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Abstract

New nonparametric methods that identify and estimate counterfactuals for individuals, when each

is characterized by a vector of unobserved characteristics, are developed and applied to estimate

systems of individual consumer demand and welfare measures. The unobserved characteristics

are allowed to enter in unrestricted ways. Identi�cation is delivered through two fundamental

assumptions: First, the system is invertible in the vector of unobserved heterogeneity. Second,

there exist external, individual-speci�c, covariates that are related to the unobserved heterogeneity

and do not enter directly into the system of interest. The observed external variables can be

either discrete or continuously distributed. Estimators based on the identifying restrictions are

developed and their asymptotic properties derived. Using UK micro data on consumer demand, we

apply the methods to estimate individual demand counterfactuals subject to revealed preference

inequalities.
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1 Introduction

Standard theoretical models of individual behavior, such as those of a consumer or a �rm, are

usually developed under the assumption that the behavior of the individual is generated by an

optimization problem whose objective function is �xed across di¤erent values of exogenous variables.

Analyzing such models with data requires either to observe each individual repeatedly or, if the

data is from repeated cross-sections, to assume that all observed individuals have some common

objective function component. In this paper, we develop a new method for analyzing individual

behavior using repeated cross-sections but without assuming common elements at the level of the

objective functions of the individuals. We let the objective function of each individual be random,

in the sense that it depends in an unrestricted manner, with no functional form restrictions, on a

vector of unobservable characteristics. Under the assumption that the distribution of each cross-

section is generated from the distribution of this vector of unobservable variables, our method allows

one to analyze the behavior of each individual, as if the objective function of each individual were

known and �xed. Our results can be applied to estimate counterfactuals for individual behavior and

welfare comparisons, when each individual is characterized by a vector of unobserved characteristics,

in a number of important settings including equilibrium models of di¤erentiated products, models

of hedonic equilibrium, and models of multidimensional optimization.

The general model we consider is a nonparametric system of reduced-form equations, where each

endogenous variable is an unknown function of a set of observed exogenous covariates and a vector

of unobserved variables, the latter characterizing the �multidimensional unobserved heterogeneity�.

In these, our identi�cation strategy for the functions de�ning the structural relationship relies on

two fundamental assumptions: First, the system of functions is invertible in the vector of unobserved

heterogeneity. Second, we have observed additional individual-speci�c covariates that are related to

the unobserved heterogeneity, but do not enter directly into the set of simultaneous equations gen-

erating the system of reduced form equations. We henceforth refer to these as �external�covariates.

They can be interpreted as observable proxies or as measurements of the latent variables. The ex-

ternal covariates can be strong or weak representatives of the unobservables, depending on whether

they characterize the unobservables uniquely or not. When the external covariates are continuously

distributed and the dependence between and the unobservables is strong enough, one can trace the

behavior of the endogenous variables across di¤erent values of the internal covariates keeping the

value of the unobservables �xed. In such case, each function in the system is globally nonparamet-

rically identi�ed. If the representation is weak, in the sense that the distribution of the external
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variables do not uniquely characterize the one of the unobservables, we can only trace the behavior

partially, providing sets of values for the endogenous variables. When the external covariates are

discrete, we are only able to identify the functions de�ning the system of equations at particular val-

ues of unobserved heterogeneity, and depending on the strength of the representation, we can trace

out either a function or a correspondence, both across di¤erent values of the internal covariates.

Whether the external covariates represent the unobservables uniquely or not is testable.

Our identi�cation results are constructive in the sense that they lead to natural estimators of the

unknown functions of interest. We develop nonparametric estimators of the functions and analyze

their asymptotic properties. The estimators and their asymptotic theory are in turn used to carry

out inference on individual responses to counterfactual changes in the observed internal covariates,

when the value of the unobservable variables is �xed. We also show that the performance of the

estimators can be improved in a number of relevant scenarios.

Other identi�cation and/or estimation methods for nonparametric models with multivariate un-

observed heterogeneity exist. However, these either impose additional functional form restrictions,

which may be violated in data, or are not able to identify counterfactual responses. Papers dealing

within the �rst category include, amongst others, Matzkin (2003, 2008, 2015), Berry and Haile (2014,

2015), Carlier, Chernozhukov and Galichon (2016), and Lewbel and Pendakur (2017). These e¤ec-

tively restrict how unobserved heterogeneity enters the system of equations of interest. For example,

Matzkin (2003, Appendix A) and Lewbel and Pendakur (2017) assume knowledge of a function

that depends on observable and unobservable variables. Carlier, Chernozhukov and Galichon (2016)

require that the functions of interest are given as partial derivatives of a convex function, thereby

implicitly imposing a symmetry restriction on the functional form. Example 4.2 in Matzkin (2008),

the estimators in Matzkin (2015), and the models in Berry and Haile (2014, 2015) assume that at

least one of the unobserved heterogeneity terms enters the system in form of an index, thereby again

imposing functional form restrictions. In terms of the second category, it is well-known that one can

always represent the distribution of outcome variables in terms of a nonparametric function and a

nonparametric distribution of unobservable variables in such a way that for each value of the vector of

endogenous variables one can point at the value of the vector of unobservable variables corresponding

to it. However, in general these representations cannot be used for individual counterfactuals where

the vector of unobserved heterogeneity has to remain �xed while the conditioning variables vary.

(See Benkard and Berry, 2006; Matzkin, 2008). Thus, these results do not allow for identi�cation of

counterfactual responses.

Compared to the existing literature, our main contribution is to show that functional form re-
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strictions can be replaced by a weak additional model for the unobservables: Speci�cally, to achieve

identi�cation we require external covariates that only e¤ect the outcome variables through the un-

observed heterogeneity. This idea is not new to the literature on structural modelling and is often

used in empirical work, where individual heterogeneity (random coe¢ cients) are explicitly modelled

as functions of observed characteristics and random shocks; see, e.g., Berry, Levinsohn and Pakes

(2004). Our ident�cation strategy also shares features with Cunha, Heckman and Schennach (2010)

where measurements are also used to identify latent factors. However, to our knowledge, this ap-

proach has not been employed in a nonparametric setting before, and we are able to demonstrate its

usefulness in �exible identi�cation and estimation of simultaneous equations models.

Our methods can be applied to consumer demand data with continuous or discrete budget varia-

tion. In our empirical application, we consider a nonparametric model for the demand for a vector of

goods by individual consumers characterized by a vector of prices, income and unobserved tastes. The

external covariates needed for identi�cation are chosen from an observed set of household character-

istics that seem reasonable to assume being correlated with the consumers�unobserved preferences.

For each of a �nite number of observed vectors of prices, and for continuous income levels, we then

show identi�cation of the demand function for any given consumer in the population, and conduct

counterfactual inference for consumer responses to income and price changes. Given that we only

have available a �nite number of price regimes in our data set, we are unable to point identify coun-

terfactual demand for prices that have not been seen before. Instead we impose revealed preference

inequality restrictions on the demands generated by each vector of unobserved tastes, which allows

us to compute sharp and informative bounds on responses to counterfactual price changes.

Our empirical application can be thought of as a generalization of Blundell, Browning, and

Crawford (2003, 2008), who worked within the same framework as we do to identify consumer

demand and welfare counterfactuals. However, in their work it is assumed that, on each budget set,

the distribution of demand was generated from the demand of a single consumer with an additive

(measurement) error and with revealed preference restrictions on the demand of the single consumer.1

In contrast, we assume that the distribution of demand is generated from a distribution of unobserved

tastes. Another related paper is Blundell, Kristensen, and Matzkin (2014) who studied revealed

preference restrictions using conditional quantiles in a model where the distribution of demand is

generated by a distribution of tastes. Their method was restricted to the case of a single good

where demand and taste were scalars, and demand was increasing in taste. Blundell, Horowitz and

1The generalization of Blundell, Browning and Crawford (2008) to derive sharp bounds for the strong axiom SARP

inequalities, rather than WARP, is given in Blundell, Browning, Cherchye, Crawford, de Rock, and Vermeulen (2015).
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Parey (2016) consider the case of scalar demand and scalar heterogeneity with continuous prices.

Hausman and Newey (2016, 2017) consider a single demand equation with continuous prices and

multiple unobserved taste heterogeneity; using bounds on income responses, they show that without

further assumptions identi�cation is limited to bounds on average welfare measures. Estimation of

individual, rather than average, welfare measures from demands with multidimensional taste vectors

requires methods appropriate for estimation of systems of simultaneous equations, as developed in

this paper.

Invertibility of consumer demand, which is one of the key assumptions for our identi�cation strat-

egy, is guaranteed by imposing conditions on the random utility function of consumers, generalizing

the results in Brown and Matzkin (1998) and Beckert and Blundell (2008). Berry, Gandhi, and

Haile (2013) and Chiappori, Komunjer and Kristensen (2016a) provide invertibility conditions on

demand functions that could also be used. Employing a stochastic revealed preference approach,

as in McFadden (2005), Kitamura and Stoye (2014) avoid having to impose invertibility but are on

the other hand only able to identify distributions of demands. In contrast, our approach provides

counterfactuals for any given individual in the distribution. For scalar unobserved heterogeneity, in-

vertibility follows when the demand function is increasing in heterogeneity. In the case of two goods,

Hoderlein and Stoye (2015) show that rationalization with an invertibility assumption is without loss

of generality. Hoderlein and Stoye (2014) use the same assumptions and show how to bound from

above and below the fraction of the population who violate the weak axiom WARP.

We apply our framework to the prediction of demand by consumers in the UK. We use the history

of the Family Expenditure Survey which provides consumer expenditure data at the household level

for a large representative sample of consumers in the UK. We estimate counterfactual demands for

food, services and other goods for a consumer characterized by a given choice of total budget and

unobserved heterogeneity. The estimates suggest a mildly downward sloping own demand for food

and a upward sloping cross-demand curve for food with respect to the price of services. The results

show that the bounds on counterfactual demands on demands at previously unobserved prices can

be quite tight, especially where the data is dense, becoming wider where there is sparse data.

The remainder of the paper is as follows. We present the multidimensional framework in the

next section. Conditions for identi�cation are presented in Sections 3. In section 4 we develop

nonparametric estimators and discuss various extensions in section 5. In section 6 we consider how

the proposed identi�cation and estimation strategy can be used in for individual consumer demand

and welfare counterfactuals. Section 7 examines implementation and �nite sample performance. The

estimated bounds on counterfactual demands for the British consumer micro-data are presented in

4



section 8. Section 9 concludes.

2 Nonparametric Models with Multidimensional Heterogeneity

We consider a model speci�ed as

Y = m (X; ") ; (1)

where the random vectors Y = (Y1; :::; YdY )
0 and X = (X1; :::; XdX )

0 are observed, while the random

vector " = ("1; :::; "d")
0 is unobserved. Both " and Y are assumed to be continuously distributed. In

the following, let Y � RdY , X � RdX and E � Rd" denote the supports of Y , X and ", respectively.

Given data of Y and X, we then wish to identify the vector-valued function m : X �E 7! Y and the

distribution of ".

Existing results on nonparametric identi�cation of models on the form (1) impose strong re-

strictions on the functional form of m. As an example, some results impose the restriction that

m (x; e) = (m1 (x; e1) ; ::::;mdY (x; edY ))
0 so that the gth component, mg, only depends on a scalar

unobservable, "g, g = 1; :::; dY . If, furthermore, " is independent of X, and eg 7! mg (x; eg) is

monotone, then identi�cation of mg (x; eg) can be achieved up to a monotone transformation of "g,

, g = 1; ::::; dY , c.f. Matzkin (2003). However, in the general case, where each component mg is

a function of multiple components of ", additional restrictions are required in order to identify m.

Consider the example in Benkard and Berry (2006), where " = ("1; "2)
0 possesses a standard Normal

distribution N(0; I) and where the �rst and second rows of a 2 � 2 matrix A(x) are, respectively,

(cos(x); sin(x)) and (� sin(x); cos(x)) : The models Y = " and Y = A(x)" generate identical con-

ditional distributions of Y given X but very di¤erent counterfactuals when the value of x varies.

Matzkin (2008) developed necessary and su¢ cient conditions for observational equivalence and pro-

vided examples of identi�ed models subject to functional form restrictions. Further examples of iden-

ti�cation under functional form restrictions include Matzkin (2015), Berry and Haile (2014, 2015),

Carlier, Chernozhukov and Galichon (2016), and Chiappori, Komunjer and Kristensen (2016a,b).

In this paper, we develop nonparametric identi�cation and estimation results of m under weak

requirements on its functional form; see below for the precise conditions. Speci�cally, we replace

functional form restrictions, as used in the above cited papers, by additional requirements on data

availability: The key ingredient in our identi�cation argument is the availability of additional dZ

observed variables, that we collect in Z with support Z � RdZ . The variables in Z are external in

the sense that they do not enter the model explicitly as given in eq. (1), and so Z only a¤ects Y

through ". The covariation between Z and " will then allow us to use the observed variation in Z to
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learn about the function m and the distribution of ".2

Our identi�cation results and estimation methods for features of the function m (x; e) will be

developed at particular values of x and e. Hence, some of our assumptions are only required to be

satis�ed on a subset of the support of X.

Assumption 1. For any given x in some subset X0 � X , the function e 7! m (x; e) is continuously

di¤erentiable with inverse r (x; y). That is, for any x 2 X0,

y = m (x; e), e = r (x; y) :

Assumption 2. " is distributed independently of X conditional on Z so that "j (X;Z) d= "jZ has a

continuous distribution characterized by a density f"jZ (ejz) which is twice continuously di¤er-

entiable.

Assumption 1, or variations of it, are commonly met in the literature on nonparametric identi-

�cation of simultaneous equations; see, e.g., Matzkin (2008, 2015), Berry and Haile (2014, 2015),

Chiappori, Komunjer and Kristensen (2016a,b). Note that Assumption 1 implicitly restricts the

unobserved variables, ", to be of the same dimension as Y , dY = d". However, our modelling frame-

work allows for " to be a function of a potentially high-dimensional unobservable vector, �, together

with the external covariates Z; this is similar to the ideas found in Appendix A in Matzkin (2003),

Matzkin (2012), and Lewbel and Pendakur (2017).

Assumption 2 restricts the distribution of unobservables to be continuous and the internal covari-

ates, X, to be exogenous conditional on the external ones, Z. Again, assumptions of this type are

typical in the literature on nonparametric identi�cation. One can think of Z being a set of control

variables, as in Imbens and Newey (2009) and Blundell and Matzkin (2014). In this sense, certain

types of endogeneity of X is allowed for. However, Z will play an additional key role as a type of

either a stochastic proxy for a stochastic measurement for " as explained below, which is the novel

part of our modelling approach. Also note that while we restrict " to be continuous, we do not

require X to be continuous. Similarly, at this stage we have made no assumptions about the precise

nature of Z. It may have both discrete and continuous components, and it may be correlated with X.

Later, however, as already noted, we will impose further restrictions on the stochastic relationship

between Z and " to achieve identi�cation.
2A related idea can be found in Chiappori, Komunjer and Kristensen (2016b) where identi�cation is also achieved

by imposing restrictions on the distribution of unobservables; but their restrictions are of a very di¤erent nature to the

one developed here.
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Under Assumption 1, an equivalent representation of eq. (1) is

r (Y;X) = ";

for X 2 X0. Assumptions 1-2 then imply that Y j (X;Z) = (x; z), with x 2 X0, has a continuous

distribution as represented by the following conditional density,

fY jX;Z(yjx; z) = f"jZ (r (x; y) jz)
����@r (x; y)@y

���� ; (2)

where j@r (x; y) =@yj denotes the absolute value of the Jacobian determinant of r (x; y) with respect

to y: The left hand side in this equation can be estimated. The right hand side involves the function

r and the conditional density of " given Z, both of which are unknown.

2.1 Example: Consumer Demand

To focus on one modeling framework when developing the methodology, we consider a consumer

characterized by income level I 2 R+ (representing the total budget available to the consumer po-

tentially adjusted for durable good expenditures and saving) together with observed and unobserved

individual characteristics which we collect in W 2 W and " 2 E , respectively. The consumer chooses

quantities of dY + 1 divisible goods. Let p = (p1; :::; pdY )
0 2 RdY+ denote the (relative) prices of the

�rst dY goods, where we leave out the last good whose demand is identi�ed through the budget

constraint. Given these prices, the consumer demands Y = (Y1; :::; YdY )
0 2 Y � RdY+ . We let m

denote the demand function that maps prices, income and consumer characteristics into demands,

Y = m (p; I;W; ") : (3)

A parametric approach would deal with unobserved heterogeneity by imposing a speci�c func-

tional form. Consider, for example, the Cobb-Douglas utility speci�cation for a consumer with

unobserved tastes "1; :::; "G given by

U (Y; ") =

dYX
g=1

"g ln(Yg) + YdY +1;

where YdY +1 is the �residual good". The corresponding system of demand functions is such that

given any value of Y = (Y1; :::; YdY ) one can pin down the value of " = ("1; :::; "dY ) that generated it.

It is then easy to predict the demand for a consumer with the same " when confronted with a di¤erent

budget set. This analysis, however, entirely rests on the parametric speci�cation of preferences being

correct. If not, the analysis will be invalid. It seems plausible that the underlying utility function has

a more �exible structure than the one above. In this case the consumer�s choice for one commodity
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depends on the unobservable tastes for all commodities, and pinning down the value of " is much

more challenging. Our identi�cation result allows us to do so in fairly straightforward manner.

A primary goal of much consumer demand analysis is to measure the impact of changes in prices

p and income levels I on the demand. With the identi�cation result developed in the next section,

this can be achieved at an individual level. Consider a consumer characterized by (";W ) = (e; w)

who receives an income and price shock changing income I = i0 and prices p = p0 to i1 and p1,

respectively. The consumer�s demand response is �y = m (p1; i1; w; e)�m (p0; i0; w; e). Our identi�-

cation argument will allow us to identify �y and well as marginal e¤ects such as @m (p; I; w; e) = (@I)

when I is continuously distributed and @m (p; I; w; e) = (@p) when p is continuously distributed. The

value of " at which the counterfactuals will be identi�ed can be de�ned from the initial observed

demand y0 = m (p0; i0; w; e). The counterfactual response, when " is so characterized, is identi�ed

without a normalization. Adding a normalization, to assign numerical values to ", we will be able to

identify changes in m with respect to e; and also identify the distribution of ".

The above demand analysis is feasible within our framework under weak additional regularity

conditions on the demand model. Consider �rst Assumption 1: As mentioned above, several recent

results exist on invertibility of demand functions, such as Brown and Matzkin (1998), Beckert and

Blundell (2008), Berry, Gandhi and Haile (2013) and Chiappori et al (2016a). The next proposition

provides a practical method for incorporating multidimensional unobserved heterogeneity around

commonly used deterministic utility functions, in a way that generates invertible demand function.

The result generalizes the conditions on utility functions shown in Brown and Matzkin (1998) and

Beckert and Blundell (2008) to generate invertible demands. We here suppress any dependence on

observables W since they remain �xed, and let y = (y1; :::; ydY ) denote the demand of the �rst dY

goods.

Proposition 1 Suppose that the utility function U (y; ydY +1; ") = U1 (y; ydY +1)+U2 (y; ") where: (i)

U1 (y; ydY +1) is a twice continuously di¤erentiable, strictly increasing and strictly quasiconcave func-

tion; (ii) U2 (y; ") is a twice continuously di¤erentiable function , which for each " is strictly increas-

ing and strictly concave in y; (iii) for any y, all the principal minors of the matrix Dy"U2 (y; ") =�
@2U2 (y; ") = (@yi@"j)

�dY
i;j=1

are strictly positive. Then, the (demand) function y = m (p; I; ") that

maximizes U (y; ydY +1; ") subject to the budget constraint p
0y + ydY +1 � I is invertible in ":

Proof. Since U1 and U2 are strictly monotone in (y; ydY +1) and y, respectively, the budget
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constraint is satis�ed with equality. Moreover, since for each ", U is strictly quasiconcave, the value

of y that solves the �rst order conditions for the maximization of U when ydY +1 = I � p0y is

unique. Let s (y; p; I; ") denote the vector of the dY functions such that s (y; p; I; ") = 0 denotes this

system of �rst order conditions, and let y = m (p; I; ") denote the demand function which satis�es

s (m (p; I; ") ; p; I; ") = 0. We will show that for each (y; p; I) ; " 7! s (y; p; I; ") is globally univalent

(see Gale and Nikaido, 1965). This guarantees the global existence of an implicit function r (y; p; I)

such that for all (y; p; I) in a region, s (y; p; I; r (y; p; I)) = 0: The uniqueness of m on " and of r on

y; for any (p; I) ; imply that

y = m (p; I; "), " = r (y; p; I) :

Hence, the demand function m (p; I; ") is invertible in ":

To show that s (y; p; I; �) is globally univalent in "; we note that for each y and with ydY +1 = I�p0y,

s (y; p; I; ") =

2664
@U1
@y1

� p1 @U1
@ydY +1

+ @U2
@y1

...
@U1
@ydY

� pdY @U1
@ydY +1

+ @U2
@ydY

3775 :
Since only U2 is a function of "; the Jacobian of s (y; p; I; ") with respect to " equals Dy"U2 (y; ")

as de�ned in the theorem. The assumption on the determinant of the principal minors imply that

Dy"U2 (y; ") is a so-called P-matrix, and so it follows by Gale and Nikaido (1965) that " 7! s (y; p; I; ")

is globally univalent.

Assumption 2 requires that, in addition to W , we have observed a set of consumer-speci�c

covariates Z which covary with " and do not enter directly (conditional on ") into the demand

function (3). Suppose that we observe a number of individual characteristics for each consumer.

We will then split the set of characteristics into two groups: The �rst group of characteristics is

included in W and so we control for the e¤ects of these on demands explicitly. The second group of

characteristics is included in Z to be used as external covariates. These observed characteristics are

in this sense absorbed into the unobserved component ", and so we do not control for the e¤ect of the

second set of characteristics on demand explicitly. At this stage, no requirements on the relationship

between the second set of characteristics and the unobserved components are imposed, and so we

are free to assign a given characteristics to either W or Z. However, we will later on require that Z

covary with " and so the particular characteristics assigned to Z will need to be related to the taste

preferences characterizing the consumer. As Z shifts around, " has also to move. In our empirical

application, Z is computed as an index of household members� age, birth cohort and education

pro�le; it seems plausible that these variables a¤ect consumer preferences.
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Third, we require that X ? "jZ with X de�ned earlier. One will in general expect income I to

be endogenous, and that certain observed characteristics comove with the unobserved components.

Here, Z may then play a double role: First, as control variable which ensures that I is exogenous

conditional on Z; second, as a proxy for the unobserved characteristics.

3 (Partial) Identi�cation of Counterfactuals

In this section, we impose restrictions on the stochastic relationship between Z and "; which allows

us to identify counterfactual such as the e¤ect of a discrete change in the internal variables, m (x; ")�

m (x0; ") ; the e¤ect of an in�nitesimal change in x; @m (x; ") =@x; or the function m (x; "). The main

idea is the following: Since Z does enter the structural model (1) explicitly, we know that Z only

a¤ects Y through ". Formally, from eq. (2), we know that variation in fY jX;Z(yjx; z), as we move z

around, must come through changes in the second argument of f"jZ (r (x; y) jz). Depending on the

strength of the dependency between " and Z, as measured by f"jZ (ejz), we can then either partially

or point identify the mapping m (x; e).

Our identi�cation argument proceeds in two steps: We �rst provide a general partial identi�cation

result that holds without further restrictions on the model besides Assumptions 1-2 above. To

achieve point identi�cation, we then impose further restrictions on the relationship between " and

Z. Speci�cally, if Z is continuous and f"jZ (ejz) satis�es a uniqueness condition, which is testable

(see below for the precise condition), we can point identify for each z in the support of Z; the value

of m (x; ") at a particular " characterized by z: If, furthermore, f"jZ (ejz) satis�es an invertibility

condition, which is also testable, we can trace the function m (x; ") for " characterized as the unique

value satisfying y = m (x; ") : If, on the other hand, Z is discrete then point identi�cation can only

be achieved for some values of ": In the following two subsections, we treat the cases of Z being

continuously and discretely distributed, respectively.

3.1 Identi�cation with Continuous Z

In the case where Z is continuous, we use the "score function" @ log f"jZ (ejz) = (@z) to measure the

dependence between " and Z: For any given value of z 2 Z, we consider solutions e to the following

set of score equations:

@ log f"jZ (ejz)
@z

= 0 (or equivalently
@f"jZ (ejz)

@z
= 0). (4)

Depending on the stochastic relationship between " and Z, there may be a unique solution to the

above set of equations, or multiple ones. To allow for multiple solutions, we introduce the associated
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solution mapping,

� (z) :=

�
e 2 E :

@f"jZ (ejz)
@z

= 0

�
; (5)

where we set �� (z) = ? if no solution exists. In general, � is a set-valued mapping that measures

the representation strength between Z and " with the volume/radius of the set � (z) being inversely

related to the level of representation between Z and ": At one extreme, suppose that this relationship,

as measured by the conditional density f"jZ , is strong enough so that there is a unique solution to the

score equations, then � (z) is a singleton and its volume is zero. In order for � (z) to be a singleton,

Z must necessarily be of at least the same dimension as ", dZ � d" and Z and " must covary. At the

other extreme, suppose that Z and " are fully independent. Then f"jZ (ejz) = f" (e) and � (z) = E

which is the maximum volume that it can achieve. Finally, it is important to stress that � does not

describe the stochastic relationship between the underlying random variables Z and ". For example,

for a given individual charaterized by ("; Z), it will not hold that @f"jZ ("jZ) = (@z) = 0, and so we

cannot directly use @f"jZ ("jZ) = (@z) to identify the individual�s particular value of ". But � does

provide information about the distributional relationship, and this will su¢ ce for our identi�cation

results.

The dependence structure between " and Z, as measured by �, then allows us to (partially)

identify r (and therfore m) through the following set of "moment" conditions,

@fY jX;Z(yjx; z)
@z

=
f"jZ (r (x; y) jz)

@z

����@r (x; y)@y

���� = 0: (6)

The set of solutions to (6) w.r.t. y will rely on the properties of �. If � (z) is a singleton, we will

be able to identify m (x; e), and therefore also counterfactuals such as m (x0; e) �m (x; e). If � (z)

is a set, we will only be able to identify a set that m (x; e) belongs, and so only partially identify

counterfactuals on the form m (x0; e) �m (x; e). Either result will hold without further restrictions

on � or speci�cation of the distribution of ".

However, without knowledge of �, we will not be able to identify the distribution of " and so

can only identify m up to a normalization. To see this and also to motivate notation used in the

following, suppose for the moment that � is in fact one�to�one. Then an observational equivalent

representation of the model is Y = �m (X; �") where �m (x; �e) = m (x;� (�e)) and �" = ��1 ("). In this

case we can identify the function �e 7! �m (x; �e) and the distribution of �".

Returning to the general case where � is not one-to-one and set-valued, we will only be able to

identify the set-valued function

�m (x; �e) := m (x;� (�e)) = fy 2 Y : y = m (x; e) for some e 2 � (�e)g ; (7)
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where we here and in the following use �e (instead of z) as argument of � and �m to avoid confusing

�" and Z with each other. The set �m (x; �e) contains the outcomes within the group of individuals

characterized by X = x and " 2 � (�e). We show below that �m is identi�ed, and that counterfactuals

of m; when x varies while e stays constant, are identi�ed from counterfactuals of m; when x varies

while e stays constant. Counterfactuals of m when e varies while x stays constant requires specifying

�. This is similar to existing identi�cation results for nonseparable models. For example, in the

univariate case (dimY = 1), m (x; e) is identi�ed under A.1-A.2 up to an unknown transformation

of "; see Matzkin (2003). In a similar spirit, the representation results of Carlier, Chernozhukov and

Galichon (2016) relies on normalizing the distribution of " to be known. Here, the normalization is

done in terms of the solution mapping � since this is the tool used for identi�cation. Since � is a

functional of f"jZ , imposing a normalization on � implicitly normalizes this density and allows its

identi�cation.

Whether � (z) is a singleton, or a set, or the empty set, is testable, under the maintained Assump-

tions 1-2. If, in addition to being a singleton, � is one�to�one, we will be able to characterize the

value of " by y; rather than by z: In such case, we can identify counterfactuals of the typem (x0; e)�y;

where e is characterized as the value of " such that m (x; e) = y: Whether � is one�to�one is also

testable under the maintained Assumptions 1-2.

The particular choice of Z determines the properties of �. For example, point identi�cation of �m

can only be achieved if � (z) is a function. Otherwise, we can only partially identify �m. Thus, the

researcher should choose Z to ensure maximal covariation between Z and " in terms of f"jZ (ejz).

In a given application, the choice of variables included in Z should therefore re�ect the type of

unobserved heterogeneity that enters the model of interest. In the consumer demand example, one

could think of each of the components of " as capturing a particular type of tastes/preferences of

the consumer. We then need to identify corresponding socio-economic characteristics in data that

we expect are capturing variation in these unobserved tastes.

The identifying power of �, as measured by its volume, is invariant to invertible transformations

of " and Z. For any two invertible transformations G" and GZ , the conditional distribution of

�" = G" (") j �Z = GZ (Z) satis�es

f�"j �Z (�ej�z) =
f�"; �Z (�e; �z)

f �Z (�z)
=
f";Z

�
G�1" (�e) ; G�1Z (�z)

�
fZ
�
G�1Z (�z)

� ����@G�1" (�e)

@�e

���� = f"jZ �G�1" (�e) ; G�1Z (�z)
� ����@G�1" (�e)

@�e

����
and so the solutions mappings for the score equations of �"j �Z, �� satis�es �� (�z) = G"

�
�
�
G�1Z (z)

��
.

Since we will only be able to achieve identi�cation up to the unknown solution mapping, we can

without loss of generality always normalize the distributions of of " and Z. For example, we can
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normalize them so that their individual components are mutually independent with each component

having a pre-speci�ed distribution.

Our machinery accommodates for Z to be either a noisy proxy or noisy measurement of ". The

following two examples illustrate these two scenarios:

Example 2 Suppose that Z acts as a noisy proxy for "; so that " satis�es

t (") = s(Z) + �;

for some unknown functions s and t and some unobservable vector � which is independent of Z.

Suppose furthermore that t is invertible in which case

log f"jZ (ejz) = log f� (t (e)� s(z)) + log j@t (e) =@ej :

and so
@ log f"jZ (ejz)

@z
= �@s(z)

@z

@ log f� (t (e)� s(z))
@�

:

Thus,

� (z) =

�
e 2 E : @s(z)

@z

@ log f� (t (e)� s(z))
@�

= 0

�
which will generally be a set. The properties of s determines how closely " and Z covary. For

example, if @s(z)@z has full rank and we normalize the distribution of � so that it has a unique mode

at zero, then � (z) = t�1 (s (z)) is a singleton.

Example 3 Suppose instead that Z acts as a noisy and possibly biased measurement of " so that

Z = s ("; �)

where s is unknown and � is unobserved. As explained above, we can normalize the marginal distri-

butions of " and Z to be uniform without loss of generality, in which case

f"jZ (ejz) = f";Z (e; z) = fZj" (zje) :

Taking derivatives with respect to z on both sides of this equation,

@f"jZ (ejz)
@z

=
@fZj" (zje)

@z
:

Thus, the properties of � are determined by the ones of s ("; �) and �. Suppose, for example, that

s ("; �) = s(") + � and we normalize the distribution of � so that it has a unique mode at zero; then

@f"jZ (ejz)
@z

=
@f� (z � s (e))

@�
;
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and so

� (z) = fe 2 E : z = s (e)g ;

which is a singleton if s is invertible. This includes as a special case the standard measurement error

model, where s (") = ".

The following theorem states our formal identi�cation result:

Theorem 4 Suppose that Assumptions 1-2 are satis�ed. Then the following results hold:

1. For any given (x; �e) 2 X0�Z, m (x;� (e)) = �m (x; �e) is (set) identi�ed as the solution(s) y� to

@fY jX;Z(y
�jx; �e)

@z
= 0: (8)

In particular, if for a given �e 2 Z, there exists a unique solution � (�e) 2 E to (4), then

m (x;� (�e)) = �m (x; �e) is point identi�ed as the unique solution y� to (8).

2. For any given e 2 �(e) with �e 2 Z, and any (x; x0) 2 X0 �X0:

m
�
x0; e

�
�m (x; e) 2 �m

�
x0; �e

�
� �m (x; �e) :

3. If � is one�to�one, then an equivalent representation of the model is

Y = �m (X; �"), �r (X;Y ) = �"; (9)

where �" = ��1 (") and �r (x; y) = ��1 (r (x; y)). As a consequence, the heterogeneity distribution

�"jZ is also identi�ed.

Proof. Let Y� (x; �e) � Y be the set of solutions to eq. (8). Given that fY jX;Z is identi�ed from

data, Y� (x; �e) is also identi�ed. We claim that Y� (x; �e) = �m (x; �e). To this end, recall eq. (6) where,

due to m being invertible, j@r (x; y) = (@y)j > 0 and so

@fY jX;Z(yjx; �e)
@z

= 0,
f"jZ (r (x; y) j�e)

@z
= 0: (10)

Now, take any element y� 2 Y� (x; �e). Combining eqs. (8) and (10), we have that r (x; y�) 2 � (�e).

And so y� = m (x; r (x; y�)) 2 �m (x; �e) by de�nition. This shows that Y� (x; �e) � �m (x; �e). Reversely,

take any element y� 2 �m (x; �e). By de�nition, y� = m (x; e�) for some e� 2 � (�e). By invertibility,

e� = r (x; y�) and applying (10) we conclude that y� 2 Y� (x; �e) and so �m (x; �e) � Y� (x; �e). The

second part of the theorem follows from the �rst.
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In the case where � is one-to-one, an observational equivalent representation of the model is given

in eq. (9). The identi�ed function �m (x; �e) is now an invertible function, and the third part of the

theorem follows easily.

From eq. (6), we see that properties of � are embedded in @fY jX;Z (yjx; z) = (@z) under Assump-

tions 1-2. For example, invertibility of � is guaranteed by invertibility of @fY jX;Z (yjx; z) = (@z) w.r.t.

z. Thus, point identi�cation is testable.

The above identi�cation result allows us to trace the responses of each individual in an het-

erogenous population when the individual unobserved heterogeneity is characterized by an �e 2 Z.

However, in may applications, one may instead characterize the individual unobserved heterogeneity

by an initial observed heterogeneous response y: Assumption 1 guarantees that for any (y; x) ; there

exists a unique value of " satisfying y = m (x; ") : Hence, " = r (y; x) is characterized by (y; x) : The

counterfactual y0 = m (x0; ") ; on the value of y when the value of x changes to x0 while the value of

" stays �xed must satisfy " = r (y; x) = r (y0; x0) : Hence, if " can be characterized by a value of �e

from an initially observed (y; x) ; the same value of �e can be used to identify y0 when x changes to

x0. Neither �nding the value of �e that characterizes " nor �nding the value of y0 requires specifying

�, merely that � is one�to�one, which is testable under Assumptions 1-2.

To state this last identi�cation result formally, let us introduce the following generalized version

of �r introduced in eq. (9),

�r (y; x) :=

�
z 2 Z :

@fY jX;Z (yjx; z)
@z

= 0

�
: (11)

This is in general a set-valued function with �r (y; x) = ? if no solution exists. Given (6), j@r (x; y) = (@y)j >

0 and the de�nition of �, it follows that

�r (y; x) = ��1 (r (x; y)) ;

and so �r is the generalized inverse of �m:

y 2 �m (x; �e), �e 2 �r (y; x) : (12)

In the special case where � is invertible, �r is the actual inverse of �m; as introduced in Theorem 4,

and characterizes r (y; x) : As the next theorem shows, r is enough to identify counterfactuals when

" is characterized by y:

Theorem 5 Suppose that Assumptions 1-2 hold. Then for any (x; x0) 2 X0�X0 and any individual

with " = e such that y = m (x; e)

m
�
x0; e

�
�m (x; e) 2 �m

�
x0; �r (y; x)

�
� fyg
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where �r (y; x) is de�ned in eq. (11). As before, in the special case where �r (y; x) and �m (x; �r (y; x))

are singletons, point identi�cation is achieved.

Proof. Let e 2 E be the individual�s unobserved component which by de�nition satis�es y =

m (x; e). By de�nition of �m and �r, m (x0; e) 2 �m (x0; �r (y; x)) which proves the result.

A few remarks are in order: First, we may not be able to track the value of m for all " 2 E . This

only occurs when � (Z) = E . Second, a necessary condition for � to be one-to-one is that dZ = d".

In general, adding more (relevant) external covariates helps in the identi�cation since the "size" of

the set of solutions, � (z), will generally shrink as we add more score equations that have to be

satis�ed. However, when � (Z) = E , once point identi�cation has been achieved, so that � (z) is a

singleton and � (Z) = E , adding more external covariates provides no gain in terms of establishing

identi�cation. This is illustrated in the following example:

Example 6 Suppose that ", which is assumed to be a scalar for notational simplicity, satis�es

" =

�dX
i=1

si(Zi) + �;

where si : R 7!R are one-to-one,i = 1; :::d, and, as before, Z1; :::; Z �d and � are mutually independent

and with full support. We can then normalize these such that si(Zi) � N (0; 1), i = 1; :::d, and

� � N (0; 1). It is now easily checked that using the �rst dZ � �d external covariates yields the

following solution mapping,

�dZ (z1; :::zdZ ) =

dZX
i=1

si(zi):

Thus, �dZ is a singleton for all choices of dZ � 1 and so nothing is gained in terms of identi�cation

from using more external covariates in this case.

Maintain the above model but suppose now that s1 (Z1) = [0;+1) and s2 (Z2) = (�1; 0). In

this case, using Z1 alone as external covariate will only allow us to identify individuals with positive

values of ", while using both Z1 and Z2 allow us to "hit" all individuals in the population.

3.1.1 Identi�cation of derivatives

Derivatives of the function m with respect to continuously distributed variables can be identi�ed as

well in the case when � is a function, rather than a correspondence. In the consumer demand case,

for example, these are useful for testing integrability conditions or to calculate income and price

e¤ects.
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To derive an expression when �m (x; �e) is a function, substitute y� = �m (x; �e) into eq. (6), and

then take derivatives w.r.t. x on both sides to obtain

G (x; �e)
@ �m (x; �e)

@x0
+
@2fY jX;Z( �m (x; �e) jx; �e)

@z@x0
= 0:

where

G (x; �e) =
@2fY jX;Z(yjx; �e)

@z@y0

�����
y= �m(x;z)

2 RdZ�dY : (13)

For any weighting matrix W (x; �e) so that

Hm (x; �e) := G (x; �e)
0W (x; �e)G (x; �e) 2 RdY �dY (14)

has full rank, we then obtain

@ �m (x; �e)

@x0
= �H�1

m (x; �e)G (x; �e)0W (x; �e)
@2fY jX;Z( �m (x; �e) jx; �e)

@y@x0
; (15)

where the right-hand side is identi�ed. This in turn implies that, for any e = �(e), @m (x; e) = (@x) =

@m (x; e) = (@x) is identi�ed. Similarly,

@ �m (x; �e)

@�e0
= �H�1

m (x; �e)G (x; �e)0W (x; �e)
@2fY jX;Z( �m (x; �e) jx; �e)

@z@z0
; (16)

but in this case this does not imply identi�cation of @m (x; e) =@e since @ �m (x; �e) = (@�e) = [@m (x; e) = (@e)]e=�(�e)

@� (�e) = (�e).

The requirement that the matrix Hm (x; �e) has full rank is quite natural and will hold under great

generality given our identi�cation result stating that eq. (6) has a unique solution at y� = �m (x; �e).

In fact, as we shall see, this rank condition will show up again in the next section when we develop

and analyze a GMM-type estimator of �m; there it corresponds to the usual rank condition needed

to achieve (local) identi�cation of GMM estimators. In the case where � is one-to-one (so that

dZ = d"), W (x; �e) is obsolete and we simply require that G (x; �e) has full rank.

When � is one-to-one and e is de�ned as the value of " satisfying y = m (x; e) ; for given y and

x; an expression of @m (x; e) =@x can be obtained similarly. The starting equation in this case is

@fY jX;Z(yjx; z�)
@z

= 0:

By our arguments above, we know that z� = ��1 (r (y; x)) :We assume that @2fY jX;Z(yjx; z�)=@z@y0

and @2fY jX;Z(yjx; z�)=@z@z0 are invertible. Taking derivatives with respect to y and with respect to

x; we get

@2fY jX;Z(yjx; z�)
@z@z0

@��1 (r (y; x)))

@"

@r (y; x)

@y
+
@2fY jX;Z(yjx; z�)

@z@y0
= 0
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and
@2fY jX;Z(yjx; z�)

@z@z0
@��1 (r (y; x)))

@"

@r (y; x)

@x
+
@2fY jX;Z(yjx; z�)

@z@x0
= 0

Since
@m (x; ")

@x

����
"=r(y;x)

= �
�
@r (y; x)

@y

��1�@r (y; x)
@x

�
it follows that

@m (x; ")

@x

����
"=r(y;x)

= �
 
@2fY jX;Z(yjx; z�)

@z@y0

!�1 
@2fY jX;Z(yjx; z�)

@z@x0

!

Note, in particular, that the derivative does not depend on the unknown transformation �.

3.2 Identi�cation with Discrete Z

We next consider the case where Z has discrete, but potentially unbounded, support Z. In this case,

derivatives of f"jZ w.r.t. z are not well-de�ned, and we therefore rede�ne the solution mapping � in

terms of di¤erences: For any collection of dY values z1; ::::; zdY +1 2 Z with zi 6= zj , i 6= j, let

� (z1; ::::; zdY +1) =
�
e 2 E : f"jZ (ejzi) = f"jZ (ejzj) ; 1 � i < j � dY + 1

	
: (17)

Here, one can interpret
�
f"jZ (ejzi)� f"jZ (ejzj)

	
= fzi � zjg as the �derivative" of the density w.r.t.

z and so the above version of � can be thought of as a �discretized" version of the one introduced in

the case of continuous Z. (See Appendix D for an illustrative example of how the solution mapping

behaves) Due to the discrete nature of Z, we are only able to identify m at a discrete set of points.

With a slight abuse of notation, we have

�m (x; �e) = m (x;� (�e)) ; where �e 2 �E :=
n
�e 2 ZdY +1 : �ei 6= �ej for i 6= j

o
; (18)

is identi�ed: For any such �e 2 �E and any x 2 X0, consider a solution y� to the following set of

equations,

fY jX;Z(y
�jx; �ei) = fY jX;Z(y�jx; �ej); 1 � i < j � dY + 1: (19)

From eq. (2), this set of equations is equivalent to

f"jZ (r (x; y
�) j�ei) = f"jZ (r (x; y�) j�ej) ; 1 � i < j � dY + 1; (20)

since j@r (x; y) = (@y)j > 0 by assumption. By the same arguments as in the case of Z being con-

tinuous, y� satis�es r (x; y�) = e, where e = �(�e), or, equivalently, y� 2 m (x;� (�e)). The reverse

implication is easily shown to hold by analogous arguments and we conclude:
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Theorem 7 Under Assumptions 1-2: For any given �e 2 �E, �m (x; �e), as de�ned in eq. (18), is

identi�ed for all x 2 X0 as the (set of) solution(s) y� to eq. (19).

As in the continuous Z case, the above theorem only allows us to identify m (x; e) at the values

of e 2 � (�e) for some �e 2 ZdY +1. Thus, given that Z is countable, we can only identify m (x; e)

at a countable number of values e 2 E . At the same time, for the consumers that can be reached

through (19), we can identify the di¤erences m (x0; e) � m (x; e) = �m (x; �e) � �m (x; �e) ; when the

value of x changes to x0 while the value of �e stays �xed, and we can also identify marginal e¤ects,

@m (x; e) = (@x) = @ �m (x; �e) = (@x).

4 Nonparametric Estimation and Inference

Let (Yi; Xi; Zi), i = 1; :::; n, be i.i.d. observations from the model. We wish to use the above

identi�cation results to develop nonparametric estimators of the structural function �m. We consider

in turn the case of Z being continuously or discretely distributed. To avoid cumbersome notation,

we will in the following assume that X has a continuous distribution. We will brie�y indicate

how the proposed estimators and asymptotic theory have to be adjusted when X contains discrete

components. Moreover, in our theoretical analysis, we restrict ourselves to the case where �, and

therefore �m, is a function. The more general case where �m is a set-valued function is left for future

research.

4.1 Estimation with Continuous Z

Theorem 4 suggests the following GMM-type estimator of �m (x; �e) := m (x;� (�e)) for any given values

of (x; �e) 2 X0 � �E :

m̂ (x; �e) = arg min
y2Y0

ĝ(yjx; �e)0Ŵ (x; z) ĝ(yjx; �e); (21)

where

ĝ(yjx; �e) =
@f̂Y jX;Z(yjx; �e)

@z0
(22)

contain the "moment" conditions, f̂Y jX;Z is a nonparametric estimator of fY jX;Z , Ŵ (x; z) 2 RdZ�dZ

is a weighting matrix, and Y0 � Y is some compact subset that the true function value �m (x; �e) lies

in. Ideally we would like to set Y0 = Y, but, as with other extremum estimators whose objective

function is potentially non-convex, we have to restrict the set of candidate values to be compact.

In the general case where �m is a set-valued function, the above estimator m̂ (x; �e) will also be

set-valued. The analysis of the estimator in this general setting involves more complex arguments
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and so for simplicity we will in the following focus on the case where �m is a function, which is implied

by the following assumption:

Assumption 3. (i) The solution mapping � (z) de�ned in eq. (5) is a function; (ii) � (z) is one-to-

one and so has a well-de�ned inverse ��1 (z).

If we include Assumption 3(ii), so that � is one-to-one and dZ = dY , ĝ(yjx; �e) just identi�es

�m (x; �e) and the weighting matrix Ŵ (x; z) can be set to the identity matrix. The second part of

Theorem 4 also shows that if we add Assumption 3(ii), estimators of the inverse of �m (x; �e), as

denoted �r (x; y), can be obtained by either computing

r̂ (x; y) = argmin
�e2 �E0

kĝ(yjx; �e)k2 ; (23)

or

~r (x; y) = argmax
�e2 �E0

f̂Y jX;Z(yjx; �e); (24)

where �E0 � Z is some compact subset that the true function value �r (x; y) is assumed to lie in.

Any nonparametric conditional density estimator could in principle be employed in the imple-

mentation of the above estimators. We here focus on the case where f̂Y jX;Z has been chosen as a

kernel density estimator, of the form

f̂Y jX;Z(yjx; z) =
Pn
i=1KY;hY (Yi � y)KX;hX (Xi � x)KZ;hZ (Zi � z)Pn

i=1KX;hX (Xi � x)KZ;hZ (Zi � z)
; (25)

where Ka;ha = Ka (�=ha) =ha, Ka : Rda 7! R is a kernel function, and ha > 0 a bandwidth, a 2

fY;X;Zg. If X has discrete components, KX;hX (Xi � x) in the above expression should be replaced

by KX;hX (X1;i � x1) I fX2;i = x2g where X1 and X2 contain the continuous and discrete components

of X, respectively, and I f�g denotes the indicator function. With this modi�cation of the estimator,

all the following asymptotic statements remain correct for the mixed discrete-continuous case as well

by letting dX denote the dimension of X1.

For the asymptotic analysis of m̂, we impose the following restrictions on the kernel functions

used to compute f̂Y jX;Z , the weighting matrix Ŵn, and the underlying structure of the model at the

values (x; �e) at which we wish to estimate �m:

Assumption 4. The kernel functions are twice continuously di¤erentiable, of order 2, and satisfy

the following conditions:
R
Rda Ka (x) dx = 1,

R
Rda xKa (x) dx = 0 and

R
Rda kxk

2Ka (x) dx <1

for a 2 fY;X;Zg.
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Assumption 5. (i) The function m (x; e) is twice continuously di¤erentiable w.r.t. e; (ii) (X;Z)

has a continuous distribution whose density, fX;Z (x; z) is twice continuously di¤erentiable with

fX;Z (x; �e) > 0.

Assumption 6. (i) Ŵ (x; �e) !P W (x; �e) 2 RdZ�dZ ; (ii) �m (x; �e) is situated in the interior of Y0;

(iii) Hm (x; �e) de�ned in eq. (14) has full rank.

Assumptions 4 and 5 allow us to apply standard results from the analysis of nonparametric kernel

estimators. In particular, Assumption 5 together with Assumptions 1 and 3 guarantee that the joint

density of (Y;X;Z), fY;X;Z (y; x; z) = fY jX;Z (yjx; z) fX;Z (x; z), exists and is is twice continuously

di¤erentiable. This combined with the use of second-order kernels, as imposed in Assumption 4, imply

that the leading bias terms of @f̂Y jX;Z(yjx; z)= (@z0) are of order OP
�
h2Y
�
+OP

�
h2X
�
+OP

�
h2Z
�
, while

the variance terms are of order OP
�
1=[nhdYY h

dX
X hdY +2Z ]

�
. The overall bias could be reduced by using

higher-order kernels combined with assuming the existence of higher-order derivatives of m and f";Z ;

however, to avoid overly complicated assumptions, we refrain from this here.

Assumption 6 is used for the analysis of the GMM-type estimator m̂ (x; �e) and contains standard

conditions found in the analysis of GMM estimators: Assumption 6(i) together with the identi�cation

result in Theorem 4 ensure that the GMM estimator de�ned in eq. (21) is consistent; Assumption

6(ii) rules out that the "true" parameter lies on the boundary of the parameter space; and Assump-

tion 6(iii) is the usual rank condition for GMM estimators that guarantee local identi�cation. If

Assumption 3(ii) hold, Assumption 6(i) becomes void and 6(iii) reduces to the requirement that

G (x; �e) in eq. (13) has full rank.

The analysis of the estimators follow along the same lines as the one for standard GMM esti-

mators with the exception that the sample moment conditions here takes the form of the �rst-order

derivatives of a kernel density estimator. In particular, the convergence rate of m̂ will be determined

by the ones of the density derivative estimator:

Theorem 8 Suppose that Assumptions 1�2, 3(i), and 4-6 hold. Then, for any bandwidth sequences

satisfying

nhdYY h
dX
X hdZ+2Z h4a ! 0 for a = Y;X;Z; log (n) =

�
nhdYY h

dX
X hdZ+2Z

�
! 0; and nhdY +2Y hdXX hdZ+2Z !1;

(26)

the estimator m̂ (x; �e), as de�ned by eq. (21), is consistent and satis�esq
nhdYY h

dX
X hdZ+2Z fm̂ (x; �e)� �m (x; �e)g !d N (0; Vm (x; �e)) ;

21



where

Vm (x; �e) = H
�1
m (x; �e)G (x; �e)0W (x; �e) 
m (x; �e)W (x; �e)G (x; �e)0H�1

m (x; �e) ;

and


m (x; �e) =
fY jX;Z(y

�jx; �e)
fX;Z(x; �e)

����
y�= �m(x;�e)

Z
RdY

K2
Y (y) dy

Z
RdX

K2
X (x) dx

Z
RdY

@KY (y)

@y

@KY (y)

@y0
dy 2 RdY �dY :

(27)

Remark 9 The �rst and second bandwidth condition in eq. (26) control the bias and variance of

ĝ(yjx; �e), respectively, and ensure that they vanish su¢ ciently fast. The third condition implies that

the nonparametric estimator Ĝ (x; �e) = @2f̂Y jX;Z(y�jx; �e)= (@z@y0) of G (x; �e) is consistent

We observe that the usual curse-of-dimensionality of nonparametric estimators is present: The

convergence rate of m̂ deteriorates as the dimensions of Y , X and/or Z increase. Moreover, given

these, the asymptotic variance, Vm (x; �e), of m̂ takes the usual sandwich form as well-known for GMM

estimators. The over all variance depends on two properties of the model: First, 
m (x; �e) is the

standard asymptotic variance of kernel density derivatives and so captures the precision with which

we can learn about the true density derivative ("moment conditions"). Second, as discussed earlier,

Hm (x; �e) measures the identifying strength of Z as it measures the local curvature of the �rst-order

conditions identifying �m. Finally, the usual results regarding e¢ ciency of GMM estimators carry over

to our setting with an e¢ cient estimator resulting from choosing Ŵ (x; �e) as a consistent estimator

of 
�1m (x; �e).

Next, we analyze the two estimators of �r (x; y) de�ned in eqs. (23)-(24) which can be employed

when Assumption 3(ii) also holds. We impose the following additional assumption for this analysis,

which corresponds to the conditions imposed in Assumption 6 for the estimation of �m:

Assumption 7. (i) �r (x; y) is situated in the interior of �E0 and (ii)

Hr (x; y) :=
@2fY jX;Z(yjx; �e)

@z@z0

�����
�e=�r(x;y)

2 RdY �dY has full rank.

Theorem 10 Suppose that Assumptions 1�7 hold. Then, for any bandwidth sequences satisfying

nhdYY h
dX
X hdY +2Z h4a ! 0 for a = Y;X;Z; log n=hdYY h

dX
X hdY +4Zj ! 0; and nhdY +2Y hdXX hdZZ !1; (28)

the estimator r̂ (x; y), as de�ned by eq. (23), is consistent and satis�esq
nhdYY h

dX
X hdZ+2Z fr̂ (x; y)� �r (x; y)g !d N

�
0;H�1

r (x; y) 
r (x; y)H
�1
r (x; y)

�
;
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where


r (x; y) =
fY jX;Z(yjx; �e�)
fX;Z (x; �e�)

����
�e�=�r(x;y)

Z
RdY

K2
Y (z) dz

Z
RdX

K2
X (x) dx

Z
RdY

@KZ (z)

@z

@KZ (z)

@z0
dz 2 RdY �dY

Furthermore, the estimator ~r (x; y) de�ned in eq. (24) is �rst-order equivalent to r̂ (x; y).

One concern one may have, given the slow convergence rate reported in the above theorem, is

poor �nite-sample performance of the proposed estimator. To investigate how well our estimator

performs in �nite samples, we carried out a simulation study with the results reported in Appendix

C. As can be seen from those results our estimator performs well in sample sizes around n = 2; 000.

This sample size was chosen to match the one used in the empirical application, and so we expect

that the estimator will do well there as well.

4.2 Estimation with Discrete Z

In the discrete case, for any (x; �e) 2 X0 � �E , �m (x; �e) is identi�ed as the solution to the restrictions

in eq. (19). This suggests the following nonparametric estimation strategy: Obtain a nonparametric

estimator of fY jX;Z , say, f̂Y jX;Z , substitute this into eq. (19),

f̂Y jX;Z(yjx; zi) = f̂Y jX;Z(yjx; zj); 1 � i < j � dY + 1: (29)

and solve this w.r.t. y. As before, for the theoretical results, we here focus on the case where f̂Y jX;Z

is chosen as a kernel density estimator, which in the discrete Z case takes the form

f̂Y jX;Z(yjx; z) =
Pn
i=1KY;hY (Yi � y)KX;hX (Xi � x) I fZi = zgPn

i=1KX;hX (Xi � x) I fZi = zg
: (30)

If X has discrete components, the above estimator should be modi�ed in the same manner as in the

case of Z being continuous.

Similar to the continuous case, we can represent the estimator solving eq. (29) as GMM estimator:

Let ĝ(yjx; �e) = fĝi;j(yjx; �e) : 1 � i < j � dY g, where ĝi;j(yjx; �e) = f̂Y jX;Z(yjx; �ei) � f̂Y jX;Z(yjx; �ej),

contain the "moment restrictions" and de�ne

m̂ (x; �e) = arg min
y2Y0

kĝ(yjx; �e)k : (31)

Note that we here do not need a weighting matrix since the moment conditions exactly identify

�m (x; �e).

For the asymptotic analysis, we maintain Assumption 4, but can dispense of Assumption 5(ii)

and 6 since these are (almost) void in the case of Z being discrete. To state the result, introduce

the population version of the moment conditions, g(yjx; �e) = fgi;j(yjx; �e) : 1 � i < j � dY g where

gi;j(yjx; �e) = fY jX;Z(yjx; �ei)� fY jX;Z(yjx; �ej). We then have:
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Theorem 11 Assume that Assumptions 1-3(i), 4 and 5(i) hold and Hm (x; �e) = G (x; �e)
0G (x; �e) 2

RdY �dY has full rank where

G (x; �e) :=
@g(yjx; �e)

@y

����
y= �m(x;�e)

2 RdY �dY :

Then, for any bandwidth sequences satisfying nhdYY h
dX
X h4a ! 0, for a = Y;X, and nhdY +2Y hdXX !1,

m̂ (x; �e), as de�ned by eq. (31), is consistent and satis�esq
nhdYY h

dX
X fm̂ (x; �e)� �m (x; �e)g !d N

�
0;H�1

m (x; �e)G (x; �e)0
m (x; �e)G (x; �e)H
�1
m (x; �e)

�
;

where


m (x; �e) =

�
fY jX;Z(yjx; �ei)
fX;Z (x; �ei)

: 1 � i < j � dY + 1
�����
y= �m(x;z)

Z
RdY

K2
Y (y) dy

Z
RdX

K2
X (x) dx 2 RdY �dY :

4.3 Counterfactual Inference

As in the statement of Theorem 5, we distinguish between the following two cases: In the �rst

case, we index the population in terms of �e as de�ned in terms of the function �; in the second

case, we index individuals in the population in terms of (Y;X) : In either case, we will assume that

Assumptions 1-3 are satis�ed.

For the �rst case, we consider a given value �e0 2 Z and employ the stochastic representation given

in (9), where �m and the distribution of �" are identi�ed. Let �" = �e0; we are interested in measuring

how this individual would respond to a change in X from x0 to x1: As in Theorem 1, the response

is given by

�(�e0) := �m (x1; �e0)� �m (x0; �e0) :

The resulting estimator then takes the form

�̂Z (�e0) := m̂ (x1; �e0)� m̂ (x0; �e0) ;

where "Z" is used to indicate that the value of ", which remains �xed as X changes from x0 to x1,

is characterized by a value of Z. The asymptotic distribution can be derived from

�̂Z (�e0)��(�e0) = fm̂ (x1; �e0)� �m (x1; �e0)g � fm̂ (x0; �e0)� �m (x0; �e0)g; (32)

where the two terms on the right-hand side are asymptotically independent of each other by the

usual arguments for kernel-based estimators and so again �̂Z (�e0)�s large-sample distribution follows

directly from Theorem 8.
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For the second case, we assume that y0 and x0 are given and de�ne e0 as the value of " satisfying

y0 = m (x0; e0) or alternatively e0 = r (y0; x0) : In this case, we �rst obtain as estimate for e0:

ê0 = r̂ (x0; y0) and then use it to estimate

�̂y0 (e0) := m̂ (x1; ê0)� y0;

where "y0" indicates that the value of " is characterized by a given value of y: In order to conduct

inference using �̂y0 (e0), we have to take into account the �rst-step estimation of e0. This can be

done using the delta method,

�̂y0 (e0)��(e0) = m̂(x1; ê0)�m(x1; e0)

=
@m̂(x1; ~e0)

@�e0
fr̂ (x0; y0)� r (x0; y0)g+ fm̂(x1; e0)�m(x1; e0)g ;

where ~e0 is situated on the line segment connecting ê0 and e0; in particular, ~e0 !P e0 and so

@m̂(x1; ~e0)= (@e
0)!P @ �m(x1; e0)= (@e

0). Since r̂ (x0; y0) and m̂(x1; e0) are independent in large sam-

ples by the usual arguments for kernel estimators, the large sample distribution now follows by

combining Theorems 8 and 10. We collect the two results in the following theorem:

Theorem 12 Suppose that Assumptions 1�6 hold together with eq. (26). Then,q
nhdYY h

dX
X hdY +2Z f�̂Z(�e0)��(�e0)g !d N (0; Vm (x0; �e0) + Vm (x1; �e0)) ;

where Vm (x; �e) is de�ned in Theorem 8. If furthermore Assumption 7 holds together with eq. (28),

then q
nhdYY h

dX
X hdY +2Z f�̂y0(e0)��(e0)g !d N (0; Vy0 (e0)) ;

where, with Hr and Vr de�ned in Theorem 10,

Vy0 (�e0) =
@m(x1; �e0)

@�e0
H�1
r (x0; y0)Vr (x0; y0)H

�1
r (x0; y0)

@m(x1; �e0)

@�e0
+ Vm (x1; �e0) :

Remark 13 The derivative @ �m(x; �e)= (@�e) can be estimated by replacing population quantities by

their nonparametric estimators in eq. (16).

5 Choosing External Covariates

To achieve point identi�cation we need to identify relevant external covariates Z so that Assumption

3(i) is satis�ed. We here focus on the continuous case; the following discussion is easily adapted to

the discrete case with obvious modi�cations.
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In most applications, the researcher will either have more Z�s available that potentially satisfy

Assumption 3, or will be uncertain about whether a potential set of candidate variables are valid. We

are then interested in selecting a subset of size dY from these that satis�es Assumption 3 for the fol-

lowing two reasons: First, the nonparametric estimator m̂ (x; �e) su¤ers from a curse-of-dimensionality

with the precision deteriorating as dZ increases, c.f. Theorem 14. Second, if dZ > dY , the estimator

m̂ (x; �e) is not invertible in �e and so we cannot recover the distribution of " (up to the transformation

�).

We here develop methods for identifying a valid set of external covariates. We take as starting

point that we have available dZ � dY candidate external variables available which we collect in

Z = (Z1; :::; ZdZ )
0. Two procedures are then developed: The �rst procedure tests for whether a given

subset of the candidate variables are valid. The second procedure considers a more general scenario

where some, potentially nonlinear, transformation of the candidate variables constitutes a valid set

of external covariates.

5.1 Testing for Existence of Su¢ cient External Covariates

In the following, we take Assumptions 1-2 as maintained hypotheses and then wish to test Assumption

3.1. Consider �rst the case where we have exactly dY external covariates whose validity we wish to

test. To that end, �rst observe that

@2fY jX;Z(yjx; z)
@z@z0

=
@2f�"jz (�r (x; y) jz)

@z@z0

����@�r(x; y)@y

���� :
Thus, the rank condition imposed on the matrix Hr (x; y) in Theorem 10 is satis�ed if and only if

@2f�"jZ (�"j�e�) =(@z@z0) has full rank. This in turn holds if and only if @2f�"jZ ("jz) =(@z@z0) has full

rank and is implied by Assumption 3. Thus, we can test Assumption 3 by testing whether the rank

of Hr (x; y) is dY or not. The matrix Hr (x; y) can be estimated using standard methods and a

rank test for it can be performed using existing tests; see Al-Sadoon (2015) for an overview of such

methods and some recent developments.

If we have more than dY external covariates (dZ > dY ), one can test Assumption 3(i) through a

nonparametric version of the J-test used in GMM with over-identifying moment conditions: Choose

the weighting matrix such that Ŵ (x; �e) !P 
�1m (x; �e), where 
m (x; �e) is de�ned in Theorem 14.

It now follows from the limit results derived in the proof of Theorem 14 in conjunction with the

arguments in Newey and McFadden (1994, Section 9.5) that

Ĵ (x; �e) := nhdYY h
dX
X hdZ+2Z min

y2Y0
ĝ(yjx; �e)0Ŵ (x; �e) ĝ(yjx; �e)!d J (x; �e) (33)
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for all (x; �e) under Assumption 3(i), where J (x; �e) � �2dZ�dY and J (x1; �e1)?J (x2; �e2) for any two

pairs (x1; �e1) and (x2; �e2). Under the alternative, so that Assumption 3(i) does not hold for some

(x; �e), we have Ĵ (x; �e)!P +1.

The above two testing procedures can be used to identify external covariates that satisfy Assump-

tion 3: Suppose we have available dZ � dY candidate variables of which dY satis�es Assumption 3.

We can then either directly test for whether a given subset of size dY satis�es Assumption 3; or we

can use a step-down procedure where one variable at a time is removed according to whether the J

statistic of the "reduced" model does not reject the null.

5.2 Constructing an index Z

Instead of selecting a subset from the dZ variables, one can try to to construct an index Z(0) from

the set of candidate variables. This can be done in a number of ways. At the most general level, the

hypothesis of interest is that

Z� = B (Z) satis�es Assumption 3 for some function B : RdZ 7! RdY :

A natural way to estimate B is by searching across functions and choose the one that provides the

best �t in terms of explaining the variation in Y conditional on X. This can be done by maximum-

likelihood methods as described below.

Consider �rst the case where B is linear so that

Z� = BZ for some matrix B 2 RdY �dZ :

The corresponding estimator of B (z) then takes the form B̂ (z) = Bz where

B̂ = arg max
B2RdY �dZ
kBk=1

nX
i=1

log f̂Y jX;Z� (YijXi; BZi) ;

where

f̂Y jX;Z� (yjx; z�) =
Pn
i=1KY;hY (Yi � y)KX;hX (Xi � x)KZ;hZ (BZi � z�)Pn

i=1KX;hX (Xi � x)KZ;hZ (BZi � z�)
: (34)

This semiparametric estimator was originally proposed in Fan et al (2009) as a dimension reduction

device, and they show that B̂ is
p
n-consistent. Thus, the �rst-step estimation of the index Ẑ� = B̂Z,

will not a¤ect the asymptotic properties of the �nal nonparametric estimators of �m (x; �e) as derived

earlier.

More generally, suppose that B 2 B for some function space B; we can then combine our kernel

density estimator with sieve methods (see Chen, 2007) to estimate B by

B̂ = arg max
B2Bn
kBk=1

nX
i=1

log f̂Y jX;Z� (YijXi; B (Zi)) ;
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where Bn, n � 1, is a sequence of approximating parameter spaces, sieves, that becomes dense in the

original parameter space B as the sample size grows, and f̂Y jX;Z� (YijXi; B (Zi)) is on the form of eq.

(34) with BZi replaced by B (Zi). An asymptotic theory for this estimator is outside the scope of

this work and is left for future research.

5.3 Multiple Identifying Sets

There may exist more than one set of variables that satisfy Assumption 3. If so, one can develop

a more e¢ cient estimator of m by combining the information contained in them. Formally, let

Z(k) 2 RdY , k = 1; :::;M , be M � 2 distinct sets of variables satisfying:

Assumption 2* For k = 1; :::;M : " is distributed independently of X conditional on Z(k) and

"j
�
X;Z(k)

�
= "jZ(k) has a continuous distribution characterized by a density f"jZ(k)

�
"jz(k)

�
which is twice continuously di¤erentiable.

Assumption 3* For k = 1; :::;M : For any e, the following equations have a unique solution in

terms of z(k),
@f"jZ(k)

�
ejz(k)

�
@z(k)

= 0:

The solution mapping taking e into the corresponding solution z(k) is one-to-one.

Recall that Assumption 2 and 3 generate moment conditions which identi�es �m (x; �e). Assump-

tions 2* and 3* can therefore be thought of generating over-identifying moment restrictions. Similar

to Minimum Distance-estimators, these can then be combined to obtain a more e¢ cient estimator.

We here focus on the estimation of m; the analysis of the corresponding estimator of r follows along

the same lines.

Given the conditional kernel density estimators f̂Y jX;Z(k)(yjx; z(k)), k = 1; :::;M , we collect the

M "moment conditions" in Ĝ (yjx; �e) = (Ĝ1 (yjx; �e)0 ; :::; ĜM (yjx; �e)0)0 2 RMdY where

Ĝk (yjx; �e) :=
@f̂Y jX;Z(k)(yjx; z(k))

@z(k)

�����
z(k)=�e

; �e 2 RdY :

For a given choice of (x; �e), we then propose to estimate �m (x; �e) by

m̂ (x; �e) = arg min
y2RdY

Ĝ (yjx; �e)0 Ŵ (x; �e) Ĝ (yjx; �e) ; (35)

for some weighting matrix Ŵ (x; e) 2 RMdY �MdY . To state the limiting distribution of the estimator,

we de�ne G (yjx; �e) = (G1 (yjx; �e)0 ; :::; GM (yjx; �e)0)0 2 RMdY where

Gk (yjx; �e) :=
@fY jX;Z(k)(yjx; z(k))

@z(k)

�����
z(k)=�e

:
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The following theorem generalizes Theorem 8, where, for simplicity, we assume that the same band-

widths is used across the M density estimates:

Theorem 14 Suppose that Assumptions 1, 2*-3* and 4-5 hold, Ŵ (x; �e) !P W (x; �e), and the

matrix

H (x; �e) := Gy (x; �e)
0W (x; �e)Gy (x; �e) 2 RdY �dY

has full rank, where Gy (x; e) := @G (yjx; ") = (@y0)jy= �m(x;�e) 2 RMdY �dY . Then, for any bandwidth se-

quences satisfying nhdYY h
dX
X hdY +2Z h4a ! 0 for a = Y;X;Z, nhdYY h

dX
X hdY +4Z !1 and nhdY +2Y hdwX h

dY +2
Z !

1, m̂ (x; �e), as de�ned by eq. (35), is consistent and satis�esq
nhdYY h

dX
X hdY +2Z fm̂ (x; �e)� �m (x; �e)g !d N (0;
 (w; �e)) ;

where


 (x; �e) = H�1 (x; �e)Gy (x; �e)
0W (x; �e)V (x; �e)W (x; �e)Gy (x; �e)H

�1 (x; �e) ;

and V (x; �e) = [Vij (x; �e)]
M
i;j=1 with

Vii (x; �e) =
fY jX;Z(i)(y

�jx; �e)
fX;Z(i)(x; �e)

�����
y�= �m(x;�e)

Z
RdY

K2
Y (y) dy

Z
RdX

K2
X (x) dx

Z
RdZ

@KZ (z)

@z

@KZ (z)

@z0
dz 2 RdY �dY ;

and, for i 6= j,

Vij (x; �e) =
fY jX;Z(i);Z(j)(y

�jx; �e; �e)
fX;Z(i);Z(j)(x; �e; �e)

�����
y�= �m(x;�e)

Z
RdY

K2
Y (y) dy

Z
RdX

K2
X (x) dx

Z
RdZ

@KZ (z)

@z

@KZ (z)

@z0
dz 2 RdY �dY :

In the case where M � 2, we can use a J-test to test for whether the chosen Z�s indeed are valid

co-variates satisfying Assumptions 2*�3*. As is standard for Minimum Distance-type estimators, an

e¢ cient estimator arises by choosing Ŵ (x; �e) to be a consistent estimator of W (x; �e) = V �1 (x; �e) in

which case the asymptotic variance of m̂ (x; e) takes the form 
 (w; �e) =
�
Gy (x; �e)0 V �1 (x; �e)Gy (x; �e)

��1
.

6 Counterfactual Predictions of Individual Consumer Demand

Here we turn our attention to identifying (bounds on) structural demand functions subject to revealed

preference inequalities. Our proposed identi�cation and estimation strategy for consumer demands

with multidimensional nonseparable heterogeneity can be used for predicting demand counterfactuals

for continuous prices or when only �nite price variation is available in data. Here we focus on the

discrete price case. We also outline how our methods could be used to measure individual welfare

counterfactuals.
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6.1 Estimation and Inference of Bounds on Counterfactual Demands

Suppose we have observed a repeated cross-section of observed demands and incomes across a �nite

set of T � 1 price regimes, (Yi (t) ; Ii (t) ; Zi (t)), i = 1; :::; n and t = 1; :::; T , where the number of

price regimes T is small or moderate relative to the sample size n in each regime. Here, a new random

sample of consumers are collected for each price regime so the samples across di¤erent price regimes

are mutually independent. In price regime t 2 f1; :::; Tg, data is assumed to have been generated by

the following relationship

Yi (t) = m (p (t) ; Ii (t) ; "i (t)) ; i = 1; :::; n;

so that the observed consumers all face the common price p (t) which we treat as observed. For

notational simplicity we suppress any dependence on additional observed covariates, W , which can

be thought of as being kept �xed at a particular value as chosen by the researcher in the following.

Finally, we require that a given individual�s value of " does not vary across price regimes, and so is

meant to re�ect preferences that are time-invariant.

Using the techniques developed in the previous section, we can obtain an estimator of �m (t; I; e) :=

m (p (t) ; I; �e) as a function of (I; �e) using data in price regime t = 1; :::; T . This can in turn then be

employed to construct bounds for counterfactual individual demands for a consumer characterized by

a particular value �e 2 E at existing prices p(t) and income level I0; or for counterfactual predictions

for consumers facing a new set of prices p0 =2 fp (t) ; :::; p (T )g and income level I0. To do so, we

assume that the consumers in the population of interest satis�es the generalized axiom of preferences

(GARP), which in turn imposes bounds on demands in counterfactual price regimes, see Afriat (1967)

and Varian (1982).

The original implementation of the bounds assume that we have directly observed demands for

a given consumer across the T price regimes. This is not the case here, since we only have repeated

cross-sections available. To handle this issue, we modify the procedure for estimation of demand

counterfactuals proposed in Blundell, Browning and Crawford (2008) to take as input our demand

function estimator: First, for t = 1; :::; T , with m̂(t; I; �e) denoting our estimator of the demand in

price regime t, we estimate the so-called intersection demand levels de�ned as

ŷ (t) = m̂(t; Î (t) ; �e), where Î (t) solves p00m̂(t; Î (t) ; �e) = I0: (36)

However, even if the underlying data-generating demand process satis�es SARP, fŷ (t)gTt=1 may

not. We therefore proceed as in Blundell et al (2008) and �rst adjust the �rst-step estimates to

30



ensure that SARP is satis�ed,

fŷC (t)gTt=1 = arg min
fq(t)gTt=1

TX
t=1

ŵ (t) (y (t)� ŷ (t))2 s.t. fy (t)gTt=1 2 C, (37)

where

C =
(
fy (t)gTt=1 : 9 fV (t) ; � (t)g

T
t=1 so that

V (t)� V (s) + � (t) p (t)0 [y (s)� y (t)] � 0
and � (t) � 0 for s; t = 1; :::; T

)

contains the Afriat inequalities that demand should satisfy under GARP; see Blundell et al (2008)

for further details. Finally, we use fŷC (t)gTt=1 to compute the the following support set estimator

containing the set of predicted demands for the particular consumer,

Ŝp0;I0;e =
(
y0 2 RdY :

y0 � 0; p00y0 = I0; and

p (t)0 y0 � p (t)0 ŷC (t) for t = 1; :::; T

)
: (38)

Blundell, Kristensen and Matzkin (2014) provides an asymptotic theory for this estimated support

set in the case where the estimated demand function has been restricted to satisfy GARP (and so

ŷC (t) = ŷ (t)). We do not impose this condition in the estimation of m, instead we �rst adjust

the initial demand estimates to obtain fŷC (t)gTt=1 which we then use to estimate the support set.

The asymptotic theory of Blundell, Kristensen and Matzkin (2014) is easily modi�ed to take this

into account, and so consistency and convergence rate of Ŝp0;x0;" can be established applying the

arguments found there. So we here only focus on how to construct a valid con�dence set for Ŝp0;x0;".

To this end, we �rst derive the asymptotic properties of fŷ (t)gTt=1, which can be done by formulatingn
Î (t)

oT
t=1

as a Minimum Distance Estimator: For given values of p0, I0 and e, Î (t) can be expressed

as

Î (t) = arg min
I2I0

Ĝ (t; I) ; Ĝ (t; I) = p00m̂(t; I; �e)� I0;

for some compact set I0 � R+.

Applying standard arguments for the analysis of GMM Estimators, we then obtain the asymp-

totic distribution of Î (t) which combined with the delta method provides us with the asymptotic

distribution of ŷ (t) = m̂(t; Î (t) ; �e), c.f. Lemma 17,q
nhdYY h

dX
X hdZ+2Z fŷ (t)� �y (t)g !d N (0;� (t)) ;

where, with �I (t) solving p00m(t; �I (t) ; ") = I0 and �y (t) = �m(t; �I (t) ; �e),

� (t) =
@m(t; �I (t) ; �e)

@I

@m(t; �I (t) ; �e)0

@I

�
p00
@m(t; �I (t) ; �e)

@I

��1
p00
m

�
t; �I (t) ; �e

�
p0: (39)

Here, 
m (t; I; �e) is the large-sample variance matrix of m̂ (t; I; �e), as given in eq. (27) with x = I.
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With the above result, we can obtain a 1�� con�dence set for Sp0;I0;e by the following argument:

Let QS
�
fy (t)gTt=1

�
be the solution mapping de�ned as

QS
�
fŷ (t)gTt=1

�
= arg min

fy(t)gTt=1

TX
t=1

ŵ (t) (ŷ (t)� y (t))2 s.t. fy (t)gTt=1 2 C,

and let QGARP
�
fy (t)gTt=1

�
be the set mapping taking any given sequence fy (t)gTt=1 satisfying GARP

into the set

QGARP

�
fy (t)gTt=1

�
:=

(
y0 2 RdY :

y0 � 0; p00y0 = I0
p (t)0 y0 � p (t)0 y (t) for t = 1; :::; T

)
:

With these de�nitions, we can write our estimated support set as

Ŝp0;I0;e = QSARP
�
QS
�
fŷ (t)gTt=1

��
: (40)

In particular, for a given set CI1�� so that P
�
fŷ (t)gTt=1 2 CI1��

�
! 1� � as n!1, we have

P
�
Ŝp0;I0;e 2 QSARP (QS (CI1��))

�
= P

�
fŷ (t)gTt=1 2 CI1��

�
! 1� � as n!1: (41)

That is, we can construct a con�dence set for Sp0;I0;e by �rst constructing one for f�y (t)g
T
t=1 as de�ned

in the above lemma, and then map this into the corresponding union of support sets.

One simply way of computing an approximate version of the con�dence set is through the following

simulation-based procedure:

S.1 Compute y� (t) = ŷ (t) + e� (t), where e� (t) is drawn from the uniform distribution on the setn
e : e0�̂�1 (t) e � �2dY (1� �) =

�
nhdYY h

dX
X hdY +2Z

�o
;

and �̂ (t) is an estimator of � (t) de�ned in eq. (39), t = 1; ::::; T .

S.2 Compute f�y�S (t)g
T
t=1 = QS

�
fy� (t)gTt=1

�
.

S.3 Compute S�p0;x0;" = QSARP
�
f�y�S (t)g

T
t=1

�
.

Repeating 1.-3, N � 1 times will provide us with a simulated version of QSARP (QS (CI1��)).

The asymptotic validity of the proposed procedure is stated in the following theorem:

Theorem 15 Under the Assumptions of Theorem 8,�
S�p0;x0;" (k) : k = 1; :::; N

	
!P � QSARP (QS (CI1��)) as N !1;

where S�p0;x0;" (k), k = 1; :::; N , are independent copies obtained from the simulation-based algorithm

S.1-S.3 above, and

P
�
Ŝp0;I0;e 2 QSARP (QS (CI1��))

�
! 1� � as n!1:
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6.2 Estimating Bounds on Welfare Counterfactuals

The identi�cation of individual heterogeneous demands developed in this paper allows the recovery

of bounds on individual welfare measures. Afriat (1977) showed how revealed preference restrictions

can be used to provide information on the curvature of indi¤erence surfaces in commodity space

and then used to set bounds on the welfare e¤ects of a price change. This is further developed in

Varian (1982) and Manser and McDonald (1988). One problem with applying this procedure to the

aggregate data that the latter use is that budget surfaces rarely cross so that the bounds from such

data tend to be wide. Knowledge of individual nonparametric expansion paths can greatly improve

these bounds on true cost of living indices.

Without loss of generality, consider an indi¤erence surface passing through some base vector of

goods y1 at base price vector p1 and income I. If GARP and weak normality hold, then Blundell,

Browning and Crawford (2003) show that each expansion path vector yt(I); for price vector pt; can

be partitioned into three distinct segments. First, on any expansion path, there are the demands

that can be shown to be weakly revealed preferred to y1; QB(y1). Second, we have the demands that

we can show are weakly revealed dominated by y1; QW (y1). Finally there is an intermediate segment

with demands that cannot be revealed preference ordered with respect to y1.

These segments for each expansion path allow us to construct tight bounds on the welfare costs

of arbitrary price changes from the base price p1. For example, suppose that we have a reference

commodity level y1 (on the expansion path y1(I)) and an arbitrary price vector ps. The true cost-

of-living index based at y1 is given by c(ps; y1)=c(p1; y1) where c(ps; y1) is the expenditure function

giving the cost of attaining a bundle indi¤erent to y1 at prices ps, and c(p1; y1) = I: Bounds can be

placed on this index using

min
y
fp0syjy 2 Qw(y1)g � c(ps; y1) � miny fp

0
syjy 2 QB(y1)g:

Using the SARP constrained individual expansion paths from the previous subsection to construct

the best sets, QB(y1); and worse sets, Qw(y1), bounds on the true cost of living index for any change

in relative prices can be computed for each individual.

7 Empirical Application

In this section, we use the framework developed in section 6 for the case of the heterogeneous

consumer demand models to estimate bounds on individual consumer demand counterfactuals. We

use the history of the British Family Expenditure Survey (FES) which provides consumer expenditure

data at the household level for a large representative sample of consumers in Britain on a consistent
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basis over many years. To maintain comparison with earlier work, we choose a similar sample and

choice of goods to that in Blundell, Browning and Crawford (2008).

7.1 Data

We use a sample from the FES for the period 1997 to 2006. There are approximately 6000 observation

in each wave of the survey. The FES contains detailed expenditure data on families together with

income and demographic characteristics. In this analysis we take three broad consumption goods -

food, services (serv) and other nondurables, for the waves 1997 to 2006. We select a broad range

of households with di¤ering demographic characteristics. We choose nondurables as numeraire and

estimate demand for food and services so that dY = 2. The means of the variables are reported in

Table 8.1.3

These three consumption goods are of particular interest. The price responsiveness of food relative

to services and to other nondurables at di¤erent income levels is a key parameter in the indirect tax

policy debate. Demand counterfactuals across the population of consumers are a main input into the

policy analysis. Although food is largely free of value added tax (VAT) in the United Kingdom, the

discussions over the harmonization of indirect tax rates across Europe, the large variations in VAT

on food and the implications of a �at uniform expenditure tax across all consumption items requires

a clear understanding of individual demand responses to nonmarginal changes in the price of food

across the income distribution.

Table 8.1: Summary Statistics

year ln(income) share-food share-serv price-food price-serv family size

1997 5.412 .208 .212 2.84 3.88 2.26

1998 5.477 .206 .214 2.89 4.04 2.26

1999 5.498 .204 .218 2.93 4.21 2.22

2000 5.561 .197 .229 2.96 4.41 2.19

2001 5.601 .194 .233 3.06 4.60 2.23

2002 5.611 .194 .241 3.11 4.84 2.20

2003 5.648 .192 .238 3.17 5.08 2.22

2004 5.667 .193 .239 3.21 5.23 2.18

2005 5.710 .188 .246 3.26 5.37 2.18

2006 5.755 .186 .244 3.34 5.53 2.18

3The data are from public use �les. Further details are available from the euthors on request.
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7.2 Estimated Bounds for Counterfactual Individual Demands on Unobserved
Budgets

There are three steps to the empirical analysis. The �rst is to choose observable characteristics that

are likely to covary with unobserved individual heterogeneity in demand. Second, to estimate the

unrestricted demands in each price regime - that is an Engel curve (expansion path) for each wave

of the data and each individual. Finally, to impose the revealed preference inequalities on individual

demands and construct bounds on predicted demands at previously unobserved prices and income.

Observed heterogeneity is represented in two excluded covariate indices, Z1 and Z2: These covari-

ates are chosen to contain independent variation and re�ect heterogeneity in both food and services

demand. The �rst of these, Z1; was chosen to represent family composition and is a measure of the

number of equivalent adults in the family (one for the �rst adult, .6 for additional adults and .4 for

each child). Although important in all consumption decisions, the number of equivalent adults is

likely to be directly related to the heterogeneity in food consumption. The second, Z2; was chosen to

represent the generation of the head of household in the family. It is a measure for the year of birth

of the head of household adjusted for his or her age at leaving full time education (year of birth of

cohort plus age at leaving education). This second index we consider to be more related to the con-

sumption of services. Both of these indices were found to be important independent determinants of

the demand for food and services in a standard parametric �quadratic almost ideal�demand system

(QUAIDS). The family composition variable Z1 showing clearly a strong driver of food preferences

while the generation variable Z2 was a strong driver of service demand.4

Using Z1 and Z2, we obtain an estimator of the demand equations �m (t; I; �e) at each price regime

p (t) as a function of income and unobserved heterogeneity (I; e) as speci�ed in Section 4.1. To

estimate the bounds on counterfactual demands for new budgets, we can follow the steps outlined in

Section 6.1: For a given consumer characterized by a particular value of unobserved heterogeneity,

which in turn corresponds to a particular value of the indices, z0, we compute demand at a particular

income level, I0, when facing prices p0.

We have two �inside�goods: food and services, and the �outside�good, which we denote �other�;

let p0 = (p0;food; p0;serv ; p0;other)0 be the counterfactual (unobserved) prices. We choose the income I0

to be the mean income in 2002, roughly the middle of our sample. We estimated demand shares for

food and services as function of log-income with �e chosen as �e = (�e1; �e2) = (2; 1970). We calculated

these estimates by using an "adaptive" grid, which becomes denser as it approximates the solution.

We chose the bandwidths ha, a = Y;X;Z, by �rst computing the multivariate version of Silverman�s

4Results available from the authors on request.
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"Rule-of-Thumb" for the estimation of kernel density and its derivatives.

The resulting estimator provides an estimated expansion (expenditure share as a function of total

budget I) path by year for the consumer characterized by the chosen value �e 2 �E . After computing

the estimated demand functions at each of the observed price regimes, p(1); :::; p (T ), we solved

eq. (36) using Matlab�s nonlinear equation solver to obtain Î(t) and thereby ŷ(t) = m̂(t; Î (t) ; �e),

t = 1; :::; T . Next, we adjusted these T �rst-step estimates of intersection demands to ensure that

they jointly satis�ed SARP; this was done by solving the nonlinear constrained programme given in

eq. (37). Finally, we plugged the SARP constrained demand estimates into eq. (38) and computed

the estimated set of possible demands, Ŝp0;I0;e.

In general, this support set for counterfactual demands cannot be represented graphically since

its of dimension dY � 2. However, one can compute the upper and lower bounds of this set for a

given good k 2 f1; :::; dY g by

ŷup0;k = argmax
yk
y0;k s.t. y0 = (y0;1; :; ::; y0;dY ) 2 Ŝp0;I0;e; and

ŷlow0;k = argmin
yk
yk s.t. y0 = (y0;1; :; ::; y0;dY ) 2 Ŝp0;I0;e;

respectively. These are linear programmes and so can be solved using standard numerical solvers,

yielding an interval [ŷlow0;k ; ŷ
up
0;k] representing the demand bounds for good k 2 f1; :::; dY g of a consumer

with income level I0 and unobserved heterogeneity e facing price level p0.

A given demand interval [ŷlow0;k ; ŷ
up
0;k] is characterized by a given choice of p0, I0 and �e0. By varying

either prices, p0, income, I0, or �e0, this allows us to estimate bounds for the responses in demand to

changes in either price, income, or level of heterogeneity.

Figures 1 and 2 present the estimated demand bounds for food together with their corresponding

con�dence intervals (95%) when either its own price, p0;food, or the price of services, p0;serv , changes,

while keeping all other prices �xed at the price level at time T , and income at the chosen I0.

For the particular consumer characterized by (I0; �e0), Figure 1 describes how the demand for

food responds to counterfactual changes in the price of food, p0;food, keeping all other prices �xed.

Figure 2 presents the cross-e¤ect on demand for food when the price of services, p0;serv, varies. The

estimated bounds suggest a mildly downward sloping own demand for food demands and a upward

sloping cross-demand curve for food with respect to the price of services. The �gures show that the

bounds on counterfactual demands can be quite tight, especially where the data is dense, becoming

wider where there is sparse data.
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Figure 1: Counterfactual Bounds and CIs on the Demand for Food
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Figure 2: Counterfactual Bounds and CIs on the Cross Demand for Food
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8 Summary and Conclusions

We have developed nonparametric methods to identify and estimate counterfactuals for individuals,

when each is characterized by a vector of unobserved characteristics. The method requires no func-

tional restrictions on the manner in which the unobservable characteristics a¤ect individual behavior.

The general framework corresponds to the reduced form of a nonparametric system of simultaneous

equations, where each function depends in unrestricted ways on a vector of unobserved variables.

Our results have relied on two fundamental assumptions: First, the system is invertible in the

vector of unobserved heterogeneity. Second, there exist external, individual-speci�c, covariates that

are stochastically related to the unobserved heterogeneity. The external variables do not enter

directly into the functions of interest and are related to the unobserved heterogeneity through a

nonparametric testable restriction. Once one conditions on the external covariates, the vector of

unobserved heterogeneity is independent of the observable covariates appearing in the system, the

�internal covariates�.

We have applied the methods to consumer choice, where the system of demand functions for each

individual is a nonparametric and nonadditive function of prices, income, and a vector of unobserved

tastes. In this context, we have demonstrated how the method can be used to estimate individual

demand functions from the distribution of demands when individuals are heterogenous in unrestricted

ways. We have also described how the demands estimated using our method, together with Revealed

Preference inequalities, can be employed to obtain bounds on a counterfactual individual demand

for prices and incomes that have not been observed. They can also be used to bound measures of

consumer welfare.

The usefulness of the estimators has been illustrated through an empirical application using UK

household consumer data. We constructed estimated revealed preference bounds on counterfactual

demands for food, services and other goods for each consumer characterized by a given choice of total

budget and unobserved heterogeneity. The estimated bounds suggested mildly downward sloping

own demand for food and a upward sloping cross-demand curve for food with respect to the price

of services. The results have shown that estimated bounds on counterfactual demands can be quite

tight, especially where the distribution of observed relative prices is dense, becoming wider where

there is sparse price data.
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Appendices

A Proofs

Proof of Theorem 8. First note that under Assumptions 1-5, the density of (Y;X;Z), fY;X;Z(y; x; z),

is twice continuously di¤erentiable. Thus, employing standard results for kernel density estimation,

it holds that, for any given (x; �e) 2 X0 � Z,

sup
y2Y0

kĝ(yjx; �e)� g(yjx; �e)k = OP
�
h2Y
�
+OP

�
h2X
�
+OP

�
h2Z
�
+OP

 
log (n)

nhdYY h
dX
X hdZ+2Z

!
;

where ĝ(yjx; �e) is de�ned in eq. (22), and g(yjx; �e) = @fY jX;Z(yjx; �e)= (@z); see, for example, Hansen

(2008, Theorem 7). This combined with Assumption 6(i) and the bandwidth restrictions stated in

the theorem yieldĝ(yjx; �e)0Ŵ (x; �e) ĝ(yjx; �e)� g(yjx; �e)W (x; �e) g(yjx; �e)
 = oP (1) :

Consistency now follows from Newey and McFadden (1994, Theorem 2.6), where identi�cation is

achieved through Theorem 4.

Next, we derive the asymptotic distribution of m̂ (x; �e): With ŷ� := m̂ (x; �e), y� := �m (x; �e) and ~y

situated on the line segment connecting ŷ� and y�, the �rst-order condition for ŷ� together with the

mean value theorem yield

0 = Ĝ (x; �e)0 Ŵ (x; �e) ĝ(y�jx; �e) + Ĥm (x; �e) (ŷ� � y�) ;

where Ĝ (x; �e) = @2f̂Y jX;Z(y
�jx; �e)= (@z@y0), Ĥm (x; �e) := Ĝ (x; �e)0 Ŵ (x; �e) ~G (x; �e), and ~G (x; �e) =

@2f̂Y jX;Z(~yjx; �e)= (@z@y0). Under the stated conditions on the bandwidths in eq. (26), it follows from

Lemma 16 thatq
nhdYY h

dX
X hdZ+2Z fĝ(y�jx; �e)� g(y�jx; �e)g =

q
nhdYY h

dX
X hdZ+2Z ĝ(y�jx; �e)!d N (0;
m (x; �e)) ;

while Ĝ (x; �e) and ~G (x; �e) both converge towards G (x; �e) in probability. The claimed asymptotic

distribution result now follows by the same arguments as in the proof of Newey and McFadden (1994,

Theorem 2.6).

Proof of Theorem 10. The proof of the theorem proceeds along the same lines as the one

for Theorem 8, and so we only sketch the proof for r̂ (x; y). With ĝ(yjx; �e) de�ned in eq. (22) and

g(yjx; �e) = @fY jX;Z(yjx; �e)= (@z), we have, for any given (x; y) 2 X � Y ,

sup
�e2 �E0

kĝ(yjx; �e)� g(yjx; �e)k = OP
�
h2Y
�
+OP

�
h2X
�
+OP

�
h2Z
�
+OP

 
log (n)

nhdYY h
dX
X hdY +2Z

!
:
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This together with the identi�cation result of Theorem 4 shows consistency. To obtain the asymptotic

distribution, �rst observe that, with ê� := r̂ (x; y) and �e� := r (x; y),

0 = ĝ(yjx; ê�) = ĝ(yjx; �e�) + Ĥr (x; y) (ê� � �e�) ;

where Ĥr (x; y) = @2f̂Y jX;Z(yjx; ~e)= (@z@z0), and ~e is situated on the line segment connecting ê� and

�e�. Under the bandwidth conditions, Lemma 16 implies thatq
nhdYY h

dX
X hdY +2Z fĝ(yjx; �e�)� g(yjx; �e�)g =

q
nhdYY h

dX
X hdY +2Z ĝ(yjx; �e�)!d N (0;
r (x; y)) ;

and Ĥr (x; y) !P Hr (x; y), where 
r (x; y) 2 RdY �dY and Hr (x; y) 2 RdY �dY are de�ned in the

theorem.

Proof of Theorem 11. The proof follows along the same lines as the one of Theorem 8 and

so is left out.

Proof of Theorem 14. The proof follows along the same lines as the one of Theorem 8 and

so is left out.

Proof of Theorem 15. From Lemma 17, we see that P (fŷ (t)gTt=1 2 CI1��) ! 1 � � as

n!1, where CI1�� = CI1�� (1)� � � �CI1�� (T ) and

CI1�� (t) =
n
y : (y � ŷ (t))0�̂�1 (t) (y � ŷ (t)) � �2dY (1� �) rn

o
:

It now follows that Ŝp0;I0;e de�ned in eq. (40) satis�es eq. (41).

Consider now the simulated version of QSARP (QS (CI1��)) de�ned in the theorem. By construc-

tion, y�k (t) = ŷ (t)+e
�
k (t), where e

�
k (t) is uniformly distributed on the set

n
e : e0�̂�1 (t) e � �2dY (1� �) rn

o
,

satis�es y�k (t) 2 CI1�� (t). Moreover, as N ! 1, CI�k;1�� :=
n
fy�k (t)g

T
t=1 : k = 1; :::; N

o
!P �

CI1�� (t). Thus, with S�p0;x0;" (k) = QSARP
�
QS
�
CI�k;1��

��
, the above claim follows by the contin-

uous mapping theorem.

B Lemmas

Lemma 16 Suppose that Assumptions A.1-A.5 hold. Then:

1. As nhdYY h
dX
X hdZ+2Z h4a ! 0 for a 2 fY;X;Zg, and nhdYY h

dX
X hdZ+2Z !1,

q
nhdYY h

dX
X hdZ+2Z

(
@f̂Y jX;Z(yjx; z)

@z
�
@fY jX;Z(yjx; z)

@z

)
!d N (0; V (y; x; z)) ;
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where

V (y; x; z) =
fY jX;Z(yjx; z)
fX;Z (x; z)

Z
RdY

K2
Y (y) dy

Z
RdX

K2
X (x) dx

Z
RdZ

@KZ (z)

@z

@KZ (z)

@z0
dz 2 RdZ�dZ :

2. As hX ; hX ! 0 and nhdYY h
dX
X hdZ+4Z !1,

@2f̂Y jX;Z(yjx; z)
@z@z0

!P @
2fY jX;Z(yjx; z)

@z@z0
:

3. As hX ; hX ! 0 and nhdY +2Y hdXX hdZ+2Z !1,

@2f̂Y jX;Z(yjx; z)
@z@y0

!P @
2fY jX;Z(yjx; z)

@z@y0
;

Proof. We have

@f̂Y jX;Z(yjx; z)
@z

= f̂�1X;Z(x; z)
@f̂Y;X;Z(y; x; z)

@z
+
f̂Y;X;Z(yjx; z)
f̂2X;Z(x; z)

@f̂X;Z(x; z)

@z
;

where

f̂Y;X;Z(y; x; z) =

nX
i=1

KY;hY (Yi � y)KX;hX (Xi � x)KZ;hZ (Zi � z) ;

f̂X;Z(x; z) =

nX
i=1

KX;hX (Xi � x)KZ;hZ (Zi � z) :

By standard arguments for kernel estimators (see, e.g. Li and Racine, 2006), the following holds

under the smoothness assumptions imposed on the model,q
nhdYY h

dX
X hdZ+2Z

8<:@f̂Y;X;Z(yjx; z)@z
� @fY;X;Z(yjx; z)

@z
�

X
a2fY;X;Zg

h2aBa(yjx; z)

9=;!d N
�
0; ~V (y; x; z)

�
;

where Ba(yjx; z), a 2 fY;X;Zg, are the usual bias components due to kernel smoothing, and

~V (y; x; z) = fY;X;Z(y; x; z)

Z
RdY

K2
Y (y) dy

Z
RdX

K2
X (x) dx

Z
RdZ

@KZ (z)

@z

@KZ (z)

@z0
dz 2 RdZ�dZ :

Similarly,

f̂Y;X;Z(y; x; z) = fY;X;Z(y; x; z) +OP
�
h2x
�
+OP

�
h2z
�
+OP

 s
1

nhdYY h
dX
X hdZZ

!
;

f̂X;Z(x; z) = fX;Z(x; z) +OP
�
h2x
�
+OP

�
h2z
�
+OP

 s
1

nhdXX hdZZ

!
;

@f̂X;Z(x; z)

@z
=

@fX;Z(x; z)

@z
+OP

�
h2x
�
+OP

�
h2z
�
+OP

 s
1

nhdXX hdZ+2Z

!
:

Under the conditions on the bandwidths, (i) all bias components are negligible and (ii) @f̂Y;X;Z(y; x; z)= (@z)

contains the leading variance terms with all other variance components being of a smaller order. This

shows the �rst part of the lemma.
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The second part follows by similar arguments with the leading term being

@2f̂Y;X;Z(y; x; z)

@z@z0
=
@2fY;X;Z(y; x; z)

@z@z0
+OP

�
h2y
�
+OP

�
h2x
�
+OP

�
h2z
�
+OP

 s
1

nhdYy h
dX
x hdZ+4z

!
:

The result now follows from the conditions on the bandwidths. The third part follows by similar

arguments.

Lemma 17 Assume that, for any given t = 1; :::; T :

(i)
p
rnfm̂ (t; I; e)�m (t; I; e)g !d N (0;
 (t; I)) for any I 2 I0 for some rn !1.

(ii) supx2I0 km̂(t; I; e)�m(t; I; e)k !P 0 and supx2I0 k@m̂(t; I; e)= (@I)� @m(t; I; e)= (@I)k !P 0.

(iii) I 7! m(t; I; ") is strictly increasing.

Then, the estimated intersection demand ŷ (t) de�ned in eq. (36) satis�es:

p
rnfŷ (t)� �y (t)g !d N (0;� (t)) ;

where, with �I (t) solving p00m(t; �I (t) ; ") = x0 and �y (t) = d(t; �I (t) ; "),

� (t) =
@m(t; �I (t) ; ")

@x

@m(t; �I (t) ; ")0

@x

�
p00
@m(t; �I (t) ; ")

@x

��1
p00


�
t; �I (t)

�
p0:

Proof. De�ne G (t; I) = p00d(t; I; e)� I0. Due to Condition (ii) of the lemma, we have that

sup
I2I0

���Ĝ (t; I)�G (t; I)��� � kp0k sup
I2I0

km̂(t; I; e)�m(t; I; e)k !P 0;

while Condition (iii) implies that �I (t) is the unique solution to G (t; I) = 0. It now follows from,

e.g., Newey and McFadden (1994, Theorem 2.1) that Î (t)!P �I (t). Next, by (i) and (ii), we have

p
rn

n
Ĝ
�
t; �I (t)

�
�G

�
t; �I (t)

�o
= p00

�
m̂(t; �I (t) ; ")�m(t; �I (t) ; ")

	
!d N

�
0; p00


�
t; �I (t)

�
p0
�
;

and, uniformly in I,

@Ĝ (t; I)

@I
� @G (t; I)

@I
= p00

�
@m̂(t; I; e)

@I
� @m(t; I; e)

@I

�
!P 0:

It now follows from Newey and McFadden (1994, Theorem 3.2) that
p
rn(Î (t)� �I (t))!d N (0;�I (t))

where

�I (t) =

�
p00
@m(t; �I (t) ; e)

@I

��1
p00


�
t; �I (t)

�
p0:

By the mean-value theorem together with (ii), this in turn implies

p
rn(ŷ (t)� �y (t)) =

�
@m(t; �I (t) ; ")

@x
+ oP (1)

�
p
rn(Î (t)� �I (t))!d N (0;� (t)) ;

where

� (t) =
@m(t; �I (t) ; e)

@I

@m(t; �I (t) ; e)0

@I
�x (t) :
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C Simulation Study

Here we investigate the performance of the estimator through simulations. The data-generating

process is chosen as a bivariate (dY = 2) random coe¢ cient model where

Yk = X"k; and "k = Zk + �k;

for k = 1; 2. In total,

Y = ZX +X�:

We assume X, Z, and � are mutually independent with � � N
�
��;
�

�
. Thus, "jZ � N

�
Z + ��;
�

�
and Y j (X;Z) � N

�
ZX + ��; x

2
�
�
. As such its density is given by

fY jX;Z (yjx; z) =
1q

(2�)d� (x)
exp

�
�1
2
(y � xz)0��1 (x) (q � xz)

�
;

where � (x) = x2
�. In particular,

ẑ (y; x) := argmax
z
fY jX;Z (yjx; z) =

y

x
;

which is the inverse r (x; y) = y=x of the structural relation Y = m (X; ") = X". For given values

of (y; x), we implement the estimator of r(x; y) de�ned as r̂(x; y) = argmaxz f̂Y jX;Z (yjx; z) where

f̂Y jX;Z (yjx; z) is the kernel estimator of the conditional density using a matrix of bandwidths, H.

The bandwidth matrix are chosen using the multivariate version of Silverman�s Rule-of-Thumb,

H = n�1=(2dY +1)�̂1=2;

where �̂ is the sample covariance matrix of (Y;X;Z).

The results for the estimator r̂ (x; y) = (r̂1 (x; y) ; r̂2 (x; y)) are reported in Figures 3-6. In each

�gure we �x q at a particular value, say, �q, and then plot the estimates of the function x 7! r1 (x; �q)

and x 7! r2 (x; �q). The results show that the kernel-based estimator works quite well, with small

biases and not too big variances.
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Figure 3: Estimation of r1 (x; y) with y = �y1 �xed.

Figure 4: Estimation of r1 (x; y) with y = �y2 �xed.
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Figure 5: Estimation of r2 (x; y) with y = �y1 �xed.

Figure 6: Estimation of r2 (x; y) with y = �y2 �xed.

D Example satisfying Assumption 3.2

For a particular example of a conditional density satisfying Assumption 3.2, suppose that E � R2+;

and for a known 1-1 function � from Z to R++; the set of positive values in R,

f"jZ ("1; "2jzi) = [�(zi)]3 exp
�
� [�(zi)] "1 � [�(zi)]2 "2

�
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Then,

f"jZ ("1; "2jz1) = f"jZ ("1; "2jz2) = f"jZ ("1; "2jz3)

if and only if

(3:1) 3 ln

�
�(z1)

�(z2)

�
� [�(z1)� �(z2)] "1 � [�(z1)� �(z2)] [�(z1) + �(z2)] "2 = 0

and

(3:2) 3 ln

�
�(z1)

�(z3)

�
� [�(z1)� �(z3)] "1 � [�(z1)� �(z3)] [�(z1) + �(z3)] "2 = 0

where we have used the equality
�
[�(zi)]

2 � [�(zj)]2
�
= (�(zi)� �(zj)) (�(zi) + �(zj)) : A unique

solution ("1; "2) exists to this system of two linear equations if and only if z2 and z3 are such that

�(z2) 6= �(z3)

Hence, since � is a 1-1 function, it follows that as long as z2 6= z3; there will exists a unique value

("1; "2) :
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