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ABSTRACT. With the aim of determining the welfare implications of price change in con-
sumption data, we introduce a revealed preference relation over prices. We show that
an absence of cycles in this preference relation characterizes a model of demand where
consumers trade-off the utility of consumption against the disutility of expenditure. This
model is appropriate whenever a consumer’s demand over a strict subset of all available
goods is being analyzed. For the random utility extension of the model, we devise non-
parametric statistical procedures for testing and welfare comparisons. The latter requires
the development of novel tests of linear hypotheses for partially identified parameters. In
doing so, we provide new algorithms for the calculation and statistical inference in non-
parametric counterfactual analysis for a general partially identified model. Our applica-
tions on national household expenditure data provide support for the model and yield
informative bounds concerning welfare rankings across different prices.

1. INTRODUCTION

Suppose we observe a consumer’s purchases of two foodstuffs, fresh produce and
pizza, from two separate trips to a grocery store. In the first instance t, the prices are
pt = (1, 1) of produce and pizza respectively and she buys a bundle xt = (3, 1). In her
second trip t′, the prices are pt′ = (2, 1) and she purchases xt′ = (1, 4). Is the consumer
better off at observation t or t′?

The standard way of trying to answer this question is to check for revealed preference.
Was xt cheaper than xt′ when xt′ was purchased? If so, xt′ is revealed preferred to xt.
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Similarly, we can ask whether xt is revealed preferred to xt′ . In this case neither bundle
is revealed preferred to the other since ptxt = 4 < 5 = ptxt′ and pt′xt′ = 6 < 7 =

pt′xt. Indeed, it is not difficult to see that there is a utility function (defined on produce
and pizza) rationalizing the data in which xt gives higher utility than xt′ , and another
rationalization in which xt′ gives higher utility than xt.

But there is another way of interpreting this data. Casual observation suggests that the
consumer is better off at t as the higher price of produce at t′ has led her to substitute
towards the less nutritious food item (pizza). But even ignoring the labels of the goods,
it is clear the consumer is better off at t compared to t′ as the prices at t′ are uniformly
higher (keeping fixed other exogenous aspects of the economic environment); were pt and
pt′ the prices at two grocery stores then there is no question as to which one she would
choose. Thus it seems natural to make welfare comparisons by endowing the consumer
with a preference over prices. Furthermore, this preference can be manifested even when
price vectors are not ordered across all goods: the consumer should prefer pt over pt′

whenever the bundle xt′ chosen at pt′ could have been purchased at the prices pt at lower
cost. This is because the consumer always has the option of choosing xt′ at observation
t, and this choice would leave her with money that could potentially be used for other
purposes. Formally, if at observations t and t′, we find that ptxt′ ≤ (<)pt′xt′ , then

the consumer has revealed that she (strictly) prefers the price pt to the price pt′ .
This concept of revealed preference recognizes that there are alternative uses to money
besides the goods observed in the data and any change in prices that leads to lower ex-
penditure on the same bundle must make the consumer better off.

The first aim of this paper is to build a new theory of consumer behavior based on
this simple observation. We then characterize how this theory manifests itself in cross-
sectional consumer demand data. Based on this result, we develop and implement a
novel econometric method for determining the population-wide welfare implications of
price changes using the model.

There are four reasons why we think the above goals are worth pursuing.

(1) The problem we pose is a natural analog of the standard problem studied in Afriat (1967).

The standard revealed preference theory of the consumer is built around the general-
ized axiom of revealed preference (GARP), which states that the revealed preference over
demand bundles must obey a no-cycling condition. This condition, which is imposed on a
finite data set D = {(pt, xt)}t∈T of price-demand observations, is a necessary implication
of the transitivity of a consumer’s preference; the essential content of Afriat’s Theorem is
that it is also sufficient for D to be rationalized by a strictly increasing utility function.

But data sets typically employed in empirical analysis involve only observations of a
subset of the consumer’s purchases. As we have argued above, such data can also generate
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another natural revealed preference relation—that over prices. Analogously to GARP, in
order for welfare comparisons to be consistent, we would have to require that the revealed
preference over prices is free of cycles, a property we call the generalized axiom of price
preference (GAPP). This leads inevitably to the following question: precisely what does
GAPP mean for consumer behavior?

(2) Our axiom has an intuitive utility representation.

We show that GAPP is both necessary and sufficient for the existence of a strictly in-
creasing function U : RL

+ ×R− → R such that

xt ∈ argmax
x∈RL

+

U(x,−ptx) for all t = 1, 2, ..., T.

The function U should be interpreted as an expenditure-augmented utility function, where
U(x,−e) is the consumer’s utility when she acquires x at the cost of e.1 It recognizes
that the consumer’s expenditure on the observed goods is endogenous and dependent
on prices: she could in principle spend more than what she actually spent (note that she
optimizes over x ∈ RL

+) but the trade-off is the disutility of greater expenditure.
There are applications for which the behavior captured by our model has normative ap-

peal. For instance, if we were studying a dataset containing supermarket purchases (typ-
ically, a strict subset of total consumption), it would be odd to assume that a consumer
goes to the store with an exogenously determined budget; instead, it is more natural to
expect that the amount she ends up spending depends on the prices. Of course, spend-
ing money on groceries has an opportunity cost: more money spent in the supermarket
means less money available for other unobserved goods. The expenditure-augmented
utility above captures this in a simple reduced form way via its last argument. We feel
that this simplicity is a strength of the model as it seems reasonable to assume that (over
the period where observations are collected) the typical shopper uses a simple heuristic
to determine the opportunity cost of a marginal purchase, even when this behavior is not
exactly globally optimizing if she takes into account the prices of all other goods (besides
groceries) that is relevant to her welfare.

That said, it is possible to give the expenditure-augmented utility function a standard
interpretation by situating it within a larger optimization problem for the consumer. (We
provide the most basic example here, others can be found in Section 2.3.) Indeed, a con-
sumer who maximizes U is indistinguishable from one who is maximizing a (conven-
tional) utility function G : RL+1

+ → R defined over the L observed goods plus an outside
good, with the consumer’s permitted expenditure on all L + 1 goods held fixed at some
number M > 0 (unobserved by the econometrician) and with the price of the outside

1In the main part of the paper, we allow for the consumption space to be a discrete subset of RL
+ and for

prices to be nonlinear.



4 DEB, KITAMURA, QUAH, AND STOYE

good held constant across observations;2 in other words, normalizing the price of the
outside good at 1, the consumer maximizes G(x, z) subject to px + z ≤ M.

Notice that if G(x, z) = U(x)+ z and the consumer chooses (x, z) to maximize G subject
to px+ z ≤ M, then the optimal x will also maximize U(x,−ptx) := U(x)− px. This is the
familiar quasilinear case, which is commonly used in partial equilibrium analysis, both to
model demand and to carry out welfare analysis of price changes. Thus, we could think
of the expenditure-augmented model is as a generalization of the quasilinear model.

Of course, even when only the demand for a subset of goods is observed, one could
directly test GARP (and almost inevitably this is what is done in empirical applications).
For this test to be justified, one must assume that the consumer has a subutility defined
on the L observed goods that is weakly separable from all other goods. In other words,
the consumer is maximizing a ‘broader’ utility function G(x, y) = H(U(x), y), where
y is the vector of all other goods relevant to the consumer’s wellbeing and H is some
increasing aggregator function. Then at any time t, as the consumer chooses some bundle
that maximizes her overall utility, the sub-bundle xt must necessarily maximize U(x),
conditional on the expenditure devoted to those goods, i.e., for all x such that ptx ≤ ptxt.
This in turn guarantees that D = {(pt, xt)}t∈T obeys GARP.3

Notice that it is certainly possible for a data set D to obey both GARP and GAPP; in-
deed, one such example is data generated by a consumer who maximizes a quasilinear
utility function U(x,−ptx) = U(x)− ptx.4 Both axioms represent distinct restrictions on
a data set (see Section 2.5) based on different, but not mutually exclusive, theories of opti-
mizing behavior and it is generally unhelpful to think of them as competing alternatives.
Whether we appeal to the restrictions based on one theory or the other depends in part on
the nature of the data (for example, whether the goods are such that the weak separability
assumption is valid in the case of GARP), but most of all it depends on the objective of
our econometric analysis.

3. Our model allows for consistent welfare comparisons at different prices.

There is a sense in which the GARP-based model is very robust. As we have pointed
out, it makes sense only if weak separability is imposed, but once that is in place, the va-
lidity of its notion of rationalization is completely independent of what happens outside
the L observed goods. It is possible, over the course of the data collection period, for the

2Ignoring boundary issues, a consumer who chooses x to maximize U(x,−px) is equivalent to one who
chooses (x, z) to maximize G(x, z), subject to px + z ≤ M, where G(x, z) := U(x,−M + z).
3Strictly speaking under the additional assumption that either U is locally nonsatiated or that there is a
perfectly divisible outside good and H is strictly increasing in that good (Polisson and Quah, 2013).
4More generally, GARP and GAPP will both hold if the consumer chooses xt to maximize an expenditure-
augmented utility function of the form H(U(x),−e), i.e., where there is a sub-utility function U defined on
the L goods.
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prices of unobserved goods to change or for the consumer to inherit an unexpected large
fortune, and she should still be maximizing the subutility conditional on the observed
expenditure level ptxt (even though the expenditure level itself will typically vary with
external factors). A manifestation of this is that the GARP-based model only hinges on
the relative prices among the L goods: if GARP holds in a data set D = {(pt, xt)}t∈T then
it holds in the data set D′ = {(λt pt, xt)}t∈T, where λt are positive scalars. The inevitable
flip side of this characteristic of the model is that it cannot tell whether one price situation
pt is better or worse than another pt′ .5

On the other hand, prices clearly have cardinal content in the GAPP-based model and
indeed the whole model is constructed with the aim of comparing prices consistently.
The inevitable downside of this feature is that it is only reasonable under ceteris paribus-
type assumptions. If the consumer should receive a large surprise fortune during the
data collection period, it may no longer be plausible to assume that her expenditure aug-
mented utility function is unchanging, and the same may be true of large fluctuations in
the prices of the non-observed goods. Thus we may wish to restrict applications of our
model to data over a period where it is reasonable to believe that the augmented utility
function is stable, perhaps after adjusting observed prices by a suitable deflator (to ac-
count for changing prices on the outside goods). In any case, GAPP can be tested on the
data and, if it passes, the model allows us to compare the consumer’s wellbeing under
different prices on the observed goods.

4. Welfare bounds can be inferred from repeated cross-sectional data.

After formulating the expenditure-augmented utility model and exploring its theoret-
ical features, the second part of our paper is devoted to demonstrating how the model
can be used for empirical welfare analysis. We note that welfare analysis under general
preference heterogeneity is a challenging empirical issue, and has attracted considerable
recent research (see, for example, Hausman and Newey (2016) and its references).

The first step involves generalizing our model to a population of consumers (as our em-
pirical application employs repeated cross-sectional data) and then developing a test of
the model. Assuming that the data passes the test, we could then estimate the proportion
of consumers who are made better or worse off by a given change in prices. It is worth
pointing out that the econometric theory we develop for this latter step is itself a stand
alone contribution and has more general applications beyond the empirical exercise in
this paper.

Although we test the random (expenditure-augmented) utility extension of our model,
we could in principle test the basic model on panel data sets of household or individual

5This is no longer true if the GARP model is imposed, not on D but on an extended data set including a
representative good which covers unobserved goods, but this brings along its own complications (see part
(3) in Section 2.3).
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demand (for example, from purchasing information collected in scanner panels).6 The
random utility extension is useful for at least three reasons: (i) It is more general in that
it allows for individual preferences in the population to change over time, provided the
population distribution of preferences stays the same. (ii) It makes no restriction on un-
observed preference heterogeneity and does not require any demand aggregation. (iii)
It allows us to demonstrate that our framework can accommodate sampling uncertainty
inherent in cross-sectional data (applications to panel data are more direct) and so can be
applied on a wider range of datasets.

The random utility extension of the GARP-based model is due to McFadden and Richter
(1991). They assume that the econometrician observes the distribution of demand choices
on each of a finite number of budget sets and characterize the observable content of this
model, under the assumption that the distribution of preferences is stable across obser-
vations. There are two main challenges that must be overcome before their model can be
taken to data. First, McFadden and Richter (1991) do not account for finite sample issues
as they assume that the econometrician observes the population distributions of demand;
this hurdle was recently overcome by Kitamura and Stoye (2017) who develop a testing
procedure for the GARP-based model which incorporates sampling error. Second, the
test suggested by McFadden and Richter (1991) requires the observation of large samples
of consumers who face not only the same prices but also make identical expenditures, a fea-
ture which is not true of any observational data. Thus to implement the test they suggest,
Kitamura and Stoye (2017) need to first estimate demand distributions at a fixed level of
(median) expenditure, which requires the use an instrumental variable technique (with
all its attendant assumptions) to adjust for the endogeneity of observed expenditure.

A remarkable feature of the random utility version of our (GAPP-based) model is that
it can be tested directly on data, even when the demand distribution at a given price vector
are associated with different expenditure levels. This allows us to estimate the demand dis-
tribution by simply using sample frequencies and we can avoid the additional layer of
demand estimation needed to test the GARP-based model. The reason for this is some-
what ironical: we show that the data set is consistent with our model if and only if it could
be converted (in a specific sense) into a data set of the type (with identical expenditures
at each price) envisaged by McFadden and Richter (1991) and passes the test suggested
by them. In other words, we apply the test suggested by McFadden and Richter (1991),
but not for the model they have in mind. This also means that we can use, and in a more
straightforward way, the econometric techniques in Kitamura and Stoye (2017).
6Tests and applications of the standard model using Afriat’s Theorem or its extensions are very common
(for a recent survey, see Crawford and De Rock (2014)) and our model is just as straightforward to test on
a panel data set. It is also common to test the standard model in experimental settings. Note that, our test
is not appropriate on typical experimental data where the budget is provided exogenously as part of the
experiment (and is not endogenous as in our model).
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Assuming that a data set is consistent with our model, we can then evaluate the welfare
impact of an observed change in prices. Indeed, if we observe the true distribution of
demand at each price, it is possible to impose bounds (based on theory) on the proportion
of the population who are revealed better off or worse off by an observed change in prices.
Of course, when samples are finite, these bounds instead have to be estimated. To do so,
we develop new econometric techniques that allow us to form confidence intervals on
the proportion of consumers who are better or worse off; these techniques build on the
econometric theory in Kitamura and Stoye (2017) but are distinct from it. We note that
these techniques can be more generally applied to linear hypothesis testing of parameter
vectors that are partially identified, even in models that are unrelated to demand theory
(see, for example, Lazzati, Quah, and Shirai (2018)). More importantly, we provide a new
general method for estimation and inference in nonparametric counterfactual analysis.
As the evaluation of counterfactuals is an important goal of empirical research, this paper
offers a potentially useful practical tool for practitioners.

Finally, we test, and find support for, the expenditure augmented utility model on two
separate national household expenditure data sets from Canada and the U.K. We also
estimate the welfare impact of the changes in observed prices. We demonstrate that these
could be meaningfully estimated, even though they are typically only partially identified:
the estimated bounds on the percentage of households who are made better or worse
off by a price change are almost always narrower than ten percentage points and often
substantially narrower than that.

1.1. Organization of the paper

The remainder of this paper is structured as follows. Section 2 lays our the deterministic
model and its revealed preference characterization, and Section 3 generalizes it to our
analog of a random utility model. Section 4 describes the nonparametric statistical test
of our model and the novel econometric theory needed to estimate the welfare bounds.
Section 5 illustrates the econometric techniques with an empirical application, and Section
6 concludes. The appendix contains proofs that are not in the main body of the paper.

2. THE DETERMINISTIC MODEL

The primitive in the analysis in this section is a data set of a single consumer’s pur-
chasing behavior collected by an econometrician. The econometrician observes the con-
sumer’s purchasing behavior over L goods and the prices at which those goods were
chosen. In formal terms, the bundle is in RL

+ and the prices are in RL
++ and so an ob-

servation at t can be represented as (pt, xt) ∈ RL
++ ×RL

+. The data set collected by the
econometrician is D := {(pt, xt)}T

t=1. We will slightly abuse notation and use T both to
refer to the number of observations, which we assume is finite, and the set {1, . . . , T}; the
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meaning will be clear from the context. Similarly, L could denote both the number, and
the set, of commodities.

Before motivating and presenting our model, it is worth providing a short description
of the standard theory of revealed preference. A locally nonsatiated7 utility function Ũ :
RL

+ → R is said to rationalize a data set D if

xt ∈ argmax
{x∈RL

+ : ptx≤ptxt}
Ũ(x) for all t ∈ T. (1)

Standard revealed preference is captured by two binary relations, �x and �x which are
defined on the chosen bundles observed in D, that is, the set X := {xt}t∈T as follows:

xt′ �x (�x)xt if pt′xt′ ≥ (>)pt′xt.

We say that the bundle xt′ is directly revealed (strictly) preferred to xt if xt′ �x (�x)xt, that
is, whenever the bundle xt is (strictly) cheaper at prices pt′ than the bundle xt′ . This
terminology is, of course, very intuitive. If the agent is maximizing some locally non-
satiated utility function Ũ : RL

+ → R, then if xt′ �x xt (xt′ �x xt), it must imply that
Ũ(xt′) ≥ (>)Ũ(xt).

We denote the transitive closure of �x by �∗x, that is, for xt′ and xt in X , we have
xt′ �∗x xt if there are t1, t2,...,tN in T such that xt′ �x xt1 , xt1 �x xt2 , . . . , xtN−1 �x xtN �x xt,
and xtN �x xt; in this case, we say that xt′ is revealed preferred to xt. If anywhere along
this sequence, it is possible to replace �x with �x then we say that xt′ is revealed strictly
preferred to xt and denote that relation by xt′ �∗x xt. Once again, this terminology is
completely natural since ifD is rationalizable by some locally nonsatiated utility function
Ũ, then xt′ �∗x (�∗x)xt implies that Ũ(xt′) ≥ (>)Ũ(xt). This observation in turn implies
that a necessary condition for rationalization is that the revealed preference relation has
no cycles.

Definition 2.1. A data set D = {(pt, xt)}T
t=1 satisfies the Generalized Axiom of Revealed

Preference or GARP if there do not exist two observations t, t′ ∈ T such that xt′ �∗x xt and
xt �∗x xt′ .

The main insight of Afriat’s Theorem is to show that this condition is also sufficient (the
formal statement can be found in the online Appendix C).

2.1. Consistent welfare comparisons across prices

Typically, the L goods whose demand is being monitored by the econometrician con-
stitute no more than a part of the purchasing decisions made by the consumer. The con-
sumer’s true budget (especially when one takes into account the possibility of borrowing

7This means that at any bundle x and open neighborhood of x, there is a bundle y in the neighborhood with
strictly higher utility.
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and saving) is never observed and the expenditure which she devotes to the L goods is a
decision made by the consumer and is dependent on the prices. The consumer’s choice
over the L goods inevitably affects what she could spend on, and therefore her consump-
tion of, other goods not observed by the econometrician. Given this, the rationalization
criterion (1) used in Afriat’s Theorem will only make sense under an additional assump-
tion of weak separability: the consumer has a sub-utility function U defined over the L
goods and the utility function of the consumer, defined over all goods, takes the form
H(U(x), y), where x is the bundle of L goods observed by the econometrician and y is the
bundle of unobserved goods. Assuming that the consumer chooses (x, y) to maximize
G(x, y) = H(U(x), y), subject to a budget constraint px + qy ≤ M (where M is her wealth
and p and q are the prices of the observed and unobserved goods respectively), then, at
the prices pt, the consumer’s choice xt will obey (1) provided H is strictly increasing in
either the first or second argument. This provides the theoretical motivation to test for the
existence of a sub-utility function U that rationalizes a data set D = {(pt, xt)}T

t=1. Notice
that once the weak separability assumption is in place, the background requirements of
Afriat’s test are very modest in the sense that it is possible for prices of the unobserved
goods and the unobserved total wealth to change arbitrarily across observations, without
affecting the validity of the test. This is a major advantage in applications but the down-
side is that the conclusions of this model are correspondingly limited to ranking different
bundles among the observed goods via the sub-utility function.

Now suppose that instead of checking for rationalizability in the sense of (1), the econo-
metrician would like to ask a different question: given a data setD = {(pt, xt)}T

t=1, can he
sign the welfare impact of a price change from pt to pt′? Stated differently, this question
asks whether he can compare the consumer’s overall utility after a change in the prices
of the L goods from pt and pt′ , holding fixed other aspects of the economic environment
that may affect the consumer’s welfare, such as the prices of unobserved goods and her
overall wealth. Perhaps the most basic welfare comparison in this setting can be made as
follows: if at prices pt′ , the econometrician finds that pt′xt < ptxt then he can conclude
that the agent is better off at the price vector pt′ compared to pt. This is because, at the
price pt′ the consumer can, if she wishes, buy the bundle bought at pt and she would still
have money left over to buy other things, so she must be strictly better off at pt′ . This
ranking is eminently sensible, but can it lead to inconsistencies?

Example 1. Consider a two observation data set

pt = (2, 1) , xt = (4, 0) and pt′ = (1, 2) , xt′ = (0, 1).

which is depicted in Figure 1. Given that the budget sets do not even cross, we know
that GARP holds. Since pt′xt < ptxt, it seems that we may conclude that the consumer is
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This for a data set

pt = (2, 1) , xt = (4, 0) and pt′ = (1, 2) , xt′ = (0, 1).

that violates GAPP.

x1

x2

b
xt

b
xt′

3

FIGURE 1. Choices that do not allow for consistent welfare predictions.

better off at prices pt′ than at pt; however, it is also true that pt′xt′ > ptxt′ , which gives the
opposite conclusion.

This example shows that for an econometrician to be able to consistently compare the
consumer’s welfare at different prices, some restriction (different from GARP) has to be
imposed on the data set. To be precise, define the binary relations �p and �p on P :=
{pt}t∈T, that is, the set of price vectors observed in D, in the following manner:

pt′ �p (�p)pt if pt′xt ≤ (<)ptxt.

We say that price pt′ is directly (strictly) revealed preferred to pt if pt′ �p (�p)pt, that is,
whenever the bundle xt is (strictly) cheaper at prices pt′ than at prices pt. We denote the
transitive closure of �p by �∗p, that is, for pt′ and pt in P , we have pt′ �∗p pt if there are
t1, t2,...,tN in T such that pt′ �p pt1 , pt1 �p pt2 ,..., ptN−1 �p ptN , and ptN �p pt; in this case
we say that pt′ is revealed preferred to pt. If anywhere along this sequence, it is possible
to replace �p with �p then we say that pt′ is revealed strictly preferred to pt and denote
that relation by pt′ �∗p pt. Then the following restriction is the bare minimum required to
exclude the possibility of circularity in the econometrician’s assessment of the consumer’s
wellbeing at different prices.

Definition 2.2. The data set D = {(pt, xt)}T
t=1 satisfies the Generalized Axiom of Price Pref-

erence or GAPP if there do not exist two observations t, t′ ∈ T such that pt′ �∗p pt and
pt �∗p pt′ .

This in turn leads naturally to the following question: if a consumer’s observed de-
mand behavior obeys GAPP, what could we say about her decision making procedure?
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2.2. The Expenditure-Augmented Utility Model

An expenditure-augmented utility function (or simply, an augmented utility function) is a
utility function that has, as its arguments, both the bundle consumed by the consumer x
and the total expense e incurred in acquiring the bundle. Formally, the augmented utility
function U has domain RL

+ ×R−, where U(x,−e) is assumed to be strictly increasing in
the last argument; in other words, utility is strictly decreasing in expenditure. This second
argument captures the opportunity cost of money and is a simple, reduced form way of
modeling the tradeoff with all other financial decisions made by the consumer. At a given
price p, the consumer chooses a bundle x to maximize U(x,−px). We denote the indirect
utility at price p by

V(p) := sup
x∈RL

+

U(x,−px). (2)

If the consumer’s augmented utility maximization problem has a solution at every price
vector p ∈ RL

++, then V is also defined at those prices and this induces a reflexive, transi-
tive, and complete preference over prices in RL

++.

A data set D = {(pt, xt)}T
t=1 is rationalized by an augmented utility function if there exists

such a function U : RL
+ ×R− → R with

xt ∈ argmax
x∈RL

+

U(x,−ptx) for all t ∈ T.

Notice that unlike the notion of rationalization in Afriat’s Theorem, we do not require
the bundle x to be chosen from the budget set {x ∈ RL

+ : ptx ≤ ptxt}. The consumer
can instead choose from the entire consumption space RL

+, though the utility function
penalizes expenditure.

It is straightforward to see that GAPP is necessary for a data set to be rationalized by
an augmented utility function. First, notice that if pt′ �p pt, then pt′xt ≤ ptxt, and so

V(pt′) ≥ U(xt,−pt′xt) ≥ U(xt,−ptxt) = V(pt).

Furthermore, U(xt,−pt′xt) > U(xt,−ptxt) if pt′ �p pt, and in that case V(pt′) > V(pt).
Suppose GAPP were not satisfied and there were two observations t, t′ ∈ T such that
pt′ �∗p pt and pt �∗p pt′ . Then there would exist t1, t2, . . . , tN ∈ T such that

V(pt′) ≥ V(pt1) ≥ · · · ≥ V(ptN) ≥ V(pt) > V(pt′)

which is impossible.

Our main theoretical result, which we state next, also establishes the sufficiency of
GAPP for rationalization. Moreover, the result states that whenever D can be rational-
ized, it can be rationalized by an augmented utility function U with a list of properties
that make it convenient for analysis. In particular, we can guarantee that there is always
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a solution to maxx∈RL
+

U(x,−p · x) for any p ∈ RL
++. This property guarantees that U

will generate preferences over all the price vectors in RL
++. Clearly, it is also necessary for

making out-of-sample predictions and, indeed, it is important for the internal consistency
of the model.8

Theorem 1. Given a data set D = {(pt, xt)}T
t=1, the following are equivalent:

(1) D can be rationalized by an augmented utility function.
(2) D satisfies GAPP.
(3) D can be rationalized by an augmented utility function U that is strictly increasing, con-

tinuous, and concave. Moreover, U is such that maxx∈RL
+

U(x,−p · x) has a solution for
all p ∈ RL

++.

REMARK: In order to keep the presentation simple, our maintained assumption through-
out this paper is that the consumption space is RL

+. However, this theorem (and the rest
of the theory which builds on it) applies also to the case where the consumption space is
some closed subset X of RL

+; indeed, our proof covers this more general case. For exam-
ple, if we model all the observed goods as discrete, then X = NL

+. Another possibility
is that the consumer is deciding on buying a subset of objects from a set A with L items.
Then each subset could be represented as an element of X = {0, 1}L; for x ∈ X, the i entry
(xi) equals 1 if and only if the ith object is chosen.

When the consumption space is X, the notion of a rationalization will obviously have to
be altered to require the optimality, in X rather than in RL

+, of the chosen bundle. Retain-
ing our definitions of the revealed preference relations�p and�p, it is straightforward to
check that GAPP is still necessary for the maximization of an augmented utility function.
Indeed, the whole theorem remains essentially valid, with statement (3) modified to read:
“D can be rationalized by an augmented utility function U : X ×R− → R with the fol-
lowing properties: (i) it admits an extension Û : RL

+ ×R− → R that is strictly increasing,
continuous, and concave; (ii) maxx∈X U(x,−px) has a solution for all p ∈ RL

++.”

PROOF OF THEOREM 1. We will show that (2) =⇒ (3). We have already argued that
(1) =⇒ (2) and (3) =⇒ (1) by definition.

Choose a number M > maxt ptxt and define the augmented data set D̃ = {(pt, 1), (xt, M−
ptxt)}T

t=1. This data set augments D since we have introduced an L + 1th good, which we
have priced at 1 across all observations, with the demand for this good equal to M− ptxt.

The crucial observation to make here is that

(pt, 1)(xt, M− ptxt) ≥ (pt, 1)(xt′ , M− pt′xt′) if and only if pt′xt′ ≥ ptxt′ ,

8Suppose the data set is rationalized but only by an augmented utility function for which the existence of
an optimum is not generally guaranteed, then it undermines the hypothesis tested since it is not clear why
the sample collected should then have the property that an optimum exists.
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which means that

(xt, M− ptxt) �x (xt′ , M− pt′xt′) if and only if pt �p pt′ .

Similarly,

(pt, 1)(xt, M− ptxt) > (pt, 1)(xt′ , M− pt′xt′) if and only if pt′xt′ > ptxt′ ,

and so
(xt, M− ptxt) �x (xt′ , M− pt′xt′) if and only if pt �p pt′ .

Consequently, D satisfies GAPP if and only if D̃ satisfies GARP. Applying Afriat’s Theo-
rem when D̃ satisfies GARP, there is Ũ : RL+1 → R (notice that Ũ is defined on RL+1 and
not just RL+1

+ ; see Remark 3 in Appendix C) such that

(xt, M− ptxt) ∈ argmax
{(x,m)∈RL

+×R:ptx+m≤M}
Ũ(x, m) for all t ∈ T.

The function Ũ can be chosen to be strictly increasing, continuous, and concave, and the
lower envelope of a finite set of affine functions. Note that the augmented utility func-
tion U : RL

+ ×R− → R defined by U(x,−e) := Ũ(x, M− e) rationalizes D as xt solves
maxx∈RL

+
U(x,−ptx), and hence maxx∈X U(x,−ptx), by construction. Furthermore, U is

strictly increasing in (x,−e), continuous, and concave.

Let h : R+ → R be a differentiable function with h(0) = 0, h′(k) > 0, h′′(k) ≥ 0 for
k ∈ R+, and limk→∞ h′(k) = ∞.9 Define Û : RL

+ ×R− → R by

Û(x,−e) := U(x,−e)− h(max{0, e−M}). (3)

It is clear that this function is strictly increasing in (x,−e), continuous, and concave. Fur-
thermore, xt solves maxx∈X Û(x,−ptx) since it solves maxx∈RL

+
Û(x,−ptx). The latter

claim holds because Û(x,−e) ≤ U(x,−e) for all (x,−e), and Û(xt,−ptxt) = U(xt,−ptxt).

Lastly, we claim that at every p ∈ RL
++, argmaxx∈X Û(x,−px) is nonempty. Choose

a sequence xn ∈ X such that Û(xn,−pxn) tends to supx∈X Û(x,−px) (which we allow
to be infinity). It is impossible for pxn → ∞ because the piecewise linearity of U(x,−e)
in x and the assumption that limk→∞ h′(k) → ∞ implies that Û(xn,−pxn) → −∞. So
the sequence pxn is bounded, which in turn means that there is a subsequence of xn that
converges to x? ∈ X (since X is closed). By the continuity of Û, we obtain Û(x?,−px?) =
supx∈X Û(x,−px). Lastly, note that the restriction of Û to X×R− still rationalizes D. �

From this point onwards, when we refer to ‘rationalization’ without additional quali-
fiers, we shall mean rationalization by an augmented utility function, that is, in the sense
established by Theorem 1 rather than in the sense established by Afriat’s Theorem.

9For example, h(k) = k3.



14 DEB, KITAMURA, QUAH, AND STOYE

2.3. Interpretations of expenditure-augmented utility and related models

The inclusion of expenditure in the augmented utility function captures the opportu-
nity cost incurred by the consumer when she chooses to buy some bundle of goods. In
this section we will discuss various issues and interpretations of this model.

(1) Constrained optimization on a larger problem

The proof of Theorem 1 itself provides an interpretation of the opportunity cost of ex-
penditure. Suppose that the consumer is maximizing an overall utility function that de-
pends both on the observed bundle x and on a bundle y of other goods, subject to a global
budget of M; in formal terms, the consumer is maximizing the overall utility G(x, y) sub-
ject to px + qy ≤ M, where q are the prices of other goods. Keeping q and M fixed, we
can then interpret U(x,−e) as the greatest overall utility the consumer can achieve by
choosing y optimally, subject to expenditure M− e and conditional on consuming x, i.e.,

U(x,−e) = max
{y≥0 : qy≤M−e}

G(x, y). (4)

In this case, expenditure on the observed goods incurs an opportunity cost since it dimin-
ishes what is available for the unobserved goods.

Obviously, a data set D = {(pt, xt)}T
t=1 collected from this consumer will obey GAPP

since (xt, yt) maximizes G(x, y) subject to px + qy ≤ M if and only if xt maximizes
U(x,−ptx). If the econometrician could also observe yt, then he will find that the data set
{((pt, q), (xt, yt))}T

t=1 obeys GARP, but D will typically not obey GARP.
In the case where the data is collected over an extended period, the assumption that

outside prices are fixed at q may be problematic, but under certain assumptions it is pos-
sible to preserve GAPP when prices of the observed goods are suitably deflated.

(2) Constrained optimization on a larger problem, with changes in the external environment

Suppose that the prices of the outside goods are allowed to vary during the data col-
lection period. We consider two types of price variation. The first is the case where the
external prices may move up or down proportionately.10 Thus at observation t, the exter-
nal prices are λtq, for some scalar λt > 0. Suppose also that the agent’s global budget at
time t increases by a factor of λt. The interpretation of this is that expenditure on the ob-
served goods represent just a small fraction of the consumer’s wealth, the larger portion
of which is devoted to the outside goods; thus a change of wealth by the same factor λt

means that the agent’s nominal wealth is keeping pace with price inflation (of the outside
goods). At observation t, the consumer maximizes G(x, y) subject to (x, y) obeying

ptx + λtqy ≤ λtM.

10Note that this is the case considered in the Hicks Aggregation Theorem.
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Dividing this inequality by λt, we see that the consumer’s choice must be identical to
the case where the price of the observed goods is pt/λt, with the external prices and
total wealth constant at q and M respectively. It follows that the data collected from this
consumer will obey GAPP, provided the prices are appropriately deflated, i.e., the set
{(pt/λt, xt)}T

t=1 will obey GAPP.

In the case where prices of the outside goods are completely free to vary, it is still pos-
sible for GAPP to hold after deflating prices, but stronger assumptions would need to
be imposed on G. The following is an example. Suppose that the outside goods are
weakly separable from the observed goods, so the utility function has the form G(x, y) =
H(x, u(y)), where u is the sub-utility on the outside goods. Furthermore, we assume that
u has an indirect utility v which is of the Gorman polar form, i.e., at the price vector q� 0
(of the outside goods) and expenditure w,

v(q, w) = a(q)w + b(q),

where a is homogenous of degree -1 and b is homogeneous of degree 0. The global budget
is assumed to vary in such a way that, should the consumer devote all of her wealth
to the unobserved goods, then the indirect utility is constant at M; in other words, the
agent’s real wealth (as measured by the indirect utility function v) is unchanged across
the observations. This implies that Mt = [M− b(qt)]/a(qt). The consumer chooses (x, v)
to maximize H(x, v) subject to

ptx +
v− b(qt)

a(qt)
≤ M− b(qt)

a(qt)
.

Multiplying this inequality by a(qt), we see that it is equivalent to maximizing H(x, v)
subject to a(qt)ptx + v ≤ M. Thus the data set {(a(qt)pt, xt)}T

t=1 will obey GAPP.

It is worth emphasizing that while the conditions we give in (1) and (2) may provide
motivation for the augmented utility model in terms of a larger setup that some readers
will find more familiar, it is not necessary for the validity of our approach. Even when
those conditions do not hold exactly, we think it is reasonable to directly assume that the
consumer has a preference over bundles of the observed L goods and their associated
expenditure, which the consumer has developed as a habit and which guides her pur-
chasing decisions (over the period where observations are taken). Bear in mind that no
one is required to have an unconditional belief in this model: it suffices that it is a plau-
sible hypothesis that we are willing to bring to the data, and then whether our belief is
confirmed (or disproved) will depend on the outcome of the GAPP test.

(3) Assessing the impact of price changes by enlarging the optimization problem



16 DEB, KITAMURA, QUAH, AND STOYE

Our discussion in (1) and (2) suggests an alternative approach to comparing the impact
of price changes. Instead of appealing to GAPP, one could simply add a good, which
represents all outside goods, to the L observed goods. Pricing this outside good at qt

and then assuming that the total expenditure on all L + 1 goods Mt is observable, one
could then test GARP on the data set {(pt, qt), (xt, Mt − ptx)}T

t=1. Assuming that this set
passes GARP, it would be rationalizable by some utility function defined on L + 1 goods;
the welfare impact of different prices of the observed goods (fixing the total expenditure
and the price of the representative outside good) could then be compared via the indirect
utility function. Something akin to this approach is common in the empirical literature;
for recent examples, see Blundell, Horowitz, and Parey (2012) and Hausman and Newey
(2016).11

Comparing our approach with this alternative, notice that in both cases, there is a need
to form an aggregate/composite good across the outside goods and to give it a price
index; in other words, if outside prices are changing in significant ways, then a full justifi-
cation of this type of aggregation will require, in both approaches, assumptions of the type
discussed in (2). The crucial difference between the two approaches lies in how the global
budget term Mt is handled. In the alternative approach, it is assumed that Mt is known
and can be measured across the data set. In our approach, if we choose to interpret the
augmented utility function as arising from a larger constrained optimization problem (as
in (1) and (2)), then we are assuming that the global budget is constant in real terms, but
we do not explicitly identify (or link) it with income or any other observable.

There are several reasons why we think testing GAPP is, at the very least, a useful alter-
native to explicitly introducing the outside good. Obviously, the latter approach cannot
be employed on data sets that simply do not contain any additional information over and
above the consumption x of the L goods. In certain data sets, there could be information
y on some subset of the outside goods; in this case, a plausible figure to take as the global
budget Mt is the total expenditure (on x and y). However, since consumers do not typ-
ically spend their entire wealth, their total observed expenditure (on goods x and y) is
determined by their preferences and, hence, is not exogenous which in turn leads to com-
plications in the estimation (as mentioned, for example, in Hausman and Newey (2016)).
When it is available, an alternative to total expenditure that is often used for Mt (see, for
example, Blundell, Horowitz, and Parey (2012) and Hausman and Newey (2016)) is an-
nual income or annual disposable income, but while this may be a good enough proxy
in some circumstances, it is plainly problematic if the consumer can save and borrow to

11In both these papers, the empirical application involves the case where L = 1. Specifically, the good
examined is gasoline, so it is a two-good demand system when the numeraire is included. The household’s
budget each year (Mt) is taken to be the annual income. Note that when L = 1, our approach imposes no
meaningful restrictions on data so it does not readily provide a viable alternative way to study the specific
empirical issues in those papers.
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a significant degree. Beyond these data and econometric issues, there is a more general
conceptual issue: we do not know what really constitutes the global budget on which the
consumer is basing her purchasing decisions on the L goods and their perceived alterna-
tives. The consumer could be engaging in ‘mental budgeting’ (see Thaler (1999)), where
money is not treated as fungible and separate accounts (typically not observable to the
econometrician) are kept for different categories of purchases. Indeed, in addition to the
large evidence from laboratory data, there is recent empirical evidence from field data
of such phenomena (see, for instance, Feldman (2010), Hastings and Shapiro (2013) and
Milkman and Beshears (2009)).

(4) Quasilinear utility and other special cases

The augmented utility function could be thought of as a generalization of the quasilin-
ear model. In this case, the consumer derives a utility of U(x) from the bundle x and
maximizes utility net of expenditure, that is, she chooses a bundle x that maximizes

U(x,−e) := U(x)− e. (5)

This formulation can be motivated by assuming that the consumer has an overall utility
function that is quasilinear, that is, G(x, y) = U(x) + y, where there is one unobserved
representative good consumed at level y ∈ R+. If we normalize the price of the outside
good at 1 and assume that M is sufficiently large, then the consumer maximizes G(x, y)
subject to px + y ≤ M if and only if he chooses x to maximize U(x,−px) = U(x)− px.
Notice that there is a complete absence of wealth effects in this model; fluctuations in
the global budget M has no impact on the demand for the observed goods and there is
neither a need to observe M nor to assume that it is constant in real terms in a data set.
This partly accounts for its widespread use in partial equilibrium analysis, both to model
demand and to carry out welfare analysis of price changes.

The revealed preference characterization for the quasilinear model is known (see Brown
and Calsamiglia (2007)) so it is possible to use this model as a way of evaluating non-
parametrically the welfare impact of price changes (after a suitable deflation of the outside
prices). However, this model is considerably more restrictive than the augmented utility
model and it has behavioral implications which go beyond the absence of revealed price
preference cycles. For instance, suppose L = 2 and the consumer at prices (p1, p2) ∈ R2

++

prefers the bundle (a, b) to another bundle (b, a); then it is straightforward to check that
this preference is maintained at the prices (p1 + k, p2 + k) ∈ R2

++ for any k.
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The quasilinear model is a model where the agent has a sub-utility over the L observed
goods.12 More generally, this holds for any model expressible in the following way:

U(x,−e) = H(U(x),−e), (6)

where H is some increasing aggregator function. Any data set collected from an agent
maximizing an augmented utility function of this form will obey both GAPP and GARP.
The latter holds because if xt maximizes U(x,−ptx) then it must also be maximizing U(x)
subject to x ∈ {x ∈ RL

+ : ptx ≤ ptxt}.
When the augmented utility function has the form in (6), the agent’s preference over

bundles when expenditure is held fixed is independent of the level of expenditure, i.e., if
U(x′′,−e) ≥ (>)U(x′,−e) for some e > 0, then U(x′′,−ẽ) ≥ (>)U(x′,−ẽ) for any ẽ > 0.
On the other hand, the general augmented utility model does not require a sub-utility
over the L goods and thus the preference between bundles is allowed to change with its
value.13 This greater flexibility is significant because it accommodates phenomena which
we may not wish to exclude a priori. For example, suppose the first good is food and
the second alcohol, and the consumer is indifferent between (10, 5) and (5, 10) when both
bundles are valued at 100, i.e., U((10, 5),−100) = U((5, 10),−100). If the agent has a
sub-utility over food and alcohol, then this indifference is preserved if both bundles are
valued at 150. However, the higher expenditure incurred in acquiring the bundle will
mean less money available for other activities such as entertainment or socializing. If al-
cohol and entertainment are substitutes, then this could mean that alcohol becomes more
desirable for the consumer, so that U((10, 5),−150) < U((5, 10),−150); if this occurs, U
cannot have the form (6).

2.4. Local robustness of the GAPP test

The augmented utility function captures the idea that a consumer’s choice is guided
by the satisfaction she derives from the bundle as well as the opportunity cost of acquir-
ing that bundle, as measured by its expense. Price data may contain measurement error
which implies that prices of the observed goods pt we use for testing may well differ from
their true values qt. Put differently, at time t, the consumer actually maximizes U(x,−qtx)
instead of U(x,−ptx) which is the hypothesis we are testing.

Another potential source of error is that the agent’s unobserved wealth or mental bud-
get may change from one observation to the next and this could manifest itself as a change

12Note that this is distinct from the example in (2) where the agent has a sub-utility on the unobserved
goods.
13If the augmented utility function is differentiable, then the marginal rate of substitution between goods 1
and 2 is given by (∂U/∂x1)/(∂U/∂x2) evaluated at (x,−e). This will in general depend on e, though not in
the case where U has the form (6).
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in the consumer’s stock of the representative outside good. If this happens, then at obser-
vation t, the consumer would be maximizing U(x,−ptx+ δt), where δt is the perturbation
in wealth at time t, instead of maximizing U(x,−ptx). Of course, the errors could poten-
tially enter simultaneously in both prices and wealth.

Statement (2) of Proposition 1 below shows that inference from a GAPP test is un-
affected as long as the size of the errors is bounded (equation (7) provides the specific
bound). Specifically, so long as D obeys a mild genericity condition (which is satisfied
in our empirical application), the GAPP test is locally robust in the sense that any con-
clusion obtained through the test remains valid for sufficiently small perturbations of the
original hypothesis. For example, a data set that fails GAPP is not consistent with the
maximization of an augmented utility function, for any prices sufficiently close to the
ones observed and after allowing for small wealth perturbations.

Not surprisingly, if the errors are allowed to be unbounded, then the model ceases
to have any content (statement (1) of Proposition 1). Specifically, we can always find
wealth perturbations δt (while prices pt are assumed to be measured without error) such
that each xt maximizes U(x,−ptx + δt), with no restrictions on D. In particular, these
perturbations can be chosen to be mean zero.

Proposition 1. Given a data set D = {(pt, xt)}T
t=1, the following hold:

(1) There exists an augmented utility function U and {δt}T
t=1, with ∑T

t=1 δt = 0, such that
xt ∈ argmaxx∈RL

+
U(pt,−ptxt + δt) for all t ∈ T.

(2) Suppose, D satisfies ptxt − pt′xt 6= 0 for all t 6= t′ and let {qt}T
t=1 and {δt}T

t=1 satisfy

2 max
t∈T
{|δt|}+ 2B max

t∈T,i∈L
{|εt

i |} < min
t,t′∈T,t 6=t′

|ptxt − pt′xt| (7)

where B = maxt∈T{∑L
i=1 |xt

i |} and εt
i := qt

i − pt
i .

If D obeys GAPP, there is an augmented utility function U such that

xt ∈ argmax
x∈RL

+

U(qt,−qtxt + δt) for all t ∈ T, (8)

and if D violates GAPP, then there is no augmented utility function U such that (8) holds.

Additionally, Aguiar and Kashaev (2017) have recently developed a technique to ex-
plicitly account for measurement error in revealed preference tests. Their method can,
in principle, also be applied to our model (as the test of our model can be equivalently
written in the first order condition form they require).

2.5. Comparing GAPP and GARP

Recall that Example 1 in Section 2.1 is an example of a data set that obeys GARP but
fails GAPP. We now present an example of a data set that obeys GAPP but fails GARP.
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Example 2. Consider the data set consisting of the following two choices:

pt = (2, 1) , xt = (2, 1) and pt′ = (1, 4) , xt′ = (0, 2).

This for a data set

pt = (2, 1) , xt = (2, 1) and pt′ = (1, 4) , xt′ = (0, 2).

that violates GARP.

x1

x2

b
xt′

b xt

1

FIGURE 2. Choices that satisfy GAPP but not GARP

These choices are shown in Figure 2. This is a classic GARP violation as ptxt = 5 > 2 =

ptxt′ (xt �x xt′) and pt′xt′ = 8 > 6 = pt′xt (xt′ �x xt). In words, each bundle is strictly
cheaper than the other at the budget set corresponding to the latter observation. However,
these choices satisfy GAPP as pt′xt′ = 8 > 2 = ptxt′ (pt �p pt′) but ptxt = 5 � 6 = pt′xt

(pt′ �p pt).

The upshot of this example is that there are data sets which admit rationalization with
an augmented utility function but cannot be rationalized in Afriat’s sense (as in (1)). If
we interpret the augmented utility function in the form G(x, y) (given by (4)), then this
means that while the agent’s behavior is consistent with the maximization of an overall
utility function G, this utility function is not weakly separable in the observed goods x.
In particular, this implies that the agent does not have a quasilinear utility function (with
G(x, y) = U(x) + y), which is weakly separable in the observed goods and will generate
data sets obeying both GAPP and GARP.

While GAPP and GARP are not in general the same conditions, they coincide in any
data set where ptxt = 1 for all t ∈ T. This is because xt �x xt′ if and only if pt �p xt′

(since both conditions are equivalent to 1 ≥ ptxt′) and, similarly, xt �x xt′ if and only if
pt �p xt′ . Given a data set D = {(pt, xt)}T

t=1, we define the expenditure-normalized version
of D as another data set D̆ :=

{
(pt, x̆t)

}T
t=1, such that x̆t = xt/(ptxt). This new data

set has the feature that pt x̆t = 1 for all t ∈ T. Notice that the revealed price preference
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relations �p, �p remain unchanged when consumption bundles are scaled. Thus a data
set obeys GAPP if and only if its normalized version also obeys GAPP, which in this case
is equivalent to GARP. The next proposition gives a more detailed statement of these
observations.

Proposition 2. Let D = {(pt, xt)}T
t=1 be a data set and let D̆ = {(pt, x̆t)}t∈T, where x̆t =

xt/(ptxt), be its expenditure-normalized version. Then the revealed preference relations �∗p and
�∗p on P = {pt}T

t=1 and the revealed preference relations �∗x and �∗x on X̆ = {x̆t}T
t=1 are related

in the following manner:

(1) pt �∗p pt′ if and only if x̆t �∗x x̆t′ .
(2) pt �∗p pt′ if and only if x̆t �∗x x̆t′ .

As a consequence, D obeys GAPP if and only if D̆ obeys GARP.

Proof. Notice that

pt xt

ptxt ≥ pt xt′

pt′xt′ ⇐⇒ pt′xt′ ≥ ptxt′ .

The left side of the equivalence says that x̆t �x x̆t′ while the right side says that pt �p pt′ .
This implies (1) since �∗p and �∗x are the transitive closures of �p and �x respectively.
Similarly, it follows from

pt xt

ptxt > pt xt′

pt′xt′ ⇐⇒ pt′xt′ > ptxt′

that x̆t �x x̆t′ if and only if pt �p pt′ , which leads to (2). The claims (1) and (2) together
guarantee that there is a sequence of observations in D that lead to a GAPP violation if
and only if the analogous sequence in D̆ lead to a GARP violation. �

As an illustration, compare the data sets in Figure 1 and Figure 2 to the expenditure-
normalized data sets in Figure 3a and Figure 3b. It can be clearly observed that the
expenditure-normalized data in Figure 3a contains a GARP violation (which implies it
does not satisfy GAPP) whereas the data in Figure 3b does not violate GARP (and, hence,
satisfies GAPP).

A consequence of Proposition 2 is that the expenditure-augmented utility model can be
tested in two ways: we can either test GAPP directly or we can normalize the data by ex-
penditure and then test GARP (equivalently GAPP). If we are simply interested in testing
GAPP on a data set D, normalization brings no advantage: the test is computationally
straightforward in either case and involves the construction of their (respective) revealed
preference relations and checking for acyclicity. However, as we shall see in the final sec-
tion, the possibility of testing GAPP after expenditure normalization plays a crucial role
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This for a data set

pt = (2, 1) , xt = (4, 0) and pt′ = (1, 2) , xt′ = (0, 1).

after normalizing the x’s by dividing with the income.

x1

x2

b
xt

b
xt′

4

(a) Example 1

This for a data set

pt = (2, 1) , xt = (2, 1) and pt′ = (1, 4) , xt′ = (0, 2)

after normalizing the x’s by dividing with the income.

x1

x2

b
xt′

b xt

2

(b) Example 2

FIGURE 3. Expenditure-Normalized Choices

in guaranteeing that there is a convenient test for the augmented utility model when we
have cross-sectional data on demand.14

2.6. Preference over Prices

We know from Theorem 1 that if D obeys GAPP then it can be rationalized by an aug-
mented utility function with an indirect utility that is defined at all price vectors in RL

++.
It is straightforward to check that any indirect utility function V as defined by (2) has the
following two properties:

(a) it is nonincreasing in p, in the sense that if p′ ≥ p (in the product order) then V(p′) ≤
V(p), and

(b) it is quasiconvex in p, in the sense that if V(p) = V(p′), then V(βp + (1− β)p′) ≤
V(p) for any β ∈ [0, 1].

Any rationalizable data set D could potentially be rationalized by many augmented
utility functions and each one of them will lead to a different indirect utility function. We
denote this set of indirect utility functions by V(D). We have already observed that if

14We note that there is an analogous ‘GARP-verson’ of Proposition 2 and that this observation (or some
close variation of it) has been exploited before in the literature (see, for example, (Sakai, 1977)). Suppose
D = {(pt, xt)}T

t=1 obeys GARP. Then GARP holds even if each observed price vector pt is arbitrarily scaled.
In particular, D obeys GARP if and only if D̂ = {( p̂t, xt)}t∈T , where p̂t = pt/(ptxt), obeys GARP, and
equivalently GAPP since p̂txt = 1 for all t ∈ T. The latter perspective is useful because it highlights
the possibility of applying Afriat’s Theorem on D̂, in the space of prices (in other words, with the roles of
prices and bundles reversed). This immediately gives us a different, ‘dual’ rationalization of D in terms of
indirect utility, i.e., there is a continuous, strictly decreasing, and convex function v : RL

++ → R such that
p̂t ∈ arg min{p∈RL

++ :pxt≥1}v(p). For an application of this observation see, for example, Brown and Shannon
(2000).
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pt �∗p (�∗p)pt′ then V(pt) ≥ (>)V(pt′) for any V ∈ V(D); in other words, the conclusion
that the consumer prefers the prices pt to pt′ is fully nonparametric in the sense that it is
independent of the precise augmented utility function used to rationalize D. The next
result says that, without further information on the agent’s augmented utility function,
this is all the information on the agent’s preference over prices in P that we could glean
from the data. Thus, in our nonparametric setting, the revealed price preference relation
contains the most detailed information for welfare comparisons.

Proposition 3. Suppose D = {(pt, xt)}T
t=1 is rationalizable by an augmented utility function.

Then for any pt, pt′ in P :

(1) pt �∗p pt′ if and only if V(pt) ≥ V(pt′) for all V ∈ V(D).
(2) pt �∗p pt′ if and only if V(pt) > V(pt′) for all V ∈ V(D).

2.7. Extension to nonlinear pricing

We have so far assumed that prices are linear, but this feature is not crucial to our
main result. Given that goods are sometimes priced nonlinearly (for instance, quantity
discounts, bundle pricing etc.), and this feature can be important in certain modeling
contexts, it would be useful to have a version of Theorem 1 that allows for that possibility.

In the linear case, the good i has price pi and the cost of a bundle x is px. More generally,
we define a price system as a map ψ : RL

+ → R+, where ψ(x) is interpreted as the cost
to the consumer of the bundle x. We require ψ to be continuous, strictly increasing (in
the sense that ψ(x′′) > ψ(x′) whenever x′′ > x′), and that, for any number M > 0,
ψ−1(M) is a bounded set. The last condition means that the consumer could not acquire
an arbitrarily large bundle with finite expenditure. We assume that both the price system
and the bundle chosen by the consumer are observed, so that a data set is formally a
collection D = {(ψt, xt)}T

t=1. This data set is rationalized by an expenditure augmented
utility function U : RL

+ ×R− → R if xt ∈ arg maxx∈RL
+

U(x,−ψt(x)) for all t ∈ T.
The notion of revealed preference over prices can be extended to a revealed preference

over price systems. Let P := {ψt}t∈T. We say that price ψt′ is directly revealed preferred
(directly revealed strictly preferred) to ψt if ψt′(xt) ≤ (<)ψt(xt); we denote this by ψt′ �p

(�p)ψt.
As in the linear case, we denote the transitive closure of �p by �∗p, that is, ψt′ �∗p ψt if

there are t1, t2,...,tN in T such that ψt′ �p ψt1 , ψt1 �p ψt2 , . . . , ψtN−1 �p ψtN , and ψtN �p ψt′ ;
in this case we say that ψt′ is revealed preferred to ψt. If anywhere along this sequence, it is
possible to replace �p with �p then we denote that relation by ψt′ �∗p ψt and say that ψt′

is strictly revealed preferred to ψt. It is straightforward to check that if D can be rationalized
by an expenditure augmented utility function then it obeys the following generalization
of GAPP to nonlinear price systems:
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there do not exist observations t, t′ ∈ T such that ψt′ �∗p ψt and ψt �∗p ψt′ .

The following result says that the converse is also true. The proof uses the exten-
sion of Afriat’s Theorem to nonlinear prices and general consumption spaces15 found
in Nishimura, Ok, and Quah (2017).

Theorem 2. Given a data set D = {(ψt, xt)}T
t=1, the following are equivalent:

(1) D can be rationalized by an augmented utility function.
(2) D satisfies nonlinear GAPP.
(3) D can be rationalized by an augmented utility function U that is strictly increasing and

continuous, such that maxx∈RL
+

U(x,−ψ(x)) has a solution for any price system ψ.

3. THE STOCHASTIC MODEL

In this section, we develop the stochastic version of the expenditure-augmented utility
model. We begin by explaining the corresponding extension of the Afriat model, as found
in McFadden and Richter (1991), McFadden (2005) (henceforth to be referred to as MR).

3.1. Rationalization by Random Utility

Suppose that instead of observing single choices on T budget sets, the econometrician
observes choice probabilities on each budget set. Our preferred interpretation is that each
observation corresponds to the distribution of choices made by a population of consumers
and the data set consists of a repeated cross section of such choice probabilities. This inter-
pretation is appropriate for our empirical application which uses repeated cross-sectional
data from a population.

We denote the budget set corresponding to observation t by Bt := {x ∈ RL
+ : ptx = 1}.

In this model, only relative prices matter, so we can scale prices and normalize income
to 1 without loss of generality. We use π̊t to denote the probability measure of choices
on budget set Bt at observation t. Thus, for any subset Xt ⊂ Bt, π̊t(Xt) denotes the
probability that the choices lie in the subset Xt. Following MR and Kitamura and Stoye
(2017) (henceforth, referred to as KS), we assume that the econometrician observes the
stochastic data set D̃ := {(Bt, π̊t)}T

t=1, which consists of a finite collection of budget sets
along with the corresponding choice probabilities. Note that, in practice, π̊t needs to be
estimated.

For ease of exposition, we also impose the following assumption on the data.

Assumption 1. For all t, t′ ∈ T with Bt 6= Bt′ , the choice probabilities satisfy π̊t
(
{Bt ∩ Bt′}

)
=

0.
15As with Theorem 1, the proof is for the more general case where the consumption space is a subset
X ⊂ RL

+.
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In other words, the choice probability measure π̊ has no mass where the budget sets
intersect. This is convenient because it simplifies some of the definitions that follow.16

A random utility is denoted by a measure µ̃ over the set of locally nonsatiated utility
functions defined on RL

+, which we denote by Ũ . The data set D̃ is said to be rationalized
by a random utility model if there exists a random utility µ̃ such that for all Xt ⊂ Bt,

π̊t(Xt) = µ̃(Ũ (Xt)) for all t ∈ T, where Ũ (Xt) :=

{
Ũ ∈ Ũ : argmax

x∈Bt
Ũ(x) ∈ Xt

}
.

In other words, to rationalize D̃ we need to find a distribution on the family of utility
functions that generates a demand distribution at each budget set Bt corresponding to
what was observed.

Crucially, McFadden (2005) observed that this problem can be discretized as follows.
Let {B1,t, . . . , BIt,t} denote the collection of subsets (which we call patches) of the budget
Bt where each subset has as its boundaries the intersection of Bt with other budget sets
and/or the boundary hyperplanes of the positive orthant. Formally, for all t ∈ T and
it 6= i′t, each set in {B1,t, . . . , BIt,t} is closed and convex and, in addition, the following
hold:

(i) ∪1≤it≤It B
it,t = Bt,

(ii) int(Bit,t) ∩ Bt′ = φ for all t′ 6= t that satisfy Bt 6= Bt′ ,
(iii) Bit,t ∩ Bi′t,t 6= φ implies that Bit,t ∩ Bi′t,t ⊂ Bt′ for some t′ 6= t that satisfies Bt 6= Bt′ ,

where int(·) denotes the relative interior of a set.
We use the vector πt ∈ ∆It belonging to the It dimensional simplex to denote the dis-

cretized choice probabilities over the collection
{

B1,t, . . . , BIt,t
}

. Formally, coordinate it of πt

is given by
πit,t = π̊t

(
Bit,t

)
, for all Bit,t ∈

{
B1,t, . . . , BIt,t

}
.

Even though there may be t, it, i′t for which Bit,t ∩ Bi′t,t 6= φ (as these sets may share
parts of their boundaries), Assumption 1 guarantees that πt is still a probability measure
since choice probabilities on the boundaries of Bit,t have measure 0. We denote π :=
(π1, . . . , πT)′.

We call a deterministic data set D = {(pt, xt)}T
t=1 typical if, for all t, there is it such that

xt ∈ int(Bit,t) for all t ∈ T; in other words, xt lies in the interior of some patch at each
observation.17 If a typical deterministic data setD = {(pt, xt)}T

t=1 satisfies GARP, then for
all other x́t ∈ int(Bit,t), t ∈ T, the data set {(pt, x́t)}T

t=1 also satisfies GARP. This is because
the revealed preference relations �x, �x are determined only by where a choice lies on

16This simplification is not conceptually necessary for the procedure described here or its adaptation to our
setting in the next subsection. See the explanations given in KS, all of which also apply here.
17The choice of terminology reflects the the fact that most data sets used in the literature, including ours,
are ‘typical.’
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the budget set relative to its intersection with another budget. Thus, as far as testing
rationality is concerned, all choices in a given set int(Bit,t) are interchangeable. Therefore,
we may classify all typical deterministic data sets according to the patch occupied by the
bundle xt at each budget set Bt. In formal terms, we associate to each typical deterministic
data set D that satisfies GARP a vector a =

(
a1,1, . . . , aIT ,T) where

ait,t =

{
1 if xt ∈ Bit,t,
0 otherwise.

(9)

Notice that we have now partitioned all typical deterministic data sets obeying GARP (of
which there are infinitely many) into a finite number of distinct classes or types, based
on the vector a associated with each data set. We use A to denote the matrix whose
columns consist of all the a vectors corresponding to these GARP-obeying types (where
the columns can be arranged in any order) and use |A| to denote the number of such
columns (which is also the number of types).

The problem of finding a measure µ̃ on the family of utility functions to rationalize D̃

is essentially one of disaggregating D̃ into rationalizable deterministic data sets or, given
Afriat’s Theorem, into deterministic data sets obeying GARP. If we ignore non-typical
deterministic data sets (which is justified because of Assumption 1), this is in turn equiv-
alent to finding weights on the finitely many distinct types represented by the columns
of A, so that their aggregation at each observation coincides with the discretized choice
probabilities. The following result (which we credit to MR though it does not appear as
stated in their work) summarizes these observations.

MR Theorem. Suppose that the stochastic data set D̃ = {(Bt, π̊t)}T
t=1 satisfies Assumption 1.

Then D̃ is rationalized by a random utility model if and only if there exists a ν ∈ R
|A|
+ such that

the discretized choice probabilities π satisfy Aν = π.18

Before we turn to the stochastic version of the expenditure-augmented utility model,
it is worth highlighting an important shortcoming of the setting envisaged by MR: data
sets typically do not take the presumed form D̃ = {(Bt, π̊t)}T

t=1. This is because even
consumers that face the same prices on the L observed goods (as is commonly assumed
in applications with repeated cross sectional data, for instance, Blundell, Browning, and
Crawford (2008)) will typically spend different amounts on these goods and, therefore,
the observed choices of the population will lie on different budget sets. Furthermore,
even if one conditions on that part of the population that chooses the same expenditure
level at some vector of prices, as these prices change, they will go on to choose differ-
ent expenditure levels. The theory set out by MR to test the random utility model relies

18Since any ν that satisfies Aν = π must also satisfy ∑
|A|
j=1 νj = 1, we do not need to explicitly impose the

latter condition. While technically trivial, this observation is quite important for the construction of the test.
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heavily on the stylized environment they assume and it is not at all clear how it could be
modified to test the model when expenditure is allowed to be endogenous. Recently, KS
operationalized the theory by MR and developed econometric methodologies to imple-
ment it. Moreover, KS presented an application of their test for rationalizability to the FES
data set (one of the two data sets we use in Section 5), though obtaining {π̊}T

t=1 for this
application necessitated estimation of counterfactuals, that is, what the distribution of de-
mand would be if, hypothetically, all consumers were restricted to the same budget set.
Inevitably, estimating these distributions will require the use of instrumental variables (to
get round the endogeneity of expenditure) and can involve a variety of assumptions on
the smoothness of Engel curves, the nature of unobserved heterogeneity across individu-
als, etc.

3.2. Rationalization by Random Augmented Utility

Once again, the starting point of our analysis is a stochastic data set D := {(pt, π̊t)}T
t=1

(of price-probability pairs) which consists of a finite set of distinct prices along with a
corresponding distribution over chosen bundles. But there is one important departure
from the previous section (where the data consisted of budget-probability pairs): we no
longer require the support of π̊t to lie on the budget set Bt; instead the support could
be any set in RL

+. In other words, we no longer require all consumers to incur the same
expenditure at each price observation; each consumer in the population can decide how
much she wishes to spend on the L observed goods and this could differ across consumers
and across price observations. As we pointed out at the end of Section 3.1, this is the form
that data typically takes. Also, as in the previous section, π̊t needs to be estimated in
practice and this is the source of statistical uncertainty that we address in Section 4.

A random expenditure-augmented utility is denoted by a measure µ over the set of
augmented utility functions which we denote by U .

Definition 3.1. The data set D is said to be rationalized by the random augmented utility
model if there exists a random augmented utility µ such that for all Xt ⊂ RL

+,

π̊t(Xt) = µ(U (Xt)) for all t ∈ T, where U (Xt) :=

U ∈ U : argmax
x∈RL

+

U(x,−ptx) ∈ Xt

 .

In actual empirical applications, observations are typically made over time. Therefore,
we are effectively asking whether or not D is generated by utility maximization over a dis-
tribution of augmented utility functions that is stable over the period where observations
are taken. This assumption is plausible if (i) there is no change in the prices of the unob-
served goods or, more realistically, that these changes could be adequately accounted for
by the use of a deflator, and (ii) there is sufficient stability in the way consumers in the
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population view their long term economic prospects, so that there are only small changes
(in the sense of Proposition 1) in their willingness to trade off consumption of a bundle of
goods in L with the expenditure it incurs.

The problem of finding a measure µ to rationalize D is essentially one of disaggregating
D into deterministic data sets rationalizable by augmented utility functions or, given The-
orem 1, into deterministic data sets obeying GAPP. Crucially, Proposition 2 tells us that
a deterministic data set obeys GAPP if and only if its expenditure-normalized version
obeys GARP. It follows that µ exists if and only if the normalized version of the stochastic
data set D obeys the condition identified by MR (as stated in Section 3.1).

To set this out more formally, we first define the normalized choice probability π̆t corre-
sponding to π̊t by scaling observations from the entire orthant onto the budget plane Bt

generated by prices pt and expenditure 1. Formally,

π̆t(Xt) = π̊t
({

x :
x

ptx
∈ Xt

})
, for all Xt ⊂ Bt and all t ∈ T.

We suppose that Assumption 1 holds on the normalized data set {(Bt, π̆t)}T
t=1; abusing

the terminology somewhat, we shall say that D obeys Assumption 1.19 We then define
the patches on the budgets set Bt (as in Section 3.1) and denote them by

{
B1,t, . . . , BIt,t

}
.

With these patches in place, we derive the normalized and discretized choice probabilities
πt =

(
π1,t, . . . , π It,t

)
from π̆t by assigning to each πit,t the normalized choice probability

π̆t(Bit,t) corresponding to Bit,t. Finally, we construct the matrix A, whose columns are
defined by (9); the columns represent distinct GARP-obeying types, which by Proposition
2 coincides with the distinct GAPP-obeying types. The rationalizability of D can then be
established by checking if there are weights on these types that generate the observed
normalized and discretized choice probabilities π =

(
π1, . . . , πT). The following result

summarizes these observations.

Theorem 3. Let D = {(pt, π̊t)}T
t=1 be a stochastic data set obeying Assumption 1. Then D is

rationalized by the random augmented utility model if and only if there exists a ν ∈ R
|A|
+ such

that the normalized and discretized choice probabilities π (derived from π̊) satisfy Aν = π.

It is worth emphasizing that this theorem provides us with a very clean procedure
for testing the random augmented utility model. If we were testing the random utility
model, then the MR test would require a data set where expenditures are common across
consumers as a starting point; since this is not commonly available it would have to be es-
timated, which in turn requires an additional econometric procedure with all its attendant
assumptions. By contrast, to test the random augmented utility model, all we have to do

19A sufficient condition for Assumption 1 is that π̊ assigns 0 probability to sets with a Lebesgue measure
of 0. Also, as before, this is merely for ease of exposition: our test does not depend on this assumption and,
importantly, the data in our empirical application satisfies Assumption 1.
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is apply the MR test to the expenditure-normalized data set D̃ = {(pt, π̆t)}T
t=1, which is

obtained (via a simple transformation purely as a consequence of the theoretical model
itself) from the original data set D = {(pt, π̊t)}T

t=1.

We end this subsection with an example that makes explicit the operationalization of
Theorem 3 using data where the normalized and discretized choice probabilities are de-
termined by the sample frequency of choices.

Consider a set of choices when the prices are

pt = (2, 1).

These are for illustration of how stochastic GAPP works.
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(a) Period t

Consider a set of choices when the prices are

pt = (1, 2).

These are for illustration of how stochastic GAPP works.
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(b) Period t′

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

This picture represents the shares π observed in a data set.
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(c) The Normalized and Discretized Empirical
Choice Probabilities π̂

FIGURE 4. Observed and Scaled Choice Data

Example 3. Suppose the econometrician observes the set of ten choices at two price vec-
tors, pt = (2, 1) and pt′ = (1, 2), given by the black points in Figures 4a and 4b. These



30 DEB, KITAMURA, QUAH, AND STOYE

figures also demonstrate how the choices are scaled (to the red points) on to the normal-
ized budget sets. Figure 4c then shows that the choice probabilities

π̂ =

(
3
5

,
2
5

,
1
2

,
1
2

)′
(the hat notation refers to the fact that the choice probabilities are derived from the sample
choice frequencies which is how we estimate choice probabilities) are determined by the
proportion of the normalized choices that lie on each segment of the budget lines. Lastly,
Figure 5 illustrates the various rational types for these two budget sets. Note that GARP

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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(a) Proportion of this Rational Type: ν1

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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(b) Proportion of this Rational Type: ν2

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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(c) Proportion of this Rational Type: ν3

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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(d) Resulting Distribution of Choices

FIGURE 5. Distribution of Rational Types

(equivalently, GAPP) violations only occur when the choices lie on B2,t and B1,t′ . The
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resulting A matrix is given by

A =


1 1 0
0 0 1
0 1 0
1 0 1

 and, additionally, Aν =


ν1 + ν2

ν3

ν2

ν1 + ν3

 .

The first, second and third column of A correspond to the three types of GARP-consistent
demand behavior, which are depicted in Figures 5a, 5b and 5c respectively. If the pro-
portion of the three types in the population is ν1, ν2 and ν3, the resulting distribution on
the segments of the budget sets are given by Aν, the expression for which is displayed
above and depicted in Figure 5d. Theorem 3 says that rationalization is equivalent to the
existence of ν ∈ R3

+ such that Aν = π̂.
The data from this example can be rationalized by the distribution of rational types

ν =

(
1

10
,

1
2

,
2
5

)′
.

While the rationalizing distribution ν is unique in this example, this is typically not the
case (as the equation Aν = π may have multiple solutions for ν). Notice also that it is not
the case that a solution always exists. Indeed, if π̂1,t′ > π̂1,t, then the choice probabilities
would not be rationalizable as ν2 > ν1 + ν2 is not possibile.

3.3. Welfare Comparisons

Since the test for rationalizability involves finding a distribution ν over different types,
it is possible to use this distribution for welfare comparisons: for any two prices in the
data set and given a distribution ν that rationalizes D , we can determine the proportion
of types who are revealed better off and the proportion who are revealed worse off. How-
ever, since there may be multiple ν that satisfy Aν = π, the welfare rankings extractable
from the data will typically be in terms of bounds.

To be specific, suppose we would like to determine the welfare effect of a price change
from pt′ to pt. Let 1t�∗pt′ denote a vector of length |A| such that the jth element is 1 if

pt �∗p pt′ for the rational type corresponding to column j of A and 0 otherwise. In words,
1t�∗pt′ enumerates the set of rational types for which pt is revealed preferred to pt′ . For a
rationalizable data set D , the solution to the optimization problem

N t�∗pt′ :=
minν 1t�∗pt′ ν,

subject to Aν = π,
(10)

gives the lower bound, while

N t�∗pt′ :=
maxν 1t�∗pt′ ν,

subject to Aν = π,
(11)
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gives the upper bound on the proportion of consumers who are revealed better off at
prices pt compared to pt′ .

Since (10) and (11) are both linear programming problems (which have solutions if,
and only if, D is rationalizable), they are easy to implement and computationally efficient.
Suppose that the solutions are ν and ν respectively; then for any β ∈ [0, 1], βν+(1− β)ν is
also a solution to Aν = π and, in this case, the proportion of consumers who are revealed
better off at pt compared to pt′ is exactly βN t�∗pt′ + (1− β)N t�∗pt′ . In other words, the
proportion of consumers who are revealed better off can take any value in the interval
[N t�∗pt′ , N t�∗pt′ ].

Proposition 3 tells us that the revealed preference relations are tight, in the sense that
if, for some consumer, pt is not revealed preferred to pt′ then there exists an augmented
utility function which rationalizes her consumption choices and for which she strictly
prefers pt′ to pt. Given this, we know that, amongst all rationalizations of D , N t�∗pt′ is

also the infimum on the proportion of consumers who are better off at pt compared to pt′ .
At the other extreme, we know that there is a rationalization for which the proportion of
consumers who are revealed better off at pt′ compared to pt is as low as N t′�∗pt.

20 Apply-
ing Proposition 3 again, a rationalization could be chosen such that all other consumers
prefer pt to pt′ . Therefore, across all rationalizations of D , 1−N t′�∗pt is the supremum on

the proportion of consumers who prefer pt and pt′ . Lastly, since the set of distributions ν

that rationalize D form a convex set, the true proportion of consumers who are better off
can lie anywhere between the two extremes identified.

The following proposition summarizes these observations.

Proposition 4. Let D = {(pt, π̊t)}T
t=1 be a stochastic data set that satisfies Assumption 1 and is

rationalized by the augmented utility model.

(1) Then for every η ∈ [N t�∗pt′ , N t�∗pt′ ], there is rationalization of D for which η is the

proportion of consumers who are revealed better off at pt compared to pt′ .
(2) For any rationalization of D , there is a proportion of consumers who are better off at pt

compared to pt′ . This proportion can take any value in the interval [N t�∗pt′ , 1−N t′�∗pt].

It may be helpful to consider how Proposition 4 applies to Example 3. In that case, there
is a unique solution to Aν = π and the proportion of consumers who are revealed better
off at pt compared to pt′ is ν2 = 1/2, while the proportion who are revealed better off at
pt′ to pt is ν3 = 2/5. Those consumers who belong to neither of these two types could be
either better or worse at pt compared to pt′ . Therefore, across all rationalizations of that
data set, the proportion of consumers who are better off at pt compared to pt′ can be as
low as 1/2 and as high as 1− 2/5 = 3/5.

20Because of Assumption 1, we could assume that this is a strict revealed preference.
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4. THE ECONOMETRIC METHODOLOGY

In this section, we develop the econometric methodology required to test our model
and conduct welfare analysis. Specifically, we first briefly discuss how Theorem 3 allows
us to statistically test the random augmented utility model by using the methodology
developed by KS. We then present the novel econometric theory that is required to ex-
tract the welfare bounds (characterized in statement (1) of Proposition 4) from the data.
As shall become clear, the procedure we develop (for inference on linear transforms of
partially identified vectors) has other applications beyond our specific empirical analy-
sis; specifically, we provide new algorithms for the calculation and statistical inference in
nonparametric counterfactual analysis for a general partially identified model.

4.1. Testing the Random Augmented Utility Model

Recall from Theorem 3 that, given a stochastic data set D = {(pt, π̊t)}T
t=1, a test of the

random augmented utility model is a test of the hypothesis

H0 : ∃ν ∈ R
|A|
+ such that Aν = π,

where π is the normalized and discretized choice probability vector derived from π̊. KS
restate this test in an equivalent (and more convenient) form

H0 : min
ν∈R

|A|
+

[π − Aν]′Ω[π − Aν] = 0, (12)

where Ω is a positive definite matrix. The solution of the above minimization problem
is the projection of π onto the cone

{
Aν | ν ∈ R

|A|
+

}
under the weighted norm ‖ζ‖Ω =

√
ζ ′Ωζ, where ζ ∈ R|A|. The corresponding value of the objective function is the squared

length of the projection residual vector and is zero if, and only if, π can be stochastically
rationalized.

Of course, in practice, the data corresponding to each price pt is not in the form of a
distribution π̊t but instead consists of a cross section of choices {xt

nt
}Nt

nt=1 made by Nt

households. We estimate π by its sample analog π̂ = (π̂1, . . . , π̂T) where each π̂t is ob-
tained by normalizing and discretizing the empirical distribution of the observed choices
{xt

nt
}Nt

nt=1 (as in Figure 4).21 To test (12), KS use a sample counterpart

JN := N min
ν∈R

|A|
+

[π̂ − Aν]′Ω[π̂ − Aν], (13)

where N = ∑T
t=1 Nt denotes the total number of observations (the sum of the number

of households across years). Here, the minimizing value ν̂ may not be unique but the

21In the data we employ for our empirical application, there are no observations that lie on the intersection
of any two normalized budget sets so π̂t determines a probability measure on {B1,t, . . . , BIt ,t}. In other
words, the data in our empirical application satisfies Assumption 1.
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implied choice probabilities η̂ := Aν̂ are. Note that η̂ = π̂ and JN = 0 iff the sample
choice frequencies can be rationalized by a random augmented utility model. In this
case, the null hypothesis is trivially accepted. We determine critical values for the test
statistic by employing the modified bootstrap procedure of KS.

4.2. Nonparametric inference for counterfactuals

Recall that our model allows for welfare comparisons where, for any two prices pt

and pt′ in our data, we can determine bounds [N t�∗pt′ , N t�∗pt′ ] on the proportion of the
population that is better off at the former prices. This is an instance of a more general
problem of determining bounds on a counterfactual object given by a linear transform

θ = ρν subject to Aν = π,

where ρ ∈ R|A| is a given vector and θ ∈ R is the parameter of interest. In our main
application, ρ = 1t�∗pt′ (which, recall, is a vector where the jth element is 1 if pt �∗p pt′

for the rational type corresponding to column j of A and 0 otherwise) and θ = Nt�∗pt′ . It
is worth stressing that the methodology we develop here is valid not just for our model,
but for inference in any setting where identification has the same structure (such as KS).
In this section, we provide a high-level description of our testing procedure, the formal
treatment can be found in Appendix B.

The goal is to calculate and do inference for the set of counterfactuals ΘI , which is given
by

ΘI := {θ |π ∈ S(θ)}, where S(θ) :=
{

Aν | ρν = θ, ν ∈ ∆|A|−1
}

.

We do this by inverting a test of
π ∈ S(θ) (14)

or, equivalently,
min

ν∈∆|A|−1, θ=ρν
[π − Aν]′Ω[π − Aν] = 0.

We use a sample counterpart of the above display as the test statistic:

JN(θ) = min
ν∈∆|A|−1, θ=ρν

[π̂ − Aν]′Ω[π̂ − Aν]

= min
η∈S(θ)

N[π̂ − η]′Ω[π̂ − η].

The challenge is to compute an appropriate critical value for this test statistic which ac-
counts for the fact that its limiting distribution depends discontinuously on nuisance pa-
rameters in a very complex manner.22 This issue is similar to that faced in the canonical

22It is, in principle, possible to derive critical values by (m < n−)subsampling. While asymptotically valid,
critical values derived in this way can be quite conservative, as has been forcefully argued in Andrews and
Soares (2010), page 137.
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moment inequality testing problem (see, for instance, Andrews and Soares (2010)) which
has a tight theoretical link, and is in fact the dual, to our problem. Formally, it can be
shown that π ∈ S(θ) if, and only if,

π satisfies Bπ ≤ 0, B̃π = d(θ) and 1′π = 1, (15)

for some fixed matrices B, B̃ and a vector d that depends on θ (see the Appendix B for
details), where 1 is the |A|-vector of ones. Importantly, for fixed θ and prices {pt}T

t=1,
these objects are known to exist and are nonstochastic.

That said, the reason we cannot directly use testing procedures from the moment in-
equality literature (although we do draw on this literature for the proof of the asymptotic
validity of our method) is that numerically deriving the dual representation (15) is com-
putationally prohibitive for problems of empirically relevant scale (such as our empirical
application). This computational bottleneck requires us to work directly with (14) and so
we instead follow a tightening procedure.

The tightening procedure we employ is similar in spirit to that used in KS but has to ac-
count for the additional features of our testing problem. In particular, establishing the va-
lidity of the tightening method is more intricate as it depends on certain geometric prop-
erties of the set S(θ). Moreover, unlike the hypothesis considered in KS, our hypothesis
(14) depends on a parameter θ that lives in a compact space Θ :=

{
ρν : ν ∈ ∆|A|−1

}
and

may in practice be close to the boundary of that space. This requires a delicate restriction-
dependent tightening, which now we describe.

Let τN be a tuning parameter chosen such that τN ↓ 0 and
√

NτN ↑ ∞ and, for θ ∈ ΘI ,
define the τN-tightened version SτN(θ) of S(θ), that is,

SτN(θ) := {Aν | ρν = θ, ν ∈ VτN(θ)},

where VτN(θ) is obtained by appropriately constricting (tightening) the set ∆|A|−1, the
parameter space for ν in the definition of S . (Appendix B contains the formal definition
of VτN(θ)). As the notation suggests, the way we tighten VτN(θ) is dependent on the
hypothesized value θ in order to deal with the aforementioned issue associated with the
boundary of the parameter space Θ. Note that VτN(θ) converges to ∆|A|−1, hence SτN(θ) to
S as τN → 0, for every value of θ. Though the definition of VτN(θ) provided in Appendix
B for a general (linear) counterfactural is rather involved, we show that it simplifies for
the welfare comparison application considered in this paper.

The set SτN(θ) replaces S(θ) in the bootstrap population, inducing locally conservative
distortions, which guard against discontinuities in the test statistic’s limiting distribution
as a function of nuisance parameters. In Appendix B, we show that tightening proce-
dure turns inequality constraints into binding ones in the bootstrap DGP if their degrees
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of slackness are small, though inequalities with large degrees of slackness remain non-
binding after tightening. This prevents the bootstrap procedure from over-rejection when
the sampling DGP is near the boundary of inequality constraints implied by (14).

Our bootstrap algorithm proceeds as follows. For each θ ∈ Θ

(i) Compute the τN-tightened restricted estimator of the empirical choice distribution

η̂τN := argmin
η∈SτN (θ)

N[π̂ − η]′Ω[π̂ − η].

(ii) Define the τN-tightened recentered bootstrap estimators

π̂
∗(r)
τN := π̂∗(r) − π̂ + η̂τN , r = 1, ..., R,

where π̂∗(r) is a straightforward bootstrap analog of π̂ and R is the number of
bootstrap samples. For instance, in our application, π̂∗(r) is generated by the sim-
ple nonparametric bootstrap of choice frequencies. This is the step that makes
constraints with small slack binding.

(iii) For each r = 1, ..., R, compute the value of the bootstrap test statistic

J∗(r)N,τN
(θ) = min

η∈SτN (θ)
N[π̂

∗(r)
τN − η]′Ω[π̂

∗(r)
τN − η].

(iv) Use the empirical distribution of J∗(r)N,τN
(θ), r = 1, ..., R to obtain the critical value for

JN(θ).

We obtain a confidence interval for θ by collecting the values of θ that are not rejected by
the bootstrap implemented with the algorithm (i)-(iv).

The theorem below establishes the asymptotic validity of the above procedure. Let

F := {(θ, π) | θ ∈ Θ, π ∈ S(θ) ∪ P }

where P denote the set of all π’s that satisfy Condition 1 in Appendix for some (common)
value of (c1, c2).

Theorem 4. Choose τN so that τN ↓ 0 and
√

NτN ↑ ∞. Also, let Ω be diagonal, where all the
diagonal elements are positive. Then under Assumptions 2 and 3,

lim inf
N→∞

inf
(θ,π)∈F

Pr{JN(θ) ≤ ĉ1−α} = 1− α,

where 0 ≤ α ≤ 1
2 and ĉ1−α is the 1− α quantile of J∗N,τN

.

5. EMPIRICAL APPLICATION

In this section, we test our model and conduct welfare analysis on two separate data
sets: the U.K. Family Expenditure Survey (FES) and the Canadian Surveys of Household
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Spending (SHS). The aim of the empirical analysis is to show that the data supports the
model and to demonstrate that the estimated welfare bounds are informatively tight.

We first present the analysis for the FES as it is widely used in the nonparametric de-
mand estimation literature (for instance, by Blundell, Browning, and Crawford (2008),
KS, Hoderlein and Stoye (2014), Adams (2016), Kawaguchi (2017)). In the FES, about
7000 households are interviewed each year and they report their consumption expendi-
tures in a variety of different commodity groups. In addition, the data contains a variety
of other demographic information (most of which we do not need nor exploit). Consump-
tion bundles are derived from the expenditures by using the annual (real) price indices
for these commodity groups taken from the annual Retail Prices Index. To directly con-
trast our analysis with that of Blundell, Browning, and Crawford (2008), we follow them
and restrict attention to households with cars and children, leaving us with roughly 25%
of the original data.

We implement tests for 3, 4, and 5 composite goods. The coarsest partition of 3 goods–
food, services, and nondurables–is precisely what is examined by Blundell, Browning,
and Crawford (2008) (and we use their replication files). As in KS, we increase the dimen-
sion of commodity space by first separating out clothing and then alcoholic beverages
from the nondurables. Recall that the test of our model involves projecting all the con-
sumption bundles for a given year onto a single budget set corresponding to expenditure
1 (as in Figure 5d), and choice probabilities are then estimated by the corresponding sam-
ple frequencies. It is worth reiterating this strength of our model; since our test can be
directly applied to the data, it avoids the layers of smoothing, endogeneity adjustment,
and, in some cases, aggregation conditions that characterize other analyses of these data.

While it is, in principle, possible to conduct a single test on the entire data from 1975
to 1999, we instead implement the test in blocks of 6 years. We do so mainly for two
reasons. The first is practical; the test involves finding a distribution (ν) over the set of
possible rational types and the computational complexity of the test depends the size of
this set (given by the size of the A matrix). This in turn is determined by the number of
distinct patches formed by the intersection of the budget sets and this grows exponen-
tially in the in the number of years.23 The second reason is that the main assumption of
the model—a time-invariant distribution of augmented utility functions—is more plausi-
ble over shorter time horizons. Indeed, we might not expect this to hold over the entire
time horizon spanned by the data because there are first-order changes to the U.K. income
distribution over this period (Jenkins, 2016).

Table 1 (columns correspond to different blocks of 6 years and rows contain the values
of the test statistic and the corresponding p-values) shows that our model is not rejected

23This computational constraint prevents us from testing more than 8 years at a time.
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Year Blocks

75-80 76-81 77-82 78-83 79-84 80-85 81-86 82-87 83-88 84-89

3 Goods Test Statistic (JN) 0.337 0.917 0.899 0.522 0.018 0.082 0.088 0.095 0.481 0.556
p-value 0.04 0.34 0.55 0.59 0.99 0.67 0.81 0.91 0.61 0.48

4 Goods Test Statistic (JN) 0.4 0.698 0.651 0.236 0.056 0.036 0.037 0.043 0.043 0.232
p-value 0.25 0.58 0.63 0.91 0.96 0.99 0.96 0.95 0.99 0.68

5 Goods Test Statistic (JN) 0.4 0.687 0.705 0.329 0.003 0.082 0.088 0.104 0.103 0.144
p-value 0.3 0.66 0.68 0.88 0.999 0.96 0.79 0.85 0.9 0.83

Year Blocks

85-90 86-91 87-92 88-93 89-94 90-95 91-96 92-97 93-98 94-99

3 Goods Test Statistic (JN) 0.027 1.42 2.94 1.51 1.72 0 0.313 0.7 0.676 0.26
p-value 0.69 0.3 0.18 0.24 0.21 1 0.59 0.48 0.6 0.83

4 Goods Test Statistic (JN) 0.227 0.025 0.157 0.154 0.004 1.01 0.802 0.872 0.904 0.604
p-value 0.48 0.96 0.8 0.73 0.97 0.21 0.31 0.57 0.65 0.74

5 Goods Test Statistic (JN) 0.031 0.019 0.018 0.019 0.023 0.734 0.612 0.643 0.634 0.488
p-value 0.85 0.98 0.97 0.91 0.83 0.22 0.4 0.72 0.78 0.79

TABLE 1. Test Statistics and p-values for sequences of 6 budgets of the FES.
Bootstrap size is R = 1000.

by the FES data.24 A similar result is also obtained by KS (the MR model is not rejected
on these data either) but p-values are hard to compare because their analysis incurs two
additional layers of statistical noise by smoothing over expenditure (done by series esti-
mation) and by adjusting for endogeneity. A consequence of this additional noise is that
(ceteris paribus) the test of our model is expected to have higher power, as it has nontriv-
ial power against deviations of the order N−1/2 from the null, whereas smoothing-based
tests requires deviations of the order of a nonparametric rate to have nontrivial power.

We also estimated the bounds [N t�∗pt′ , N t�∗pt′ ] on the proportion of households that

are better off at prices pt than at prices pt′ . For brevity, we present a few representative
estimates using data for the years 1975-1980 in Table 2. The column ‘Estimated Bounds’
are the bounds obtained by calculating 1t�∗pt′ ν from the (not necessarily unique) values
of ν that minimize the test statistic (13). Note that in two cases this estimate is unique
while it is not in the other two cases. In either scenario, the procedure set out for calculat-
ing confidence intervals in Section 4.2 is applicable and they give the intervals displayed

24The proof of the asymptotic validity of the test of our model presumes that α ≤ 0.5 and so p-values above
0.5 should not be interpreted to indicate anything other than nonsignificance at interesting test sizes.
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Comparison Estimated Bounds Confidence Interval
p1976 �∗p p1977 [.150, .155] [.13, .183]
p1977 �∗p p1976 {.803} [.784, .831]
p1979 �∗p p1980 [.517, .530] [.487, .56]
p1980 �∗p p1979 {.463} [.436, .497]

TABLE 2. Estimated bounds and confidence intervals for the proportion of
consumers who reveal prefer one price to another one in the FES data. Data
used are for 1975-1980. Bootstrap size is R = 1000.

(which must necessarily contain the estimated bounds). It is worth noting that the width
of these intervals is less than .1 throughout, so they are quite informative.

For our second empirical application using Canadian data, we use the replication kit of
Norris and Pendakur (2013, 2015). Like the FES, the SHS is a publicly available, annual
data set of household expenditures in a variety of different categories. It also contains rich
demographic data (most of which we once again do not need nor use). We study annual
expenditure in 5 categories that constitute a large share of the overall expenditure on non-
durables: food purchased (at home and in restaurants), clothing and footwear, health and
personal care, recreation, and alcohol and tobacco. The SHS data is rich enough to allow
us to analyze the data separately for the nine most populous provinces: Alberta, British
Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Quebec,
and Saskatchewan. The number of households in each province-year range from 291
(Manitoba, 1997) to 2515 (Ontario, 1997). We use province-year prices indices (as con-
structed by Norris and Pendakur (2015)) and deflate them using province-year CPI data
from Statistics Canada to get real price indices.

Table 4 displays the test statistics and associated p-value for each province and every
6 year block. Compared to the FES data, there are two notable differences. The first is
that many more test statistics are exactly zero; that is, the observed choice frequencies
are rationalized by the random augmented utility model. The second is that, for a small
proportion of year blocks, there are statistically significant positive test statistics (see, for
instance, the last three columns for British Columbia). These low p-values suggest that
the conservative distortion which we incur to guarantee uniform validity is modest. Ad-
ditionally, the p-values taken together do not reject the model if multiple testing is taken
into account; for example, step-down procedures would terminate at the first step (that
is, Bonferroni adjustment). Finally, we also provide some sample welfare bounds in Table
4. The bounds for the SHS are qualitatively similar to those computed for the FES: there
are instances of point identification and in the case of partial identification, the bounds
are informative and no wider than .1.
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Province Year Blocks

97-02 98-03 99-04 00-05 01-06 02-07 03-08 04-09

Alberta Test Statistic (JN) .07 0 0 0 0 0 .003 4.65
p-value .94 1 1 1 1 1 .98 .04

British Columbia Test Statistic (JN) .89 .56 .48 .07 .05 6.23 8.87 8.71
p-value .47 .47 .98 .96 .97 .05 .02 .01

Manitoba Test Statistic (JN) 0 0 0 0 0 0 .01 .01
p-value 1 1 1 1 1 1 1 1

New Brunswick Test Statistic (JN) .08 .05 0 0 0 .60 .58 .57
p-value .94 .94 1 1 1 .58 .79 .68

Newfoundland Test Statistic (JN) .10 .32 .29 .29 .38 3.08 2.30 2.08
p-value .85 .90 .91 .87 .81 .21 .35 .27

Nova Scotia Test Statistic (JN) .05 .03 0 0 0 0 .93 1.02
p-value .97 .98 1 1 1 1 .69 .58

Ontario Test Statistic (JN) .064 .040 .035 0 0 0 0 0
p-value .98 .95 .91 1 1 1 1 1

Quebec Test Statistic (JN) .11 0 0 0 0 .51 .54 .49
p-value .88 1 1 1 1 .67 .67 .65

Saskatchewan Test Statistic (JN) 0 0 0 0 0 .02 .02 0
p-value 1 1 1 1 1 1 1 1

TABLE 3. Test Statistics and p-values for sequences of 6 budgets of the SHS.
Bootstrap size is R = 1000.

Comparison Estimated Bounds Confidence Interval
p1998 �∗p p2001 {.099} [.073, .125]
p2001 �∗p p1998 {.901} [.875, .927]
p1999 �∗p p2002 [.299, .341] [.272, .385]
p2002 �∗p p1999 [.624, .701] [.594, .728]

TABLE 4. Estimated bounds and confidence intervals for the proportion of
consumers who reveal prefer one price to another one in the SHS data. Data
used are for 1997-2002 in British Columbia. Bootstrap size is R = 1000.

We end this section with two remarks. First, while there is an indirect effect through
the potential size of the matrix A, neither the computational complexity of our test nor
its statistical power depend directly on the dimension of commodity space. In particular,
we avoid a statistical curse of dimensionality and most of our tests for a five dimensional
commodity space can be replicated on everyday equipment. Second, we note that finite
sample power does not necessarily increase in the number of years being tested or the



REVEALED PRICE PREFERENCE 41

dimension of the commodity space. Either could increase the set of revealed preference
relations to be tested which will increase power if one of them is in fact violated; but this
has to be traded off against increased noise.

6. CONCLUSION

We developed a revealed preference analysis of a model of consumption in which the
consumer maximizes utility over an observed set of purchases, taking into account a disu-
tility of expenditure, but is not subjected to a hard budget constraint. Our model naturally
generalizes to a random utility context which is suitable for demand analysis using re-
peated cross-section data. We show how to statistically test the model and develop novel
econometric theory for inference on the proportion of the population that benefits from a
price change (and, more generally, for determining bounds on linear transforms of par-
tially identified vectors). The model is supported by empirical evidence from Canadian
and U.K. data and these applications show that meaningful welfare comparisons can be
extracted from the data.
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APPENDIX A. OMITTED PROOFS FROM SECTION 2

PROOF OF PROPOSITION 1. Our proof of part (1) relies on a result of Varian (1988),
which says that given any data setD, there always exist {zt}T

t=1 such that the augemented
data set {((pt, 1), (xt, zt))}T

t=1 obeys GARP. By Afriat’s Theorem, there is a utility function
Ũ : RL+1 → R such that (xt, zt) is optimal in the budget set {(x, z) ∈ RL ×R : ptx + z ≤
Mt}, where Mt = zt + ptxt. Afriat’s Theorem also guarantees that this utility function
has various nice properties and, in particular, Ũ can be chosen to be strictly increasing.
Let M̄ = ∑T

t=1 Mt/T and define the augmented utility function U : RL
+ ×R− → R by

U(x,−e) := Ũ(x, M̄− e). Then since Ũ is strictly increasing, xt solves maxx∈RL
+

U(x, δt −
ptx) where δt = Mt − M̄.

There are two claims in (2). We first consider the case where D obeys GAPP. Note
that whenever pt′xt′ − ptxt′ < 0, then for any {qt}T

t=1 and {δt}T
t=1 such that (7) holds, we

obtain pt′xt′ − ptxt′ < δt′ − εt′xt′ − δt + εtxt′ . This inequality can be re-written as

− qtxt′ + δt < −qt′xt′ + δt′ . (16)

Choose a number M > maxt(qtxt − δt) and define the data set D̃ = {(qt, 1), (xt, M + δt −
qtxt)}T

t=1. Since (16) holds whenever pt′xt′ − ptxt′ < 0,

(qt, 1)(xt, M + δt − qtxt) > (qt, 1)(xt′ , M + δt′ − qt′xt′) only if pt′xt′ > ptxt′ .

This guarantees that D̃ obeys GARP since D obeys GAPP. By Afriat’s Theorem, there is a
strictly increasing utility function Ũ : RL → R such that (xt, M + δt − qtxt) is optimal in
the budget set {(x, z) ∈ RL+1 : qtx + z ≤ M + δt}. Define the augmented utility function
U : RL

+ ×R− → R by U(x,−e) := Ũ(x, M− e). Since Ũ is strictly increasing, xt solves
maxx∈RL

+
U(x, δt − qtx).

Now consider the case where D violates GAPP. Observe that whenever pt′xt′ − ptxt′ >

0, then for any {qt}T
t=1 and {δt}T

t=1 such that (7) holds, we obtain pt′xt′ − ptxt′ > δt′ −
εt′xt′ − δt + εtxt′ . This inequality can be re-written as

− qtxt′ + δt > −qt′xt′ + δt′ . (17)

By way of contradiction, suppose there is an augmented utility function U such that xt

maximizes U(x,−qtx+ δt) for all t. For any observation t, we write Vt := maxx∈X U(x,−qtx+
δt). Since (17) holds, we obtain

Vt ≥ U(xt′ ,−qtxt′ + δt) > U(xt′ ,−qt′xt′ + δt′) = Vt′ .

Thus, we have shown that Vt > Vt′ whenever pt′xt′ − ptxt′ > 0. Since D violates GAPP
there is a finite sequence

{(
pt1 , xt1

)
, . . . ,

(
ptN , xtN

)}
of distinct elements in D, such that

pti xti+1 < pti+1 xti+1 for all i ∈ {1, . . . , N − 1} and ptN xt1 < pt1 xt1 . By the observation we
have just made, we obtain Vt1 > Vt2 > ...VtN > Vt1 , which is impossible. �
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PROOF OF PROPOSITION 3.

(1) We have already shown the ‘only if’ part of this claim, so we need to show the ‘if’
part holds. From the proof of Theorem 1, we know that for a large M, it is the case that
pt �p pt′ if and only if (xt, M− ptxt) �x (xt′ , M− pt′xt′) and hence pt �∗p pt′ if and only
if (xt, M− ptxt) �∗x (xt′ , M− pt′xt′). If pt 6�∗p pt′ , then (xt, M− ptxt) 6�∗x (xt′ , M− pt′xt′)

and hence there is a utility function Ũ : RL+1
+ → R rationalizing the augmented data set

D̃ such that Ũ(xt, M− ptxt) < Ũ(xt′ , M− pt′xt′) (see Remark 2 in Section C). This in turn
implies that the augmented utility function U (as defined by (3)), has the property that
U(xt,−ptxt) < U(xt′ ,−pt′xt′) or, equivalently, V(pt) < V(pt′).

(2) Given part (1), we need only show that if pt �∗p pt′ but pt 6�∗p pt′ , then there is some
augmented utility function U such that U(xt,−ptxt) = U(xt′ ,−pt′xt′). To see that this
holds, note that if pt �∗p pt′ but pt 6�∗p pt′ , then (xt, M − ptxt) �∗x (xt′ , M − pt′xt′) but
(xt, M− ptxt) 6�∗x (xt′ , M− pt′xt′). In this case there is a utility function Ũ : RL+1

+ → R

rationalizing the augmented data set D̃ such that Ũ(xt, M − ptxt) = Ũ(xt′ , M − pt′xt′).
This in turn implies that the augmented utility function U (as defined by (3)) satisfies
U(xt,−ptxt) = U(xt′ ,−pt′xt′) and so V(pt) = V(pt′). �

PROOF OF THEOREM 2. We prove this result for the more general case where the con-
sumption space is a closed subset X of RL

+. It is obvious that (3) implies (1). We first
show that (1) implies (2), i.e., nonlinear GAPP is necessary for rationalization. Given a
price system ψ : X → R, we define the indirect utility V(ψ) = maxx∈X U(x,−ψ(x)). If
ψt′ �p ψt, then ψt′(xt) ≤ ψt(xt), and so

V(ψt′) ≥ U(xt,−ψt′(xt)) ≥ U(xt,−ψt(xt)) = V(ψt).

Furthermore, U(xt,−ψt′(xt)) > U(xt,−ψt(xt)) if ψt′ �p ψt, and in that case V(ψt′) >

V(ψt). It follows that if pt′ �∗p pt, then V(ψt′) ≥ V(ψt), which mean that it is not possible
for pt �∗p pt′ .

It remains for us to show that (2) implies (3). Choose a number M > maxt∈T ψt(xt). We
associate to each observation t the constraint set

Ct = {(x, z) ∈ X×R+ : ψt(x) + z ≤ M}

and define the augmented data set D̃ = {(Ct, (xt, zt)}, where zt = M − ψt(xt). Our
assumptions on ψt guarantee that Ct is a compact set and that it is downward compre-
hensive, i.e., if (x, z) ∈ Ct then so is (x′, z′) ∈ X×R+ such that (x′, z′) ≤ (x, z).

Notice that (xt, zt) ∈ Ct′ if and only if ψt′ �p ψt. This is because (xt, zt) ∈ Ct′ if and
only if

ψt′(xt) + zt ≤ M = ψt(xt) + zt.
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When this occurs, we write (xt′ , zt′) �x (xt, zt). Since ψt is increasing, if (x̂, ẑ) > (x, z),
then ψ(x̂) + ẑ > ψ(x) + z. This guarantees that (xt, zt) ∈ Ct′ if and only if ψt′ �p ψt,
where Ct′ consists of those elements in Ct′ which are dominated by some element in Ct′ ,
i.e., (x, z) ∈ Ct′ if it is in Ct′ and there is (x̂, ẑ) ∈ Ct′ such that (x̂, ẑ) > (x, z); in this case,
we write (xt′ , zt′) �x (xt, zt). Given �x and �x, we can then define GARP in the usual
way. It is clear that D̃ satisfies GARP if and only D satisfies nonlinear GAPP.

Since D obeys nonlinear GAPP, D̃ obeys GARP and by Theorem 2 in Nishimura, Ok,
and Quah (2017), there is a continuous and strictly increasing function Ũ : X ×R+ → R

for which (xt, zt) maximizes Ũ in Ct, for all t ∈ T. Furthermore, Ũ can be chosen to
have the following property: if (x, z) ∈ Ct and Ũ(x, z) = Ũ(xt, zt) then, for some s ∈ T,
(x, z) = (xs, zs) and (xs, zs) �∗x (xt, zt). In other words, any bundle (x, z) in Ct has strictly
lower utility than (xt, zt), unless it is revealed preferred to (xt, zt) (in which case the two
bundles will have the same utility).

Note that we can always choose Ũ to be bounded above on X×R+. Indeed, if Ũ is not
bounded, we can define another utility function Û on X×R+ by

Û(x, z) = min{Ũ(x, z), K + h(x, z)},

where K > maxt∈T{Ũ(xt, zt)} and h is a positive, continuous, strictly increasing, and
bounded real-valued function on X ×R+. Then Û is continuous, strictly increasing, and
bounded above. Furthermore, for all (x, z) ∈ Ct, Ũ(x, z) < K and so Û(x, z) = Ũ(x, z).
Therefore, (xt, zt) maximizes Û(x, z) in Ct and Û(xt, zt) will be strictly greater Û(x, z) for
any (x, z) ∈ Ct that is not revealed preferred to (xt, zt).

We define the expenditure-augmented utility function

U(x,−e) = Ũ(x, max{M− e, 0})− B min{e−M, 0},

where B > 0. This function is continuous, strictly increasing, and bounded above. We
claim that for B sufficiently large, xt ∈ arg maxx∈X U(x,−ψt(x)). Clearly, if x satisfies
M− ψt(x) ≥ 0, in other words (x, M− ψt(x)) ∈ Ct, then

U(x,−ψ(x)) = Ũ(x, M− ψ(x)) ≤ Ũ(xt, M− ψ(xt)) = U(xt,−ψt(xt))

for any B > 0. So if there is no B obeying the specified condition, there must be a sequence
Bn → ∞, and xn with M− ψt(x) < 0 such that, for all n,

U(xn,−ψt(xn)) = Ũ(xn, 0)− Bn(ψ
t(xn)−M) > U(xt,−ψt(xt)) = Ũ(xt, zt). (18)

Since Ũ is bounded above and Bn → ∞, (18) implies that ψt(xn) → M. By our as-
sumption on ψt, xn is contained in a bounded set; by taking subsequences if neces-
sary we can assume that xn has a limit x, with ψt(x) = M. Then, it follows from (18)
again that Ũ(x, 0) ≥ Ũ(xt, zt). But this is impossible because since (x, 0) 6= (xs, zs)
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for any s ∈ T and thus Ũ(x, 0) < Ũ(xt, zt). We conclude that for B sufficiently large
xt ∈ arg maxx∈X U(x,−ψt(x)). Since the number of observations is finite, we could find
a B for which this holds for all t ∈ T (in other words, U rationalizes D).

Lastly, we need to show that maxx∈X U(x,−ψ(x)) has a solution for any price system
ψ. Since U is bounded above, u∗ = supx∈X U(x,−ψ(x)) exists and there is a sequence xn

such that U(xn,−ψ(xn))→ u∗. If xn is unbounded, ψ(xn)→ ∞, which (given the form of
U) means that U(xn,−ψ(xn)) → −∞. This is impossible and so xn is bounded and will
have a subsequence converging to some x∗ ∈ X. By the continuity of U and ψ, we obtain
U(x∗,−ψ(x∗)) = u∗. �

APPENDIX B. OMITTED MATERIAL FROM SECTION 4

In this section, we formally develop our bootstrap procedure from Section 4.2. We
begin by describing Weyl-Minkowski duality25 which is used for the equivalent (dual)
restatement (15) of our test (14). As we mentioned earlier, we will also appeal to this
duality in the proof of the asymptotic validity of our testing procedure.

Theorem 5. (Weyl-Minkowski Theorem for Cones) A subset C of RI is a finitely generated cone

C = {ν1a1 + ... + ν|A|a|A| : νh ≥ 0} for some A = [a1, ..., aH] ∈ RI×|A| (19)

if, and only if, it is a finite intersection of closed half spaces

C = {t ∈ RI |Bt ≤ 0} for some B ∈ Rm×I . (20)

The expressions in (19) and (20) are called a V-representation (as in “vertices”) and
a H-representation (as in “half spaces”) of C, respectively. In what follows, we use an
H-representation of cone(A) corresponding to a m× I matrix B as implied by Theorem 5.

We are now in a position to show that the bootstrap procedure defined in Section 4.2 is
asymptotically valid. Note first that Θ = [θ, θ], where

θ = max
ν∈∆|A|−1

ρν = max
1≤j≤|A|

ρj (21)

θ = min
ν∈∆|A|−1

ρν = min
1≤j≤|A|

ρj, (22)

where ρj denotes the jth component of ρ. We normalize (ρ, θ) such that Θ = [θ, θ + 1].
Next, define

H := {1, 2, ..., |A|} (23)

H := {j ∈ H | ρj = θ} (24)

H := {j ∈ H | ρj = θ} (25)

25See, for example, Theorem 1.3 in Ziegler (1995).
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H0 := H \ (H∪H). (26)

Recall that τN is a tuning parameter chosen such that τN ↓ 0 and
√

NτN ↑ ∞. For θ ∈ ΘI ,
we now formally define the τN-tightened version of S as

SτN(θ) := {Aν | ρν = θ, ν ∈ VτN(θ)},

where

VτN(θ) :=

ν ∈ ∆|A|−1

∣∣∣∣∣∣∣∣
νj ≥ (θ−θ)τN

|H∪H0| , j ∈ H, νj′ ≥ (θ−θ)τN
|H∪H0|

, j′ ∈ H,

νj′′ ≥
[
1− (θ−θ)|H|

|H∪H0| −
(θ−θ)|H|
|H∪H0|

]
τN
|H0| , j′′ ∈ H0

 .

In applications where ρ is binary, the above notation simplifies. Specifically, in our
empirical application on deriving the welfare bounds, ρ = 1t�∗pt′ and θ = Nt�∗pt′ . Here,
θ = 1, θ = 0, and θ− θ = 1 holds without any normalization. Also,H (H) is just the set of
indices for the types that (do not) prefer price pt compared to pt′ , while H0 is empty. We
then have:

SτN(Nt�∗pt′) =
{

Aν
∣∣∣ 1′t�∗pt′ν = Nt�∗pt′ , ν ∈ VτN(Nt�∗pt′)

}
,

where

VτN(Nt�∗pt′) =

{
ν ∈ ∆|A|−1

∣∣∣∣∣ νj ≥
(1−Nt�∗pt′)τN

|H| , j ∈ H, νj′ ≥
Nt�∗pt′τN

|H| , j′ ∈ H
}

.

We now state the mild data assumptions.

Assumption 2. For all t = 1, ..., T, Nt
N → κt as N → ∞, where κt > 0, 1 ≤ t ≤ T.

Assumption 3. The econometrican observes T independent cross-sections of i.i.d. sam-

ples
{

xt
n(t)

}Nt

n(t)=1
, t = 1, ..., T of consumers’ choices corresponding to the known price

vectors {pt}T
t=1.

Next, let di,t
n(t) := 1{xt

n(t) ∈ Bi,t}, dt
n(t) = [d1,t

n(t), ..., dIt,t
n(t)], and dt

n = [d1,t
n , ..., dIt,t

n ]. Let dt

denote the choice vector of a consumer facing price pt (we can, for example, let dt = dt
1).

Define d = [d′1, ..., d′T]
′: note, E[d] = π holds by definition. Among the rows of B some

of them correspond to constraints that hold trivially by definition, whereas some are for
non-trivial constraints. Let KR be the index set for the latter. Finally, let

g = Bd

= [g1, ..., gm]
′.

With these definitions, consider the following requirement:
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Condition 1. For each k ∈ KR, var(gk) > 0 and E[|gk/
√

var(gk)|2+c1 ] < c2 hold, where
c1 and c2 are positive constants.

This guarantees the Lyapunov condition for the triangular array CLT used in establishing
asymptotic uniform validity. This type of condition has been used widely in the literature
of moment inequalities; see Andrews and Soares (2010).

PROOF OF THEOREM 4.

Define
C = cone(A)

and
T (θ) = {π = Aν : ρ′ν = θ, ν ∈ R|A|},

an affine subspace of RI . It is convenient to rewrite T (θ) as T (θ) = {t ∈ RI : B̃t = d(θ)}
where B̃ ∈ m̃×RI , d(·) ∈ m̃× 1, and m̃ all depend on (ρ, A). We let b̃j denote the j-th
row of B̃. Then

S(θ) = C ∩ ∆|A|−1 ∩ T (θ).
By Theorem 5, C = {π : Bπ ≤ 0}, therefore

S(θ) = {t ∈ R|A| : Bt ≤ 0, B̃t = d(θ), 1′Ht = 1}. (27)

Let
ψ(θ) = [ψ1(θ), ..., ψH(θ)]

′ θ ∈ Θ

with

ψj(θ) =


(θ−θ)
|H∪H0| if j ∈ H
(θ−θ)

|H∪H0|
if j ∈ H[

1− (θ−θ)|H|
|H∪H0| −

(θ−θ)|H|
|H∪H0|

]
1
|H0| if j ∈ H0

,

where terms are defined in (23)-(26). Then

SτN(θ) = {π = Aν : ν ≥ τNψ(θ), ν ∈ ∆|A|−1, ρ′ν = θ}.

Finally, let
CτN = {π = Aν : ν ≥ τNψ(θ)}.

Then
SτN(θ) = CτN ∩ ∆|A|−1 ∩ T (θ).

Proceeding as in the proof of Lemma 4.1 in KS, we can express the set CτN as

CτN = {t : Bt ≤ −τNφ(θ)}

where
φ(θ) = −BAψ(θ).
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As in Lemma 4.1 in KS, let the first m̄ rows of B represent inequality constraints and the
rest equalities, and also let Φkh the (k, h)-element of the matrix −BA. We have

φk =
|A|
∑
h=1

Φkhψh(θ)

where, for each k ≤ m̄, {Φkh}|A|h=1 are all nonnegative, with at least some of them being
strictly positive, and Φkh = 0 for all h if m̄ < k ≤ m. Since ψh(θ) > 0, 1 ≤ h ≤ |A| for
every θ ∈ Θ by definition, we have φj(θ) ≥ C, 1 ≤ j ≤ m̄ for some positive constant C,
and φj(θ) = 0, m̄ < j ≤ m for every θ ∈ Θ. Putting these together, we have

SτN(θ) = {t ∈ R|A| : Bt ≤ −τNφ(θ), B̃t = d(θ), 1′Ht = 1}

where 1H denotes the |A|-vector of ones. Define the RI-valued random vector

π∗τN
:=

1√
N

ζ + η̂τN , ζ ∼ N(0, Ŝ)

where Ŝ is a consistent estimator for the asymptotic covariance matrix of
√

N(π̂ − π).
Then (conditional on the data) the distribution of

δ∗(θ) := N min
η∈SτN (θ)

[π∗τN
− η]′Ω[π∗τN

− η]

corresponds to that of the bootstrap test statistics. Let

B∗ :=

 B
B̃

1′H


Define ` = rank(B∗) for the augmented matrix B∗ instead of B in KS, and let the `× m-
matrix K be such that KB∗ is a matrix whose rows consist of a basis of the row space
row (B∗). Also let M be an (I − `)× I matrix whose rows form an orthonormal basis of
kerB∗ = ker(KB∗), and define P = (KB∗

M ). Finally, let ĝ = B∗π̂.

Define

T(x, y) :=
(

x
y

)′
P−1′ΩP−1

(
x
y

)
, x ∈ R`, y ∈ RI−`

t(x) := min
y∈RI−`

T(x, y)

s(g) := min
γ=[γ≤′,γ= ′]′,γ≤≤0,γ′∈col(B)

t(K[g− γ])

with

γ= =

0m−m̄

d(θ)
1





REVEALED PRICE PREFERENCE 51

where 0m−m̄ denotes the (m− m̄)-vector of zeros. It is easy to see that t : R` → R+ is a
positive definite quadratic form. By (27), we can write

δN(θ) = Ns(ĝ) = s(
√

Nĝ).

Likewise, for the bootstrapped version of δ we have

δ∗(θ) = N min
η∈SτN (θ)

[π∗τN
− η]′Ω[π∗τN

− η]

= s(ϕN(ξ̂) + ζ),

where ξ̂ = B∗π̂/τN. Note the function ϕN(ξ) = [ϕ1
N(ξ), ..., ϕm

N(ξ)] for ξ = (ξ1, ..., ξm)′ ∈
col(B∗). Moreover, its k-th element ϕk

N for k ≤ m̄ satisfies

ϕk
N(ξ) = 0

if |ξk| ≤ δ and ξ j ≤ δ, 1 ≤ j ≤ m, δ > 0, for large enough N and ϕk
N(ξ) = 0 for

k > m̄. This follows (we use some notation in the proof of Theorem 4.2 in KS, which
the reader is referred to) by first noting that it suffices to show that for small enough
δ > 0, every element x∗ that fulfills equation (9.2) in KS with its RHS intersected with
∩m̃

j=1S̃j(δ), S̃j(δ) = {x : |b̃′jx− dj(θ)| ≤ τδ} satisfies

x∗|S(θ) ∈ ∩q
j=1Hτ

j ∩ L ∩ T (θ).

If not, then there exists (ã, x̃) ∈ F ∩ T (θ)×∩q
j=1Hj ∩ L ∩ T (θ) such that

(ã− x̃)′(x̃|Sτ(θ)− x̃) = 0,

where x̃|Sτ(θ) denotes the orthogonal projection of x̃ on Sτ(θ). This, in turn, implies
that there exists a triplet (a0, a1, a2) ∈ A ×A×A such that (a1 − a0)

′(a2 − a0) < 0. But
as shown in the proof of Theorem 4.2 in KS, this cannot happen. The conclusion then
follows by Theorem 1 of Andrews and Soares (2010). �
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APPENDIX C. NOT FOR PUBLICATION ONLINE APPENDIX: AFRIAT’S THEOREM

Afriat’s Theorem (Afriat (1967)). Given a data set D = {(pt, xt)}T
t=1, the following are equiv-

alent:

(1) D can be rationalized by a locally nonsatiated utility function.
(2) D satisfies GARP.
(3) D can be rationalized by a strictly increasing, continuous, and concave utility function.

REMARK 1. The discussion preceding the theorem essentially shows that (1) implies (2).
The standard argument that shows (2) implies (3) (for instance in Fostel, Scarf, and Todd
(2004)) works by showing that a consequence of GARP is that there exist numbers φt and
λt > 0 (for all t ∈ T) that solve the inequalities

φt′ ≤ φt + λt pt(xt′ − xt) for all t′ 6= t. (28)

It is then straightforward to show that

Ũ(x) = min
t∈T

{
φt + λt pt(x− xt)

}
(29)

rationalizes D, with the utility of the observed consumption bundles satisfying Ũ(xt) =

φt. The function Ũ is the lower envelope of a finite number of strictly increasing affine
functions, and so it is strictly increasing, continuous, and concave. A remarkable feature
of this theorem is that while GARP follows simply from local nonsatiation of the util-
ity function, it is sufficient to guarantee that D is rationalized by a utility function with
significantly stronger properties.

REMARK 2. To be precise, GARP guarantees that there is preference % (in other words,
a complete, reflexive, and transitive binary relation) on X that extends the (potentially
incomplete) revealed preference relations �∗x and �∗x in the following sense: if xt′ �∗x xt,
then xt′ % xt and if xt′ �∗x xt then xt′ � xt. One could then proceed to show that, for
any such preference%, there is in turn a utility function Ũ that rationalizesD and extends
% (from X to RL

+) in the sense that Ũ(xt′) ≥ (>)Ũ(xt) if xt′ % (�)xt (see Quah (2014)).
This has implications on the inferences one could draw from the data. If xt′ 6�∗x xt (or
if xt′ �∗x xt but xt′ 6�∗x xt) then it is always possible to find a preference extending the
revealed preference relations such that xt � xt′ (or xt′ ∼ xt respectively).26 Therefore,
xt′ �∗x (�∗x)xt if and only if every locally nonsatiated utility function rationalizing D
has the property that Ũ(xt′) ≥ (>)Ũ(xt). We will similarly argue that the revealed price
preference relation contains the most detailed information for welfare comparisons in our
model.

26We use xt′ ∼ xt to mean that xt′ % xt and xt % xt′ .
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REMARK 3. A feature of Afriat’s Theorem that is less often remarked upon is that in fact
Ũ, as given by (29), is well-defined, strictly increasing, continuous, and concave on the
domain RL, rather than just the positive orthant RL

+. Furthermore,

xt ∈ argmax
{x∈RL : ptx≤ptxt}

Ũ(x) for all t ∈ T. (30)

In other words, xt is optimal even if Ũ is extended beyond the positive orthant and x can
be chosen from the larger domain. (Compare (30) with (1).) We utilize this feature when
we apply Afriat’s Theorem in our proofs.
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