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Information Redundancy Neglect versus

Overcon�dence: A Social Learning Experiment

Marco Angrisani, Antonio Guarino,

Philippe Jehiel and Toru Kitagawa∗

Abstract

We study social learning in a continuous action space experiment. Subjects, acting

in sequence, state their belief about the value of a good, after observing their predeces-

sors' statements and a private signal. We compare the behavior in the laboratory with

the Perfect Bayesian Equilibrium prediction and the predictions of bounded rationality

models of decision making: the redundancy of information neglect model and the over-

con�dence model. The results of our experiment are in line with the predictions of the

overcon�dence model and at odds with the others'.

1 Introduction

Many economic decisions, from the most mundane ones, like the choice of a restaurant to

the most important ones, like the adoption of a new technology for a �rm or the adoption

of a new medical protocol for a physician, require making inferences about an underlying

state of nature (e.g., which restaurant or technology or medical protocol is the best one).

In many of these situations, economic agents have some private information about the state

of nature and also have information about the choice of others (e.g., other diners, �rms,

doctors) who faced the same decision problem in the past. Being able to make inferences

about the underlying state by using the information conveyed by others' decisions (which is

referred to as �social learning�) may be very valuable, but may also have some pathological

e�ects, such as herding on incorrect choices.

∗Angrisani: Center for Economic and Social Research, University of Southern California (e-
mail: angrisan@usc.edu); Guarino: Department of Economics, University College London (e-mail:
a.guarino@ucl.ac.uk); Jehiel: Paris School of Economics and Department of Economics, University College
London (e-mail: jehiel@enpc.fr); Kitagawa: Department of Economics, University College London (e-mail:
t.kitagawa@ucl.ac.uk). We thank participants in seminars at various institutions for useful comments and
suggestions. Guarino gratefully acknowledges the �nancial support of the ERC and of INET.
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An important aspect a�ecting how accurate the inference can be is the choice set from

which agents can pick their actions. While with a discrete action space social learning typi-

cally leads to ine�cient outcomes (�informational cascades;� Banerjee, 1992 and Bikhchan-

dani et al., 1992), with a continuous action space a sequence of rational decision makers are

typically able to infer the information received by the predecessors perfectly, and learning is

e�cient (Lee, 1993).

The intuition for this result is very simple. When agents choose in a continuous action

space, their action re�ects their information very precisely, under the assumption of full

rationality. As a result, observing a predecessor's action is equivalent to observing the

information he has. As more agents make their decisions in a sequence, more information is

aggregated, and eventually the state of nature is learned and the best decision is reached.

A crucial ingredient in this story is that agents are able to make inferences correctly. If

agents are less sophisticated, the process of learning may be ine�cient despite a continuous

action space. A series of studies have questioned the ability of human subjects to make

correct inferences and revisited standard models of social learning (both with a discrete and

a continuous action space) by analyzing what happens when this is not the case. Essentially,

these works depart from the assumption of full rationality used in the previous literature

and propose alternative ways of modelling how economic agents form expectations.

Although various biases may a�ect the process of learning, two aspects have attracted

particular attention: information redundancy neglect (also sometimes referred to as corre-

lation neglect), on the one hand; the tendency of human subjects to put more weight on

their private information than on the public information contained in the choices of other

participants, on the other. These biases, proposed not only in Economics but also in Psychol-

ogy and in other social and cognitive sciences, seem particularly salient for social learning.

When making inferences from the choices of others, agents may not fully take into account

that others have themselves been in�uenced by the same sources of information (redundancy

neglect). On the other, hand, they may consider themselves better at making a particular

decision than the others they observe (overcon�dence). Of course, these biases may coexist

in human behavior.

The purpose of this work is to study, through a series of controlled experiments, social

learning in a continuous action space in which agents move in sequence one after the other

and observe their predecessors' choices as well as a private signal (the private information).

Our interest is in understanding how the private signals observed by the predecessors and the

signal observed by the agent in�uence the agent's decision. In the case of the predecessors'

signals, we are interested in understanding whether the in�uence depends on whether the

signal was observed by an early mover or a late mover in the sequence. Our objective is to
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shed light on whether the rational paradigm or any of the bounded rationality theories of

information redundancy neglect or overcon�dence capture human subjects' behaviors.

Before illustrating the experiment, let us discuss the di�erent bounded rationality ap-

proaches in more detail. Information redundancy neglect in social learning has been studied,

for instance, by Eyster and Rabin (2010). In their work, while each agent uses his private

information and learns from others, he is convinced that others only use their private infor-

mation: as a result, he interprets a predecessor's action as if it simply re�ected the agent's

private information. Since agents fail to account that their predecessors have already in-

corporated earlier signals in their decisions, early signals have an excessive impact on later

decisions.1 In a similar spirit, Bohren (2016) studies a social learning environment in which

agents have a misspeci�ed model about their predecessors. While in the economy there is

a fraction p of agents who (in addition to their own signal) observe the actions of others,

agents believe that this fraction is actually p̂. Bohren (2016)'s model generalizes Eyster and

Rabin (2010)'s model, which is obtained when p = 1 and p̂ = 0. As in Eyster and Rabin

(2010), when p̂ < p, there is an overweighting of early signals, since agents read actions as if

they were re�ecting more private signals than they actually do.

As we said, information redundancy neglect has emerged in studies well beyond the

speci�c topic of social learning, and even well beyond the boundaries of economics. A vast

literature in statistics, sociology, computer science, physics and economics has adopted the

DeGroot (1974) model of learning. In that model, when agents repeatedly communicate,

they update their beliefs by taking a weighted average of their neighbors' beliefs and their

own belief from the previous period. Clearly, in this model agents do not adjust correctly

for repetitions and dependencies in information that they observe multiple times. Golub

and Jackson (2010) apply the DeGroot updating rule to the study of learning in networks.

An earlier study by DeMarzo et al. (2003) presents a very similar idea, by letting agents

update as Bayesian but not taking into account repetitions. They label the failure to adjust

properly for information repetitions as persuasion bias. Under persuasion bias, individuals

do not account accurately for which components of the information they receive is new and

which is repetition.2 Information redundancy neglect in our context, no matter how it is

modelled, implies that signals observed by earlier movers have more in�uence than signals

observed by later movers.

An alternative paradigm some scholars have suggested to understand social learning

1Redundancy neglect was not the focus of a study by Guarino and Jehiel (2013); nevertheless, they also
�nd an overweighting of early signals in a model of social learning with a continuous action space. We will
discuss this work in the next section.

2We refer the reader to DeMarzo et al. (2003) and Golub and Jackson (2010) for further references and
discussions of the links to the psychology and sociology literatures.
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is that agents tend to put more weight on their private information than on the public

information contained in the choices of others. Such a tendency is documented in various

studies (e.g. Nöth and Weber, 2003; Çelen and Kariv, 2004; Goeree et al., 2007; and De

Filippis et al., 2018), and it is typically referred to as �overcon�dence,� since subjects seem

to trust their own information (or own ability to learn from it) more than their predecessors'

information (or ability to learn from it). One interpretation that we will favor is that agents

tend to mistrust the ability of their predecessors to understand their private signals correctly.

In a multi-stage, multi-player game, one also needs to specify what subjects think about

the overcon�dence of others. If the overcon�dence bias is common knowledge (this is the

simplest formulation of overcon�dence also adopted in a number of applied works), one can

show that in a continuous action space agents are still able to infer correctly the signals of

others. As a result, all previous signals still have the same weight in the inference process,

but lower than the agent's private signal's weight. This is in sharp contrast with the early

signals overweighting prediction of the models discussed above.

The overcon�dence bias has been studied in many areas of economics other than social

learning. In the theory of asset pricing, for instance, many works (e.g., Kyle and Wang, 1997;

Daniel et al., 1998; Odean, 1998; and Daniel et al., 2001) model traders' overcon�dence as

their overestimation of the precision of their private signal about security values. This can be

interpreted as traders' overcon�dence about the information they receive or overcon�dence

about their own ability to interpret the information (Odean, 1998). Note that this approach

to overcon�dence is closely related to the de�nition of overcon�dence about the precision of

the own signal versus the signals of others in the social learning literature.3

We contribute to the understanding of the social learning process through some controlled

experiments in which the di�erent theoretical models just discussed can be carefully tested.

Speci�cally, we replicate a simple theoretical model of social learning with a continuous

action space in the laboratory. In our experiment subjects have to predict whether a good is

worth 0 or 100 units, two events that are, a priori, equally likely. A �rst subject receives a

noisy symmetric binary signal about the true value realization: either a �good signal,� which

is more likely if the value is 100; or a �bad signal,� which is more likely if the value is 0.

After receiving his signal, the subject is asked to choose a number between 0 and 100, which

represents the subjective probability (expressed as a percentage) that the value of the good

is 100. To elicit his belief we use a quadratic scoring rule. We then ask a second subject

to make the same type of prediction based on the observation of the �rst subject's decision

only. Then, we provide the second subject with another, conditionally independent, signal

3We refer to Odean (1998) for a discussion of the vast psychology literature on overcon�dence about the
own private information.
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about the value of the good and ask him to make a new prediction. We then ask a third

subject to make his prediction based on the observation of the �rst subject's decision and of

the second subject's second decision. We then provide the subject with another signal and

ask him to make a new prediction. The procedure continues until all subjects have made

their predictions.

The results of our experiment are supportive of the overcon�dence model and at odds with

the predictions of the Perfect Bayesian Equilibrium and of the redundancy of information

neglect model. When we consider the �rst action taken by subjects, we observe that subjects

do not put higher weight on early signals than on late signals. Early decisions in the sequence

do not have an undue in�uence on later decisions. On the contrary, predecessors' signals have

a weight lower than one and constant, as predicted by the overcon�dence model. Moreover,

when we consider the second action taken by subjects, we observe that subjects put a weight

not statistically di�erent from one on their own signal, again in line with the overcon�dence

model.

It is important to note that, while we explicitly test how a speci�c model of information

redundancy neglect �ts with the data, the results of our experiment are at odds with any

model of such a bias, since information redundancy neglect essentially means that early

decisions have a disproportionate e�ect on subsequent decisions. In the laboratory, instead,

all actions have the same e�ect and this e�ect is even lower than what predicted by the

Perfect Bayesian Equilibrium.

It is also worth mentioning that we also ran another treatment in which the same subject

received a sequence of signals. This treatment mimics the social learning treatment except

that now the same subject observes directly all past signals. In sharp contrast with the

social learning treatment, in this treatment the action that subjects take is consistent with

the Bayesian one, that is, the weights on all signals are the same, and not statistically

di�erent from that corresponding to the objective precision of signals. Thus, our �nding

in the social learning treatment can safely be attributed to overcon�dence as interpreted

above, as opposed to being the result of some form of non-Bayesian updating or some form

of recency e�ect, according to which more recent news would have more weight than older

news (such alternative theories would imply that we should see departures from the Bayesian

prediction in the individual decision making treatment, which we do not).

In relation to the experimental social learning literature, we note that in our experiment

subjects' beliefs are not hidden under a binary decision: we observe how subjects learn from

others in great detail. In particular,

1. our experimental design, with belief elicitation, rather than with subjects choosing in a

discrete action space, allows us to observe how subjects weigh each predecessor's signal
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(action) directly, thus allowing us to test various models of social learning that di�er

in their predictions about these weights;

2. our experimental design, with belief elicitation before and after receiving the private

signal, allows us to identify in a neat way the weight subjects put on their own signal

separately from the weight they put on the predecessors' signals (or actions);4

3. our data show that subjects are overcon�dent in the precise sense that they weight

their signal as a Bayesian subject would do but underweigh the predecessors' signals.

Our data do not support models of information redundancy neglect.

The rest of the paper is organized as follows. After a brief discussion of the related

literature (Section 1.1), Section 2 describes the theoretical model of social learning and

the di�erent theoretical predictions. Section 3 presents the experiment. Section 4 contains

the results. Section 5 o�ers a discussion and concludes. An Appendix contains additional

material.

1.1 Related Literature

Most of the papers in the experimental social learning literature have used set ups with a

discrete action space. A partial exception is the interesting work by Çelen and Kariv (2004)

who aim to distinguish informational cascades from herd behavior. In their experiment

the action space is still binary, but subjects are asked to choose a threshold in an interval

before receiving the signal (one of the two actions is then taken depending on the signal

realization, a procedure similar to a Becker-DeGroot-Marshack mechanism that allows the

experimentalists to elicit the median belief). Their econometric model shows that subjects

give too little weight to the information revealed by the predecessors' choices relative to their

own private information. Since early decision makers tend to rely a lot on their own private

information, their actions are informative about their signals, but this is not well taken into

account by their successors. Our �ndings about overcon�dence share similarities with those

of Çelen and Kariv (2004) and our analysis reveals that overcon�dence in our setting is the

result of underweighting predecessors' information rather than in�ating the precision of one

own's information. Note that, in addition, our setting allows us to estimate �nely the relative

weights attached to the various predecessors' signals as a function of where they lie in the

4The social learning theories we will study di�er in the way agents learn from others, but are identical
in the way they learn from their own signal. Social learning is di�erent since the theories postulate various
ways of inferring signals from actions. According to all theories, instead, agents update their beliefs upon
observing their private signal in a Bayesian fashion.
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sequence, and such estimations are of essential importance to be able to test di�erent models

of social learning, as explained above.

Among experiments with discrete action space, overcon�dence is documented in Nöth and

Weber (2003). They conduct an experiment with binary actions and with binary signals of

di�erent precisions. They �nd that subjects tend to follow their signal even in circumstances

in which it would be optimal to follow the herd (e.g., at time 2 upon receiving a signal of weak

precision and di�erent realization from the action taken at time 1). Kübler and Weizsäcker

(2004) conduct a binary action space experiment too, and study subject's depth of reasoning

through an error-rate model, which di�ers from a Quantal Response Equilibrium model since

no consistency between beliefs about error rates and actual error rates is imposed. They

�nd that subjects underweigh the information contained in the predecessors' actions and

also fail to realise that the predecessors' actions were themselves in�uenced by the history of

actions they observed. Note that this last �nding is an indication of information redundancy

neglect. Essentially, subjects seem to use a simple �counting heuristic� in which they count

the number of predecessors choosing action A or action B and attribute a lower information

content than it actually has to each action (and independently of the speci�c sequence).

Goeree et al. (2007) present an experiment similar to the seminal work of Anderson and

Holt (1997) but with long sequences of decisions. Their main conclusion is that �subjects

tend to overweight their signals, or, alternatively, underweight the public prior generated by

past publicly observed choices.� Goeree et al. (2007) reach this conclusion by relying on the

structural estimation of a QRE model. We can dispense with the assumptions of a QRE

model thanks to our experimental design and, in particular, to our belief elicitation before

and after receiving private information. We �nd that subject underweight the predecessors'

signals, whereas correctly weighting their own signal. It is also interesting to note that

Goeree et al. (2007) also consider a non-equilibrium model in which expectations about

errors rates may be incorrect but �nd no strong evidence for such a model.

Two more recent papers related to our work are Eyster et al. (2015) and Cavatorta et

al. (2018). In their work, Eyster et al. (2015) present two treatments, one being similar to

ours. In their experiment, though, subjects' task is simpler, in that they have to sum up

the signal they receive and those received by the predecessors (not observed directly, but

inferable through the predecessors' choices). They �nd that a large fraction of choices is

perfectly in line with the PBE predictions. Moreover, they do not �nd overcon�dence, as we

have de�ned it. Perhaps, the di�erence in results is due to the di�erence in the di�culty of

the task. When subjects face a simpler task, they are better able to behave rationally and

trust that the predecessors did so too.5 Cavatorta et al. (2018) present some experiments

5Eyster et al. (2015) also present a treatment in which more than one action is taken at each point in
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with binary action space in which one of the two actions is never observed (the same way

we do not observe people who consider the possibility of making an investment but do not

make it); the other action is observable but with noise. In one treatment, subjects observe

the sequence of individual decisions (only the observable action) whereas in another they

observe an aggregate statistics on how many predecessors have chosen the observable action.

If subjects used the simple counting heuristic, the results of the two treatments should be

the same, but they are not. Subjects perform much better in the treatment in which they

observe, at least partially, the sequence, indicating that they do take the sequence into

account.

2 The Theoretical Model

In our economy there are T agents who make a decision in sequence. Time is discrete and

indexed by t = 1, 2, ..., T . Each agent, indexed by t, is chosen to take an action only at

time t (in other words agents are numbered according to their position in the sequence).

The sequential order in which agents act is exogenously, randomly determined, with each

sequence equally likely.

There is a good that can take two values, V ∈ {0, 100}. The two values are equally likely.
Agent t takes an action at in the action space [0, 100]. The agent's payo� depends on his

choice and on the value of the good. The payo� is quadratic and, in particular, equal to

−(V − at)2. Each agent t receives a private signal st ∈ {0, 1} correlated with the true value

V . Speci�cally, he receives a symmetric binary signal distributed as follows:

Pr(st = 1 | V = 100) = Pr(st = 0 | V = 0) = qt.

We assume that, conditional on the value of the good, the signals are independently dis-

tributed over time, with precision qt ∈ (0.5, 1]. Since the signal st = 1 increases the proba-

bility that the value is 100, we will also refer to it as the good signal, and to st = 0 as the

bad signal.

In addition to observing a private signal, each agent observes the sequence of actions

taken by the predecessors. We denote the history of actions until time t − 1 by ht, that is,

ht = {a1, a2, ..., at−1} (and h1 = ∅). Agent t's information is then represented by the couple

(ht, st). Given the information (ht, st), the agent chooses at to maximize his expected payo�

the sequence. This is based on work by Eyster and Rabin (2014) who illustrate the implications of rational
herding in an extended set up in which more than one action is taken at the same time. The two experiments
are independent; ours is antecedent, conducted in 2009-10-11.
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ES[−(V − at)2|ht, st]; therefore, his optimal action is a∗t = ES (V |ht, st).6

We now describe the di�erent theoretical predictions.

Let us start with the Perfect Bayesian Equilibrium (PBE). Given that the action space is

continuous, each action perfectly reveals the signal realization and its precision. Therefore,

observing the sequence of actions is identical to observing the sequence of signals and the

process of learning is perfectly e�cient. These observations lead to the following proposition:

Proposition 1 (Lee, 1993)

In the PBE, after a sequence of signals {s1, s2, ..., st}, agent t chooses action aPBEt =

a∗t (s1, s2, ..., st) such that

aPBEt

100− aPBEt

=
a∗t (s1, s2, .., st)

100− a∗t (s1, s2, .., st)
= Πt

i=1

(
qi

1− qi

)2si−1
.

That is, the agent at time t acts as if he observed the sequence of all signals until time t.

Next is the �best response trailing naïve inference� (BRTNI) play proposed by Eyster

and Rabin (2010). According to this theory, agents do not realize that predecessors' actions

already incorporate previous signals. Each agent learns from his own signals and from the

actions of his predecessors, but believes his predecessors choose their actions on the basis of

their own signal only. Because of this, agent 3 in a sequence of decisions makers interprets

agent 2's decision as revealing his private information only. But in fact agent 2's action

also re�ects agent 1's signal, which implies that agent 3 counts signal 1 twice, �rst through

agent 1's action and second through agent 2's action.7 By the same logic, as more agents

make their decisions, early signals receive more and more weight. Indeed, the weight on

predecessors' signals increases exponentially with time. That leads to a severe overweighting

of early signals:

Proposition 2 (Eyster and Rabin, 2010)

If agents behave as in BRTNI, after a sequence of signals {s1, s2, ..., st}, agent t chooses
action aBRTNIt = a∗∗t (s1, s2, ..., st) such that

aBRTNIt

100− aBRTNIt

=
a∗∗t (s1, s2, .., st)

100− a∗∗t (s1, s2, .., st)
= Πt−1

i=1

(
qi

1− qi

)(2si−1)(2t−i−1)( qt
1− qt

)2st−1
.

That is, the agent at time t acts as if, in addition to his own signal, he had observed time

i signal 2t−i−1 times, for any i < t.

6The superscipt S stands for subjective, since we want to allow for subjective expectations in some of the
theories discussed below.

7By this we mean that the agent at time 3 acts as if he had observed two time-1 signals.
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Note that, while in the PBE each signal has an equal weight of 1 in the choice of the

action, in BRTNI the weights are exponentially decreasing.

Another study �nding an overweighting of early signals in a model of social learning

with a continuous action space is that by Guarino and Jehiel (2013). Their work is aimed

at describing a steady state of an economy in which agents only understand the mapping

between actions and the state of nature, but not the map with the history of actions. In

other words, agents do not take into account the history of decisions and their impact

on subsequent agents' decisions; they only consider the aggregate statistics conditional on a

state of nature. Imposing a consistency condition on the aggregate statistics � in agreement

with the Analogy Based Expectation Equilibrium (ABEE) of Jehiel (2005) � and requiring

a genericity condition on the precisions, Guarino and Jehiel (2013) obtain the following

equilibrium result:

Proposition 3 (Guarino and Jehiel, 2013)

In the ABEE, after a sequence of signals {s1, s2, ..., st}, agent t chooses action aABEEt =

a∗∗∗t (s1, s2, ..., st) such that

aABEEt

100− aABEEt

=
a∗∗∗t (s1, s2, .., st)

100− a∗∗∗t (s1, s2, .., st)
= Πt−1

i=1

(
qi

1− qi

)(2si−1)(t−i)( qt
1− qt

)2st−1
.

That is, the agent at time t acts as if, in addition to his own signal, he had observed time

i signal t− i times, for any i < t.

Note that in the ABEE each agent t's action in the sequence is taken as if the agent

had observed a signal i (i < t) t − 1 times, a much less severe overweighting than that in

Eyster and Rabin (2010). It is also worth observing that while this work was not aimed at

describing information redundancy neglect, nevertheless, the fact that agents do not take

into account the impact of the sequence of decisions on successive actions leads to a form of

redundancy neglect. In equilibrium, agents behave as if all actions had the same information

content; this content is, however, determined in equilibrium by the aggregate frequencies,

since this is what agents focus on.

These predictions are immediately derived from theories already proposed in the liter-

ature. As we explained in the Introduction, an alternative paradigm assumes that agents

are �overcon�dent� in that they think others have a lower ability to understand their private

signal. A simple interpretation is that agents think that others (and not themselves) may

misread a good signal as a bad signal or vice versa. This is equivalent to thinking that others

receive a signal of lower precision (which they correctly understand). Essentially, instead of

having correct expectations on a predecessor i's signal precision, agent t thinks that agent i's

signal precision is lower, so that the likelihood ratio after observing an action is
(

qi
1−qi

)(2si−1)k
10



rather than
(

qi
1−qi

)(2si−1)
, where k ∈ (0, 1). We refer to this belief as �k-overcon�dence.�8 If k-

overcon�dence is common knowledge (i.e., each agent is k-overcon�dent and thinks others are

k-overcon�dent, etc.), then it is easy to see that each predecessor's signal realization can be

inferred from the predecessor's action. The agent, however, attributes to each such signal a

lower precision. For instance, consider the case in which the �rst three signals are good. The

�rst agent chooses aOC1 such that
aOC
1

100−aOC
1

=
(

q1
1−q1

)
. Agent 2, however, �discounts� this ac-

tion, since he thinks agent 1 is less able to make the correct inference from the signal. Hence,

after receiving his signal, agent 2, chooses aOC2 such that
aOC
2

100−aOC
2

=
(

q1
1−q1

)k (
q2

1−q2

)
. Agent 3

agrees with agent 2 in reading agent 1's action (and so inferring his signal). Moreover, from

observing action aOC2 , he infers agent 2's signal, since
(

q2
1−q2

)
=

aOC
2

100−aOC
2

(
q1

1−q1

)−k
. He then

�discounts� agent 2's action and chooses aOC3 such that
aOC
3

100−aOC
3

=
(

q1
1−q1

)k (
q2

1−q2

)k (
q3

1−q3

)
.9

We refer to this model of learning as the �overcon�dence model� (OC). The next proposition,

proven in Appendix A, describes the equilibrium of the OC model:

Proposition 4 Suppose agents are k-overcon�dent and this is common knowledge. In equi-

librium, after a sequence of signals {s1, s2, ..., st}, agent t chooses action aOCt = a∗∗∗∗t (s1, s2, ..., st)

such that

aOCt
100− aOCt

=
a∗∗∗∗t (s1, s2, .., st)

100− a∗∗∗∗t (s1, s2, .., st)
= Πt−1

i=1

(
qi

1− qi

)(2si−1)k ( qt
1− qt

)2st−1
,

where k ∈ (0, 1). That is, the agent at time t acts as if he had observed the sequence of all

signals until time t, but attributing precision

(
qi

1−qi

)k

1+
(

qi
1−qi

)k to all predecessors' signals.

To conclude, it is worth making two observations. First, the theories we have presented

di�er in the way agents learn from others and are identical in the way they learn from their

own signal. For all theories, agents update their beliefs upon observing their private signal in

a Bayesian fashion. Social learning is, instead, di�erent since the theories postulate various

ways of forming expectations on the value of the good from others' actions, that is, various

8Note that, in agreement with much literature, we are de�ning overcon�dence in relative terms (the agent
is con�dent that he can interpret the signal better then his predecessors). An alternative de�nition would
be that the agent is even overcon�dent in his own signal, that is, he thinks the signal is more informative
than it is. We will come back to this point in Section 5.

9For the previous models, we have not explicitly discussed whether the precisions qi are private information
or common knowledge. For the PBE this is irrelevant since each action reveals both the signal realization
and its precision. For the BRTNI and ABEE, the precisions do not have to be known either. For the OC
model, one interpretation is that the objective precisions are common knowledge, nevertheless agents use
subjective precisions since they believe the predecessors misread the signal realization with some probability.
However, for the same logic as for the PBE, the precisions do not need to be common knowledge (since,
given that k is common knowledge, agents can infer them from the actions).
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ways of inferring signals from actions.10

Second, while the propositions above express the relation between an agent's action and

his predecessors' signals, the theories also o�er a prediction in terms of relations between an

agent's action and his predecessors' actions. Let us denote agent t's weight on the predecessor

i's signal by βt,i and the weight on the predecessor i's action by γt,i. In other words, let

ln
at

100− at
=

t−1∑
i=1

βt,i(2si − 1) ln

(
qi

1− qi

)
+ (2st − 1) ln

(
qt

1− qt

)
,

ln
at

100− at
=

t−1∑
i=1

γt,i ln

(
ai

100− ai

)
+ (2st − 1) ln

(
qt

1− qt

)
.

We summarize the relations between βt,i's and γt,i's in the next proposition that is proven

in Appendix A.

Proposition 5 Consider the matrix Γ containing the weights γt,i that agent t puts on the

predecessors's actions and the matrix B the matrix containing the weights βt,i that he puts

on the predecessors's signals:

Γ =



1 0 · · · · · · 0

−γ2,1 1 0 · · · 0

−γ3,1 −γ3,2 1 0
.
.
.

.

.

.
. . .

.

.

.

−γt,1 −γt,2 · · · −γt,t−1 1


and B =



1 0 · · · · · · 0

β2,1 1 0 · · · 0

β3,1 β3,2 1 0
.
.
.

.

.

.
. . .

.

.

.

βt,1 βt,2 · · · βt,t−1 1


.

Matrix Γ is the inverse of matrix B: Γ = B−1. Speci�cally, for the equilibrium solutions we

considered, this implies that:

a) In the PBE, agent t chooses action aPBEt such that

aPBEt

100− aPBEt

=
aPBEt−1

100− aPBEt−1

(
qt

1− qt

)2st−1
.

10To have a neat understanding of how people learn from others and of how they use their own signal, as
we discussed in the Introduction, in the experiment we ask each subjects to make two decisions: one after
observing the predecessors' only and another after observing the signal too. The theoretical predictions
concerning the �rst action are given in our propositions by the �rst part of the formulas, excluding the

multiplier
(

qt
1−qt

)2st−1

.
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b) In BRTNI, agent t chooses action aBRTNIt such that

aBRTNIt

100− aBRTNIt

=
∏t−1

i=1

aBRTNIt−i
100− aBRTNIt−i

(
qt

1− qt

)2st−1
.

c) In ABEE, agent t chooses action aABEEt such that

aABEEt

100− aABEEt

=
∏t−1

i=1

(
aABEEt−i

100− aABEEt−i

)sign(sin( t−i
3
π)(

qt
1− qt

)2st−1
,

where the function sign(x) =


+1 if x > 0,

0 if x = 0,

−1 if x < 0.

d) In the OC model, agent t chooses action aOCt such that

aOCt
100− aOCt

=
∏t−1

i=1

(
aOCt−i

100− aOCt−i

)k(1−k)t−i−1 (
qt

1− qt

)2st−1
.

In the PBE, an agent's action is just equal to his immediate predecessor's action (belief)

just updated on the basis of the private signal. All previous actions have no weight since

all the information (i.e., private signals) until time t− 1 is contained in agent t− 1's action.

Agent t would make exactly the same inference if instead of observing the entire sequence of

actions, he only observed the immediate predecessor's action. In the case of BRTNI, instead,

agent t's action depends on all predecessors actions, with equal weight equal to 1. This is

in fact the way BRTNI is constructed: by assumption, agents believe that the predecessors'

actions are chosen on the basis of their private information only. For the ABEE there is no

simple intuition in the action space. The reason is that in the ABEE an action is chosen on

the basis of the aggregate frequencies conditional on the value of the good, and not on the

basis of the sequence. The formula in the proposition shows that actions are weighted in a

cyclical way, as implied by the trigonometric function. Finally, for the OC model, agent t's

action depends on all predecessors actions, but the weights are increasing (so that the early

actions have little weight). Intuitively, note that when k approaches 0, the weight on all

predecessors' actions goes to 0; when k approaches 1, the weight on the predecessors' action

goes to 0, except for the immediate predecessor for which it approaches 1, as in the PBE; for

intermediate values, the weights are increasing: early actions keep counting, but less and less,
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since the information they contain is already partially incorporated in subsequent actions

(otherwise the agent would essentially be inferring the same private signal from more than

one action).

3 The Experiment and the Experimental Design

3.1 The Experiment

We ran the experiment in the ELSE Experimental Laboratory at the Department of Eco-

nomics at University College London (UCL) in the fall 2009, winter 2010 and fall 2011. The

subject pool mainly consisted of undergraduate students in all disciplines at UCL. They

had no previous experience with this experiment. In total, we recruited 267 students. Each

subject participated in one session only.

The sessions started with written instructions given to all subjects (provided in Appendix

D). We explained to participants that they were all receiving the same instructions. Sub-

jects could ask clari�cation questions, which we answered privately. The experiment was

programmed and conducted with a built-on-purpose software.

Here we describe the baseline treatment (SL1). In the next section, we will explain the

experimental design. We ran �ve sessions for this treatment. In each session we used 10

participants. The procedures were the following:

1. Each session consisted of �fteen rounds. At the beginning of each round, the computer

program randomly chose the value of a good. The value was equal to 0 or 100 with

the same probability, independently of previous realizations.

2. In each round we asked all subjects to make decisions in sequence, one after the other.

For each round, the sequence was randomly chosen by the computer software. Each

subject had an equal probability of being chosen in any position in the sequence.

3. Participants were not told the value of the good. They knew, however, that they would

receive information about the value, in the form of a symmetric binary signal. If the

value was equal to 100, a participant would receive a �green ball� with probability 0.7

and a �red ball� with probability 0.3; if the value was equal to 0, the probabilities were

inverted. That is, the green signal corresponded to st = 1 and the red signal to st = 0,

the signal precision qt was equal to 0.7 at any time.

4. As we said, each round consisted of 10 periods. In the �rst period a subject was

randomly chosen to make a decision. He received a signal and chose a number between

0 and 100, up to two decimal points.
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5. The other subjects observed the decision made by the �rst subject on their screens.

The identity of the subject was not revealed.

6. In the second period, a second subject was randomly selected. He was asked to choose

a number between 0 and 100, having observed the �rst subject's choice only.

7. After he had made that choice, he received a signal and had to make a second decision.

This time, therefore, the decision was based on the observation of the predecessor's

action and of the private signal.

8. In the third period, a third subject was randomly selected and asked to make two

decisions, similarly to the second subject: a �rst decision after observing the choice

of the �rst subject and the second choice of the second subject; a second decision

after observing the private signal too. The same procedure was repeated for all the

remaining periods, until all subjects had acted. Hence, each subject, from the second to

the tenth, made two decisions: one after observing the history of all (second) decisions

made by the predecessors; the other after observing the private signal too.

9. At the end of the round, after all 10 subjects had made their decisions, subjects ob-

served a feedback screen, in which they observed the value of the good and their own

payo� for that round. The payo�s were computed as 100− 0.01(V − at)2 of a �ctitious
experimental currency called �lira.� After participants had observed their payo�s and

clicked on an OK button, the software moved on to the next round.

Note that essentially we asked subjects to state their beliefs. To elicit the beliefs, we used

a quadratic scoring function, a quite standard elicitation method. In the instructions, we

followed Nyarko and Schotter (2002) and explained to subjects that to maximize the amount

of money they could expect to gain, it was in their interest to state their true belief.11

As should be clear from this description, compared to the existing experimental litera-

ture on social learning / informational cascades / herd behavior, we made two important

procedural changes. First, in previous experiments subjects were asked to make a decision

in a discrete (typically binary) action space, whereas we ask subjects to choose actions in

a very rich space which practically replicates the continuum. This allows us to elicit their

beliefs, rather than just observing whether they prefer one action to another.12 Second,

11This explanation helps the subjects, since they do not have to solve the maximization problem by
themselves (and to which extent they are able to do so is not the aim of this paper). For a discussion of
methodological issues related to elicitation methods, see the recent survey by Schotter and Trevino (2014).

12Within the discrete action space experiments, exceptions to the binary action space are the �nancial
market experiments of Cipriani and Guarino (2005, 2009) and Drehman et al. (2005) where subjects can
choose to buy, to sell or not to trade. In the interesting experimental design of Çelen and Kariv (2004),
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in previous experiments subjects made one decision after observing both the predecessors'

actions and the signal. In our experiment, instead, they made two decisions, one based on

public information only and one based on the private information as well.13

To compute the �nal payment, we randomly chose (with equal chance) one round among

the �rst �ve, one among rounds 6−10 and one among the last �ve rounds. For each of these

rounds we then chose either decision 1 or decision 2 with equal chance (with the exception of

subject 1, who was paid according to the only decision he made in the round). We summed

up the payo�s obtained in these decisions and, then, converted the sum into pounds at the

exchange rate of 100 liras for 7 GBP. Moreover, we paid a participation fee of £5. Subjects

were paid in cash, in private, at the end of the experiment. On average, in this treatment

subjects earned £21 for a 2 hour experiment.

3.2 Experimental Design

Social Learning (SL). In addition to the social learning treatment (SL1) just described,

we ran a second treatment (SL2) which only di�ered from the �rst because the signal had

a precision which was randomly drawn in the interval [0.7, 0.71] as opposed to having a

constant precision of 0.7 as in SL1. Each subject observed not only the ball color but

also the exact precision of his own signal. A third treatment (SL3) was identical to SL2,

with the exception that instead of having sequences of 10 subjects, we had sequences of 4

subjects. Given the smaller number of subjects, each round lasted less time; for this reason,

we decided to run 30 rounds per session, rather than 15. We have no evidence that the

outcomes from these three treatments are any di�erent. In particular, for each period, we

ran a Wilcoxon rank-sum test on the session-speci�c medians, separately for the �rst and

the second decision taken by subjects. Except in one case, which we attribute to chance, we

never reject the null hypothesis that outcomes come from the same distribution (the results

of these tests are reported in Appendix B). Therefore, we consider the three treatments as

just one experimental condition.14 We will refer to it as the SL treatment.15

subjects choose a cut o� value in a continuous signal space: depending on the realization of the signal, one
of the two actions is implemented (as in a Becker, DeGroot and Marschak, 1964, mechanism). That design
allows the authors to distinguish herd behavior from informational cascades.

13Cipriani and Guarino (2009) use a quasi strategy method, asking subject to make decisions conditional
on either signal they might receive. Still, at each time, a subject never makes a decision based only on the
predecessors' decisions.

14Drawing the precision from the tiny interval [0.7, 0.71], instead of having the simpler set up with �xed
precision equal to 0.7, was in line with models such as Eyster and Rabin (2010) and Guarino and Jehiel (2013),
where the precision is indeed di�erent for each agent. Reducing the length of the sequence to 4 subjects was
instead motivated by the opportuneness to collect more data for the �rst periods of the sequence.

15Since the results of SL1 and SL2 were not statistically di�erent, we did not run more treatments with
signals of di�erent precision. Moreover, as we will see, in the experiment we observed a lot of heterogeneity
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Individual Decision Making (IDM). In the social learning treatments subjects make

decisions after observing private signals and the actions of others. Clearly, we may expect

departures from the PBE even independently of the social learning aspect if subjects do not

update in a Bayesian fashion. To control for this, we ran a treatment in which subjects

observed a sequence of signals and made more than one decision.16 Speci�cally, a subject

received a signal (as subject 1 in the SL treatments) and had to make a choice in the interval

[0, 100]. Then, with a 50% probability, he received another signal and had to make a second

decision (similarly to the second decision of subject 2 in the SL treatments). Then, he could

make two more decisions, and the probability of moving from one decision to the next was

always a 50%. Note that, at the cost of collecting less data, we decided not to ask subjects to

make more than one decision in all rounds. Our purpose was to make the task of the subject

as close possible as possible to that of a subject in the SL treatments. In other words, we

wanted the subject to make his �rst decision not knowing whether he would be asked to

make a second one; the second without knowing whether he could make a third, and so on.

This way, his decisions were made in conditions as close as possible to the SL treatments.

Table 1: Treatments' Features

SL1 SL2 SL3 IDM
Signal precision 0.7 [0.7,0.71] [0.7,0.71] 0.7
Sequence 10 10 4 1 or 2 or 3 or 4
Subjects in a group 10 10 4 -
Groups 5 5 5 -
Participants 50 49 20 30
Rounds 15 15 30 30

SL: Social Learning; IDM: Individual Decision Making. In SL2 there are 49 subjects since
one session was run with 9 participants rather than 10 due to a last minute unavailability
of one subject.

4 Results

Our main objective is to understand how human subjects learn from the observation of their

predecessors' choices (social learning). To this purpose we �rst focus on the �rst action taken

by subjects at any time t > 1 (denoted by a1t ). We will later study how subjects learn from

in subjects' updating after observing the signal, and adding more heterogeneity in precisions would have
just made the experiment computationally more demanding for the subjects (and with less possibilities of
learning).

16This treatment was conducted in the fall 2014. The payment followed the same rules. The exchange
rate was appropriately modi�ed so that, in expectation, subjects could receive a similar amount of money
per hour spent in the laboratory.

17



their own signal together with social learning, by focusing on their second action at any time

t (denoted by a2t ). Note that we use the notation a2t for mnemonic purposes; a2t coincides

with at, as de�ned in Section 2 for the theoretical models (since in that section we only

considered the theoretical action after observing the predecessors and the own signal).

4.1 Inferring Others' Signals

Let us start by considering how the �rst action chosen by a subject at time t > 1 (a1t ) is

in�uenced by the signals received by the subject's predecessors. Of course, the subject does

not observe these signals, but he does observe the actions the predecessors have chosen upon

receiving these signals. The �rst four propositions in Section 2 give very di�erent predictions

on how these signals are weighted. According to the PBE, each signal is correctly inferred

and given an equal weight of 1. According to the redundancy of information neglect model,

early signals have a much higher weight. According to the OC model, the weights are all

equal but lower than 1. To test these di�erent predictions, we run a regression analysis,

focusing on the �rst action at each time. Using the �rst action has the advantage that we do

not need extra assumptions on how subjects update upon receiving their private signal.17We

use median regressions throughout the analysis.

Speci�cally, for each period t = 2, 3, . . . , 10, we regress the loglikelihood ratio of a1t on all

the predecessors' signal likelihood ratios:

ln

(
a1t

100− a1t

)
= βt,1 ln

(
q1

1− q1

)2s1−1

+ βt,2 ln

(
q2

1− q2

)2s2−1

+ . . .

+ βt,t−1 ln

(
qt−1

1− qt−1

)2st−1−1

+ ε1t , (1)

withMed(ε1t |s1, s2, ..., st−1) = 0. Each coe�cient βt,i is the weight given by the median agent

t to signal si (i < t). Subjects in the experiment sometimes choose the extreme values 0 and

100; for the dependent variable to be well de�ned in these cases, we rewrite a1t = 100 as a1t =

100−0.1 and a1t = 0 as a1t = 0.1. Clearly, the choice of 0.1 is arbitrary. This choice, however,

does not a�ect the median of the distribution as far as the proportion of the boundary

actions is less than 1/2. In other words, we use a median regression rather than a linear

regression, since the results of the latter are sensitive to extremely large or small values of the

dependent variable and, hence, to how extreme values of the action are treated in the analysis.

17To give an example, suppose subjects, after observing others' actions, make inferences as in BRTNI.
After receiving the own signal, though, they totally neglect the information coming from others' actions
and only use the information contained in their own signal. If we had elicited the belief only once, after
the subjects receive the private signal, we would conclude that subjects only use their signals and would be
unable to observe this type of inference. We discuss this issue in greater detail in Section 4.3.
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Given the experimental design, we have 300 observations for t = 2, 3, 4; 150 observations for

t = 5, . . . , 9; and 135 for t = 10.18 To account for unobserved correlations among subjects

within each session, we compute bootstrap standard errors (using 500 replications) clustering

at the session level (Hahn, 1995).

Figure 1 shows the estimated coe�cients β̂t,i, and their 95% con�dence intervals. The

estimated coe�cients are systematically below 1, and do not exhibit any tendency to decrease

from early to late periods. As shown in Table 2, the null hypothesis that the weights are

equal to 1 (as in the PBE) is rejected at conventional signi�cance levels. We �nd even

stronger evidence against the hypothesis that the βt,i coe�cients take values according to

the BRTNI and the ABEE predictions. On the other hand, the null hypothesis that weights

are constant across periods is never rejected at the 5% signi�cance level. These results reject

the PBE as well as the redundancy of information neglect model predictions. Instead, they

do not falsify the OC model.

We estimate the �degree of overcon�dence� k, under the hypothesis that at any time t

the weight is constant for all signals 1, 2, t − 1, as predicted by the OC model. Table 3

reports the results. Estimates are signi�cantly lower than 1 for all periods, approximately

between 0.4 and 0.6. Note that our theoretical OC model imposes a further restriction, that

is, that the parameter k is the same across periods. When we impose the further restriction

that the parameter k is the same across periods, we obtain an estimate of 0.49 (last row of

Table 3). Hence, subjects put on a predecessor's signal approximately half the weight that a

Bayesian agent would put on a signal he would directly observe. Testing the null hypothesis

that the parameters k are all equal across periods gives a p-value of 0.09, that is we cannot

reject the hypothesis that the parameters are equal (at 5%). It is rather remarkable that the

degree of overcon�dence remains constant over time. One may suspect that the inference

problem becomes more complicated for later decision makers in the sequence, and that, as

a consequence, subjects attribute a lower information content to later predecessors' actions.

This is not what the experimental data indicate. Perhaps, subjects just form an expectation

on how signals are re�ected in each action and attribute it to all the actions they observe.

So far we have estimated equation (1) and the parameter k using all predecessors' signals.

One could observe that in some cases subjects did not have a chance to infer the signal from

the action. Consider, for instance, a subject in period 2 who observed a1 = 50. Since the

belief stated by subject 1 is identical to the prior, it was impossible to infer his signal.19

18Recall that in one the session we had 9 rather than 10 subjects due to a last minute no show up by one
subject.

19This is true even looking at the frequencies. Empirically, the choice of action 50 in period 1 was only
slightly more frequent upon receiving a bad signal than a good one. Knowing these frequencies, the posterior
belief upon observing action 50 at time 1 would have been 0.54.

19



Table 2: Hypothesis Testing: Weights on Predecessors' Signals (p-values)
Dependent Variable: Action 1 (loglikelihood ratio)

HPBE
0 : HBRTNI

0 :
βt,1 = · · · = βt,t−1 = 1 βt,i = 2t−i−1 ∀i = 1, . . . , t− 1

Period 2 0.035 0.035
Period 3 0.000 0.000
Period 4 0.023 0.000
Period 5 0.000 0.000
Period 6 0.000 0.000
Period 7 0.000 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000
Period 10 0.003 0.000

HABEE
0 : HOC

0 :
βt,i = t− i ∀i = 1, . . . , t− 1 βt,1 = · · · = βt,t−1

Period 2 0.035 ·
Period 3 0.000 0.871
Period 4 0.000 0.098
Period 5 0.000 0.986
Period 6 0.000 0.857
Period 7 0.000 0.805
Period 8 0.000 0.830
Period 9 0.000 0.921
Period 10 0.000 0.262

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.

Table 3: Median Regressions of Action 1 on Predecessors' Signals:
Estimation of k under HOC

0 : βt,1 = · · · = βt,t−1

95% Con�dence Interval

k̂ lower limit upper limit

Period 2 0.653 0.261 0.975
Period 3 0.635 0.508 0.874
Period 4 0.674 0.503 0.997
Period 5 0.504 0.332 0.664
Period 6 0.416 0.142 0.706
Period 7 0.404 0.180 0.648
Period 8 0.358 0.200 0.554
Period 9 0.381 0.257 0.649
Period 10 0.489 0.301 0.997

All 0.488 0.327 0.706

The table reports 95% con�dence intervals obtained with bootstrap (500 replications),
clustering at the session level.
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Figure 1: Median Regressions of Action 1 on Predecessors' Signals
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The �gure shows the estimated coe�cients from a median regression of �rst action log-
likelihood ratios on predecessors' signal loglikelihood ratios. For each period t = 1, . . . , 10,
predecessors' signals, si, i = 1, . . . , t− 1, are on the x-axis; corresponding point estimates
and 95% con�dence intervals are on the y-axis, represented by black dots and dashed
capped lines, respectively. Con�dence intervals are computed by bootstrap (500 replica-
tions), clustering at the session level.

To tackle this issue and check the robustness of our �ndings, we repeat our entire analysis

after excluding the cases in which an action was, presumably, uninformative. For instance,

we exclude the cases in which a1 = 50 and a2t = a2t−1 for t ≥ 2. The results do not change

compared to the present ones. We refer the reader to Appendix C, where we discuss the

precise methodology adopted and report the corresponding results.

4.2 Inferring Others' Signals: A Heuristic Approach

The previous results suggest that the data from the laboratory are consistent with the OC

model. One may wonder how subjects whose way of reasoning is similar to that of the OC

model infer signals from actions. The question is relevant, since in the previous analysis we

used the true signal realizations, which are observed by us but not by the subjects themselves.

While in the laboratory there is noise, it seems natural to think that if the OC model

well represents subject's way of thinking, subjects reconstructed the sequence of signals by
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Table 4: Hypothesis Testing: Weights on Predecessors' Signals (p-values)

Dependent Variable: Action 1 (loglikelihood ratio)

Predecessors' Signals Inferred Heuristically

HOC
0 :

βt,1 = · · · = βt,t−1

Period 2 ·
Period 3 0.605
Period 4 0.558
Period 5 0.999
Period 6 0.372
Period 7 0.673
Period 8 0.451
Period 9 0.152
Period 10 0.904

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.

inferring a signal si = 0 (= 1) whenever the observed action a2i was closer to the theoretical

action aOCi conditional on a signal 0 (1) than to the theoretical action aOCi conditional on a

signal 1 (0). If that were the case, is it still true that the OC model is consistent with the

data? To test this hypothesis, we now repeat the regression in equation (1) by substituting

the true signal realizations with the signals constructed according to this heuristic, using the

estimated value of the �degree of overcon�dence� k = 0.488.20 Figure 2 and Table 4 report

the results.

As one can observe from Table 4, again the OC model is not rejected by the data. Figure

2, while not perfectly identical to Figure 1, still indicates that for most periods the weight

on the predecessors' signals is systematically lower than 1. We will come back to the relation

between a subject's action and the predecessors' actions. For the time being, we notice

that this heuristic lends more credibility to the fact that the OC model well summarizes

subjects' behavior in the laboratory, since this model is not rejected by the data even when

we reconstruct the signals on the basis of the model itself.

4.3 Inferring Others' Signals and Learning from the Own Signal

While the previous results are compatible with the OC model, we still have to verify how

subjects update their belief upon receiving their own signal. Recall that according to the

20In Section 4.5 we study how subjects' actions are related to predecessors' actions rather than signals. In
this case, we estimate a �degree of overcon�dence� k = 0.320. The results presented in Figure 2 and Table 4
remain essentially unchanged when we use the estimate k = 0.320.
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Figure 2: Median Regressions of Action 1 on Predecessors' Signals:

A Heuristic Approach (Estimated Weights)
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The �gure shows the estimated coe�cients from a median regression of �rst action loglikeli-
hood ratios on predecessors' signal loglikelihood ratios. For each period t = 1, . . . , 9, a pre-
decessor's signal is si if

∣∣a2i − aOCi (si)
∣∣ < ∣∣a2i − aOCi (1− si)

∣∣ or 1− si if
∣∣a2i − aOCi (si)

∣∣ >∣∣a2i − aOCi (1− si)
∣∣, where aOCi (si) is the theoretical action a

OC
i conditional on the realiza-

tion of the signal. For each period t = 1, . . . , 10, predecessors' signals, si, i = 1, . . . , t− 1,
are on the x-axis; corresponding point estimates and 95% con�dence intervals are on
the y-axis, represented by black dots and dashed capped lines, respectively. Con�dence
intervals are computed by bootstrap (500 replications), clustering at the session level.
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Figure 3: Median Regressions of Action 2 on Own and Predecessors' Signals

(Estimated Weights)
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The �gure shows the estimated coe�cients from a median regression of second action
loglikelihood ratios on own and predecessors' signal loglikelihood ratios. For each period
t = 1, . . . , 10, predecessors' signals, si, i = 1, . . . , t−1, and own signal, st, are on the x-axis;
corresponding point estimates and 95% con�dence intervals are on the y-axis, represented
by black dots and dashed capped lines, respectively. Con�dence intervals are computed
by bootstrap (500 replications), clustering at the session level.

OC model, agents, whereas attributing a lower weight to the predecessors' signals, weigh

their own signal correctly. To investigate this issue, we now study how subjects chose their

second action, a2t . Speci�cally, for each period t = 2, 3, . . . , 10, we regress the loglikelihood

ratio of a2t on all the predecessors' signal likelihood ratios and on the own signal likelihood

ratio:

ln

(
a2t

100− a2t

)
= βt,1 ln

(
q1

1− q1

)2s1−1
+ βt,2 ln

(
q2

1− q2

)2s2−1
+ . . .

+ βt,t−1 ln

(
qt−1

1− qt−1

)2st−1−1
+ βt,t ln

(
qt

1− qt

)2st−1
+ ε2t . (2)

As one can see from Figure 3, for each period t, the weight on the own signal is very

close to 1 (and statistically not di�erent from 1), with the only exception of period 10, for

which it is actually higher than 1. The results of the hypothesis testing reported in Table 5

reveal that the predictions of the PBE, BRTNI and ABEE are again strongly rejected by the
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data � with the trivial exception of period 1, in which there is no social learning, and that

of period 7 for the PBE, which, in the absence of a clear pattern, may well be attributed

to chance. We �nd, instead, support for the predictions of the OC model, which are not

rejected by the data at any period, except for period 10. In view of the results presented in

Table 3 for the weights on predecessors' signals, the rejection of the OC model in period 10

is presumably due to the weight on the own signal being even higher than 1.

In the interest of space, we do not report the �degree of overcon�dence� k estimated using

action 2. We simply note that the results are in line with those in Table 3 obtained using

action 1. In particular, when we impose the restriction that the parameter k is the same

across periods, we obtain an estimated value of 0.57.

An interesting and important question is whether the weight given by subjects to pre-

decessors' signals is the same before and after observing their own signal. To answer this

question, we test whether the coe�cients of the regression equations (1) and (2) are the same.

That is, for each turn we estimate the median regressions (1) and (2) and then test whether

pair-wise di�erences between coe�cients on predecessors' signals across the two regressions

are statistically di�erent from zero. Again we adopt a bootstrap procedure with standard

errors clustered at the session level. We �nd strong evidence in favor of the null, which is

never rejected for any pair of coe�cients across turns.

Under the assumption (backed by the data) that the median regression coe�cients in

equations (1) and (2) are the same, subtracting (2) from (1) gives

ln

(
a2t

100− a2t

)
− ln

(
a1t

100− a1t

)
= βt,t ln

(
qt

1− qt

)2st−1

+ ε2t − ε1t .

If ε2t − ε1t is median zero conditional on (s1, . . . , st) � a su�cient condition for it is that ε1t
and ε2t are i.i.d., symmetrically and unimodally distributed around zero � then the median

regression of the update from the �rst to the second belief depends only on the current signal

and not on the past signals. We have tested this implication by regressing the di�erence

between the loglikelihood ratio of a2t and the loglikelihood ratio of a1t on predecessors' and

own signal likelihood ratios. We �nd that the weight on the own signal is very close to 1

and not statistically di�erent from 1 across turns (except for turn 9, where the estimated

coe�cient is 0.54 with a 95% con�dence interval ranging from 0.20 to 0.87). Importantly,

the weights on predecessors' signals are small in magnitudes and rarely statistically di�erent

from zero. Overall, predecessors' signals have no predictive power for the update from action

1 to action 2, as the joint null hypothesis that all coe�cients on predecessors' signal are zero

is not rejected. The only exceptions are turn 5 and turn 9. In both cases, however, while we

reject the hypothesis that predecessors' signals have no explanatory power, the estimated
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Table 5: Hypothesis Testing: Weights on Own and Predecessors' Signals (p-values)

Dependent Variable: Action 2 (loglikelihood ratio)

HPBE
0 : HBRTNI

0 :
βt,1 = · · · = βt,t = 1 βt,i = 2t−i−1 ∀i = 1, . . . , t− 1,

βt,t = 1

Period 1 0.977 0.977
Period 2 0.000 0.000
Period 3 0.000 0.000
Period 4 0.040 0.000
Period 5 0.006 0.000
Period 6 0.000 0.000
Period 7 0.301 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000
Period 10 0.000 0.000

HABEE
0 : HOC

0 :
βt,i = t− i ∀i = 1, . . . , t− 1, βt,1 = · · · = βt,t−1,

βt,t = 1 βt,t = 1

Period 1 0.977 0.977
Period 2 0.000 0.376†

Period 3 0.000 0.414
Period 4 0.000 0.584
Period 5 0.000 0.994
Period 6 0.000 0.940
Period 7 0.000 0.941
Period 8 0.000 0.232
Period 9 0.000 0.887
Period 10 0.000 0.004

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level. †: the reported p-value refers to the null hypothesis that β2,2 = 1,
while β2,1 can take any value. We also compute the value of β2,1 that minimizes the
quantile regression criterion function, under the constraint that β2,2 = 1. We obtain a
value of β2,1 = 0.476 with a bootstrap 95% con�dence interval of [0.322, 0.630].
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coe�cients appear relatively small in value.

In summary, our analyses show that the median subject puts the correct weight of 1 on

his own signal and approximately half the weight on his predecessors' signals.21

4.4 A Control: Inferring from a Sequence of Signals

In our experiment, the private signal also happens to be the latest piece of information

subjects receive before making their decision. One may wonder whether a tendency of

human subjects to put more weight on the most recent piece of information, could explain

(or, at least, a�ect) our results. It could be that, independently of social learning, subjects

put more weight on the latest signal, compared to previous information.

Figure 4: Median Regressions of Action on Own Signals in IDM Treatment
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The �gure shows the estimated coe�cients from a median regression of subjects' action
loglikelihood ratios on own signal loglikelihood ratios. For each period t = 1, 2, 3, 4, own
signals, st, are on the x-axis; corresponding point estimates and 95% con�dence intervals
are on the y-axis, represented by black dots and dashed capped lines, respectively. Con-
�dence intervals are computed by bootstrap (500 replications), clustering at the session
level.

To check for this possibility and, more generally, for deviation from equilibrium due to

behavioral departures from Bayesian updating, we ran a treatment in which subjects observed

directly a sequence of signals (IDM treatment). Figure 4 shows the results. Subjects put

21One may think that by eliciting beliefs twice, we make subjects pay more attention to the information
content of the predecessors' actions. Also psychological biases such as the con�rmation bias may induce
subjects to discount the own signal, received only after forming a belief by observing others. If this were the
case, our experimental design would over-estimate the weight put on the predecessors' actions, that is, bias
the results against the OC model.
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the same weight on all signals, a result which holds at any period. While the weight is not

signi�cantly di�erent from 1 for the �rst three periods, it is signi�cantly higher in period 4

(the p-value for the hypothesis that all weights are equal to 1 in period 4 is 0.00). The result

is, however, a�ected by subjects choosing extreme actions (0 or 100) after four signals of the

same color. If we exclude these cases, the weights are again not signi�cantly di�erent from

1 (p-value of 0.30).

Overall, the results of this treatment con�rm that our �ndings in the SL treatment are

indeed related to how they learn from the actions of others, and not to subjective beliefs on

signal precisions or to behavioral departures from Bayesian updating (which would emerge

even when subjects directly receive information rather than having to infer it from others'

actions).

4.5 Social Learning

In Section 4.1 we have o�ered a direct test of our �rst four theoretical propositions. In Section

4.2 we have proposed a heuristic for inferring signals from actions consistent with the OC

model and shown that it lends further support to the results previously obtained. Now, we

take one more step and study how subject t's action is related not to his predecessors' signals

(true or as inferred through a heuristic), but to his predecessors' actions. There are various

reasons to do this. First, the predecessors' actions is what a subject actually observes.

Second, this analysis can reveal a behavior not detectable by focusing on signals. As an

example, suppose subject 4 forms expectations as in the PBE, and chooses the action as in

the PBE. Suppose he observes a sequence of actions 70, 83, 70. He then chooses 70, which is

consistent with the PBE. If, however, subject 3 had received the good signal and not the bad

signal (and not used his signal as in the PBE), by studying the relation between actions and

predecessors' signals we would not classify subject 4's action as PBE.22 For PBE and BRTNI

this analysis o�ers a more immediate test of the theories, since the PBE predicts that only

the immediate predecessor's action matter (a2t = a2t−1), and BRTNI predicts that subjects

take actions as signals. Essentially, focusing on the signals is equivalent to a joint test: a

test that subjects form expectations from predecessors' actions as the theoretical models

predict, and that predecessors use their own signals as the models predict. By studying the

relation between an action and the predecessors' actions, instead, we do not need to rely on

assumptions or heuristics on how subjects relate predecessors' actions to their signals. This

22Of course, there is a merit in studying the relation with signals, as we did before. Consider the case in
which the �rst three signals are all good and the sequence of actions is 70, 99, 93. Subject 4 could infer that all
three signals were good (the third subject corrected the overreaction by subject 2) and act as in a PBE. The
PBE prediction would not be falsi�ed by considering the relation between an actions and the predecessors'
signals, whereas it would be by considering that between an action and the predecessors' actions.
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Figure 5: Median Regressions of Action 1 on Predecessors' Action 2

(Estimated Weights)
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The �gure shows the estimated coe�cients from a median regression of �rst action log-
likelihood ratios on predecessors' second action loglikelihood ratios. For each period
t = 1, . . . , 10, predecessors' actions, a2i , i = 1, . . . , t − 1, are on the x-axis; corresponding
point estimates and 95% con�dence intervals are on the y-axis, represented by black dots
and dashed capped lines, respectively. Con�dence intervals are computed by bootstrap
(500 replications), clustering at the session level.

analysis o�ers a test of the predictions described in Proposition 5.

Recall, that in the PBE only the immediate predecessor's action is relevant for the choice

of action a1t (all other actions have zero weight). According to BRTNI, instead, all previous

actions have an equal weight of 1. The OC model predicts a speci�c relation between the

action taken at time t and the predecessors' actions, with early actions having less weight

than late ones.

To test these predictions, we estimate the following regression equations:

ln

(
a1t

100− a1t

)
= γt,1 ln

(
a21

100− a21

)
+ γt,2 ln

(
a22

100− a22

)
+ . . .

+ γt,t−1 ln

(
a2t−1

100− a2t−1

)
+ ε1t . (3)
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Table 6: Hypothesis Testing: Weights on Predecessors' Action 2 (p-values)
Dependent Variable: Action 1 (loglikelihood ratio)

HPBE
0 : HBRTNI

0 :
γt,1 = · · · = γt,t−2 = 0, γt,1 = · · · = γt,t−1 = 1

γt,t−1 = 1

Period 2 0.000 0.000
Period 3 0.000 0.000
Period 4 0.000 0.000
Period 5 0.000 0.000
Period 6 0.000 0.000
Period 7 0.000 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000
Period 10 0.000 0.000

HABEE
0 : HOC

0 :
γt,i = sign(sin( t−i

3 π)) γt,i = γt−1(1− γt−1)t−i−1

∀i = 1, . . . , t− 1 ∀i = 1, . . . , t− 1

Period 2 0.000 ·
Period 3 0.000 0.111
Period 4 0.000 0.251
Period 5 0.000 0.234
Period 6 0.000 0.523
Period 7 0.000 0.134
Period 8 0.000 0.867
Period 9 0.000 0.028
Period 10 0.000 0.591

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.

ln

(
a1t

100− a1t

)
= γt,1 ln

(
a21

100− a21

)
+ γt,2 ln

(
a22

100− a22

)
+ . . .

+ γt,t−1 ln

(
a2t−1

100− a2t−1

)
+ γt,t ln

(
qt

1− qt

)2st−1

+ ε1t . (4)

Note that for the right-hand-side variables, we approximate a2t = 100 as a2t = 100− 0.1 and

a2t = 0 as a2t = 0.1 (the same approximation remains true for the dependent variable, as

explained in the previous subsection).

The results of the estimation of equation (3) are shown in Figure 5 and Tables 6-7. They

con�rm our previous �ndings: while the data are at odds with the PBE, the BRTNI and the

ABEE, they support the predictions of the OC model. Speci�cally, the estimated coe�cients

on the predecessors' actions exhibit a somewhat increasing pattern, as suggested by the OC
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Figure 6: Median Regressions of Action 2 on Predecessors' Action 2

and Own Signal (Estimated Weights)
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The �gure shows the estimated coe�cients from a median regression of second action
loglikelihood ratios on predecessors' second action loglikelihood ratios and own signal log-
likelihood ratios. For each period t = 1, . . . , 10, predecessors' actions, a2i , i = 1, . . . , t− 1,
and own signal, st, are on the x-axis; corresponding point estimates and 95% con�dence
intervals are on the y-axis, represented by black dots and dashed capped lines, respec-
tively. Con�dence intervals are computed by bootstrap (500 replications), clustering at
the session level.

model, which is more marked in periods 2− 5. The estimates of the k parameter are again

lower than 1 and actually typically lower than the estimates from the regressions of actions

on predecessors' signals, although for most periods, and overall (when we assume that k is

constant across periods), the estimates obtained from the two di�erent regressions are not

statistically di�erent from each other.23

Finally, in Figure 6 and Table 8 we report the results of the estimation of equation (4).

Once again, the data are in contrast with the PBE, the BRTNI and the ABEE, but not with

the OC model.24 This model is never rejected, except for period 10, presumably because the

estimated coe�cient on the own signal takes a larger value than 1.

23In the case of constant k, the p-value is 0.08.
24It is worth mentioning that whereas in the social learning literature, as in much psychological literature,

researchers have talked about �overncon�dence,� in other experimental studies subjects show �undercon�-
dence.� In particular, in experiments on decision making with naive advice, it has been observed that �when
given a choice between getting advice or the information upon which the advice is based, subjects tend to
opt for the advice, indicating a kind of undercon�dence in their decision making abilities [...]� (Schotter,
2003). Our result is in favour of overcon�dence and at odds with undercon�dence.
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Table 7: Median Regressions of Action 1 on Predecessors' Action 2:
Estimation of k under HOC

0 : γt,i = γt−1(1− γt−1)t−i−1 ∀i = 1, . . . , t− 1

95% Con�dence Interval

k̂ lower limit upper limit

Period 3 0.469 0.204 0.598
Period 4 0.580 0.248 0.840
Period 5 0.154 0.127 0.394
Period 6 0.154 0.077 0.801
Period 7 0.248 0.104 0.717
Period 8 0.180 0.083 0.745
Period 9 0.324 0.102 0.430
Period 10 0.211 0.132 0.336

All 0.320 0.156 0.526

The table reports 95% con�dence intervals obtained with bootstrap (500 replications),
clustering at the session level.

4.6 E�ciency and Convergence

At last, we want to study the consequences of the observed behavior in the laboratory

in terms of learning (in)e�ciency. The PBE o�ers a benchmark for e�cient learning: in

the PBE, each agent perfectly infers the signals from the predecessors' action and uses

the information to choose the optimal action. The private information is aggregated and,

eventually, agents learn the true value of the good almost surely. In the other theoretical

models we have presented, in contrast, there are ine�ciencies, due to the incorrect beliefs

agents form. Asymptotic convergence to the realized value occurs in the other theoretical

models, with the exception of BRTNI, where, given the extreme overweight of early actions,

beliefs can converge to the incorrect value of the good (Eyster and Rabin, 2010). While in

our experiment, with sequences of 4 or 10 signals, we cannot study asymptotic convergence

to the realized value, still we can compare the stated beliefs with the PBE ones. We proceed

in two ways. First, to study e�ciency, we compare, period by period, the realized average

payo�s with the expected theoretical payo�s under PBE. Second, we look at the distance

between stated and PBE beliefs at the end of the sequence of decision making (i.e., period

4 in treatment SL3 and period 10 in treatments SL1 and SL2).

Figure 7 reports the average realized per-period payo� as a ratio of the average payo�

subjects would have obtained, had they played as in the PBE.25 In round 1, subjects earn

96% of what is potentially obtainable. Over rounds, this percentage declines but only slightly,

to over around 90% in the �nal periods of the experiment. The �gure also reports the ratio

25In toehr words, for each period t, the PBE payo� is computed as 100 − 0.01
(
V − aPBE

ti

)2
for each

observation i and averaging across all observations.
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Table 8: Hypothesis Testing: Weights on Predecessors' Action 2

and Own Signal (p-values)

Dependent Variable: Action 2 (loglikelihood ratio)

HPBE
0 : HBRTNI

0 :
γt,1 = · · · = γt,t−2 = 0, γt,1 = · · · = γt,t−1 = 1

γt,t−1 = 1 βt,t = 1

βt,t = 1

Period 2 0.000 0.000
Period 3 0.000 0.000
Period 4 0.000 0.000
Period 5 0.002 0.000
Period 6 0.000 0.000
Period 7 0.016 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000
Period 10 0.000 0.000

HABEE
0 : HOC

0 :
γt,i = sign(sin( t−i

3 π)) γt,i = γt−1(1− γt−1)t−i−1

∀i = 1, . . . , t− 1 ∀i = 1, . . . , t− 1

βt,t = 1 βt,t = 1

Period 2 0.000 ·
Period 3 0.000 0.170
Period 4 0.000 0.143
Period 5 0.000 0.402
Period 6 0.000 0.944
Period 7 0.000 0.477
Period 8 0.000 0.862
Period 9 0.000 0.164
Period 10 0.000 0.017

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.
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Figure 7: Ratio of Average Payo� to Average PBE Payo�
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To compute payo�s under the OC model, we assume a value of the overcon�dence k
parameter equal to 0.488 (last row in Table 3).

between the average OC, ABEE and BRTNI payo�s and the average PBE payo�s.26 Note

that the OC model predicts a slightly higher e�ciency than the realized one. This is true

even at time 1, however, when, according to the model learning is fully e�cient (since the

inference from the signal is always correct). Although, as we have seen, the median action

at time 1 is in line with the PBE (and so is e�cient), there is heterogeneity in the actions,

and this determines the loss in e�ciency (as highlighted by the realized payo�s). This loss

is approximately constant over periods, as one can notice by comparing the blue solid line

and the orange dashed line. In other words, once we take into account this loss of e�ciency

due to the heterogenous use of the own signal, the OC model predicts the ine�ciency in the

data remarkably well. The BRTNI model, instead, predicts a marked reduction in e�ciency

(red dotted line) that we do not observe in the data.

Figure 8 reports the histogram of the distance between stated beliefs (as measured by a2t )

and PBE beliefs in the last period of decision making (i.e., period 4 in SL3 and period 10 in

SL1 and SL2). The distance is computed as the absolute value of the di�erence between the

two beliefs. A distance lower than 5 occurred in 33% of the cases in period 4 (SL3) and in

44% of the cases in period 10 (SL1 and SL2), indicating also a process of convergence over

time. Overall, while the underweight of the predecessors' signals poses a limit to a perfect

26The average theoretical payo�s are computed analogously to what explained in the previous footnote for
the PBE. For the OC model, we used the estimated value k = 0.320.
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Figure 8: Distance between Stated and PBE Beliefs
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convergence, the cases in which the inference is strongly incorrect are few, as shown by the

low occurrence of instances in which the distance is higher than 50.

5 Discussion and Conclusions

To conclude, it is worth discussing some aspects of our experiment and our results.

First, our OC model assumes the overcon�dence parameter k to be common knowledge

among players. Such assumption, while strong, is shared by a number of other papers,

for example about bargaining (see, Yildiz, 2003, 2011). Other assumptions would sound

plausible as well, for example allowing the k parameter to be heterogeneous among agents or

allowing agents to entertain subjective beliefs about the ability of others to correctly observe

(or interpret) the actions of their predecessors. The main rationales for our OC speci�cation

are that the model is simple (it depends on just one parameter, k) and it explains the data

well.

Second, as we pointed out in Section 2, our OC model describes agents who are overcon-

�dent in a relative form: they believe they have a higher ability to understand the private

signal (or to act upon it) than their predecessors. An alternative de�nition of overcon�dence

is in absolute value, that is, the agent is overcon�dent in his own signal, attributing to it

a precision higher than the objective one. The results of our experiments support relative

overcon�dence and not overcon�dence in the own signal. The clearest evidence that overcon-

�dence in the own signal is rejected is at time 1, since the subject only observes his signal and

does not have to weigh his signal relative to other information: as we have shown in Figure

2, the estimated coe�cient for time 1 is 1, indicating that the median action is perfectly in

line with the Bayesian one (and there is no overcon�dence). The estimated coe�cients at
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later periods con�rm this �nding.

Third, our OC model shares some similarity with the Quantal Response Equilibrium

(QRE; McKelvey and Palfrey, 1995), in that both allow agents to believe that others make

mistakes. In the QRE, however, there is the extra restriction that beliefs about the error

rates are correct, a restriction not imposed in our analysis. As a matter of fact, the restriction

is also rejected by the data. The cases in which subjects updated in the wrong direction

(i.e., a2t > a1t after observing a bad signal or a2t > a1t after observing a good signal) amount

to only 6% (a percentage approximately constant across periods). In this respect, our OC

model is similar in spirit to the Subjective Quantal Response Equilibrium (SQRE; Goeree

et al., chapter 3), in which agents may have a misconceived (or subjective) view about the

noise parameter de�ning the distribution of mistakes of the other agents. Our OC model is

in line with such an extension of QRE. Yet, it is simpler while providing a good �t for the

observed data.

Fourth, De Filippis et al. (2018) use some of the experimental data analysed in this paper

and other experiments to show that at time 2 subjects update their private information in an

asymmetric way, depending on whether it con�rms or contradicts the belief formed on the

observation of time 1's action only. De Filippis et al. (2018) study this issue at a considerable

level of detail in that paper, since it is an important aspect of the updating used by subjects.

In the present analysis, in which we study decisions at any time, we have abstracted from this

issue. Our focus here is on social learning, that is, on how subjects learn from others (and

form their ��rst belief,� a1t ) rather than on how they update on their private information (and

form their �posterior belief,� a2t ). Moreover, while at time 2 the meaning of contradicting

and con�rming signal is well de�ned, (since there is just one predecessor) at later periods

it becomes less clear. In an attempt to �t the data better, one could, perhaps, incorporate

asymmetric updating in our framework, but our results seem already to be clearly supporting

one model and rejecting others.

Fifth, while we have formally tested BRTNI, our results are clearly at odds with any

model of information redundancy neglect. Our analysis shows that early actions do not

have a disproportionate e�ect on later decisions (early signals have the same weight as later

signals). Therefore, our results should not be considered as a rejection of the speci�c way

redundancy neglect is modelled in BRTNI, but rather as an illustration that at least in the

context studied in our experiment subjects do not seem to show redundancy neglect.

Finally, for the ABEE, it is perhaps not so surprising that it does not o�er good predic-

tions in this type of experiment. The assumption that agents only consider the aggregate

frequencies of actions seems plausible in real world contexts, in which access to other statis-

tics may even be di�cult, but is less plausible in a laboratory experiment in which a subject
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stares at the sequence of actions other participants have chosen before him. It could be inter-

esting to study whether presenting subjects with aggregate statistics changed their behavior

and made it more in line with the ABEE. This is left for future research.
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Appendix (for online publication)

A Proofs

Proof of Proposition 4

The proposition can be proven in a recursive way. Agent 1 only observes his signal and

chooses
aOC1

100− aOC1

=
a∗∗∗∗1 (s1)

100− a∗∗∗∗1 (s1)
=

(
q1

1− q1

)2st−1
.

Agent 2 observes aOC1 and infers the signal realization, since an action greater (lower)

than 50 can only be taken after observing a good (bad) signal. By the assumption of �k-

overcon�dence,� he has subjective expectations on the predecessor's signal precision, and the

likelihood ratio after observing the action is
(

q1
1−q1

)(2s1−1)k
rather than

(
q1

1−q1

)(2s1−1)
. Hence,

aOC2

100− aOC2

=
a∗∗∗∗2 (s1, s2)

100− a∗∗∗∗2 (s1, s2)
=

(
q1

1− q1

)(2s1−1)k ( q2
1− q2

)2s2−1
.

Note that this is equivalent to attributing precision

(
q1

1−q1

)k

1+
(

q1
1−q1

)k to the predecessor's signals.

Since k-overcon�dence is common knowledge, agent 3 infers the signal realizations from the

observation of aOC1 and aOC2 (since aOC2 > aOC1 is only possible after observing a signal s2 = 1,

and aOC2 < aOC1 after observing a signal s2 = 0) and again uses subjective expectations for

the precision of both, thus choosing aOC3 such that

aOC3

100− aOC3

=
a∗∗∗∗3 (s1, s2, s3)

100− a∗∗∗∗3 (s1, s2, s3)
= Π2

i=1

(
qi

1− qi

)(2si−1)k ( q3
1− q3

)2s3−1
.

The same steps apply to any further agent t = 4, 5, ..., T .

Proof of Proposition 5

Let us de�ne l(x) := log x
1−x . First, observe that, for each t ≥ 2, the β coe�cients are

determined by the following equations:

l(a21) = (2s1 − 1) l(q1),

l(a22) = β2,1 (2s1 − 1) l(q1) + (2s2 − 1) l(q2)

...

l(a2t ) = βt,1 (2s1 − 1) l(q1) + · · ·+ βt,t−1(2st − 1)l(qt−1) + (2st − 1) l(qt).
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In matrix notation, 
l(a21)

l(a22)
...

l(a2t )

 = B ·


(2s1 − 1)l(q1)

(2s2 − 1)l(q2)
...

(2st − 1)l(q2)

 , (A.1)

where B is the t× t lower triangular matrix

B =



1 0 · · · · · · 0

β2,1 1 0 · · · 0

β3,1 β3,2 1 0
...

...
. . .

...

βt,1 βt,2 · · · βt,t−1 1


.

Similarly, the γ coe�cients are de�ned by the following equations:

l(a21) = (2s1 − 1) l(q1),

l(a22) = γ2,1l(a
2
1) + (2s2 − 1) l(q2),

...

l(a2t ) = γt,1l(a
2
1) + · · ·+ γt,t−1(2st − 1)l(a2t−1) + (2st − 1) l(qt).

In matrix notation,

Γ


l(a21)

l(a22)
...

l(a2t )

 =


(2s1 − 1)l(q1)

(2s2 − 1)l(q2)
...

(2st − 1)l(q2)

 ,

where Γ is the t× t lower triangular matrix containing γ coe�cients,

Γ =



1 0 · · · · · · 0

−γ2,1 1 0 · · · 0

−γ3,1 −γ3,2 1 0
...

...
. . .

...

−γt,1 −γt,2 · · · −γt,t−1 1


. (A.2)

By comparing (A.1) with (A.2), one can see that, since B is nonsingular, Γ = B−1 must

hold. Hence, for l < t, −γt,l is given by the [t, l]-element of B−1.

The closed form solutions for γy,i for each theory can also be obtained in a recursive way.
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For the PBE, note that agent t chooses action aPBEt such that

a∗t (s1, s2, .., st)

100− a∗t (s1, s2, .., st)
= Πt

i=1

(
qi

1− qi

)2si−1
=

Πt−1
i=1

(
qi

1− qi

)2si−1( qt
1− qt

)2st−1
=

a∗t−1(s1, s2, .., st−1)

100− a∗t−1(s1, s2, .., st−1)

(
qt

1− qt

)2st−1
.

1. For BRTNI, observe that, by assumption, agent t chooses action aBRTNIt such that

aBRTNIt

100− aBRTNIt

=
∏t−1

i=1

aBRTNIt−i
100− aBRTNIt−i

(
qt

1− qt

)2st−1
.

(Indeed, Eyster and Rabin (2009) derive the β coe�cients from this formula).

In the OC model, agent 2 chooses action aOC2 such that

aOC2

100− aOC2

=

(
q1

1− q1

)(2s1−1)k ( q2
1− q2

)2s2−1
=(

aOC1

100− aOC1

)k (
q2

1− q2

)2s2−1
.

Agent 3 chooses action aOC3 such that

aOC3

100− aOC3

= Π2
i=1

(
qi

1− qi

)(2si−1)k ( q3
1− q3

)2s3−1
=(

aOC1

100− aOC1

)k (
q2

1− q2

)(2s2−1)k ( q3
1− q3

)2s3−1
=(

aOC1

100− aOC1

)k (
aOC2

100− aOC2

)k (
aOC1

100− aOC1

)−k2 (
q3

1− q3

)2s3−1
=(

aOC1

100− aOC1

)k(1−k)(
aOC2

100− aOC2

)k (
q3

1− q3

)2s3−1
.

The same steps apply to any further agent t = 4, 5, ..., T .

Finally, let us consider the ABEE. First of all, recall that in the ABEE βt,i = t− i, that
is, βt,t−k = k for all t = 2, 3, . . . , and k = 1, 2, . . . , (t− 1).

Consider now the system of equations ΓB = I. For t = 2, 3, 4 . . . , the product of the t-th

row vector of Γ and the (t− 1)-th column vector of B gives
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−γt,t−1 + βt,t−1 = 0,

from which we obtain that γt,t−1 = 1. For t = 3, 4, 5, . . . , the product of the t-th row vector

of Γ and the (t− 2)-th column vector of B gives

−γt,t−2 − γt,t−1βt−1,t−2 + βt,t−2 = 0,

from which we obtain that γt,t−2 = 1. For t = 4, 5, 6, ..., the product of the t-th row vector

of Γ and the (t− 3)-th column vector of B gives

−γt,t−3 − γt,t−2βt−2,t−3 − γt,t−1βt−1,t−3 + βt,t−3 = 0,

from which we obtain that γt,t−3 = 0.

Now, let us consider all t = 5, 6, 7, . . . , and k = 4, 5, 6, . . . , (t − 1). The product of the

t-th row vector of Γ and the (t− k)-th column vector of B gives

γt,t−k = −
k−1∑
j=1

γt,t−k+jβt,t−j + βt,t−k

= −
k−1∑
j=1

γt,t−k+jj + k.

On the basis of this equation, observe that the di�erence of γt,t−k−1 and γt,t−k gives

γt,t−k−1 − γt,t−k = −γt,t−k − γt,t−k+1 − γt,t−k+2 − · · · − γt,t−1 + 1.

Similarly, the di�erence between (γt,t−k−2 − γt,t−k−1) and (γt,t−k−1 − γt,t−k) gives

γt,t−k−2 = γt,t−k−1 − γt,t−k.

Moreover, the sum of γt,t−k−2 and γt,t−k−3 gives

γt,t−k−3 = −γt,t−k.

Hence, starting from the three initial values, γt,t−1 = γt,t−2 = 1 and γt,t−3 = 0, this

equation iteratively pins down the whole sequence of
(
γt,t−1, γt,t−2, . . . , γt,1

)
. Speci�cally,(

γt,t−4, γt,t−5, γt,t−6
)

= (−1,−1, 0) ,
(
γt,t−7, γt,t−8, γt,t−9

)
= (1, 1, 0) ,

(
γt,t−10, γt,t−11, γt,t−12

)
=

(−1,−1, 0), and so on. For instance, for subject 10, the weights are
(
γ10,1, γ10,2, γ10,3, . . . , γ10,9

)
=

(0, 1, 1, 0,−1,−1, 0, 1, 1).
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Finally note that, given its cyclical feature, the sequence of weights can be expressed as

γt,t−k = sign(sin(k
3
π), or γt,i = sign(sin( t−i

3
π).

B Testing Di�erences across Treatments

Table B.1: Di�erences across Treatments:
Median Rank-sum Test for Action 1 (p-value)

SL1 vs. SL2 SL1 vs. SL3 SL2 vs. SL3

Period 1 0.999 0.999 0.999
Period 2 0.136 0.520 0.738
Period 3 0.317 0.881 0.317
Period 4 0.738 0.597 0.829
Period 5 0.881
Period 6 0.911
Period 7 0.316
Period 8 0.289
Period 9 0.435
Period 10 0.420

For each period, the test is performed using session-speci�c medians.

Table B.2: Di�erences across Treatments:
Median Rank-sum Test for Action 2 (p-value)

SL1 vs. SL2 SL1 vs. SL3 SL2 vs. SL3

Period 1 0.459 0.834 0.751
Period 2 0.220 0.999 0.243
Period 3 0.218 0.345 0.914
Period 4 0.281 0.244 0.117
Period 5 0.911
Period 6 0.599
Period 7 0.023
Period 8 0.590
Period 9 0.529
Period 10 0.805

For each period, the test is performed using session-speci�c medians.
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C Factoring Out Uninformative Actions

In this section we o�er a robustness check, by factoring out actions that are, presumably,

uninformative. In particular, as a �rst step, we de�ne an action at time i as uninformative

according to the criterion:

(a2i=1 = 50) or (a2i = a2i−1) for i = 2, · · · , t− 1.

To factor out these actions, we eliminate them and renumber the entire sequence (e.g.,

if action 3 is uninformative, then action 3 is eliminated, period 4 becomes period 3, period

5 becomes period 4 and so on).

It is worth noting that this procedure implies a loss of observations for later periods.

In particular, the available observations for t = 10 are 47. Coe�cients for this period are

not reliably estimated. We report them without con�dence intervals and only for the sake

of completeness. For the same reason, we do not report hypothesis testing p-values and

estimates of k for this period.

We have repeated the analysis using a more stringent criterion according to which an

action i is classi�ed as uninformative if and only if

(a2i=1 = 50) or (a2i = a2i−1) or (a2i−1 = 0 or a2i−1 = 100) for i = 2, · · · , t− 1.

The results are similar to those presented here and available upon request.

We have also used a di�erent methodology, by attributing the value si = 0.5 (uninfor-

mative signal) to any uninformative action. The results are again broadly similar to those

presented here and available upon request.
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Figure C.1: Quantile Regressions of Action 1 on Predecessors' Signals

Eliminating Uninformative Periods (Estimated Weights)
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The �gure shows the estimated coe�cients from a median regression of �rst action loglike-
lihood ratios on predecessors' signal loglikelihood ratios after eliminating uninformative
periods. For each period t = 1, . . . , 10, predecessors' signals, si, i = 1, . . . , t − 1, are on
the x-axis; corresponding point estimates and 95% con�dence intervals are on the y-axis,
represented by black dots and dashed capped lines, respectively. Con�dence intervals are
computed by bootstrap (500 replications), clustering at the session level.
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Table C.1: Hypothesis Testing: Weights on Predecessors' Signals (p-values)
Dependent Variable: Action 1 (loglikelihood ratio)

Eliminating Uninformative Periods

HPBE
0 : HBRTNI

0 :
βt,1 = · · · = βt,t−1 = 1 βt,i = 2t−i−1 ∀i = 1, . . . , t− 1

Period 2 0.155 0.155
Period 3 0.000 0.000
Period 4 0.004 0.000
Period 5 0.000 0.000
Period 6 0.000 0.000
Period 7 0.000 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000

HABEE
0 : HOC

0 :
βt,i = t− i ∀i = 1, . . . , t− 1 βt,1 = · · · = βt,t−1

Period 2 0.155 ·
Period 3 0.000 0.999
Period 4 0.000 0.094
Period 5 0.000 0.993
Period 6 0.000 0.583
Period 7 0.000 0.620
Period 8 0.000 0.995
Period 9 0.000 0.995

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.

Table C.2: Quantile Regressions of Action 1 on Predecessors' Signals:
Estimation of k under HOC

0 : βt,1 = · · · = βt,t−1
Eliminating Uninformative Periods

95% Con�dence Interval

k̂ lower limit upper limit

Period 2 0.752 0.460 0.996
Period 3 0.650 0.518 0.821
Period 4 0.559 0.438 0.997
Period 5 0.508 0.332 0.648
Period 6 0.422 0.250 0.547
Period 7 0.332 0.200 0.511
Period 8 0.272 0.097 0.436
Period 9 0.351 0.001 0.997

All 0.463 0.327 0.622

The table reports 95% con�dence intervals obtained with bootstrap (500 replications),
clustering at the session level.
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D Instructions

Welcome to our experiment! We hope you will enjoy it.

You are about to take part in a study on decision making with 9 other participants.

Everyone in the experiment has the same instructions. If something in the instructions is

not clear and you have questions, please, do not hesitate to ask for clari�cation. We will be

happy to answer your questions privately.

Depending on your choices, the other participants' choices and some luck you will earn

some money. You will receive the money immediately after the experiment.

D.1 The Experiment

The experiment consists of 15 rounds of decision making. In each round you will make two

consecutive decisions. All of you will participate in each round.

What you have to do

In each round, you have simply to choose a number between 0 and 100. You will make

this choice twice, before and after receiving some information. The reason for these choices

is the following. There is a good whose value can be either 0 or 100 units of a �ctitious

currency called �lira.� You will not be told whether the good is worth 0 or 100 liras, but

will receive some information about which value is more likely to have been chosen by a

computer. We will ask you to predict the value of the good, that is, to indicate the chance

that the value is 100 liras.

The value of the good

Whether the good will be worth 0 or 100 liras will be determined randomly at the begin-

ning of each round: there will be a probability of 50% that the value is 0 and a probability

of 50% that it is 100 liras, like in the toss of a coin. The computer chooses the value of the

good in each round afresh. The value of the good in one round never depends on the value

of the good in one of the previous rounds.

What you will know about the value

Although you will not be told the value of the good, you will, however, receive some

information about which value is more likely to have been chosen. For each of you, the

computer will use two �virtual urns� both containing green and red balls. The proportion

of the two types of balls in each urn, however, is di�erent. One urn contains more red than

green balls, whereas the other urn contains more green than red balls. If the value of the
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good is 0, you will observe a ball drawn from an urn containing more red balls. If the value

is 100, instead, you will observe a ball drawn from an urn containing more green balls. To

recap:

• If the value is 100, then there are more GREEN balls in the urn.

• If the value is 0, then there are more RED balls in the urn.

Therefore, the ball color will give you some information about the value of the good.

Below we will tell you more about how many balls there are in the urns. First, though, let

us see more precisely what will happen in each round.

D.2 Procedures for each round

In each of the 15 rounds you will make decisions in sequence, one after the other. There

will be 10 periods. Each of you will make her/his two choices only in one period, randomly

chosen. Since there are 10 participants, this means that all of you will participate in each

round.

The precise sequence of events is the following:

First: the computer program will decide randomly if the good for that round is worth 0

or 100 liras. You will not be told this value. On your screen you will read �Round 1 of 15.

The computer is deciding the value of the good by �ipping a coin.�

Second: the computer program will randomly select who is the �rst person who has to

make a choice. Each of you has the same (1/10th) chance of being selected.

Third: the computer will draw a ball from the �virtual urn� and inform the �rst person

(only the �rst person) of the drawn ball color. The �rst person will see this information on

the screen. No one else will see it. The other participants will be waiting.

Fourth: after the person sees this information, (s)he has to choose a number between 0

and 100. This can be done by moving a slider on the screen (to select a precise number, please,

use the arrows on your keyboard). The decision made will be visible to all participants.

Fifth: the computer will now randomly choose another person. Again, all the remaining

9 people have the same (1/9th) chance of being chosen.

Sixth: this second person, having observed the �rst person's prediction, will be asked to

make her/his prediction, choosing a number between 0 and 100. This decision will not be

visible to other participants.

Seventh: after the decision, the computer will draw a ball from the �virtual urn� and

inform (only) the second person of its color.
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Eighth: the second person, after observing the ball color, will now make a new prediction,

choosing again a number between 0 and 100. This choice is visible to all participants.

Ninth: the computer will choose a third person. This person will have to make two

predictions, before and after receiving information, exactly as the second person. The �rst

decision is after having observed the �rst two persons' predictions. The second prediction is

after having observed the ball color too. The decision made after seeing the ball color will

be visible to everyone. Then the computer will choose the fourth person and so on, until all

ten people have had the opportunity to participate.

Tenth: the computer will reveal the value of the good for the round and the payo� you

earned in the round.

Observation 1: All 10 participants have to make the same type of decision, predicting

the value of the good. However, the �rst person in the sequence is asked to make only one

prediction, while the others will make two. The reason is simple. Since the �rst person knows

nothing, the only sensible prediction is 50, given that there is a 50−50 chance that the value

is 0 or 100 liras. Therefore, if you are the �rst, we do not ask you to make the prediction

before seeing the ball color. Instead, if you are a subsequent person, we will ask you to

make a prediction even before seeing the ball color, just after observing the predecessors'

predictions. Always recall that the predecessors' predictions that you will observe

are the second predictions that they made, that is, the predictions they made

after receiving information about the ball color.

Observation 2: As we said, when it is your turn, the computer will draw a ball from one

of two virtual urns: the urn containing more red than green balls if the value is zero; and

the urn containing more green than red balls if the value is 100. But, exactly how many red

and green balls are there in the urns? If the value is 0, then there are 70 red balls and 30

green balls. If the value is 100, then there are 70 green balls and 30 red balls.

D.3 Your per-round payo�

Your earnings depend on how well you predict the value of the good. If you are the �rst

person in the sequence, your payo� will depend on the only prediction that you are asked

to make. If you are a subsequent decision maker, your payo� will depend on the �rst or the

second prediction you make, with the same chance (like in the toss of a coin).

If you predict the value exactly, you will earn 100 liras. If your prediction di�ers from

the true value by an amount x, you will earn 100 − 0.01x2. This means that the further your

prediction is from the true value, the less you will earn. Moreover, if your mistake is small,
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you will be penalized only a small amount; if your mistake is big, you will be penalized more

than proportionally.

To make this rule clear, let us see some examples.

Example 1: Suppose the true value is 100. Suppose you predict 80. In this case you

made a mistake of 20. We will give you 100 − 0.01 ∗ 202 = 96.0 liras.

Example 2: Suppose the true value is 0. Suppose you predict 10. In this case you made

a mistake of 10. We will give you 100 − 0.01 ∗ 102 = 99 liras.

Example 3: Suppose the true value is 100. Suppose you predict 25. In this case you

made a mistake of 75. We will give you 100− 0.01 ∗ 752 = 43.75 liras.

Example 4: Suppose the true value is 0. Suppose you predict 50. In this case you made

a mistake of 50. We will give you 100− 0.01 ∗ 502 = 75 liras.

Note that the worst you can do under this payo� scheme is to state that you believe that

there is a 100% chance that the value is 100 when in fact it is 0, or you believe that there is

a 100% chance that the value is 0 when in fact it is 100. Here your payo� from prediction

would be 0. Similarly, the best you can do is to guess correctly and assign 100% to the value

which turns out to be the actual value of the good. Here your payo� will be 100 liras.

Note that with this payo� scheme, the best thing you can do to maximize

the expected size of your payo� is simply to state your true belief about what

you think the true value of the good is. Any other prediction will decrease the

amount you can expect to earn. For instance, suppose you think there is a 90% chance

that the value of the good is 100 and, hence, a 10% chance that value is 0. If this is your

belief about the likely value of the good, to maximize your expected payo�, choose 90 as

your prediction. Similarly, if you think the value is 100 with chance 33% and 0 with chance

67%, then select 33.

D.4 The other rounds

We will repeat the procedures described in the �rst round for 14 more rounds. As we said,

at the beginning of each new round, the value of the good is again randomly chosen by the

computer. Therefore, the value of the good in round 2 is independent of the value in round

1 and so on.

52



D.5 The �nal payment

To compute your payment, we will randomly choose (with equal chance) one round among

the �rst �ve, one among the rounds 6 − 10 and one among the last �ve rounds. For each

of these round we will then choose either prediction 1 or prediction 2 (with equal chance),

unless you turn was 1, in which case there is nothing to choose since you only made one

prediction. We will sum the payo�s that you have obtained for those predictions and rounds.

We will then convert your payo� into pounds at the exchange rate of 100 liras = £7. That is,

for every 100 liras you earn, you will get 7 pounds. Moreover, you will receive a participation

fee of £5 just for showing up on time. You will be paid in cash, in private, at the end of the

experiment.
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