τ ∈ (0, 1),

where (j, k) ∈ JK, and F←
Y 〈j|k〉(τ) = inf{y ∈ Yj : FY 〈j|k〉(y) ≥ τ} is the left-inverse function of

FY 〈j|k〉. The main interest lies in the quantile effect (QE) function, defined as the difference of

two counterfactual quantile functions over a set of quantile indexes T ⊂ (0, 1):

∆C(τ) = QY 〈j|k〉(τ)−QY 〈j|j〉(τ), τ ∈ T ,

where j ∈ J and k ∈ K. In the example of Section 1, we obtain the composition effect with

j = 0 and k = 1. When Yk is observed, then we can construct the structure effect or treatment

effect on the treated

∆S(τ) = QY 〈k|k〉(τ)−QY 〈j|k〉(τ), τ ∈ T ,

by specifying the option group and setting treatment=TRUE. In the example of Section 1, we

obtain the wage structure effect with j = 0 and k = 1, i.e. setting group=1 and treatment=TRUE.

If in addition we select the option decomposition=TRUE, then we obtain the entire decomposition

(1) including the composition, structure and total effects. The total effect is

∆T (τ) = QY 〈k|k〉(τ)−QY 〈j|j〉(τ), τ ∈ T .

The set T is specified with the option quantiles, which enumerates the quantile indexes of

interested and should be a vector containing numbers between 0 and 1.

To estimate the QE function we need to model and estimate the conditional distribution

FYj |Xj
and covariate distribution FXk

. We estimate the covariate distribution using the empiri-

cal distribution, and consider several regression based methods for the conditional distribution

including classical, quantile, duration, and distribution regression. Given the estimators of the
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conditional and covariate distributions F̂Yj |Xj
and F̂Xk

, the estimator of each counterfactual

distribution is obtained by the plug-in rule, namely

F̂Y 〈j|k〉(y) =

∫

Xk

F̂Yj |Xj
(y|x)dF̂Xk

(x), y ∈ Yj .

Then, the estimator of the QE function is also obtained by the plug-in rule as

∆̂C(τ) = F̂←Y 〈j|k〉(τ)− F̂←Y 〈j|j〉(τ), τ ∈ T ,

or

∆̂S(τ) = F̂←Y 〈k|k〉(τ)− F̂←Y 〈j|k〉(τ), τ ∈ T ,

if we define the counterfactual population with group and set treatment=TRUE. If in addition to

treatment=TRUE, we select decomposition=TRUE, then the plug-in estimator of the total effect

is

∆̂T (τ) = F̂←Y 〈k|k〉(τ)− F̂←Y 〈j|j〉(τ), τ ∈ T .

2.2.1. Estimation of Conditional Distribution. In this section we assume that we have samples

{(Yji, Xji) : i = 1, . . . , nj} composed of independent and identically distributed copies of (Yj , Xj)

for all populations j ∈ J . The conditional distribution FYj |Xj
can be modeled and estimated

directly, or throught the conditional quantile function, QYj |Xj
, using the relation

FYj |Xj
(y|x) ≡

∫

(0,1)
1{QYj |Xj

(u|x) ≤ y}du. (3)

The option formula specifies the outcome Y as the left hand side variable and the covariates X

as the right hand side variable(s). The option method allows to select the method to estimate

the conditional distribution. The following methods are implemented:

(1) method = "qr", which is the default, implements the quantile regresion estimator of the

conditional distribution

F̂Yj |Xj
(y|x) = ε+

∫

(ε,1−ε)
1{x′β̂j(u) ≤ y}du, (4)

where ε is a small constant that avoids estimation of tail quantiles, and β̂(u) is the

Koenker and Bassett (1978) quantile regression estimator

β̂j(u) = arg min
b∈Rdx

nj
∑

i=1

[u− 1{Yji ≤ X ′jib}][Yji −X ′jib].

The quantile regression estimator calls the R package quantreg (Koenker, 2016). The

option trimming specifies the value of the trimming parameter ε, with default value

ε = 0.005. The option nreg sets the number of quantile regressions used to approximate

the integral in (4), with a default value of 100 such that (ε, 1 − ε) is approximated by

the grid {ε, ε + (1 − 2ε)/99, ε + 2(1 − 2ε)/99, . . . , 1 − ε}. This method should be used

only with continuous dependent variables.
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(2) method = "loc" implements the estimator of the conditional distribution

F̂Yj |Xj
(y|x) =

1

nj

nj
∑

i=1

1{Yji −X ′jiβ̂j ≤ y − x′β̂j}, (5)

where β̂j is the least square estimator

β̂j = arg min
b∈Rdx

nj
∑

i=1

(Yji −X ′jib)
2. (6)

The estimator (5) is based on a restrictive location shift model that imposes that the

covariates X only affect the location of the outcome Y .

(3) method = "locsca" implements the estimator of the conditional distribution

F̂Yj |Xj
(y|x) =

1

nj

nj
∑

i=1

1

{

Yji −X ′jiβ̂j

exp(X ′2jiγ̂j/2)
≤

y − x′β̂j
exp(x′2j γ̂j/2)

}

, (7)

where β̂j is the least square estimator (6), X2j ⊆ Xj with dimX2j = dx2
, and

γ̂j = arg min
g∈Rdx2

nj
∑

i=1

(log(Yji −X ′jiβ̂j)
2 −X ′2jig)

2.

The option scale_variable specifies the covariates X2j that affect the scale of the con-

ditional distribution. The option counterfactual_scale_variable selects the coun-

terfactual scale variables when the counterfactual population is specified using coun-

terfactual_var. By default, R would use all the covariates as scale_variable and

counterfactual_scale_variable = counterfactual_var. The estimator (7) is based

on a restrictive location scale shift model that imposes that the covariates X only affect

the location and scale of the outcome Y .

(4) method = "cqr" implements the censored quantile regression estimator of the condi-

tional distribution, which is the same as (4) with β̂(u) replaced by the Chernozhukov

and Hong (2002) censored quantile regression estimator. The options trimming and

nreg apply to this method with the same functionality as for the qr method. Moreover,

a variable containing a censoring indicator Cj must be specified with censoring. The

censored quantile regression estimator has three-steps by default. The number of steps

can be increased by the option nsteps. In the first step, the censoring probabilities are

estimated by a logit regression of the censoring indicator Cj on all the covariates Xj .

Then, for each quantile index u, the observations with sufficiently low censoring proba-

bilities relative to u are selected. We allow for misspecification of the logit by excluding

the observations that could theoretically be used but have censoring probabilities in the

highest firstc quantiles, with a default of 0.1, i.e. 10% of the observations. In the

second step, standard linear quantile regressions are estimated on the samples defined in

step one. Using the estimated quantile regressions, we define a new sample of observa-

tions that can be used. This sample consists of all observations for which the estimated

conditional quantile is above the censoring point. Again, we throw away observations in
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the lowest secondc quantiles of the distribution of the residuals, with a default of 0.05,

i.e. 5% of the observations. Step three consists in a new linear quantile regression using

the sample defined in step two. Step three is repeated if nsteps is above 3. This method

should be used only with censored dependent variables.

(5) method = "cox" implements the duration regression estimator of the conditional distri-

bution function

F̂Yj |Xj
(y|x) = 1− exp(− exp(t̂(y)− x′β̂)), (8)

where β̂ is the Cox estimator of the regression coefficients and t̂(y) is the Cox estimator

of the baseline integrated hazard function (Cox, 1972). The Cox estimator calls the

R package survival (Therneau, 2015). The estimator (8) is based on a restrictive

transformation location shift model that imposes that the covariates X only affect the

location of a monotone transformation of the outcome t(Y ), i.e.

t(Yj) = X ′jβj + Vj ,

where Vj has an extreme value distribution and is independent of Xj . This method

should be used only with nonnegative dependent variables.

(6) method = "logit" implements the distribution regression estimator of the conditional

distribution with logistic link function

F̂Yj |Xj
(y|x) = Λ(x′β̂(y)), (9)

where Λ is the standard logistic distribution function, and β̂(y) is the distribution re-

gression estimator

β̂(y) = arg max
b∈Rdx

nj
∑

i=1

[

1{Yji ≤ y} log Λ(X ′ijb) + 1{Yij > y} log Λ(−X ′jib)
]

. (10)

The estimator (9) is based on a flexible model where each covariate can have a het-

erogenous effect at different parts of the distribution. This method can be used with

continuous dependent variables and censored dependent variables with fixed censoring

point.

(7) method = "probit" implements the distribution regression estimator of the conditional

distribution with normal link function, i.e. where Λ is the standard normal distribution

function in (9) and (10).

(8) method = "lpm" implements the linear probability model estimator of the conditional

distribution

F̂Yj |Xj
(y|x) = x′β̂(y),

where β̂(y) is the least squares estimator

β̂(y) = arg min
b∈Rdx

nj
∑

i=1

(1{Yji ≤ y} −X ′ijb)
2.

This method might produce estimates of the conditional distribution outside the interval

[0, 1].
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For the methods (2)–(8), the option nreg sets the number of values of y to evaluate the

estimator of the conditional distribution function. These values are uniformly distributed among

the observed values of Yj . If nreg is greater than the number of observed values of Yj , then all

the observed values are used.

2.3. Inference. The command counterfactual reports pointwise and uniform confidence in-

tervals for the QEs over a prespecified set of quantile indexes. The construction of the intervals

rely on functional central limit theorems and bootstrap functional central limit theorems for the

empirical QEs derived in Chernozhukov et al. (2013). In particular, the pointwise intervals are

based on the normal distribution, whereas the uniform intervals are based on two resampling

schemes: empirical and weighted bootstrap. Thus, the (1 − α) confidence interval for ∆(τ) on

T has the form

{∆̂(τ)± c1−αΣ̂(τ) : τ ∈ T },

where Σ̂(τ) is the standard error of ∆̂(τ) and c1−α is a critical value. There are two options

to obtain Σ̂(τ). The default option robust=FALSE computes the bootstrap standard deviation

of ∆̂(τ); whereas the option robust=TRUE computes the bootstrap interquartile range rescaled

with the normal distribution, Σ̂(τ) = (q0.75(τ) − q0.25(τ))/(z0.75 − z0.25) where qp(τ) is the pth

quantile of the bootstrap draws of ∆̂(τ) and zp is the pth quantile of the standard normal. The

pointwise critical value is c1−α = z1−α, and the uniform critical value is c1−α = t̂1−α, where t̂1−α

is a bootstrap estimator of the (1−α)th quantile of the Kolmogorov-Smirnov maximal t-statistic

t = sup
τ∈T

|∆̂(τ)−∆(τ)|/Σ̂(τ).

In addition to the intervals, counterfactual reports the p-values for several functional tests

based on two test-statistic: Kolmogorov-Smirnov and the Cramer-von-Misses-Smirnov. The

null-hypotheses considered are

(1) Correct parametric specification of the model for the conditional distribution. This

test compares the empirical distribution of the outcome Yj with the estimate of the

counterfactual distribution in the reference population

F̂Y 〈j|j〉(y) :=

∫

Xj

F̂Yj |Xj
(y|x)dF̂Xj

(x).

The power of this specification test might be low because it only uses the implications

of the conditional distribution on the counterfactual distribution. For example, the

test is not informative for the linear probability and logit models where the counter-

factual distribution in the reference population is identical to the empirical distribution

by construction. If group is specified and treatment=TRUE is selected, then the test is

performed in the population defined by group=1. If in addition the option decomposi-

tion=TRUE is selected, then the test is performed in the populations defined by group=0

and group=1, and in the combined population including both group=0 and group=1.
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(2) Zero QE at all the quantile indexes of interest: ∆(τ) = 0 for all τ ∈ T . This is stronger

than a zero average effect. Other null hypotheses of constant quantile effect (but at a

different level than 0) can be added with the option cons_test.

(3) Constant QE at all quantile indexes of interest: ∆(τ) = ∆(0.5) for all τ ∈ T .

(4) First-order stochastic dominance: ∆(τ) ≥ 0 for all τ ∈ T .

(5) Negative first-order stochastic dominance: ∆(τ) ≤ 0 for all τ ∈ T .

The options of counterfactual related to inference are:

(1) noboot = TRUE suppresses the bootstrap. The bootstrap can be very demanding in terms

of computation time. Therefore, it is recommended to switch it off for the exploratory

analysis of the data.

(2) weightedboot = TRUE selects weighted bootstrap with standard exponential weights.

The default weightedboot = FALSE selects empirical bootstrap with multinomial weights.

We recommend weighted bootstrap when the covariates include categorical variables with

small cell sizes to avoid singular designs in the bootstrap draws.

(3) reps specifies the number of bootstrap replications. This number will matter only if the

bootstrap has not be suppressed. The default is 100.

(4) alpha specifies the significance level of the tests and confidence intervals. Note that the

confidence level of the confidence interval is 1 - alpha. Thus, the default value of 0.05

produces 95% confidence intervals.

(5) first and last select the subset of quantile indexes of interest for inference. The tails

of the distribution should not be used because standard asymptotic does not apply to

these parts. The needed amount of tail trimming depends on the sample size and on the

distribution of the dependent variable. first sets the lowest quantile index used and

last sets the highest quantile index used. The default values are 0.1 and 0.9 so that

T = [0.1, 0.9].

(6) cons_test add tests of the null hypothesis that ∆(τ) = const_test for all τ between

first and last. The null hypothesis that ∆(τ) = 0 for all τ between first and last

is tested by default. The null hypothesis that the quantile effects are constant is also

tested by default.

2.4. Parallel Computing. The command counterfactual provides functionality for parallel

computing, which is specially useful to speed up the execution of the bootstrap. There are two

options related to parallel computing:

(1) sepcore specifies whether multiple cores should be used. The default value sepcore =

FALSE turns off the parallel computing.

(2) ncore selects the number of cores to use for parallel computing. The information of this

option is only used when parallel computing is switched on with sepcore = TRUE.
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3. Empirical Examples

We consider two empirical examples to illustrate the functionality of the command coun-

terfactual. The first example is an estimation of Engel curves that includes a counterfactual

analysis where the counterfactual population is an artificial transformation of a reference pop-

ulation. The second example is wage decomposition with respect to union status where the

reference and counterfactual populations correspond to two different groups.

3.1. Engel Curves. We use the classical Engel 1857 dataset to estimate the relationship be-

tween food expenditure (foodexp) and annual household income (income), and then report the

estimates of the QE of a change in the distribution of the annual household income that might be

induced for example by a variation in income taxation.1 We estimate the conditional distribution

with the quantile regression method, i.e., method ="qr".

First, we generate the variable counterfactual_income with the counterfactual values of

income and plot the reference and counterfactual income distributions. The counterfactual dis-

tribution corresponds to a mean preserving spread of the distribution in the reference population

that reduces standard deviation by 25%.

> library(quantreg)

> data(engel)

> attach(engel)

> counter_income <- mean(income)+0.75*(income-mean(income))

> cdfx <- c(1:length(income))/length(income)

> plot(c(0,4000),range(c(0,1)), xlim =c(0, 4000), type="n", xlab = "Income",

+ ylab="Probability")

> lines(sort(income), cdfx)

> lines(sort(counter_income), cdfx, lwd = 2, col = 'grey70')

> legend(1500, .2, c("Original", "Counterfactual"), lwd=c(1,2),bty="n",

+ col=c(1,'grey70'))

To estimate the QEs of this counterfactual change we turn on the option transformation of

counterfactual by setting transformation = TRUE, and specify that the counterfactual values

of the covariate income are in the generated variable counter_income by setting counterfac-

tual_var = counter_income. This yields:

> qrres <- counterfactual(foodexp~income, counterfactual_var

+ = counter_income, transformation = TRUE, sepcore = TRUE, ncore = 2)

cores used= 2

Conditional Model: linear quantile regression

Number of regressions estimated: 100

1This is the same data set as in the quantile regression package quantreg, see Koenker (2016).
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Figure 1. Observed and counterfactual distributions of income

The variance has been estimated by bootstraping the results 100 times.

No. of obs. in the reference group: 235

No. of obs. in the counterfactual group: 235

Quantile Effects -- Composition

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 55.2 4.48 46.4 64 42.9 67.5

0.2 48.1 4.06 40.1 56 36.9 59.3

0.3 38.9 4.42 30.3 47.6 26.8 51.1

0.4 27.2 4.36 18.6 35.7 15.2 39.2

0.5 16.6 4.18 8.44 24.8 5.11 28.1

0.6 5.86 4.56 -3.07 14.8 -6.7 18.4

0.7 -5.84 5.37 -16.4 4.69 -20.6 8.97
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0.8 -30.6 8.68 -47.6 -13.6 -54.5 -6.66

0.9 -78.3 12.4 -103 -54 -113 -44.1

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-Hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model 0.38 0.23

No effect: QE(tau)=0 for all taus 0.00 0.00

Constant effect: QE(tau)=QE(0.5) for all taus 0.00 0.00

Stochastic dominance: QE(tau)>0 for all taus 0.00 0.00

Stochastic dominance: QE(tau)<0 for all taus 0.00 0.00

We reject the simultaneous hypotheses of zero, constant, positive and negative effect of the

income redistribution at all the deciles. The QR model for the conditional distribution cannot

be rejected at conventional significance levels.

Finally, we reestimate the QE function on the larger set of quantiles {0.01, 0.02, . . . , 0.99}, and

plot a uniform confidence band over the subset {0.10, 0.11, . . . , 0.90} constructed by empirical

bootstrap with 100 replications. In Figure 2 we can visually reject the functional hypotheses

of zero, constant, positive and negative effect at the percentiles considered. We use the option

printdeco = FALSE to supress the display of the table of results.

> taus <- c(1:99)/100

> first <- sum(as.double(taus <= .10))

> last <- sum(as.double(taus <= .90))

> rang <- c(first:last)

> rqres <- counterfactual(foodexp~income, counterfactual_var=counter_income,

+ nreg=100, quantiles=taus, transformation = TRUE,

+ printdeco = FALSE, sepcore = TRUE,ncore=2)

cores used= 2

> duqf <- (rqres$resCE)[,1]

> l.duqf <- (rqres$resCE)[,5]

> u.duqf <- (rqres$resCE)[,6]

> plot(c(0,1), range(c(min(l.duqf[rang]), max(u.duqf[rang]))), xlim = c(0,1),

+ type = "n", xlab = expression(tau), ylab = "Difference in Food Expenditure",

+ cex.lab=0.75)

> polygon(c(taus[rang], rev(taus[rang])), c(u.duqf[rang], rev(l.duqf[rang])),

+ density = -100, border = F, col = "grey70", lty = 1, lwd = 1)
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Figure 2. Quantile effects of income redistribution on food consumption

> lines(taus[rang], duqf[rang])

> abline(h = 0, lty = 2)

> legend(0, -90, "QE", cex = 0.75, lwd = 4, bty = "n", col = "grey70")

> legend(0, -90, "QE", cex = 0.75, lty = 1, bty = "n", lwd = 1)

3.2. Union Premium. We use an extract of the U.S. National Longitudinal Survey of Young

Women (NLSW) for employed women in 1988 to estimate a wage decomposition with respect to

union status.2 The outcome variable Y is the log hourly wage (lwage), the covariates X include

job tenure in years (tenure), years of schooling (grade), and total experience (ttl_exp), and

the union indicator union defines the reference and counterfactual populations. We estimate

the conditional distributions by distribution regression with logistic link and duration regression,

i.e., method ="logit" and method ="cox". We use weighted bootstrap for the construction of

uniform confidence intervals and hypothesis tests and run parallel computing with 2 nodes.

2This dataset is available from the Stata’s sample datasets at http://www.stata-

press.com/data/r9/nlsw88.dta.
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We start by estimating the wage decomposition by logistic distribution regression, where the

counterfactual population is specified with group=union with the options treatment=TRUE and

decomposition=TRUE to estimate the composition, structure and total effects. The estimates

of the total effect show that the union wage gap is positive throughout the distribution and

decreasing in the quantile index. Indeed, we reject the hypothesis that the differences between

the deciles of wages between union and nonunion workers are all equal or negative, but cannot

reject that they are all positive at conventional significance levels.

In this example the composition effect captures differences in tenure, education and experience

between union and nonunion workers, and the structure effect corresponds to the treatment effect

of union on the treated or union premium. The estimates of the composition and structure effects

show that differences in worker characteristics account for about half of the gap in the upper

tail of the distribution, whereas in the rest of the distribution the union premium explains most

of the gap. The deciles of the structure effect are all positive and heterogeneous. The deciles

of the composition effect are also positive, but we cannot reject that they are constant. All the

specification tests for the parametric model report NA because these tests are uninformative

about the logistic distribution regression model.

> data(nlsw88)

> attach(nlsw88)

> lwage <- log(wage)

> logitres <- counterfactual(lwage~tenure+ttl_exp+grade,

+ group = union, treatment=TRUE,

+ decomposition=TRUE, method = "logit",

+ weightedboot = TRUE, sepcore = TRUE, ncore=2)

cores used= 2

Conditional Model: logit

Number of regressions estimated: 100

The variance has been estimated by bootstraping the results 100 times.

No. of obs. in the reference group: 1407

No. of obs. in the counterfactual group: 459

Quantile Effects -- Structure

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.239 0.0439 0.154 0.325 0.111 0.368

0.2 0.208 0.038 0.133 0.282 0.0968 0.319
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0.3 0.218 0.0277 0.163 0.272 0.137 0.299

0.4 0.19 0.0326 0.126 0.254 0.0947 0.285

0.5 0.157 0.0327 0.0925 0.221 0.0609 0.252

0.6 0.15 0.0301 0.0909 0.209 0.0618 0.238

0.7 0.0714 0.0319 0.00886 0.134 -0.022 0.165

0.8 0.0173 0.0264 -0.0345 0.069 -0.06 0.0946

0.9 -0.00794 0.0516 -0.109 0.0932 -0.159 0.143

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-Hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model NA NA

No effect: QE(tau)=0 for all taus 0 0

Constant effect: QE(tau)=QE(0.5) for all taus 0 0.01

Stochastic dominance: QE(tau)>0 for all taus 0.89 0.9

Stochastic dominance: QE(tau)<0 for all taus 0 0

Quantile Effects -- Composition

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.0606 0.0269 0.00797 0.113 -0.0223 0.144

0.2 0.0545 0.0239 0.0076 0.101 -0.0194 0.128

0.3 0.0691 0.0254 0.0193 0.119 -0.00942 0.148

0.4 0.0821 0.0272 0.0288 0.135 -0.00192 0.166

0.5 0.0982 0.0278 0.0438 0.153 0.0124 0.184

0.6 0.112 0.0247 0.0637 0.161 0.0358 0.189

0.7 0.115 0.0331 0.0505 0.18 0.0133 0.217

0.8 0.0975 0.0221 0.0543 0.141 0.0294 0.166

0.9 0.0613 0.039 -0.0151 0.138 -0.0591 0.182

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values
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======================

NULL-Hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model NA NA

No effect: QE(tau)=0 for all taus 0 0

Constant effect: QE(tau)=QE(0.5) for all taus 0.46 0.31

Stochastic dominance: QE(tau)>0 for all taus 0.91 0.91

Stochastic dominance: QE(tau)<0 for all taus 0 0

Quantile Effects -- Total

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.3 0.0437 0.214 0.386 0.186 0.414

0.2 0.262 0.0417 0.181 0.344 0.153 0.372

0.3 0.287 0.0374 0.214 0.36 0.189 0.385

0.4 0.272 0.0353 0.203 0.341 0.18 0.364

0.5 0.255 0.0373 0.182 0.328 0.157 0.353

0.6 0.262 0.0348 0.194 0.33 0.171 0.353

0.7 0.187 0.0294 0.129 0.244 0.11 0.264

0.8 0.115 0.0289 0.0581 0.171 0.0392 0.19

0.9 0.0534 0.0451 -0.0351 0.142 -0.0647 0.172

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-Hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model NA NA

No effect: QE(tau)=0 for all taus 0 0

Constant effect: QE(tau)=QE(0.5) for all taus 0.03 0.02

Stochastic dominance: QE(tau)>0 for all taus 0.9 0.9

Stochastic dominance: QE(tau)<0 for all taus 0 0

Next, we reestimate the QE function on the larger set of quantiles {0.01, 0.02, ..., 0.99}, and

plot a uniform confidence band over the subset {0.10, 0.11, ..., 0.90}) constructed by weighted

bootstrap with 100 replications. Figure 3 shows that the findings for the deciles carry over to

the percentiles considered. Thus, we can visually test that the structure effect is heterogeneous
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and explains most of the union wage gap below the third quartile. The composition effect is

homogeneous and explains most of the wage gap above the ninth decile. When we consider the

finer grid of percentiles, however, we can no longer reject that there is no composition effect at

the 5% significance since the dashed line at zero is fully covered by the bands.

> taus <- c(1:99)/100

> first <- sum(as.double(taus <= .10))

> last <- sum(as.double(taus <= .90))

> rang <- c(first:last)

> logitres <- counterfactual(lwage~tenure+ttl_exp+grade,

+ group = union, treatment=TRUE, quantiles=taus,

+ method="logit", nreg=100, weightedboot = TRUE,

+ printdeco=FALSE, decomposition = TRUE,

+ sepcore = TRUE,ncore=2)

cores used= 2

> duqf_SE <- (logitres$resSE)[,1]

> l.duqf_SE <- (logitres$resSE)[,5]

> u.duqf_SE <- (logitres$resSE)[,6]

> duqf_CE <- (logitres$resCE)[,1]

> l.duqf_CE <- (logitres$resCE)[,5]

> u.duqf_CE <- (logitres$resCE)[,6]

> duqf_TE <- (logitres$resTE)[,1]

> l.duqf_TE <- (logitres$resTE)[,5]

> u.duqf_TE <- (logitres$resTE)[,6]

> range_x <- min(c(min(l.duqf_SE[rang]), min(l.duqf_CE[rang]),

+ min(l.duqf_TE[rang])))

> range_y <- max(c(max(u.duqf_SE[rang]), max(u.duqf_CE[rang]),

+ max(u.duqf_TE[rang])))

> par(mfrow=c(1,3))

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "Difference in Wages", cex.lab=0.75,

+ main = "Total")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_TE[rang], rev(l.duqf_TE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_TE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Structure")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_SE[rang], rev(l.duqf_SE[rang])), density = -100, border = F,
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Figure 3. Wage decomposition with respect to union: logit regression estimates

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_SE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Composition")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_CE[rang], rev(l.duqf_CE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_CE[rang])

> abline(h = 0, lty = 2)

Finally, we repeat the point and interval estimation using the duration regression method with

the option method = "cox". Despite of relying on a more restrictive model for the conditional

distribution, the duration regression estimates in Figure 4 are similar to the logit regression

estimates in Figure 3.

> coxres <- counterfactual(lwage~tenure+ttl_exp+grade,

+ group = union, treatment=TRUE, quantiles=taus,

+ method="cox", nreg=100, weightedboot = TRUE,

+ printdeco = FALSE, decomposition = TRUE, sepcore = TRUE,ncore=2)

cores used= 2

> duqf_SE <- (coxres$resSE)[,1]

> l.duqf_SE <- (coxres$resSE)[,5]
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> u.duqf_SE <- (coxres$resSE)[,6]

> duqf_CE <- (coxres$resCE)[,1]

> l.duqf_CE <- (coxres$resCE)[,5]

> u.duqf_CE <- (coxres$resCE)[,6]

> duqf_TE <- (coxres$resTE)[,1]

> l.duqf_TE <- (coxres$resTE)[,5]

> u.duqf_TE <- (coxres$resTE)[,6]

> range_x = min(c(min(l.duqf_SE[rang]), min(l.duqf_CE[rang]),

+ min(l.duqf_TE[rang])))

> range_y = max(c(max(u.duqf_SE[rang]), max(u.duqf_CE[rang]),

+ max(u.duqf_TE[rang])))

> par(mfrow=c(1,3))

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "Difference in Wages", cex.lab=0.75,

+ main = "Total")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_TE[rang], rev(l.duqf_TE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_TE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = " ", cex.lab=0.75, main = "Structure")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_SE[rang], rev(l.duqf_SE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_SE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Composition")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_CE[rang], rev(l.duqf_CE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_CE[rang])

> abline(h = 0, lty = 2)
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Figure 4. Wage decomposition with respect to union: duration regression estimates

References

Blinder, A. (1973). Wage discrimination: reduced form and structural estimates. Journal of

Human resources, 436–455.

Chernozhukov, V., I. Fernández-Val, and B. Melly (2013). Inference on counterfactual distribu-

tions. Econometrica 81 (6), 2205–2268.

Chernozhukov, V. and H. Hong (2002). Three-step censored quantile regression and extramarital

affairs. Journal of the American Statistical Association 97 (459), 872–882.

Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series

B (Methodological) 34 (2), 187–220.

Koenker, R. (2016). quantreg: Quantile Regression. R package version 5.21.

Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica: journal of the Econo-

metric Society , 33–50.

Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International eco-

nomic review , 693–709.

Stock, J. (1991). Nonparametric policy analysis: an application to estimating hazardous waste

cleanup benefits. Nonparametric and Semiparametric Methods in Econometrics and Statistics,

77–98.

Therneau, T. M. (2015). A Package for Survival Analysis in S. version 2.38.


	cover1
	CWP641717



