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SHAPE CONSTRAINED DENSITY ESTIMATION
VIA PENALIZED RÉNYI DIVERGENCE

ROGER KOENKER AND IVAN MIZERA

Abstract. Shape constraints play an increasingly prominent role
in nonparametric function estimation. While considerable recent
attention has been focused on log concavity as a regularizing device
in nonparametric density estimation, weaker forms of concavity
constraints encompassing larger classes of densities have received
less attention but offer some additional flexibility. Heavier tail be-
havior and sharper modal peaks are better adapted to such weaker
concavity constraints. When paired with appropriate maximal en-
tropy estimation criteria these weaker constraints yield tractable,
convex optimization problems that broaden the scope of shape con-
strained density estimation in a variety of applied subject areas.

In contrast to our prior work, Koenker and Mizera (2010), that
focused on the log concave (α = 1) and Hellinger (α = 1/2) con-
straints, here we describe methods enabling imposition of even
weaker, α ≤ 0 constraints. An alternative formulation of the con-
cavity constraints for densities in dimension d ≥ 2 also significantly
expands the applicability of our proposed methods for multivariate
data. Finally, we illustrate the use of the Renyi divergence crite-
rion for norm-constrained estimation of densities in the absence of
a shape constraint.

1. Introduction

The observation of Grenander (1956) that maximum likelihood, while
failing for the general problem of probability density estimation, still
delivers a viable result under monotonicity restriction may be consid-
ered the genesis of shape constrained nonparametric density estimation.
Prakasa Rao (1969) first investigated nonparametric maximum likeli-
hood estimation of a unimodal density assuming a known mode and
developing large sample theory for the Grenander (1956) estimator.
An extensive literature has followed, including work by Birgé (1997)
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2 Penalized Rényi Divergence

incorporating estimation of the mode, and work on exploratory diag-
nostics for unimodality by Cox (1966), Silverman (1981), Hartigan and
Hartigan (1985), and others.

As noted by Dümbgen and Rufibach (2009), estimating unimodal
densities à la Grenander is not fully satisfactory; even when the mode is
known some additional restrictions on the estimated density are needed
to achieve global consistency. This may help to explain the recent shift
in research focus to surrogates of unimodality. Log-concave densities, or
strongly unimodal densities constitute a natural alternative since they
play an important role in core statistical theory as well as many appli-
cation areas, and offer some distinct advantages over unimodality per
se from both computational and theoretical perspectives as elucidated
by early exponents of the approach: Eggermont and LaRiccia (2001),
Walther (2002), Dümbgen and Rufibach (2009), Pal, Woodroofe, and
Meyer (2007), and Cule, Samworth, and Stewart (2010). See Walther
(2009) for a more extensive review, and Eggermont and LaRiccia (2000,
2001) for related discussion from a slightly different perspective.

Shape constraints can be formalized as imposing a “hard” penalty
that takes the value 0 if the constraint is satisfied and +∞ otherwise.
Such penalties, in constrast to the “soft” norm-type penalties consid-
ered in Koenker and Mizera (2007, 2008), have the salient virtue that
they require no choice of tuning parameters. Shape constraints are con-
sequently somewhat simpler mathematically, so we will consider them
first, returning to norm-type penalties toward the end of our exposition.

The evolutionary development of Koenker and Mizera (2010), no
longer followed here, began with the variational formulation of the log-
concave MLE problem for given X = {X1, · · · , Xn}, with Xi ∈ Rd:

(P1) min
{ 1

n

n∑
i=1

g(Xi) +

∫
e−g(x)dx

∣∣∣ g ∈ K(X)
}
,

with K(X) denoting the set of closed convex functions on the convex
hull, H(X), of X. A solution ĝ : H(X) 7→ R yields a density estimate

f̂(x) = exp(−ĝ(x)) onH(X); the fact that this obviously positive quan-
tity is a probability density estimate, that is, its integral is equal to one,
is assured by the presence of the integral term in (P1) Outside H(X),

the solution ĝ(x) = −∞, meaning that f̂(x) = 0. Interpreting (P1) as
a “primal” formulation in the context of convex programming, Koenker
and Mizera (2008, 2010), derived the associated “dual” problem,

(D1) max
{∫
−f log fdx

∣∣∣ f =
d(Q(X)−G)

dx
, G ∈ K(X)o

}
,
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where Q(X) = n−1
∑n

i=1 δXi is the empirical probability measure,

K(X)o =
{
G ∈ C∗(X)

∣∣∣ ∫ g dG ≤ 0, g ∈ K(X)
}

is the polar cone associated with K(X), and C∗(X) denotes the set of
(signed) Radon measures on H(X). The appearance of the Shannon
entropy in the dual formulation (D1) may be interpreted as the desire

to find f̂ closest in the Kullback-Leibler divergence to the uniform
distribution on H(X) subject to the concavity constraint.

For the problem (P1), the solutions admit further characterization:
ĝ are piecewise linear on H(X), so estimated densities are piecewise
exponential; see e.g. Koenker and Mizera (2010), Theorem 2.1. This
feature motivated us to look for larger classes of quasi-concave densi-
ties that would accommodate heavier tails and more sharply peaked
densities than the log concaves. Such classes are provided by s-concave
functions. Loosely speaking, a function is called s-concave, for s > 0, if
its s-th power is concave. More precisely, a non-negative, real function
f , defined on a convex set C ⊂ Rd is s-concave, if there is a convex
function g such that

f =


(−g)1/s for s > 0,

e−g for s = 0,

g1/s for s < 0.

This is equivalent to the definition of Avriel (1972) used by Koenker
and Mizera (2010), who define f to be s-concave in terms of the means
of order s, as defined, by Hardy, Littlewood, and Pólya (1934). Note
that log-concave functions are 0-concave, and concave functions are 1-
concave; also, if f is s-concave, then f is also s′-concave for any s′ < s.
The limiting class of −∞-concave, the union of all s-concave classes
for all s ∈ R, is the class of quasi-concave functions – functions with
upper level sets convex. In the one-dimensional case, for d = 1, this
class is identical with that of unimodal functions.

Once log-concavity is imposed, maximizing log likelihood in (P1) ap-
pears to be especially convenient, as it leads to a convex program with
the only nonlinearity arising from the integrability constraint. How-
ever, when weaker forms of concavity are considered, it proves more
convenient to adapt the fitting criterion – in particular to retain the
convexity of the optimization formulation. This was already apparent
in an earlier work of Groeneboom, Jongbloed, and Wellner (2001) who
employed least squares fitting rather than log-likelihood when impos-
ing the stronger requirement of concavity of the density itself. While
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it is not really obvious how to adapt (P1) to obtain a viable fitting for-
mulation, the appearance of the Kullback-Leibler divergence in (D1)
suggests the possibility of replacing it by one of the abundant assort-
ment of alternative divergences. Koenker and Mizera (2008, 2010)
pointed out that for s-concave densities, this turns out to produce a
lucky match. They proposed replacing the Shannon entropy in (D1)
by a variationally equivalent form of the Rényi entropy, the move that
yielded a family of new dual and primal pairings,

(Dα) max
{ 1

α

∫
fα(y) dy

∣∣∣ f =
d(Q(X)−G)

dy
, G ∈ K(X)o

}
,

and

(Pα) min
{ n∑
i=1

g(Xi) +
|1− α|
α

∫
gβ dx

∣∣∣ g ∈ K(X)
}
.

The Rényi exponent α here corresponds to Avriel’s s = α−1, and β is
conjugate to α in the usual sense: 1/α + 1/β = 1.

Among the Rényi entropies, the ones enjoying particular connections
to the existing literature happen to be are those with α being a mul-
tiple of 1/2. Koenker and Mizera (2010) focused primarily on the log
concave, α = 1, case and the Hellinger, α = 1/2, case; the latter im-
poses the weaker constraint that −1/

√
f be concave. Here we describe

some further explorations of this approach that take us into the nether-
world of α ≤ 0. Apart from emphasizing computational aspects, we
highlight applications from the diverse fields of economics, astronomy
and anthropometry where the methods exhibit special salience. The
recent work of Han and Wellner (2016), and Laha and Wellner (2017)
provides considerable further theoretical development and justification
for the pairing of the Rényi criterion with weaker forms of the concavity
constraints.

Existence, uniqueness and Fisher consistency results are extended to
this broader class of quasi-concave density estimators. An alternative
formulation of concavity constraints for densities in dimension d ≥ 2
is shown to significantly expand the applicability of the methods for
multivariate data. Finally, we illustrate the use of the Renyi divergence
criterion for norm constrained estimation of densities without a shape
constraint. An implementation of all the methods described here is
available in the R package MeddeR, Koenker and Mizera (2017), which
relies on the convex optimization software Mosek, Andersen (2010), and
its R interface Rmosek, Friberg (2012); further details are provided in
Section 4.
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2. Divergences and Entropies

A natural point of departure for the exploration of weaker concavity
constraints is the general form of the dual formulation. We want to
adapt the Shannon criterion appearing in (D1) to the chosen form of
the shape constraint, at the same time preserving the convexity of the
dual formulation. Maintaining our definitions of K(X)o, Q(X), and
H(X), we consider the shape-constrained formulation

(D) max
{
−
∫
ψ∗(−f)dm

∣∣∣ f =
d(Q(X)−G)

dm
, G ∈ K(X)o

}
,

which has constraints identical to those of (D1), only the objective
function is now open to reconsideration.

Another minor variation is that the dominating measure dx is gen-
eralized to dm: this may appear not that essential, but it offers a
convenient bridge between the theory, which favors dx, to more prag-
matic choices like dx restricted to a bounded domain, or versions of the
latter discretized to a fine grid; we should stress that when it comes
to instances of dm, we always have in mind those quite close to the
original dx. In what follows, we will assume that dm is a regular
Borel (nonnegative) measure which is either finite so we may without
loss of generality require

∫
fdm = 1, or at least assigns finite values to

bounded sets as does dx. The following proposition holds true with any
restrictions on dm – just as a consequence of our definitions. Proofs
are deferred to the Appendix.

Proposition 1. Any f satisfying the constraints of (D) – in particu-

lar, the optimal f̂ – satisfies the following:∫
f(y)dm(y) = 1,

∫
yf(y)dm(y) =

1

n

n∑
i=1

Xi.

In general, the higher-order moments are not preserved; in particu-
lar, the variance rendered by f̂ is always less or equal to the sample
variance of X; this underlies an ingenious method of smoothing the
shape-constrained MLE for log-concave densities devised by Dümbgen
and Rufibach (2009).

Now, a convenient family of objectives for (D) can be derived from
α-divergences as described in Cichocki and Amari (2010),

(1) Dα(f, g) =
1

α(α− 1)

(∫
fαg1−αdx− 1

)
, for α /∈ {0, 1};
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for α = 1 and α = 0, we have the limiting values,

D1(f, g) =

∫
f log

f

g
dx

and

D0(f, g) =

∫
g log

g

f
dx,

respectively. Since Dα(f, g) = D1−α(g, f) it follows that D1/2 is the
distinguished, symmetric element. Up to variational equivalence, that
is, up to monotone transformations that do not affect the outcome of
the optimization problem (D), the entropies to act as objective func-
tions in (D) are obtained from the divergences above by taking g ≡ 1
and changing the sign (before finally replacing dx by dm). This yields

Eα(f) = −Dα(f, g) =
1

α(1− α)

(∫
fα(x)dx− 1

)
,

the expression that assures the correct sign for α < 0, and also en-
ables the limit transition to the integrand log f as α → 0. Another
variationally equivalent form is, for α 6= 0,

Ēα(f) = αEα(f) =
1

1− α

(∫
fαdx− 1

)
,

in literature often referred to as the Tsallis (1988) entropy; see, how-
ever, Perez (1967) and Havrda and Charvát (1967). The latter delivers
the correct sign for α > 0 and yields Shannon entropy in the limit
transition α → 1. It is monotonically related, and hence variationally
equivalent to the original Rényi entropy expression, the expression that
predates all the others; for α < 1, α 6= 0, the latter is equal to

Eα(f) = (1− α)−1 log
(∫

fα(x)dx
)
.

The entropies resulting for α /∈ {0, 1} are variationally equivalent to
the integrals of −fα for α > 1 and α < 0, and to those of fα for
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α ∈ (0, 1). Koenker and Mizera (2010) used equivalent integrands

ψ∗α(y) =

{
(−y)α/α for y ≤ 0,

+∞ for y > 0,
for α > 1,

=

{
(−y) log(−y), for x < 0,

+∞ for x ≥ 0
for α = 1,

=

{
−(−y)α/α for y ≤ 0,

+∞ for y > 0,
for α < 1, α 6= 0,

=

{
− log(−y) for y < 0,

+∞ for y ≥ 0,
for α = 0.

It should be stressed that minimum divergence estimation meth-
ods remain an active field of study, see e.g. Ghosh (2015) and Basu,
Harris, Hjort, and Jones (1998). The survey of Broniatowski and Va-
jda (2012) lists “four types of point estimators based on minimization
of information-theoretic divergences between hypothetical and empir-
ical distributions”, other relevant references include Broniatowski and
Keziou (2006), Broniatowski and Keziou (2009), and Liese and Vajda
(2006). The divergence estimators discussed here differ not only in
their focus on nonparametric density estimation rather than paramet-
ric models, but more importantly, they do not seek minimum distance
of the estimate to the empirical distribution; instead, as already noted
above, (D) seeks f minimizing the distance to the uniform distribution,
on H(X), among admissible distributions specified by the constraint
that depends on the data through the empirical distribution Q(X). For
further explanation of this aspect in the context of norm-constrained
density estimation, see Koenker and Mizera (2006).

3. The Dual of the Dual and Shape Constraints

Koenker and Mizera (2010) derived (D1) for α = 1, the dual of the
log-concave MLE, from the primal MLE formulation (P1); for the other
α’s they proceeded the other way round. Now, we obtain the primal
formulation

(P ) min
{ 1

n

n∑
i=1

g(Xi) +

∫
ψ(g)dm

∣∣∣ g ∈ K(X)
}
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as the dual of (D), functions conjugate to ψ∗ being denoted by ψ. For
the particular ψ∗α from the previous section we have

ψα(x) =

{
(−x)β/β for x ≤ 0,

0 for x > 0
for α > 1,

= e−x for α = 1,

=

{
+∞ for x ≤ 0,

−xβ/β for x > 0
for α < 1, α 6= 0,

=

{
+∞ for x ≤ 0,

− log x for x > 0
for α = 0.

Revisiting the proof of strong duality in Koenker and Mizera (2010) re-
veals that their Theorem 3.1 can accommodate general dm; the details
are given in the Appendix, in the proof of the following proposition.
Recall that the standing assumption for dm is that it assigns finite
values to bounded sets; as far as ψ is concerned, we assume hereafter
that it is a nonincreasing, proper convex function on R its domain con-
taining (0,+∞). In fact, all the assumptions we make here and later
about ψ are satisfied by all the ψα above.

Proposition 2. Suppose that ψ is differentiable on its domain. The
solutions f̂ of (D) and ĝ of (P ) satisfy

(2) f̂ = −ψ′(ĝ).

The proposition reveals how the requirement G ∈ K(X)o stipulated
in the constraints of (D) translates to the crucial fact that the solutions

f̂ are (α−1)-concave. For ψα listed above, (2) translates to

f(x) = max{(−g(x))
1

α−1 , 0} for α > 1,

= e−g(x) for α = 1,

= (g(x))
1

α−1 for α < 1;

in view of the requirement in (P ) that ĝ ∈ K(X) this means that f̂ is
(α−1)-concave. If ψ is differentiable, the monotonicity of ψ implies
the existence of the inverse of ψ′, from (0,+∞) to the domain of ψ,
hereafter denoted as ϕ. The conjugate of ψ can be obtained as its
Legendre transformation,

(3) ψ∗(y) = −yϕ(y)− ψ(ϕ(y)),
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and with g = ϕ(−f) then, (P ) can be rewritten in terms of the esti-
mated f as

(F ) min
{ 1

n

∑
ϕ(−f(Xi)) +

∫
ψ(ϕ(−f))dm

∣∣∣ ϕ(−f) ∈ K(X)
}
.

The formulation (P ) also leads to the geometric characterization of
the optimal ĝ. For dm = dx, Theorem 2.1 of Koenker and Mizera
(2010) asserts that the optimal ĝ belongs to G(X), the collection of all
polyhedral convex functions of the form

(4) g(X,Y )(x) = inf

{ n∑
i=1

λiYi | x =
n∑
i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}
.

where, as before, X = (X1, X2, ..., Xn) are datapoints, Xi ∈ Rd and
Y = (Y1, Y2, ..., Yn) are function values, Yi ∈ R, at those – of the
function which is the lower convex hull of the points (Xi, Yi) ∈ Rd+1.
The convention inf ∅ = +∞ used in (4) means that the domain of g(X,Y )

is equal to H(X); that is, ĝ is equal to +∞ outside H(X), which, in

view of the transformations listed above means that f̂ is equal to zero
outside of H(X). This fact facilitates an extension of Theorem 4.1
of Koenker and Mizera (2010), which was originally proved under the
assumption that ψ is bounded from below, an assumption satisfied
for positive values of α, which Koenker and Mizera (2010) focused
on. Regarding dm, we again need only that it assigns finite values to
bounded sets; for ψ, we have to assume a bit more beyond the standing
assumption of monotonicity and convexity.

Proposition 3. Suppose that the limit of ψ(y + τx)/τ , for τ → +∞
and every real y, is respectively +∞ and 0, for x < 0 and x > 0.
The solution of (P ) then exists in G(X); it is unique when dm assigns
positive measure to every open set within H(X) – in particular, for
dm = dx.

Note that the assumptions are still true for every ψα listed above:
while the limit +∞ for x < 0 has to be explicitly calculated for ψα
with α > 0, it is automatic for those with α < 0, as then ψα(y) = +∞
for y < 0. On the other hand, the limit for x > 0 has to be explicitly
calculated to be 0 for ψα with α < 0; for those with α > 0, it is
automatic by the fact that ψα(y)→ 0 for y → +∞.

The polyhedral characterization of ĝ for general dm is “non-exclusive”,
in particular dm arising from discretizations, do not generally assign
positive measure to every open set within H(X). Nonetheless, the
proof of Theorem 2.1 of Koenker and Mizera (2010) shows that the
optimal ĝ still can be found in G(X). We will thus hereafter assume
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that any solutions ĝ of (P ) is from G(X) – this is hardly a restriction,
as precisely such solutions are those that are obtained by practical
implementations. We will use the characterization of solutions to es-
tablish a continuity property that provides a theoretical justification
for our “approximate” computational strategies. Note that pointwise
convergence, hereafter just “convergence”, of polyhedral ĝν ∈ G(X)
is equivalent to their uniform convergence, and also implies uniform
convergence of their corresponding transforms f̂ν , the solutions of the
related versions of (D). The notion of weak convergence of measures
we use here is that of Billingsley (1968), in the treatises of functional-
analytic flavor often referred to as that of weak∗ topology. The proof
of the following proposition is facilitated by the convexity, not that
much that of solutions, but that of the objective functions involved,
along the lines of well-known principles exemplified e.g. by Hjort and
Pollard (2011). The latter reference indicates that error bounds are
also possible; this is left for future work.

Proposition 4. Suppose that dmν is a sequence of measures converging
weakly to dm0. Any accumulation point, for ν → ∞, of any sequence
of solutions ĝν of (P ) with dm = dmν is a solution of (P ) with dm =
dm0. In particular, ĝ0 is a limit of any such sequence, if it is a unique
solution of (P ) with dm = dm0.

As mentioned above, noteworthy values of α are those that are mul-
tiples of 1/2. In particular, α = 2 has a connection to the Pearson χ2;
the solution corresponds to the least-squares estimator of Groeneboom,
Jongbloed, and Wellner (2001) and yields a density estimate which is
itself concave. Obviously, α = 1, our point of departure, yields the
MLE of log-concave densities, with the link to the Kullback-Leibler di-
vergence and Shannon entropy. Koenker and Mizera (2010) somewhat
championed α = 1/2, linked to the Hellinger distance, the only sym-
metric choice among the α-divergences; the resulting density estimates
are those with the convex reciprocal of the square root, the class in-
cluding, in particular, all t densities with degrees of freedom greater or
equal to one (and all log-concave densities as well).

The α-divergences for α < 1/2 are reverse versions of their sym-
metric, about 1/2, counterparts for 1− α. An important instance, for
which we in 2010 did not possess a reasonably stable algorithm, is that
for α = 0, corresponding to the reverse Kullback-Leibler divergence
and the entropy that is sometimes called the Burg (1967) entropy. The
corresponding density estimate can thus be interpreted as an empirical
likelihood estimate of a density with convex reciprocal. Another note-
worthy instance is that for α = −1, corresponding to the reverse χ2, or
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the Neyman χ2. For further discussion and other α, see Koenker and
Mizera (2008, 2010).

4. Computational Aspects

In this section we will briefly describe our implementation which
relies crucially on the convex optimization software Mosek, Andersen
(2010), and its interface Rmosek, Friberg (2012) to the R language, R
Core Team (2017). Additional software and data to reproduce the com-
putational results reported here is available in the R package MeddeR,
Koenker and Mizera (2017).

While for theoretical purposes it is useful to replace dx by dm re-
stricted to a compact (albeit large) set, for the purpose of numerical
computations we need to make our variational formulation of the Rényi
divergence estimator finite-dimensional; that is, to discretize it in some
way. This formally corresponds to choosing a dm that approximates dx,
the latter restricted to a compact set, and is concentrated on a finite set
of atoms – called hereafter evaluation points. The finite-dimensional
problem then estimates the values of f̂ at these points. The most
straightforward examples arise in the one-dimensional case: we take
dm supported on a uniformly spaced fine grid, typically N = 300 to
1000 points, starting with the minimum and ending with the maximum
of the Xi’s, and assigning to each grid point mass 1/N – except per-
haps for the end points, depending on whether standard rectangular or
trapezoidal integration formula is to be applied.

In dimension one implementation poses few problems: the dm grid
becomes an input to the estimating function solving (D). The com-
plexity of the algorithm depends only on N , the number of evaluation
points, and is independent of n, the size of data. Given the speed
of the optimization algorithm, the problem of this algorithm in the
one-dimensional case is seldom the size of N , which can be easily in-
creased. When N does become prohibitively large – this situation can
occur in one-dimensional problems with extreme outliers, and is almost
inevitable in multi-dimensional problems – it is usually more fruitful
to turn to the primal formulation (P ). Since our variational problem
has a solution, g, that is polyhedral, convex and piecewise linear on a
triangulation – or for d > 2, on simplices spanned by the observed Xi’s
– the solution is characterized by the n function values, γi = g(Xi). In
fact, this amounts to making the Xi’s the evaluation points, although
at this point with uncertain masses attached to them; as N = n in such
a case, the complexity of the algorithm now depends on n, the number
of data points.
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There are two important difficulties that have to be tackled in this
approach. The first one is enforcing the convexity of the fitted g. In
dimension one this is very easy, owing to the fact that the evaluation
points either come already ordered, or can be easily sorted. One has
then only to make sure that any three adjacent evaluation points sat-
isfy the convexity requirement. The number of required constraints is
linear, O(N), in N . More generally, let V denote a diagonal matrix
with diagonal elements consisting of the order statistics of the Xi, and
set Ak = Dk+1V where D denotes the differencing operator on V , then
A1γ ≥ 0 imposes monotonicity, A2γ ≥ 0 convexity, and so forth.

In higher dimensions imposing convexity is somewhat more onerous,
but conceptually still quite simple. As noted by Seijo and Sen (2011),
we need only to impose n(n − 1) linear equality constraints in view
of the following observation, which goes back at least to Afriat (1967,
1972).

Proposition 5. Let vi ∈ Rd, γi ∈ R, for i = 1, 2, · · · , n. There is
a convex function, g, such that g(vi) = γi, if and only if there are
hi ∈ Rd, such that

(vi − vj)>hi ≤ γi − γj, for all i and j 6= i.

The geometric interpretation is quite self evident: at each vertex of
the triangulation, (vi, γi), there must be a supporting hyperplane in
the direction of every other vertex. Order O(N2) linear inequality con-
straints may seem burdensome, but the good news is that their number
does not depend on the dimension, d, any more; only the number of
variables grows linearly with d and N , O(Nd), via the dimension of
the subgradients hi.

Once the mechanism for imposing convexity is in place, the only
remaining challenge is to approximate the integrability constraint on
the estimated density. Again, in dimension one this is would not be
that much a big deal, as the integrals in the segments of adjacent
ordered evaluation points can be interpolated via various numerical
schemes; for instance, one can take a fine grid of points between the
two, interpolate linearly the values of g in between, and use standard
rectangular or trapezoidal integration formula for ψ(g), which due to
the convexity of ψ preserves the convex character of the optimization
task. And, after all, in dimension one we do not have to bother, as we
rather use (D) instead of (P ) for computing the estimates.

In multi-dimensional problems, d ≥ 2, this strategy is not so straight-
forward – already in the two-dimensional case, linear interpolation
poses a problem: we know that g is polyhedral, but to determine how
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to interpolate one needs to know the triangulation. Optimizing over
triangulations, however, is challenging.

A way out is to eschew linear interpolation and consider instead
the right prism Riemann sums where each point x of the integration
domain belongs to the base polygon containing Xi closest to x, and
the height of the prism is g(Xi). The polygonal tesselation of the
integration domain corresponding to the nearest Xi is the well-known
Voronoi tesselation. There are efficient algorithms for its construction,
in arbitrary dimension, and also for the calculation of the volumes of
the polygons.

In view of the strategy outlined above, with discrete dm approxi-
mating dX, this scheme can be seen as selecting the data points Xi as
the evaluation points, and assigning them masses in dm equal to the
volumes of the Voronoi polygons formed by the evaluation points. Ex-
periments in the one-dimensional case, when comparisons with other
methods are easily made, indicate that the approximation is good in
the center of the data, as the data points are typically dense there. The
polygons become larger in the tails, but this is counterbalanced by the
fact that the density is smaller. If necessary, some additional evaluation
points (“undata”) can be added at the tails. On the other hand, when
n is large we may want to choose a smaller number of evaluation points,
that is, we may want N < n, as it is N that determines the complexity
of the algorithm through the O(N2) convexity constraints. We may
achieve this by including only some, not all, of the Xi’s in the evalu-
ation points. Indeed, we may even avoid Xi’s completely and choose
evaluation points that are somehow uniformly spread over H(X).

In the case that no evaluation point is equal to a particular data
point Xi, a question arises how Xi is expressed in the “likelihood”
term n−1

∑n
i=1 g(Xi). Again, there are several possibilities for such

an “evaluation functional” in the one-dimensional case: either Xi is
replaced by the nearest neighbor evaluation point, or its contribution
is divided to that of the nearest two, with weights equal to the weights
linearly interpolating Xi by the nearest two. The evaluation functionals
in this fashion enter also the implementation via (D) if the evaluation
points do not necessarily contain all the Xi, for instance, if they are
uniformly spaced. It should be said that while both approaches return
a solution that integrates to one under dm, it is only the evaluation
functional via linear interpolation that leads to the estimate preserving
the mean of the data, in the sense of Proposition 1.

In the higher dimensions, it is only nearest neighbor interpolation
that is practical in this context, due to complications arising from the
triangulation for linear interpolations. In such a way, the “likelihood”
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term seems to be counting the number of Xi falling into the particular
polygonal base, so that the discretized computational method can be
viewed as a regularization, through shape constraints, of a histogram
formed by the resulting right prisms. Further details are available in
the documentation and code of the R package MeddeR.

5. Prospects in Asymptopia

There has been considerable recent progress in understanding the
large sample behavior of shape constrained density estimators. The
log concave MLE, f̂n – in this section, we emphasize the dependence
on the sample size, n, in the notation – has been extensively studied
with rate results established by Doss and Wellner (2016) and Kim and

Samworth (2016), and showing that f̂n achieves the minimax optimal
rate of O(n−4/5) for squared Hellinger distance over the class of log
concave densities. Even more recently, Kim, Guntuboyina, and Sam-
worth (2016) have shown that for univariate densities such that log f

is piecewise linear with k distinct segments, f̂n converges in squared
Kullback-Leibler divergence at rate O( k

n
log5/4 n), that is at essentially

the parametric rate up to the log factor. This is obviously a substan-
tial improvement over the minimax rate of O(n−4/5) achievable over
the entire class of log concaves.

As noted by Han and Wellner (2016), comparatively little is known
about the asymptotic behavior of the other shape constrained Rényi
divergence estimators. Doss and Wellner (2016) have shown that a
maximum likelihood estimator for the class of s concave densities does
not exist for any s < −1, i.e. α < 0. Thus, abandoning log likelihood
in favor of the Rényi entropy criterion is not simply a matter of com-
putational convenience, but may be motivated by more fundamental
considerations.

Koenker and Mizera (2010) addressed the problem from the point of
the asymptotics for n = +∞, rather than n→∞, establishing Fisher
consistency for the shape constrained Rényi divergence estimators, with
dm = dx, and α > 0. In the latter case, all the relevant integrands are
bounded from below by 0; nonetheless, the proof of and the discussion
following their Theorem 4.2 indicates that the essential requirement for
more general α is the integrability of ψ∗(−f0). The objective function
of (D) has to be finite for the underlying f0, that is, for the density f0
governing the stochastic behavior of X1, X2, . . . , Xn. Such an assump-
tion does not create a problem for dm with bounded domains – but if
we eschew philosophical detours and adhere to the usual mathematical
formalism of dm = dx, we may have to concede that this condition may



Koenker & Mizera 15

be almost necessary. The finiteness of the Shannon entropy, the fact
that the integral of −f0 log f0 exists and is finite, is pretty much the
minimal standard component of the consistency proofs for maximum
likelihood estimators – as in Assumption 6 of Wald (1949), or, in a bit
stronger version, page 62 of van der Vaart (1998).

For the reader’s convenience, we restate the result here, in the strength-
ened form applicable to all α. Our starting point is the transformed pri-
mal formulation (F ), with n−1

∑n
i=1 ϕ(−f(Xi)) interpreted as the in-

tegral of ϕ(−f) with respect to the empirical probability Q(X). Fisher
consistency then concerns the objective function,

(5) Φ0(f) =

∫
ϕ(−f)f0 + ψ(ϕ(−f)) dm,

arising from (F ) by replacing dQ(X) by f0 dm. Using the strategy of
Huber (1967), we add to the objective function of (F ) a term depending
only on f0; this yields an equivalent minimization problem, in terms of
f , with the objective function

(6)

∫ (
ϕ(−f) +

ψ∗(−f0)
f0

)
dQ(X) +

∫
ψ(ϕ(−f))dm,

for which we are able to establish the desired result, with the objective
function

(7) Φ̃0(f) =

∫
ϕ(−f)f0 + ψ∗(−f0) + ψ(ϕ(−f)) dm,

resulting now from (6) by replacing dQ(X) by f0 dm. It is necessary
to sort out some subtle issues here: although the relationship between
(F ) and (6) is clear apart from the possibility that f0(Xi) = 0 for
some i, a problem that we consider decidedly minor, we cannot a priori
exclude certain other problems arising with (5) and (7). The integrals
may not exist, and even when they do, they could be equal to +∞ for
all f , making the resulting Fisher consistency result somewhat trivial.
Koenker and Mizera (2010) concentrated on the cases when α > 0, with
terms like ψ(φ(−f)) bounded from below by 0, when such possibilities
were excluded. The following result establishes Fisher consistency for
the full range of α.

Proposition 6. Suppose that ψ is differentiable on its domain. For
all f , the integral (7) defining the function Φ̃0(f) exists, and 0 =
Φ̃0(f0) ≤ Φ̃0(f), with the possibility that Φ̃0(f) = +∞ for some f .
If the integral ∫

ψ∗(−f0) dm
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exists and is finite, then the integral (5) defining the function Φ0(f)
exists for all f , for f = f0 it is finite, and for all f we have the
inequality Φ0(f0) ≤ Φ0(f), again with the possibility that Φ0(f) = +∞
for some f .

Han and Wellner (2016) provide a much more detailed analysis of
the large sample behavior of the Rényi estimators with convergence
results in weighted L1 and L∞ norms. They also provide limiting dis-
tribution theory, including results on the asymptotic cost of imposing
weaker forms of concavity when stronger forms would have sufficed. A
limitation of this theory at this stage is that many results are restricted
to the s > −1, i.e. α > 0, setting. In view of our computational results
reported above, we would be eager to learn more about to what extent
the theory can be extended into the netherworld of α < 0.

6. Some Examples

In this section we present several applications of shape constrained
density estimation, in an effort to illustrate the potential advantages
of the weaker concavity constraints imposed by the methods we have
described above.

6.1. Annual Log Income Increments. In an influential recent paper
Guvenen, Karahan, Ozkan, and Song (2016) have estimated models of
income dynamics using a very large, 10 percent, sample of U.S. Social
Security records linking to Internal Revenue Service data. Their work
reveals quite surprising features of annual increments in log income. In
the left panel of Figure 1 we reproduce Figure 6 of Guvenen et al. It
depicts a conventional kernel density estimate after log transformation
based on their sample. There are two immediately striking features:
first, the spread of the density from -4 to 4 documents a surprising
volatility for some individuals we see annual changes in (unlogged)
income by a factor of more than 50 in both tails; second, the shape
of log density estimate is clearly not concave. However, when we plot

−1/

√
f̂(x) instead of log f̂(x) in the right panel of the figure, we obtain

a much smoother curve that is fit almost exactly by the Hellinger,
α = 1/2, concavity constraint. As we have already noted the α = 1/2
constraint is special in the sense that linear extrapolation in the tails
corresponds to Cauchy, t1 behavior, and in terms of our estimation
criterion corresponds to the symmetric case midway between Kullback-
Leibler and reverse Kullback-Leibler divergence.

Permitting Cauchy tail behavior may be regarded as sufficiently in-
dulgent for most statistical purposes, but the next example illustrates
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Figure 1. Density estimation of annual increments in
log income for U.S. individuals over the period 1994-
2013. The left panel of the figure reproduces a plot of the
logarithm of a kernel density estimate from Guvenen et
al, Figure 6, showing that annual income increments are
clearly not log concave. However the right panel shows
that −1/

√
f does appear to be nicely concave and is fit

remarkably well by the Renyi procedure with α = 1/2,
superimposed in red.

that even weaker concavity constraints paired with Rényi fitting crite-
ria with α < 1/2 is sometimes necessary to accommodate very sharp
peaks in the target density.

6.2. Rotational Velocity of Stars. We reconsider the rotational ve-
locity of stars data considered previously in Koenker and Mizera (2010).
The data was taken originally from Hoffleit and Warren (1991) and is
available from the R package MeddeR. Figure 2 illustrates a histogram
of the 3806 positive rotational velocities from the original sample of
3933. After dropping the 127 zero velocity observations, the histogram
looks plausibly unimodal and we compare four distinct Rényi shape
constrained estimates. The log concave, α = 1, estimate is clearly in-
capable of capturing the sharp peak around x = 18, and even the fit for
α = 0 fails to do so. But pressing further, we see that setting α = −1
provides much better fit by constraining −1/f 2 to be concave. The
even weaker concavity constraint with α = −2 seems too extreme with
a substantial over-shooting of the modal peak. This example vividly
illustrates that the weaker forms of concavity constraints implied by
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Figure 2. Rotational velocity of stars with three quasi
concave shape constrained density estimates using the
Rényi likelihood.

α < 0 can be effective complements to more familiar shape constrained
estimation methods when the target densities are sharply peaked or
heavy tailed.

6.3. Gosset’s Criminal Anthropometrics. Shape constraints for
multivariate density estimation offers several new challenges, not the
least of which is the computational challenge of finding a tractable way
to represent the concavity constraints. Further details on computa-
tional methods will be provided in the next section, here we will revisit
the bivariate problem of estimating the density for the well known
MacDonell (1902) data on the heights and left middle finger lengths of
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3000 British criminals. This data is perhaps best known for its role in
preliminary simulations reported in “Student” (1908).

Figure 3 illustrates contour plots for four different values of the con-
straint parameter α, together with the scatter of dithered values of
the original data. Contours are labeled in units of log density. A no-
table feature of the data is the anomalous point at the upper region
of the convex hull. This individual is extremely tall, but possesses a
rather diminutive left middle finger; a grandfather of the “fanta-faced
Falangist” perhaps? Although the central contours appear somewhat
similar for the various α’s, the labeling of the contours near this ex-
treme point differ dramatically. When α = 1 so we are imposing log
concavity, such a person is highly anomalous and the nearest contour is
labeled log f(x) = −20 in this region, so f(x) ≈ 2× 10−9 there. When
α = 0, the corresponding contour is labeled -10, so f(x) ≈ 4.5 × 10−5

in roughly the same region, making him look far less unusual.

7. Rényi Entropies in Norm Constrained Density
Estimation

Although our original intent for using Rényi divergence as an esti-
mation criterion was strictly pragmatic – to maintain the convexity of
the optimization problem underlying the estimation while maintaining
weaker forms of the concavity constraint – we would now like to briefly
consider its use in norm constrained settings where the objective of
penalization is smoothness of the estimated density rather than shape
constraint.

There is a long tradition of norm penalized nonparametric maximum
likelihood estimation of densities. Perhaps the earliest example is Good
(1971) who proposed the penalty,

J(f) =

∫
((
√
f)′)2dx,

which shrinks the estimated density toward densities with smaller Fisher
information for location. A deeper rationale for this form of shrinkage
remains obscure, and most of the subsequent literature has instead fo-
cused on penalizing derivatives of log f , with the familiar cubic smooth-
ing spline penalty,

J(f) =

∫
(log f ′′)2dx,

receiving most of the attention. A notable exception is the Silverman
(1982) proposal to penalize the squared L2 norm of the third derivative
of log f as a means of shrinking toward the Gaussian density.



20 Penalized Rényi Divergence

Length of Left Middle Finger (cm)

H
ei

gh
t (

cm
)

140

150

160

170

180

190

10 11 12 13

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

● ●

●
●

●
●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●●
●

●
●

●●●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

● ●
●

●
●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●●
●

●
●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●
●

●

● ●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3

−4

−5

−6

−8

−10

α = 1

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

● ●

●
●

●
●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●●
●

●
●

●●●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

● ●
●

●
●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●●
●

●
●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●
●

●

● ●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3

−4
−5

−6

−8−
10

α = 0

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

● ●

●
●

●
●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●●
●

●
●

●●●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

● ●
●

●
●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●●
●

●
●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●
●

●

● ●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3

−4

−5

−5

−6

−6

−7

−7

α = − 1

10 11 12 13

140

150

160

170

180

190

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

● ●

●
●

●
●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●●
●

●
●

●●●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

● ●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

● ●
●

●
●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●●
●

●
●

●
●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●
●

●

● ●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3

−3

−4

−4

−5

−5

−6

−6

−7

−7

α = − 2

Figure 3. Contour Plots of British Criminal Heights
and Finger Lengths: Contour estimates are based on four
values of the Renyi exponent α ∈ {−2,−1, 0, 1} and are
all labeled in units of log density. Note that the tail
behavior near the anomalous point is quite different for
the two Renyi exponents, and the density is also much
more sharply peaked for the smaller α’s.
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Figure 4. Gaussian histogram based on 500 observa-
tions and two penalized maximum likelihood estimates
with total variation norm penalty and λ ∈ {0.5 ×
10−4, 0.5× 10−6}.

Squared L2 norm penalties are ideal for smoothly varying densities,
but they abhor sharp bends and kinks, so there has also been some
interest in exploring total variation penalization as a way to expand
the scope of penalty methods. The taut-string methods of Davies and
Kovac (2001) penalize total variation of the density itself. Koenker and
Mizera (2007) describe some experience with penalties of the form,

J(f) =

∫
|(log f)′′|dx,

that penalize the total variation of the first derivative of log f . In the
spirit of Silverman (1982) the next example illustrates penalization of
the total variation of the third derivative of log f , again with the intent
of shrinking toward the Gaussian, but in a manner somewhat more
tolerant of abrupt changes in the derivatives than with Silverman’s
squared L2 norm.
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7.1. Total Variation Shrinkage to the Gaussian. In Figure 4 we
illustrate a histogram based on 500 iid standard Gaussian observations,
and superimpose two fitted densities estimated by penalized maximum
likelihood as solutions to

min
f

{
−

n∑
i=1

log f(Xi) + λ

∫
|(log f)′′′|dx

}
,

for two choices of λ. For λ sufficiently large solutions to this problem
conform to the parametric Gaussian MLE since the penalty forces the
solution to take a Gaussian shape, but does not constrain the location
or scale of the estimated density. For smaller λ we obtain a more
oscillatory estimate that conforms more closely to the vagaries of the
histogram.

Penalizing total variation of (log f)′′ as in Figure 4 raises the ques-
tion: What about other Rényi exponents for α 6= 1? Penalizing (log f)′′

is implicitly presuming sub-exponential tail behavior that may be bet-
ter controlled by weaker Rényi penalties. To explore this conjecture we
consider in the next example estimating a mixture of three lognormals.

7.2. Lognormal Mixtures. Figure 5 illustrates a histogram based
on 500 observations from a mixture of three 3-parameter lognormals
with the population density superimposed in red. This density serves
as a cautionary illustration of how difficult it can be to choose an
effective bandwidth for conventional fixed bandwidth kernel estimation.
A fixed bandwidth sufficiently small to distinguish the two left-most
modes is incapable of producing a smooth fit to the upper mode, and
this makes adaptive bandwidth kernel methods difficult due to poor
performance of the pilot estimate. Logspline methods as proposed by
Kooperberg and Stone (1991) perform much better in such cases, but
in our experience they can be sensitive to knot selection strategies.
The methods under consideration here are allied more closely to the
smoothing spline literature, and thereby circumvent the knot selection
task, but in so doing introduce new knobs to turn and buttons to push.
Not only do we need to choose the familiar λ, there is now a choice of
the order of the derivative in the penalty, and the Rényi exponent, α,
determining the transformation of the density. We would argue that
these choices are more easily adapted to particular applications, but
others may feel differently. From a Bayesian perspective, however, it
seems indisputable that more diversity in the class of computationally
tractable prior specifications is desirable.
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Figure 5. Mixture of three 3-parameter lognormals
with histogram and two Rényi likelihood estimates with
total variation (L1 norm) penalty with α ∈ {0, 1} based
on 500 iid observations and penalty parameter, λ = 9.
The true density is depicted in red and the estimated
density is in blue.

Examining Figure 5 we see that the α = 1 maximum likelihood
estimate is a bit too smooth, barely able to find the second mode,
whereas the α = 0 solution is somewhat better at capturing the first
mode, and also better at identifying the second mode. Both methods
produce an excellent fit to the third mode, almost indistinguishable
from the true density.

8. Conclusion

Shape constrained nonparametric density estimation offers a valuable
compromise between restrictive parametric methods and conventional
smoothing methods. While log-concavity is a natural constraint in
some applications and can be efficiently implemented by maximum like-
lihood, in other applications it can be advantageous to impose weaker
forms of the concavity constraint, and for this purpose it is convenient
to pair constraints that require that −1/fα be concave with a Rényi
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α-divergence criterion for goodness of fit. We have significantly ex-
panded the theoretical underpinnings of this approach providing new
existence, uniqueness and continuity results as well as extending its
computational tractability a wide domain of α’s. The approach has
been illustrated with several examples taken from economics, astron-
omy and anthropometrics. We also briefly discussed related methods
that pair norm-based smoothing penalties with the Rényi divergence
estimation criterion.

Many problems remain for future research. As already mentioned,
the convexity of the problems yielding our estimates entails not only fa-
vorable continuity properties, but also facilitates possible error bounds.
Adaptive choice of α is undoubtedly an appealing question. However,
we do not regard α as a typical tuning parameter, rather its selection
is best dictated by close examination of its influence on particular fea-
tures of the fitted density. This is revealed in our empirical examples:
sharpness of the modal peak in the case of the rotational velocity ap-
plication, and tail behavior in the Gosset anthropometry application.
Global measures of fit, while certainly feasible criteria for guiding this
choice, seem less well suited. The theoretical properties of the under-
lying estimators, despite the impressive accomplishments of Han and
Wellner (2016), leave much still unknown especially about the limiting
asymptotic behavior. The “netherworld” of α < 0, in particular, re-
mains to be charted. We look forward to future progress on these and
other aspects of such methods.

Appendix A. Proofs

Proof of Proposition 1. The proposition follows from the fact that if
G ∈ K(X)o, then it annihilates all constant and linear functions – as
these are precisely those g that both g and −g are convex. In such a
case

0 ≥
∫
gdG = −

∫
−gdG ≥ 0, and thus

∫
gdG = 0.

Note that the constraint on f in (D) means that the integral with
respect to fdm is the same as that with respect to d(Q(X)−G). Thus,
for every feasible f ,∫

fdm =

∫
1 d(Q(X)−G) =

∫
1dQ(X)−

∫
1dG =

∫
1dQ(X) = 1

and∫
xfdm =

∫
x d(Q(X)−G) =

∫
xdQ(X)−

∫
xdG =

∫
xdQ(X).



Koenker & Mizera 25

�

Proof of Proposition 2. The proposition is the consequence of the dual-
ity Theorem 3.1 of Koenker and Mizera (2010) – formulated, however,
not for a general dm, but the Lebesgue measure dx. The careful in-
spection of their proof reveals that dx is specifically involved in the
invocation of Corollary 4A of Rockafellar (1970); the careful inspection
of the latter reveals that it is in fact formulated for a general Borel
regular measure dt – our dm.

Next paragraph of the proof of Koenker and Mizera (2010), devoted
to the constraint qualification, makes a substantial use of the fact that
the integral of a constant function over H(X), a bounded set, is finite.
This follows from our standing assumption on dm: it assigns finite
values to bounded sets.

Finally, the extremal condition follows from the form of the sub-
gradient given by Corollary 4B of Rockafellar (1970) – which is again
formulated for general Borel regular dm. �

Proof of Proposition 3. The proof follows from that of Theorem 4.1 of
Koenker and Mizera (2010). In spite of the theorem imposing the
assumption that ψ be bounded from below by 0, the proof briefly ad-
dresses in the last paragraph a potential treatment of ψ not necessarily
bounded from below. In such cases, one needs to find an integrable
minorant; this is possible here due to the fact that the support of the
solutions is restricted to H(X) – and consequently dm only needs to be
considered on that domain as well. The standing assumption that dm
assigns a finite value to H(X) is first required for a constant function
to be in the domain of the objective function; without loss of gener-
ality, this constant function can be equal to 1, that is, we can set y
appearing in the proof of Koenker and Mizera to be equal to 1 – given
that a is contained in (0,+∞) and thus, due to the assumptions of the
proposition, is in the domain of ψ as well. The convexity of ψ then
entails that the linear function supporting ψ at 1 lies entirely below
the graph of ψ,

ψ(1 + z) ≥ ψ′(1)z + ψ(1).

This inequality then yields for τ ≥ 1,

ψ(1 + τg(X,Z)(x))

τ
≥ ψ′(1)g(X,Z)(x) + c

where c = min{ψ(1), 0} and g(X,Z) is the function introduced in the
proof of Koenker and Mizera. As Z is fixed in the proof, the right-
hand side provides the desired minorant: the range of g(X,Z)(x) for
x ∈ H(X) is bounded and the integrability then follows from the fact
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that the integration is with respect to a finite measure, dm restricted
to H(X). The assumptions of the proposition regarding the limits of
ψ(y + τx)/τ then conclude the proof of existence along the lines of
the proof of Theorem 4.1 of Koenker and Mizera (2010); the proof of
uniqueness goes exactly along the lines of the same proof – namely, its
penultimate paragraph. �

Proof of Proposition 4. Given the form of the objective function in (P )
and the fact that all solutions are convex functions supported byH(X),
and thus continuous and bounded, we obtain that the objective func-
tions of (P )for dm = dmν converges to the objective function of (P )
for dm = dm0, at every g ∈ G(X). In view of the finite-dimensional
parametrization of G(X) by values Yi = g(Xi) this pointwise conver-
gence can be strengthened to uniform convergence on compacts, due to
convexity of the objective functions, as in Theorem 10.8 of Rockafel-
lar (1970), see also Pollard (1991) or Hjort and Pollard (2011). This
uniform convergence on the compact lower level sets of the objective
function of (P ) for dm = dm0 containing, as revealed by the proof of
Proposition 3, the solution of (P ) for dm = dm0 in its interior, entails
the proposition. �

Proof of Proposition 5. See Lemma 2.2 of Seijo and Sen (2011). �

Proof of Proposition 6. Under the assumptions on ψ, its conjugate can
be obtained as its Legendre transformation,

(8) ψ∗(−f) = −ϕ(−f)f − ψ(ϕ(−f))

which means that the integrand of

(9) Φ̃0(f) =

∫
ϕ(−f)f0 + ψ∗(−f0) + ψ(ϕ(−f)) dm

is identically equal to 0 for f = f0. The nonnegativity of this integrand
for all other f follows from the same inequality argument as in the proof
of Theorem 4.2 of Koenker and Mizera (2010), and yields

(10) 0 = Φ̃0(f0) ≤ Φ̃0(f),

possibly with the right-hand side equal to +∞.
To obtain the analogous inequality for the objective function Φ0, we

need only to “subtract” the integral of ψ∗(−f0), heeding the subtleties
that may arise when infinities are involved. For f = f0, the equality
(8) implies that we can legitimately write

(11) 0 = Φ̃0(f0) =

∫
ψ∗(−f0) dm+

∫
ϕ(−f0)f0 + ψ(ϕ(−f0)) dm,
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as the existence of the finite integral of ψ∗(f0) on the left-hand side
implies the same for the term on the right-hand side of (8) for f = f0.

If Φ̃0(f) < +∞, that is, if the integral of a nonnegative integrand
in (9) exists and is finite, then the existence of the finite integral of
−ψ∗(f) implies the integrability of the sum, that is the existence of the
finite integral in (5); then we can legitimately write

(12) Φ̃0(f) =

∫
ψ∗(−f0) dm+

∫
ϕ(−f)f0 + ψ(ϕ(−f)) dm

and combine (10), (11), and (12) to obtain the proposition.
Suppose that Φ̃0(f) = +∞. Since both integrals in (11) are finite,

the proposition will follow if we show that the rightmost integral in (12)
is also equal to +∞. Note that we cannot use (12) now (which would
make the conclusion obvious), as we did not establish it in this case.
We can, however, use the following: suppose that p is an integrable
function, its integral exists and is finite, and q ≥ 0 is a nonnegative
function such that its integral is +∞. Then the integral of q− p exists
and is equal to +∞. To demonstrate this, we define, in a usual manner,

(q − p)+ = max{(q − p), 0}, (q − p)− = max{−(q − p), 0},

and

p+ = max{p, 0}, p− = max{−p, 0};
we know that p = p+ − p−, and that the integrals of both p+ and p−

are finite. The finiteness of the integral of p+ implies the same for the
integral of

(q − p)− = max{p− q, 0} = max{p+ − p− − q, 0} ≤ max{p+, 0} = p+,

due to the nonnegativity of p− and q. Now, the integral of (q−p)+ can
be finite or +∞. If it is finite, then we know that the integral of (q−p)
exists and is finite; this means that the integral of q = (q − p) + p
also exists and is finite, which contradicts our assumption about q;
therefore, the integral of (q − p)+, and consequently that of q − p is
equal to +∞. �
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30 Penalized Rényi Divergence

Pal, J. K., M. Woodroofe, and M. Meyer (2007): “Estimating a Polya
frequency function,” in Complex datasets and inverse problems: tomography, net-
works and beyond, ed. by R. Liu, W. Strawderman, and C.-H. Zhang, vol. 54 of
IMS Lecture Notes-Monograph Series. Institute of Mathematical Statistics.

Perez, A. (1967): “Information-theoretic risk estimates in statistical decision,”
Kybernetika, 3, 1–21.

Pollard, D. (1991): “Asymptotics for least absolute deviation regression estima-
tors,” Econometric Theory, 7(2), 186–199.

Prakasa Rao, B. (1969): “Estimation of a Unimodal Density,” Sankhyā (A), 31,
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