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Abstract

Let Y be an outcome of interest, X a vector of treatment measures, and W a vector
of pre-treatment control variables. Here X may include (combinations of) continuous,
discrete, and/or non-mutually exclusive “treatments”. Consider the linear regression of
Y onto X in a subpopulation homogenous in W = w (formally a conditional linear
predictor). Let b0 (w) be the coefficient vector on X in this regression. We intro-
duce a semiparametrically efficient estimate of the average β0 = E [b0 (W )]. When X is
binary-valued (multi-valued) our procedure recovers the (a vector of) average treatment
effect(s). When X is continuously-valued, or consists of multiple non-exclusive treat-
ments, our estimand coincides with the average partial effect (APE) of X on Y when the
underlying potential response function is linear in X, but otherwise heterogenous across
agents. When the potential response function takes a general nonlinear/heterogenous
form, and X is continuously-valued, our procedure recovers a weighted average of the
gradient of this response across individuals and values of X. We provide a simple, and
semiparametrically efficient, method of covariate adjustment for settings with compli-
cated treatment regimes. Our method generalizes familiar methods of covariate ad-
justment used for program evaluation as well as methods of semiparametric regression
(e.g., the partially linear regression model).

JEL Codes: C14, C21, C31
Keywords: Conditional Linear Predictor, Causal Inference, Average Treatment Ef-

fect, Propensity Score, Semiparametric Efficiency, Semiparametric Regression

1+Department of Economics, University of California - Berkeley, 530 Evans Hall #3380, Berkeley, CA
94720-3888 and National Bureau of Economic Research, e-mail: bgraham@econ.berkeley.edu, web: http://
bryangraham.github.io/econometrics/.
#Escola de Economia de Sao Paulo, FGV, Rua Itapeva 474, sala 1010, CEP: 01332-000. e-mail:
cristinepinto@gmail.com. web: http : //sites.google.com/site/cristinepinto/.
We thank Guido Imbens, Pat Kline, Tony Strittmatter and seminar participants at University College Lon-
don, UC Berkeley and University of St. Gallen for helpful discussion. Financial support from NSF grant
SES #1357499 is gratefully acknowledged. The initial draft of this paper was prepared in October of 2016.
All the usual disclaimers apply.



Let Y be a scalar-valued outcome of interest, X a K × 1 vector of policy variables, and W

a J × 1 vector of additional controls. For example Y might equal hours worked, X include

the real wage rate and total unearned income (K = 2), and W be a vector of demographic

measures capturing heterogeneity in preferences for work (e.g., Pencavel, 1986, Section 4).

The goal is to summarize how Y – labor supply – covaries with X – the wage rate and

unearned income – “holding the controls W fixed”. In a second example, Y might be an

end-of-year student mathematics achievement measure, X a vector containing (i) number of

days absent from school, (ii) class size and (iii) an indicator for whether the student received

supplemental tutoring. Here the vector W might include beginning of school year joint

predictors of Y and X (e.g., prior mathematics achievement, socioeconomic background,

health indicators, and known determinants of class size and tutoring assignment used by the

school). The goal is to summarize how math achievement covaries with attendance, class

size and supplemental tutoring conditional on W (cf., Gottfried & Kirksey, 2017).

Following the prototype established by Yule (1899) over one hundred years ago, social scien-

tists typically report the coefficient on X in the (long) least squares fit of Y onto a constant,

X, and W for this purpose.

When X is a scalar binary variable, the econometrician can choose from – in addition

to least squares – an ever more elaborate menu of covariate adjustment methods (see

Imbens & Rubin (2015) for a recent textbook introduction). Many of these methods ex-

tend naturally to settings where X is multi-valued (e.g., Cattaneo, 2010).

When X is continuously-valued, and/or consists of multiple distinct policy variables (K ≥ 2),

options are fewer (cf., Wooldridge, 2010, Chapter 21.6.3). The partially linear regression

(PLM) model

Y = X ′β0 + h0 (W ) + U, E [U |W,X ] = 0, (1)

represents one semiparametric generalization of (long) linear regression. Chamberlain (1986),

in an influential but never published paper, introduced an estimator for β0 in (1) (cf.,

Robinson, 1988). In later work he characterized its semiparametric efficiency bound (SEB)

(Chamberlain, 1992).

Partially linear regression is widely, albeit heuristically, used in empirical work. Typically

researchers proceed by (i) choosing W to be a rich vector of basis functions in the underlying

controls (e.g., a vector of polynomial or piecewise polynomial terms) and then (ii) estimate

β0 by least squares. With discretely-valued control variables a saturated specification for

h0 (W ) is possible, at least when utilizing a very large dataset (e.g., Angrist & Krueger,

1999, Section 2.3.1). A principled variant of this general approach is embodied in the E-

Estimation algorithm of Newey (1990) and Robins et al. (1992).
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In this paper we propose a different approach to covariate adjustment. Consider a subpopu-

lation homogenous in W = w. Within this subpopulation we compute the linear regression

of Y onto a constant and X (formally a conditional linear predictor as in Wooldridge (1999)).

Let b0 (w) be the coefficient on X in the conditional linear regression for the subpopulation

homogenous in W = w. We propose a method for identifying and efficiently estimating the

average regression coefficient

β0 = E [b0 (W )] . (2)

The average is over the marginal distribution of controls, W .

In the absence of controls, the relationship between the linear predictor slope coefficient

and the gradient of the (possibly nonlinear) conditional expectation function (CEF) of Y

given X = x is well-understood (e.g., Goldberger, 1991; Yitzhaki, 1996). In the presence of

controls, this relationship is rather more complicated (cf., Angrist, 1998; Sloczynski, 2017).

Our focus on averages of conditional linear predictor coefficients allows for conditioning on

W , while also preserving the interpretative transparency of unconditional linear analyses.

That is, β0, as we demonstrate below, is easy to interpret.

When X is binary-valued (multi-valued) β0 coincides with the (a vector of) average treat-

ment effect(s); estimands familiar from the program evaluation literature (e.g., Hahn, 1998;

Imbens, 2000). These estimands have causal interpretations under certain conditions. Mod-

estly extending the analysis of Wooldridge (2004), we show that this causal interpretation

generalizes under a (i) heterogenous random coefficients potential outcome structure and (ii)

an unconfoundedness-type assumption. These assumptions coincide with their program eval-

uation counterparts when X is binary- or multi-valued. Our semiparametric model includes

both the program evaluation model and the partially linear regression model as special cases.

Our work is also connected to the varying coefficient model of Hastie & Tibshirani (1993).

Hastie & Tibshirani (1993) focus on pointwise estimation of b0 (w), while we focus on (effi-

cient) estimation of the average β0 = E [b0 (W )].

The relationship of our work with that of Wooldridge (2004) is as follows.2 We both study

the same functional of the joint distribution of W , X and Y (see Equation (7) below).

Relative to Wooldridge (2004) we provide an average partial effect interpretation of this

estimand under (i) weaker assumptions when maintaining a correlated random coefficient

potential outcome structure and (ii) a new weighted average partial effect interpretation

under a general potential response function structure. These are useful, but relatively mod-

est generalizations. More significantly we (i) provide distribution theory for the estimator

2The Wooldridge (2004) paper remains unpublished, but a textbook treatment of the material in it can
be found in Chapter 21.6.3 of Wooldridge (2010).
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proposed by Wooldridge (2004), (ii) characterize the semiparametric efficiency bound (SEB)

for β0, and (iii) introduce a new locally efficient estimator. The procedure proposed by

Wooldridge (2004) is inefficient.

Another feature of our estimator is computational simplicity. Let µ̂W = 1
N

∑N
i=1Wi be

the sample mean of W . A common approach to modeling heterogeneous effects in applied

work is to compute the least squares fit of Y onto a constant, W − µ̂W , (W − µ̂W ) ⊗ X,

and X. As is well-known from textbook treatments on interaction terms in linear regression

analysis, centering the control variable vector, W , about is mean in this way ensures that the

coefficient on X captures an average effect. This approach essentially coincides with Oaxaca-

Blinder type methods of covariate adjustment popular in labor economics (e.g., Kline, 2014).

One variant of our procedure involves computing the exact same regression, but where X

is instead instrumented with a particular function of its conditional distribution given W

(i.e., of the “generalized” propensity score). Theorems 2 and 3 below show that this small

modification to a familiar estimation procedure delivers considerable gains.

The next section introduces our average linear regression model. We provide a statistical

definition of β0 as well as sets of assumptions under which it has a causal – average partial

effect (APE) – interpretation. Section 2 presents the semiparametric efficiency bound for β0.

Section 3 studies the large sample properties of the Wooldridge (2004) estimator. We also

introduce our new estimator and present its large sample properties. Finally, in Section 4,

we connect our results with prior work on efficient estimation of average treatments effects as

well as the partially linear semiparametric regression model. We end our paper with a small

simulation study in Section 5. All proofs are collected in the Appendix or the supplemental

materials.

1 Average linear regression model

We begin with a conventional sampling assumption.

Assumption 1. (Random Sampling) Let
{

(W ′
i , X

′
i, Yi)

′}∞
i=1

be a sequence of independent

and identically distributed random draws from some population FW,X,Y with E [Y 2|W = w] <

∞ and E
[

∥X∥2
∣

∣W = w
]

< ∞ for all w ∈ W.

The finite moment restrictions included in Assumption 1 ensure that a conditional linear

predictor (CLP) is well-defined for all w ∈ W.

Let

e0 (w) = E [X|W = w] (3)
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be the conditional mean of X given W = w and

v0 (w) = V (X|W = w) (4)

the corresponding conditional variance. We also require that X vary conditional on W = w.

Assumption 2. (Overlap) For all w ∈ W and any non-zero column vector t, t′v0 (w) t ≥
κ > 0.

Assumption 2 ensures that the CLP is uniquely defined. In the absence of conditioning it

is equivalent to linear independence of the elements of X. When X is binary v0 (W ) =

e0 (W ) (1− e0 (W )) with e0 (W ) = Pr (X = 1|W ) equal to the propensity score; in this

case Assumption 2 coincides with the familiar strong overlap assumption from the program

evaluation literature. More generally Assumption 2 implies that X varies conditional on

W = w for all w ∈ W.

Under Assumptions 1 and 2 the conditional linear predictor is well-defined for all w ∈ W.

Wooldridge (1999, Section 4) provides a self-contained introduction to conditional linear

predictors. The following definition and lemma is taken from Wooldridge (1999).

Definition 1. (Conditional Linear Predictor) The mean squared error minimizing

linear predictor of Y given X conditional on W = w, henceforth the conditional linear

predictor (CLP), equals

E
∗ [Y |X ;W = w]

def
≡ a0 (w) +X ′b0 (w) (5)

with

a0 (w)
def
≡ E [Y |W = w]− e0 (w)

′ b0 (w) (6)

b0 (w)
def
≡ v0 (w)

−1
C (X, Y |W = w) .

It is straightforward to show that the prediction error U = Y −E∗ [Y |X ;W ] is conditionally

mean zero and conditionally uncorrelated with X. This property of E∗ [Y |X ;W ] will prove

useful for what follows.

Lemma 1. Wooldridge (1999, Lemma 4.1). Let U
def
≡ Y − a0 (W ) − X ′b0 (W ), then

E [U |W = w] = 0 and E [XU |W = w] = 0 for all w ∈ W.
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Identification of the average regression slope

We begin by presenting a convenient representation of the average slope coefficient β0 =

E [b0 (W )] in terms of the joint distribution of (W ′, X ′, Y )′. The most direct representation

follows directly from (6):

β0 = E
[

v0 (W )−1
C (X, Y |W )

]

.

For our purposes, however, an alternative representation of β0 is more convenient; both

for our semiparametric efficiency bound (SEB) analysis and for the approach to estimation

developed below. Using the law of iterated expectations and the definition of conditional

covariance we get, under Assumptions 1 and 2,

E
[

v0 (W )−1 (X − e0 (W ))Y
]

= E
[

v0 (W )−1
E [ (X − e0 (W ))Y |W ]

]

= E
[

v0 (W )−1
C (X, Y |W )

]

.

Applying definition (6) then gives our preferred estimand representation:

β0 = E
[

v0 (W )−1 (X − e0 (W ))Y
]

. (7)

Wooldridge (2004) emphasizes the coincidence between (7) and the average partial effect

of X on Y associated with a particular correlated random coefficients (CRC) potential out-

comes structure. This endows β0 with causal meaning. While we also develop this connection

below, we wish to initially emphasize that (7) is also just one way of representing a popu-

lation average of conditional linear predictor coefficients. Under Assumptions 1 and 2 the

expectation in (7) is well-defined and β0 is simply a “statistical” estimand. We are interested

in estimating it as precisely as possible.

Causal interpretation

In this subsection we show that (7) admits a causal interpretation under a particular treat-

ment response model and selection on observables type assumption. As noted earlier, this

interpretation was previously emphasized by Wooldridge (2004), but under stronger condi-

tions than we maintain here.

Associated with each agent in the target population is an individual-specific potential re-

sponse function, Y (x), which maps counterfactual values of the input vector X into their

corresponding (potential) outcomes. The observed outcome coincides with the value of the

potential response function at the observed input level X: Y = Y (X). We assume that
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Y (x) is linear in x, but otherwise heterogeneous across individuals:

Y (x) = A+ x′B, (8)

where A and B are an individual-specific intercept and slope vector respectively.

Equation (8) allows for each individual to have their own potential response function, but

restricts them to be linear in X. When X is binary, or multi-valued, linearity is unrestrictive.

For example, in the binary case, we have the potential outcome under control (X = 0) and

active (X = 1) treatment equal to Y (0) = A and Y (1) = A + B. In the multi-valued

treatment setting of Imbens (2000) and Cattaneo (2010), with X a vector of treatment

indicators for K mutually exclusive treatments, we have Y (0) = A and Y (k) = A + Bk

for k = 1, . . . , K. In contrast, when X is ordered, continuously valued, or includes multiple

treatments/policies, linearity is restrictive.

Consider the following thought experiment: draw a unit at random and (exogenously) in-

crease the value of the kth component of X by one unit. The expected effect of this inter-

vention is E [Bk]. In the binary- and multi-valued treatment setting E [Bk] corresponds to

an average treatment effect (ATE)

E [Bk] = E [Y (k)− Y (0)] .

More generally E [Bk] equals the average partial effect (APE) of a unit increase in Xk. This

estimand was introduced in a panel data setting by Chamberlain (1984); general expositions,

with additional results, are available in Blundell & Powell (2003) and Wooldridge (2005).

Under the following assumption, in addition to those introduced above, we can show that β0

coincides with the APE vector, E [B].

Assumption 3. (Conditional Exogeneity) For all w ∈ W and k, l = 1, . . . , K, and

under potential responses of the form given in (8)

C (A,Xk|W = w) = C (B,Xk|W = w) = C (B,XkXl|W = w) = 0. (9)

Assumption 3 restricts the form of any dependence between the potential response function,

Y (x) = A + x′B, and the treatment vector actually chosen by the respondent, X. It is a

conditional exogeneity or selection on observables type assumption. To see this observe that

when X is binary Assumption 3 coincides with the standard mean independence assumption

familiar from the program evaluation literature, implying that

E[Y (x)|X,W ] = E[Y (x)|W ].
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In the multi-valued treatment setting Assumption 3 also coincides with standard generaliza-

tions of the mean independence assumption (cf., Imbens, 2000). See also Section 4 below.

When the linearity of (8) is restrictive, as occurs when X includes continuously-valued com-

ponents, or non-mutually exclusive binary inputs, Assumption 3 is less restrictive than other

possible formulations of conditional exogeneity. For example, Wooldridge (2004, 2010) works

with the identifying restrictions

E [X|W,A,B] = E [X|W ] = e0(W ), V (X|W,A,B) = V (X|W ) = v0(W ) (10)

which imply (9), but are generally stronger. An even stronger notion of conditional exogene-

ity is

E [A|X,W ] = E [A|W ] , E [B|X,W ] = E [B|W ] . (11)

Assumption 3 is (apparently) the weakest assumption necessary to equate β0 with the average

partial effect of X on Y when the potential response function takes form (8). The estimator

we introduce below will remain consistent under the stronger restrictions, (10) and (11), but

will generally not be semiparametrically efficient in those cases. We elaborate further on this

observation below.

Proposition 1. (Average Partial Effect Identification) Under Assumptions 1, 2

and 3 the average of the CLP coefficients, β0 = E [b0 (W )], and the average partial effect

(APE), E [B], coincide:

β0 = E [B] .

Proof. Wooldridge (2004) demonstrates the equality under the stronger restriction (10).

Under Assumption 3, however, the proof proceeds differently. Given the linear potential

response (8) and by lemma (1), we have the 1 +K conditional moment restrictions

E [U |W = w] = E [A− a0 (W )|w] + E [X ′ (B − b0 (W ))|w] = 0

E [XU |W = w] = E [X (A− a0 (W ))|w] + E [XX ′ (B − b0 (W ))|w] = 0. (12)

Under Assumption 3 conditions (12) simplify to

{E [A|w]− a0 (w)}+ e0 (w)
′ {E [B|w]− b0 (w)} = 0

e0 (w) {E [A|w]− a0 (w)}+ E [XX ′|w] {E [B|w]− b0 (w)} = 0

7



or, in matrix form,

[

1 e0 (w)
′

e0 (w) E [XX ′|w]

](

E [A|w]− a0 (w)

E [B|w]− b0 (w)

)

=

(

0

0

)

.

Under the Assumption 2 the first matrix to the left of the equality is invertible for all w ∈ W.

This implies that E [A|W = w] = a0 (w) and E [B|W = w] = b0 (w) for all w ∈ W. The

result follows by iterated expectations.

Causal interpretation under misspecification

Angrist & Krueger (1999, Section 2.3.1) and Angrist & Pischke (2009, Chapter 3.3) empha-

size that when X is a continuously-valued random variable its slope coefficient in the linear

predictor of Y onto a constant, X and the vector of “saturated” controls admits a weighted

average derivative interpretation when the potential response function takes a general non-

linear form (cf., Angrist et al., 2000, Lemma 5). Angrist and Krueger’s (1999) expression is

also isomorphic to the probability limit of the E-Estimator of Newey (1990) and Robins et al.

(1992)

βE =
E [Y (X − e0 (W ))]

E [X (X − e0 (W ))]
(13)

when the partially linear regression structure, equation (1) above, is incorrect.

In this section, using similar arguments to those appearing in Angrist et al. (2000, Lemma

5) and Graham et al. (2010, Lemma A.1), we provide a representation result for β0 under a

general potential response function.

Assume that the potential response function is nonlinear and heterogeneous such that

Y (x) = h (x, U). Further assume, stronger than Assumption 3 above, that U is condi-

tionally independent of X given W = w for all w ∈ W. Blundell & Powell (2003) show

that the partial mean EW [E [Y |W,X = x]] identifies the average structural function (ASF)

m (x) = EU [h (x, U)] when the support of W given X = x coincides with its marginal sup-

port. Newey (1994) provides an explicit partial mean estimator and derives in asymptotic

properties.

Here we show that our average regression slope estimand, β0, can be expressed as a weighted

average of the gradient of h (X,U). This provides a causal interpretation of β0 under a

general potential response function. To present this result we replace Assumption 3 with:

Assumption 4. (Nonlinear Potential Response Function) (i) X is a continuous

scalar random variable with bounded support X = [x, x], (ii) the conditional density function
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of X given W = w is bounded and bounded away from zero for all (w, x) ∈ W × X, (iii)

Y = h (X,U) with h (x, u) a continuously differentiable function of x for all (x, u) ∈ X× U

and h (u) = h (x, u) finite for all u ∈ U, and (iv) U is conditionally independent of X given

W = w for all w ∈ W.

Proposition 2. (Weighted Average Derivative Representation) Under Assump-

tions 1, 2 and 4

β0 = E

[

ω (W,X)
∂h (X,U)

∂x

]

where

ω (w, x) =
1

fX|W (x|w)
E [X − e0 (W )|W = w,X ≥ x]

(

1− FX|W (x|w)
)

∫ x̄
x E [X − e0 (W )|W = w,X ≥ v]

(

1− FX|W (v|w)
)

dv
.

Proof. See the Supplemental Web Appendix.

A key feature of the weighting function ω (w, x) is that its conditional mean,

E [ω (W,X)|W = w], equals 1 for every value of w ∈ W. Furthermore, Lemma A.1 of

Graham et al. (2010) implies that, conditional on W = w, the weight given to ∂h(X,U)
∂x is

highest for those values of X near its conditional mean, E [X|W = w], and lowest for those

at the boundary of its support, x and x.

These features of the weights appearing in Proposition 2 imply the following intuitive in-

terpretation: (i) for each value of w ∈ W compute a weighted average of ∂h(X,U)
∂x , where

the average emphasizes values of X near its conditional mean given W = w, (ii) average

these (weighted average) gradients over the marginal distribution of W . This indicates that

β0 only differs from the unweighted average E

[

∂h(X,U)
∂x

]

due to variation in ω (W,X) within

W = w cells. The contribution of each subpopulation, defined in terms of the control, W ,

mirrors its density in the sampled population. Since W proxies for U in this set-up we are

averaging over the correct heterogeneity distribution.

More precisely, since E [ω (W,X)|W = w] = 1, we have that, using the definition of condi-

tional covariance,

β0 − E

[

∂h (X,U)

∂x

]

= E

[

C

(

ω (W,X) ,
∂h (X,U)

∂x

∣

∣

∣

∣

W

)]

. (14)

The bias of β0 for E

[

∂h(x,U)
∂x

]

is therefore solely due to conditional covariance between the

weight function and the gradient of interest within subpopulations homogenous in W .

In contrast to the one for β0, the weight function appearing in the weighted average derivative

representation result of Angrist & Krueger (1999) or Angrist & Pischke (2009) for βE is only
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unconditionally mean zero. This implies that βE averages over the incorrect heterogeneity

distribution as well as the incorrect policy variable distribution.

βE − E

[

∂h (X,U)

∂x

]

=E

[

C

(

ω (W,X) ,
∂h (X,U)

∂x

∣

∣

∣

∣

W

)]

(15)

+ C

(

E [ω (W,X)|W ] ,E

[

∂h (X,U)

∂x

∣

∣

∣

∣

W

])

.

If the ultimate object of interest is the average derivative E

[

∂h(X,U)
∂x

]

, then, relative to (15),

a focus on β0 eliminates one source of potential bias. Namely that the weight function may

over- or under-emphasize various subpopulations defined in terms of their value of the control

variable vector W . In this case E [ω (W,X)|W ] may not equal one and the second term to

the right of the equality in (15) may be non-zero.3

Motivating β0

Our focus on averages of conditional linear predictor slope coefficients is motivated by a

combination of principled and pragmatic reasons.

First, the kitchen sink long regression remains a workhorse of everyday empirical social

science research. Our model extends kitchen sink regression in an easy to understand way.

Relative to the partially linear regression model, our model allows for heterogenous responses

of Y to variation in X; a feature likely to be both empirically relevant and a priori attractive

to researchers.

Second, β0 has a causal interpretation under additional assumptions. When the potential

response function is linear, but heterogeneous across agents, it coincides with an average

partial effect (APE) under a selection on observables type assumption. When X is binary-

or multi-valued, as in the program evaluation literature, it coincides with the well-known

average treatment effect (ATE). Our causal model nests the usual one as a special case, but

accommodates continuous and/or multiple treatments as well (albeit under restrictions).

Third, in the presence of misspecification β0 coincides with a weighted average of the

derivative of a general non-linear potential response function. This weighted average

derivative is more interpretable than existing representation results; for example those of

Angrist & Krueger (1999) for βE.

Fourth, as we show next, β0 is
√
N estimable (or regularly identified). This is not the case

for, say, a partial mean with a continuous policy variable (e.g., Newey, 1994). Regular

3To be clear ω (W,X) are different functions in expressions (14) and (15); for its form in the latter case
see Angrist & Krueger (1999) or Angrist & Pischke (2009).
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identification suggests that estimation is practically feasible and we present one such feasible

estimator below.

Ultimately the balance between ease of interpretation under various population assumptions

and, as we show below, ease of estimation, provides the strongest case for focusing on β0.

2 Semiparametric efficiency bound

Using the method of calculation outlined by Bickel et al. (1993) and Newey (1990), we derive

the semiparametric variance bound for β0 of,

I(β0)−1 = E [Ω0(W )] + V(b0(W )), (16)

where

Ω0(w) = E

[

v0(W )−1 (X − e0 (W ))UU ′ {v0(W )−1 (X − e0 (W ))
}′
∣

∣

∣
W = w

]

.

The corresponding efficient influence function equals

ψeff
β (Z, β0, g0 (W ) , h0 (W )) =v0 (W )−1 (X − e0 (W )) (Y − a0 (W )−X ′b0 (W )) (17)

+ (b0 (W )− β0)

with Z = (W ′, X ′, Y )′, g (W ) = (e(W ), v(W )) and h (W ) = (a (W ) , b (W )).

Theorem 1. (Semiparametric Efficiency Bound) The efficient influence function for

β0 = E [b0 (W )] in the semiparametric problem established by Definition 1 and Assumptions

1 and 2 equals (17).

Proof. See Appendix A.

We also have the following corollary, which is similar to a result for the binary case due to

Robins et al. (1994), Hahn (1998) and Chen et al. (2008). This corollary will be useful when

we discuss locally efficient estimation in Section (3).

Corollary 1. (Redundancy) Let f (x|w;φ) be a parametric family of conditional distribu-

tions for X given W with f0 (x|w) = f (x|w;φ) at some unique φ = φ0. The knowledge that

f0 (x|w) is a member of the family f (x|w;φ) does not change the semiparametric efficiency

bound for β0.

Proof. See the Supplemental Web Appendix.

11



See Frölich (2004) and Graham et al. (2016) for additional intuition about results like Corol-

lary 1.

Double robustness property of the efficient influence function

Before introducing our estimator in the next section we highlight an important property of

the efficient influence function for β0.

Consider replacing h0 (W ) = (a0 (W ) , b0 (W )) in (17) with the incorrect conditional

linear predictor coefficients h∗ (W ) = (a∗ (W ) , b∗ (W )). Use the notation U∗ =

(Y − a∗ (W )−X ′b∗ (W )) to emphasize that U∗ is the prediction error associated with an

arbitrary conditional linear predictor (which need not be the mean squared error minimizing

one). Note that U∗ will not be conditionally mean zero or conditionally uncorrelated with X

(i.e., E [U∗|W ] ̸= 0 and E [XU∗|W ] ̸= 0). Nevertheless, as long as e0 (X) and v0 (W ) equal

the true conditional mean and variance of X given W , we have the pair of equalities, using

iterated expectations,

E
[

v0 (W )−1 (X − e0 (W )) a∗ (W )
]

=0

E
[

v0 (W )−1 (X − e0 (W ))X ′b∗ (W )
]

=E [b∗ (W )]

(the second equality follows from the fact that E [ (X − e0 (W ))X ′|W ] = v0 (W )).

Therefore (17) remains mean zero even if the nuisance functions h0 (W ) = (a0 (W ) , b0 (W ))

are replaced by arbitrary functions of W :

E
[

ψeff
β (Z, β0, g0 (W ) , h∗ (W ))

]

= 0. (18)

One special choice of h∗(W ) is the zero vector. This choice directly recovers the representa-

tion of β0 derived earlier (Equation (7) above). In moment condition form

E
[

v0 (W )−1 (X − e0 (W ))Y − β0
]

= 0.

Next consider replacing g0 (W ) = (e0 (W ) , v0 (W )) in (17) with the incorrect condi-

tional mean and variance functions g∗ (W ) = (e∗ (W ) , v∗ (W )). Use the notation U0 =

(Y − a0 (W )−X ′b0 (W )) to emphasize that U0 is the prediction error associated with the

mean squared error minimizing conditional linear prediction of Y given X conditional on W .
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By Lemma 1 E [U0|W ] = 0 and E [XU0|W ] = 0. Therefore

E
[

ψeff
β (Z, β0, g∗ (W ) , h0 (W ))

]

=E
[

v∗ (W )−1 (X − e∗ (W )) (Y − a0 (W )−X ′b0 (W ))
]

+ E [(b0 (W )− β0)]

=E
[

v∗ (W )−1
E [XU0|W ]

]

− E
[

v∗ (W )−1 e∗ (W )E [U0|W ]
]

=0.

Hence (17) also remains mean zero even if the nuisance functions g0 (W ) = (e0 (W ) , v0 (W ))

are replaced by arbitrary functions of W .

Moment (17) has the so-called doubly robust property of Scharfstein et al. (1999) (cf., Ruud,

1986). It is mean zero as long as one of the two nuisance functions, g (W ) or h (W ), coincides

with its population one. We exploit this property when constructing our estimator in the

next section.

3 Estimation

In this section we present a locally semiparametrically efficient estimate of β0. To motivate

the precise form of our estimator we also discuss the estimator proposed by Wooldridge

(2004). A textbook presentation of this estimator is available in Chapter 21.6.3 of Wooldridge

(2010).

For the purposes of estimation we impose a parametric restriction on the conditional distri-

bution of X given W. Since the distribution of X given W is ancillary for β0, this parametric

restriction does not change the semiparametric efficiency bound (cf., Corollary 1). We call,

borrowing nomenclature from related settings (e.g., Hirano & Imbens, 2004), the resulting

model for X the generalized propensity score.

Assumption 5. (Generalized Propensity Score) f (x|w;φ) is a parametric family of

densities indexed by φ ∈ Φ ⊂ RL with (i) f0 (x|w) = f(x|w;φ0) at some unique φ0 ∈ int (Φ),

(ii) a maximum likelihood estimate (MLE) of φ0 equal to

φ̂ = argmax
φ∈Φ

N
∑

i=1

ln f (Xi|Wi;φ)

with a score vectors of Sφ (X|W ;φ) = ∇φf (X|W ;φ) /f (X|W ;φ), (iii) φ̂
p→ φ0 with E [SiS

′
i]

13



non-singular and the asymptotically linear representation

√
N
(

φ̂− φ0

)

= E [SiS
′
i]
−1 1√

N

N
∑

i=1

Si + op (1) (19)

where Si = Sφ (Xi|Wi;φ0) .

Assumption 5 corresponds to a parametric model for the propensity score when X is a binary

treatment indicator. More generally Assumption 5 requires the researcher to model the

distribution of the policy given controls. Consider a researcher interested in the relationship

between regular school attendance and student achievement. In this case Y could be a

measure of end-of-school-year achievement, X number of school days absent, and W a vector

of joint determinants of achievement and attendance (e.g., family background measures, prior

achievement, pre-existing health conditions etc.). In this case the researcher might assume

that the distribution of X given W is Poisson with

E [X|W ] = exp
(

k (W )′ φ0

)

, V (X|W ) = exp
(

k (W )′ φ0

)

,

where k (W ) is a known L×1 vector of functions of W . Estimation of φ0 , and hence e (W ;φ0)

and v (W ;φ0), is by maximum likelihood. In most cases the conditional distribution of X

given W can be conveniently modeled by, depending on the nature of X, the appropriate

generalized linear model (GLM). When X is multivariate, the outcome of censoring, or has

mixed discrete/continuous components, then specifying f (x|w;φ) may involve considerable

work. For complicated likelihoods e
(

W ; φ̂
)

and v
(

W ; φ̂
)

may need to be approximated

numerically or by simulation.

The Wooldridge (2004) estimator

Wooldridge (2004) introduced a two-step estimator for β0. A textbook exposition appears

in Wooldridge (2010, Chapter 21.6.3 ). His procedure is summarized in Algorithm 1.

Wooldridge (2004) does not characterize the asymptotic sampling properties of β̂W . In this

section, we show that Wooldridge’s estimator is not efficient under Assumptions 1, 2 and

5. Furthermore it requires the generalized propensity score to be correctly specified. The

structure of this inefficiency and lack of robustness, as well as the form of the efficient

influence function derived earlier, guides the construction of our new, locally efficient and

doubly robust estimator.

The second step of Algorithm 1 corresponds to finding the β̂W which solves the sample

14



Algorithm 1 The Wooldridge (2004) Estimate of β0

1. Compute the maximum likelihood estimate of φ0 and construct e
(

Wi, φ̂
)

and v
(

Wi, φ̂
)

for i = 1, . . . , N ;

2. Compute linear instrumental variables fit of Y onto X (with no constant) using

v
(

W ; φ̂
)−1 (

X − e
(

W ; φ̂
))

as the instrument for X. The coefficient on X equals

β̂.

moment
1

N

N
∑

i=1

ρ
(

Zi, φ̂, β̂W
)

= 0, (20)

for ρ (Z,φ, β) = v (W ;φ)−1 (X − e (W ;φ)) (Y −X ′β) . Here φ̂ corresponds to the MLE of φ0

computed in the first step of the procedure. A mean value expansion of (20) in β̂W about β0

yields

β̂W = β0 +
1

N

N
∑

i=1

ρ
(

Z, φ̂, β0
)

+ op(N
−1/2).

Rearrangement of terms and a second mean value expansion in φ̂ about φ0 gives

√
N
(

β̂W − β0
)

=
1√
N

N
∑

i=1

ρ (Z,φ0, β0)

+

{

1

N

N
∑

i=1

∂ρ
(

Z, φ̄, β0
)

∂φ

}

√
N
(

φ̂− φ0

)

+ op (1) .

Observe that under Assumptions 1 and 2

E [ρ (Z,φ0, β0)|W = w] = E
[

v (W ;φ0)
−1 (X − e (W ;φ0)) (Y −X ′β0)

∣

∣W = w
]

= b0 (w)− β0

since E
[

v (W ;φ0)
−1 (X − e (W ;φ0))X ′

∣

∣W = w
]

= IK . In integral form:

∫

ρ (z,φ0, β0) f0 (y|w, x) f (x|w;φ0) dxdy = b0 (w)− β0. (21)
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Differentiating (21) through the integral with respect to φ gives:

E

[

∂ρ (Z,φ0, β0)

∂φ

∣

∣

∣

∣

W = w

]

= −E [ρ (Z,φ0, β0) S
′|W = w] , (22)

which is a Generalized Information Matrix Equality (GIME) result (e.g., Newey, 1990, p.

104).

Using (19) and (22) we have

√
N
(

β̂W − β0
)

=
1√
N

N
∑

i=1

ρi

−E [ρS′]E [SS′]−1 1√
N

N
∑

i=1

Si + op (1)

=
1√
N

N
∑

i=1

{

ρi − E [ρS′]E [SS′]−1
Si

}

+ op (1) (23)

for ρi = ρ (Zi,φ0, β0) .

Similar to the result of Wooldridge (2007) for the binary X case, this asymptotically linear

representation of β̂W implies that if practitioners ignore sampling error in φ̂, they can get

conservative confidence intervals. In addition, this expression shows that over-parameterizing

the conditional distribution of X given W will not decrease the asymptotic precision β̂W.

We show next that β̂W is inefficient for β0 in the semiparametric model defined by As-

sumptions 1, 2 and 5. This demonstration of inefficiency usefully provides insight into how

to construct a more efficient estimator. We begin by decomposing Wooldridge’s (2004)

identifying moment into the efficient influence function and a remainder: ρ (Z,φ0, β0) =

ψeff
β (Z, β0,φ0, h0 (W )) + r (W,X, β0,φ0, h0 (W )) with

r (W,X, β0,φ0, h0 (W )) =v (W ;φ0)
−1 (X − e (W ;φ0)) (a0 (W ) +X ′ (b0 (W )− β0)) (24)

− (b0 (W )− β0)

Let r0 (W,X) = r (W,X, β0,φ0, h0 (W )) . Note that E [r0 (W,X)|W ] = 0. Note further that

S is also conditionally mean zero given W .

Now observe that for l = 1, . . . , dim (φ)

∂ψeff
β

∂φl
= −v (W ;φ0)

−1 ∂v (W ;φ0)

∂φl
v (W ;φ0)

−1 (X − e (W ;φ0))U

−v (W ;φ0)
−1 ∂e (W ;φ0)

∂φl
U,
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and hence that

E

[

∂ψeff
β

∂φl

∣

∣

∣

∣

∣

W

]

= −v (W ;φ0)
−1 ∂v (W ;φ0)

∂φl
v (W ;φ0)

−1
E [ (X − e (W ;φ0))U |W ] (25)

−v (W ;φ0)
−1 ∂e (W ;φ0)

∂φl
E [U |W ]

= 0

by Lemma 1 above.

Next start with the fact that

∫

ψeff
β f0 (y|x, w) f (x|w;φ0) f0 (w) = 0.

Differentiating through the integral gives the equality

∫

∂ψeff
β

∂φ′ f0 (y|x, w) f (x|w;φ0) f0 (w) = −
∫

{

ψeff
β S

′} f0 (y|x, w) f (x|w;φ0) f0 (w)

and hence that, using the decomposition of ρ (Z,φ0, β0) introduced above and equation (25),

E [ρS′] = E
[

ψeff
β S

′]+ E [rS′] = E [rS′] .

Plugging this into our influence function we get

√
N
(

β̂W − β0
)

=
1√
N

N
∑

i=1

{

ρi − E [ρS′]E [SS′]−1
Si

}

+ op (1)

=
1√
N

N
∑

i=1

{

ψeff
β,i +

[

ri − E [rS′]E [SS′]−1
Si

]}

+ op (1) ,

and hence an asymptotic distribution of

√
N
(

β̂W − β0
)

D→ N
(

0, I (β0)
−1 + E

[

(r − ΠrSS) (r −ΠrSS)
′]) (26)

with ΠrS = E [rS′]× E [SS′]−1 .

The form of the the limit distribution (26) is similar to that of the familiar inverse probability

weighting (IPW) estimator for binary treatments (e.g., Graham et al., 2012, Proposition

3.1). In that context it is well-known that replacing a known propensity score with an

estimated one increases precision (Hirano et al., 2003; Hitomi et al., 2008; Graham, 2011).

In principle the degree of precision increase is increasing in the complexity/richness of the
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fitted propensity score model. Expression (26) indicates that a similar phenomena operates in

our setting. If the portion of the efficient influence function that is omitted by the Wooldridge

(2004) procedure is well-approximated by a linear combination of the scores used to estimate

the propensity score, then the β̂W will be precisely determined. In practice, instead of relying

on a possibly overfitted propensity score to yield efficient estimates, it is better to redesign

the estimation procedure with efficiency in mind at the outset.

A locally efficient, doubly robust estimator

Our estimator for β0 requires a working parametric model for the CLP coefficients a0 (W )

and b0 (W ). Consistency and asymptotic normality of our estimate, β̂, will not depend on

the correctness of this working model, but its limiting variance will. A convenient working

model is provided by Assumption 6.

Assumption 6. (CLP Coefficients): a0 (W ) = α0 + (W − µW )′ γ0 and b0 (W ) = β0 +

∆0 (W − µW ).

In practice these models for a0 (W ) and b0 (W ) can be made arbitrarily flexible since W can

include a rich set of basis functions (e.g., squares, cross-products etc.) in the underlying

controls.

Under Assumption 6 we have that

E
∗ [Y |X ;W ] = α0 + (W − µW )′ γ0 +X ′ (β0 +∆0 (W − µW ))

= α0 + (W − µW )′ γ0 + ((W − µW ) ! X)′ δ0 +X ′β0, (27)

where δ0 = vec (∆0) .

Equation (27) implies that, maintaining Assumption 6, one approach to estimating β0 would

be to compute the least squares fit of Yi onto a constant, Wi−µW , all interactions of Wi−µi

and Xi, and Xi itself. For the special case where X is a binary treatment indicator, this

estimator is familiar to labor economists as a Oaxaca-Blinder average treatment effect (ATE)

estimator (e.g., Sloczynski, 2015).4 Consistency of of this estimator hinges upon Assumption

6 accurately characterizing the sampled population.

In our setting Assumption 6 plays a different role. Unlike in the Oaxaca-Blinder procedure,

its validity is not required for consistency, but if it does accurately described the sampled

4In this literature researchers typically center W around E [W |X = 1], not the unconditional mean µW =
E [W ] as is done here. With this alternative centering the coefficient on Xi will coincide with the average
treatment effect on the treated (ATT).
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Algorithm 2 Locally Efficient and Doubly Robust Estimation Of β0

1. Compute the maximum likelihood estimate of φ0 and construct e
(

Wi, φ̂
)

and v
(

Wi, φ̂
)

for i = 1, . . . , N ;

2. Compute the sample mean µ̂W = 1
N

∑N
i=1Wi and construct Ri (µ̂W ) for i = 1, . . . , N ;

3. Compute the linear instrumental variables fit of Yi onto Ri (µ̂W ) and Xi using

v
(

Wi; φ̂
)−1 (

Xi − e
(

Wi; φ̂
))

as the excluded instrument for Xi. The coefficient on

Xi in this fit coincides with β̂.

population our estimator will be highly efficient. These benefits come at the cost of assuming

that prior knowledge regarding the form of the generalized propensity score is available (i.e.,

maintaining Assumption 5).

To describe our procedure we require some additional notation. Let λ = (α, γ′, δ′)′, R (µW ) =
(

1, (W − µW )′ , ((Wi − µW ) ! Xi)
′)′ and

Ui (µW ,λ, β) =
(

Yi − R (µW )′ λ−X ′
iβ
)

.

When R (µW ) is evaluated at the correct population mean of W , we often simply write R.

Our estimator is based upon the (L+ J + 1 + J + JK +K)×1 vector of moment conditions,

m (Zi, θ), partitioned into the three ordered sub-vectors:

m1(Xi,Wi,φ)
L×1

=Sφ (Xi|Wi;φ) (28)

m2(Wi, µW )
J×1

=Wi − µW (29)

m3(Zi,φ, µW ,λ, β)
1+J+JK+K×1

=

(

Ri (µW )

v (W ;φ)−1 (X − e (W ;φ))

)

Ui (µW ,λ, β) (30)

where θ = (φ, µW ,λ′, β)′ with dim (θ) = L+ J + 1 + J + JK +K.

Equations (28), (29) and (30) constitute a just-identified system. The corresponding method-

of-moments estimate of β0 can be computed in the three simple steps listed in Algorithm

2.

In many cases of interest Algorithm 2 is easily implemented using standard soft-

ware. Standard errors may be constructed in the usual way for GMM estimators (e.g.,

Newey & McFadden, 1994; Wooldridge, 2010) or using a bootstrap.

In step 3, if instead we let Xi serve as its own instrument, we get an “Oaxaca-Blinder” type

19



estimator.

The next theorem summarizes the large sample properties of β̂. In the statement of

the Theorem, ∆∗ denotes the limiting pseudo-true value of ∆̂. If Assumption 6 addi-

tionally holds then ∆∗ = ∆0. We also define ϵ̃ = v (W )−1
0 (X − e0 (W )) ϵ where ϵ =

{a0 (W ) +X ′ (b0 (W )− β0)−R′λ∗} (with λ∗ denoting a pseudo-true parameter value). Fi-

nally we let Πϵ̃S = E [ϵ̃iS′]E [SS′]−1 denote the coefficient matrix associated with the multi-

variate regression of ϵ̃ onto the score vector associated with φ0 (the parameter indexing the

generalized propensity score).

Theorem 2. (Large Sample Distribution) Consider the semiparametric problem es-

tablished by Definition 1 and Assumptions 1, 2, and 5. Let β̂ be the method of mo-

ments estimate of β0 based upon restrictions (28) to (30). Under regularity conditions (cf.,

Newey & McFadden, 1994, Theorem 3.4) β̂ is (i) asymptotically normal with a limiting dis-

tribution of

√
N
(

β̂ − β0
)

D→ N
(

0,E [Ω0 (W )] +∆∗V (W )∆′
∗ + E

[

(ϵ̃− Πϵ̃SS) (ϵ̃− Πϵ̃SS)
′]) , (31)

and (ii) locally efficient for β0 at Assumption 6 with

√
N
(

β̂ − β0
)

D→ N
(

0, I(β0)−1
)

. (32)

Proof. See Appendix A.

Part (ii) of Theorem (2) follows easily from part (i). In the proof we show that ϵ equals

the prediction error associated with the mean squared error minimizing linear prediction of

a0 (W )+X ′ (b0 (W )− β0) given R (µW ). When Assumption 6 additional holds this prediction

error will be identically equal to zero and the third term in the variance expressing appearing

in part (i) drops out. Similarly when Assumption 6 holds we have ∆∗V (W )∆′
∗ = V (b0 (W )).

Together these two observations give part (ii).

Our efficiency bound calculation, Theorem 1, gives the information bound for β0 without

imposing the additional auxiliary Assumption 6. This assumption imposes restrictions on

the joint distribution of the data not implied by the baseline model. If these restrictions are

added to the prior used to calculate the efficiency bound, then it will generally be possible

to estimate β0 more precisely. Our estimator is not efficient with respect to this augmented

model. Rather it attains the bound provided by Theorem 1 if Assumption 6 “happens to

be true” in the sampled population, but is not part of the prior restriction used to calculate

the bound. Newey (1990, p. 114) discusses the concept of local efficiency in detail. In what

follows we will, for brevity, say β̂ is locally efficient at Assumption 6.
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Even if Assumption 6 does not hold precisely, our procedure will be “nearly” efficient when

it is approximately true (in which case variability in ϵ about zero is small). A caveat to

this claim is that the third variance term in (31) may still be large in this case if v0 (w)

is nearly zero for enough values of w. This occurs when overlap is poor, or there exists a

lack of variation in the policy variable for some subpopulations defined in terms of W = w.

Graham et al. (2016) develop this observation more extensively for the special case where X

is binary, but similar issues apply in the more general setting considered here.

Our next result formalizes the above observation. It extends our local efficiency result to

“near” global efficiency. The basic argument mirrors that given by Chamberlain (1987, Propo-

sition 2) for approximately efficient estimation of conditional moment problems. Presenting

this result requires defining a sequence of estimators based upon Algorithm 2.

Let L2 be the space of functions f : W → R with finite second moment E
[

f (W )2
]

< ∞.

Under Assumptions 1 and 2 the set of feasible conditional linear predictor coefficients lies

within this space such that a : W → R1 and b : W → RK with E
[

a (W )2
]

< ∞ and

E
[

∥b (W )∥2
]

< ∞. Let {kj (W )}∞j=1 be a sequence of linearly independent functions of the

control variables, each with finite variance. Similar to Chamberlain (1987) we call this

sequence complete if, (i) for any ζ > 0 and (ii) any feasible conditional linear predictor

coefficients a (W ) and b (W ) in L2, there are the real numbers α, γ1, . . . , γJ and δk1, . . . , δkJ

for k = 1, . . . , K such that

E

[

∥

∥δ(J) (W )
∥

∥

2
]

< ζ2, (33)

with δ(J) (W ) defined as

δ(J) (W ) =

⎛

⎜

⎜

⎜

⎜

⎝

a (W )− α−
∑J

j=1 (kj (W )− µj) γj

b1 (W )− β01 −
∑J

j=1 (kj (W )− µj) δ1j
...

bK (W )− β0K −
∑J

j=1 (kj (W )− µj) δKj

⎞

⎟

⎟

⎟

⎟

⎠

. (34)

Let k(J) (W ) be the J×1 vector of functions of W with jth element kj (W ). We can construct

a sequence of estimators, indexed by J , based upon Algorithm 2 with k(J) (W ) replacing W .

To do this let µ(J) = E
[

k(J) (W )
]

and additionally define

R(J) =
(

1,
(

k(J) (W )− µ(J)
)′
,
((

k(J) (W )− µ(J)
)

⊗X
)′
)′
.

We can then estimate β0 by Algorithm 2 with k(J) (W ), µ(J) and R(J) respectively replacing

W , µW , and R (µW ).

Consider the asymptotic precision matrix of this method of moments estimator; from The-

21



orem 2 we get

I(J) (β0)
−1 =E [Ω0 (W )] +∆(J)

∗ V
(

k(J) (W )
) (

∆(J)
∗
)′

+ E

[

(

ϵ̃(J) −Π(J)
ϵ̃S S

)(

ϵ̃(J) − Π(J)
ϵ̃S S

)′
]

.

with I(J) (β0)
−1 ≥ I (β0)

−1 (here “A ≥ B” denotes “A−B is positive semi-definite”). Recall

that I (β0) is the semiparametric efficiency bound given in Theorem 1. Let β̂(J) denote the

estimate of β0 based upon k(J) (W ).

Proposition 3. (Near Efficiency) If, maintaining the Assumptions of part (i) of The-

orem 2,
{

β̂(J)
}

is based upon a linearly independent, complete sequence {kj (W )}∞j=1 , then,

for X×W a compact subset of RK+dim(W ),

lim
J→∞

I(J) (β0)
−1 = I (β0)

−1 .

Proof. See Appendix A.

The compact support assumption invoked in the statement of the theorem is used in the

proof, but does not appear to be essential.

Proposition 3 leaves unanswered important practical questions, such as how quickly J should

increase with N . More generally the question of exactly how to choose the elements of

k(J) (W ) in order to achieve good precision in practice remains unanswered. However we

expect that many insights from related settings could be applied here (e.g., Belloni et al.,

2014).

We conclude this section by demonstrating double robustness in the sense of Scharfstein et al.

(1999). If the specification of the generalized propensity score is not correct (i.e., Assumption

5 does not hold), but Assumption 6 is true, then our estimator remains consistent for β0.

Recall that Assumption 6 was initially invoked to ensure local efficiency of our procedure. It

turns out that modeling the form of the conditional linear predictor coefficients has the added

benefit of ensuring that our estimator remains consistent even if our generalized propensity

score model is incorrect. Double robustness results are familiar from the literature on missing

data and program evaluation (e.g., Scharfstein et al., 1999; Cattaneo, 2010; Graham, 2011).

In these settings X is binary or a vector of mutually-exclusive treatment indicators. Double

robustness in our more general setting is perhaps unsurprising, but nevertheless a new result.

To understand this result observe that step 3 of Algorithm 2 corresponds to solving the
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sample analog of

E

[(

R (µW )

v (W ;φ∗)
−1 (X − e (W ;φ∗))

)

U (µW ,λ0, β0)

]

= 0

for λ0 and β0. Here we use the notation φ∗ to denote that our generalized propensity score

model may be miss-specified.

If Assumption 6 holds in the population, then U0 = Ui (µW ,λ0, β0) is a conditional

linear predictor (CLP) error and Lemma 1 above applies. Recall that R (µW ) =
(

1, (W − µW )′ , ((Wi − µW ) ! Xi)
′)′; by Lemma 1 U0 is uncorrelated with all components

of this vector. Likewise, because U0 is mean independent of W and conditionally uncor-

related with X, we also have that E
[

v (W ;φ∗)
−1 (X − e (W ;φ∗))U

]

is mean zero as well.

Hence step 3 of Algorithm 2 involves the computation of a correctly specified method-of-

moments estimator under Assumption 6; irrespective of whether Assumption 5 additionally

holds. Double robustness follows, more or less, directly.

The above discussion also clarifies why, as is sometimes true in practice, sampling variabil-

ity in our estimator can theoretically be lower than the semiparametric variance bound in

Theorem 1 when the generalized propensity score is misspecified, but the form of the CLP

coefficients are not. First, recall that the variance bound is computed without making any

a priori assumptions about the form of the CLP coefficients. It turns out that in our setting

such assumptions generally increase the precision with which β0 may be estimated. When

we invoke the double robustness property of our procedure to ensure consistency we are in

a situation where the veracity of Assumption 6 is central. Whereas is the setting covered by

Theorem 2, Assumption 6 “may happen to be true”, but need not be.

It is instructive to compare our estimator with the “Oaxaca-Blinder-type” one described ear-

lier. The Oaxaca-Blinder procedure necessarily maintains Assumption 6. Since this restric-

tion is part of the prior, it would not be surprising to find that, under correct specification,

that the Oaxaca-Blinder estimator is more efficient than ours. For the purposes of developing

this point, additionally assume that U0 is homoscedastic in X and W (but that this is not

part of the prior), then – maintaining Assumption 6 – replacing v (W ;φ∗)
−1 (X − e (W ;φ∗))

with X in the above moment would be natural. This replacement leads the researcher to

the Oaxaca-Blinder estimator (which will also be efficient in this case). Hence, when As-

sumption 6 does hold in the sampled population, our procedure will be less efficient that the

Oaxaca-Blinder one (at least under homoscedasticity of U0). Of course, when Assumption 6

does not characterize the sampled population, our procedure remains consistent, while the

Oaxaca-Blinder one does not.
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Theorem 3. (Double Robustness) Under Assumptions 1 and 2 , β̂
p→ β0 if either

Assumption 5 or 6 holds.

The proof is straightforward and omitted (see Graham et al. (2012) and Graham et al. (2016)

for proofs of related results). As a practical matter using the standard method-of-moments

sandwich variance-covariance matrix estimator associated with the moment problem defined

by (28), (29) and (30) above will support asymptotically valid inference under the conditions

of both Theorems 2 and 3.

4 Examples and special cases

In this section we demonstrate that our semiparametric regression model encompasses several

other well-known models.

Example 1: Binary Treatment Effect

Following the program evaluation literature let Y0 denote the potential outcome under control

and Y1 the potential outcome under active treatment treatment. For each sampled unit we

observe either Y0 or Y1 but not both. The observed outcome, Y , therefore equals

Y = XY1 + (1−X)Y0

where X equals 1 if the unit is treated and zero otherwise. Rewriting yields a random

coefficients model of

Y = A+BX

with A = Y0 and B = Y1 − Y0. The average treatment effect (ATE) equals

β0 = E[Y1 − Y0] = E[B].

Rosenbaum & Rubin (1983) show that the ATE is identified when (Y0, Y1)⊥X|W (uncon-

foundedness) and 0 < Pr (X = 1|W = w) < 1 for all w ∈ W (overlap).

When X is binary our Assumption 3 implies unconfoundedness. Assumption 3 implies that

X is conditionally uncorrelated with the two potential outcomes. When X is binary this

also corresponds to mean and full conditional independence. Next observe that e0(W ) =

Pr (X = 1|W = w) and v0(W ) = e0(W ) [1− e0(W )]. Hence our Assumption 2 implies that

0 < κ ≤ e0 (W ) ≤ 1− κ < 1 or so called strong overlap.
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Now consider Algorithm 2. When X is binary we have that

v
(

W, φ̂
)−1 (

X − e
(

W, φ̂
))

=
X

e
(

W, φ̂
) − 1−X

1− e
(

W, φ̂
) .

Our ATE estimate is the coefficient on X associated with the linear instrumental variables

fit of Y onto a constant, (W − µ̂W ), (W − µ̂W ) · X, and X where X
e(W,φ̂)

− 1−X
1−e(W,φ̂)

serves

as an instrument for X. This estimator is similar to, but distinct from, the weighted least

squares (WLS) one introduced by Hirano & Imbens (2001).

Wooldridge (2004) shows, for X binary, that equation (7) coincides with

E
[

v0 (W )−1 (X − e0 (W )) Y
]

= E

[

XY

e0 (W )
− (1−X)Y

1− e0 (W )

]

,

which is the familiar inverse probability weighting (IPW) representation of the average treat-

ment effect (ATE) in, for example, Hirano et al. (2003).

The general form of the efficient influence function given in Theorem 1 above corresponds to

the specialized one for the ATE when X is binary derived by, for example, Hahn (1998) and

Hirano et al. (2003). Hence our general procedure, as summarized by Algorithm 2, provides

a locally efficient and double robust estimator of the ATE. To the best of our knowledge, our

proposed estimator is a new one, even in the special case where it identifies the ATE of a

binary treatment. Bang & Robins (2005) and Tsiatis (2006) provide introductions to double

robust causal inference.

Example 2: Multiple Treatment Effects

Following Imbens (2000), Wooldridge (2004), and Cattaneo (2010) consider finite collection of

mutually exclusive treatments indexed by k ∈ {0, 1, 2, ..., K} with K ∈ N. Associated with

these treatments are the K + 1 potential outcomes, Y (0), Y (1), . . . , Y (K). The observed

outcome is

Y = Y (0) +
K
∑

k=1

Xk {Y (k)− Y (0)}

where Xk is a binary random variable that equals 1 if treatment k = 0, . . . , K is assigned

to the unit and zero otherwise. In this case, we work with the following random coefficient

model:

Y = A+X
′

B
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where X = (X1, . . . , XK)
′ is a K × 1 vector of treatment indicators and B a corresponding

vector of individual treatment effects.

In this setup X is multinomial with a conditional mean of

e0 (W ) =

⎛

⎜

⎜

⎝

Pr (X1 = 1|W )
...

Pr (XK = 1|W )

⎞

⎟

⎟

⎠

and an inverse conditional variance of (cf., Henderson & Searle, 1981)

v0 (W )−1 =diag

{

1

Pr (X1 = 1|W )
, . . . ,

1

Pr (XK = 1|W )

}

+
1

1−
∑K

k=1Pr (XK = 1|W )
ιKι

′
K .

A little bit of tedious algebra then gives

β0 = E
[

v0 (W )−1 (X − e0 (W ))Y
]

= E

⎡

⎢

⎢

⎣

X1Y
Pr(X1=1|W ) −

X0Y
Pr(X0=1|W )

...
XKY

Pr(XK=1|W ) −
X0Y

Pr(X0=1|W )

⎤

⎥

⎥

⎦

,

which corresponds to the IPW representation of the ATEs

β0 =

⎛

⎜

⎜

⎝

E [Y (1)− Y (0)]
...

E [Y (K)− Y (0)]

⎞

⎟

⎟

⎠

,

in the multiple treatment setting.

As in the case where X is binary, the general form of the efficient influence function given

in Theorem 1 above corresponds to the specialized one derived by Cattaneo (2010). Hence

our general procedure also provides a locally efficient and doubly robust estimate of ATEs

in the multiple, mutually exclusive, treatments setting.

Example 3: Partially linear model

Chamberlain (1986, 1992) and Robinson (1988) studied the semiparametric partially linear

regression model (PLM)

Y = X ′β0 + h0(W ) + U
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with E[U |W,X ] = 0. This model can be represented by the random coefficient model

Y = A +X ′B

where E[A|W,X ] = a0 (W ) = h0(W ) and E[B|X,W ] = b0 (W ) = β0. These assumptions are

stronger than those implied by Assumption 3.

To fit this into our framework we replace Assumption 6 with a working CLP model of

a0 (W ) = h0 (W ) = α0 + (W − µW )′ λ0, b0 (W ) = β0.

This implies a constant additive treatment effect structure.

Estimation follows Algorithm 2. First compute the MLE of φ0. Second compute the sample

means µ̂W = 1
N

∑N
i=1Wi. Finally compute the linear instrumental variables fit of Y onto

a constant, (W − µ̂W ) and X, using v
(

W, φ̂
)−1 (

X − e
(

W, φ̂
))

as an instrument for X.

Because of the constant additive treatment effect structure of the PLM we exclude the

interactions (W − µ̂W )⊗X from the IV fit computed in the third step.

It is important to recognize that although our procedure invokes the working assumption

that the treatment effect is constant in W (i.e., b0 (w) = β0 for all w ∈ W), this assumption

is not required for consistency as long as our generalized propensity score model is correct.

Put differently although our procedure incorporates the PLM structure, this structure is not

part of the maintained prior (albeit the form of the generalized propensity score is part of

the prior).

If b0 (w) = β0 for all w ∈ W and U is conditionally mean zero given both W and X (and also

has a constant variance), but these are not part of the prior restriction used to calculate the

bound, then (16) evaluates to

I(β0)−1 = σ2
E
[

v0(W )−1
]

.

The modified PLM estimator described above, and based on our Algorithm 2, will attain

this bound when the true model is a partially linear one.

Chamberlain (1992) gives a bound for β0 – where the partially linear regression structure is

part of the prior restriction (but the homoscedasticity assumption is not) – of

Iplm(β0)
−1 = σ2

E [v0(W )]−1 .

The difference I(β0)−1 − Iplm(β0)−1 is positive semi-definite. This follows directly from,

for example, the Theorem in Groves & Rothenberg (1969) on the expectations of inverse
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Table 1: Monte Carlo Designs
Designs 1 2 3 4

α0 1 1 1.5 1.5
γ1 1 1 1 1
γ2 0 0 0.5 0.5
β0 2 2 2.5 2.5
δ1 1.22 1.26 1 1.05
δ2 0 0 0.5 0.5
φ0 0.1 0.1 0.1 0.1
φ1 0.5 0.5 0.5 0.5
φ2 0 0.1 0 0.1

Notes: We specified a0 (w) = α0 + γ1 (W − E [W ]) + γ2 (W 2 − E [W 2]) and b0 (w) = β0 +
δ1 (W − E [W ]) + δ2 (W 2 − E [W 2]) analogous to the formulation given in Assumption 6.

Each of the four designs are calibrated such that
√

I (β0)
−1 /N = 0.05 when N = 1, 000.

matrices. Hence although our approach to estimation remains consistent for β0 when the

true regression function takes a partially linear form, it will generally be less efficient than

methods which exploit this structure at the outset (e.g., Robinson, 1988; Robins et al., 1992).

5 Finite sample properties

In order to assess the approximation accuracy of Theorems 2 and 3 in finite samples we

conducted a small simulation experiment, the results of which we report here. We considered

four designs. The outcome was generated according to

Y = a0 (W ) + b0 (W )X + U

with W and U independent standard normal random variables and a0 (W ) and b0 (W ) either

linear (designs 1 and 2) or quadratic (designs 3 and 4) in W . The conditional distribution of

X given W was specified as Poisson with parameter exp
(

k (W )′ φ
)

and k (W ) = (1,W )′ in

designs 1 and 3 and k (W ) = (1,W,W 2)
′
in designs 2 and 4. Complete details on the data

generating process are given in Table 1.

We evaluate the performance of three estimators. First we consider a simple “Oaxaca-

Blinder” type estimator. Specifically we estimate β0 by the coefficient on X in the least

squares fit of Y onto a constant, W − µ̂W , (W − µ̂W ) × X and X. As in Kline (2014)

we appropriately account for the effect of estimating µW when constructing standard errors

and confidence intervals. This estimator is consistent for the true average partial effect in
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both designs 1 and 2. It is also, since U is Gaussian and homoscedastic, efficient in these

two designs. Efficiency is in the semiparametric model which, in addition to Assumptions

1 and 2, maintains Assumption 6. The variance of the Oaxaca-Blinder estimate therefore

lies (weakly) below the bound given by Theorem 1 in these two designs. In designs 3 and 4,

where a0 (W ) and b0 (W ) are quadratic in W , the “Oaxaca-Blinder” estimator is inconsistent.

The second estimator is the generalized inverse probability weighting (GIPW) one due to

Wooldridge (2004, 2010). Our implementation tracks our analysis in Section 3. For estima-

tion we correctly assume that the conditional distribution of X given W is Poisson, but set

the parameter to exp
(

k (W )′ φ
)

with k (W ) = (1,W )′. This is correct in designs 1 and 3,

but not 2 and 4. Hence the GIPW estimate of β0 is consistent in designs 1 and 3, but not

2 and 4. The GIPW is never efficient. Standard errors are constructed using the sample

analog of the influence function given in (23) above.

Finally we consider the properties of our locally efficient, doubly robust estimator. Imple-

menting this procedure requires assumptions on both the CLP and the generalized propensity

score. We make the same assumptions used to implement the Oaxaca-Blinder and GIPW

procedures. Consequently this last estimator is efficient – in the sense of Theorem 1 – in de-

sign 1 and consistent in designs 1, 2 and 3. Like all the estimators it is inconsistent in design

4. We construct standard errors using the (sample analog) of the influence function given

in Theorem 2; consequently our intervals are conservative in design 2 (where our propensity

score model is misspecified).5

Each of the four designs are calibrated such that
√

I (β0)
−1 /N = 0.05 (0.025) when N =

1, 000 (4, 000). In an asymptotic sense inference on β0 is equally hard across all the designs

considered. We focus on the N = 1, 000 experiments in our discussion (the quality of the

asymptotic approximations predictably improve in the larger sample).

Results from the four designs are reported in Table 2. As expected our DR estimator is

median unbiased across Designs 1, 2 and 3. In contrast the Oaxaca-Blinder estimator only

performs acceptably in designs 1 and 2, and the GIPW estimator in design 1 and 3. In

designs 1 and 2 the variability of the DR estimator is nearly as small as that of the Oaxaca-

Blinder one. Neither the DR, nor the GIPW, estimators are expected to be efficient in design

3 but, interestingly, GIPW is more efficient than DR in this case. In design 1, where the DR

estimator is locally efficient, its standard deviation is substantially smaller than that of the

GIPW estimator (as expected).

5We use Python 3.6 to conduct our experiments. Replication code is available in the supplemental
materials.
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Overall the simulation results track our theoretical predictions remarkably closely. Of course

exploring the performance of these estimators in the context of real world empirical appli-

cations and other, more realistic, simulation designs would be of interest.

6 Conclusion

We have introduced a locally efficient, doubly robust, semiparametric method of estimating

averages of conditional linear predictor coefficients. Our estimand, and semiparametric effi-

ciency bound, specialize to familiar counterparts found in the program evaluation literature

(e.g. Hahn, 1998; Cattaneo, 2010). While encompassing well-known program evaluation set-

tings, our framework allows for (semiparametric) covariate adjustment in many other settings

as well (including ones with few extant alternative methods of such adjustment).

Researchers interested in estimating the average treatment effect (ATE) associated with a

binary treatment can apply our methods. While we believe the precise form of our procedure

is new even to this familiar setting, it is a variant of the class of augmented inverse probability

weighting (AIPW) estimators introduced by Robins et al. (1994) in the missing data context

over 20 years ago. The real attraction of Algorithm 2, and the corresponding Theorems 2

and 3 (as well as Proposition 3), is that they apply to models beyond the “classic” program

evaluation one of Rosenbaum & Rubin (1983). Multiple, mutually exclusive treatments,

as in Imbens (2000) and Cattaneo (2010) are easily handled as a special case. Similarly,

maintaining a linear, but heterogeneous, potential response function structure, Algorithm

2 recovers average partial effects (APE) for continuous treatments, multiple non-exclusive

treatments, mixtures of binary, discrete and continuous treatments and so on. A weighted

average derivative interpretation of our estimand is also available for settings where the linear

potential response function structure may not hold (Proposition 2).

We also wish to emphasize that averages of conditional linear predictor coefficients represent

a natural, but substantial, generalization of linear predictor coefficients as estimated by

the method of least squares. Hence Algorithm 2 also provides a method of flexible covariate

adjustment that may be of independent interest even in settings where formal causal inference

is not warranted; similar to how least squares is sometimes used for descriptive purposes.

Our work leaves several questions unanswered. First, although the flexible parametric mod-

eling embodied in Assumptions 5 and 6 closely mirrors empirical practice, it would be useful

to development methods that leave the generalized propensity score and CLP coefficients

non-parametric. It seems likely that results from the binary and multiple treatments case

could be extended to apply here (e.g., Hirano et al., 2003; Cattaneo, 2010; Belloni et al.,
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2014).

In other work we have shown that first order equivalent estimators may have appreciably

different higher order properties in program evaluation settings (Graham et al., 2012). We

expect that other locally efficient, doubly robust approaches to estimation for the class of

problems considered in this paper are feasible. These approaches may exhibit superior or

inferior higher order bias.

Third, maintaining the correlated random coefficient structure, different notions of condi-

tional exogeneity will imply different semiparametric efficiency bounds (when linearity is

restrictive). Our decision to work with a weak notion of exogeneity maintains a connec-

tion with conditional linear predictors. If a researcher was comfortable with the correlated

random coefficient structure, then it would generally be possible to construct more efficient

estimates of β0 = E [B] if she was willing to assume, for example, that (A,B′)′ ⊥ X
∣

∣W = w

for all w ∈ W. Such estimators would likely be quite complicated and may have poor finite

sample properties.
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A Proofs

This appendix contains proofs of the results contained in the main paper. All notation is as

defined in the main text unless explicitly noted otherwise. Equation numbering continues in

sequence with that established in the main text.

Proof of Theorem 1 (Semiparametric efficiency bound)

In calculating the efficiency bound for β0 in the semiparametric regression model defined by

Definition 1 and Assumptions 1 and 2 of the main text, we follow the approach outlined

by Newey (1990, Section 3). First, we characterize the model’s tangent space. Second, we

demonstrate pathwise differentiability of β0. The efficient influence function for β0 equals

the projection of this derivative onto the tangent space. In the present case the pathwise

derivative lies in the tangent space and hence coincides with the required projection. The

result then follows from an application of Theorem 3.1 in Newey (1990).

Step 1: Characterization of the Model Tangent Space:

The joint density function for z = (w, x, y) is given by

f0 (w, x, y) = f0 (x, y|w) f0 (w) ,

where f0 (x, y|w) denotes the conditional density/mass of (X = x, Y = y) given W = w and

f0 (w) is the marginal density/mass of W = w.

Consider a regular parametric submodel indexed by η with f (w, x, y; η) = f0 (w, x, y) at

η = η0. The submodel joint density equals

f (w, x, y; η) = f (x, y|w; η) f (w; η) ,

with a corresponding score vector of

sη (w, x, y; η) = sη (x, y|w; η) + tη (w; η) (35)

where

sη (w, x, y; η) = ∇ηf (w, x, y; η) , sη (x, y|w; η) = ∇ηf (x, y|w; η) , tη (w; η) = ∇ηf (w; η) .
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By the usual (conditional) mean zero property of scores we have that

E [sη (X, Y |W )|W ] = E [tη (W )] = 0, (36)

where the suppression of η in a function indicates that it is evaluated at its population value

(e.g., tη (w) = tη (w; η0)).

The model tangent set is the closed linear span of the set of all such scores. From (35) and

(36) this set evidently equals

T = {s (x, y|w) + t (w)}

where s (x, y|w) and t (w) satisfy the (conditional) moment restrictions

E [s (X, Y |W )|W ] = E [t (W )] = 0,

and also have finite variance.

Step 2: Demonstration of pathwise differentiability:

Under the parametric submodel, β (η) is identified by

β (η) =

∫

b (w; η) f (w; η) dw, (37)

where b (w; η) satisfies the conditional moment restriction

∫ ∫

(

1

x

)

(y − a (w; η)− x′b (w; η)) f (x, y|w; η) dxdy = 0. (38)

Differentiating (37) under the integral and evaluating at η = η0 gives

∂β (η0)

∂η′
= E

[

∂b (W ; η0)

∂η′

]

+ E [b (W ; η0) tη (W ; η0)] . (39)

We can derive a close-form expression for ∂b(w;η0)
∂η′ in (39) by differentiating (38) with respect

to η (and evaluating at η = η0):

−
∫ ∫

(

1

x

)

∂a (w; η0)

∂η′
f (x, y|w; η0) dxdy −

∫ ∫

(

x′

xx′

)

∂b (w; η0)

∂η′
f (x, y|w; η0) dxdy

+

∫ ∫

(

1

x

)

(y − a (w; η)− x′b (w; η0)) sη (x, y|w; η0) f (x, y|w; η0) dxdy = 0
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Using the matrix inverse

E

[

1 X ′

X XX ′

∣

∣

∣

∣

∣

W = w

]−1

=

(

1 + e0 (w)
′ v0 (w)

−1 e0 (w)− e0 (w)
′ v0 (w)

−1

−v0 (w)
−1 e0 (w) v0 (w)

−1

)

we solve to get

(

∂a(w;η0)
∂η′

∂b(w;η0)
∂η′

)

=

(

1 + e0 (w)
′ v0 (w)

−1 e0 (w)− e0 (w)
′ v0 (w)

−1

−v0 (w)
−1 e0 (w) v0 (w)

−1

)

×E

[(

Y − a (W ; η0)−X ′b (W ; η0)

X (Y − a (W ; η0)−X ′b (W ; η0))

)

sη (X, Y |W ; η0)

∣

∣

∣

∣

∣

W = w

]

.

Evaluating the second row of this expression gives

∂b (w; η0)

∂η′
= E

[

v0 (W )−1 (X − e0 (W )) (Y − a0 (W )−X ′b0 (W )) sη (X, Y |W )
∣

∣W = w
]

,

(40)

which, after substituting into (39), yields

∂β (η0)

∂η′
= E

[

v0 (W )−1 (X − e0 (W )) (Y − a0 (W )−X ′b0 (W )) sη (X, Y |W )
]

+E [b0 (W ) tη (W )] . (41)

To demonstrate pathwise differentiability of β, we require F (W,X, Y ) such that

∂β (η0)

∂η′
= E

[

F (W,X, Y ) sη (W,X, Y )′
]

. (42)

Setting F (W,X, Y ) equal to ψeff
β (Z, β0, g0 (W ) , h0 (W )), as defined in (17) of the main text,

we get E
[

F (W,X, Y ) sη (W,X, Y )′
]

equal to (41) since, by Lemma 4.1 of Wooldridge (1999),

E [ (X − e0 (W )) (Y − a0 (W )−X ′b0 (W ))|W ] = 0

and iterated expectations (and the conditional mean zero property of the score sη (X, Y |W ))

further implies that E [(b0 (W )− β0) sη (X, Y |W )] = 0.
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Step 3: Verification that the conjectured influence function equals the required

projection:

Observe that ψeff
β (Z, β0, g (W ) , h (W )) lies in the model tangent space. Its first term

is conditionally mean zero given W and hence plays the role of s (X, Y |W ) . Its sec-

ond term is a mean zero function of W alone and hence plays the role of t (W ). Since

ψeff
β (Z, β0, g0 (W ) , h0 (W )) ∈ T , its projection onto T equals itself. Since equation (9) of

Newey (1990, p. 106) is satisfied the result follows from his Theorem 3.1.

Proof of Theorem 2 (Large sample properties of β̂ )

Recall that λ = (α, γ′, δ′)′ and

R
(1+J+JK)×1

=
(

1, (W − µW )′ , ((W − µW )⊗X)′
)′
.

In what follows we let λ∗ denote value of λ which solves the just-identified population mo-

ments (28), (29) and (30). If Assumption 6 additionally holds in the sampled population,

then we use λ0 to denote the population value of λ. In this case λ0 correctly specifies the

form of the CLP of Y given X conditional on W .

In the Supplemental Web Appendix we show, without maintaining Assumption 6, that

λ∗ =E [RR′]−1
E [R (Y −X ′β0)] (43)

=E [RR′]−1
E [R (a0 (W ) +X ′ (b0 (W )− β0))] .

Equation (43) implies that R′λ∗ is the mean squared error minimizing linear predictor of

a0 (W ) +X ′ (b0 (W )− β0) given R. This interpretation of λ∗ is all that is required for the

first part of Theorem 2.

We will also use the notation

U0 =(Y −R′λ0 −X ′β0)

and

U∗ = (Y − R′λ∗ −X ′β0) .

Note that under Assumption 6 U0 equals a conditional linear prediction error. However when

Assumption 6 does not hold an implication of (43) is that U∗ is still an unconditional linear

predictor error.

We also use the shorthand e0 (W ) = e (W ;φ0) and v0 (W ) = v (W ;φ0) in order to simplify
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some of the expressions presented below. Finally we use θ0 to denote both (φ′
0, µ

′
W ,λ′∗, β

′
0)

′

and (φ′
0, µ

′
W ,λ′0, β

′
0)

′, with the relevant case made clear by the context.

Next define the (1 + J + JK)× J and K × J matrices

B1
(1+J+JK)×J

= E

[

R
{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

− E

⎡

⎢

⎣

0

0

(IJ ⊗X)U∗

⎤

⎥

⎦
(44)

B2
K×J

= E

[

(

v0 (W )−1 (X − e0 (W ))
)

{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

. (45)

Using this notation we can write the (L+ J + 1 + J + JK +K) ×
(L+ J + 1 + J + JK +K) Jacobian matrix of the moment vector as

M = −

⎛

⎜

⎜

⎜

⎜

⎝

−H (φ0) 0 0 0

0 IJ 0 0

0 −B1 E [RR′] E [RX ′]

E
[

v0 (W )−1 (X − e0 (W ))U∗S
′] −B2 0 IK

⎞

⎟

⎟

⎟

⎟

⎠

,

with H (φ0) equal to the L × L expected Hessian matrix associated with the generalized

propensity score log-likelihood. The inverse Jacobian is therefore

M−1 = −

⎛

⎜

⎜

⎜

⎜

⎝

−H (φ0)
−1

0

−E [RR′]−1
E [RX ′]E

[

v0 (W )−1 (X − e0 (W ))U∗S
′
]

H (φ0)
−1

E
[

v0 (W )−1 (X − e0 (W ))U∗S
′]H (φ0)

−1

0 0 0

IJ 0 0

E [RR′]−1 (B1 − B2E [RX ′]) E [RR′]−1 −E [RR′]−1
E [RX ′]

B2 0 IK

⎞

⎟

⎟

⎟

⎟

⎠

. (46)
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Under Assumption 5 a key observation is that the expected value of (45) equals

E

[

(

v0 (W )−1 (X − e0 (W ))
)

{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

= E
[(

v0 (W )−1 (X − e0 (W ))
)

γ′∗
]

+ E
[(

v0 (W )−1 (X − e0 (W ))
)

δ′∗ (IJ ⊗X)
]

=0 + E
[(

v0 (W )−1 (X − e0 (W ))
)

×
(

X ′δ1∗ · · · X ′δJ∗
)]

=
(

δ1∗ · · · δJ∗
)

= ∆∗.

Using this last equality, as well as the fact that under Assumption 5 we have H (φ0) =

−E [SS′], implies that the last K rows of −M−1 1√
N

∑N
i=1m (Zi, θ0)+ op (1) equal, after some

manipulation,

√
N
(

β̂ − β0
)

=
1√
N

N
∑

i=1

{

v0 (Wi)
−1 (Xi − e0 (Wi))U∗i

− E
[

v0 (W )−1 (X − e0 (W ))U∗S
′]
E [SS′]−1

Si

+∆∗ (Wi − µW )}+ op (1) . (47)

Next observe that we may decompose U∗ as

U∗ =Y −R′λ∗ −X ′β0

=Y − a0 (W )−X ′b0 (W )

+ {a0 (W ) +X ′ (b0 (W )− β0)− R′λ∗}

=U0 + ϵ.

Since E [U∗W ] = 0 by the properties of linear predictors, E [U0|W ] = 0 by the properties

of conditional linear predictors, and U∗ = U0 + ϵ, we have that E [ϵW ] = 0. Defining

ϵ̃ = v0 (W )−1 (X − e0 (W )) ϵ we can re-write 47 as

√
N
(

β̂ − β0
)

=
1√
N

N
∑

i=1

{

v0 (Wi)
−1 (Xi − e0 (Wi))U0i

+ (ϵ̃i − Πϵ̃SSi) +∆∗ (Wi − µW )}+ op (1) (48)

where Πϵ̃S = E [ϵ̃iS′]E [SS′]−1. This gives the first implication of the Theorem. The second

implication follows from the fact that ϵ = 0 and ∆∗V (W )∆′
∗ = V (b0 (W )) under Assumption

6.
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Proof of Proposition 3 (Near global semiparametric efficiency)

Let A be an m× n matrix with ∥A∥F = Tr (A′A)1/2 denoting the Frobenius matrix norm,

∥A∥2 the spectral norm and recall that ∥A∥2 ≤ ∥A∥F . Let a be an n × 1 vector with

Euclidean norm ∥a∥ = (a′a)1/2. We make use of several matrix and probability inequalities

in what follows. These are drawn from Hansen (2018, Appendices A & B) unless stated

otherwise.

Let t be a non-zero column vector. The difference in the asymptotic variance of the estimate

of the linear combination t′β0 based upon R(J) and a corresponding semiparametrically

efficient estimate is

t′I(J) (β0)
−1 t− t′I (β0)

−1 t =t′∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′
t− t′V (b0 (W )) t

+ t′E

[

(

ϵ̃(J) − Π(J)
ϵ̃S S

)(

ϵ̃(J) − Π(J)
ϵ̃S S

)′
]

t

≥0. (49)

We seek to show that this variance difference is also bounded above by something that can

be made arbitrarily close to zero.

To start observe that, after some manipulation (see the Supplemental Web Appendix) we

can show that

V
(

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
)

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′ − V (b0 (W ))

− 2E [(b0 (W )− β0)

×
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
}′
]

(50)

Using (50) we can rewrite t′I(J) (β0)
−1 t− t′I (β0)

−1 t as

t′V
(

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
)

t

+ 2t′E
[

(b0 (W )− β0)
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
}′
]

t

+ t′E

[

(

ϵ̃(J) − Π(J)
ϵ̃S S

)(

ϵ̃(J) −Π(J)
ϵ̃S S

)′
]

t. (51)

Consider the first term in (51). The Quadratic Inequality (QI), Expectation Inequality (EI),

and completeness of the sequence {kj (W )}∞j=1 (see equation (33)) give
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t′V
(

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
)

t ≤ C1ζ
2, (52)

with C1 a constant.

Next consider the second term in (51). Applying the Cauchy-Schwarz inequality to this term

yields

∣

∣

∣
t′E
[

(b0 (W )− β0)
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
}′
]

t
∣

∣

∣
≤V (t′b0 (W ))1/2

× V (t′ {b0 (W )

+∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
})1/2

Again invoking completeness of the sequence {kj (W )}∞j=1, and also boundedness of the

variance of b0 (W ), we then get

∣

∣

∣
t′E
[

(b0 (W )− β0)
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
}′
]

t
∣

∣

∣
≤ C2ζ , (53)

with C2 a constant (which depends on V (b0 (W ))).

Finally consider the third term in (49). To analyze this term we start by writing the linear

predictor approximation error of
(

R(J)
)′
λ(J)∗ for a0 (W ) +X ′ (b0 (W )− β0) as

ϵ(J) =
{

a0 (W ) +X ′ (b0 (W )− β0)−
(

R(J)
)′
λ(J)∗

}

=a (W )− α(J)
∗ −

(

k(J) (W )− µ(J)
)′
γ(J)∗

+X ′ (b0 (W )− β0 −∆(J)
∗
(

k(J) (W )− µ(J)
))

= (1, X ′) δ(J) (W ) ,

with the final equality following from definition (34). The EI and the fact that, for a and b

m× 1 vectors ∥ab′∥F = ∥a∥ ∥b∥, then gives

∥

∥

∥

∥

E

[

(

ϵ̃(J) − Π(J)
ϵ̃S S

)(

ϵ̃(J) −Π(J)
ϵ̃S S

)′
]∥

∥

∥

∥

≤ E

[

∥

∥

∥
ϵ̃(J) −Π(J)

ϵ̃S S

∥

∥

∥

2
]

with

ϵ̃(J) = v0 (W )−1 (X − e0 (W ))
{

(1, X ′) δ(J) (W )
}

.

By the norm-reducing property of projection and Schwarz Matrix Inequality (SMI) we further
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get that

∥

∥

∥
ϵ̃(J) − Π(J)

ϵ̃S S

∥

∥

∥
≤
∥

∥ϵ̃(J)
∥

∥

=
∥

∥v0 (W )−1 (X − e0 (W ))
{

(1, X ′) δ(J) (W )
}∥

∥

≤
∥

∥v0 (W )−1 (X − e0 (W )) {(1, X ′)}
∥

∥

∥

∥δ(J) (W )
∥

∥ .

Applying the expectation operator, invoking Assumption 2, and using the compact support

assumption for (W,X), finally gives

E

[

∥

∥

∥
ϵ̃(J) −Π(J)

ϵ̃S S

∥

∥

∥

2
]

≤E

[

∥

∥v0 (W )−1 (X − e0 (W )) {(1, X ′)}
∥

∥

2 ∥
∥δ(J) (W )

∥

∥

2
]

≤C3E

[

∥

∥δ(J) (W )
∥

∥

2
]

≤C3ζ
2 (54)

with C3 = sup
w,x∈W,X

∥

∥v0 (W )−1 (X − e0 (W )) {(1, X ′)}
∥

∥

2
.

Applying the TI to (51) and using terms (52), (53) and (54) then gives the bound

0 ≤ t′I(J) (β0)
−1 t− t′I (β0)

−1 t ≤ (C1 + C3) ζ
2 + C2ζ . (55)

Since ζ is arbitrary the limit of the difference in (55) is zero.
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B Supplemental web appendix for “Semiparametrically

efficient estimation of the average linear regression

function” by Bryan Graham and Cristine Pinto

This supplemental web appendix contains proofs of the results not included in the main

appendix as well as additional detailed calculations for some proof steps. All notation is

as defined in the main text and/or appendix unless explicitly noted otherwise. Equation

numbering continues in sequence with that established in the main text and its appendix.

Proof of Proposition 2

Begin by noting that under Assumption 4 we have

h (x, U) = h (U) +

∫ x

x

∂h (t, U)

∂x
dt

= h (U) +

∫ x̄

x

∂h (t, U)

∂x
1 (x ≥ t) dt,

which, invoking conditional independence yields

E

[

X − e0 (W )

v0 (W )
h (U)

]

= E

[

X − e0 (W )

v0 (W )
E [h (U)|W,X ]

]

= E

[

X − e0 (W )

v0 (W )
E [h (U)|W ]

]

= E

[

E

[

X − e0 (W )

v0 (W )

∣

∣

∣

∣

W

]

E [h (U)|W ]

]

= E
[

v0 (W )−1
E [X − e0 (W )|W ]E [h (U)|W ]

]

= E
[

v0 (W )−1 · 0 · E [h (U)|W ]
]

= 0.

Using this result we can re-write the β0 estimand as follows:
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E

[

X − e0 (W )

v0 (W )
Y

]

= E

[

X − e0 (W )

v0 (W )

∫ x̄

x

∂h (t, U)

∂x
1 (X ≥ t) dt

]

= E

[
∫ x̄

x

∂h (t, U)

∂x
1 (X ≥ t)

X − e0 (W )

v0 (W )
dt

]

= E

[
∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W,X

]

1 (X ≥ t)
X − e0 (W )

v0 (W )
dt

]

= E

[
∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W

]

1 (X ≥ t)
X − e0 (W )

v0 (W )
dt

]

= E

[
∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W

]

E

[

X − e0 (W )

v0 (W )

∣

∣

∣

∣

W,X ≥ t

]

(

1− FX|W (t|W )
)

dt

]

.

Next observe that

v0 (w) = E [X (X − e0 (W ))|W = w]

= E

[
∫ x̄

x

(X − e0 (W )) dt

∣

∣

∣

∣

W = w

]

=

∫ x̄

x

E [X − e0 (W )|W = w,X ≥ t]
(

1− FX|W (t|w)
)

dt.

Putting all these pieces together we have

E

[

X − e0 (W )

v0 (W )
Y

]

=E

[

∫ x̄

x

E

[

∂h (t, U)

∂x

∣

∣

∣

∣

W

]

E [X − e0 (W )|W,X ≥ t]
(

1− FX|W (t|W )
)

∫ x̄

x E [X − e0 (W )|W,X ≥ v]
(

1− FX|W (v|W )
)

dv
dt

]

=E

[
∫ x̄

x

∫ ∞

−∞

(

∂h (t, u)

∂x
fU |W,X (u|w, t) du

× 1

fX|W (t|W )

E [X − e0 (W )|W,X ≥ t]
(

1− FX|W (t|W )
)

∫ x̄

x E [X − e0 (W )|W,X ≥ v]
(

1− FX|W (v|W )
)

dv
fX|W (t|W )

)

dt

]

=E

[
∫ x̄

x

∫ ∞

−∞

(

∂h (t, u)

∂x

1

fX|W (t|W )

×
E [X − e0 (W )|W,X ≥ t]

(

1− FX|W (t|W )
)

∫ x̄
x E [X − e0 (W )|W,X ≥ v]

(

1− FX|W (v|W )
)

dv
fU,X|W (u, t|W )

)

dudt

]

= E

[

ω (W,X)
∂h (X,U)

∂x

]

,
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with

ω (w, x) =
1

fX|W (x|w)
E [X − e0 (W )|W = w,X ≥ x]

(

1− FX|W (x|w)
)

∫ x̄

x E [X − e0 (W )|W = w,X ≥ v]
(

1− FX|W (v|w)
)

dv
.

Proof of Corollary 1

Let f (x|w;φ) be a known parametric family of conditional distributions for X given W .

Let f0 (x|w) = f (x|w;φ) at some unique φ = φ0. Relative to that considered in Theorem

1, the parametric submodel changes to

f (w, x, y; η) = f (y|w, x) f (x|w;φ (η)) f (w; η)

with an associated score vector of

sη (w, x, y; η) = sη (y|w, x; η) +
(

∂φ (η)

∂η′

)′

Sφ (x|w;φ) + tη (w; η) , (56)

where Sφ (x|w;φ) is the score function associated with the parametric conditional log-

likelihood for φ.

From (56), and the usual (conditional) mean zero properties of score functions, the tangent

set is evidently

T = {s (y|w, x) + cSφ (x|w) + t (w)}

where Sφ (x|w) = Sφ (x|w;φ0), c is a matrix of constants, and

E [s (Y |W,X)|W,X ] = E [Sφ (X|W )|W ] = E [t (W )] = 0.

To show pathwise differentiability, begin by noting that β (η) continues to equal (37), however

b (w; η) now satisfies the modified conditional moment restriction

∫ ∫

(

1

x

)

(y − a (w; η)− x′b (w; η)) f (y|w, x; η) f (x|w;φ (η)) dxdy = 0. (57)

We can derive a close-form expression for ∂b(w;η0)
∂η′ in (39) by differentiating (57) with respect
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to η (and evaluating at η = η0):

−
∫ ∫

(

1

x

)

∂a (w; η0)

∂η′
f (y|w, x; η0) f (x|w;φ0) dxdy

−
∫ ∫

(

x′

xx′

)

∂b (w; η0)

∂η′
f (y|w, x; η0) f (x|w;φ0) dxdy

+

(

∫ ∫

(

1

x

)

(y − x′b (w; η0))

{

sη (y|w, x; η0) +
(

∂φ (η0)

∂η′

)′

Sφ (x|w)
}

×f (y|w, x; η0) f (x|w;φ0) dxdy) = 0

Analogous to the corresponding calculations given in the proof of Theorem 1 we can solve

to get

(

∂a(w;η0)
∂η′

∂b(w;η0)
∂η′

)

=

(

1 −e (w;φ0)
′ v (w;φ0)

−1

−v (w;φ0)
−1 e (w;φ0) v (w;φ0)

−1

)

×E

[(

Y − a (W ; η0)−X ′b (W ; η0)

X (Y − a (W ; η0)−X ′b (W ; η0))

)

×
{

sη (Y |W,X ; η0) +

(

∂φ (η0)

∂η′

)′

Sφ (X|W )

}∣

∣

∣

∣

W = w

]

.

Plugging the second row of the above expression into (39), which remains unchanged relative

to its form in the proof of Theorem 1, we get

∂β (η0)

∂η′
= E

[

v (W ;φ0)
−1 (X − e (W ;φ0)) (Y − a0 (W )−X ′b0 (W ))

×
{

sη (Y |W,X ; η0) +

(

∂φ (η0)

∂η′

)′

Sφ (X|W )

}]

+E [b0 (W ) tη (W )] . (58)

Now observe that (17) remains a pathwise derivative. Furthermore (17) continues to lie in the

tangent space with its first component playing the role of s (x, y|w) = s (y|w, x)+cSφ (x|w)
and its second component that of t (w). The claim again follows from Theorem 3.1 of Newey

(1990).
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Detailed calculations for proof of Theorem (2)

Let m (Zi, θ) be the (L+ J + 1 + J + JK +K)× 1 vector of moment conditions as defined

in the main text. In this appendix we work with the more refined partition of this vector:

m1(Xi,Wi,φ) =Sφ (Xi|Wi;φ) (59)

m2(Wi, µW ) =Wi − µW (60)

m3(Zi, µW ,λ, β) =Ui (µW ,λ, β) (61)

m4(Zi, µW ,λ, β) = (Wi − µW )Ui (µW ,λ, β) (62)

m5(Zi, µW ,λ, β) = ((Wi − µW ) ! Xi)Ui (µW ,λ, β) (63)

m5(Zi,φ, µW ,λ, β) =v (W ;φ)−1 (X − e (W ;φ))Ui (µW ,λ, β) (64)

where θ = (φ, µW ,λ′, β)′ with dim (θ) = L+ J + 1 + J + JK +K as before.

The Jacobian of the moment vector equals

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Considering the first block of columns in M , we have that

M11
L×L

= H (φ0)

with H (φ0) equal the L×L expected Hessian matrix associated with the generalized propen-

sity score log-likelihood (under Assumption 5 we have that −H (φ0) = E [SS′]). We also have

that

M21
J×L

= 0, M31
1×L

= 0, M41
J×L

= 0, M51
JK×L

= 0,
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and, finally

M61
K×L

=E

[([

−v (W,φ0)
−1 ∂v(W,φ0)

∂φ1
v (W,φ0)

−1 (X − e (W,φ0)) · · ·

· · ·− v (W,φ0)
−1 ∂v (W,φ0)

∂φL
v (W,φ0)

−1 (X − e (W,φ0))

]

+v (W,φ0)
−1 ∂e (W,φ0)

∂φ′

)

U (µW ,λ∗, β0)

]

.

Iterated expectations gives

M61 = E

[[

c1 (W,φ0) · · · cL (W,φ0)
]

C (X,U∗|W ) + d (W,φ0)E [U∗|W ]
]

(65)

with cl (W,φ) = −v (W,φ)−1 ∂v(W,φ)
∂φl

v (W,φ)−1 for l = 1, . . . , L and d (W,φ) =

v (W,φ)−1 ∂e(W,φ)
∂φ′

.

It is useful to develop an alternative expression for (65). Note that

E [m5(Zi,φ0, µW ,λ∗, β0)] = E
[

v (W,φ0)
−1 (X − e (W,φ0))U (µW ,λ∗, β0)

]

= 0,

is mean zero. A GIME argument, similar to the one used to derive (22) in the main text,

therefore gives

E

[

∂

∂φ′

{

v (W,φ0)
−1 (X − e (W,φ0))

}

U∗

]

= −E
[

v (W,φ0)
−1 (X − e (W,φ0))U∗S

′] , (66)

where we use the fact that U∗ = U (µW ,λ∗, β0) does not vary with the propensity score

parameter, φ. We can use (66) to write

M61 = −E
[

v (W,φ0)
−1 (X − e (W,φ0))U∗S

′] .

If both Assumptions 5 and 6 hold simultaneously, then U∗ = U0 is conditionally mean zero

and uncorrelated with X (i.e., E [U0|W ] = E [XU0|W ] = 0). In this case M61 = 0 (see

Equation (65) above). If Assumption 6 does not hold, then M61 may be non-zero.

Turning to the second block of columns in M , we have that

M12
L×J

= 0, M22
J×J

= −IJ ,
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and also that

M32
1×J

=E

[

{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

M42
J×J

=E

[

−IJU∗ + (W − µW )
{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

=E

[

(W − µW )
{

(IJ ⊗X)
′

δ∗
}′
]

M52
JK×J

=E

[

− (IJ ⊗X)U∗ + ((W − µW )⊗X)
(

γ∗ + (IJ ⊗X)
′

δ∗
)′
]

A.6
= E

[

((W − µW )⊗X)
(

γ0 + (IJ ⊗X)
′

δ0
)′
]

.

Note that the second equality after M42 does not require Assumption 6 to hold. Even if λ∗

does not correctly parameterize the CLP coefficients, it remains true that U (µW ,λ∗, β0) is

mean zero. However U (µW ,λ∗, β0) may covary with X when Assumption 6 fails. Therefore

the second equality after M52 does require Assumption 6 to hold. The forms of M32, M42

and M52 determine the effect of sampling uncertainty about the value of µW on sampling

uncertainty about the value of β0.

Finally we get

M62
K×J

= E

[

v (W ;φ0)
−1 (X − e (W ;φ0))

{

γ∗ + (IJ ⊗X)
′

δ∗
}′
]

Turning to the third block of columns in M , we have that

M13
L×1

= 0, M23
J×1

= 0, M33
1×1

= −1,

and also that

M43
J×1

= −E [(W − µW )] = 0, M53
JK×1

= −E [((W − µW )⊗X)]

and

M63
K×1

= −E
[

v (W ;φ0)
−1 (X − e (W ;φ0))

]

= 0.

Turning to the fourth block of columns in M , we have that

M14
L×J

= 0, M24
J×J

= 0, M34
1×J

= −E

[

(W − µW )
′

]

= 0,
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and also that

M44
J×J

= −E
[

(W − µW ) (W − µW )′
]

= −ΣWW , M54
JK×J

= −E

[

((W − µW )⊗X) (W − µW )
′

]

,

and finally that

M64
K×J

= −E

[

v (W ;φ0)
−1 (X − e (W ;φ0)) (W − µW )

′

]

= 0.

Turning to the fifth block of columns in M , we have that

M15
L×JK

= 0, M25
J×JK

= 0,

and also that

M35
1×JK

= −E

[

((W − µW )⊗X)
′

]

, M45
J×JK

= −E

[

(W − µW ) ((W − µW )⊗X)
′

]

,

and also that

M55
JK×JK

= −E

[

((W − µW )⊗X) ((W − µW )⊗X)
′

]

,

and finally that

M65
K×JK

= −E

[

v (W ;φ0)
−1 (X − e (W ;φ0)) ((W − µW )⊗X)

′
]

= 0.

Turning to the sixth, and final, block of columns in M , we have that

M16
L×K

= 0, M26
J×K

= 0,

and also that

M36
1×K

= −E

[

X
′

]

, M46
J×K

= −E

[

(W − µW )X
′

]

, M56
JK×K

= −E

[

((W − µW )⊗X)X
′

]

,

and finally that

M66
K×K

= −E

[

v (W ;φ0)
−1 (X − e (W ;φ0))X

′

]

= −IK .
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Marking out the zero and identity terms we have that

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0

0 −IJ 0 0 0 0

0 M32 −1 0 M35 M36

0 M42 0 M44 M45 M46

0 M52 M53 M54 M55 M56

M61 M62 0 0 0 −IK

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using the above we have (44), as defined in the appendix to the main paper, equal to

B1
(1+J+JK+K)×J

=

⎛

⎜

⎝

M32

M42

M52

⎞

⎟

⎠
= E

⎡

⎢

⎢

⎢

⎢

⎣

{

γ∗ + (IJ ⊗X)
′

δ∗
}′

(W − µW )
{

(IJ ⊗X)
′

δ∗
}′

− (IJ ⊗X)U∗ + ((W − µW )⊗X)
(

γ∗ + (IJ ⊗X)
′

δ∗
)′

⎤

⎥

⎥

⎥

⎥

⎦

.

Additional detailed calculations

Equation (46)

To derive the lower-left-hand block of (46) in the Appendix to the main paper we multiply

out:

−
(

E [RR′]−1 −E [RR′]−1
E [RX ′]

0 IK

)(

0 −B1

−M61 −B2

)(

−H (φ0)
−1 0

0 IJ

)

=

−
(

E [RR′]−1
E [RX ′]M61 −E [RR′]−1 (B1 −B2E [RX ′])

−M61 −B2

)(

−H (φ0)
−1 0

0 IJ

)

=

−
(

−E [RR′]−1
E [RX ′]M61H (φ0)

−1 −E [RR′]−1 (B1 − B2E [RX ′])

M61H (φ0)
−1 −B2

)

.

Equation (43)

To derive (43) in the Appendix start by observing that moment (30) in the main text implies

the following characterization of λ0 and β0 :

[

E [RY ]

E
[

v0 (W )−1 (X − e0 (W ))Y
]

]

=

[

E [RR′] E [RX ′]

0 IK

](

λ0

β0

)

.
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After some calculation we get that

λ0 = E [RR′]−1
E [R (Y −X ′β0)]

= E [RR′]−1
E [R (a0 (W ) +X ′ (b0 (W )− β0)) + U0]

= E [RR′]−1
E [R (a0 (W ) +X ′ (b0 (W )− β0))] ,

where the last line uses Lemma 1 of the main text.

Equation (50)

To derive equation (50) in the Appendix expand the variance of b0 (W ) +

∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0 as follows:

V
(

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
)

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′

+ V (b0 (W ))

+ 2E
[

(b0 (W )− β0)
{

∆(J)
∗
(

k(J) (W )− µ(J)
)}′
]

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′

+ V (b0 (W ))

+ 2E [(b0 (W )− β0)

×
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
]

× − (b0 (W )− β0)}′
]

=∆(J)
∗ V

(

k(J) (W )
) (

∆(J)
∗
)′ − V (b0 (W ))

− 2E [(b0 (W )− β0)

×
{

b0 (W ) +∆(J)
∗
(

k(J) (W )− µ(J)
)

− β0
}′
]

.

(67)

55


	CWP621818
	cover1
	CWP621818

	CWP621818_appendix



