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Abstract

This paper introduces new inferencemethods for counterfactual and synthetic control meth-
ods for evaluating policy effects. Our inference methods work in conjunction with many mod-
ern and classical methods for estimating the counterfactual mean outcome in the absence of a
policy intervention. Specifically, our methods work together with the difference-in-difference,
canonical synthetic control, constrained and penalized regressionmethods for synthetic control,
factor/matrix completion models for panel data, interactive fixed effects panel models, time se-
ries models, as well as fused time series panel data models. The proposed method has a double
justification. (i) If the residuals from estimating the counterfactuals are exchangeable as implied,
for example, by i.i.d. data, our procedure achieves exact finite sample size control without any
assumption on the specific approach used to estimate the counterfactuals. (ii) If the data exhibit
dynamics and serial dependence, our inference procedure achieves approximate uniform size
control under weak and easy-to-verify conditions on the method used to estimate the counter-
factual. We verify these condition for representative methods from each group listed above.
Simulation experiments demonstrate the usefulness of our approach in finite samples. We ap-
ply our method to re-evaluate the causal effect of election day registration (EDR) laws on voter
turnout in the United States.

1 Introduction

We consider the problem of making inference on the causal effect of a policy intervention in an
aggregate time series setup with a single treated unit. The treated unit is observed for a number of
periods before and after the intervention occurs. Often, there is additional information in the form
of possibly very many untreated units, which can serve as controls. Such setups frequently arise
in applied economic research and there are various different approaches to estimate the policy
effects of interest. A non-exhaustive list of methods includes difference-in-differences methods
(e.g., Ashenfelter and Card, 1985; Card and Krueger, 1994; Bertrand et al., 2004; Athey and Imbens,
2006; Angrist and Pischke, 2008), synthetic control models (e.g., Abadie and Gardeazabal, 2003;
Abadie et al., 2010, 2015; Li, 2017), penalized regression models for synthetic controls (e.g., Valero,
2015; Doudchenko and Imbens, 2016), factor, matrix completion and interactive fixed effectsmodels
∗We are grateful to seminar participations at the University of Chicago, the University ofWisconsinMadison, UC Los

Angeles, and UC San Diego for valuable comments. All errors are our own.
†email: vchern@mit.edu
‡email: kwuthrich@ucsd.edu
§email: yzhu6@uoregon.edu
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for panel data (e.g., Bai, 2003; Pesaran, 2006; Bai, 2009; Kim and Oka, 2014; Gobillon and Magnac,
2016; Xu, 2017; Athey et al., 2017; Amjad et al., 2017), matching methods (e.g., Heckman et al.,
1997, 1998; Dehejia and Wahba, 2002), as well as standard time series models. Doudchenko and
Imbens (2016) and Gobillon and Magnac (2016) provide comparative overviews. We refer to these
approaches as counterfactual and synthetic control methods (CSC) methods.

The main objective and contribution of this paper is to provide inference procedures for policy
effects estimated by CSC methods. There are several practical issues which render inference in
typical CSC setups challenging. First, the number of pre-treatment periods T0 and, in particular,
the number of post-treatment periods T∗ are both small. Second, the data exhibit dynamics and
serial dependence. Third, the number of (potential) control units J is of the same order as T0. This
leads to a need for some regularization. Finally, since there is only one treated unit and T0 and
T∗ are small, treatment effects cannot be estimated consistently. This paper develops an inference
approach to address these challenges.

We analyze a general counterfactual modeling framework (CMF) that nests and generalizes
many traditional and new methods for counterfactual analysis. Specifically, we focus on models
which are able to generate amean-unbiased proxyPNt for the counterfactual outcome of the treated
unit in the absence of the policy Y N

1t :

Y N
1t = PNt + ut, E (ut) = 0, t = 1, . . . , T0 + T∗.

The policy effect in period t is given byαt = Y I
1t−Y N

1t , where Y I
1t is the counterfactual outcome of the

treated unit with the policy. We are interested in testing hypotheses about the trajectory of policy
effects in the post-intervention period: α = {αt}T0+T∗

t=T0+1. Specifically, we postulate a null trajectory
αo = {αot}

T0+T∗
t=T0

and test the sharp null H0 : α = αo. We also consider testing hypotheses about a
single time periods, H0 : αt = αot , as well as in constructing pointwise confidence intervals for αt.
The basic idea of our testing procedure is the following. Under the sharp null hypothesis, we can
construct Y N

1t for each t ∈ {1, . . . , T0 + T∗}, estimate PNt , and back out the residuals ût. Under our
assumptions, the distribution of {ut} in the post treatment period should be the same as that of {ut}
in the pre-treatment period. We operationalize this idea by proposing a conformal/permutation
inference procedure in which p-values are obtained by permuting the estimated residuals across
the time series dimension. The proposed procedure has a double justification:1

(i) Exact Validity under Strong Assumptions.

If the residuals {ût} are exchangeable, our inference procedure achieves finite sample (non-
asymptotic) size control without any assumption on the method used to estimate PNt . Ex-
changeability of {ût} is implied, for example, if the data are i.i.d. across time under the null,
but holds more generally.

(ii) Approximate Validity under Weak Assumptions.

If the data exhibit dynamics and serial dependence, our inference procedure has an approx-
imate finite sample justification under stationarity and weak dependence of ut and easy-to-
verify conditions (pointwise consistency and consistency in prediction norm) on the method
used to estimate the counterfactual mean proxy PNt . These conditions can be verified for
many different CSC methods. We provide concrete sets of sufficient conditions for a rep-
resentative set of methods, including canonical synthetic control estimators, factor/matrix

1Our title is inspired by Chung and Romano (2013), who show that permutation tests have a double justification
under two different sets of assumptions.
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completion models, interactive fixed effects estimators, Lasso, simple time series models, as
well as fused time series panel data models.

To derive the theoretical properties of our inference procedure, we develop general results on
exact and approximate permutation inference, which may be of independent interest in many con-
formal and permutation inference problems.

As part of developing our results, we introduce the `1-constrained least squares estimator (con-
strained Lasso) (e.g., Raskutti et al., 2011) as an essentially tuning free alternative to existing pe-
nalized regression estimators in settings with potentially many control units. Our analysis of con-
strained Lasso further provides new results for classical synthetic control estimators in settings
with potentially very many control units.

We discuss two extensions of our main results. First, we show that our methods can be mod-
ified to test hypotheses about average effects ᾱ = 1/T∗

∑T0+T∗
t=T0+1 αt. Second, we propose easy-to-

implement specification tests that allow us to assess the plausibility of the key assumptions under-
lying the proposed inference procedure.

Simulation experiments demonstrate favorable finite sample properties of the proposed infer-
ence procedures. To illustrate the practical usefulness of our methods, we revisit the analysis of the
effect of Election Day Registration (EDR) laws on voter turnout in the United States by Xu (2017).

1.1 Related Literature

Conceptually, our procedure builds on the literature on conformal prediction (Vovk et al., 2005,
2009; Lei et al., 2013, 2017) and, more broadly, on the literature on permutation tests (Romano,
1990; Lehmann and Romano, 2005), which was started by Fisher (1935) in the context of random-
ization; see also Rubin (1984) for a Bayesian justification. Conformal inference, a form of permu-
tation inference, is a distribution-free approach for forming prediction intervals. The basic idea is
classical: Let {Y1, . . . , YT } be a random sample drawn from a distribution P . To decide whether a
new draw YT+1 = y should be included in the prediction set, we test the hypothesis that YT+1 = y.
A distribution-free and valid p-value can be constructed based on the quantile of the empirical dis-
tribution of the augmented sample {Y1, . . . , Yn, y}. We still prefer to use the name “conformal” to
designate a more specialized area of permutation inference that specializes on building predictive
confidence intervals. Our analysis will deviate from the basic analysis of permutation inference,
whenwehave to dealwith dependent data and the fact that themodelswill be estimated. Our asymp-
totic results will be of independent interest for any type of permutation inference carried out for
dependent data (see our Propositions 1 and 2). On a more general conceptual level, our approach
is also connected to transformation-based approaches to model-free prediction (Politis, 2015).

The proposed inference procedure is further related to Andrews (2003)’s end-of-sample stabil-
ity test based on subsampling. Besides a different focus (inference on policy effects vs. testing for
structural breaks), there are several major differences. First, our procedure has exact validity under
exchangeability and we obtain approximate finite sample bounds under weak conditions on the
estimators, while such properties have not been established for Andrews (2003)’s test. The second
major difference is that our test only requires stationarity and weak dependence of the stochastic
process {ut}, whereas Andrews (2003)’s test is based on stationarity of the data.2 A third major
difference is that our procedure works in conjunction with many modern high-dimensional esti-

2 Andrews (2003) briefly comments on page 1681 (comment 4) that his test can be shown to be asymptotically under
stationary errors, but does not provide a formal result.
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mators, whereas Andrews (2003) focuses on low-dimensional GMM-type models. Hahn and Shi
(2016, Section 5) informally suggest applying the end-of-sample stability test in the context of syn-
thetic control methods and Ferman and Pinto (2017a) use a version of this test in the context of
difference-in-differences approaches with few treated groups.

Our paper contributes to the literature on inference for CSC methods with few treated units.
One part of the literature considers a finite population approach, which relies on the assumption
that potential outcomes are fixed but a priori unknown and that, conditional on observables, the
treatment assignment is random (Firpo and Possebom, 2017). These assumptions justify the appli-
cation of permutation tests similar to Fisher (1935)’s randomization test. For instance, Abadie et al.
(2010, 2015) permutewhich unit is assigned to the treatment and then compare the actual treatment
effect estimates to the permutation distribution.3 Firpo and Possebom (2017) and Ferman and Pinto
(2017b) provide a comprehensive discussion of the theoretical aspects of such testing procedures.
While finite population permutation approaches have traditionally been employed in conjunction
with synthetic control methods, they can also be applied to a broader class of methods including
difference-in-differences approaches, elastic net, and best subset selection, see, e.g., Doudchenko
and Imbens (2016). Our approach will instead carry out the permutations over stochastic errors
in the potential outcomes with respect to time, and not the cross-sectional units. These types of
permutations rely on weak dependence of stochastic errors over time rather than exchangeability
of the errors across treated units. While are results are for permutations across the time series di-
mension, our general results on exact and approximate permutation inference (Propositions 1 and
2) also apply to permutations across units (subject to switching indices). This provides a rigorous
formal justification for the inference procedure of Abadie et al. (2010, 2015) under a set of sufficient
conditions, which differ substantially from existing ones (e.g., Firpo and Possebom, 2017). We will
justify our approach for a great variety of models to build counterfactual proxies for outcomes in
the absence of the policy intervention, including many popular synthetic control, panel data, and
fused time series panel models.

Another part of the literature considers asymptotic inference for CSC models. Asymptotic ap-
proaches often focus on testing hypotheses about average effect over time, ᾱ, and require that T0

and often also T∗ tend to infinity. Carvalho et al. (2017) derive the asymptotic distribution of ᾱ in se-
tups where the counterfactual is estimated based on Lasso and Li (2017) studies inference based on
the constrained least squares estimator of Abadie et al. (2010, 2015). Xu (2017) proposes an asymp-
totic bootstrap inference procedure based on factor models, but leaves the formal justification of
this procedure for future research. By contrast, our approach will instead be based on permu-
tation distributions, and will be shown to be formally valid exactly under strong exchangeability
assumptions and approximately valid under stationarity and weak dependence of {ut} and very
weak conditions on the estimator for PNt . We verify these conditions for many different methods
including constrained least squares estimators, Lasso, and factor models.

1.2 Plan of the Paper

The remainder of this paper is structured as follows. Section 2 introduces our basicmodeling frame-
work, the proposed inference method, and various models for counterfactuals PNt . In Section 3, we
establish the finite sample validity of our procedure if {ût} is exchangeable and the approximate

3Conley and Taber (2011) propose a conceptually related inference procedure for difference-in-differences models
with few policy changes, which exploits cross-sectional information about the distribution of the unobserved compo-
nents.
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finite sample validity under stationarity andweak dependence of {ut} andweak and easy-to-verify
high-level conditions on the estimator of PNt . Section 4 discusses two extensions of our procedure.
In Section 5, we verify the high-level conditions for several representative CSC estimators. Section
6 presents simulation evidence on the finite sample properties of our estimators. In Section 7, we
illustrate our procedure by reanalyzing the impact of EDR laws on voter turnout. Section 8 con-
cludes. The appendix contains all proofs as well as some general results on the exact and approx-
imate validity of conformal and permutation inference procedures which may be of independent
interest.

2 A Conformal Inference Method

2.1 The Counterfactual Model

We consider a time series of T outcomes for a treated unit, labeled j = 1. During the first T0 periods
the unit is not treated by a policy, and during the remaining T − T0 = T∗ it gets treated by a policy.
Our typical setting is where T∗ is short compared to T0. There may be other units which are not
exposed to treatment, and they will be introduced below. We denote the observed outcome of the
treated unit by Y1t. Our analysis is developed within the potential (latent) outcome framework
(Neyman, 1923; Rubin, 1974). Potential outcomes with and without the treatment are denotes as
Y I

1t and Y N
1t . The policy effect of interest in period t is given by αt = Y I

1t − Y N
1t .

Our conformal inferencemethodwill rely on the following counterfactualmodeling framework:

Assumption 1 (CounterfactualModel). Let {PNt } be a given sequence of mean unbiased signals or proxies
to the counterfactual outcomes {Y N

1t } in the absence of the intervention, that is {E
(
PNt
)
} = {E

(
Y N
t

)
}. Let

{αt} be a fixed treatment effect sequence such that αt = 0 for t ≤ T0, so that potential outcomes under the
intervention are given by {Y I

1t} = {Y N
1t + αt}. In other words, the following system of structural equations

holds:
Y N

1t = PNt + ut
Y I

1t = PNt + αt + ut

∣∣∣∣∣ E(ut) = 0, t = 1, . . . , T, (CMF)

where {ut} is a centered stationary stochastic process. Observed outcomes are related to potential outcomes
as

Y1t = Y N
1t +Dt

(
Y I

1t − Y N
1t

)
, t = 1, . . . , T,

where Dt = 1 (t > T0) is the treatment indicator.

Assumption 1 introduces potential outcomes, but also postulates an identifying assumption in
the form of the existence of mean-unbiased proxies PNt such that

E
(
PNt
)

= E
(
Y N
t

)
, t = 1, . . . , T.

We will discuss specific panel data and time series models that postulate (and identify) what PNt
is under a variety of conditions. Additional assumptions on the stochastic shock process {ut} will
be introduced later, in essence requiring {ut} to be either i.i.d. or more generally a stationary and
weakly dependent process. In principle, the treatment effect sequence {αt} can be allowed to be
random, and we can interpret our model and the results as holding conditional on a given {αt}.
Hence, there is not much loss of generality in assuming that the sequence is fixed. Assumption 1
also postulates that the stochastic shock sequence will be invariant under the intervention. This
is the key identifying assumption. In principle, we can relax this assumption by specifying for
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example the scale and quantile shifts in the stochastic shocks that result from the policy, and then
working with the resulting model; we leave this extension to future work. The CMF nests many
traditional and newmethods for counterfactual policy analysis, including difference-in-differences
methods, canonical synthetic control, constrained and penalized regressions for synthetic control,
factor/matrix completion models for panel data, interactive fixed effects panel models, univariate
time series models, as well as fused time series panel data models.

Often, we have additional information in the form of untreated units, which can serve as con-
trols. Specifically, suppose that there are J ≥ 1 control units, where control units are indexed by
j = 2, . . . , J + 1. We observe all units for all T periods, although this assumption can be relaxed.
Let Yjt denote the observed outcome for these untreated units. This observed outcome is equal to
the outcome in the absence of the policy intervention, Y N

jt , so that

Yjt = Y N
jt , j = 2, . . . , J + 1, t = 1, . . . , T.

For each unit, we may also observe a vector of covariatesXjt. This motivates a variety of strategies
for modeling and identifying PNt as discussed below.

In a nutshell, our inference approach will postulate a null trajectory:

αo = {αot}Tt=T0 .

Under Assumption 1, we can subtract αot from the observed Y1t in post-treatment period and to
compute Y N

1t . Using appropriate panel data or time series approaches, we can model, identify,
and estimate PNt to back out the distribution of {ut} under the null hypothesis. We will use this
distribution to compute the null distribution of the relevant test statistic, and then compare the
actual observed statistic against this distribution. We will justify this procedure as exactly valid
under strong assumptions, and asymptotically valid under very weak assumptions.

2.2 Hypotheses of Interest, Test Statistics, and p-Values

We are interested in testing hypotheses aboutα = (αT0+1, . . . , αT )′. Ourmain hypothesis of interest
is

H0 : α = αo (1)

where αo =
(
αoT0+1, . . . , α

o
T

)′ is a postulated policy effect trajectory. Hypothesis (1) is a sharp null
hypothesis. It fully determines the value of the counterfactual outcome with the treatment in the
post treatment period since Y N

1t = Y I
1t − αt = Y1t − αt. Our procedure can be extended to testing

hypotheses about average effects as discussed in Section 4.1. While αo can generally be an unre-
stricted function of t, it is sometimes useful and interesting to consider parametric hypotheses such
as

αot = ao1 + ao2(t− T0), t > T0.

To describe our procedure, we write the data under the null as Z = (Z1, . . . , ZT )′, where

Zt =

{(
Y N

1t , Y
N

2t , . . . , Y
N
J+1t, X

′
1t, . . . , X

′
J+1t

)′
, t ≤ T0(

Y N
1t − αot , Y N

2t , . . . , Y
N
J+1t, X

′
1t, . . . , X

′
J+1t

)′
, t > T0.

Using one of the methods described below, we will obtain a counterfactual proxy estimate P̂Nt
using Z, and obtain the residuals

û = (û1, . . . , ûT )′ , ût = Y N
1t − P̂Nt , t = 1, ..., T.
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Definition of Test Statistic S. We consider the following test statistic:

S(û) = Sq(û) =

 1√
T∗

T∑
t=T0+1

|ût|q
1/q

.

In applications we will mostly be using S1 by setting q = 1, which behaves well under heavy-
tailed data. We note that other test statistics could be considered as well. When the nature of the
statistic is not essential, we write S = Sq. S is constructed such that high values indicate rejection.

Remark 1. When capturing deviations in average treatment effect T−1
∗
∑T

t=T0+1 αt it is useful to
consider the statistic of the form:

S(û) =
1√
T∗

∣∣∣∣∣∣
T∑

t=T0+1

ût

∣∣∣∣∣∣ .
We use permutations to compute p-values. A permutation π is a one-to-one mapping π :

{1, ..., T} 7→ {1, ..., T}. We denote the set of all permutations under study as Π. Throughout the pa-
perwe assume thatΠ contains the identifymap I. Wemainly focus on twodifferent sets of permuta-
tions: (i) The set of all permutations, whichwe call i.i.d. permutations, Πall and (ii) the set of all (over-
lapping) moving block permutations, Π→. The elements of this set are defined by j ∈ {1, . . . , T − 1}
and the permutation πj does the following:

πj(i) =

{
i+ j if i+ j ≤ T
i+ j − T otherwise.

The choice of Π does not matter affect the exact finite sample validity of our procedures if the
residuals are exchangeable. However, the set of all i.i.d. permutations will typically have more
elements than the set of moving block permutations. For the approximate finite sample results, the
choice of Π depends on the the assumptions that we are willing to impose on ut. One the one hand,
if ut is i.i.d. approximate size control can be established based on both sets of permutations. On the
other hand, if ut exhibits serial dependence, we will have to rely on moving block permutations.

Here we introduce other permutation groups, which we call the “i.i.d. block” and “overlapping
block” permutations. To define the first group, we divide the data up into non-overlapping K =

T/m blocks of size m. Then we construct the “i.i.d” permutations of all blocks. Specifically, let
{b1, . . . , bK} be the partition of {1, . . . , T}, then we collect all the permutations π of these blocks,
forming the “i.i.d. m-block” permutation Πmb. Finally, by taking the composition Πob = ΠmbΠ→
we create the “overlappingm block” group Πob, the permutation analog of the “overlapping block”
bootstrap. These ideas are very close to bootstrap and/or subsampling, with the difference that our
method will actually be exact under i.i.d. data and approximately valid for general data, with no
limit distributions required. In our context choosingm = T∗ is natural, though other choices should
work as well, similarly to the choice of block size in the time-series bootstrap.
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Figure 1: Permutations: "I.I.D", "Moving Blocks", "I.I.D. Blocks".
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Notes: The left figure gives an example of an "i.i.d" permutation, the middle figure gives the "moving block" per-
mutation, the right figure gives an "i.i.d. block" permutation. In the "i.i.d" permutation, π : {1, 2, 3, 4, 5, 6, 7, 8} 7→
{5, 7, 2, 8, 1, 3, 4, 6}. In the "moving block" permutation π : {1, 2, 4, 5, 6, 7, 8} 7→ {8, 1, 2, 3, 4, 5, 6, 7}. In the "i.i.d. block"
permutation π : {{1, 2}, {3, 4}, {5, 6}, {7, 8}} 7→ {{3, 4}, {7, 8}, {1, 2}, {5, 6}}, swapping all 2-blocks. The collection
of all permutations forms the "i.i.d.g̈roup Πall and the collection of all moving block permutations forms the "moving"
groupΠ→, the collection of all "i.i.d.b̈lock permutations forms the "i.i.d. block" groupΠmb. The concept “group" formally
includes the requirement that Ππ = Π for all π ∈ Π.

For each π ∈ Π, let ûπ = (ûπ(1), . . . , ûπ(T ))
′ denote the vector of permuted residuals. We note

that if the estimator used in approximating PNt is invariant to permutations of the data {Zt} across
the time series dimension (which is the case for most of the estimators we consider in Sections 2.3
and 2.4), permuting {ût} is equivalent to permuting {Zt}.

Definition of p-Value. The estimated p-value is

p̂ = 1− F̂ (S(û)) ,

where
F̂ (x) =

1

|Π|
∑
π∈Π

1 {S (ûπ) < x} .

An important special case of the testing problem (1) occurs if T∗ = 1 in which case

H0 : αT = αoT (2)

Finally, suppose we are interested in testing

H0 : αt = αot (3)

for some fixed t ≥ T0. Hypothesis (3) can be tested by redefining Z as Z̃ = (Z1, . . . , ZT0 , Zt)
′

and testing (2). Pointwise confidence intervals for t ∈ {T0 + 1, . . . , T} can be constructed by test
inversion.

Next, we develop several models for generating the counterfactual proxies PNt .

2.3 Models for Counterfactual Proxies PN
t via Synthetic Control and Panel Data

The availability of control units motivates several modeling strategies for PNt (a non-exhaustive list
of references on these different approaches is provided in the introduction).
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2.3.1 Difference-in-Differences Methods

The difference-in-difference model postulates

PNt = µ+
1

J

J+1∑
j=2

Yjt,

using an average of J ≥ 1 of outcomes of control units as a proxy. Thismodel automatically embeds
the identifying information. The counterfactual can be estimated as

P̂Nt =
1

T0

T0∑
t=1

Y N
1t −

1

J

J+1∑
j=2

Yjt

+
1

J

J+1∑
j=2

Yjt.

2.3.2 Synthetic Control and Constrained Least Squares Estimators

The canonical synthetic control postulates the model

PNt =
J+1∑
j=2

wjYjt,

where w = (w2, . . . , wJ+1)′ is a vector of weights satisfying w ≥ 0 and
∑J

j=2wj = 1.
We also need to impose an identification condition that allows us to identify the weights, for

example4:

(SC) Assume that the structural shocks ut for the treated units are uncorrelated with contempora-
neous values of the outcomes, namely:

E
(
ut{Yjt}J+1

j=2

)
= 0, (4)

The counterfactual is estimated as

P̂Nt =
J+1∑
j=2

ŵjYjt

We focus on the following canonical SC estimator for w:5

ŵ = arg min
w

T0∑
t=1

Y1t −
J+1∑
j=2

wjYjt

2

s.t. w ≥ 0 and
J∑
j=2

wj = 1. (5)

As an alternative, we can consider the more flexible model

PNt = µ+
J+1∑
j=2

wjYjt, where ‖w‖1 ≤ 1.

4More generally, other exclusion restrictions could be used.
5We focus on the canonical problem (5) for concreteness. Abadie et al. (2010, 2015) consider a more generalized

version, which also includes covariates into the estimation of the weights w. Doudchenko and Imbens (2016) refer to the
estimator (5) as constrained regression.

9



maintaining the same identifying assumption (SC). The counterfactual is estimated as

P̂Nt = µ̂+
J+1∑
j=2

ŵjYjt

by the `1-constrained least squares estimator, or constrained Lasso, (e.g., Raskutti et al., 2011):

(µ̂, ŵ) = arg min
(µ,w)

T0∑
t=1

Y1t − µ−
J+1∑
j=2

wjYjt

2

s.t. ||w||1 ≤ 1 (6)

The advantage over other penalized regression methods discussed next is that constrained
Lasso is essentially tuning free, and will be shown to be valid under very weak conditions. We
will verify that these estimators are valid in our framework under weak conditions in setups with
potentially many controls J . Finally, we note that it is straightforward to incorporate (transforma-
tions of) covariates Xjt into the estimation problems (5) and (6).

2.3.3 Penalized Regression Methods

Consider the following regression model for PNt

PNt = µ+
J+1∑
j=2

wjYjt,

where µ is an intercept term w = (w2, . . . , wJ+1)′ is a vector of weights. Here, we maintain the
identifying assumption (SC). Under this assumption the counterfactual is estimated by

P̂Nt = µ̂+
J+1∑
j=2

ŵjYjt

where

(µ̂, ŵ) = arg min
(µ,w)

T0∑
t=1

Y1t − µ−
J+1∑
j=2

wjYjt

2

+ P(w) (7)

where P(w) is a penalty function, which penalizes deviations away from zero. If it is desired to
penalizes deviations away from other focal points w0, for example, w0 = (1/J, ..., 1/J) used in the
difference-in-differences approach, we may always use instead:

P(w)← P(w − w0)

Note that it is straightforward to incorporate covariates Xjt into the estimation problem (7).

Different variants of P(w) can be considered. For example:

• Lasso (Tibshirani, 1996): P(w) = λ||w||1 where λ is a tuning parameter. A version is the
Post-Lasso estimator, which refits the weights after removing variables with zero weight.

• Elastic Net (Zou and Hastie, 2005): P(w) = λ ((1− α)||w||2 + α||w1||1) where λ and α are
tuning parameters.
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• Lava (Chernozhukov et al., 2017): P(w) = infa+b=w λ ((1− α)||a||2 + α||b||1), for where λ and
α are tuning parameters.

We will impose only weak requirements on the performance of the estimators (pointwise con-
sistency and consistency in prediction norm), which implies that these estimators are valid in our
framework under any sufficient set of conditions that exist in the literature.

2.3.4 Interactive Fixed Effects Models/Matrix Completion Models

Consider the following interactive fixed effects (FE) model for treated and untreated units:

Y N
jt = λ′jFt +X ′jtβ + ujt for 1 ≤ j ≤ J + 1 and 1 ≤ t ≤ T, (8)

where Ft are the time-varying factors, λj are unit specific factor loadings, and β is a vector of com-
mon coefficients.

(FE) We assume that ujt is uncorrelatedwith (Xjt, Ft, λj), as well as other identification conditions
in Bai (2009).

The model leads to the following proxy:

PNt = λ′1Ft +X ′1tβ. (9)

Counterfactual proxies are estimated by

P̂Nt = λ̂′1F̂t +X ′1tβ̂.

where λ̂1 and F̂t, and β̂ are obtained using the alternating least squares method (which allow for
unbalanced data) applied to the model (8); see e.g. Bai (2009) and Hansen and Liao (2016).

Model (8) nests the classical factor model

λ′jFt +X ′jtβ

0

= λ′jFt

which in turn covers the traditional linear FE model, in which

λ′iFt = λi + Ft.

There is a large body of work on these type of models; in econometrics these models are called
interactive effects and augmented factor models and in statistics and machine learning they are
called low-rank approximations and estimated through penalizationmethods or through universal
singular value thresholding (upon imputing the missing entries with some reasonable proxies);
see, e.g., Amjad et al. (2017) and Athey et al. (2017), where such methods are used for predicting
counterfactual response, albeit they do not provide inference methods. Our proposal delivers a
way to performvalid inference for policy effects in thesemodels, including the recent newmethods,
even thoughwe shall be focusing on Bai (2009)’s alternating least squares estimator when verifying
our conditions. The results in Hansen and Liao (2016) imply that our high-level conditions hold for
their estimator.

11



2.4 Models for Counterfactual Proxies via Time Series and Fused Models

2.4.1 Simple Time Series Models

If no control units are available, one can use time series models for the single unit exposed to the
treatment. For example, consider the following autoregressive model:6

Y N
1t − µ = ρ(Y N

1(t−1) − µ) + ut

Y I
1t − µ = ρ(Y N

1(t−1) − µ) + αt + ut

∣∣∣∣∣ E(ut) = 0, {ut} i.i.d., t = 1, . . . , T. (10)

In this model the mean unbiased proxy is given by:

PNt = µ+ ρ(Y N
1(t−1) − µ).

Note that the policy effect here is transitory, namely it does not feed-forward itself on the future
values of Y I

1t beyond the current values.7 Under the null hypothesis, we can impute the unobserved
counterfactual as Y N

1t = Y1t − αt, for t > T0, and estimate the model using traditional time-series
methods and we can make conformal inference based on the residuals.

The simplest form of the autoregressive model is the AR(K) process, where the ρ(·) take the
form:

ρ(·) =

K∑
k=0

ρkL
k(·),

whereL is the lag operator. There aremany identifying conditions for thesemodels, see for example
Hamilton (1994) or Brockwell and Davis (2013).

Or more generally, we can use a nonlinear function of lag operators,

ρ(·) = m(·,L1(·), . . . ,Lk(·)),

which arises in the context of using neural networks for predictive time series modeling (e.g., Chen
and White, 1999; Chen et al., 2001) and we refer to the latter for identifying conditions.

2.4.2 Fused Time-Series/Panel Models

A simple and generic way to combine the insights from the panel data and time series models is as
follows. Consider the system of equations:

Y N
1t = CNt + εt
Y I

1t = CNt + αt + εt

∣∣∣∣∣ εt = ρ(εt−1) + ut, {ut} i.i.d. E(ut) = 0,

{ut} is independent of {CNt },

∣∣∣∣∣ t = 1, . . . , T, (11)

where CNt is a panel model proxy for Y N
1t , identified by one of the panel data methods. Note that

the model has the autoregressive formulation:

Y N
1t = CNt + ρ(Y N

1(t−1) − C
N
t−1) + ut,

thereby generalizing the previous model.
Here the mean unbiased proxy for Y N

1t is given by

PNt = CNt + ρ(εt−1).

6We can also add a moving average component for the errors, but we do not do so for simplicity.
7We leave the model with persistent, feed-forward effects, of the type Y I1t = ρ(Y I1(t−1)) + αt + ut, to future work.
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PNt is a better proxy than CNt because it provides an additional noise reduction through prediction
of the stochastic shock by its lag. The model combines any favorite panel model CNt for counter-
factuals with a time series model for the stochastic shock model in a nice way: we can identify CNt
under the null by ignoring the time series structure, and we then we can identify the time-series
structure off the residuals Y N

1t − CNt , where the missing observations Y N
1t for t > T0 are obtained

as Y N
1t = Y1t − αt. Estimation can proceed analogously. This can improve upon the quality of our

inferential procedure.

3 Theory

In this section, weprovide theoretical justification for the validity of our conformal inferencemethod.
We derive theoretical results that are non-asymptotic in nature and hence hold in finite samples.
When strong assumptions are imposed, the proposed approach is exact in a model-free manner.
Under very weak assumptions, finite-sample bounds are provided for the size properties of our
procedure; these bounds imply that our approach is asymptotically exact.

3.1 Exact Validity under Strong Assumptions

The following result shows that our conformal inference approach achieves finite sample size con-
trol if the estimated residuals {ût} are exchangeable. The result is model-free in the sense that we
do not need to use a correct or consistent estimator P̂Nt for PNt .

Theorem 1 (Exact Validity). Suppose that the Counterfactual Model stated in Assumption 1 holds and the
null hypothesis (1) is true. Let Π be the set of moving block permutations, the set of i.i.d. and overlapping
block permutations, or the set of i.i.d. permutations. More generally, let Π form a group in the sense that
Ππ = Π for all π ∈ Π. Suppose that {ût}Tt=1 is exchangeable with respect to Π under the null hypothesis.
Then the permutation p-value is unbiased in level:

P (p̂ ≤ α) ≤ α.

Theorem 1 is the first main result of this paper. It states that if the residuals are exchangeable,
under the null, the proposed conformal inference method achieves finite sample size control. Ex-
changeability of the residuals is implied, for example, if the data {Zt}Tt=1 are i.i.d. under the null, as
shown in Lemma 1, but holds more generally. For example, in the difference-in-difference model
the outcomes data can have an arbitrary common trend eliminated by differencing, making it pos-
sible for ût = P̂Nt − PNt to be i.i.d. (or exchangeable more generally) with non i.i.d. data.

Lemma 1 (Exchangeability with I.I.D. Data). Suppose that ût = g(Zt, β̂), where the estimator β̂ =

β̂({Zt}Tt=1) is invariant with respect to any permutation of the data. Then if {Zt}Tt=1 is an i.i.d. or an
exchangeable sequence, then {ût}Tt=1 is an exchangeable sequence.

Of course, the exchangeability assumption is strong and may not be plausible in many applica-
tions. However, it allows us to discipline the choice of our inference procedure. Any permutation
procedure which approximately works under dependence should have desirable properties under
exchangeability. Our procedure enjoys exact finite sample validity and is fully robust to misspeci-
fication of the method for estimating PNt .
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3.2 Approximate Validity under Weak Assumptions

In this section, we show that the proposed inference procedure has an approximate justification
when the residuals are not exchangeable.

Assumption 2 (Regularity of the Stochastic Shock Process). Assume that the pdf of S(u) exists and is
bounded, and that the stochastic process {ut}Tt=1 satisfies one of the following conditions.

1. {ut}Tt=1 are i.i.d., or

2. {ut}Tt=1 are stationary, strongly mixing, with the sum of mixing coefficient bounded byM .

Assumption 2 is themain condition underlying our results. We can view it asmuchweaker than
the previous assumption, since the data can be very general. Assumption 2.1 of i.i.d. shocks is our
first sufficient condition. Under this condition, we will be able to use i.i.d. permutations, giving us
a precise estimate of the p-value. The i.i.d. assumption can be replaced by Assumption 2.2, which is
a widely accepted, weak condition, holding for many commonly encountered stochastic processes.
It can be easily replaced by an even weaker ergodicity condition, as can be inspected in the proofs.
Under this assumption, we will have to rely on the moving block permutations.

Remark 2. The assumption above can be generalized further, by requiring that the stochastic pro-
cess {ut}Tt=1 satisfies one of the following conditions conditional on a random element V :

1. Exchangeability: {ut} are i.i.d. variables, conditional on V , or

2. Conditional ergodicity: {ut} are stationary, strongly mixing, conditional on V , with the sum of the
mixing coefficient bounded byM .

We also impose the following condition on the estimation error under the null hypothesis.

Assumption 3 (Consistency of the Counterfactual Estimators under Null). Let there be sequence of
constants δT and γT converging to zero. Assume that with probability 1− γT ,

(1) the mean squared estimation error is small, ‖P̂N − PN‖22/T ≤ δ2
T ;

(2) for T0 + 1 ≤ t ≤ T , the pointwise errors are small, |P̂Nt − PNt | ≤ δT ;

Assumption 3 imposesweak and easy-to-verify conditions on the performance of the estimators
P̂Nt of the counterfactual mean proxies PNt . These conditions are readily implied by the existing
results for many estimators discussed in Section 2. In Section 5, we provide explicit conditions and
references to explicit conditions, which imply these conditions.

Theorem 2 (Approximate Validity of the Conformal Inference for Policy Effects). We assume that
T∗ is fixed, and T → ∞. Suppose that the Counterfactual Model stated in Assumption 1 holds, and that
Assumption 3 holds. Impose Assumption 2.1 if i.i.d. permutations Π are used. Impose Assumption 2.2, if
moving block permutations are used. Assume the statistic S(u) has a density function bounded by D under
the null. Then under the null hypothesis H0, the p-value is approximately unbiased in size:

|P (p̂ ≤ α)− α| ≤ C(δ̃T +
√
δT + γT )→ 0.

where δ̃T = (T∗/T0)1/4(log T ). The constant C does not depend on T , but depends on T∗,M , D, and q.
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The bound above is non-asymptotic, allowing us to claim uniform validity with respect to a rich
variety of data generating processes. Using simulations and empirical examples, we verify that our
tests have good power, and generate meaningful empirical results. There are other considerations
that also affect power. For example, the better the model for PNt , the less variance the stochastic
shocks have, subject to assumed invariance to the policy. The smaller the variance of the shocks,
the more power the testing procedure will have.

4 Extensions

In this section, we discuss two extensions of our main results.

4.1 Testing Hypotheses about Average Effects

In addition to testing sharp null hypotheses, researchers are often also interested in testing hypothe-
ses about average effects (e.g., Gobillon and Magnac, 2016; Carvalho et al., 2017; Li, 2017):

H0 : ᾱ = ᾱo, (12)

where

ᾱ =
1

T∗

T∑
t=T0+1

αt.

For any random variable Vt, let V̄r = T−1
∗
∑r+T∗−1

t=r Vt. To simplify the exposition, we assume that
T/T∗ is an integer. Our inference procedure can be modified to test hypothesis (12), provided that
there exists a model for the average counterfactual proxies P̄Nr :

Ȳ N
1r = P̄Nr + ūr
Ȳ I

1r = P̄Nr + ᾱr + ūr

∣∣∣∣∣ E(ūr) = 0, r = 1, T∗ + 1, . . . , T0 + 1,

where {ūr} is a stationary sequence. Our key assumption is that P̄Nr can be identified and estimated
based on the aggregated data:

{Ȳ1r, . . . , ȲJ+1r, X̄1r, . . . , X̄J+1r}T0+1
r=1 .

Define the aggregated data under the null as Z̄ = (Z̄1, . . . , Z̄T0+1)′, where

Z̄r =

{(
Ȳ N

1r , Ȳ
N

2r , . . . , Ȳ
N
J+1r, X̄

′
1r, . . . , X̄

′
J+1r

)′
r < T0 + 1(

Ȳ N
1r − ᾱo, Ȳ N

2r , . . . , Ȳ
N
J+1r, X̄

′
1r, . . . , X̄

′
J+1r

)′
r = T0 + 1.

Note that testing hypothesis (12) is equivalent to testing the simple hypothesis (2) based on the
aggregated data Z̄. We compute ˆ̄PNr based on Z̄ and compute the residuals

ˆ̄u = (ˆ̄u1, ˆ̄uT∗+1, . . . , ˆ̄uT0+1), ˆ̄ur = Ȳ N
1r − ˆ̄PNr , r = 1, T∗ + 1, . . . , T0 + 1

The test statistic is
S
(
ˆ̄u
)

and p-values can be computed based on permutations of (ˆ̄u1, ˆ̄uT∗+1, . . . , ˆ̄uT0+1)′ as described in
Section 2.2. The finite sample and asymptotic properties of this test follow immediately from the
results in Section 3.
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4.2 Specification Tests

Here, we propose an easy-to-implement specification test for the key condition underlying our
procedure: Assumption 1 (CFM). The key testable implication of Assumption 1 is stationarity of
{ut}. Consider the following null hypothesis:

H0 : u1
d
= uT0 , {ut}

T0−1
t=0 is a stationary sequence. (13)

The conformal inference procedure developed in Section 2 naturally allows for testing hypothesis
(13). Based on an appropriate method, we compute P̂Nt using the pre-treatment data {Zt}T0t=1 and
obtain the residuals

û = (û1, . . . , ûT0)′ , ût = Y N
1t − P̂Nt , t = 1, . . . , T0.

A natural test statistic is
S (û) = |ûT0 |,

which is constructed such that high-values indicate rejection of the null hypothesis. p-values can
be computed based on permutations of (û1, . . . , ûT0)′ as described in Section 2.2. The finite sample
and asymptotic properties of this specification test follow directly from the results in Section 3.

5 Verifying Small Estimation Error for Specific Models of Counterfac-
tual Proxies

In this section, we revisit the models of counterfactual proxies introduced in Section 2. Primi-
tive conditions are provided to guarantee that the estimation of counterfactual proxies is accurate
enough for the validity of the proposed procedure. In particular, these conditions can be used to
verify Assumption 3. In contrast to Section 2, we impose the null and estimate PNt using all T
periods.

5.1 Difference-in-Differences

In Section 2.3.1, we have seen that under the canonical difference-in-differences models, the coun-
terfactual proxy is given as

PNt = µ+
1

J

J+1∑
j=2

Yjt,

We consider the following estimator for the counterfactual:

P̂Nt = µ̂+
1

J

J+1∑
j=2

Yjt,

where

µ̂ :=
1

T

T∑
t=1

Y N
1t −

1

J

J+1∑
j=2

Yjt

 = µ+
1

T

T∑
t=1

ut.

Since P̂Nt −PNt = µ̂−µ, Assumption 3 holds for the simple difference-in-differencesmodel provided
that T−1

∑T
t=1 ut = oP (1), which is true under very weak conditions.
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5.2 Synthetic Control and Constrained Least-Squares Estimators

Several models in Section 2 (including synthetic control and constrained least-square methods)
imply a structure in which the counterfactual proxy is a linear function of observed outcomes of
untreated units.

To provide a unified framework for these models, we use Y denote a generic vector of outcomes
andX denote the design matrix throughout this section. For example, in Section 2, we set Y = Y N

1

and X = (Y N
2 , . . . , Y N

J+1), where Yj = (Y N
j1 , . . . , Y

N
jT )′ ∈ RT s.t. for 1 ≤ j ≤ J + 1. These models

can be written as
Y = Xw + u, (14)

where u = (u1, u2, . . . , uT )′ and T = T0 + T∗. Identification is achieved by requiring that X and u
be uncorrelated (cf. condition (SC)).

Under the framework in (14), different models correspond to different specifications for the
weight vector w. For the synthetic control model in Section 2.3.2, w is an unknown vector whose
elements are nonnegative and sum up to one. More generally, one can simply restrict w to be any
vector with bounded `1-norm. This is the constrained Lasso estimator.

Since PNt is the t-th element of the vectorXw, the natural estimator is P̂Nt being the t-th element
of Xŵ, where ŵ is an estimator for w. The estimation of w depends on the specification. LetW be
the parameter space for w. We consider the following version of the original synthetic control
estimator

ŵ = arg min
w
‖Y −Xw‖2 : s.t. w ∈ W = {v ≥ 0, ‖v‖1 = 1}. (15)

Moreover, we study the constrained Lasso estimator

ŵ = arg min
w
‖Y −Xw‖2 : s.t. w ∈ W = {v : ‖v‖1 ≤ K} (16)

whereK > 0 is a tuning parameter. In light of the estimator (15), a natural choice isK = 1.
In general, we choose the parameter spaceW to be an arbitrary subset of an `1-ballwith bounded

radius. The following result gives very mild conditions under which the constrained least-square
estimator is consistent and satisfies Assumption 3.8

Lemma 2 (Constrained Least Squares Estimators). Consider

ŵ = arg min
w
‖Y −Xw‖2 : s.t. w ∈ W,

whereW is a subset of {v : ‖v‖1 ≤ K} and K is bounded. Assume w ∈ W , the data is β−mixing with
exponential speed and other assumptions listed at the beginning of the proof, then the estimator enjoys the
finite-sample performance bounds stated in the proof, in particular:

1

T

T∑
t=1

(P̂Nt − PNt )2 = oP (1) and P̂Nt − PNt = oP (1), for any T0 + 1 ≤ t ≤ T.

Lemma 2 provides some features that are important for counterfactual inference in our setup.
First, we allow J to be large relative to T . To be precise, we only require log J = o(T c), where

8To simplify the exposition, we do not include an intercept in Lemma 2. Similar arguments could be used to prove
an analogous result with an unconstrained intercept.
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c > 0 is a constant depending only on the β-mixing coefficients; see Appendix for details. This
is particularly relevant for problems in which the the number of (potential) control units and the
number of time periods have similar order ofmagnitude; see for instance the applications inAbadie
et al. (2010), Abadie et al. (2015), and Peri and Yasenov (2015). It is also important to note that the
result in Lemma 2 does not require any sparsity assumptions on w, allowing for dense vectors.
Moreover, compared to typical high-dimensional estimators (e.g., Lasso or Dantzig selector), our
estimator does not require tuning parameters that can be difficult to choose in practice.

5.3 Factor models

The models for counterfactual proxies introduced in Section 2.3.4 have factor structures. We pro-
vide estimation results for pure factor models (without regressors) and factor models with regres-
sors (interactive FE models). In this subsection, following standard notation, we let N = J + 1.

5.3.1 Pure Factor/Matrix Completion Models

Recall from Section 2.3.4 the standard large factor model

Y N
jt = λ′jFt + ujt,

where F = (F1, . . . , FT )′ ∈ RT×k and Λ = (λ1, . . . , λN )′ ∈ RN×k represent the k-dimensional
unobserved factors and their loadings, respectively. The counterfactual proxy for Y N

1t is PNt = λ′1Ft.
We identify PNt by imposing the condition that the idiosyncratic terms and the factor structure are
uncorrelated (Condition FE).

We use the standard principal component analysis (PCA) for estimating PNt . Let Y N ∈ RT×N

be the matrix whose (t, j) entry is Y N
jt . We compute F̂ = (F̂1, . . . , F̂T )′ ∈ RT×k to be the matrix

containing the eigenvectors corresponding to the largest k eigenvalues of Y N (Y N )′ with F̂ ′F̂ /T =

Ik. Let λ̂′j denote the j-th row of Λ̂ = (Y N )′F̂ /T . Let F̂ ′t denote the t-th row of F̂ . Our estimate for
PNt is P̂Nt = λ̂′1F̂t.

The following result provides a theoretical guarantee on the estimation error.

Lemma 3 (Factor/Matrix Completion Model). Assume standard regularity conditions given in Bai
(2003) including the identification condition FE, listed at the beginning of the proof of this lemma. Con-
sider the factor model and the principal component estimator. Then for any 1 ≤ t ≤ T , as N → ∞ and
T →∞

|P̂Nt − PNt | = OP (1/
√
N + 1/

√
T ) and 1

T

T∑
t=1

|P̂Nt − PNt |2 = OP (1/N + 1/T ).

The only requirement on the sample size is that both N and T need to be large. Similar to
Theorem 3 of Bai (2003), we do not restrict the relationship between N and T . This is flexible
enough for a wide range of applications in practice as the number of units is allowed to be much
larger than, much smaller than or similar to the number of time periods.

5.3.2 Factor plus Regression Model: Interactive Fixed Effects Model

Now we study the general form of panel models with interactive fixed effects. Following Section
2.3.4, these models take the form

Y N
jt = λ′jFt +X ′jtβ + ujt,
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where Xjt ∈ Rkx is observed covariates and F = (F1, . . . , FT )′ ∈ RT×k and Λ = (λ1, . . . , λN )′ ∈
RN×k represent the k-dimensional unobserved factors and their loadings, respectively. The coun-
terfactual proxy for Y N

1t is PNt = λ′1Ft + X ′1tβ. In this model, we identify the counterfactual proxy
through the condition that the idiosyncratic terms are independent of the factor structure and the
observed covariates.

The two most popular estimation strategies are common correlated effects (CCE) estimators by
Pesaran (2006) and PCA (the least squares) estimators by Bai (2009). In this paper, we follow the
least squares approach but analogous results for CCE estimators can be established. The notations
for Ft, λj , F̂t and λ̂j are the same as before. We compute

(F̂ , Λ̂, β̂) = arg min
F,Λ,β

T∑
t=1

N∑
j=1

(Y N
jt −X ′jtβ − F ′tλj)2 : s.t. F ′F/T = Ik Λ′Λ = Diagonalk.

The estimate for PNt is P̂Nt = λ̂′1F̂t + X ′1tβ̂. The following result states the validity of applying
this estimator to our general methodology proposed in Section 2.

Lemma 4 (Interactive Fixed Effect Model). Assume the standard conditions in Bai (2009) including the
identification condition FE. Then for any 1 ≤ t ≤ T ,

P̂Nt − P̂Nt = OP (1/
√
T + 1/

√
N) and 1

T

T∑
t=1

(PNt − PNt )2 = OP (1/T + 1/N).

Note that under conditions in Theorem 3 of Bai (2009), N is of the same order as T so that rate
is really T−1/2; however, the stated bound should hold more generally.

5.4 Time Series and Fused Models

As pointed out in Section 2.4, time series models, such as AR models, can be used to model the
counterfactual proxy with or without control units. We now discuss low-level conditions under
which fitting these models yields estimates good enough for the purpose of our general conformal
inference approach.

5.4.1 AR Models

Recall from Section 2.4 the autoregressive models for the outcome withK lags:9

Y N
1t = ρ0 +

K∑
j=1

ρjY
N

1t−j + ut,

where {ut}Tt=1 is an i.i.d sequence with E(ut) = 0. Here, the counterfactual proxy for Y N
1t is PNt =

ρ0 +
∑K

j=1 ρjY
N

1t−j , which can be written as PNt = y′tρ.
The estimation for PNt follows the ordinary least-square principle. Let

yt = (1, Y N
1t−1, Y

N
1t−2, ..., Y

N
1t−K)′ ∈ RK+1.

9Here the model seems different, but Section 2.4’s model implies this one with ρ0 = µ(1−
∑K
j=1 ρj)
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where ρ̂ is the least squares estimators

ρ̂ =

(
T∑

t=K+1

yty
′
t

)−1( T∑
t=K+1

ytY
N

1t

)
.

The natural estimator for PNt is simply P̂Nt = y′tρ̂. We implement the permutation based on
ût = Y N

1t − P̂Nt .

Lemma 5 (Linear AR Model). Suppose that {ut}Tt=1 is an i.i.d sequence with E(u1) = 0 and E(u4
1)

uniformly bounded and the roots of 1 −
∑K

j=1 ρjL
j = 0 are uniformly bounded away from the unit circle.

Then T−1
∑T

t=K+1(P̂Nt − PNt )2 = oP (1) and P̂Nt − PNt = oP (1) for T0 + 1 ≤ t ≤ T .

As mentioned in Section 2.4, we can also apply nonlinear autoregressive models

Y N
1t = ρ(Y N

1t−1, Y
N

1t−2, . . . , Y
N

1t−K) + ut,

where ρ is a nonlinear function. Thus, the counterfactual proxy is PNt = ρ(Y N
1t−1, Y

N
1t−2, . . . , Y

N
1t−K).

We allow ρ to be parametric, nonparametric or semi-parametric. In general, we only require a
consistent estimator for ρ. Let ρ̂ be an estimator for ρ and P̂N1t = ρ̂(Y N

1t−1, Y
N

1t−2, . . . , Y
N

1t−K).

Lemma 6 (NonlinearARModel). Suppose that (1) ‖ρ̂−ρ‖ = OP (rT )with rT = o(1) for some appropriate
norm ‖ · ‖ and maxK+1≤t≤T |ρ̂(Y N

1t−1, Y
N

1t−2, . . . , Y
N

1t−K)− ρ(Y N
1t−1, Y

N
1t−2, . . . , Y

N
1t−K)| ≤ `T ‖ρ̂− ρ‖ for

some `T rT = o(1). Then T−1
∑T

t=K+1(P̂Nt −PNt )2 = oP (1) and P̂Nt −PNt = oP (1) for T0 + 1 ≤ t ≤ T .

The primitive regularity conditions and the definitions of the neural network estimators, pos-
sessing these properties, can be found in Chen and White (1999) and Chen et al. (2001).

5.4.2 Fused Panel/Time Series Models with AR Errors

Here, we provide generic conditions for fused panel/time series models described in Section 2.4.
In particular, AR models can be used to filter the estimated residuals and obtain near i.i.d errors.
In Equation (11) of Section 2.4, we introduce an autoregressive structure in the error terms:

Y N
1t = CNt + εt and εt = ρ(εt−1) + ut,

where CNt can be specified as a panel data model discussed before. Due to the autoregressive
structure in εt, the counterfactual proxy is PNt = CNt + ρ(εt−1).

The estimation for PNt is done via a two-stage procedure. In the first stage, we estimate CNt
using the techniques we considered before and obtain say ĈNt . In the second stage, we estimate
ρ(εt−1) by fitting the estimated residuals {ε̂t}Tt=1 to an autoregressive model, where ε̂t = Y N

1t − ĈNt .
For simplicity, we consider a linear model in the second stage estimation but analogous results can
be obtained for more general models. To be specific, assume that

εt = x′tρ+ ut,

where xt = (εt−1, εt−2, ..., εt−K)′ ∈ RK and ρ = (ρ1, ρ2, ..., ρK)′ ∈ RK .
Given {ε̂t}Tt=1 from the first-stage estimation, we define x̂t = (ε̂t−1, ε̂t−2, ..., ε̂t−K)′ ∈ RK and

ρ̂ =

(
T∑

t=K+1

x̂tx̂
′
t

)−1( T∑
t=K+1

x̂tε̂t

)
.
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To compute the p-value, we use {ût}Tt=K+1 with ût = ε̂t − x̂′tρ̂ in the permutation. By the following
result, this procedure is valid under very mild conditions for the first-stage estimation.

Lemma 7 (AR Errors). Suppose that {ut}Tt=1 is an i.i.d sequence with E(ut) = 0 and E(u4
1) uniformly

bounded and the roots of 1 −
∑K

j=1 ρjL
j = 0 are uniformly bounded away from the unit circle. We as-

sume that (1)
∑T

t=1(ĈNt − CNt )2 = oP (T ), (2) ĈNt − CNt = oP (1) for T0 − K + 1 ≤ t ≤ T . Then∑T
t=K+1

(
P̂Nt − PNt

)2
= oP (T ) and P̂Nt − PNt = oP (1) for T0 + 1 ≤ t ≤ T .

Notice that the conditions in Lemma 7 for the autoregressive part are the same as in Lemma
5. The requirement on the consistency of ĈNt can be verified using existing results, e.g., those in
Sections 5.1–5.3.

6 Simulations

This section presents simulation evidence on the finite sample properties of our inference proce-
dure. Our simulation design is similar to Hahn and Shi (2016). The control outcomes are generated
using a factor structure:

Y N
jt = µj + θt + λjFt + εjt,

where µj = j/J , λj = j/J , θt
iid∼ N(0, 1), Ft

iid∼ N(0, 1), and εjt = ρεεjt−1 + ξjt, ξjt
iid∼ N(0, 1 − ρ2

ε ).
We consider two different data generating processes (DGPs) for the treated unit. DGP1 specifies
the outcome of the treated unit as a weighted average of the control units:

Y1t =

{∑J+1
j=2 wjYjt + ut if t ≤ T0

αt +
∑J+1

j=2 wjYjt + ut if t > T0,

where ut = ρuut−1 + vt, vt
iid∼ N(0, 1− ρ2

u). The weights are either sparse

w = (0.5, 0.3, 0.15, 0.05, 0, . . . , 0)′ (DGP1a)

or dense
w = (1/J, . . . , 1/J)′ (DGP1b).

Under DGP2, the treated outcome is generated by a factor structure:

Y N
1t = µ1 + θt + λ1Ft + ut,

where ut = ρuut−1 + vt, vt
iid∼ N(0, 1 − ρ2

u). The unit specific fixed effects and the factor loading
are set such that there is common support between the treated and the control units in which case
µ1 = λ1 = 0.5 (DGP2a) or such that there is no common support in which case µ1 = λ1 = −0.5

(DGP2b). For all DGPs we vary ρu, ρε, T0, and J .
We analyze the simple hypothesis testing problem (2) with T∗ = 1 based on moving block per-

mutations and consider three different approaches for estimating the counterfactual mean proxies
PNt : (i) synthetic control (Section 2.3.2), (ii) a factor model without covariates (Section 2.3.4), and (3)
constrained Lasso (Section 2.3.2). Synthetic control and constrained Lasso are correctly specified
for DGP1 whereas the factor model is correctly specified with DGP2.

The simulation results reported in Tables 1 and 2 confirm our theoretical results. If the data are
i.i.d. (implying exchangeability of the residuals as shown inLemma1), our procedure achieves exact
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size control, irrespectively of whether the method used to estimate the counterfactual is correctly
specified or not. With dependent data, the proposed procedure exhibits close-to-correct size, even
when the model for PNt is misspecified.

To investigate the power of our inference procedures, we consider a fixed alternative of αT = 2.
The results in Tables 3 and 4 demonstrate that our procedure enjoys good power properties. Power
is tends to be high for correctly specified models but can be substantially lower for misspecified
models; see example the synthetic control model under DGP2b.

7 Empirical Illustration

In this section, we apply our inference procedure to analyze the effect of election day registration
(EDR) laws on voter turnout in the United States as in Xu (2017). Voting in the United States is
typically a two-step procedure since eligible voters must register prior to casting their ballots. Reg-
istration usually requires a separate trip, which imposes additional costs on voters and therefore
potentially leads to low turnout rates. EDR is a reform that allows eligible voters to register on the
election day when arriving at the polling stations. In the mid 1970s, Maine Minnesota, and Wis-
consin adopted this reform. Idaho, New Hampshire, and Wyoming introduced EDR in the 1990s
and Montana, Iowa, and Connecticut enacted EDR before the 2012 presidential election.

We use state-level voter turnout data for presidential elections from 1920 to 2012, previously
analyzed in Xu (2017) to which we refer for more information about the dataset and descriptive
statistics. Turnout rates are computed by dividing total ballots counted by the state’s voting-age
population. Alaska and Hawaii are excluded because they were no states until 1959 and North
Dakota is excluded as no voter registration is needed there. We analyze each of the nine treated
state separately.10 The J = 38 states which did not enact EDR laws between 1920 and 2012 serve
as control units. Since the EDR laws were enacted in three waves, the number of pre- and post-
treatment periods (T0, T∗) differs across states. For the first wave (Maine, Minnesota, Wisconsin),
(T0, T∗) = (14, 10); for the second wave (Idaho, New Hampshire, and Wyoming), (T0, T∗) = (19, 5);
and for the third wave (T0, T∗) = (22, 2) for Montana and Iowa and (T0, T∗) = (23, 1) for Connecti-
cut. Figure 2 displays the raw turnout data for treated and control states.11

We consider three different methods for estimating the counterfactual mean proxy PNt : (i)
canonical synthetic control (Section 2.3.2), (ii) a pure factor model without covariates and two fac-
tors (Section 2.3.4), and (iii) constrained Lasso (Section 2.3.2).

We first test the no-effects null hypothesis

H0 : (αT0+1, . . . , αT )′ = (0, . . . , 0)′. (17)

Note that the underlying hypotheses differ by state because the number of post-treatment periods
T∗ differs across states. Table 5 reports p-values based on moving block and i.i.d. permutations.12

The results differ substantially across the different methods for estimating counterfactual prox-
ies. For synthetic control, we can reject the null hypothesis (17) for the majority of the states, while
we only reject the null for very few states for the factor model and constrained Lasso. While i.i.d.
permutations often yield slightly lower p-values than moving block permutations, the substantive
overall conclusions are not affected by the choice of the set of permutations.

10Xu (2017) provides a state-by-state analysis in the online supplemental material.
11This figure is an adapted version of Figure A5 in the supplementary material to Xu (2017).
12To keep estimation tractable, we use a random subset of 5000 permutations.
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Figures 3–5 display pointwise confidence intervals for the policy effectαt based on test inversion
and moving block permutations. There is substantial heterogeneity in the effect of the EDR laws
on turnout rates across states. For example, for New Hampshire, we find significantly positive
effects for many periods and for all three methods. In contrast, for Connecticut, there are negative
effects for synthetic control and constrained Lasso and no significant effect for the factor model,
while for other states such asMontana, EDR laws do not significantly impact turnout in any period.
These findings are broadly consistent with the results in Xu (2017). As for the overall no-effects null
hypothesis, the choice of the model for the counterfactual matters for the confidence intervals.

8 Conclusion

This paper introduces new inference procedures for counterfactual and synthetic control methods
for evaluating policy effects. Our procedures work in conjunction with a great variety of power-
ful methods for estimating the counterfactual mean outcome in the absence of a policy interven-
tion. The proposed approach has a double justification, in that the inference result is exact un-
der strong assumptions on data, and is approximately exact under very weak assumptions on the
data. Weak and easy-to-verify conditions are provided for methods that can be used to estimate the
counterfactual, allowing for temporally and cross-sectionally dependent data. The new approach
demonstrates an excellent performance in simulation experiments, and is taken to a data applica-
tion, where we re-evaluate the causal effect of election day registration (EDR) laws on voter turnout
in the United States.
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Notations

We introduce some notations that will be used in the rest of the paper. Let Z denote the set of
integers. For any a ∈ R, we define bac = max{z ∈ R : z ≤ a} and dae = min{z ∈ Z : z ≥ a}. For
a, b ∈ R, a∨ b = max{a, b}. For a set A, |A| denotes the cardinality of A. For two positive sequences
an, bn, we use an � bn to denote an = o(bn); an . bn means that there exists a universal constant
C > 0 with an ≤ Cbn. Moreover, an � bn means an . bn and bn . an. We use Φ(·) to denote the
cumulative distribution function of the standard normal distribution. Unless stated otherwise, ‖ · ‖
denotes the Euclidean norm for vectors or the spectral norm for matrices.

A General Results on Exact andApproximate Randomization Inference

We present several results that can be of independent interest in many conformal/randomization
inference problems.

Setting. Let û = {ût} and u = {ut} arbitrary stochastic process indexed by t ∈ {1, ..., T} taking
values in a sample space UT . We regard û as an estimator for u in the asymptotic results below.

Let ûπ = {ûπ(t)} and uπ = {uπt } with π ∈ Π be an indexed collection of arbitrary stochastic
processes indexed by t ∈ {1, ..., T} taking values in UT . We regard these processes as randomized
versions of û and u. We assume that the index Π includes an identity element I so that û = ûI and
u = uI.

There are two main examples of considerable interest to us.

1. Permutation of Residuals: Let π designate permutation of residuals, namely

ûπ = {ûπ(t)} and uπ = {uπ(t)}

where π ∈ Π, a collection of one-to-one permutationmaps on {1, ..., T}, including the identity
map.

2. Residuals Resulting from Permutation of Data: Let π designate permutations on an under-
lying data frame, namely

ûπ = {g(Zπ(t), β̂({Zπ(t)}Tt=1))} and uπ = {g(Zπ(t), β0)},

where π ∈ Π, a collection of one-to-one permutationmaps on {1, ..., T}, including the identity
map, where {Zt}Tt=1 is the data frame taking values in the sample spaceZT and β̂ : ZT → BT is
ameasurable estimatormap from the sample space to the parameter space, and g : ZT×BT →
UT is a measurable map.

Exact Validity. Let {S(j)(û)}nj=1 denoted the non-decreasing rearrangement of {S(ûπ) : π ∈ Π},
where n = |Π|. Call these randomization quantiles. Define the randomization p-value:

p̂ =
1

n

∑
π∈Π

1(S(ûπ) ≥ S(û)).

Observe that
1(p̂ ≤ α) = 1(S(û) > S(k)(û)),

where k = k(α) = n− bn/αc = dn(1− α)e.
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Proposition 1 (General Exact Validity). Suppose that {ûπt } has an exchangeable distribution under π ∈ Π.
Consider any fixed Π such that the randomization α-quantiles are invariant surely, namely

S(k(α))(ûπ) = S(k(α))(ûπ), for all π ∈ Π.

Or, more generally, suppose that surely

S(k(α))(ûπ) ≥ S(k)(û), for all π ∈ Π. (18)

Then
P (p̂ ≤ α) = P (S(û) > S(k)(û)) ≤ α.

Approximate Validity. For approximate results, assume that the number of randomizations
becomes large, n = |Π| → ∞ (in examples above, this is caused by T →∞). Let {δ1n, δ2n, γ1n, γ2n}
be sequences of numbers converging to zero, and assume the following conditions.

(E) With probability 1− γ1n: the randomization distribution

F̃ (x) :=
1

n

∑
π∈Π

1{S(uπ) < x},

is approximately ergodic for F (x) = P (S(u) < x), namely

sup
x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣ ≤ δ1n,

(A) With probability 1− γ2n, estimation errors are small:

(1) the mean squared error is small, n−1
∑

π∈Π [S(ûπ)− S(uπ)]2 ≤ δ2
2n;

(2) the pointwise error at π = Identity is small, |S(û)− S(u)| ≤ δ2n;
(3) The pdf of S(u) is bounded above by a constant D.

Consider the approximate randomization p-value p̂ = 1− F̂ (S(û)).

Proposition 2 (Approximate General Validity of the Randomization/Conformal Inference). Un-
der the approximate ergodicity condition (E) and the small error condition (A), the approximate conformal
p-value obeys for any α ∈ (0, 1)

|P (p̂ ≤ α)− α| ≤ 3δ1n + 2(δ2n +D
√
δ2n) + γ1n + γ2n.

The theoremcan be seen as a generalization ofHoeffding (1952) result in that it is non-asymptotic,
not requiring the convergence in distributions of relevant statistics, which is the case in our setting.
It is also stated in terms of "estimated residuals" and their closeness to the true residuals, making
it easy to apply in a variety of problems. For example, they can be used to justify the permutation
inference procedure proposed by Abadie et al. (2010, 2015) (with t exchanged by j).

A.1 Proof of Proposition 1

We have by (18) ∑
π∈Π

1(S(ûπ) > S(k)(ûπ)) ≤
∑
π∈Π

1(S(ûπ) > S(k)(û)) ≤ αn.

Since 1(S(û) > S(k)(û)) is equal in law to 1(S(ûπ) > S(k)(ûπ)) for any π ∈ Π by the exchangeability
hypothesis, then

α ≥ E
∑
π∈Π

1(S(ûπ) > S(k)(ûπ))/n = E1(S(û) > S(k)(û)) = E1(p̂ ≤ α).
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A.2 Proof of Proposition 2

Step 1: We bound the difference between the p-value and the oracle p-value, F̂ (S(û))− F (S(u)).
LetM be the event that the conditions (A) and (E) hold. By assumption,

P (M) ≥ 1− γ1n − γ2n. (19)

Notice that on the eventM,∣∣∣F̂ (S(û))− F (S(u))
∣∣∣ ≤ ∣∣∣F̂ (S(û))− F (S(û))

∣∣∣+ |F (S(û))− F (S(u))|
(i)

≤ sup
x∈R

∣∣∣F̂ (x)− F (x)
∣∣∣+D |S(û)− S(u)|

≤ sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣+ sup

x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣+D |S(û)− S(u)|

≤ sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣+ δ1n +D |S(û)− S(u)|

≤ sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣+ δ1n +Dδ2n, (20)

where (i) holds by the fact that the bounded pdf of S(u) implies Lipschitz property for F .
Let A =

{
π ∈ Π : |S(ûπ)− S(uπ)| ≥

√
δ2n

}
. Observe that on the eventM, by Chebyshev in-

equality
|A|δn ≤

∑
π∈Π

(S(ûπ)− S(uπ))2 ≤ nδ2
2n

and thus |A|/n ≤ δ2n. Also observe that on the eventM, for any x ∈ R,∣∣∣F̂ (x)− F̃ (x)
∣∣∣

≤ 1

n

∑
π∈A
|1 {S(ûπ) < x} − 1 {S(uπ) < x}|+ 1

n

∑
π∈(Π\A)

|1 {S(ûπ) < x} − 1 {S(uπ) < x}|

(i)

≤ 2
|A|
n

+
1

n

∑
π∈(Π\A)

1
{
|S(uπ)− x| ≤

√
δ2n

}
≤ 2
|A|
n

+
1

n

∑
π∈Π

1
{
|S(uπ)− x| ≤

√
δ2n

}

≤ 2
|A|
n

+ P
(
|S(u)− x| ≤

√
δ2n

)
+ sup

z∈R

∣∣∣∣∣ 1n∑
π∈Π

1
{
|S(uπ)− z| ≤

√
δ2n

}
− P

(
|S(u)− z| ≤

√
δ2n

)∣∣∣∣∣
= 2
|A|
n

+ P
(
|S(u)− x| ≤

√
δ2n

)
+ sup
x∈R

∣∣∣[F̃ (z +
√
δ2n

)
− F̃

(
z −

√
δ2n

)]
−
[
F
(
z +

√
δ2n

)
− F

(
z −

√
δ2n

)]∣∣∣
≤ 2
|A|
n

+ P
(
|S(u)− x| ≤

√
δ2n

)
+ 2 sup

z∈R

∣∣∣F̃ (z)− F (z)
∣∣∣

(ii)

≤ 2
|A|
n

+D
√
δ2n + 2δ1n

(iii)

≤ 2δ1n + 2δ2n +D
√
δ2n,

where (i) follows by the boundedness of indicator functions and the elementary inequality of |1{S(ûπ) <

x} − 1{S(uπ) < x}| ≤ 1{|S(uπ) − x| ≤ |S(ûπ) − S(uπ)|}, (ii) follows by the bounded pdf of S(u)

and (iii) follows by |A|/n ≤ δ2n. Since the above display holds for each x ∈ R, it follows that on the
eventM,

sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣ ≤ 2δ1n + 2δ2n +D

√
δ2n. (21)
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We combine (20) and (21) and obtain that on the eventM,∣∣∣F̂ (S(û))− F (S(u))
∣∣∣ ≤ 3δ1n + 2δ2n + 2D

√
δ2n. (22)

Step 2: Here we derive the desired result. Notice that∣∣∣P (1− F̂ (S(û)) ≤ α
)
− α

∣∣∣ =
∣∣∣E (1{1− F̂ (S(û)) ≤ α

}
− 1 {1− F (S(u)) ≤ α}

)∣∣∣
≤ E

∣∣∣1{1− F̂ (S(û)) ≤ α
}
− 1 {1− F (S(u)) ≤ α}

∣∣∣
(i)

≤ P
(
|F (S(u))− 1 + α| ≤

∣∣∣F̂ (S(û))− F (S(u))
∣∣∣)

≤ P
(
|F (S(u))− 1 + α| ≤

∣∣∣F̂ (S(û))− F (S(u))
∣∣∣ andM

)
+ P (Mc)

(ii)

≤ P
(
|F (S(u))− 1 + α| ≤ 3δ1n + 2δ2n + 2D

√
δ2n

)
+ P (Mc)

(iii)

≤ 3δ1n + 2(δ2n +D
√
δ2n) + γ1n + γ2n,

where (i) follows by the elementary inequality |1{1 − F̂ (S(û)) ≤ α} − 1{1 − F (S(u)) ≤ α}| ≤
1{|F (S(u))−1+α| ≤ |F̂ (S(û))−F (S(u))|}, (ii) follows by (22), (iii) follows by the fact that F (S(u))

has the uniform distribution on (0, 1) and hence has pdf equal to 1, and by (19). The proof is com-
plete.

B Proofs of Results Stated in the Main Text

B.1 Proof of Lemma 1

By the i.i.d. or exchangeability property of data, we have that

{g(Zt, β̂({Zt}Tt=1))}Tt=1︸ ︷︷ ︸
{ût}Tt=1

d
= {g(Zπ(t), β̂({Zπ(t)}Tt=1)}Tt=1.

Since β̂({Zπ(t)}Tt=1) does not depend on π, we have

{g(Zπ(t), β̂({Zπ(t)}Tt=1)}Tt=1 = {g(Zπ(t), β̂({Zt}Tt=1)}Tt=1︸ ︷︷ ︸
{ûπ(t)}Tt=1

.

Therefore, {ûπ(t)}Tt=1
d
= {ût}Tt=1.

B.2 Proof of Theorem 1

The result of the theorem follows because theΠ considered all obeyΠπ = Π for all π ∈ Π. The result
then follows from a general theorem in permutation inference given in the first page of Romano
(1990)’s article, or from Proposition 1.

B.3 Proof of Theorem 2

The result is a consequence of the following four lemmas, that verify the approximate ergodicity
conditions (E) and conditions on the estimation error (A) of Proposition 2. Putting the bounds
together and optimizing the error yields the result of the theorem.
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The following lemma verifies approximate ergodicity (E) (which allows for large T∗) for the case
of moving block permutations.

Lemma 8 (Mixing Implies Approximate Ergodicity). Let Π be the moving block permutations. Suppose
that {ut}Tt=1 is stationary and strong mixing. Assume the following conditions: (1)

∑∞
k=1 αmixing(k) is

bounded by a constantM , and (2) T0 ≥ T∗ + 2. Then there exists a constantM ′ > 0 depending only onM
such that for any δ1n > 0,

P

(
sup
x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣ ≤ δ1n

)
≥ 1− γn,

where γn =
(
M ′
√

T∗
T0

log T0 + T∗+1
T0+T∗

)
/δ1n.

The following lemma verifies approximate ergodicity (E) (which allows for large T∗) for the case
of i.i.d. permutations.

Lemma 9 (Approximate Ergodicity under I.I.D. Permutations). Let Π be the set of all permutations.
Suppose that {ut}Tt=1 is i.i.d. Assume that S(u) only depends on the last T∗ entries of u. If T0 ≥ T∗ + 2,
then

P

(
sup
x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣ ≤ δ1n

)
≥ 1− γn,

where γn =
√

2π/ bT/T∗c/δ1n.

The following lemma verifies the condition on the estimation error (A) for moving block per-
mutations.

Lemma 10 (Bounds on Estimation Errors underMoving Block Permutations). Consider moving block
permutations Π. Let T∗ be fixed. Suppose that for some constant Q > 0, |S(u)− S(v)| ≤ Q‖DT∗(u− v)‖2
for any u, v ∈ RT andDT∗ := Blockdiag(0T∗ , IT∗). Then Condition (A) (1)-(2) is satisfied if there exist
sequences γn, δ2n = o(1) such that with probability at least 1− γn,

‖P̂N − PN‖2/
√
T ≤ δ2n and |P̂Nt − Pt| ≤ δ2n for T0 + 1 ≤ t ≤ T.

The following lemma verifies the condition on the estimation error (A) for moving i.i.d. permu-
tations.

Lemma 11 (Bounds on Estimation Errors under I.I.D. Permutations). Consider the set of all permuta-
tions Π. Let T∗ be fixed. Suppose that for some constant Q > 0, |S(u)− S(v)| ≤ Q‖DT∗(u− v)‖2 for any
u, v ∈ RT and DT∗ := Blockdiag(0, IT∗). Then Condition (A) (1)-(2) is satisfied if there exist sequences
γn, δ2n = o(1) such that with probability at least 1− γn,

‖P̂N − PN‖2/
√
T ≤ δ2n and |P̂Nt − Pt| ≤ δ2n for T0 + 1 ≤ t ≤ T.

Now we conclude the proof of Theorem 2.
For the moving block permutations, let δ1n = (T∗/T0)1/4. Then we apply Proposition 2 together

with Lemmas 8 and 10, obtaining

|P (p̂ ≤ α)− α| ≤ 3δ1n + 2(δ2n +D
√
δ2n) + γ1n + γ2n

≤ 3δ1n + 2(δ2n +D
√
δ2n) +

(
M ′
√
T∗
T0

log T0 +
T∗ + 1

T0 + T∗

)
/δ1n + γ2n
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≤ 3(T∗/T0)1/4 + 2(δ2n +D
√
δ2n) +

(
M ′
√
T∗
T0

log T0 +
T∗ + 1

T0 + T∗

)
(T∗/T0)−1/4 + γ2n.

The final result for moving block permutations follows by straight-forward computations and the
observations that δ2n = O(

√
δ2n) (due to δ2n = o(1)).

For i.i.d permutations, we also use δ1n = (T∗/T0)1/4. Thenwe apply Proposition 2 together with
Lemmas 9 and 11, obtaining

|P (p̂ ≤ α)− α| ≤ 3δ1n + 2(δ2n +D
√
δ2n) + γ1n + γ2n

≤ 3δ1n + 2(δ2n +D
√
δ2n) +

√
2π/ bT/T∗c/δ1n + γ2n

≤ 3(T∗/T0)1/4 + 2(δ2n +D
√
δ2n) +

√
2π/ bT/T∗c(T∗/T0)−1/4 + γ2n

. (T∗/T0)1/4 +
√
δ2n + γ2n.

This completes the proof for i.i.d permutations.

B.3.1 Proof of Lemma 8

We define

st =

{
(
∑t+T∗−1

s=t |us|q)1/q if 1 ≤ t ≤ T0

(
∑T

s=t |us|q +
∑t−T0−1

s=1 |us|q)1/q otherwise.

It is straight-forward to verify that

{Sπ(u) : π ∈ Π} = {st : 1 ≤ t ≤ T} .

Let α̃mixing be the strong-mixing coefficient for {st}T0t=1. Notice that {st}T0t=1 is stationary (al-
though {st}Tt=1 is clearly not). Let F̌ (x) = T−1

0

∑T0
t=1 1{st ≤ x}. The bounded pdf of S(u) implies

the continuity of F (·). It follows, by Proposition 7.1 of Rio (2017), that

E

(
sup
x∈R

∣∣F̌ (x)− F (x)
∣∣2) ≤ 1

T0

(
1 + 4

T0−1∑
k=0

α̃mixing(t)

)(
3 +

log T0

2 log 2

)2

. (23)

Notice that α̃mixing(t) ≤ 2 and that α̃mixing(t) ≤ αmixing (max{t− T∗, 0}) so that

T0−1∑
k=0

α̃mixing(t) =

T∗∑
k=0

α̃mixing(t) +

T0−1∑
k=T∗+1

α̃mixing(t) ≤ 2(T∗ + 1) +

T0−T∗−1∑
k=1

αmixing(k)

≤ 2(T∗ + 1) +

∞∑
k=1

αmixing(k).

Since
∑∞

k=1 αmixing(k) is bounded byM , it follows by (23) that

E

(
sup
x∈R

∣∣F̌ (x)− F (x)
∣∣2) ≤ BT :=

1 + 4(2(T∗ + 1) +M)

T0

(
3 +

log T0

2 log 2

)2

.

By Liapunov’s inequality,

E

(
sup
x∈R

∣∣F̌ (x)− F (x)
∣∣) ≤√E (sup

x∈R

∣∣F̌ (x)− F (x)
∣∣2) ≤√BT .
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Since (T0 + T∗)F̃ (x)− T0F̌ (x) =
∑T0+T∗

t=T0+1 1{st ≤ x}, it follows that

sup
x∈R

∣∣∣F̃ (x)− F̌ (x)
∣∣∣ = sup

x∈R

∣∣∣∣∣∣
 T0

T0 + T∗
F̌ (x) +

1

T0 + T∗

T0+T∗∑
t=T0+1

1{st ≤ x}

− F̌ (x)

∣∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣∣ 1

T0 + T∗
F̌ (x) +

1

T0 + T∗

T0+T∗∑
t=T0+1

1{st ≤ x}

∣∣∣∣∣∣ ≤ T∗ + 1

T0 + T∗
,

where the last inequality follows by supx∈R |F̌ (x)| ≤ 1 and the boundedness of the indicator func-
tion. Combining the above two displays, we obtain that

E

(
sup
x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣) ≤√BT +

T∗ + 1

T0 + T∗
.

The desired result follows by Markov’s inequality.

B.3.2 Proof of Lemma 9

The proof follows by an argument given by Romano and Shaikh (2012) for subsampling. We give
a complete argument for our setting here for clarity and completeness.

Recall that Π is the set of all bijections π on {1, ..., T}. Let kT = bT/T∗c. Define the blocks of
indices

bi = (T − iT∗ + 1, T − iT∗ + 2, ..., T − iT∗ + T∗) ∈ RT∗ , i = 1, ...., kT

Since S(u) only depends on ub1 , the last T∗ entries of u, we can define

Q(x;ub1) = 1{S(u) ≤ x} − F (x).

Therefore,
F̃ (x)− F (x) =

1

|Π|
∑
π∈Π

Q(uπ(b1);x).

Define π(bi) := π|bi(bi) to mean the restriction of the permutation map π : {1, . . . T} → {1, . . . T} to
the domain bi.

Notice that for 1 ≤ i ≤ kT , the value of
∑

π∈ΠQ(uπ(bi);x) does not depend on i. It follows that

F̃ (x)− F (x) =
1

|Π|
∑
π∈Π

Q(uπ(b1);x) =
1

kT

kT∑
i=1

(
1

|Π|
∑
π∈Π

Q(uπ(bi);x)

)

=
1

|Π|
∑
π∈Π

[
1

kT

kT∑
i=1

Q(uπ(bi);x)

]
.

Hence by Jensen’s inequality

E

(
sup
x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣) ≤ 1

|Π|
∑
π∈Π

E

(
sup
x∈R

∣∣∣∣∣ 1

kT

kT∑
i=1

Q(uπ(bi);x)

∣∣∣∣∣
)
.

To compute the above expectation, we observe that for any π ∈ Π,

E

(
sup
x∈R

∣∣∣∣∣ 1

kT

kT∑
i=1

Q(uπ(bi);x)

∣∣∣∣∣
)

=

∫ 1

0
P

(
sup
x∈R

∣∣∣∣∣ 1

kT

kT∑
i=1

Q(uπ(bi);x)

∣∣∣∣∣ > z

)
dz
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≤
∫ 1

0
2 exp

(
−2kT z

2
)
dz <

√
2π/kT ,

where the first inequality follows by the Dvoretsky-Kiefer-Wolfwitz inequality (e.g., Theorem 11.6
in Kosorok (2007)) and the fact that for any π ∈ Π, {Q(uπ(bi);x}

kT
i=1 is a sequence of i.i.d random

variables (since π is a bijection and {bi}kTi=1 are disjoint blocks of indices); the last inequality follows
from the properties of the normal density. Therefore, the above two display imply that

E

(
sup
x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣) ≤√2π/kT .

The desired result follows by Markov’s inequality.

B.3.3 Proof of Lemma 10

Due to the Lipschitz property of S(·), we have

∑
π∈Π

[S(ûπ)− S(uπ)]2 ≤ Q
∑
π∈Π

‖DT∗(ûπ − uπ)‖22 = Q
∑
π∈Π

T0+T∗∑
t=T0+1

(
ûπ(t) − uπ(t)

)2
= Q

T0+T∗∑
t=T0+1

∑
π∈Π

(
ûπ(t) − uπ(t)

)2
=QT∗‖û− u‖22 = QT∗‖P̂N − PN‖2

where the penultimate equality follows by the observation that for moving block permutation Π,∑
π∈Π

(
ûπ(t) − uπ(t)

)2
= ‖û− u‖22.

Hence condition (A) (1) followswith a rescaled value of δn. Condition (A) (2) holds by the Lipschitz
property of S(·):

|S(û)− S(u)| ≤ Q‖DT∗(û− u)‖2 ≤ Q

√√√√ T0+T∗∑
t=T0+1

(ût − ut)2

Hence, Condition (A) (2) follows since ‖P̂Nt − PNt ‖ = |ût − ut| ≤ δn for T0 + 1 ≤ t ≤ T with high
probability. The proof is complete.

B.3.4 Proof of Lemma 11

For t, s ∈ {1, ..., T}, we define At,s = {π ∈ Π : π(t) = s}. Recall that Π is the set of all bijections on
{1, ..., T}. Thus, |At,s| = (T − 1)!. It follows that for any t ∈ {1, ..., T},

∑
π∈Π

(
ûπ(t) − uπ(t)

)2
=

T∑
s=1

∑
π∈At,s

(
ûπ(t) − uπ(t)

)2
=

T∑
s=1

∑
π∈At,s

(ûs − us)2 =
T∑
s=1

|At,s| (ûs − us)2 = (T − 1)!× ‖û− u‖22. (24)

Due to the Lipschitz property of S(·), we have for some Q that depends on q and T ∗

1

|Π|
∑
π∈Π

[S(ûπ)− S(uπ)]2 ≤ Q

|Π|
∑
π∈Π

‖DT∗(ûπ − uπ)‖22 =
Q

|Π|
∑
π∈Π

T0+T∗∑
t=T0+1

(
ûπ(t) − uπ(t)

)2
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≤ Q

|Π|

T0+T∗∑
t=T0+1

∑
π∈Π

(
ûπ(t) − uπ(t)

)2
=

Q

|Π|
T∗(T − 1)!× ‖û− u‖22 = QT−1T∗‖û− u‖22,

where the penultimate equality follows by (24) and the last equality follows by |Π| = T !. Thus, part
1 of Condition (A) follows since T∗ is fixed.

To see part 2 of Condition (A), notice that the Lipschitz property of S(·) implies

|S(û)− S(u)| ≤ Q‖DT∗(û− u)‖2 ≤ Q

√√√√ T0+T∗∑
t=T0+1

(ût − ut)2.

Hence, part 2 of Condition (A) follows since |ût−ut| ≤ δn for T0 + 1 ≤ t ≤ T with high probability.
The proof is complete.

B.4 Proof of Lemma 2

Let Xjt denote the (j, t) entry of the matrix X ∈ RT×J . We assume the following conditions hold:
(1) E(utXjt) = 0 for 1 ≤ j ≤ J . (2) there exist constants c1, c2 > 0 such that E|Xjtut|2 ≥ c1 and
E|Xjtut|3 ≤ c2 for any 1 ≤ j ≤ J and 1 ≤ t ≤ T ; (3) for each 1 ≤ j ≤ J , the sequence {Xjtut}Tt=1

is β-mixing and the β-mixing coefficient satisfies that β(t) ≤ a1 exp(−a2t
τ ), where a1, a2, τ > 0 are

constants. (4) there exists a constant c3 > 0 such that max1≤j≤J
∑T

t=1X
2
jtu

2
t ≤ c2

3T with probability
1 − o(1). (5) log J = o(T 4τ/(3τ+4)) and w ∈ W . (6) There exists a sequence `T > 0 such that
(X ′tδ)

2 ≤ `T ‖Xδ‖22/T, for all w + δ ∈ W with probability 1 − o(1) for T0 + 1 ≤ t ≤ T and (7)
`TBT → 0 for BT = M [log(T ∨ J)](2+2τ)/(4τ)T−1/2.

Then we claim that under conditions (1)-(5) listed above:

(1) There exist a constantM > 0 depending only on K and the constants listed above such that
with probability 1− o(1)

‖X(ŵ − w)‖22/T ≤ BT = M [log(T ∨ J)](2+2τ)/(4τ)T−1/2

(2) Moreover, if (6) and (7) also hold, then

1

T

T∑
t=1

(
P̂Nt − PNt

)2
= oP (1) and P̂Nt − PNt = oP (1), for any T0 + 1 ≤ t ≤ T.

The following result is useful in deriving the properties of the `1-constrained estimator.

Lemma 12. Suppose that (1) E(utXjt) = 0 for 1 ≤ j ≤ J . (2) max1≤j≤J,1≤t≤T E|Xjtut|3 ≤ K1 for a
constant K1 > 0. (3) min1≤j≤J,1≤t≤T E|Xjtut|2 ≥ K2 for a constant K2 > 0. (4) For each 1 ≤ j ≤ J ,
{Xjtut}Tt=1 is β-mixing and the β-mixing coefficients satisfy β(s) ≤ D1T exp (−D2s

τ ) for some constants
D1, D2, τ > 0. Assume log J = o(T 4τ/(3τ+4)). Then there exists a constant κ > 0 depending only on
K1,K2, D1, D2, τ such that with probability 1− o(1)

max
1≤j≤J

∣∣∣∣∣
T∑
t=1

Xjtut

∣∣∣∣∣ < κ[log(T ∨ J)](1+τ)/(2τ) max
1≤j≤J

√√√√ T∑
t=1

X2
jtu

2
t
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Proof. Define Wj,t = Xjtut. Let m =
⌊
[4D−1

2 log(JT )]1/τ
⌋
and k = bT/mc. For simplicity, we

assume for now that T/m is an integer. Define

Hi = {i,m+ i, 2m+ i, ..., (k − 1)m+ i} ∀1 ≤ i ≤ m.

By Berbee’s coupling (e.g., Lemma 7.1 of Chen et al. (2016)), there exist a sequence of random
variables {W̃j,t}t∈Hi such that (1) {W̃j,t}t∈Hi is independent across t, (2) W̃j,t has the same distribu-
tion asWj,t for t ∈ Hi and (3) P

(⋃
t∈Hi{W̃j,t 6= Wj,t}

)
≤ kβ(m).

By assumption, maxj,tE|Xjtut|3 is uniformly bounded above and minj,tE|Xjtut|2 is uniformly
bounded away from zero. It follows, by Theorem 7.4 of Peña et al. (2008), that there exist constants
C0, C1 > 0 depending onK1 andK2 such that for any 0 ≤ x ≤ C0k

2/3,

P

∣∣∣∣∣∣
∑

t∈Hi W̃j,t√∑
t∈Hi W̃

2
j,t

∣∣∣∣∣∣ > x

 ≤ C1 (1− Φ(x)) .

Therefore, for any 0 ≤ x ≤ C0k
2/3,

P

∣∣∣∣∣∣
∑

t∈HiWj,t√∑
t∈HiW

2
j,t

∣∣∣∣∣∣ > x

 ≤ P
∣∣∣∣∣∣

∑
t∈Hi W̃j,t√∑
t∈Hi W̃

2
j,t

∣∣∣∣∣∣ > x

+ P

 ⋃
t∈Hi

{W̃j,t 6= Wj,t}


≤ C1 (1− Φ(x)) + kβ(m). (25)

The Cauchy-Schwarz inequality implies

∣∣∣∣∣
T∑
t=1

Wj,t

∣∣∣∣∣ ≤
m∑
i=1

∣∣∣∣∣∣
∑

t∈HiWj,t√∑
t∈HiW

2
j,t

∣∣∣∣∣∣
√∑
t∈Hi

W 2
j,t ≤

√√√√√ m∑
i=1

 ∑
t∈HiWj,t√∑
t∈HiW

2
j,t

2

×

√√√√ m∑
i=1

∑
t∈Hi

W 2
j,t

=

√√√√√ m∑
i=1

 ∑
t∈HiWj,t√∑
t∈HiW

2
j,t

2

×

√√√√ T∑
t=1

W 2
j,t.

Hence, ∣∣∣∣∣∣
∑T

t=1Wj,t√∑T
t=1W

2
j,t

∣∣∣∣∣∣ ≤
√√√√√ m∑

i=1

 ∑
t∈HiWj,t√∑
t∈HiW

2
j,t

2

.

It follows that for any 0 ≤ x ≤ C0k
2/3√m,

P

∣∣∣∣∣∣
∑T

t=1Wj,t√∑T
t=1W

2
j,t

∣∣∣∣∣∣ > x

 ≤ P

√√√√√ m∑

i=1

 ∑
t∈HiWj,t√∑
t∈HiW

2
j,t

2

> x


= P

 m∑
i=1

 ∑
t∈HiWj,t√∑
t∈HiW

2
j,t

2

> x2

 ≤ m∑
i=1

P

∣∣∣∣∣∣
∑

t∈HiWj,t√∑
t∈HiW

2
j,t

∣∣∣∣∣∣ > x√
m


(i)

≤ m
[
C1

(
1− Φ(x/

√
m)
)

+ kβ(m)
] (ii)

≤ C1m

√
m

2π
x−1 exp

(
− x2

2m

)
+D1km exp (−D2m

τ )

37



< C1m
3/2x−1 exp

(
− x2

2m

)
+D1T exp (−D2m

τ )

where (i) follows by (25) and (ii) follows by the inequality 1−Φ(a) ≤ a−1φ(a) (with φ being the pdf
of N(0, 1)) and β(m) ≤ D1 exp(−D2m

τ ).
By the union bound, it follows that for any 0 ≤ x ≤ C0k

2/3√m,

P

 max
1≤j≤J

∣∣∣∣∣∣
∑T

t=1Wj,t√∑T
t=1W

2
j,t

∣∣∣∣∣∣ > x

 ≤ C1Jm
3/2x−1 exp

(
− x2

2m

)
+D1JT exp (−D2m

τ ) .

Now we choose x = 2
√
m log(Jm3/2). Since log J = o(T 4τ/(3τ+4)) and k � T/m, it can be very

easily verified that x � C0k
2/3√m and the two terms on the right-hand side of the above display

tend to zero. The desired result follows.
If T/k is not an integer, then we simply add one observation from {Wj,t}Tt=km+1 to each of Hi

for 1 ≤ i ≤ m. The bound in (25) holds with C1 large enough. The proof is complete.

Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let ∆ = ŵ−w. Since ‖w‖1 ≤ K, we have ‖Y −Xŵ‖22 ≤ ‖Y −Xw‖22. Notice that
Y −Xw = u and Y −Xŵ = u−X∆. Therefore, ‖u−X∆‖22 ≤ ‖u‖22, whichmeans ‖X∆‖22 ≤ 2u′X∆.
Now we observe that

‖X∆‖22 ≤ 2u′X∆
(i)

≤ 2‖Xu‖∞‖∆‖1
(ii)

≤ 4K‖Xu‖∞, (26)

where (i) follows by Holder’s inequality and (ii) follows by ‖∆‖1 ≤ 2K (since ‖ŵ‖1 ≤ K and
‖w‖1 ≤ K). By Lemma 12, there exists a constant κ > 0 such that

P

 max
1≤j≤J

∣∣∣∣∣
T∑
t=1

Xjtut

∣∣∣∣∣ > κ[log(T ∨ J)](1+τ)/(2τ) max
1≤j≤J

√√√√ T∑
t=1

X2
jtu

2
t

 = o(1).

Since P
(

max1≤j≤J
∑T

t=1X
2
jtu

2
t ≤ c2

3T
)
→ 1, it follows that

P

(
max

1≤j≤J

∣∣∣∣∣
T∑
t=1

Xjtut

∣∣∣∣∣ > κc3[log(T ∨ J)](1+τ)/(2τ)
√
T

)
= o(1). (27)

Part (1) follows by combining (26) and (27). Part (2) follows by part (1) and log J = o(T τ/(τ+1)).

B.5 Proof of Lemma 3

We borrow results and notations from Bai (2003). Following standard notation, we use i instead of
j to denote units. Here are the regularity conditions from Bai (2003).

Suppose that there exists a constantD0 > 0 the following conditions hold: (1)max1≤t≤T E‖Ft‖4 ≤
D0,max1≤j≤N ‖λj‖4 ≤ D0,maxjtE|ujt|8 ≤ D0 andE(ujt) = 0. (2)maxsN

−1
∑T

t=1

∣∣∣∑N
i=1E(uisuit)

∣∣∣ ≤
D0 and maxi

∑N
j=1 max1≤t≤T |E(uitujt)| ≤ D0. (3) (NT )−1

∑T
s=1

∑T
t=1

∑N
i=1

∑N
j=1 |E(uitujs)| ≤ D0

and maxs,tE
∣∣∣N−1/2

∑N
i=1[uisuit − E(uisuit)]

∣∣∣4 ≤ D0. (4) N−1
∑N

i=1E
∥∥∥T−1/2

∑T
t=1 Ftuit

∥∥∥2
≤ D0.

38



(5)maxtE
∥∥∥(NT )−1/2

∑T
s=1

∑N
i=1 Fs[uisuit − E(uisuit)]

∥∥∥2
≤ D0. (6)E

∥∥∥(NT )−1/2
∑T

t=1

∑N
i=1 Ftλ

′
iuit

∥∥∥2
≤

D0.

Moreover, we assume the following conditions: (7) for each t, N−1/2
∑N

i=1 λiuit →d N(0,Γt) as
N → ∞, where Γt = limN→∞N

−1
∑N

i=1

∑N
j=1 λiλ

′
jE(uitujt). (8) for each i, T−1/2

∑T
t=1 Ftuit →d

N(0,Φi) as T → ∞, where Φi = limT→∞ T
−1
∑T

s=1

∑T
t=1E(FtF

′
suisuit). (9) N−1

∑N
i=1 λiλ

′
i → ΣΛ

and T−1
∑T

t=1 FtF
′
t = ΣF + oP (1) for some k × k positive definite matrices ΣΛ and ΣF satisfying

that ΣΛΣF has distinct eigenvalues.
What follows below is the proof of the lemma. We recall some notations used by Bai (2003).

Define H = (Λ′Λ/N)(F ′F̃ /T )V −1
NT , where VNT ∈ Rk×k is the diagonal matrix with the largest k

eigenvalues of Y N (Y N )′/(NT ) on the diagonal and F̃ is the normalized F , namely F̃ ′F̃ /T = Ik.
We start with the first equation in the proof of Theorem 3 in Bai (2003) (on page 166):

λ̂′1F̂t − λ′1Ft =
(
F̂t −H ′Ft

)′
H−1λ1 + F̂ ′t(λ̂1 −H−1λ1). (28)

The rest of the proof proceeds in two steps. We first recall some results from Bai (2003) and then
derive the desired result.

Step 1: recall useful results from Bai (2003). By Lemma A.1 of Bai (2003),

T∑
t=1

‖F̂t −H ′Ft‖2 = OP (T/δ2
NT ), (29)

where δNT = min{
√
N,
√
T}. By definition, F̂ ′F̂ /T = Ik, which means

T∑
t=1

‖F̂t‖2 =

T∑
t=1

trace(F̂tF̂
′
t) = trace(F̂ ′F̂ ) = kT. (30)

By Theorem 2 of Bai (2003),

λ̂1 = H−1λ1 +OP (max{T−1/2, N−1}). (31)

By the proof of part (i) in Theorem 2 of Bai (2003), H converges in probability to a nonsingular
matrix; see page 166 of Bai (2003). Hence, ‖H−1‖ = OP (1). By assumption, ‖λ1‖ = O(1). Hence,

‖H−1λ1‖ = OP (1). (32)

Step 2: prove the desired result.
Therefore,

T∑
t=1

(
λ̂′1F̂t − λ′1Ft

)2 (i)

≤ 2
T∑
t=1

[(
F̂t −H ′Ft

)′
H−1λ1

]2

+ 2
T∑
t=1

[
F̂ ′t(λ̂1 −H−1λ1)

]2

≤ 2
T∑
t=1

‖F̂t −H ′Ft‖2 × ‖H−1λ1‖2 + 2
T∑
t=1

‖F̂t‖2 × ‖λ̂1 −H−1λ1‖2

(ii)
= OP (T/δ2

NT )×OP (1) + 2kT ×OP (max{T−1, N−2})
= OP (T/δ2

NT ),
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where (i) follows by (28) and the elementary inequality of (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R and
(ii) follows by (29), (30), (31) and (32). Since n = |Π| = T for moving block permutation, we have

1

n

T∑
t=1

(
λ̂′1F̂t − λ′1Ft

)2
= OP

(
1

min{N,T}

)
.

This proves part (1) of condition (A).
Notice that Theorem 3 of Bai (2003) implies λ̂′1F̂t−λ′1Ft = OP (1/δNT ). Part (2) of Condition (A)

follows. The proof is complete.

B.6 Proof of Lemma 4

We recite conditions from Bai (2009). Following standard notation, we use i instead of j to denote
units.

Suppose that there exists a constantD1 > 0 the following conditions hold: (1) maxi,tE‖Xit‖4 ≤
D1,maxtE‖Ft‖4 ≤ D1,maxiE‖λi‖4 ≤ D1 andmaxi,tE|uit|8 ≤ D1. (2)N−1

∑N
i=1

∑N
j=1 maxt,s |E(uitujs)|

≤ D1and T−1
∑T

s=1

∑T
t=1 maxi,j |E(uitujs)| ≤ D1.(3) (NT )−1

∑N
i=1

∑N
j=1

∑T
s=1

∑T
t=1 |E(uitujs)| ≤

D1. (4)maxt,sE
∣∣∣N−1/2

∑N
i=1[uisuit − E(uisuit)]

∣∣∣4 ≤ D1. (5)T−2N−1
∑

t,s,q,v

∑
i,j |cov(uituts, ujqujv)| ≤

D1 (6)T−1N−2
∑

t,s

∑
i,j,k,q |cov(uitujt, uksuqs)| ≤ D1. (7) the largest eigenvalue ofE(uiu

′
i) is bounded

by D1, where ui = (ui1, ..., uiT )′ ∈ RT .
Moreover, the following conditions also hold: (8) u = (u1, . . . , uN ) is independent of (X,F,Λ).

(9) F ′F/T = ΣF + oP (1) and Λ′Λ/N = ΣΛ + oP (1) for some matrices ΣF and ΣΛ. (10) N/T
is bounded away from zero and infinity. (11) Define Xi = (Xi1, ..., XiT )′ ∈ RT×kx and MF =

IT − F (F ′F )−1F ′, we have

inf
F : F ′F/T=Ik

1

NT

N∑
i=1

X ′iMFXi −
1

T

 1

N2

N∑
i=1

N∑
j=1

X ′iMFXjλ
′
i(Λ
′Λ/N)−1λj

 > 0.

What follows below is the proof of the lemma. We introduce some notations used in Bai (2009).
LetH = (Λ′Λ/N)(F ′F̂ /T )V −1

NT , where VNT is the diagonal matrix that contains the k largest eigen-
values of (NT )−1

∑N
i=1(Y N

i − Xiβ̂)(Y N
i − Xiβ̂)′ with Y N

i = (Y N
i1 , Y

N
i2 , ..., Y

N
iT )′ ∈ RT . Let δNT =

min{
√
N,
√
T}. The rest of the proof proceeds in two steps. Wefirst derive bounds for

∑T
t=1 (û1t − u1t)

2

and then prove the pointwise result.
Step 1: derive bounds for

∑T
t=1 (û1t − u1t)

2.
Define ∆β = β̂ − β and ∆F,t = F̂t −H ′Ft. Denote ∆F = (∆F,1, ...,∆F,T )′ ∈ RT×k. Notice that

F̂ − FH = ∆F . As pointed out on page 1237 of Bai (2009),

λ̂1 = T−1F̂ ′(Y N
1 −X1β̂) = T−1F̂ ′(u1 + Fλ1 −X1∆β). (33)

Notice that

|û1t − u1t|2 =
∣∣∣F ′tλ1 − F̂ ′t λ̂1 −X ′1t∆β

∣∣∣2
(i)
=
∣∣∣F ′tλ1 − T−1(H ′Ft + ∆F,t)

′F̂ ′(u1 + Fλ1 −X1∆β)−X ′1,t∆β

∣∣∣2
≤
[∣∣∣F ′t (Ik −HF̂ ′F/T)λ1

∣∣∣+
∣∣∣T−1∆′F,tF̂

′Fλ1

∣∣∣+
∣∣∣T−1F̂ ′t F̂

′(u1 −X1∆β)
∣∣∣+
∣∣X ′1t∆β

∣∣]2

.
[
F ′t

(
Ik −HF̂ ′F/T

)
λ1

]2
+
[
T−1∆′F,tF̂

′Fλ1

]2
+
[
T−1F̂ ′t F̂

′(u1 −X1∆β)
]2

+
[
X ′1t∆β

]2
, (34)
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where (i) follows by (33) and F̂t = H ′Ft + ∆F,t. Therefore,

T∑
t=1

(û1t − u1t)
2 .

T∑
t=1

[
F ′t

(
Ik −HF̂ ′F/T

)
λ1

]2
+

T∑
t=1

[
T−1∆′F,tF̂

′Fλ1

]2

+
T∑
t=1

[
T−1F̂ ′t F̂

′(u1 −X1∆β)
]2

+
T∑
t=1

[
X ′1t∆β

]2
(i)
= λ′1

(
Ik −HF̂ ′F/T

)′
(F ′F )

(
Ik −HF̂ ′F/T

)
λ1

+ T−2
(
F̂ ′Fλ1

)′ (
∆′F∆F

) (
F̂ ′Fλ1

)
+ T−1

∥∥∥F̂ ′(u1 −X1∆β)
∥∥∥2

+ ‖X1∆β‖2

(ii)
= OP

(
T‖∆β‖2 + Tδ−4

NT

)
+OP

(
T‖∆β‖2 + Tδ−2

NT

)
+OP

(
1 + Tδ−4

NT + T‖∆β‖2
)

+OP (T‖∆β‖2)

= OP
(
1 + T‖∆β‖2 + Tδ−2

NT

)
,

where (i) follows by
∑T

t=1 F̂tF̂
′
t = F̂ ′F̂ = TIk and (ii) follows by Lemma 13, together with ‖F‖ =

OP (
√
T ), λ1 = O(1) and ‖F̂‖ = OP (

√
T ). Since N � T , Theorem 1 of Bai (2009) implies ‖∆β‖ =

OP (1/
√
NT ) = OP (T−1). Therefore, the above display implies

T∑
t=1

(û1t − u1t)
2 = OP (1).

Step 2: show the pointwise result.
By (34), we have

|û1t − u1t| ≤
∣∣∣F ′t (Ik −HF̂ ′F/T)λ1

∣∣∣+
∣∣∣T−1∆′F,tF̂

′Fλ1

∣∣∣+
∣∣∣T−1F̂ ′t F̂

′(u1 −X1∆β)
∣∣∣+
∣∣X ′1t∆β

∣∣
(i)

≤ ‖Ft‖ · ‖λ1‖ ·OP
(
‖∆β‖+ δ−2

NT

)
+OP

(
T‖∆β‖+ Tδ−2

NT

)
· T−1‖Fλ1‖

+ T−1‖F̂t‖ ·OP
(√

T + Tδ−2
NT + T‖∆β‖

)
+ ‖X1t‖ · ‖∆β‖

(ii)

≤ OP (T−1/2),

where (i) follows by Ik−HF̂ ′F/T = OP (‖∆β‖+δ−2
NT ), ‖∆F ‖ = OP (

√
T‖∆β‖+

√
Tδ−1

NT ) and ‖F̂ ′(u1−
X1∆β)‖ = OP (

√
T + Tδ−2

NT + T‖∆β‖) (due to Lemma 13), whereas (ii) follows by ‖F̂t‖ = OP (1)

(Lemma 13), ‖X1t‖ = OP (1), ‖Ft‖ = OP (1), λ1 = O(1), ‖∆β‖ = OP (T−1) and ‖Fλ1‖ = OP (
√
T ).

Lemma 13. Suppose that the assumption of Theorem 4 holds. Let δNT , H , ∆F and u1 be defined as in the
proof of Theorem 4. Then (1) Ik −HF̂ ′F/T = OP (‖∆β‖ + δ−2

NT ); (2) ∆′F∆F = OP (T‖∆β‖2 + Tδ−2
NT );

(3)
∥∥∥F̂ ′(u1 −X1∆β)

∥∥∥ = OP

(√
T + Tδ−2

NT + T‖∆β‖
)
; (4) ‖X1∆β‖ = OP (

√
T‖∆β‖); (5) F̂∆F,t =

OP (T‖∆β‖+ Tδ−2
NT ); (6) ‖F̂t‖ = OP (1) for 1 ≤ t ≤ T .

Proof. Proof of part (1). Lemma A.7(i) in Bai (2009) implies HH ′ converges in probability to a
nonsingular matrix. Hence,

H = OP (1) and H−1 = OP (1). (35)

Notice that

Ik −HF̂ ′F/T
(i)
= Ik −H(FH + ∆F )′F/T = Ik − (HH ′)(F ′F/T )−H∆′FF/T

(ii)
= OP (‖∆β‖) +OP (δ−2

NT )−H∆′FF/T
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(iii)
= OP (‖∆β‖) +OP (δ−2

NT ), (36)

where (i) holds by F̂ = FH + ∆F , (ii) holds by Ik − (HH ′)(F ′F/T ) = OP (‖∆β‖) + OP (δ−2
NT ) (due

to Lemma A.7(i) in Bai (2009)) and (iii) holds by (35) and ∆′FF/T = OP (‖∆β‖) + OP (δ−2
NT ) (due to

Lemma A.3(i) in Bai (2009)). This proves part (1).
Proof of part (2). Part (2) follows by Proposition A.1 of Bai (2009):

T−1∆′F∆F = OP (‖∆β‖2) +OP (δ−2
NT ). (37)

Proof of part (3). To see part (3), first observe that the independence between u1 and F implies
that

E(‖F ′u1‖2 | F ) ≤
T∑
t=1

E(F ′tFtu
2
1t | F ) =

T∑
t=1

F ′tFtE(u2
1t).

It follows that

E
(
‖F ′u1‖2

)
≤

T∑
t=1

E(F ′tFt)E(u2
1t)

(i)

. T

T∑
t=1

E(u2
1t) = O(T ),

where (i) holds by the uniform boundedness of E(F ′tFt). This means that

‖F ′u1‖ = OP (
√
T ). (38)

Notice that∥∥∥F̂ ′(u1 −X1∆β)
∥∥∥ ≤ ∥∥H ′F ′u1

∥∥+

∥∥∥∥(F̂ − FH)′ u1

∥∥∥∥+ ‖F̂‖ · ‖X1‖ · ‖∆β‖

(i)
=
∥∥H ′F ′u1

∥∥+
(
OP (T 1/2‖∆β‖) +OP (Tδ−2

NT )
)

+OP (T‖∆β‖)
(ii)
= OP (

√
T ) +

(
OP (T 1/2‖∆β‖) +OP (Tδ−2

NT )
)

+OP (T‖∆β‖),

where (i) follows by
(
F̂ − FH

)′
u1/T = OP (T−1/2‖∆β‖) + OP (δ−2

NT ) (due to Lemma A.4 in Bai
(2009)) and the fact that ‖F̂‖ = O(

√
T ) and ‖X1‖ = OP (

√
T ) (see the beginning of Appendix A in

Bai (2009)), whereas (ii) follows by (35) and (38). We have proved part (3).
Proof of part (4). We notice that ‖X1‖ = OP (

√
T ); see the beginning of Appendix A in Bai

(2009). Part (4) follows by ‖X1∆β‖ ≤ ‖X1‖ · ‖∆β‖.
Proof of part (5). Notice that

‖F̂∆F,t‖ ≤ ‖F̂∆F ‖/T
(i)

≤ OP (‖∆β‖) +OP (δ−2
NT ),

where (i) follows by Lemma A.3(ii) in Bai (2009). We have proved part (5).
Proof of part (6). Notice that

T−1‖∆F,t‖2 ≤ T−1∆′F∆F = T−1F̂ ′∆F − T−1H ′F ′∆F
(i)
= OP (‖∆β‖) +OP (δ−2

NT ),

where (i) follows by Lemma A.3(i)-(ii) of Bai (2009). By Theorem 1 of Bai (2009) and by the as-
sumption of N � T , we have that ‖∆F,t‖ = OP (1). By ‖F̂t‖ ≤ ‖H ′Ft‖ + ‖∆F,t‖, Ft = OP (1) and
H = OP (1), we can see that ‖F̂t‖ = OP (1). The proof is complete.
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B.7 Proof of Lemma 5

By the analysis on page 215-216 of Hamilton (1994) (leading to Equation (8.2.29) therein), we have
that ρ̂− ρ = oP (1). Hence,

T∑
t=K+1

(ût − ut)2 =
T∑

t=K+1

(
y′t(ρ− ρ̂)

)2
= (ρ̂− ρ)′

(
T∑

t=K+1

yty
′
t

)
(ρ̂− ρ) ≤ ‖ρ̂− ρ‖2 ×

T∑
t=K+1

∥∥yty′t∥∥
= ‖ρ̂− ρ‖2 ×

T∑
t=K+1

 K∑
j=1

u2
t−j + 1

 < ‖ρ̂− ρ‖2 ×

(
K

T∑
t=1

u2
t + T

)
.

The analysis on page 215 of Hamilton (1994) (leading to Equation (8.2.26) therein) implies that

T−1
T∑
t=1

u2
t = E(u2

t ) + oP (1),

which means
∑T

t=1 u
2
t = OP (T ). Since ρ̂− ρ = oP (1), the above display implies that

T∑
t=K+1

(ût − ut)2 = oP (T ).

Since ût − ut = y′t(ρ − ρ̂), the pointwise consistency follows by ρ̂ − ρ = oP (1) and the fact that
yt = OP (1) for T0 + 1 ≤ t ≤ T (due to the stationarity property of ut).

B.8 Proof of Lemma 7

In this proof, we use ‖ · ‖ to denote the Euclidean norm of vectors or the spectral norm of matrices.
We first derive the following result that is useful in proving Lemma 7.

Lemma 14. Recall εt = x′tρ+ut, where ρ = (ρ1, ρ2, ..., ρK)′ ∈ RK and xt = (εt−1, εt−2, ..., εt−K)′ ∈ RK .
Suppose that the following hold: (1) {ut}Tt=1 is an i.i.d sequence withE(u4

1) uniformly bounded. (2) the roots
of 1−

∑K
j=1 ρjL

j = 0 are uniformly bounded away from the unit circle.
Then we have (i) (T −K)−1

∑T
t=K+1 u

2
t = OP (1); (ii) (T −K)−1

∑T
t=K+1 xtut = oP (1); (iii) (T −

K)−1
∑T

t=K+1 ‖xt‖2 = OP (1). (iv) There exists a constant λ0 > 0 such that the smallest eigenvalue of
(T −K)−1

∑T
t=K+1 xtx

′
t is bounded below by λ0 with probability approaching one.

Proof. Proof of part (i). Part (i) follows by the law of large numbers; see e.g., Theorem 3.1 of White
(2014).

Proof of part (ii). LetFt be the σ-algebra generated by {us : s ≤ t}. First notice that {xtut}Tt=K+1

is a martingale difference sequence with respect to the filtration {Ft}. Since εt is a stationary
process, we have that E‖xtut‖2 =

∑K
j=1E(ε2

t−ju
2
t ) =

∑K
j=1E(ε2

t−j)E(u2
t ) is uniformly bounded

bounded. Hence, part (ii) follows by Exercise 3.77 of White (2014).
Proof of part (iii). To see part (iii), notice that ‖xt‖2 = x′txt =

∑K
j=1 ε

2
t−j . By the analysis on

page 215 of Hamilton (1994), for each 1 ≤ j ≤ K, (T −K)−1
∑T

t=K+1 ε
2
t−j = E(ε2

t−j) + oP (1). Thus,
part (iii) follows by

(T −K)−1
T∑

t=K+1

‖xt‖2 = (T −K)−1
K∑
j=1

T∑
t=K+1

ε2
t−j = K

(
E(ε2

t ) + oP (1)
)
.
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Proof of part (iv). Similarly, the analysis on page 215 of Hamilton (1994) implies that

(T −K)−1
T∑

t=K+1

xtx
′
t = oP (1) + Extx

′
t.

By Proposition 5.1.1 of Brockwell and Davis (2013), E(xtx
′
t) has eigenvalues bounded away from

zero. Part (iv) follows.

Now we are ready to prove Lemma 7.

Proof of Lemma 7. Define δt = ε̂t − εt, ∆t = x̂t − xt, ũt = ut + δt −∆′tρ and at = ũt − ut. Notice that

ε̂t = δt + εt = δt + x′tρ+ ut = δt + (x̂t −∆t)
′ ρ+ ut = x̂′tρ+ ũt. (39)

Therefore,

ρ̂ =

(
T∑

t=K+1

x̂tx̂
′
t

)−1( T∑
t=K+1

x̂tε̂t

)
=

(
T∑

t=K+1

x̂tx̂
′
t

)−1( T∑
t=K+1

x̂t(x̂
′
tρ+ ũt)

)

= ρ+

(
T∑

t=K+1

x̂tx̂
′
t

)−1( T∑
t=K+1

x̂tũt

)
. (40)

The rest of the proof proceeds in three steps. First two steps show that (T −K)−1
∑T

t=K+1 x̂tx̂
′
t

is well-behaved and (T −K)−1
∑T

t=K+1 x̂tũt = oP (1). This would imply ρ̂ = ρ+ oP (1). In the third
step, we derive the final result.

Step 1: show that
[
(T −K)−1

∑T
t=K+1 x̂tx̂

′
t

]−1
= OP (1).

It is not hard to see that ‖∆t‖2 =
∑t−K

s=t−1 δ
2
s . Therefore,

T∑
t=K+1

‖∆t‖2 =

T∑
t=K+1

t−K∑
s=t−1

δ2
s ≤ K

T∑
t=1

δ2
t

(i)
= oP (T ), (41)

where (i) follows by the assumption of T−1
∑T

t=1 δ
2
t = oP (1). Notice that∥∥∥∥∥

T∑
t=K+1

(
x̂tx̂
′
t − xtx′t

)∥∥∥∥∥ =

∥∥∥∥∥
T∑

t=K+1

(
xt∆

′
t + ∆tx

′
t + ∆t∆

′
t

)∥∥∥∥∥
≤ 2

T∑
t=K+1

‖xt‖ · ‖∆t‖+

T∑
t=K+1

‖∆t‖2

≤ 2

√√√√( T∑
t=K+1

‖xt‖2
)(

T∑
t=K+1

‖∆t‖2
)

+

T∑
t=K+1

‖∆t‖2
(i)
= oP (T ), (42)

where (i) follows by (41) and Lemma 14. Thus,∥∥∥∥∥ 1

T −K

T∑
t=K+1

(
x̂tx̂
′
t − xtx′t

)∥∥∥∥∥ = oP (1).
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By Lemma 14, the smallest eigenvalue of (T−K)−1
∑T

t=K+1 xtx
′
t is bounded below by a positive

constant with probability approaching one. It follows that[
(T −K)−1

T∑
t=K+1

x̂tx̂
′
t

]−1

= OP (1). (43)

Step 2: show that (T −K)−1
∑T

t=K+1 x̂tũt = oP (1).
By Lemma 14, we have

(T −K)−1
T∑

t=K+1

xtut = oP (1). (44)

Notice that∥∥∥∥∥ 1

T −K

T∑
t=K+1

(x̂tũt − xtut)

∥∥∥∥∥ =

∥∥∥∥∥ 1

T −K

T∑
t=K+1

(∆tut + xtat + ∆tat)

∥∥∥∥∥
≤ 1

T −K

T∑
t=K+1

(‖∆tut‖+ ‖xtat‖+ ‖∆tat‖)

≤

√√√√( 1

T −K

T∑
t=K+1

‖∆t‖2
)(

1

T −K

T∑
t=K+1

u2
t

)

+

√√√√( 1

T −K

T∑
t=K+1

‖xt‖2
)(

1

T −K

T∑
t=K+1

a2
t

)

+

√√√√( 1

T −K

T∑
t=K+1

‖∆t‖2
)(

1

T −K

T∑
t=K+1

a2
t

)
. (45)

We observe that
T∑

t=K+1

a2
t =

T∑
t=K+1

(
δt −∆′tρ

)2 ≤ 2
T∑

t=K+1

δ2
t + 2

T∑
t=K+1

(∆′tρ)2

≤ 2
T∑
t=1

δ2
t + 2‖ρ‖2

T∑
t=K+1

‖∆t‖2
(i)
= OP (T ), (46)

where (i) follows by (41) and the assumption of T−1
∑T

t=1 δ
2
t = oP (1). Combining (45) with (41)

and (46), we obtain∥∥∥∥∥ 1

T −K

T∑
t=K+1

(x̂tũt − xtut)

∥∥∥∥∥
≤

√√√√oP (1)

(
1

T −K

T∑
t=K+1

u2
t

)
+

√√√√( 1

T −K

T∑
t=K+1

‖xt‖2
)
oP (1) +

√
oP (1)× oP (1)

(i)
= oP (1),

(47)

where (i) follows by Lemma 14. Now we combine (44) and (47), obtaining

(T −K)−1
T∑

t=K+1

x̂tũt = oP (1). (48)
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By (40) together with (43) and (48), it follows that

ρ̂− ρ = oP (1). (49)

Step 3: show the desired result.
Recall that ût = ε̂t − x̂′tρ̂. Hence,

ût − ut =
(
ε̂t − x̂′tρ̂

)
− ut

(i)
=
(
x̂′t(ρ− ρ̂) + ũt

)
− ut = x̂′t(ρ− ρ̂) + at, (50)

where (i) follows by (39). Therefore, we have

T∑
t=K+1

(ût − ut)2 =

T∑
t=K+1

(
x̂′t(ρ− ρ̂) + at

)2
≤ 2

T∑
t=K+1

(
x̂′t(ρ̂− ρ)

)2
+ 2

T∑
t=K+1

a2
t

≤ 2‖ρ̂− ρ‖2
T∑

t=K+1

‖x̂t‖2 + 2
T∑

t=K+1

a2
t

= 2‖ρ̂− ρ‖2
(

T∑
t=K+1

trace(xtx
′
t) +

T∑
t=K+1

trace(x̂tx̂
′
t − xtx′t)

)
+ 2

T∑
t=K+1

a2
t

(i)

≤ oP (1)× (OP (T ) + oP (T )) + oP (T ) = oP (T ),

where (i) follows by (42), (49), (46) and Lemma 14.
To see the pointwise result, we notice that by (50) and (49), it suffices to verify that at = oP (1)

and x̂t = OP (1) for T0 + 1 ≤ t ≤ T .
Since x̂t − xt = (δt−1, δt−2, ..., δt−K)′, the assumption of pointwise convergence of ε̂t (i.e., δt =

oP (1) for T0 + 1 −K ≤ t ≤ T ) implies that x̂t − xt = oP (1) for T0 + 1 ≤ t ≤ T . Since xt = OP (1)

due to the stationarity condition, we have x̂t = OP (1) for T0 + 1 ≤ t ≤ T .
Since both δt and ∆t are both oP (1) for T0 + 1 ≤ t ≤ T , so is at = δt − ∆′tρ. Hence, we have

proved the pointwise result. The proof is complete.
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C Figures and Tables

Figure 2: Raw Data
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Figure 3: Maine, Minnesota, and Wisconsin
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Figure 4: Idaho, New Hampshire, and Wyoming
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Figure 5: Montana, Iowa, Connecticut
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Table 1: Size DGP1

DGP1a

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09
T0 = 50 0.10 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.10
T0 = 100 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.11 0.10

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.10 0.11 0.11 0.12 0.12 0.12 0.11 0.11 0.11
T0 = 50 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.13 0.12
T0 = 100 0.12 0.11 0.11 0.13 0.11 0.10 0.13 0.11 0.11

DGP1b

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.09 0.10
T0 = 50 0.09 0.10 0.08 0.09 0.09 0.09 0.09 0.11 0.08
T0 = 100 0.11 0.09 0.11 0.11 0.09 0.10 0.11 0.09 0.10

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.11 0.12 0.10 0.13 0.13 0.14 0.12 0.13 0.10
T0 = 50 0.12 0.13 0.12 0.11 0.12 0.12 0.13 0.12 0.12
T0 = 100 0.11 0.10 0.11 0.10 0.11 0.11 0.11 0.11 0.11

Notes: Simulation design is described in the main text. Nominal level = 0.1. Based on simulations with
2000 repetitions.
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Table 2: Size DGP2

DGP2a

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.09 0.09 0.10 0.09 0.09 0.10 0.10 0.09 0.10
T0 = 50 0.11 0.09 0.10 0.11 0.10 0.10 0.11 0.09 0.10
T0 = 100 0.09 0.11 0.10 0.09 0.10 0.10 0.09 0.11 0.11

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.12 0.12 0.11 0.12 0.13 0.13 0.12 0.12 0.11
T0 = 50 0.13 0.12 0.12 0.13 0.12 0.12 0.13 0.14 0.13
T0 = 100 0.12 0.12 0.12 0.12 0.11 0.11 0.13 0.12 0.12

DGP2b

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.10 0.11 0.09 0.09 0.10 0.09 0.10 0.10 0.09
T0 = 50 0.10 0.11 0.10 0.10 0.11 0.09 0.10 0.11 0.09
T0 = 100 0.11 0.09 0.11 0.10 0.10 0.12 0.11 0.10 0.10

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.11 0.12 0.11 0.12 0.12 0.11 0.11 0.10 0.09
T0 = 50 0.10 0.12 0.11 0.10 0.11 0.11 0.11 0.12 0.11
T0 = 100 0.10 0.11 0.13 0.11 0.10 0.11 0.11 0.12 0.10

Notes: Simulation design is described in the main text. Nominal level = 0.1. Based on simulations with
2000 repetitions.
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Table 3: Power DGP1

DGP1a

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.49 0.45 0.43 0.38 0.38 0.39 0.50 0.47 0.46
T0 = 50 0.57 0.55 0.55 0.50 0.47 0.49 0.57 0.57 0.56
T0 = 100 0.61 0.58 0.59 0.56 0.51 0.50 0.61 0.59 0.60

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.56 0.55 0.55 0.49 0.50 0.52 0.59 0.58 0.57
T0 = 50 0.59 0.57 0.58 0.54 0.55 0.55 0.62 0.60 0.62
T0 = 100 0.62 0.60 0.60 0.59 0.58 0.55 0.64 0.62 0.63

DGP1b

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.53 0.53 0.53 0.38 0.43 0.47 0.50 0.50 0.50
T0 = 50 0.59 0.59 0.58 0.52 0.54 0.57 0.58 0.57 0.57
T0 = 100 0.61 0.61 0.60 0.55 0.58 0.60 0.60 0.59 0.60

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model Constrained Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.63 0.63 0.66 0.52 0.57 0.64 0.61 0.61 0.62
T0 = 50 0.64 0.65 0.67 0.56 0.61 0.62 0.64 0.64 0.66
T0 = 100 0.63 0.65 0.66 0.58 0.60 0.61 0.64 0.64 0.65

Notes: Simulation design is described in the main text. Nominal level = 0.1. Based on simulations with
2000 repetitions.
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Table 4: Power DGP2

DGP2a

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model constr. Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.49 0.52 0.51 0.32 0.41 0.46 0.46 0.48 0.49
T0 = 50 0.55 0.55 0.58 0.45 0.52 0.57 0.55 0.54 0.55
T0 = 100 0.54 0.57 0.59 0.49 0.55 0.60 0.55 0.57 0.60

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model constr. Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.60 0.62 0.64 0.49 0.57 0.63 0.58 0.61 0.62
T0 = 50 0.61 0.63 0.65 0.53 0.58 0.62 0.61 0.64 0.65
T0 = 100 0.61 0.63 0.67 0.54 0.59 0.63 0.61 0.63 0.67

DGP2b

i.i.d. data with ρε = ρu = 0

Synthetic control Factor model constr. Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.16 0.17 0.19 0.21 0.28 0.37 0.37 0.38 0.38
T0 = 50 0.18 0.20 0.21 0.26 0.39 0.46 0.43 0.44 0.45
T0 = 100 0.18 0.22 0.25 0.28 0.40 0.51 0.44 0.47 0.50

Weakly dependent data with ρε = ρu = 0.6

Synthetic control Factor model constr. Lasso

J = 10 J = 20 J = 50 J = 10 J = 20 J = 50 J = 10 J = 20 J = 50

T0 = 20 0.21 0.23 0.28 0.30 0.36 0.45 0.43 0.42 0.46
T0 = 50 0.23 0.25 0.29 0.34 0.43 0.52 0.47 0.48 0.51
T0 = 100 0.22 0.24 0.28 0.35 0.45 0.54 0.47 0.50 0.51

Notes: Simulation design is described in the main text. Nominal level = 0.1. Based on simulations with
2000 repetitions.
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Table 5: p-Value: no effect

Moving Block Permutations i.i.d. Permutations

Synth. Control Factor Model Constr. Lasso Synth. Control Factor Model Constr. Lasso

CT 0.08 0.29 0.04 0.08 0.29 0.04
IA 0.04 0.25 0.29 0.01 0.2 0.26
ID 0.83 0.04 0.42 0.7 0.04 0.44
ME 0.04 1 0.83 0 1 0.91
MN 0.04 0.96 0.58 0 0.93 0.54
MT 0.38 0.33 0.96 0.32 0.26 0.9
NH 0.04 0.21 0.38 0 0.09 0.33
WI 0.04 0.92 0.17 0 0.72 0.05
WY 0.46 0.25 0.62 0.42 0.37 0.65
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