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QUANTILE GRAPHICAL MODELS: PREDICTION AND CONDITIONAL
INDEPENDENCE WITH APPLICATIONS TO SYSTEMIC RISK

ALEXANDRE BELLONI*, MINGLI CHEN?, AND VICTOR CHERNOZHUKOV'

ABSTRACT. The understanding of co-movements, dependence, and influence between variables of interest is
key in many applications. Broadly speaking such understanding can lead to better predictions and decision
making in many settings. We propose Quantile Graphical Models (QGMs) to characterize prediction and
conditional independence relationships within a set of random variables of interest. Although those models
are of interest in a variety of applications, we draw our motivation and contribute to the financial risk
management literature. Importantly, the proposed framework is intended to be applied to non-Gaussian
settings, which are ubiquitous in many real applications, and to handle a large number of variables and
conditioning events.

We propose two distinct QGMs. First, Condition Independence Quantile Graphical Models (CIQGMs)
characterize conditional independence at each quantile index revealing the distributional dependence struc-
ture. Second, Prediction Quantile Graphical Models (PQGMs) characterize the best linear predictor under
asymmetric loss functions. A key difference between those models is the (non-vanishing) misspecification
between the best linear predictor and the conditional quantile functions.

We also propose estimators for those QGMs. Due to high-dimensionality, the two distinct QGMs require
different estimators. The estimators are based on high-dimensional techniques including (a continuum of)
£1-penalized quantile regressions (and low biased equations), which allow us to handle the potential large
number of variables. We build upon a recent literature to obtain new results for valid choice of the penalty
parameters, rates of convergence, and confidence regions that are simultaneously valid.

We illustrate how to use QGMs to quantify tail interdependence (instead of mean dependence) between
a large set of variables which is relevant in applications concerning with extreme events. We show that
the associated tail risk network can be used for measuring systemic risk contributions. We also apply the
framework to study international financial contagion and the impact of market downside movement on the

dependence structure of assets’ returns.
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nonlinear correlation, penalized quantile regression, systemic risk, financial contagion, downside movement
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1. INTRODUCTION

The understanding of co-movements, dependence and influence between variables of interest is key in
many applications. Such understanding can lead to better predictions and decision making in many settings.
This is clearly of interest in financial management settings where quantifying risk is crucial. For example,
the dependence between stock returns plays a key role in hedging strategies. Those hedging decisions are
typically focused on the tail of the distribution of returns rather than the mean. Moreover, such strategies
aiming to reduce risk are critical precisely during market downside movement. Therefore, it is also instructive
to understand how the dependence (and policies) would change as the downside movement of the market
becomes more extreme. Moreover, recent empirical evidence [7, [6 66] points to non-Gaussianity of the
distribution of stock returns, especially during market downturns. These issues require models that allow for

non-Gaussian settings and can also accommodate various conditioning events (e.g., downside movements).

Motivated by those features, this work proposes Quantile Graphical Models (QGMs) to characterize (and
visualize) the dependence structure of a set of random variables. The proposed framework allows us to
understand prediction and conditional independence between those variables. Moreover, it also enables us
to focus on specific parts of the distributions of those variables such as tail events. Such understanding
plays an important role in applications like financial contagion and measuring systemic risk contributions
where extreme events are the main interests for regulators. Our techniques are intended to be applicable to
high-dimensional settings where the total number of variables (or additional conditioning variables) is large

— possibly larger than the sample size.

QGMs provide an alternative route to learn conditional independence and prediction under asymmetric
loss functions which is appealing in non-Gaussian settings. In the Gaussian setting, those notions essentially
coincide; however, in non-Gaussian settings different estimation approaches are needed. Conditional inde-
pendence hinges on the equivalence between conditional probabilities and conditional quantiles. Prediction
under asymmetric loss function hinges on the solution of a quantile regression with non-vanishing misspec-
ification (M-estimation problem). Although we build upon the quantile regression literature ([50, [18]), we
derive new results for penalized quantile regression in high dimensional settings to handle misspecification,

many controls and a continuum of additional conditioning events.

Conditional independence has a long history in statistical models with consequences towards parameter
identification, causal inference, prediction sufficiency, and many others, see [32]. Conditional Independence
Quantile Graphical Models (CIQGMSs) aim to characterize conditional independence via the conditional
quantile functions. In such models we consider a flexible specification that can approximate well the con-
ditional quantile functions (up to a vanishing approximation error). In turn, this allows to detect which
variables have a strong or near zero impact on others which can then be used to provide guidance on

conditional independence.

Prediction Quantile Graphical Models (PQGMs) focus on prediction of a variable based on the other
variables (a reduced form relation). An important motivation for proposing PQGMs is to allow for misspec-
ification as the conditional quantile function is typically non-linear in non-Gaussian settings but a linear
specification is widely used in practice. Misspecification in quantile regression models was first properly
justified by [§] in which it was shown that we can recover a suitable “best approximation” for the conditional

quantile function. We directly characterize the good prediction properties under asymmetric loss functions
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which is appealing in empirical applications. Other papers investigated the impact of misspecification on
the specification of the quantile function are [§], [49], [65] and [I]. Nonetheless, this work seems to be the

first to accommodate non-vanishing misspecification for high-dimensional quantile regression.

Broadly speaking QGMs enhance our understanding of statistical dependence among the components of a
d-dimensional random vector Xy, where the set V' contains the labels of the components. QGMs will provide
a way to visualize such dependence via graphs where nodes represent components of Xy, and edges represent
conditional relationships (as in Gaussian Graphical Models, see below). Given that for each specific quantile
index 7 we will obtain one such graph, we could have a graph process indexed by 7 € (0,1). The structure
represented by the 7-quantile graph represents a local relation and can be valuable in applications where
the tail interdependence (corresponding to high or low quantile index) might be of special interest. This is
akin to the contrast between quantile regression and linear regression, where the latter provides information
only on the conditional mean, while the former can provide a more complete description of the distribution

of the outcome.

The graph process induced by QGMs has several important features. First, a 7-quantile graph enables
different values of edge strength in different directions. This is important because for undirected networks,
the distinction between exposure and contribution is unclear. Second, QGMs are able to capture the tail in-
terdependence through estimating at a high or low quantile index. Third, QGMs can capture the asymmetric
dependence structure at different quantiles, which can be particularly useful in empirical applications (e.g.,
stock market dependence, exchange rate dependence). By considering all the quantiles at once we can char-
acterize conditional independence structure for a set of variables which are not jointly Gaussian distributed,

i.e. the case where the covariance matrix cannot characterize conditional independence completely.

A key feature of our work is it provides estimation procedures to learn QGMs from the data observed. The
estimators are geared to cover high-dimensional settings where the size of the model is large relative to the
sample size. Those estimators are based on ¢;-penalized quantile regression and low biased equations. For
CIQGMSs, under mild regularity conditions, we provide rates of convergence and edge properties of the esti-
mated graph that hold uniformly over a large class of data generating processes. We provide simultaneously
valid confidence regions (post-selection) for the coefficients of the CIQGM that are uniformly valid, despite of
possible model selection mistakes. Furthermore, based on proper thresholding, recovery of the QGMs pattern
is possible when coefficients are well separated from zero which parallel the results for graph recovery in the
Gaussian case based on the estimation of the precision matrix. E| For PQGMs, we provide an estimator that
achieves an adaptive rate of convergence which might differ under different conditioning events. Therefore
we contribute to the recent literature on simultaneous valid confidence regions post-model selection that has
been an active research area in econometrics [10, [17, [T6], 4T, 23] 28] and statistics [71L [80, 19} 18], 45} 64} [74];
in particular, the penalty choices and theoretical results are uniformly valid and adaptive to the relevant

conditioning events.

QGMs can play important roles in applications where tail events are relevant. For example, with certain
rescaling of the edge weights, we are able to capture the importance of each node or measure its systemic risk

contribution. In parallel with [5], many approaches for measuring systemic risk fit naturally into QGMs. For

LSimilar to graph recovery in the Gaussian case such exact recovery is subject to the lack of uniformity validity critiques of
Leeb and Potscher [56].
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example, one can view AC’oVaRila, a measure of the impact of institution a on institution b, as the weight
of an edge of a T-quantile graph. Then, the systemic risk contribution of institution a, equals to the sum
of coefficients over b € V, i.e. ACoVaRf-ys‘a = Zbev ACOV&R?—‘G. Similarly, the summation over a € V
measures exposures of individual institution to systemic shocks from the network. QGMs can also be used
to study contagion and network spillover effects since it is useful for characterizing tail risk spillovers. We
apply QGM to the study of international financial contagion in volatilities, specializing in learning the risk
transmission channels, see [30] for an overview of international financial contagions. After learning the risk
transmission channels, we can use our new network-cooperated ACoVaR to measure the contribution and

exposure of each country to the whole market.

Our work is complementary to a large body of works that study a set of jointly Gaussian distributed
random variables. Gaussian Graphical Model (GGM) provides a graphical model representation of those
variables. It is well known that conditional independence structure is completely characterized by the support
of the precision matrix (i.e. the inverse of the covariance matrix) of the random variables of interest, hence
recovering the structure of an undirected Gaussian graph is equivalent to recovering the support of the
precision matrix, [33, 53] BT, B8]. Methods work with the precision matrix (or covariance matrix) using
hypothesis testing can be find in [38] [35] [36] 37]. Recently, due to the advance of regularization techniques,
high-dimensional GGMs have been extensively studied in the statistical and machine learning literature:
[62] propose neighborhood selection, i.e. using LASSO for each node in the graph and combine the results
column-by-column; [79, O, [43] penalize the log-likelihood function hence work with the precision matrix
directly; other refined estimators including [78, 22] 60, [69, 59, 29]. [58] extended the result to a more
general class of models called nonparanormal models or semiparametric Gaussian copula models, i.e., the
variables have a multivariate Gaussian distribution after a set of unknown monotone transformations (see
also [57,[76], [7'7]). However, those methods assume the (transformed) random vectors follows a joint Gaussian
distribution. In addition, they characterize the conditional mean predictability by linear combinations of the

other variables.

Our work also contributes to a growing literature that rely on quantile based models to characterize
the data generating process. [8I] considers a globally adaptive quantile regression model, establishes oracle
properties and improved rates of convergence for the high-dimensional case. Screening procedures based
on moment conditions motivated by the quantile models have been proposed and analyzed in [44] and [75]
in the high-dimensional case. [46] considers tail dependence defined via conditional probabilities in a low
dimensional setting. Several other quantile based models have been proposed, see e.g. [50]. Among the
contributions of this work is to consider a high-dimensional setting and propose techniques that can be
robust to small coefficients (i.e. allowing for model selection mistakes), non-vanishing misspecification in the

conditional quantile function, and uniformly valid over additional conditioning events.

The rest of the paper is organized as follows. Section [2] lays out the foundation of QGMs. Section
contains estimators for QGMs while Section [4] contains the theoretical guarantees of the estimators. Section
provides empirical applications of QGMs to measure systemic risk contribution and to hedging conditional
on the downside movements of the US stock market. Finally, the appendix contains proofs, simulations and

implementation details of the estimators.
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Notation. For an integer k, we let [k] := {1, ..., k} denote the set of integers from 1 to k. For a random
variable X we denote by X its support. We use the notation a V b = max{a,b} and a A b = min{a,b}. We
use ||v||, to denote the p-norm of a vector v. We denote the £y-“norm” by || - ||o (i.e., the number of nonzero
components). Given a vector § € RP, and a set of indices T' C {1,...,d}, we denote by dr the vector in
which §r; = §; if j € T, r; = 0if j ¢ T. We use E,, to abbreviate the notation n~* Z?:l; for example,
Eolf] i= Balf(wi)] = n S0, flwn).

2. QUANTILE GRAPHICAL MODELS

In this section we describe quantile graphical models associated with a d-dimensional random vector Xy
where the set V = [d] = {1,...,d} denotes the labels of the components. These models aim to provide
a description of the dependence between the random variables in Xy . In particular, these models induce
graphs that allow for visualizing dependence structures. Nonetheless, because of the non-Gaussianity, we
consider two fundamentally distinct models (one geared towards conditional independence and one geared

towards prediction).

2.1. Conditional Independence Quantile Graphical Models. Conditional independence graphs have
been used to provide visualization and insight on the dependence structure between random variables. Each
node of the graph is associated with a component of Xy . We denote the conditional independence graph as
G! = (V, ET) where G! is an undirected graph with vertex set V and edge set E which is represented by an
adjacency matrix (Eib = 1 if the edge (a,b) € G!, and Eib = 0 otherwise). An edge (a,b) is not contained
in the graph if and only if

Xo L Xy | Xv\{ab) (2.1)

namely X; and X, are independent conditional on all remaining variables X\ (a0 = {X; k € V\{a, b}}.

Comment 2.1 (Conditional Independence Under Gaussianity). In the case that Xy is jointly Gaussian
distributed, Xy ~ N(0,%) with ¥ as the covariance matrix of Xy, the conditional independence structure
between two components is determined by the inverse of the covariance matrix, i.e. the precision matrix
© = XL It follows that the nonzero elements in the precision matrix corresponds to the nonzero coefficients
of the associated (high dimensional) mean regression. The family of Gaussian distributions with this property
is known as a Gauss-Markov random field with respect to the graph G. This observation has motivated a

large literature [53] and interesting extensions that allow for transformations of Gaussian variables [58] [57].m

In order to achieve a tractable concept for non-Gaussian settings, we use that (2.1]) occurs if and only if

FXa('lXV\{a}) = FXa('lXV\{a,b}) for all XV\{a} S XV\{a}- (2.2)

In turn, by the equivalence between conditional probabilities and conditional quantiles to characterize a
random variable, we have that (2.1)) occurs if and only if

Qx, (T|XV\{a}) =Qx, (T|XV\{a,b}) for all 7 € (0, 1), and XV\{a} S XV\{Q}. (23)

For a quantile index 7 € (0, 1), the 7-quantile conditional independence graph is a directed graph G (7) =
(V, E*(7)) with vertex set V and edge set E'(7). An edge (a,b) is not contained in the edge set E!(7) if
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and only if
Qxa (T|Xv\{a}) = QXa (T|XV\{a,b}) for all XV\{a} € XV\{a}~ (24)

By the equivalence between (2.2) and (2.3), the union of 7-quantile graphs over 7 € (0, 1) represents the
conditional independence structure of X, namely £ = UTE(OJ)EI (7). We also consider a relaxation of 1)
For a set of quantile indices 7 C (0, 1), we say that

Xo L7 Xo | Xvn\{ap}s (2.5)

X, and Xj are T-conditionally independent given Xy~ (4.5}, if (2.4) holds for all 7 € 7. Thus, we have that
(2.1) implies (2.5).We define the T-quantile graph as GI(T) = (V, E*(T)) where

E!(T) = UreTE' (7).

Although the conditional independence concept relates to all quantile indices, the quantile characterization

described above also lends itself to quantile specific impacts which can be of independent interestﬂ

Comment 2.2 (Simulation and Conditional Independence). Although not pursued in this work, the tools
developed here can also be used to develop simulation tools for high-dimensional random vectors. Specifically,

we can simulate a random vector X as follows
X1 ~Qx,(Uh), Xo~Qx,(Uz|X1), X3s~Qx,(Us|X1,X2), ..., Xg~Qx,(Usq|X1,...,Xq-1)

where U; ~ Uniform(0, 1), for all j € [d] and estimates of the conditional quantiles can be obtained based on
a sample (X; € R, and the tools discussed here. It is clear that the order of the procedure can impact
the estimation. In particular, if most variables are independent of (say) X, skipping them from the process

are likely to increase the accuracy of the simulation procedure.

2.2. Prediction Quantile Graphical Models. Prediction Quantile Graphical Models (PQGMs) are mo-
tivated by prediction accuracy under an asymmetric loss function (instead of conditional independence as in
Section. More precisely, for each a € V', we are interested in predicting X, based on linear combinations
of the remaining variables, Xy 4}, Where accuracy is measured with respect to an asymmetric loss function.

Formally, PQGMs measure accuracy as
La(r | V\{a}) = minElpr (Xo — X7, f)] (2.6)

where X_, = (1,X{,\{a})’, and the asymmetric loss function p,(t) = (7 — 1{t < 0})¢ is the check function
used in [51].

Importantly, PQGMs are concerned with the best linear predictor under the asymmetric loss function
pr which is a specification that is widely used in practice. This is a fundamental distinction with respect
to CIQGMs discussed in Section [2.I] where the specification of the conditional quantile was approximately
a linear function of transformations of XV\{G}H Indeed, we note that under suitable conditions the linear
predictor that solves the minimization problem in approximates the conditional quantile regression as
shown in [I5]. (In fact, the conditional quantile function would be linear if Xy was jointly Gaussian dis-
tributed.) However, PQGMs do not assume that the conditional quantile function of X, is well approximated
by a linear function and instead it focuses on the best linear predictor.

2For example, we might be interested in some extreme events which typically correspond to crises in financial systems.
3In Section the vector Z® in equation 1) collects the functions of the vector Xy (q3}-
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We define that Xj is predictively uninformative for X, given Xy (4.} if
Lo(m|V\{a}) = La(7 | V\{a,b}) forall 7€ (0,1),

i.e., considering a linear function of X; will not improve our performance of predicting X, with respect to

the asymmetric loss function p..

Again we can visualize the predictive relationship through a graph process indexed by 7 € (0, 1). That is,
for each 7 € (0,1) we have a directed graph G¥(r) = (V, E¥ (1)), where an edge (a,b) € G¥ (1) only if X, is
predictively informative for X, given Xy (4,4} at the quantile 7. Finally, it is also convenient to define the
PQGM associated with a subset 7 C (0,1) as GF(T) = (V, EX(T)) where

EF (T) = UTGTEP(T).

2.3. W-Conditional Quantile Graphical Models. In what follows, we discuss an extension of the QGMs
discussed in Sections and to allows for conditioning on a (possible infinity) family of events w € VVE|
Such extension is motivated by several applications in which the interdependence between the random
variables in Xy maybe substantially impacted by additional observable events (e.g. downside movements of
the market). This general framework allows different forms of conditioning. The main implication of this

extension is that QGMs are now graph processes indexed by 7 € 7 C (0,1) and w € W.
We define X, and X, are (T, w)-conditionally independent,
Xo L7 Xp | Xv\{ap}, @ (2.7)

if for all 7 € T we have
Qx, (T|Xv\(a}, @) = Qx, (TIXV\ {0}, @) (2.8)

The conditional independence edge set associated with (7,w) is defined analogously as before. We denote
them by E!(7,w) and B! (T, w) = U,e7E! (1, @) for each w € W.

The extension of PQGMs proceeds by defining the accuracy under the asymmetric loss function condi-

tionally on w. More precisely, we define
Lo(rlV\{a}, =) = minE[p. (X, - X',,8) | ). (2.9)

The prediction edge set associated with (7,w) is also defined analogously as before. We denote them by
Ef(r,@) and EX (T, @) = Uyer EF (1, @), for each w € W.

Example 1 (PQGMs for Stock Returns Under Market Downside Movements). Hedging decisions rely on the
dependence of various stocks returns. Moreover, hedging is even more relevant during market downside move-
ments, which motivates us to understand interdependence conditional on those events. We can parameterize
the downside movements by using a random variable M, which could be the market index, and conditional
on the event ), = {M < w}. This allows us to define a w-conditional-CIQGM as G (1, @) = (V, B! (1, @))
and a w-conditional-PQGM as G (, @) = (V, EF (1, w)), for each @ € W. ]

4With a slight abuse of notation, we let @ to denote the event and also the index of such event. For example, we write P(w)
as a shorthand for P(W € Q).
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3. ESTIMATORS FOR HIGH-DIMENSIONAL QUANTILE GRAPHICAL MODELS

In this section, we propose and discuss estimators for QGMs introduced in Section [2] Throughout it is
assumed that we observe a d-dimensional i.i.d. random vector Xy, namely {X;y : ¢ =1,...,n}. Based on
the data observed, unless additional assumptions are imposed we cannot estimate the quantities of interest
for all 7 € (0,1). Instead, in what follows we will consider a (compact) set of quantile index 7 C (0,1). The
estimators are intended to handle high dimensional models and a continuum of conditioning events in W.

3.1. Estimators for CIQGMs. We discuss the specification and propose an estimator for CIQGMs. Al-

though in general it is potentially hard to correctly specify coherent models, the following are simple examples.

Example 2 (Gaussian). Consider the Gaussian case, Xy ~ N(u,X). It follows that for each a € V, the
conditional distribution X, | X\ {a} satisfies
(E_l)a’
Xo | Xoniay ~ Nt = Y ?J(Xj — Kj),
jeV\{a} “

Therefore the conditional quantile function of X, is linear in Xy, and is given by

(X7 aa

q)—l Z_l ai
QX)) = = S S ).
(X7 aa jeV\{a} aa

Example 3 (Mixture of Gaussians). Similar to the prior example, consider the case Xy | @ ~ N (i, L)
for each w € W. It follows that for a € V, the conditional distribution satisfies

Y oai 1
Xa ‘ XV\{a}7wNN Hwa — Z (qﬁ(xj_uwj)a?
. (E )waa (E )waa
jeV\{a}
Again the conditional quantile function of X, is linear in Xy (.} and is given by
o~ H(r) (" waj
QXa (T|XV\{a}, w) = W + Ua — Z W(Xj — ij).

(27 eaa jeVfay e

Example 4 (Monotone Transformations). Consider the Gaussian case, for each a € V, X, = ho(Y,) and

Yy ~ N(u,%). It follows that for each a € V, the conditional quantile function satisfies
o 1(r S i
Qx. (T1Xv\(a}) = ha % tha— Y E)J(hj HX) = )
(57 aa jeV\{a}

In particular, if (h, : @ € V) are monotone polynomials, the expression above is a sum of monomials with

fractional and integer exponents.

Example 5 (Multiplicative Error Model). Consider d = 2 so that V = {1,2}. Assume that X, and ¢ are

independent positive random variables. Assume further that they relate to X as
X1 =+ EXQ.
In this case, we have that the conditional quantile functions are linear and given by

Qx,(11X2) = a+ F7H (1) Xy and  Qx,(7]X1) = (X1 — o) /F7 (1 = 7).
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Example 6 (Additive Error Model). Consider d = 2 so that V' = {1,2}. Let X5 ~ U(0,1) and € ~ U(0,1)
be independent random variables. Also define the random variable X as

X1=Oé+ﬁX2+€.

It follows that Qx, (7|X2) = a + X3 + 7. However, if 5 = 0, we have Qx,(7|X1) = 7, and for 8 > 0, direct
calculations yield that

%(Xl—oz), if X1§OZ+,B

QX2(7|X1):{ T+(1l-7)(X1—a-p), if Xi>2a+p

where we note that X; € [a, 1+ a+ f]. ]

Although a linear specification is correct for Examples [2| and Example [f] illustrates that we need
to consider a more general transformation of the covariates Xy in the specification for each conditional
quantile function. Nonetheless, specifications with additional non-linear terms can approximate non-drastic

departures from normality.

We will consider a conditional quantile representation for each a € V. It is based on transformations of
the original covariates Xy (4} that create a p-dimensional random vector Z% = Z( Xy (1) such that

Qx, (TIXv\{a}) = Z°Bar +Tar, Bar €RP, forallTeT, (3.10)

where 7., denotes a small approximation error. For b € V\{a} we let I,(b) := {j : Z¢ depends on X, }.
That is, I,(b) contains the components of Z* that are functions of X,. Under correct specification, if X,
and X, are conditionally independent, we have 8,,; = 0 for all j € I,(b), 7 € (0,1).

This allows us to connect the conditional independence quantile graph estimation problem with model
selection with quantile regression. Indeed, the representation (3.10) has been used in several quantile regres-
sion models, see [50]. Under mild conditions this model allows us to identify the process (84r)re7 as the

solution of the following moment equation
E[(r — I{X, < Z%Bar + 14 })Z%] = 0. (3.11)

In order to allow for a flexible specification, so that the approximation errors are negligible, it is attractive
to consider a high-dimensional Z* where its dimension p is possibly larger than the sample size n. In turn,
having a large number of technical controls creates an estimation challenge if the number of coefficients p
is not negligible with respect to the sample size n. In such a high dimensional setting, a widely applicable

condition that makes estimation possible is approximate sparsity [40, 10}, [17]. Formally we require
max sup ||Barllo < 5, maxsup{E[r2 ]}/2 < /s/n, and maxsup |E[forrer 27| = o(n"?), (3.12)
acV re1 a€V reT a€V reT

where the sparsity parameter s of the model is allowed to grow (at a slower rate) as n grows, and f,; =
IXal X (o) (@x, (TI X1\ {a} )| X1\ {a} ) denotes the conditional density function evaluated at the corresponding
conditional quantile value. This sparsity also has implications on the maximum degree of the associated
quantile graph.

Algorithm [3.3] below contains our proposal to estimate 8,,, a € V, 7 € T. It is based on three procedures
in order to overcome high-dimensionality. In the first step, we apply a (post-)¢;-penalized quantile regression.
The second step applies (post-)Lasso where the data is weighted by the conditional density function at the
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conditional quantileﬂ Finally, the third step relies on constructing (orthogonal) score function that provides
immunity to (unavoidable) model selection mistakes.

There are several parameters that need to be specified for Algorithm [3.1} The penalty parameter Ay is
chosen to be larger than the ¢o.-norm of the (rescaled) score at the true quantile function. The work in [I1]
exploits the fact that this quantity is pivotal in their setting. Here, additional correlation structure would
have an impact and the distribution is pivotal only for each a € V. The penalty is based on the maximum

of the quantiles of the following random variables (each with pivotal distribution), for a € V'
po — o e BT < 7= 7)2Z3)
¢ reT J€lp] V(1 - T)?iazj
Coq .. . . /\Z _ 2 1 2 .
where {U; : i = 1,...,n} are i.i.d. uniform (0,1) random variables, and 77, = {E,[(Z})"]} /2 for j € [p].
The penalty parameter \y 1 is defined as

A7 i= max Aor(1— €/[V] | 2%),

that is, the maximum of the 1—¢/|V| conditional quantile of A,7 given in (3.13). Regarding the penalty term
for the weighted Lasso in Step 2, we recommend a (theoretically valid) iterative choice. We refer to Appendix
for the implementation details of the algorithm. We denote ||8]|; 52 := >, 07;18; the standardized version
of the #1-norm.

(3.13)

Algorithm 3.1. (CIQGM Estimator.) For eacha €V, 7 €T, and j € [p]

Step 1. Compute BM from || - ||1 5z -penalized T-quantile regression of X, on Z* with penalty Avrm.
Compute BM from T-quantile regression of X, on {Z} : \BMH > /\VT\/m/a}Zk}-

Step 2. Compute 32 from the post-Lasso estimator of farZ§ on forZ2;.

Step 3. Construct the score function 121»(04) = (71— 1{X;s < ZEa+ Z;f_jﬁm,fj})fim(ij — Zﬁ_j%T) and for
Larj(@) = [Ea[$i(a)]2/Eal3(a)], sct furj € argminaea,,; Lars(c).

Algorithm above has been studied in [I8] where it is applied to a single triple (a, 7, j), and we have used
the following parameter space for o, Ayj = {a € R : |a— BaTj| <10/{Z;logn}}. Under similar conditions,
results that hold uniformly over (a,7,j) € V x T x [p] are achievable (as shown in the next sections) building
upon the tools developed in [I1] and [25]. Algorithm is tailored to achieve good rates of convergence in
the £oo-norm. In particular, under standard regularity conditions, with probability approaching to 1 we have

. log(p|V|n
sup ||/BCLT - Ba'r”oo 5 g( | | )
TET n

In order to create an estimate of E'(7) = {(a,b) € V x V : max;ey, ) |Barj| > 0}, we define

EI(T):{(a,b)EVXV; max |BI‘J:TJ>CV}
J€E€I,(b) Se(ﬂm’j)

where se(far;) = {7(1 —7)E, (02,1712 with Diar; = ]?mT{ij — Z@_;Ah.}, is an estimate of the standard
deviation of the estimator, and the critical value ¢v is set to account for the uniformity over a € V, 7 € T,
and j € [p]. We discuss in the following sections a data driven procedure based on multiplier bootstrap that

is theoretically valid in this high dimensional setting.

5We note that an estimate for far is available from ¢;-penalized quantile regression estimators for 7+ h and 7 — h where h
is a bandwidth parameter, see [50, [I§] and Comment
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Comment 3.1 (Stepdown Procedure for ©v). Setting a critical value ¢v that accounts for the multiple
hypotheses being tested plays an important role to estimate the graph ET (7). Further improvements can be
obtained by considering the stepdown procedure of [68] for multiple hypothesis testing that was studied for
the high-dimensional case in [24]. The procedure iteratively creates a suitable sequence of decreasing critical
values. In each step only null hypotheses that were not rejected are considered to determine the critical
value. Thus, as long as any hypothesis is rejected at a step, the critical value decreases and we continue to

the next iteration. The procedure stops when no hypothesis in the current active set is rejected. [

Comment 3.2 (Estimation of Conditional Density Function). The algorithm above requires the conditional
density function f,, which typically needs to be estimated in practice. It turns out that estimation of

conditional quantiles yields a natural estimator for the conditional density function as

1
Jar = 0Qx, (t|Z%)/oT"

Therefore, based on f;-penalized quantile regression estimates at the 7 + h,, and 7 — h,, quantile, where

h = h, = 0 denotes a bandwidth parameter, we have
2h
Qx. (7 +h|Z%) = Qx, (7 — h|Z*)

as an estimator of f,,. Under smoothness conditions, it has an bias of order h%. See [18] and the references

Jar = (3.14)

therein for additional comments and estimators. ]

3.2. Estimators for PQGMs. In this section we propose an estimator for PQGMSs in which case we are
interested in the prediction of X,, a € V, using a linear combination of Xy (4 under the asymmetric
loss discussed in . We will add an intercept as one of the variables for the sake of notation so that
X_o=(1,X (,\ {a})’ . Given the loss function p,, the target d-dimensional vector of parameters /3., is defined

as (part of) the solution of the following optimization problem
Bar € argmﬁin Elpr (X — X" ,0)]- (3.15)

As we are interested in the case that d is large, the use of high-dimensional tools to achieve consistent
estimators is needed. The estimation procedure we proposed is based on ¢1-penalized quantile regression but
additional issues need to be considered to cope with the (non-vanishing) difference between the best linear
predictor and the conditional quantile function. Again we consider models that satisfy an approximately
sparse condition. Formally, we require the existence of sparse coefficients {34, : a € V,7 € T} such that

maicsup [[Barllo < s and  max sup{B{X" 4 (Bor - Bar) I S Vs/n, (3.16)
where (again) the sparsity parameter s of the model is allowed to grow as n grows. The high-dimensionality
prevents us from using (standard) quantile regression methods and regularization methods are needed to
achieve good prediction properties.

A key issue is to set the penalty parameter properly so that it bounds from above

max sup max |E,, [(1{Xq < X’ far} — 7)X_a ;]| (3.17)
a€V reT jEld]
However, it is important to note that we do not assume that the conditional quantile of X, is a linear

function of X_,. Under correct linear specification of the conditional quantile function, ¢1-penalized quantile
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regression estimator has been studied in [I1]. The case that the conditional quantile function differs from
a linear specification by vanishing approximation errors has been considered in [47] and [I8]. The analysis
proposed here aims to allow for non-vanishing misspecification of the quantile function relative to a linear
specification while still guarantees good rates of convergence in the f5-norm to the best linear specification.
Thus the penalty parameter in the penalized quantile regression needs to account for such misspecification

and is no longer pivotal as in [IT].

In order to handle this issue we propose a two step estimation procedure. In the first step, the penalty
parameter )\ is conservative and is set via bounds constructed based on symmetrization arguments, similar
in spirit to [70, 12]. This leads to Ao = 2(1 + 1/16)+/21og(8|V|2/£)/n. Although this is conservative, under
mild conditions this would lead to estimates that can be leverage to fine tune the penalty choice. The second
step uses the preliminary estimator to bootstrap based on the tools in [24] as follows. Specifically, for
estimates &;4, of the “noise” €4, = 1{Xio < X] _,Bar} — 7 for i € [n], for a € V' define

T |En [9i€iar Xi,—aj]]

A =1.1s 3.18
aT ver seid {Eale2,, X2_, ]}/ (319)

where (g;)"_; is a sequence of i.i.d. standard Gaussian random variables. The new penalty parameter Ay T

is defined as

AyT = mea‘iu_XaT(l — ¢ X 0) (3.19)

that is, the maximum of the (1 — &) conditional quantile of A,7. The penalty choice above adapts to
the unknown correlation structure across components and quantile indices. The following algorithm states
the procedure where we denote weighted £1-norms by [|8[l15x := >, 5.5|6;| with 555 = {E,[X?]}'/? the

standardized version of the ¢1-norm and ||8]1.2 := >, 05518,| with 5%, = {E,[E2, X2, ;]}!/2 a norm based

on the estimated residuals.

Algorithm 3.2. (PQGM Estimator.) For eacha €V, and 7 € T

Step 1. Compute Bm from || - || zx -penalized T-quantile regression of X, on X_, with penalty \o.
Compute BM from T-quantile regression of X, on {Xj : |BM;C| > N\ /5N ).

Step 2. For €4y = 1{X;q < X{7_a§a7} — 7 fori € [n], and £ = 1/n, compute A\y7 via .

Step 3. Recompute BM from || - ||1 z-penalized T-quantile regression of X, on X_, with penalty Ay .
Compute Bar from T-quantile regression of X, on { Xk : |Bafk| > S\VT/c?gfk}.

Under regularity conditions stated in Section [} with probability approaching 1, we have

. slog(|Vn
max sup || Bar — Barll S (vl )
a€V rcT n

The estimate of the prediction quantile graph is given by the support of (8ar)acv.reT, namely

EP(r) = {(a,b) EVXV: |Bury| > S\VT/asz}.

That is, it is induced by covariates selected by the ¢1-penalized estimator. Those thresholded estimators not
only have the same rates of convergence as of the original penalized estimators but also possess additional

sparsity guarantees.
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3.3. Estimators for W-Conditional Quantile Graphical Models. In order to handle the additional
conditioning events Q,, @ € W, we propose to modify Algorithms and based on kernel smoothing.
To that extent, we assume the observed data is of the form {(X;y,W;) : 4 =1,...,n}, where W; might be
defined through additional variables. Furthermore, we assume for each conditioning event @ € W we have
access to a kernel function K, that is applied to W, to represent the relevant observations associated with
w (recall that we denote P(W € Q) as P(w)). We assume that Ko(W) = 1{IV € Q}.

Example 7 (PQGMs for Stock Returns Under Market Downside Movements, continued). In Example
we have W as the market return and the conditioning event as Q. = {W < w} which is parameterized by
w € W, a closed interval in R. We might be interest in a fixed w or on a family of values w € (—@,0]. The
latter induces W = {Qyp = {W < w} : w € (—@,0]}. The kernel function is simply K (t) = 1{t < w}.

This framework encompasses the previous framework by having K (W) = 1 for all W. Moreover, it
allows for a richer class of estimands which require estimators whose properties should hold uniformly over
w € W as well. Next we propose estimators for this setting, i.e. we generalize the previous methods
to account for the additional conditioning on w € W. In what follows, with a slight abuse of notation
we use w to denote not only the index but also the event €. For further notational convenience, we
denote u = (a,7,w) € U :=V x T x W so that the set U collects all the three relevant indices. With
02, = {En[Ko(W)(Z2)?]}/2, we define the following weighted £1-norm |||y, = > jeip] Taw;lBil- This
norm is w dependent and provides the proper adjustments as we condition on different events associated

with different @’s.

We first consider estimators of CIGMs conditional on the events in W. In this setting, the model is
correctly specified up to small approximation errors. The definition of the penalty parameter will be based
on the random variable

]En[Kw(W)(l{U < T} - T)qu]
Ae7ww =  sup  max —
TeT weWw j€lp] (1 - 1)5%,,

where U; are independent uniform (0, 1) random variables, and set the penalty
Avrw = max Agrw(l - E/{|Vntt2aw iy ze W),
ae

that is, the maximum of the (1 — £/{|V|n!*29w}) conditional quantile of A 7. Algorithm provides

the definition of the estimator. Here A,; = {a € R : |a — Eu]| < 10/{cZ,;logn}}, and denote A, :=

Avrwy/T(1 = 7).

Algorithm 3.3. (W-Conditional CIQGM Estimator.) For (a,7,@) € V. X T x W and j € [p]

Step 1. Compute Eu from || - |1, -penalized T-quantile regression of K (W)(Xqa; Z%) with penalty A, .
Compute B, from T-quantile regression of Ko (W)(Xq; {Zp - |Buk| = /Gl

Step 2. Compute 5% from the post-Lasso estimator of Ko(W)fuZ§ on Kg(W)fuZ2 ;.

Step 3. Construct the score function i(a) = Ko (Wi)(T — H{Xio < Za+ Z7_;Bu,—i 1) fiu(Z5 — 2 _;731)
and for Lyj(a) = [E,[1hi(a)]|2/En[02(0)], set Bu; € arg minged,,; Luj(a) .

Next we consider estimators of PQGMs conditional on the events in V. Similar to the previous case, for

a € V define B (Ko (W) X |
_ n |4 o YCarw N —a,j

A, =1.1 su max

TV T mew sl (Ba Ko (W)E2, X2, )12

(3.20)
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where (g;)™_, is a sequence of i.i.d. standard Gaussian random variables. The new penalty parameter Ayt
is defined as

Avrw = max Agrw (1 — €] X_,) (3.21)
a€eV

that is, the maximum of the (1 — ¢) conditional quantile of A,7yy. It will also be useful to define another

weighted {1-norm, |81,z = >, oeX_|B5] with 55X = {E,[Ko(W)E2 szj]}l/?. We also denote

X
awj

aTwj aTwj aTw
o2 =1{En [KW(W)XEQJ]}UQ. The penalty choice and weighted ¢1-norm adapt to the unknown correlation

structure across components and quantile indices. The following algorithm states the procedure, with Aoy, =
2(1 + 1/16)/21log(8|V 2 {ne/dw }2dw [€) /n.

Algorithm 3.4. (W-Conditional PQGM Estimator.) For (a,7,w) € VX T x W

Step 1. Compute B\u from || - |1, -penalized T-quantile regression of X, on X_, with penalty Aoy .
Compute B3, from T-quantile regression of Ko(W)(Xa; {X—ak : |Buk| = Xow /0 }).

Step 2. For &, = 1{X;, < X;ﬁ,aﬁu} — 71 fori € [n], and € = 1/n, compute Ay via (3.21]).
Step 3. Recompute Bu from || ||1.we-penalized T-quantile regression of Ko (W )(Xa; X_o) with penalty A\vyy.
Compute B, from T-quantile regression of Kg(W)(Xa; {X_ak |Bukl = Avrw /o).

Comment 3.3 (Computation of Penalty Parameter over W). The penalty choices require one to maximize
overa € V, 7 €T and w € W. The set V is discrete and does not pose a significant challenge. However
both other sets are continuous and additional care is needed. In most applications we are concerned with
the case that W is a low dimensional VC class of sets and it impacts the calculation only through indicator
functions, which is precisely the case of 7. It follows that only a polynomial number (in n) of different values
of 7 and w would need to be considered. [

4. MAIN THEORETICAL RESULTS

This section is devoted to theoretical guarantees associated with the proposed estimators. We will establish
rates of convergence results for the proposed estimators as well as the (uniform) validity of confidence regions.
These results build upon and contribute to an increasing literature on the estimation of many processes of

interest with (high-dimensional) nuisance parameters.

Throughout, we will provide results for the estimators of the WW-conditional quantile graphical models
as those can be generalized the other models by setting K (W) = 1. Although some of the tools are
similar, CIQGMs and PQGMs require different estimators and are subject to different assumptions. Thus,

substantial different analyses are required.

4.1. W-Conditional CIQGM. For u = (a,7,w) € U, define the 7-conditional quantile function of X,
given Xy (q) and w as

Qx, (TIX\{a}, @) = Z"Bu + T, (4.22)
where Z¢ is a p-dimensional vector of (known) transformations of Xy (4}, and r, is an approximation error.
The event w € W will be used for further conditioning through the function K (W) = 1{W € w}.

We let fXa‘XV\{a},w(-\XV\{a}, @) denote the conditional density function of X, given Xy (43 and @ € W.
We define fu, == fx,|xy\ (). (Qx, (T|Xv\{a}> @)| X1\ {a}, @) as the value of the conditional density function
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evaluated at the 7-conditional quantile. In our analysis we will consider for u € U
E[fu{Z°6}?|=]

= inf —/————— - d = 4.2
L= 3L, E[{Z°0}[w] Lu= WL (423
Moreover, for each u € U and j € [p] we define
v}, = argmin E[f2K(W)(Z$ — 2% ). (4.24)
B!

This provides a weighted projection to construct the residuals
vuj = fulZ] — Zij%{)
that satisfy E[f,Z? jv,;|w] = 0 for each (u,j) € U x [p].

The estimands of interest are 8, € RP, u € U, and can be written as the solution of (a continuum of)

moment equations. Letting 3,; denote the jth component of 3, so that §,; € R solves

EWW (X7 W» ﬁv UUJ)] =0,

where the function ,,; is given by

Yy (X, W, B.y) = Kar(W)(r = HXa < 258+ 22,5 + 0 D125 _mi“é))

and the true value of the nuisance parameter is given by n,; = (777(”), 77752]), 171(3)) with 17 J = Bu,—j» 77“2]) =7,

and nl(z) = r,. In what follows ¢, C' denote some fixed constant, ¢,, and A,, denote sequences go to zero with
0n = n~H for some sufficiently small p. Denote pyy = inf ey P(w).

Condition CI. Let u = (a,7,w) € U :=V x T x W and (X;, W;)_, denote a sequence of independent
and identically distributed random vectors generated accordingly to models and :

(i) Suppose sup, ey jeip UIBull + 1V} < C and T is a fived compact set: (a) there exists s = s, such
that sup,cy gepy {1Bullo+ 52010} < 5, sbepesepy [ — 2l + 57215 = 3l < Cn~Lslog([VIpm)}2,
where 7, is approvimately sparse; (b) the conditional distribution function of X, given Xy\(qy and @ is
absolutely continuous with continuously differentiable density fXa‘XV\{a},w(ﬂXV\{a},w) bounded by f and
its derivative bounded by f’ uniformly over u € U; (¢) |fu— fuw| < Lyllu—2'||, ||Bu—Buw || < Lgllu—u'||* with
k€ [1/2,1], and E[|[Kx(W) — Koo (W)|] € Li||w — @'||; (d) the VC dimension dw of the set W is fized,
{Qx, (7| Xv\{ay, @) : (1,@) € T x W} is a VC-subgraph with VC-dimension 1 + Cdw for every a € V;

(ii) The following moment conditions hold uniformly over uw € U and j € [p|: E[|fuvu; Z8|?|=]'/?

Cf,, mingey inf)5 = E[{(Xa, Z%)0}?|@] > ¢, maxgey SUp|5)=1 E[{(Xa, Z%)0}|w] < C, E[f2(299)?|w]
]1/3

N AJE] o
CF2BI(Z2°0)? ], max, i gl v ZiiZ] 7 log (pl V) < 6, {nP(2)}/°;

<
<

(iii) Furthermore, for some fized q > 4V (1+2dw ), sup,e . 5=1 El|(Xa, Z%)0|*r2|w] < CE[r|w] < Cs/n,
maxy ey jefp] |Blfuruvus|@]] < 0 n~1/2, Elmax;<p, sup, ey [ Ko (W)riu|?] < C, and with probability 1 — A,
uniformly over w € U, j € [p]: Ep[r? uj|w] +E,[r|w] < n~tslog(p|Vin), En[Ke(W){|r.] + r2}H(Z26)%] <
5nEn[KW(W)fu(Za5)2]f

(iv) For a fixed ¢ > 4V (1 + dW) diam(W) < n'/?4, Emax;c, | Xiv||L V maxeey | 284V uw <
My, Elmaxi<n supy,ey jefp) |Viugl? 1"/9 < Ly, (Ly + Li)?M2log?(p|V|n) < 6nnu§’,vig, M*og(p|VIn)logn <
531””%/\/&} 2log2(p|V|n) (5%@2/4%, s3log®(p|V|n) < 6flnﬁu§)’,\,, L25log®?(p|Vn) < 5nfu(n“W)1/27

Mys\/Tog(pIVIn) < un" 2w .
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Condition CI assumes various conditional moment conditions to allow for the estimation to be conditional
on w € W. Those are analogous to the (unconditional) conditions in the high-dimensional literature in
quantile regression models, [18]. In particular, condition CI(i) assumes smoothness of the density function,
and of coefficients. Condition CI(ii) assumes conditions on the (conditional) population design matrices such
as the ratio between eigenvalues. Condition CI(iii) pertains to the approximations errors and assumes mild
moment conditions. Finally Condition CI(iv) provides sufficient conditions on the allowed growth of the
model via p and |V] relative to the available sample size n. Based on Condition CI, we derive our main
results regarding the proposed estimator. Moreover, we also establish new results for ¢;-penalized quantile
regression methods that hold uniformly over the indices v € Y. The following theorems summarize these
results. Note, Condition CI(iii) also assume dy is bounded by fixed ¢, and the proof can easily be extended
to other cases.

Theorem 1 (Uniform Rates of Convergence for W-Conditional Penalized Quantile Regression). Under
Condition CI, we have that with probability at least 1 — o(1)

~ 1+4+dw)l V
18 — Bull S \/8< +n?u)P(Ezgﬂ(§)| |n), uniformly over v = (a,7,w) € U
Moreover, the thresholded estimator B>, with X = V(L +dw)log(p|Vn)/n and Bi‘J = Buj1{|3uj| >

-,
)\aawj

}, satisfies the same rate and HB\XHO < s.

Theorem [I|builds upon ideas in [11] however the proof strategy is designed to derive rates that are adaptive
to each v € U. Indeed the rates of convergence are u-dependent and they show a slower rate for rare events
w e W.

Theorem 2 (Uniform Rates of Convergence for W-Conditional Weighted Lasso). Under Condition CI, we
have that with probability at least 1 — o(1)

o ) 1 1+dw)l Vv i . .
172, — Il S f\/s( i ZP)(;g)(pl ) and |7 llo <5, uniformly over u = (a,7,w) €U, j € [p].

The following result establishes a uniform Bahadur representation for the final estimators.

Theorem 3 (Uniform Bahadur Representation for W-Conditional CIQGM). Under Condition CI, the es-
timator (/Buj)ueug'e[p] satisfies

00 VilBuj = Bug) = Un(u, §) + Op(8n) in €U x [p]),
where o; = 7(1 — 7)E[K5(W)vz,] ™" and

. {r(1— T)E[KW(W)U?U,]}—UQ n

Un(u, j) = (1 — HUi(a, @) < 7}) Ko (Wi)vi 5
where U1 (a,w), ..., Un(a,w) are i.i.d. uniform (0,1) random variables, independent of vy, .., Unu;-

Theorem [3| plays a key role. However, it is important to note that the marginal distribution of U,,(u, j)
is pivotal. Nonetheless, there is a non-trivial correlation structure between U(a,w) and U(a,@). In or-
der to construct confidence regions with non-conservative guarantees, we rely on a multiplier bootstrap

method. We will approximate the process N' = (Nyj)ueu,jejp) by the Gaussian multiplier bootstrap
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based on estimates ;= {7(1 — 7)Ey[Ko(W)02,]} V(1 — H{Xo < Z°Bu}) Ko (Wi)us of 1, (U,W) =

{r(1 = P)EL Ko (W)} 2(r = U (a, ) < 7})Kw (W)v,y, namely

uj

~ ~ 1 & ~
G = (Gujlucujew = § —= D _ githuj (Xi, Wi)

\/n “

i=1 weU,jE[p]

where (g;)7—; are independent standard normal random variables which are independent from the data
(W:)_,. Based on Theorem 5.2 of [24], the following result shows that the multiplier bootstrap provides a
valid approximation to the large sample probability law of \/E(Bu] — Buj)ucu,je[p) Which is suitable for the
construction of uniform confidence bands over the set of indices associated with I,(b) for all a,b € V.

Corollary 1 (Gaussian Multiplier Bootstrap for W-Conditional CIQGM). Under Condition CI with 6,, =
o({(1 + dw)log(p|V|n)}~1/?), and (1 + dw)log(p|V|n) = o({(n/L2)*" A (n'=2/9/L2)'/3}), we have that

Pp ( max M S [t,tq) —Pp (

j€la(b) n~1/20,;

sap sup s 10,5 € 0] (X WLy )| = o)

PeP, t,t' eR,ucld,beV

J

Corollary [1] allows the construction of simultaneous confidence regions for the coefficients that are uni-
formly valid over the set of data generating processes induced by Condition CI. Based on the coeffi-
cients whose intervals do not overlap zero, we can construct a conditional independence graph process
E! (r,w), 7 € T,w € W that contains the true conditional independence quantile graph with a specified
probability.

4.2. W-Conditional PQGM. In this section, we derive theoretical guarantees for the WW-conditional pre-
dictive quantile estimators uniformly over u = (a,7,7w) € U. For each u € U the estimand of interest is

B € RP that corresponds to the best linear predictor under asymmetric loss function, namely
Bu € argminElpr (X, ~ X.,8) | =] (4.25)

where the event w € W is used for further conditioning. In the analysis below, the conditioning is imple-
mented through the function K, (W) = 1{W € w}.

In the analysis of this case, the main issue is to handle the inherent misspecification of the linear form
X" ,Bu with respect to the true conditional quantile. The first consequence is to handle the identification con-
dition. Given X_, and w € W, we let fy := fx,|x_, (X" ,Bu|X_a, ™) denote the value of the conditional
density function evaluated at X’ ,/3,. In our analysis, we will consider

o B[fu{X’,0}% | @

Lu = Héﬂlil E[(X/_a(S)Q | w] and iu = Lne]{{liu (426)

We remark that iu defined in 1' differs from 1) which is the standard conditional density at the

true quantile value. It turns out that Knight’s identity can be used by exploiting the first order condition

associated with the optimization problem (4.25) which yields zero mean condition similar to the conditional

quantile condition.

A second consequence of the misspecification is the lack of pivotality of the score. Such pivotal property
was convenient in the previous section to define penalty parameters and to conduct inference. We will exploit

bounds on the VC-dimension of the relevant classes of sets formally stated below.
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Condition P. Let U =V x T x W and (X;, W;)I_, denote a sequence of independent and identically
distributed random vectors generated accordingly to models :

(i) Suppose that sup,cy |Bull < C and T is a fized compact set: (a) there exists s = s, and B, such that
suPuey || Bullo < 8, suPyers 180 — Bull +57Y2(|Bu — Bull < \/s/n; (b) the conditional distribution function of
X given X_, and @ is absolutely continuous with continuously differentiable density fx,|x_, =(t| X_a,@)
such that its values are bounded by f and its derivative is bounded by f' uniformly overu € U; (c) |fu— fu| <
Lyllu =], 1B — Burll < Lllu — | with & € [1/2,1], and B|Ko(W) — Koo (W)]] < Lillw — @'l (d)
the VC dimension dw of the set W is fized, {1{X, < X', Bu} : (1,@w) € T x W} is a VC-class with
VC-dimension 1 + dyw for every a € V;

(ii) The following moment conditions hold uniformly over uw € U: mingey inf) 5= E{X" ,0}*|w] > ¢,
max, ey supy 51 E{X’,0}*|w] < C;

((iii) With probability 1 — A, uniformly over w € U and a € V: Ep[Ke (W){| X" ,(Bu — Bu)| + X", (Bu —
ﬁU>|2}(Za5)2] < 5nEn[KW(W>fu(X/—a6)2];

(iv) For a fired ¢ > 4V (1 + dw), we have that: diam(W) < n'/27, Elmax;<, | Xiv[|L]Y 9/ pw <
My, M2log" (V) < Sunf>udy, Milog(nV)logn < dunpw, (Ly + Li)*M2log(VIn) < Sungi, 9,
MZslog®?(n|V|) < 8uf,, (npw)'/2, Mysy/log(n|V]) < 8u(npw)'/?, and s*log® (n|V]) < 8unf7 1y

Condition P is a high-level condition. It allows to cover conditioning events w € W whose probability

can decrease to zero (although slower than n=1/4).

Next we derive our main results regarding the proposed estimator for the best linear predictor. These
results are also new ¢1-penalized quantile regression methods as it holds under possible misspecification of the
conditional quantile function and hold uniformly over the indices u € U. The following theorem summarizes
the result.

Theorem 4 (Uniform Rates of Convergence for W-Conditional Penalized Quantile Regression under Mis-
specification). Under Condition P, we have that with probability at least 1 — o(1), uniformly over u =
(a,7,w) €U,

~ s(1+ dw) log(|V|n)

The data-driven choice of penalty parameter helps diminish the regularization bias and also allow to
obtain sparse estimators with provably rates of convergence (through thresholding). Moreover, the u specific
penalty parameter combined with the new analysis yields an adaptive rate of convergence to each u € U
unlike previous works.

Comment 4.1 (Simultaneous Confidence Bands for Coefficients in PQGMs). We note that in some applica-
tions we might be interested in constructing (simultaneous) confidence bands for the coefficients in PQGMs.
In particular, this would include the cases practitioners are using a misspecified linear specification in a
quantile regression model. Provided the conditional density function at X’ 3, can be estimated, a version
of Algorithm [3:3] using the penalty parameters in Algorithm [3.4]for the initial step can deliver such confidence
regions via a multiplier bootstrap.
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5. EMPIRICAL APPLICATIONS OF QGMS

5.1. CoVaR, Network Spillover Effects, and Systemic Risk. Traditional risk measures, such as Value
of Risk (VaR), focus on the loss of an individual institution only. CoVaR proposed by [4] is to measure the
VaR of the whole financial system or a particular financial institution by conditioning on another institution

being in distress.

[] define institution b’s CoVaR at level 7 conditional on a particular outcome of institution a, as the value
of CoVaR?la that solves

P(X, < CoVaRY|C(X,)) =7 (5.27)

A special case is C(X,) = {X, = VaR%} which, as interpreted by [4], means with probability 7 institution
b is in trouble given that institution a is in trouble. The estimation procedure is defined as: firstly, quantile

regression X on X, gives the value at risk of institution b conditional on institution a,
VaR7|Xo = 83(7) + Ba(7) Xa, (5.28)
then replacing variable X, by its 7-th quantile, i.e. VaR2, yields
CoVaRIX=Veliz — gb(r) 4 B (r)VaR?, (5.29)
and

ACoVaR* = B(1)(VaR® — VaRSyy). (5.30)

Below, we show with QGM we can incorporate (tail) network spillover effects into risk measuring. (Note

the identified risk connections between all financial institutions constitute a systemic risk network.) Define

P(X;, < CoVaRU“YMebHC(X,, Xy (apy)) = T, (5.31)
we then have
CoVaRyXe=V e Xvien =VaRTE _ b0y | bV aRE + Bl (o (T)VaRY Mo, (5.32)
and
ACoVaRbwVMabt = G5 (1) (VaR® — VaRgyy,), (5.33)
where 3°(7) = {85(7), B{’/\{b} (1)} is estimated via Algorithm or
We stack ACoVaRY“V M 45 the (a, b)-th element of an d x d matrix E”(7) which represents a weighted

and directed network of institutions. Following [5], the systemic risk contribution of institution a is called
the network to-degree, defined as 6t = ACoVaR*¥*l® = ", ACoVaRF“V\{ek}t  To-degrees measure
contributions of individual institutions to the overall risk of systemic network events. Similarly, from-degree of
institution a is defined as 6/7°™ = ACoVaR*¥* = >k ACoVaRg‘k’V\{a’k}. From-degrees measure exposure
of individual institutions to systemic shocks from the network. The total degree § := )", ACoVaRs¥sle,
aggregates institution-specific systemic risk across institutions hence provides a measure of total systemic risk
in the whole financial system. Finally, for institution a, we define its net contribution as net-ACoVaR® =

5o — §frem  For more about network analysis, see [52].
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5.2. International Financial Contagion. In this section we apply PQGMs to the study of international
financial contagion and then with the estimated network structure we can measure the systemic risk contri-
butions of each country, as mentioned in Section We focus on examining financial contagion through
the volatility spillovers perspective. [39] reported that international stock markets are related through their
volatilities instead of returns. [34] studied the return and volatility spillovers of 19 countries and found
differences in return and volatility spillovers. For a survey of financial contagion see [30]. We also illustrate

how PQGMSs can highlight asymmetric dependence between the random variables.

We use daily equity index returns, September 2009 to September 2013 (1044 observations), from Morgan
Stanley Capital International (MSCT). The returns are all translated into dollar-equivalents as of September
6th 2013. We use absolute returns as a proxy for volatility. We have a total of 45 countries in our sample, there
are 21 developed markets (Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong,
Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland,
the United Kingdom, the United States), 21 emerging markets (Brazil, Chile, Mexico, Greece, Israel, China,
Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Korea, Malaysia, Peru, Philippines, Poland,

Russia, Taiwan, Thailand, Turkey), and 3 frontier markets (Argentina, Morocco, Jordan).

Below in Figure [1] we provide a full-sample analysis of global volatility spillovers at different tails. We
denote 20% quantile as Low Tail, 50% quantile as Median, 80% quantile as Up Tail. Both PQGMs and GGM
are presented. Our purpose is to show the usefulness of PQGM in representing nonlinear tail interdependence
allowing for heteroscedasticity and to show that PQGM can measure correlation asymmetry through looking
at the tails of the distribution (not specific to any model).

There are significant differences in the network structure in terms of volatility spillovers when using
PQGM and GGM. PQGM permits asymmetries in correlation dynamics, suited to investigate the presence
of asymmetric responses. We find significant increase interdependence at the up tail between the volatility
series, i.e. we find downside correlations (high volatility) are much larger than upside correlations (low
volatility). This confirms findings in the finance literature that financial markets become more interdependent

during high volatility periods.

We also find if two countries locate in the same geographic region, with many similarities in terms of
market structure and history, they tend to be more closely connected (homophily effect as stated in network
terminology); while two economies locate in separate geographic regions are less likely directly connected.
In addition, we find among European Union member countries, Germany appears to play a major role in the
transmission of shocks to others; while in Asia, Hong Kong, Thailand, and Singapore appear to play major
roles; and among all the north and south American countries, Canada and US play major roles.

In addition, we present net-ACoVaR discussed in Section 5.1 with 7 = 0.8, i.e. the Up Tail, in Figure ??
which shows that: globally, total volatility spillovers from Germany and France to the others are much larger
than total volatility spillovers from the others to them, and their net-ACoVaR are positive. Both Greece and
Spain have negative net-ACoVaR. The estimated network structure is important here as it demonstrates
that shocks originated in some markets may be amplified during their transmission throughout the system,

posing greater risks to the whole market than other shocks’ origination.
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Median Gaussian Graph

Low Tail Up Tail

JOR

FIGURE 1. International Financial Contagion. Note: we show the volatility transmission channel

is asymmetric (at different tails).
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5.3. Stock Returns Under Market Downside Movements. Stock returns are in general non-Gaussian.
[6] find correlation asymmetries in the data and reject the null hypothesis of multivariate Gaussian distri-
butions at daily, weekly, and monthly frequencies, conditional on market “downside” movements. See also
[61L, [67], among other studies, in the empirical finance literature for evidence of the non-Gaussian feature of
financial markets. Hence, generally, in the financial market context, linear correlation measures only convey

partial and often misleading information on the actual underlying conditional dependencies.

In fact, when we are particularly interested in the conditional dependencies of stocks returns con-
ditioning on market “downside” movements, this can be modeled by the W-Conditional CIQGM
with W = {Market return < w}, w as the 7,,-th quantile of the market index returns, and 7, =
{0.15,0.5,0.75,0.9,1}. In the following example, we obtain daily stock returns from CRSP and use S&P
500 as the market index. The full sample consists of 2769 observations for 86 stocks from Jan 2, 2003 to
December 31, 2013. The total number of stocks is 86 due to data availability at CRSP. In this case, we
define market downside movement as when the market index returns are below a pre-specified level (e.g.
Tm-th quantile), hence conditioning on a particular w simply corresponds to consider the subsample based
on whether the corresponding date’s market return is less equal to the 7,,-th quantile of the market index
returns. We reported the number of edges (there is no linkage between two stocks if they are conditional

independent), under different market conditions in Table [I| below.

TABLE 1. Edges Produced by Different Graph Estimators

obs PQGM CIQGM CIQGM(0.1) CIQGM(0.3)

Tm 0.15 416 82 7302 4086 388
0.5 1385 196 7254 1308 74
0.75 2077 238 7226 908 50
0.9 2492 272 7202 740 46

1 2769 304 7274 784 o4

w >0 1246 186 7262 1516 80

<0 1522 180 7254 1308 64

Note: The results are computed by Algorithm and CIQGM(0.1)
means additional thresholding at 0.1, i.e. we keep the edges that have
correlation stronger than 0.1. Similarly, CIQGM(0.3) means additional
thresholding at 0.3.

As shown in Table [I} there are significant differences between PQGM and CIQGMs, hence assuming
Gaussianity for the distribution of stock returns could result in false correlation conclusions (e.g., estimation
bias due to asymmetry in correlations conditional on market upside or downside moves). When using PQGM,
the number of edges increases with 7,,,. The number of edges in CIQGM is significantly higher when no
thresholding is applied. The results also show stronger correlation (and more connections) under market

downside moments. All those empirical findings support evidence from the empirical finance literature.
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APPENDIX A. IMPLEMENTATION DETAILS OF ALGORITHMS

This section provides details of the algorithms mentioned in Section Note, for the weighted-Lasso
estimator, the choice of penalty level A := 1.1n_1/22<1>_1(1 —&/N,,) and penalty loading fT = diaug[fﬂd€7 ke
[p]\{j}] is a diagonal matrix defined by the following procedure: (1) Compute the post-Lasso estimator
37 based on A and initial values T'rpp = Izn<a3<||fmTZfHOO{IEHHfaTZ,‘j\Q]}l/? (2) Compute the residuals

Viarj = fiar(Z5 — Z{_;7},) and update the loadings

Dok = \/Ealf2, 1 200rs ), b € [P)\(5) (A.34)

and use them to recompute the post-Lasso estimator 77 _. In the case of Algorithm . we can take N, =
|V|p3n3, in the case of Algorithm we take N, = |V|p2{pn3}1+dw. Denote 77; = {En[(ZJ‘?)Q]}lm,
~X _ 12 52 _ 1/2 1/2
Gy = AEnlX2, ;1112 07, = {EalKo (W)(Z])?]}1/?, and 5.5 = {Ea[Ke (W) X2, j]}/2.

aw]

Detailed version of Algorithm (CIQGM)
For each a € V, 7 € T, and j € [p], perform the following:
(1) Run Post-£1-quantile regression of X, on Z%; keep fitted value Z ﬂm —i

BM cargming B, [p-(Xq — Z°6)] + Avry/T(1 —7) |ﬂ]
Bar € argming K, [p- (X, — ZB8)] : ;=0 if |5a”| < )\VT\/T 1—-7 /5aZj.
(2) Run Post-Lasso of far Z§ on for Z2;; keep the residual v; := fWT{Z -7 J*yaT}

’/y\gr € argmin"/ En[ afr(Z_;'z - Zgj7)2] + )‘||F7'7||1
T € argmin, E,[f2.(Z¢ — 2° 7)) = support(y) € support(7i,).

(3) Run Instrumental Quantile Regression of X, — Z¢ j Bar,_j on Zj using v as the instrument for Z¢

Burs org min Lnl(UXa < Zjat 2%, Pur -5} = DT}
ard < ZqOé + Zgjgav',fj} - T)2’172] ’

acdar; B, [(1{X,
with Ay, ={aeR: |a— ,ij| 10/{Z;logn}}.

Detailed version of Algorithm (PQGM)
For each a € V, and 7 € T, perform the following:
(1) Run Post-¢1-quantile regression of X, on X_,,
ga'r € arg minﬁ En[pT(Xa - leaﬂ)} + Ao Z]G[d |5J|
Bar € argming E, [p- (X, — X", 0)] : 8; =0 if |Ba7’j| )\0/852
et €iur = ia < _Bary — 7 for 1 € |n|. Compute the penalty leve _VT via (3. .
2) Set g HX zaﬁ for 1 C h Ity level A (13.19)
(3) Run Post-f;-quantile regression of X, on X_,,
Bur € argming By [or (Xo — X7 y8)] + My e (BalE2, X2, 111218,
Ba”r € argminﬁ En[pT(Xa - Xiaﬂ)] : 6 =0 if |6a‘r]| < )\VT/{E [ G Xza ]]}1/2'
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Detailed version of Algorithm (W-Conditional CIQGM)
For each u = (a,7,w) e U =V x T x W, and j € [p], perform the following:

(1) Run Post-f1-quantile regression of X, on Z%; keep fitted value Z¢;3,, ;,

Bu € argming E,[Ko(W)pr(Xa — Z°8)] + M X5, 52,15

Bu € argminﬁ En[Kw(W)pT( a Zaﬁ)] . B =0 lf |ﬁu]| <A / Oawy:
(2) Run Post-Lasso of f,Z§ on f,Z2; keep the residual v := f,(Z] — Zﬁj%{),

35 € argming B, [Koo (W) f2(Z5 = 72 17)?] + A|Tuy[ls

Vi, € argmin, B, [Ko (W) f2(Z] 7ﬂ)2} : support(7y) C support (7).
(3) Run Instrumental Quantile Regression of X, — Z¢ j E%_j on Z7 using v as the instrument,

{En[ Ko (W) ({Xa < Zfa+ 22y} = )0}

<
B'IL] c arg . — o
EAUJ E,[Ke(W)(1{X, < Zia+ Zi]ﬂu)_j} — 7)20?)

where A, :={a e R:|a— Buj| 10/{57,,logn}}.

Detailed version of Algorithm (W-Conditional PQGM)
For each u = (a,7,w) e U =V x T x W perform the following:
(1) Run Post-¢1-quantile regression of X, on X_,,

Bu € argming Eu[Ke (W)pr(Xa — XLoB)] + Aow ;e Fares B3]
Bu € argming B, [Ko(W)pr(Xa — X', 8)] : 85 =0 if |Bus] < Aow /Gy

(2) Set &, = 1{ X, < X;ﬁaﬁu} — 7 for i € [n], compute Ay via 1)
(3) Run Post-f;-quantile regression of X, on X_,,
Bu € argming By [Ko (W)pr (Xo — X' .8)] + Avrw Y et {EnlKo(W)E2 X2 121851,
By € argming By [Keo(W)pr(Xo — XL, B)] = B =0 if [Buj| < Avrw/{En[K=(W)EEX2, ]}V,

—a,j

APPENDIX B. SIMULATIONS OF QUANTILE GRAPHICAL MODELS

In this section, we perform numerical examples to illustrate the performance of the estimators proposed
for QGMs. We will consider several different designs. In order to compare with other proposals we will

consider both Gaussian and non-Gaussian examples.

B.1. Isotropic Non-Gaussian Example. In general, the equivalence between a zero in the inverse covari-
ance matrix and a pair of conditional independent variables will break down for non-gaussian distributions.
The nonparanormal graphical models extends Gaussian Graphical Models to Semiparametric Gaussian Cop-
ula models by transforming the variables with smooth functions. We illustrate the applicability of CIQGM
in representing the conditional independence structure of a set of variables when the random variables are

not even jointly nonparanormal.

Consider i.i.d. copies of an d-dimensional random vector Xy = (X' Tyevns Xd,l,X’d) from the following

multivariate normal distribution, Xy ~ N (0, Iixq), where Ijx4 is the identity matrix. Further, we generate

Xg=—\/525+/555X5_1|Xal- (B.35)
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3m—2
addition, equation (B.35)) is a location-scale-shift model in which the conditional median of the response is
zero while quantile functions other than the median are nonzero. We define vector Xy as

It follows that E[Xy] = /57 (E[|X4l] — +/2/7) = 0 and Var(X,y) = s75(E[X3 - X1 ;] - 2) =1 In

Xy = (Xa, X1, .., Xa—1)'-

In this new set of variables, only X,; and )N(d,l (i.e.,, node 1 and 15, when d = 15) are not conditionally

independent. Nonetheless, the covariance matrix of Xy, is still I xq.

Next we consider an example with n = 300 and d = 15. We show graphs, in Figure 3] and [} estimated by
both CIQGM(s) and GGMs in this non-Gaussian setting.

(A) CIQGM(0.2) (B) CIQGM(0.5) (c) CIQGM(0.8)
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FIGURE 3. QGM and GGM

In Figure [3] Gaussian means the graph is estimated by using graphical lasso without any transformation
of Xy, and the final graph is chosen by Extended Bayesian Information Criterion (ebic), see [42]. Nonpara-

normal means the graph is estimated using graphical lasso (likelihood based approach) with nonparanormal
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transformation of Xy, see [58], and again the final graph is chosen by ebic. Both graphs are estimated using
R-package huge.

In Figure 4] as a robustness check, we also compare results produced by CIQGM with those produced by

neighborhood selection methods (pseudo-likelihood approach), e.g. TIGER of [59] in R-package flare the
logd

left graph is when choosing the turning parameter to be while the right graph is when choosing the

105 4 Throughout, we use Tiger2 represent TIGER with penalty level 2 lofl; 4 As

tuning parameter to be 2
expected, GGM cannot detect the correct dependence structure when the joint distribution is non-Gaussian
while CIQGM can still represent the right conditional independence structure.

(A) Tigerl (B) Tiger2
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FIGURE 4. TIGER

B.2. Gaussian Examples.

B.2.1. Graph Recovery. In this subsection, we start with comparing the numerical performance of QGM and
other methods, e.g. TIGER of [59] and graphical lasso algorithm (Glasso) of [43], in graph recovery using
simulated datasets with different pairs of (n,d). We start with one simulation for illustration purpose (the
results are summarized in Figure , and then we show the performance of QGM through estimated degree

distribution with 100 simulations (the results are summarized in Figure @

We mainly consider the Hub graph, as mentioned in [59], which also corresponds to the star network
mentioned in [2, B3]. In line with [59], we generate a d-dimensional sparse graph G! = (V, E') represents
the conditional independence structure between the variables. In our simulations, we consider 12 settings
to compare these methods: (A) n = 200, d = 10; (B) n = 200, d = 20; (C) n = 200, d = 40; (D) n = 400,
d =10; (E) n =400, d = 20; (F) n =400, d = 40; (G) n = 200, d = 100; (H) n = 200, d = 200; (I) n = 200,
d = 400; (J) n = 400, d = 100; (K) n = 400, d = 200; (L) n = 400, d = 400. We adopt the following model
for generating undirected graphs and precision matrices.
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Hub graph. The d nodes are evenly partitioned into d/20 (or d/10 when d < 20) disjoint groups with
each group contains 20 (or 10) nodes. Within each group, one node is selected as the hub and we add edges
between the hub and the other 19 (or 9) nodes in that group. For example, the resulting graph has 190 edges
when d = 200 and 380 edges when d = 400. Once the graph is obtained, we generate an adjacency matrix
ET by setting the nonzero off-diagonal elements to be 0.3 and the diagonal elements to be 0. We calculate
its smallest eigenvalue Api,(E7). The precision matrix is constructed as

O = D[E! + (|Amin(ED)| 4 0.2) - Ij5q]D (B.36)

where D € R4 is a diagonal matrix with Dj; = 1 for j = 1,...,d/2 and D;; = 1.5 for j = d/2 + 1, ..., d.
The covariance matrix ¥ := ©~lis then computed to generate the multivariate normal data: X7, ...., X4 ~
N(0,%). Below we provide simulation results using different estimators: PQGMH TIGER and Glasso. We
start with one simualtion as an illustration:

(A) n=200,d =10 (B) n=200,d =20 (¢) n=200,d =40

(F) n =400,d = 40

Glasso e Glasso. True

FIGURE 5. One simulation

6Given the graphs are generated from multivariate Gaussian distribution we can use PQGM to simplify the computation.
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(@) n=200,d = 100 (1) n = 200,d = 200 (1) n = 200,d = 400

(J) n=400,d = 100

aaaaaaaaaaaa

FIGURE 5. One simulation (Cont.)

Figure |p| shows that: for the low dimensional cases, d = 10, 20,40, n is large compared to d, CIQGM is
comparable to TIGER and both are better than Glasso in terms of false positives; for the high dimensional
cases, d = {100,200, 300}, we can compare the performance of different graph estimators through looking at
the denseness of the estimated graph (e.g., whether it is even or not), and again, both CIQGM and TIGER
perform well in terms of graph recovery as compared to Glasso, and their performance are getting better

when n is increasing.

In what follows, Figure[6]shows the degree distribution of true graph, the estimated ones, and the standard
deviations of the degree difference (between the true graph and the estimated ones). It is based on simulations
of Hub graph with n = 500 and d = 40. Simulated 100 times.
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FI1GURE 6. Upper panel shows the degree distribution of the true graphs. Middle panel

shows the degree distribution of the estimated graphs. Bottom panel shows the standard

deviations of the degree difference (between the true graph and the estimated ones). Hub

graph with n = 500 and d = 40. Simulated 100 times.

B.2.2. Inference. In this subsection Table[2]shows the numerical performance of CIQGM, based on Algorithm
on estimating Erdés-Rényi random graphs. More precisely, we construct approximate 90% confidence

intervals for (., with 7 = 0.5, and we report the coverage probabilities.

Note, in the jointly Gaussian

distributed case, we have closed form solution of 3,5 as shown in Example [2|

Erdés-Rényi random graph. We add an edge between each pair of nodes with probability /logd/n/d
independently. Once the graph is obtained, we construct the adjacency matrix E7 and generate the precision
matrix © using (B.36|) but setting D;j; =1 for j = 1,...,d/2 and D;; = 1.5 for j = d/2 +1,...,d. We then

invert © to get the covariance matrices ¥ := ©~! and generate the multivariate Gaussian data: X, ...., Xq ~

N(0,%).

33
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TABLE 2. Erdos-Rényi Random Graph

(a,b) n=200 n=>500 n=1000

d=20 (1,20) 84.0 87.5 91.5
(10,11)  84.0 88.0 92.5
(19,20)  86.5 86.0 90.0
ACP 86.3 89.4 89.8

d=50  (1,50) 86.5 93.0 90.5
(25,26)  88.0 87.0 91.0
(49,50) 875 90.5 87.5
ACP 86.7 89.4 90.1

d=100 (1,100) 825 81 89.0
(50,51)  85.0 86 92.0
(99, 100)  78.5 84 87.0
ACP 86.5 86.8 90

(a,b), coverage probability for Bq; ACP, average coverage
probability for B, with a € V, b € V\{a}. Simulated 200
times.

APPENDIX C. PROOFS OF SECTION 4

Proof of Theorem [l By Lemma [6] under Condition CI, for any 6 such that [|0]lo < C'sty, €, — oo slowly,
we have that

IV FuZ 6l o [{E[K (W) £u(Z°6)°1} /% = 1+ 0p(1).
Moreover, E[Ko(W)f.(Z90)?] > qu[Kw(W)(ZGQ)QL E[K,(W)(Z%0)?] = E[(Z%0)?|w]|P(w), and
E[(Z%0)? | @] > ¢||0||> by Condition CI. Lemma [6 further implies that the ratio of the minimal and maximal
eigenvalues of order sf,, are bounded away from zero and from above uniformly over w € W and a € V
with probability 1 — o(1). Therefore, since ¢{P(w)}'/2||§]l1 < [|0]|l1.0 < C{P(@)}'/2||]|1, we have ky ¢ = ¢

uniformly over u € U with the same probability for n large enough, see for instance [21].

To establish rates of convergence of the estimator obtained in Step 1 we will apply Lemma [I} Consider
the events Q1, s, and Q3 as defined in , and . By the choice of A, we have P(Qy) >
1 —o(1). By Condition CI with R,¢ < Cslog(p|V|n)/n and Lemmawe have P(Q2) > 1 — o(1). Moreover,
P(23) > 1—0(1) by Lemmawith ts < Cn~ Y2\ /(1 + dw)log(p|VnLy).
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Using the same argument (with Z® replacing X_,) as in (C.46), (C.47)), and (C.48)), for

§€ Ay = AgocU{v: ||v)1,0 < 2¢Rus /A, |V fuZ ] = C’\/s(l + dw) log(p|V|n)/n/Ku,2¢ }

with the restricted set defined as Ay = {0 : [|07c|i < 2€[[d7,[1} for v € U. we have ga, >
c(iZ/Q/f’) 1/2/{fmaxaevl<n | Z8| o} Wwhere maxeevi.i<n |28l Sp My. Thus the conditions on ga,
are satisfied since Condition CI assumes M2s%log(p|V|n) < nuw L/{ The conditions on the approximation

error are assumed in Condition CI.

Therefore, setting £ = 1/logn, by Lemma [I| we have uniformly over u = (a,7,w) € U

IVFaZt(Bu = Bu)ln S VT + o/ M) Bug + (1) /5 S o/ 2D oslVIn)

Bl < oy DTS

~ n

here we used that A\, < C’\/%Zg(plv‘”). Indeed by Lemma E with ;; = Kw(Wi)Zf‘j and 0; >
cP(w)/?, we can bound Ag,(1 — £/{|V|n'+2w} X _,, W) under M?log(p|V|n/{r(1 —7)}) = o(n7(1 —
T)pw) for all 7 € T and w € W, and the bound on A, follows from the union bound.

(C.37)

Let 6, = Bu — By By triangle inequality it follows that

{E[Ko (W) fu(Z°0,)° 1} < IV FuZ. {I(En = B)[Ko (W) fu(Z°6,)°1 /8131172 (C.38)

and the last term can be bounded by

HcSSHuElKEn —E)[Ko(W)fu(Z2°6)?/10117)] < maxy; |(En — B)[Kw(W)fuZi Z3]|

(1+dw) log(p|V|n)

with probability 1 — o(1) by Lemma [19| under our conditions.

Combining the relations above with , under (1 + dy )s?log(p|V|n) = o(n) we have uniformly over
uecu
18] < {Bl(Z*60.)% | w]}'/? < {P(w)} T {E[Ko(W)(Z°0,)*]}/?
SA{P@)f, T VHEK (W) fu(Z96,)%} 2
<A{P@)f ) PIVFaZ bulln + {P() ) 71/2 { B2 5,

O\/s(l+dW log p|V|n)

nf P(w)

given ||0, |1 < [|6u]l1,0/P(w)'/2, (C.37), and s?(1 + dw ) log(p|V|n) = o(nuwiu) assumed in Condition CI.

Finally, let B{} obtained by thresholding the estimator 3, with X := V(1 + dw)log(p|VIn)/n (note that
each component is weighted by E,, [KW(W)(Z;)Q]UQ). By Lemma |17} we have with probability 1 — o(1)

1282 = Bulllnew S /5(L+ dw) log(p[Vn)/n
182 = Bulliew S sv/(1+ dw) log(p[V]n)/n
[support(B2)| < s

by the choice of A and the rates in (C.37)
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Proof of Theorem[3 We verify Assumption[C4]and Condition WL for the weighted Lasso model with index
set U x [p] where Y, = Ko(W)Z§, Xy = Ko(W)Z%5, 04 = 7, aw = (fusTuj), Tuj = KW(W)Zﬁj(’yg -
), Suj = KW(W)fg(Z]@ — Z“]VU)Z“ Ke(W) fuvu;Z2;, and w, = Ko(W)f2 We will take N,, =
[V |p?{pn®}1+9w in the definition of \.

We first verify Condition WL. We have E[S7. ;] < 2E[|vujij7k|2] < fz{E[|vuj\4|Zﬁj’k\4]}l/2 < C by the

bounded fourth moment condition. We have that

E(Sul’ _ ElSusul® [ @ 5y 1e _ Bllfuvus 2250 | ]
E[[Sugi[2]'/2 " E[Sunl? | @]'/2 Ell fuvuj 2% ;42 | @]

1/3
1/2 {P(w)} 1/6 = : My

By the choice of N, and ®~1(1 —¢) < C+/log(1/t), we have M, ® (1 — £/{2pN,}) < M,C(1 +
dyw ) log"?(pn|V]) < C8,n'/¢ where the last inequality holds by Condition CI so Condition WL(i) holds.

To verify Condition WL(ii) we will establish the validity of the choice of N,,. We will consider u =
(a,7,w) €U and v = (a,7',w’) € U. By Condition CI we have that

[fu= ful < Lyllu—u'|| and E[|Ko(W) - Ko (W)[] < Li[|l@ — @'. (C.39)
Further, by Lemma [f] we have
17, = vl < Loy{llw = || + [Jw — =[]/} (C.40)
By definition we have
Sujk = Swin = {Ka(W)fs = Kot (W) 2] = 22 7Y 23— Ko (W) f2A 2250, = 7 )} 24
and note that f, + fur < 2fu + Lllu — /||, | Z; = Z% 73| - |20 < | Z;1 + 2|23 + | 2% 7+, Moreover,

|KW(W)f’3 - Kw’(W) ; |

!

Ko(W) Ko (W)If2 = forl + (fu+ fu)* | Ko (W) — Ko (W)

< )~ Kw
< Qwa(W)Kw’(W”fu - fu" + 4f2|Kw(W) - Kw'<W)|

Using these relations we have |E,[Syx — Swjx]| < (I) + (II) where

() =En[|[Ke(W)fi— Ko (W) fol- {25 — 22 7} 2] ,

maxicn [| 2% (1 + [9411)En[2f Koo (W) Koot (W) fu = fur| + 4f [ Ko (W) = Koo (W)]
(f + fz)C\fmaxKn 1Z82f Ls lw = '] + En[| Ko (W) = Keor (W]}

(II) = En[Ke (W) f3 IZ_J(% Tu) Zi ]

IN N

< :Q]En[HZ“Hgo]ll% Yur
< PRI 213 )VPLA {llu — /|| + & — ='[]1/%}
Moreover, we have that max;c, [|Z2]|2, <p M2. For dy = | - ||, an uniform e-cover of U satisfies

(Giam(U)/e) 4 > Nie, Uy | - ). We will set 1/e = (1+ P){Ly + Ly Ppnd2log (plVIn) Aw 2} < pn®
so that with probability 1 — o(1), for any pair u,u’ € U, ||u — u'|| < €, we have

[En[Sujr = Swirll S (F+ f2)v/smaxicn | ZF 2 Lse + En[| K (W) — Koo (W]}

B[l 212 /PLAy {e + €77}
S o PH{pw L+ 5My log(n)Ey[|[ Ko (W) — Koo (W]
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by the choice of €. To control the last term, note that W is a VC-class of events with VC dimension dyy .
Thus by Lemma with probability 1 — o(1)

En[[Ko(W) = Ko (W)l < [(En — E)[[Keo(W) — Koot (W)[]| + E[|[ Ko (W) = Kot (W)]
< sup [(En — E)[|[Ke(W) = Kot (W)]]| + Lice

w,w EW,|w—w’||<e

dw 105(”/6)61/2 + dw 10§(n/6) + Lye

A

which yields uniformly over v € U and j € [p]

B [Suji — Swirl] S 8an™ Y2 (C.41)

iy

under y/edy log(n/€) M, logn = o(ull,\/,ziu) and dy log(n/e) M, logn = 0(n1/2,u11,\/,2iu) assumed in Condition
CI. In turn this implies
[En[Sujk = Sujr]l

sup a < 812
|u7u/\<e]”k€[1’}aj#k E[S?L]k}l/z = n
since E[Szjk] = clyy Li Using the same choice of €, similar arguments also imply
E[S2. — 52,
sup max HLHM” <4, (C.42)
\u—u’|<5jvk€[17]»j¢k E[Su]k]

To establish the last requirement of Condition WL(ii), note that

su max E,—E SS» < su max E,—E Sﬁ- + A,
g AR e AL Wall < sup | N sl (C.43)

where Ay, = SUDy, v/, u—w | <e MK kefp] ik |(Bn — E)[Szjk] —(E, —E) [Sﬁ,jkﬂ.
To bound the first term, we will apply Corollary [2| with k = 1, I := U x [p] and the vector {(X)u; =
Sujs (u,j) € U}. In this case note that

K? =E[maxsup max S;,]<E[max sup |vi;*||fiu 272 < ML
i<n el §,kElpl,j#k ST weld,jelp]

Therefore, by Corollary [2| and Markov inequality, we have with probability 1 — o(1) that

sup max |(E, —E)[S?
uegj:ke[p]d#kK " )

under M2L2 log(p|V|n) < 571”“?/\&12,1'

< CnTY2M, Ly log! 2 (p|Vin) < Coupwf,, + A

To control A,,, note that

|(En - E)[quuk] - (En - E) [SZ’jk” |En[35jk - SZ'ij + |E[S?ij - S?/jk]'

<

< Enl|Sujs — Skl sup ey maxicn 1285 n| + [E[SZ ) — Sh il
_ 12, 7 o

S 0un V2 £ Fsupey maxicn i1 28 loo + Snpiw £,

< 6 V2 f, Mo Ly logn + 8w £,

with probability 1—o(1) where we used 1' and {i Therefore A, < 6y Li with probability 1—o(1)
as required.

To verify Assumption (a), note that [0p My, (Yu, X, 04) — 0o My (Y, X, 04, a0))0 = — 2K (W)7y; Z°

—J

g,
so that by Cauchy-Schwartz, we have

En[aeMu(YuaX7 eu) - 89Mu(YuaX7 9u7au)]/5 S ||fu7juj”n,wangj(SHn,w g Cun”fng](SHn,w
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where we choose Cy,, so that {C\,,, > max; 1—o0(1). To bound C,,,,

by Lemma |4} uniformly over u € U, j € [p] we have with probability 1 — o(1)

| fufugllnee = 11fuZ;(vh = A lnww S £ {P(@)} /2 {n " slog(p|V|n)}'/?
so that setting C,, = iu{P(w)}l/Q{n’lslog(p|V|n)}1/2 suffices.
Next we show that Assumption b) holds. First, by (C.43) and the corresponding bounds, note the

uniform convergence of the loadings

sup  ([En[S7;] — E[Saull + (B — B)[Ko (W) f2] 28 Z2 3 P1]) < bnpw £,
wel,j,kE€[pl,j#k

so that E,[S7,]/E[SS,] = 1+ op(1). Tt follows that ¢ is bounded above by a constant for n large enough.
Indeed, uniformly over u € U, j € [p], since cf < E[| fuvu; Z{1? | w]1/2 Cf . with probability 1 —o(1) we
have cf P(w)'/? < V0is < Cf P(@)"/? so that ¢/C < 1W0]loo [ ¥ii oo < Ce.

Assumption c) follows directly from the choice of M, (Y, X,,0) = Ko(W )f2( A 9)2 with
qa, = Q.

The result for the rate of convergence then follows from Lemma namely

\I/u w [slo Vin fP( )1/2 slo Vin

Ru,2¢ n Ru,2¢ n

(C.44)

By Lemma [6] we have that for sparse vectors, ||0]lo < ¢, s satisfies
1£uZ2 30|15 0 /BK o (W) f2(Z2,0)%] = 1+ op(1)

so that ¢max(€ns,uj) < CiiP( ) and $,; < mingem, Gmax(m,uj)L? < Cs provided L2 < s{iiP(w)}_l.
Indeed, with probability 1 — o(1), we have | ¥, ||o < cf. 'P(w)~1/2, so that L, < leP(w)*lﬂg{Cun +
Lun}. Moreover, we can take Cyn < f {P(@)n _1slog(p|V|n)}1/2, and Ly, < {n~'slog(p|V|n)}'/? in
Assumption [C4] because

HEn [a’YMM(Yu’ XU7:Y\¥L) - 8’YMU(Yu7 Xu, 77]4)]}/(”

= 2|E, [Ko (W) FH{ X0 — 74)}X00]]

<2/ fu Xy (VL = Vi lnwl fuXiblln,w =t Lunll fuXy6lln,m

where the last inequality hold by 1' since Ky e = ¢f u{P(w)}l/ 2. The bound on the restricted eigenvalue

Fu,2¢ holdsﬂ by arguments similar to (C.46|) and using that ||6]; < C'/s||d|| for any § € A, ¢, and since for

any ||| = 1, we have
of P(@) <E[Ka(W)fu(Z%6)
< AB[K (W) f2(Z°0)° 1}V {B[K o (W)(26)*]}'/?
<AB[K= (W) £3(Z2°0)° ]} 2C{P(w) }1/?

where the first inequality follows from the definition of f , [|4[| = 1, and Condition CI, so that we have
{E[Ko(W)fH(Z46)" )2 = ¢ f {P(w)}'/2.

"Note that there are two restricted eigenvalues definitions, one used for the quantile regression (ky,2c), and another used

here for the weighted lasso (Ru,2c). It is a consequence of the use of different norms.
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Return to the rate of convergence we have by (C.44) and F, ¢ > CLL{P(w)}l/2 that

1/2
X5~ )l < L) \/Sk)g(pvn) < \/Slog(pW'n) (C.45)

Ku,2¢ n n

and the result follows by noting that || f, X, (5% — ¥)|ln.e = ciuP(w)l/ZH@{ — ~J | with probability 1 — o(1)
by arguments similar to (C.46) under Condition CI.

The sparsity result follows from Lemma The result for Post Lasso follows from Lemma [20] under the

growth requirements in Condition CI.

Proof of Theorem[3 We will verify Assumptions and [C2] and the result follows from Theorem [5] The
estimate of the nuisance parameter is constructed from the estimators in Steps 1 and 2 of the Algorithm.

For each u = (a,7,w) € U and j € [p], let Wy; = (W, Xa, Z%, vy, 14), where v,y = fu(Z8 — Z°~]) and
let 0,; € Oy = {0 € R: |0 — By | < ¢/logn} (Assumption [CI[i) holds). The score function is

VYui (W, 0,1mu5) = Ko (W{T = U{Xa < 250 + 2% B0 + ru}h fu(Z] — 22 7))

where the nuisance parameter is 7,; = (Bu,—j,7%,7,) and the last component is a function r, = 7,(X).

Recall that K (W) € {0,1} and let a,, = max(n,p,|V|). Define the nuisance parameter set H,; = {n =
1) <2 <3 1 2 3

(D00 ) <l = muslle < 7} where [ —mglle = 185,657,657 e = masc{|83" |, 1657 [ E[105” 172},

and
1 1 n
— Csup sloga
uel 1A f npw

The differentiability of the mapping (6,1) € ©y; X Hyj > Etbyj (W, 6, 1) follows from the differentiability
of the conditional probability distribution of X, given Xy (o and @. Let n = (n™,n® n®), 5, =
(65,62, 6$Y), and 6z = 6 + 769, 17 = 0 + 76,.

To verify Assumption (v)(a) with a = 2, for any (6,7),(0,7) € ©4; x Hy; note that fx, |x ., o is
uniformly bounded from above by f, therefore

~ [{wuj (Ww,e 77) - wuj(Wujvéa 77)}2]1/2

FEZ2;(n® — @)V + PE((Z8 - 22 @) [n® — 0| + |22, — 7)] + |27 (6 — 6)]}]/*
<C||n2>—n<2>||+fE[<Z; szn@)) JVALE[n®) — 7)) 11/4+c\|n<1>fv7jl>|\+|ef9|}1/2
<CNO— 12V g -7l

for some constance C’ < oo since by Condition CI we have E[|Z“£7|2}1/2 C||€|| for all vectors &, and the

conditions supueu ge[p] IV < C, Supgpeo,, 0| < C, and y/slog(an) < ny/n. This implies that |n®) —
2
HON < I — 21+ 12 — 7 < 10 that 1 — 7] < 1 — 72

To verify Assumption v)(b), let i = Z707 + ijnél) + nﬁg) We have

5E(1/Jug(Wug,9+7"59»77+7’5 ))| =F

~E[Ko(W) fx,x_owte)(Z8 — 20 D) 2869 + 22,65 +5<3>}]
_E[Kw( ){T_FXa|X,a,w( r)}Zgg ]
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Applying Cauchy-Schwartz we have that
| Or E wuj (Wuja 0 +1rég,m + rén))|r:17|
< JE(Z8 — 22 D)2 2 {E|(Z2)2)1 2160 | + E[(22,050)22 + E[|65 |2/} + FE[(22,057)?] /2
< B (180 V |1 = 1ujle)

where By, < C by the same arguments of bounded (second) moments of linear combinations.

Assumption [CI|(v)(c) follows similarly as
02 E(z/Juj(Wuj,Q—i—Mg,n—kré Ny =
—E[Ka(W)fy, 1x_ o) (25 = Zznf?)){zaae 70 50+ 5Py
PRI (V) 02200 (2500 + 2,37 4660

and under | f;(a‘ x_. ol < f’, from Cauchy-Schwartz inequality we have

’ O?E(uj Wy, 0 + 169,m + Mn))’r:f’
< IFEBIZS — 20 PPENZE) 00l + B(Z2,0,") 112} + CE[{87 F)
+2fE[<ZzJ6(2>> }1/2{E[(Z;)2]1/2|69\ +E[(22,657)%Y2 + E[{0”}2)1/2}
< Bon (03 V [1n = nusll?)
where B, < CO(1 + f’ ) by the same arguments of bounded (fourth) moments as before and using that
B[(25 — 2%0P)(03)?)| < {BI(Z5 — 2°,0)2(850) 21} 2E[(857)%)/2 < CE[(85)2).

To verify the near orthogonality condition, note that for all w € U and j € [p], since by definition
Ju = fxoX_u,w(ZBu +1r4) we have

IDujolitej — Mgl = | — E[Ko (W) fu{ 22,7 = 0)) + v < 8,n 22
by the relations E[Kq(W)(T — Fx,|x_, w(Z%Bu+14))Z2,] = 0 and E[K%(W) fuZ2 jvu;] = 0 implied by the

model, and [E[Ky (W) furuvu;]| < ,n~'/2 by Condition CI. Thus, condition (H.79) holds.

Furthermore, since ©,; C 0,; + C/logn, for Ju; = 0gE[Yu;j(Wuj, Oujsnuj)] = E[Ko(W) fuZive] =
E[K(W)vz,] = E[v|w]P(w) as E[Kg (W) fuZ% jvu;] = 0, we have that for all § € O,

uj
E[thu; (W, 0,0u)] = Juj (0 — Ous) + §8§E[¢M—(Wuj, 0.1u;))(0 — 0.5)*

where |33E[1/)uj(wuj,0_a77uj)” < f/E[|ZJ@|2|qu| | w]P(W) < f/EHZ;.l|4‘w]1/2EHqu|2|w]1/2P(7E) < Cf_/P(w)
so that for all 0 € ©,;

E[u; (Wass 0:10)]] = {[Blv; | @] — (C )/ log n}P ()]0 — 6.y

and we can take j, > cinfoew P(w) = cuw.

Next we verify Assumption [C2] with Hujn = {n = (5,7,0) : [|Blo < Cs,[[7llo < Cs, 18 — Bu,—;] <
CToy |7 =¥l < Crny |y — ¥ |11 < C/370}. We will show that 7y = (Bu,—j,7%,0) € Hyjn with probability
1 —o(1), uniformly over v € U and j € [p].

Under Condition CI and the choice of penalty parameters, by Theorems|l|and [2| with probability 1 —o(1),
uniformly over v € U we have

1B = Bull < Cra, maxsuplm Yl € C7,, and maxsup |37 o < Cs,
JE[P] JEP) ueu
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further by thresholding we can achieve sup,, ¢y Bullo < C's using Lemma

Next we establish the entropy bounds. For n € H,;, we have that
Vuj(Waj, 0,m) = Ke(W)(T — H{Xo < Z70+ 228 }) ful Z] — Z2 7}

It follows that F; C WG1G2GsUFy where Fo = {1uj (Wi, 0,mu;) u €U, 5 € [p],0 € Ouj}, G1 = {7—1{X, <
7B} Bllo < Cs, 7€ T,a€V}, Go ={2% = Z*(1, =), |I7llo < Cs, 7| £ Coa € V}, G3 = {fu: u €U}
Under Condition CI, W is a VC class of sets with VC index dy (fixed). It follows that G; and Gy are p
choose O(s) VC-subgraph classes with VC indices at most O(s). Therefore, ent(Gy) V ent(G2) V ent(W) <
Cslog(an/€)+Cdw log(e/e) by Theorem 2.6.7 in [(2] and by standard arguments. Also, since f,, is Lipschitz
in u by Condition CI, we have ent(Gs) < (1 + dw ) log(a,Ls/€). Moreover, an envelope F for Fp satisfies

E[FE] = BB,y jepp) il <cvim, (Vi = FuZ25(r = 1)I7]
< 217 Efsup, ey e [vus|?] + 297 fEmaxacy |29 L {C Vs }
< 20118 4 201 F{ M, Oy /57, )7 < 2918

since M,,C\/s7,, < 0,Ly/f and 6, <1 for n large.

Next we bound the entropy in Fy. Note that for any Y (Waj, 0, mu;) € Fo, there is some § € [-C,C)|
such that

Vuj(Wajs 0,105) = Keo(W{T — 1{X, < qu(s + Qx, (7| X0, @)} vu;
and therefore 7o C W{T — ¢(V)} L where ¢(t) = 1{t <0}, V = Unev,je[p Vaj With

Vaj = A{Xa =276 - Qx, (7| X o,w): 7€ T, mweW,|[d| < C},

and £ = Ugev,jep)(Laj + {vaj}) where Loj = {(X, W) = vyj — vaj = fuZ% (v — %) : w € U}. Note that
each V,; is a VC subgraph class of functions with index 1+ Cdw as {Qx, (7| X_q, @) : (T,w) € WX T} is
a VC-subgraph with VC-dimension Cdy for every a € V. Since ¢ is monotone, ¢(V) is also the union of
VC-dimension of order 1+ Cdyy.

Letting F; = 1 be an envelope for W and T —¢(V). By Lemma it follows that |73 —~7, || < L, {[lu—u'||+
oo — @'||'/2} for some L., satisfying log(L,) < C'log(p|V|n) under Condition CI. Therefore, |v,; — vaj| =
|22

j(%{ — 'y%)| < ||Za||00\/13||7ﬂ — 7%” For a choice of envelope F, = M, '(|Z%||c + 2Sup,cy [vu;| which
satisfies || F,||p,qy S Ln, we have

sd ~~

log N (|| Fu|

Q.2 Lajs [ - ll2)  <log N5 Il 12%llocll@.25 Lajs I - l@.2)
1

og N(e/{Mn\/pLy},U, | -[) < Cdylog(MnpL, /e€)

NN

Since £ = Ugev,jep](Laj + {vas}), taking Fr, = maxey Fu, we have that

log N(e| FLF1[|g.2, Fo, || - [lg.2)  <log N(§IFillg.2 W, | - llg2) +1og N(51Fillg.2, T — o(W), || - lg.2)
+log > evjep NGl FallQ2, Lajs |l - [l@2)
<log(p|V]) + 1 + C'{dw + d, }log(4eM, |V |pL /€)

where the last line follows from the previous bounds.

Next we verify the growth conditions in Assumption with the proposed F; and K,, < CL,. We
take s, p) = (1 + dw)s and a, = max{n,p,|V[}. Recall that By, < C, Ba, < C, jn > cpw.
Thus, we have n(7n/jn)? < oet®VID < 5 under s2log?(p|V|n) < n(1 /\L‘;),u?/v. Moreover,

~ n(l/\izl)u% =
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T/ 3n)**\/$n(.p) 108(an) \/(Hdw)f/s\jcloi(plvn) < 6, under dy fixed and s%log®(p|V|n) < d2n(1 A

iu)uw and 5,4,p)n" 2 K, log(an)logn < (1 + dW)sn%_%Mn log(p|VIn)logn < 6, under our conditions.
Finally, the conditions of Corollary hold with p,, = (1 +dw ) since the score is the product of VC-subgraph
classes of function with VC index bounded by C(1 + dw). ]

Proof of Theorem[}J We will invoke Lemmaljwith Bu as the estimand and rj, = Xz’ _o(Bu — Bu), therefore

E[Ke(W) (T — 1{X, < X" By +7u})X_a] = 0. To invoke the lemma we verify that the events Qy, s, Q3
and Q4 hold with probability 1 — o(1)

Q4 —{)\u/c|5’uj|/ Ouwi» forall ueld,jeVy,
Qy = {Ry(Bu) < Ruc :u €U}
O = {supueu <l m < Enl9(0, X, W) = Elgu(8, X, W) | X—a, W/ l8ll1.c0 <t}

Q, ={K, 3aw; |Ep[huj(X—a, W)]|,for all u e U, j € V\{a}}

where g, (6, X, W) = Koo(W){pr(Xa = X' (Bu +0)) = pr(Xa = X' ,Bu)}, huj(X—a, W) = E[Ke(W){r -
Fx,ix 0w (X B+ 1)} X5 | X_g, WI.

By Lemma |8 with & = 1/n, by setting A\, = Ao = c2(1 + 1/16)+/21og(8|V[2{ne/dw }29wn)/n, we have
P(Q1) =1-0(1). By Lemma@ setting Ru¢e = Cs(1+ dw)log(|]V|n)/n we have P(Q2) = 1 — o(1) for some
¢ = o(1). By Lemma [10] we have P(Q3) = 1 — o(1) by setting t3 := C'\/(1 + dw ) log (|V[nM, /). Finally,
by Lemma |11| with K,, = C w we have P(Qy) =1 — o(1).

Moreover, we have that ||B.]/1.= < v/3||Bull2.e < Cv/s = o(v/n) and mﬁzug = o(y/n) for all u € U.
Finally, we verify condition (F.64)) holds for all

§€ Ay = DuacU{v: olle < 2¢Rug/ M [V fuXoVllnw = CVs(L+ dw) log(n|V])/n/ku,e},

Ku,2¢

04,/ 2 (VT + Dlrallne + D+ ts + Ku] 222 and qa, > {2¢ (14 545 ) Ry, } V2,

Consider the matrices B, [Kw(W)fuX o X”,] and E[K5(W)f,X 4 X",]. By Lemma [6] with probability
1—0(1), it follows that we can take 1 = 1,, = CM,+/s(1 + dw ) log(|V|n)log(1+s){logn}/y/n and Dy = 2n
in Lemma (Note that we increase d,, by a factor of v/logn.) Therefore, with at least the same probability
we have (taking s > 2)

SEn Ko (W) fuX-aX o]0 > SE[Ka(W) fuX_oX,]6 — 4n8]7/s (C.46)
and by definition of f ~we have
En[Ke(W)fulX"0601%] > £ BIKS (W)X, 6] = 4n[l6]11/s > cf P(@)||6]]* — 4n6]]3/s.

For § € Ay e we have [|6])1 < O||d]1.w/{P(@)}/? < C'||01, ||1./{P(@)}"/? < C'\/5||61, ||2- Note that we
can assume ||6]| > ¢+/s(1 + dw)log(n|V])/n otherwise we are done. So that for § € A,\A, 2c we have that
[8]11/116]l2 < Cs\/log([V[n)/n//s(1 + dw)log(n|V])/n < C'/s.

Similarly we have

En[Ko(W)|X" 0] < B[EKo(W)[X 0% + 4n[[6]7/s < CP(w)||8]]* — 4n]|8][3/s. (C.47)
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Under the condition that i = o(f, ), which holds by Condition P, for n sufficiently large we have with
probability 1 — o(1) that

o BalEe (W) RXLGPP2 e Ep Koo (W) ful XL, 022/
T 2P ek T BAKaWIXL 0] 7 J seh Bu[Ko (WXL, 0P maxicn [ Xillo 0]
P §11213/2 3/2P 125
c {¢'f P(w)||8]%} S © p CLPE)I (C.48)

> — in
” F oeh, OP(@) 82 maxic [Xillwloly ~ F s, O maxicn [ Xilloc 3]s
1/2

C”Iu Hw
1 Vsmaxign || Xiloo

where max; <y, [| Xi|loo < €M, with probability 1 — o(1) for any ¢, — oco. Therefore, under the condition
log(p|V|n) = o(y/npw) assumed in Condition P, the conditions on G4, are satisfied.

By Lemma |z|, we have uniformly over all u = (a,7,w) €U .=V X T X W

IV FuX (B = Bu) o <c\/(1+dW)1°g(”|VD V3 ond B — Bullm <C\/(lJrciW)log(va ]

n Ku,2¢c n Ru,2¢c

where Ky 2 is bounded away from zero with probability 1 — o(1) for n sufficiently large. Consider the

thresholded estimators B2 for X = {(1 + dy ) log(n|V|)/n}!/2. By Lemma we have ||B}]|o < Cs and the
same rates of convergence as ﬁu Therefore, by refitting over the support of [3 we have by Lemma
the estimator 3, has the same rate of convergence where we used that Q, < )\HHB;} —Bulh,e S Cs(1 +
dw)log(|V|n)/n (the other conditions of Lemma [14] hold as for the conditions in Lemma [7)).

Next we will invoke Lemma m for the new penalty choice and penalty loadings. (We note that minor

modifications cover the new penalty loadings.)

M= {2 Sl {En[Kw(W)e 2X2, 132, forall weld,jeV},

92} —{R (/Bu)\ ug - UEU}

Q1= {$Wbucrs1/ el - < [Bnlou(6, X, W) = Elgu (8, X, W)|X 0, W] HBuloll1.} < 3}
Q= {Ku0,05 . > |Ep[hy;(X_q,W)]|,for all u €U, j € V\{a}}

awy

Q5 = {0y > maxjey G0, /{En K (W)l X711 /%)

liw < || ll1,e < 6ull - |l1,4- Note that we can

always take 6, < 1/{7(1 —7)} < C since T is a fixed compact set.

where event 25 simply makes the relevant norms equivalent, || -

Next we show that the bootstrap approximation of the score provides a valid choice of penalty parameter.
Let &, := 1{X, < X’ 8.} — 7. For notational convenience for u € U, j € V\{a} define

Ko (Wi)

EiuXi
En[Ke(W)es X

Ko (Wi)einXij
E[Ko(W)e2 X371/

Kw(Wi)&uXij
By [Ko(W)es X712

Ving = Yiug = @'uj = 11/2-

We will consider the following processes:
_ _ _ _ ~ 1 &N~
Suj = ﬁ E?:l wiujy Suj = ﬁ Z?:l wiuja guj = ﬁ Z?:l giwiuja guj - ﬁ Zg“piuj,
i=1

and N is a tight zero-mean Gaussian process with covariance operator given by E[T/;uﬂzu/ ;2] Their supremum
are denoted by Zg := supP,cy jev\(a} |Sujls Zs = SUPycy jev\{a} [Susls Z¢ = SUPucy jevifay [Gujl, 26 =

SUPyeu, jev\{a} |Gujl, and Zn 1= sup,eys jev (o} WNujl-
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The penalty choice should majorate Zg and we simulate via 25 We have that

P(Zs <t) = P(Z5 < 1) <[P(Zs <) —P(Zs <t)|+|P(Zs <t) —P(Zy < 1)
HP(Zy < 1) = P(Zg <)+ [P(Z5 < 1)~ P(Zg < 1)

We proceed to bound each term. We have that

_ _ E[K(W)e2 X2]1/2
|Zs — Zs| < Zs sup -1

uweld,jeV\{a} E, [K (W)EEXJQ]I/z
(E, — E)[Kx(W)ep X7
sup
% wettyen\fa} | Enl[ Ko (W) X2 1V2{E, Ko (W)e2 X212 + E[K (W)e2 X 2]1/2}

N

<

Therefore, since {1{X, < X’ ,Bu} : u € U} is a VC-subgraph of VC dimension 1+ dy, and W is a VC class
of sets of dimension dy, we apply Lemma [19| with envelope F' = || X||2, and ¢® < maxjey E[X]] < C to
obtain with probability 1 — o(1)

(L +dw)log([Vn) Mp(1 + dw)log(|V]n)
n n

sup |(E, — E)[Kw(W)siXQH <68, = \/

ueU,jeEV\{a}
where 81, = o(u}),) under Condition P. Note that this implies that the denominator above is bounded away
from zero by cuyy. Therefore,
\Zs — Zs| Sp 01n = Zs01,/ -
where Zs <p {(1 + dw)log(n|V|)}*/2. By Theorem 2.1 in [27], since E[iﬁj] < C, there is a version of Zy
such that

> M3 2/3
Zs = Zn| Sp bn = (M (L dw) log(alV)) , Mx ((L+ dw) log(n]V]) )
n n

and by Theorem 2.2 in [27], there is also a version of

D 72 < (M0t i) Log(nlV]) | ME((1+ die) log(n]V])
N cl Sp nl/2 nt/4

Finally, we have that

26 — Z5] < Sup.

\/> Zgz wzuj %u;)

where conditional on (X“ Wi),i=1,...,n, ﬁ Dy gi(z/ij — z/ij) is a zero-mean Gaussian with variance
n[(%‘uj — iu;)?] < 82. Next we bound 4,,. We have

Sn < En[(hus — Yus) 1Y% + B[ ($uj — Puj )2 < B[(Puj — Yug) 22 + 81/ 1w,

and

i ]En KwWXi'Au_u 2)1/2
En($us — )12 < g s
2 _2 1 2
En[Keo(W)X2e2]Y/ |En[Kw(W)Xingi]l/2 —]En[Kw(W)XQ 2]1/2|

cP(w)

_|_
~ En[Ko(W)X2e2]'/?
S En[Kw(W)XE[E, — eul?)*/? {EH[KW(WI)X%%]”Z + () } ,

note that the term in the curly brackets is bounded by C'/P(w)'/? with probability 1 — o(1). To bound the
other term note that |8, — ey |? = [1{Xs < X’ ,Bu} — 1{Xa < X’ ,Bu}|. Note that &, = 1{X, < X' Bu} —T
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where ||B,]lo < Cs. Therefore, we have {1{X, < X' 8.} :u e U} C {1{X, < X' B} : ||Bllo < Cs} which
is the union of ( ) VC subgraph classes of functions with VC dimension C’s. Moreover, we have
B[Ko(W)XEEu —eul?’] =E[Kz(W |1{Xa < XL Bu} = HXa < XL Bu}]
< fE[K&(W ) 21X 0 (Bu = Bu)]
< fE[EL(W )X4}1/2E[ = (W)X (Bu — Bu) 2]/
< O(f/£,]P(@)/2\/s(1+ dw) log(n[V])/n

Therefore, by Lemma with probability 1 — o(1) we have

(E — B)[Ka(W) X35, — 2] < J ) OWD 67 1112 50+ d ) TogalVT)

Under /s(1 + dw)log(n|V])/n = o(f,,w) we have that with probability 1 — o(1) that
< C{s(1 + dw) log(n|V])/n}/*.

Therefore, using again the sparsity of B'u in the definition of @w’

1> R ~
sup 7n ; 9i(Yiug — Yiug)

weld,jeV\{a}

Sp G3n = {slog([VIn) /n}'/*/s(1 + dw)log([V]n)

The rest of the proof follows similarly to Corollary 2.2 in [I4] since under Condition P (and the bounds
above) we have that 7, 1= 01, + 02, + 63, = o({E[Zn]} ")) where E[Zn] < {(1 4 dw ) log(|V|n)}'/2. Then
we have sup, |[P(Zs < t) — P(Eé < t)] = op(1) which in turn implies that

P() = P(Zs <7(©) i
> P(Z5 <T(€) — IP(Zs < 85(6) — P(Z <2 (9)]
>1-&+op(1)
Note that the occurrence of the events 9, Q3 and 4 follows by similar arguments. The result follows by
Lemma [7] thresholding and applying Lemma [I7] and Lemma [I4] similarly to before.

APPENDIX D. TECHNICAL LEMMAS FOR CONDITIONAL INDEPENDENCE QUANTILE GRAPHICAL MODEL

Let u = (a,7,w) €U :=V x T x W, and T,, = support(8,) where |T,| < s for all v € U.

Define the pseudo-norms
1/2

||UH72’L,w = ZK UZ 27 | = Z{ awj |§j|2 , and |5||1,‘W . Z aw;|§'|7

_ a12111/2 : : : ; .
where 7, O’awj {E.[{K=(W)Z7}°]} /2. These pseudo-norms induce the following restricted eigenvalue as

Rau,c =
' 16Tl =<elldT, lI1,=

The restricted eigenvalue k5, ¢ is an counterpart of the restricted eigenvalue proposed in [21] for our setting.
We note that k, ¢ typically will vary with the events @w € W.
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We will consider three key events in our analysis. Let
Q1 := { M\ = ¢|Sy,|/5Z awjy forall wel,j € [pl} (D.49)

which occurs with probability at least 1 —¢ by the choice of A,. For CIQGMs, we have S,,; := E,,[K5 (W) (7 —
WX, < ZBu+ru}) 28], and Au = Avrwy/7(1 — 7). (In the case of PQGMs, we have S,; := E,,[Ko (W) (7 —
1{X g —a/BU}) —a]? awg - {]E [ (W) 70,,]]}1/2 and AU = AO)

To define the next event, for each u € U, consider the function defined as
Eu(ﬂu) = En[Kw(W){pu(Xa - Zaﬂ) - pu(Xa - Zaﬂu - Tu) - (T - 1{Xa < Zaﬂu + ru})(Za/B - Zaﬂu - Tu)}]

in the case of CIQGMs. (In the case of PQGMs, we replace Z* with X_,.) By convexity we have R, (Bu) =20
The event

Qp = {Ru(Bu) < Rug - u € U} (D.50)
where R,¢ are chosen so that s occurs with probability at least 1 — . Note that by Lemma
we have E,[E[Ry(8u)|X_a, W]] < flrull? /2 and with probability at least 1 — &, Ry(8.) < Rue =
dmax{f|rull} - 7l Cy/Tog (¥ p€) i} < C'slog(n1 4 p ) /.

Define g,,(8, X, W) = Ko (W){p+(Xo — Z%Bu + 0)) — p+(Xa — Z%By)} so that event 3 is defined as

E, (g (5, X, W) — Elgu (6, X, W)|X_o, W
o vy Ealon6XW) Bl G XWX WY D51
W€, 1 /AL |81, </ 16111,

where t3 is given in Lemma [3|so that 23 holds with probability at least 1 — &.

Lemma 1. Suppose that Q1, Qo and Q3 holds. Further assume 2 H%i 1Bull1,m + m ug < v/ for all

wel, and holds for all § € Ay = Ayse U{v : [[u]l10 < 2¢Rue /M), Gan/4 = (VT + Dllrullne +
[Ay + t3] % and da, = {2¢c (1 + %) Rue}Y/%. Then uniformly over all u € U we have

IVFeZ (B = Bl < y[8e (14 45) Rug + (JV/2 4 Dllrallne + 2295 4 4, UFeys

1B = Bullier < (14 20)VSIVFZ Sullnen 2+ 55 Fe

Proof of Lemmal[l Let u= (a,7,w) €U and §, = Bu — By. By convexity and definition of Bu we have
ﬁu(@\u) - Eu(ﬂu) + S;L(su R
=E, [KW(W)Pu(XaA_ ZBu)] — En[Ke(W)pu(Xa — Z9Bu)] (D.52)
< )\u”Bu”l,w - Au”ﬁu”l,w

where S, is defined as in (D.49) so that under Q; we have A, > ¢[Sy;|/5Z

awj*

Under Q1 N9, and since Eu (Bu) > 0, we have

_Ru(ﬁu) - )\Tulldu Il,w ﬁ (ﬁu =+ 5 ) u(/Bu) + En[KW(W)(T - 1{Xa < Zaﬁu + Tu})Za‘Su]
= [ (W)pu(X - Za(§ + 5u))] - ]En[Kw(W)pu(Xa - Zaﬁu)] (D'53)
< A Hﬂuulw_)‘ ”5 +6u”1w

so that for c = (¢+1)/(c—1)

c

[o7ell1,e < cllor, |1, +
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To establish that 6, € Ay = Ay U{v : [[v]l1,0 < 2¢Rue/Au} we consider two cases. If [|6re||1,o >
2¢||or,

1 c ~
o 5 c < 7Ru u
5107 Au(c—1) (Bu)
and consequentially
20
< {1+ 1/} org e < 3 BulB).

Otherwise, we have ||d7¢|[1, < 2¢l|07, [|1,c Which implies

0ull1, < (14 2¢)] <(1+ 20)\/§H V fuZ “0ulln,w/ Ku,2e
by definition of k, 2c. Thus we have 6, € A, under 3 N Qs.

Furthermore, (D.53)) also implies that

H(Su +Bu 1 < Hﬁul 1H6 ||1 w +R (Bu)/)‘ R
<1+ 1/6)||ﬁu||1,w + (1/0)[16u + Bullt,e + Ru(Bu)/Au

which in turn establishes

1+1/c 1 ~ 1+1/c 1 _
/ ”611”1@"" u(l—l/C)Ru(BU)g / HBquw"’ u(l—l/C)R

where the last inequality holds under Qy. Thus, ||04]|1,x < v/7 under our condition. In turn, d,, is considered

in the supremum that defines Q3.

Under 21 N Qs N Q3 we have

En, [E[ =(W){pu(Xa = Z%(Bu + 6u)) — pu(Xa — Z°Bu)} | X—a, W]
En[Ko(W){pu(Xa — Z%(Bu + 6u)) — pu(Xa — Z°Bu) }] + ts[|6ull1,=

>\u||5u||1,w + t3|0u||1,w

2¢ (14 1) Rug + IVTaZ 0l P + 1a] 222

here we used the bound |0, |]1,0 < (14 2¢)v/s||[vVfuZ%0ulln.w/Fu2e + %Rug under Q1 N Qs.

. (D.54)
<

Using Lemma since (F.64]) holds, we have for each u € U
_ EH[E[KW(W){pu(Xa - Za(ﬁu + 6u)) - pu(Xa - Zaﬁu)} | X_q, W]
_(\/?4’ 1)‘|Tu||n,w“mza u — SUPyeu,je[p) |]En[E[S1;j|X—av ]/&aw]]
VIuZ0ulls o
e W CPW [V M

here we have E[S;y;|X; —a, W;] = 0 since 7 = P(X, < Z°B, + ru|X_,, W) by the definition of conditional
quantile.

Note that for positive numbers (t2/4) Aqt < A+ Bt implies t2/4 < A+ Bt provided ¢/2 > B and 2¢* > A.
(Indeed, otherwise (t2/4) > qt so that t > 4¢ which in turn implies that 2¢® + qt/2 < (t2/4) A qt < A+ Bt.)

Since ga, /4 = (Vf + D)|[7ullnw + [{)\u + tg}%} and g4, > {2c (1 + f%) Ry }'/?, the minimum on the
right hand side is achieved by the quadratic part for all u € Y. Therefore we have uniformly over v € U

VIuZ0ullh ZRY- o Sevs

which implies that

Ku,2¢c

IVFuZ Oulln= < 4/8¢c (1+§—i) Rue + [ (VT + Dllralln.e + P + 3 }3cf]
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Lemma 2 (CIQGM, Event Q). Under Condition CI we have En[E[ﬁu(ﬂuﬂX_a,w]] < f||ru|\%,w/2,
ﬁu(b’u) >0 and
P (sup Eu(ﬁu) <C{l+ fH{nts(1+ dW)log(p|V|n)}> =1-o0(1).

ueU

Proof of Lemma[3 We have that I%u(ﬁu) > 0 by convexity of p,. Let e, = X;q— Z8 By, — 73 Where ||Byllo < s
and ry, = Qx, (7|1 X o, @) — Z9B,.

By Knight’s identity (F.65), Ry(8.) = —En[Ke(W)ry [ e, < —tr,} — 1{e, <0} dt] > 0.

]EW[E[EU«(BM”X—@; w] = En[Kw(W)Tu fol FXQ|X,a,w(Zaﬁu + (1 - t)ru) - FXa|X,a,w(Za6u + Tu) dt}
En[Ko(W)ry [y ftredt] < fllra)? /2 < Cfs/n.

Since Condition CI assumes E[[|r,[|7 ,,] < P(w)s/n, by Markov’s inequality we have P(R.(8.) < Cfs/n) =
1/2. Define z;, := — fol Hej < —tri} — 1{ei < 0} dt, so that }A%u(ﬂu) =E,[Ko(W)ryz,] where |z;,| < 1.
By Lemma 2.3.7 in [73] (note that the Lemma does not require zero mean stochastic processes), for ¢ >
20 fs/n we have

1P (sup B [K e (W)ryz.]| = t) < 2P <sup |E, [eKw(W)ryza]| > t/4)
2 \ueu uelU

where €;,7 =1,...,n are Rademacher random variables independent of the data.

Next consider the class of functions F = {—Ko(W)r,(1{gix < —Birin} — 1{ein < 0}) : u € U} where
B; ~ Uniform(0, 1) independent of (X;, W;)"_ ;. It follows that Ko(W)ryz, = E[-Ko(W)r,(1{e;, <
—B;rin} — {ei < 0})|X;, W;] where the expectation is taken over B; only. Thus we will bound the entropy
of F = {E[f|X,W] : f € F} via Lemma Note that R := {r, = Qx, (7| X_q, @) — Z*By : u € U}
where G := {Z%8, : u € U} is contained in the union of at most |V|(?) VC-classes of dimension C's and
H:={Qx,(7|X_s, @) : u € U}} is the union of |V| VC-class of functions of dimension (1+dy ) by Condition
CL Finally note that £ :={e;, ;u €U} C{Xip:a €V} —-G—R.

Therefore, we have

supg log N (€| Fllg.2. F, || - lo.2) < supglog N((e/4)*|Fllg,2, F, || - |
< Supg log N( 62/16)7W7 [ - ”Q,?)
+supg log N (
+supg log N(

Q.2)

1
3(
§(€/16)| Fllg.2: R |l - llo.2)
§(€2/16), {E +{BR < 0} - H{E < 0}, [ lg2)
We will apply Lemma with envelope F' = sup,cy |Ke(W)ry|, so that E[max;<, F?] < C, and
sup, ey E[Kw(W)r2] < Cs/n =: 0% by Condition CL. Thus, we have that with probability 1 — o(1)
\/3(1 + dw) log(p|V|n) \/§+ s(1 +dw)log(p|Vn) _ s(1+ dw)log(p|V|n)
n

n n ~ n

sup |E,[e Ko (W)ryz.]| S
ueU

under M,+/s?/n < C. n

Lemma 3 (CIQGM, Event Q3). For u = (a,7,w) € U :=V x T x W, define the function g,(6, X, W) =
KoW){p:(Xo— Z%Bu+9)) — pr(Xa — Z°Bu)}, and the event

Oy { [Enlgu(d, X, W) — Elgu (6, X, W) | X0, WJJ| _ tB} |

sup
weld,1/v/n<|8ll1,= <vn 16111,
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Then, under Condition CI we have P(Q3) > 1 — £ for any ts satisfying

tov/n > 12 + 161/ 21og(64]V [p2n® 24w log(n) L}/ M, /¢)

Proof. We have that Q§ := {max,cv A, > t3y/n} for
[ (8, X, W WO X W) | X, W
. . e[l B 0) B X | X W)

(1,@) €T XW,NL||6l1, <N
Therefore, for N = 1/y/n and N = /n we have by Lemma [13| with p = &, L, = Lg, & = Z¢

P(Q5) =P(maxsey Ay > t3y/n)
< |V maxgey P(A4, > t3/n)

= |V|maXaGV EX W{P t3\f| X_ aaW)}
< |V|maxey Bx_,w {8pw| W] [T exp(—(ts/n/4 — 3)2/32)
2 1+d mas;<, || 2 oW/
< exp(—(tsv/n/4 — 3)?/32)|V|64pn' T log(n) LgEx |, T
<€
by the choice of ¢3 and noting that M ™™/ /% > B [maxic, | 292", 14 dw /6 < q and M, > 1

Lemma 4 (CIQGM, Uniform Control of Approximation Error in Auxiliary Equation). Under Condition
CI, with probability 1 — o(1) uniformly over w € U and j € [p] we have

En[Ko(W)Si{Z25 (v = 3002 S 2P (@) {n ™ slog(plV|n) } /2.

Proof. Define the class of functions G = Usev,je[p)Faj With Gaj := {ij (v2 —4):7 € T,w € W}. Under
Condition CT we have sup, e/ [|74llo < C's, supyeyy jepp) 17— 7u||\/M < {n~'slog(p|V|n)}'/2. Without

loss of generality we can set '_yik = 'yuk for k € support (7). Letting Goj 1 := ={z2; (v — fyf;T) T T, weW}
for T C {1,...,p}, it follows that G C Uaev,jelp] YiTi<cs Yas,T-

By Lemma we have |77 =77, | < Ly(|Ju— || + |lu—'||*/?) for each a € V, j € [p]. (Note that although
47 might not be Lipschitz in u, however, for each T, 'yiT satisfies the same Lipschitz relation as 47, in fact

1721 = ALl < |17 — 2L || by construction.) Therefore, for each T we have

2%, (5 = )Y — 2, (g — 7 Pl |

< ||Z7j(7uT ﬁi’T}‘i”Yu/‘ ’Yu)Z: A — 7u+’7u/T ’Yi/)HQQ
<2202 llQ2 Wy = oz + 7 = VallWr =+ oo — ol
<ANZE 1% Q.2 suwpuer 1Tz — Yol 2l — il

<2212 Q2L (lu = /|| + [lu = w/[[*/2).

where L, = 4{n"'s?log(p|V|n)}*/?\/2pL,. Thus, for the envelope G = maxqev ||Z%|% sup,ey |17 — ¥}
that
u 53—~ |2
log N(e[Gllg.2, 9. |- lg.2) < Cslog(|V]p) +log N (2Pusse =l 44, dy ) < C(1 + d)? log(Lyn ).

Next define the functions Wy = {Ko(W)f2:u e U}, Wi = {P(w) ™' :w € W} and Wo = {Ko(W) : w €
W}. We have that Wy is VC class with VC index Cdy and W is bounded by u;\} and covering number
bounded by (Cdyw /{pwe}) 4. Finally, since |Ko(W)f2 — Ko/ (W) f2| < Ko(W)Ko (W)|f2 — 2] +

!
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PIEo(W) = Kot (W)] < 2f Ly |lu— /|| + f?|Ko(W) = Koo (W)], we have N(e,U, | |) < (C(1+dw)/e)' .
Therefore, using standard bounds we have

log N (€]l 3y Gfll .2, WoWAWaG, || - lg.2) S s(1 + dw)?log(L), Lyn/e)
By Lemma [19[ we have that with probability 1 — o(1) that

et |(Bn — B2, 04 — 34) P /P(@)]
s(1+dw)? log(p|V'|n) sup, cyy E[Kw(W)f‘*{ZiJ(Vﬂ ) }41/P(w)? + s(I+dw)? Ma pyy supy ey 175, =74 lI7 log(p|V|n)

IZANRZAN

s(1+dw)? log(p|V|n) glog(P\Vln) + (1+dw)* M7 s* log(p|V|n) slog(p|V|n)
pwn n nuw n
f s(1+dw )2 log(p|V|n) + (14dw)*M; s* log(p|V|n)
Pwly w3y f2,n np3y, f

Ju
,S alog(p|V\n)M f {(51/2-1-(57%}

s log(PlV\n)

A

here we used that E[f}{Z°0}!|w] < F'E[{Z*}'|w] < ClolI*, |13 =~ + s7215d — ~ilh <
s Tog(plVIm)} /2, s(1 + dw)2log(plVIn) < dunf2udy and (1 -+ du) Maslog"2(plV]n) < un! 2w,
by Condition CI. Furthermore, by Condition CI, the result follows from E[f2{Z%;(7] — 7))}’ |w] <
CL211% — il < Cf2n~ slog(p|Vn). "

Lemma 5. Under Condition CI, for v = (a,7,w) € U and v’ = (a,7’,w’) € U we have that

=7 < i PPEH K () = Kl W)F112 + B[R (W) Ker (W) 2 = S22,

In particular, we have ||v] — ), < L,{|l@ — @'||"/*> + |lu — u/||} for L, = C{L; + LK}/{iZZ,{MW} under
B[|Ko(W) - Ko (W)|] < Li||l@w — @'||, Keo(W) Koo (W) fu — ful < Lyllu’ —ull, and fu < f < C.

Proof. Let u = (a,7,w) and v = (a,7',@’). By Condition CI we have

I =70 * < CEHZ (v, = 7)Y '] < {C/P(@)E[K e (W){Z (%, = 7)}’]

To bound the last term of the right hand side above, by the definition of iu, and Cauchy-Schwarz’s inequality

we have

S EE e (WHZ2, (v, = 7)) < EEo (W) ful 225030 = 7))
)

<
<AE[Kw (W) f2A2 (v, = 70) Y] Bl (W22, (v, — 7)Y}
so that E[Kw (W){Z%;(), = 7)YV < {E[Kw (W) [2{2% (v, = 7)Y 1}'/?/ - Therefore
17 = v P < {1/ YO/ (@) YELK o (W) fod 22 5 (v = 7i)}). (D.55)
We proceed to bound the last term. The optimality of v/ and 77{, yields
B[Ko(W)fiZ2(Z) = 223)] =0 and  E[Kwr(W)[528,(Z] — Z27,)] = 0
Therefore, we have

E[Ko (W) f2{Z%;(v = i)} 2%] = —ElKe (W) f2125 = 2% 20} 22

“E[{Kar (W) f2, — Ko (W) f2H{Z8 - 2% 7]} 29 (D.56)
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Multiplying by (v — 7.,) both sides of (D.56)), we have

B[Ko (W) f2{2%,(v, — v5)}] _
E[{ Ko (W) 2 — Ko(W) f2YP1VHERZE — 22 72 2% (v, — vi) Y212
E{ Ko (W)f2 — Ko(W) 232120193 — 4L |

by the fourth moment assumption in Condition CI. By Condition CI, f,, f.s < f, and it follows that

<
<

|Keae(W)fi — Kot (W) f2r] < Ko(W) Koot (W[ f5 = firl + 2K (W) — Koot (W) (D.57)
From we obtain
v = vl < ( ){f2 { Ko (W) = Ko(W)}V? + B[Ko (W) Ko (W){f2 — f23°]'/?}.

Lemma 6. Let U =V x T x W. Under Condition CI, for m = 1,2, we have

< Coy sup {E[Ko(W) [ (2°0)°]}1/?
w€lU, 8]0k 0]=1

El sup (En — B)[Ko(W) £ (Z270)%)]

u€lU, |00k, [I10]]=1

where 8, = My /k(1 + dw)Clog(p|V|n)log(1 + k)+/logn/n. Moreover, under Condition CI, §, = o(uw).
Proof. By symmetrization we have

< 2E sup En[eKe(W)fiH(26)?|

uw€l,[|0]o<k, ||6]|=1

El sup (En — B) K (W) £ (Z270)%)]

u€U,||0]lo<k, [10]=1

where ¢; are iid. Rademacher random variables. ~We have that |[Ko(W)fi" — Ko(W)fh| <
Ko (WK W)|fu — furl(1 + 2f) + fKu(W) — Ko (W)| for m = 1,2 where u and v’ have the same
a € V. However, conditional on {(W;, X;),i = 1,...,n}, {Ko(W;):i=1,...,n,@w € W} induces at most
ndw different sequences by Corollary 2.6.3 in [72]. This induces (at most) n" partitions of W such that
Ko(W) =K (W) for any w, @’ in the same partition given the conditioning. Thus, for such suitable w’ we
have |[Ko (W) fi' — Ko (W) f7] < ( Wfu— fu|(14+2f) for m = 1,2. (Thus it suffices to create a net for
each partition.) We can take a cover U of V x T x W such that [u—u/|| < {L(1+2f)nk max;c, || 282} "
o that [ fu — ful(2°0)% < |fu — fur 12421012 < 1 — Furl | 29 2,K]16] which implies

sup En[eKo(W)fIH(26)%]| — sup [En[eKe(W) fH(Z20)%]]| < n”t
weU,[|0]lo<k,[10]=1 well,||0]lo<k, 1 0]=1
Consequentially
1
E sup [En[eKo(W)fI1(Z90)%]]| <E sup EnleKe(W) 01 (Z90)]| + =
w€U,||0]lo<k, [10]|=1 weld,||0]lo<k,[|0]=1 n

where ILA{\ < |V n® {Ls(1 + 2f)nk max;<, | 282, 3w,
By Lemma [I§ with K = K (W, X) = (1 + f?) sup,ey maxicn | Z{ o and

5,(W,X) =CK (VV,X)\/E( log || + /1 +longrlogk«/log(p\/n)«/logn) //n
< K (W, X) /BT + dw ) Clog (VK (W, X)) log(1 + k)vIog /v
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so that conditional on (W, X) we have

E sup |En[5Kw(W)f,T(Z“9)2]|] < 0 (W, X) sup VEW[Ka(W) fir(Z20)?]
weld,[|6]l0<k,[16]=1 u€ld,[|8]lo<k, [16]|=1
Therefore,
1D sup En[eKa(W)fi (Z°0)%)]
u€lU,||0]lo<k,|10]]=1
< Ewx [cwv, X) s E[Ke (W) (Z200)]| + -
u€ll, |0l <k, 10]1=1 )
< Ew.x[67 (W, X)] + Ew,x [0 (W, X)]'/? sup E[Ko (W) [ (Z°0)*)'% + ~
u€ld,|0]lo<k,[16]|=1 "
Note that for a random variable A > 1, we have that E[4%/log(CA)] < E[A2%]/log(C) + E[4%/log(A)] <

E[A?]\/log(C) + E[A%T1/4]. Therefore, under Condition CI, since ¢ > 2 + 1/4 in the definition of M,,, we
have

Ew,x 87 (W, X)]'/? £ My /k(1 + dyw)Clog(p|V[n) log(1 + k) /log n/v/in.
The results follows by setting d,, = Ew x [62 (W, X)]*/2. "

APPENDIX E. RESULTS FOR PREDICTION QUANTILE GRAPHICAL MODELS

In the analysis of PQGM we also use the following event for some sequence (K, )y eus

Q= (K5, > EalBIKw(W)(r = 1{Xa < X' B0+ ru )Xol X;, W), el j € V\fa}}.  (E58)

awj

Lemma (Rate for PQGM). Suppose that 1, Qa, Qs and Qq hold. Further assume 1+i§i\\ﬁu|\1 -
(1 l/c) < V/n for alluw € U, and holds for all § € Ay == Ag2c U{v : ||v]|1,0 < 2cRu§/)\u},
da, /4 = \[Jr Dllrulln,e + [Au + ts + Ky i‘;—\f and qa, = {2¢c (1 + %) Rue}'/?. Then uniformly over

alu=(a,7,w) €U :=V xXT xW, the || - ||1,=-penalized estimator (3, satisfies

IVFuXLa(Bu = Bu) Iz 8¢ (1 + 8 ) e + (P72 4 Dllraling + P+ ts + K] 2
”B\u - ﬁu”l,w X (1 + 20)\/5” \% qu—a(san,w/ﬁu,Qc + ERH{

K2c

Proof of Lemma[7 The proof proceeds similarly to the proof of Lemma [I] by defining

Ruy(B) =E,[KaW){pu(Xa — X" 0B) — pu(Xa — X' oBu —1u)}]
_En[Kw(W>{(T - 1{Xa < X/—aﬁu + ru})(XiaB - XLaBu - Tu)}]

The same argument yields 6, = Eu —Bu € Ay i= Apoc U{v : ||v]|1,0 < 2¢Rue/Ay} under Q4 NQs. (Similarly
we also have [|0, /1, < /n.) Furthermore, under €, N Q2 N3 we have that (D.54) also holds which implies

En[E[Kw(W){Pu<Xa - Xl—a(ﬁu + 6u)) - pu(Xa - X/—aﬁu)HX—aa W] < ()‘u + t3)||5uH1,w

Since the conditions of Lemma [[2] hold we have
En[B[Ko(W){p-(Xq - X/ja<ﬁu +6u)) = pr(Xa — XL Bu) HX—a, W]
_(\/?'1' 1 Hru In WH\/JTu ! 5||nw -

nmx_aaunn =
1 =NV

uH —a
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where K, is given in {24 which accounts for the misspecification the conditional quantile condition. Therefore,

we have

UXLa(S n,w

IR bz p gy TFaX bl < (FY2 + D rulln Vo X abullne + O+ ts + Ko [0u]l1.
<{<f1/2+1>\|m||m+3°fu + b3+ K)MVFa X obullne
(/\ +t3—|—K) ’Rug

The result then follows with the same argument under the current assumptions that account for K. [

Lemma 8 (PQGM, Event Q). Under Condition P, we have

/ N 2
P( wp K (W) = 1{Xo < XL Bu 4 ruDX ]l ) SV )de exp( { (1 +35,) } )

uel,jeld] 8§wj 2(1 + 1/16)

where t > 4sup, c {E[K-(W)(T — 1{X, < X', B, +7“u})2Xza,j]}1/2 and 6, = o(1). In particular, the RHS
is less than € if t > 2(1+ 0,,)(1 + 1/16)+/log(8|V[{ne/dw }2Iw /¢).

Proof. Set o, = E[Ko(W)X?2, ]1/2 We have that for any §,, — 0

P(Ao < sup [E,[Ko(W)(1 — 1{X, < Bu})X—aJ]l/ awg)
~ uweU,je[d]
<P <(1+6,) ZUP [d]‘En[KW(W)(T - X, < X/—aﬁu})X—a,j]l/Ufwj) (E.59)
ucl,je

+P( sup 02 /5 > (1+6,)
uweU,je(d]

To bound the last term in 1} note that under Condition P, cuyy < (org(wj)2 < C and W is a VC class
of set with VC dimension dy. Therefore, by Lemma we have that with probability 1 — o(1)

sup (E, — E)[K(
uel,j€(d]

x2, ] . (E.60)

\/ 1+ dw) log (VM /1) n (1 + dw) Mz log(|V|My /1)

for of = maxyey jera) B[K=(W)X?2, ;] < maxjey E[X?, ;] < C and envelope F' = [ X||2, so that ||[F|[p2 <
| max;<, F||p2 < M2. Thus for 6, — 0, provided (1+dw )M?2log(|V|n) = o(n'/?) and (1+dw)log(|V|n) =
o(né2p,), so that the RHS of (E.60) is o(8,uy), we have

Q

1 o .
P < — < awj <(1+6,), forallueld,je [d]) =1-o0(1). (E.61)

awj

Now we bound the first term of the RHS of (E.59). and let 05 = sup,ey jeq Var(Ke(W)(r — 1{X, <
X Bu})X,aj/aawj) < 1. By symmetrization (adapting Lemma 2.3.7 in [73] to replace the “arbitrary”
factor 2 with 1+ 4,,), for 6 := 1/(2(1 + no3/t?)) < 1/2 we have

(*) = P(Supuéu,je[d] | Z?:l Kw(Wi)(T - l{X’iCL X i, 7aIBU})X —a]/gawg| = t)
< 2P(supyey jefa) | it €iB e (Wi (T — U Xia < X[ _oBu}) Xi—aj/ 00| 2 10)

< 2P sup |2y EiKW(Wi)(T_;E(Xiagx'i"“ﬁ"})Xi’f‘”‘ >t5/(1+46,) | +o(1)
ueU,j€(d] awj
where €;,7 = 1,...,n, are Rademacher random variables independent of the data, and the last inequality

follows from (E.61)).



54 BELLONI, CHEN, AND CHERNOZHUKOV

Therefore, by the union bound and symmetry, and iterated expectations we have

P iKW (T — H{Xio < X! Bub) Xi—aj -
P€<Sup|zzl (W) (r = LXin < X _ofu)) X J|>t5/(1+5n)mXﬂ
ueU

g

(¥) < 4|V|maxEw x
J€ld]

awyj

Next we use that {w € W} is a VC class of sets with VC dimension bounded by dy and {1{X, <
X" Bu}: (ryw) € T x W} is a VC class of sets with VC dimension bounded by 1+ dy,. By Corollary 2.6.3
in [72], we have that conditionally on (W;, X;)™ ,, the set of (binary) sequences {(Kw(W;))i=1,..n : @ € W}
has at most ZdW ! ( ) different values. Similarly, {(1{Xia < X] _,Bu})i=1
wao ( ) different values. Assuming that n > dy, we have Z] 0 ( ) < {ne/k}* and

,,,,, n U € U} assumes at most

P. (Supueu Py Ein(Wi)(T—;\E(XiagXi,—aﬂu})Xi.—aj| > t5/(1+6,) | W, X>

awj

< {d }dw 1{ ne }dw Supuel,{P (Supi—eT |Z?:1 Ein(Wi)(%—}\E(Xq‘,a<X,i77aBu})X7‘,,—aj| > t5/(1 n gn) | W, X)

Jaw7

T e K (W) (7—1 X,;a<X/ w H) X —aj
< (e} g g P (N Qe X Pl 1145, )

< 2{ne/dw }>¥ exp(—{td/[1 + 6,]}?) -

here we used that the expression is linear in 7 and so it is maximized at the extremes. Combining the bounds

in the last two displayed equations we have
(¥) < 8|V [{ne/dw }*™ exp(—{té/[1 + 8,]}?).

Therefore, setting \g = ct/n where t > 4y/noy and t > 2(1 + 6,)(1 + 1/16)+/21log(8p|V [{ne/dw 29w /€).
(Note that t > 4/nos implies that § > 1/{2(1 + 1/16)}.) ]

Lemma 9 (PQGM, Event Q5). Under Condition P we have

P (sup Ry(Bu) < C{1+ fH{n 's(1 + dw) log(|V|n)}> =1-o0(1).

ueU

Proof of Lemma[9 We have that Eu(Bu) > 0 by convexity of p,. Let g, = Xiq — Xi,,aBu — 734 Where
1Bullo < s and 74, = X' ,(Bu — Bu). By Knight’s identity 1) ﬁu(Bu) = —E,[Ke(W)ry fol 1{e, <
—tr,} —1{e, <0} dt] >0

En[E[ﬁu(BU)] = n[KW(W)TUIol P:Xalx awg (l_t)mJ FXa|X,a,w(X/—aBu+7"u> dt]
o[ Koo (W)ry [y Ftradt] < f[ll?“ull L1/2< Cfs/n.
o(B

W) < Cfs/n) > 1/2.

Define z;,, := —fol e < —triu} — 1{ei < 0} dt, so that ﬁu(ﬁu) =E,[Ko(W)r,z,] with |z;,] < 1. By
Lemma 2.3.7 in [73] (note that the Lemma does not require zero mean stochastic processes), for t > 2C fs/n

Thus, by Markov’s inequality we have inf,, <y P(

we have
-P (sup |E, [Ko(W)ryz,)| = t> < 2P <sup |E, [eKm(W)ryz,]| > t/4)
uel ueU
where €;,7 = 1,...,n, are Rademacher random variables independent of the data.

Consider the class of functions F = {—Ko(W)ry,({e;m, < —Birin} — 1{ei < 0}) @ u € U} where
B; ~ Uniform(0, 1) independent of (X;, W;)"_ ;. It follows that Ko(W)ryz, = E[-Ko(W)r,(1{e;, <
—B;irin} — Heiw < 0})|X;, W;] where the expectation is taken over B; only. Thus we will bound the
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entropy of F = {E[f|X,W] : f € F} via Lemma Note that R := {r, = X’ Bu — X" ,Bu : u € U}
where G := {X’ B3, : u € U} is contained in the union of at most |V|(¥) VC-classes of dimension C's and
H:={X",Bu:uecl}}is a VC-class of functions of dimension (1 + dy) by Condition P. Finally note that
E={ep:veU}C{Xyu:a€V}-G-—R.

Therefore, we have

supg log N (e[| Fllg.2. F, || - lo.2) < supglog N((e/4)*[|Fllg,2, F, || - |
< supg log N (5(/16), W, || - [lq.2)
+supq log N(5(¢*/16) [ Fllg.2, R, || - llo.2)
+supq log N (5(¢?/16), {€ + {B}R < 0} - 1{€ < 0}, || - |g.2)
By Lemma [19| with envelope F = || X || supyey |8y — Bull1, and (07,,)? = sup,ey E[Kw(W)r2
Condition P, we have that with probability 1 — o(1)

1 1 M,+\/s2/nlog(|V 1 1
sup B, [ (V)| 5 LBV, [3 Mo/ og((Vin) o o0 ) o1V
ucl

under M, +/s?/n < C. n

Lemma 10 (PQGM, Event Q3). Under Condition P, for u= (a,7,w) € VX T xW, define g, (6, X, W) =
Ko (W){pr(Xa — XL (Bu +0)) — pr(Xo — XL B4)}, and

0y { [Ealgu (3, X, W) — Elgu (6. X, W)X, WII| _ tg}.

Q.2)

| < s/n by

sup
weld,1/v/n<|dll1,w <vi 16111,

Then, under Condition CI we have P(Q3) > 1 — £ for any

tav/n > 12 + 16 2log (64]V 214w log(n) (LM, /m) 1w /= /¢)

Proof. We have that Q0§ := {max,ev A, = t3y/n} for

Aa = sup \/ﬁ’En[g“(é’X’ W) 7E[gu(6’ Xa W)|X—a7WH
(1, @) ETxW,N<[16]l1,0 <N |6

1,

We will apply Lemma [13| with p = &, L, = Lg, & = X_, (so we take p = |V|), N = 1/y/n and N = /n.
Therefore, we have by Lemma [T3] and the union bound

P(Q5) = P(maxeev Aq > t3v/n)
< |V‘ maXgev P(Aa 2 tg\/ﬁ)
= IV‘ maXgev EXﬂ“W {P(Aa = t3\/ﬁ ‘ X_ay W)}

< V] masaey Ex_w {SIVI INT- W] [T exp(—(ts/71/4 - 3)°/32)}
K maX;<n i—a ;rdW/N
< VP togln) L B, { =B S ety - 3)7/32)
<¢
where the last step follows by the choice of ¢3. [

Lemma 11 (PQGM, Event Q4). Under Condition P, and setting K, = C/ w, we have that
P(Q4) =1—0(1).
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Proof. First note that by Lemma [19[ we have that with probability 1 — o(1)

| < wudmlosuvmn/a) L (L dw) M3 Log (VM)

sup (B, — E)[Ko(W)X2,
weW,jev

and o, > cP(w). Under (1 + dw)log(|V|M,/o) < 62u3y, and (14 dw)M2log([V|M,, /o) < bnnpyy, we
have that |(E, — E)[K(W)X?2, /]| = o(o

aw]) for all uw € U. Therefore, we have

P(SuPueu |En[huj(X—a7 W)]l/{K awj} > 1)

< P(supy ey [Enlha (X—a, W/ {Kuoas;} > 14 0(6n)) + o(1)
Applying Lemmato F = {hy;(X_q, W)/anj u € U}. For convenience define H; = {hy;(X_q,W):u €
U} and ICJ = {E[K%(W)X?] : @ € W}. Note that K; has covering numbers bounded by the covering number
of Kj = {Ku(W)X2 : @ € W} hence supg log N(el|Kjllg.2, K. |- llg.2) < logsupg N(¢/02Fll g s | -
l.2) by Lemma . Similarly, Lemma [25] also allows us to bound covering numbers of H,; via covering
numbers of H; = {Ko(W)(r — 1{X, < X' Bu.})X; :u e U}

supg log IV (e Fi |l - llg.2) < pmax;ep, supg log N (el Fillg.2, Fj» | - ll@.2)
7 7 1/2 ~1/2

< pmax;e, supg{log N((1/2)el|H;llq.2, Hy, || - llg,2) + supg log N <1/2>e%¢ /K2 la2))
& Y 7 3/2 1 2

< pmax;ep supg{log N((1/2)el|H;ll .2, Hy, || - l.2) + supg log N((1/2)ecris?, K12 || -l g.2)}

((1/2) (
((1/2) ) (
< pmax;ey) supo{log N((1/2)elHjllq.2, Hj. |l - ll@.2) + supg log N (C (1/2)€cu%2, Al lle2)}
((1/2) ) (
(

K;
< pmax;epy supg{log N((1/2)e| Hlla.2. Hy, | - lo.2) + supg log N(1/(2C)ecuny’ Kis || - la.2)}

< pmaxjepy) supg log N((1/4)e* || Hjllg.2, His | - [l.2)
+pmax;ey supg log N((1/(4C%)e*c iy, Ky, || - ||Q 2)
where F; = CHX||OO/,ul/2 H; = || X||oo. Since K; is the product of a VC subgraph of dimension dy, with a

single function, and H; is the product of two VC subgraph of dimension 1 + dw and a single function, by
Lemma [19| with 02 = 1, we have with probability 1 — o(1)

sup | En = B)[Au; (X_o, W) <O\/(l+dw)nlog<|V|n> 4 o Mall+ dw) log((VIn).

uweU E[Kw(W)ng]l/Q Nty

Thus, under M, (1 4+ dw)log(|Vn) < n1/2,u11,\/,2 we have that we can take K, = C'y/ w. L]

APPENDIX F. TECHNICAL RESULTS FOR HIGH-DIMENSIONAL QUANTILE REGRESSION

In this section we provide technical results for high-dimensional quantile regression. It is based on a
sample (g;, Z;, W;)_,, independent across i, p,(t) = (r — 1{t < 0})t, 7 € T C (0,1) a compact interval,
and a family of indicator functions K,,(W) = 1 if W € Q, K,(W) = 0 otherwise, here 2, € W. For
convenience we index the sets Q. by w € By C R4 where we normalize the diameter of By to be less or
equal than 1/6. Let fj7,,. = (-) denote the conditional density function, fz . =(-) < f, | fo17.m 0 ()] < f

and fy := fj|z,r.,(Z'Mu). Moreover, we assume that
17 = nally < Lo{lT = 7| + [|lw — @[} (F.62)
Although the results can be applied more generally, these results will be used for (1, 7),u = (g, 7, ™) €

U :={g} x T x W satistying
E[Ko(W)(1 — 1{g < &'y +1r4})Z] =0
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Note that this generality is flexible enough to allow us to cover the case that the 7-conditional quantile
function Qy(7|%, w) = &N, +7, by setting n,, = 7, and r,, = 7, in which case E[(1—1{§ < &ny+7,})|Z, w] =
0. It also covers the case that

T € arg min E[Ke (W)p- (5 — 2'5)]

so that E[Ko(W)(7 — 1{g < ', })Z] = 0 holds by the first order condition by setting 7, = 7, and r, = 0.

Moreover, it also covers the case that we work with a sparse approximation 7,, of 7, by setting 1, = 7, and
ru =l = Tu)-
Lemma 12 (Identification Lemma). For u = (a,7,w) € U, and a subset A, C RP let
Qr. = 1/CF)- inf By [Ka(W)LESP])? /B, [Ka(W)ao)'] (F.63)
and assume that for all 6 € A,
En [Ko(W)lr| - [#57] + B [Ko(W)r2 - [#617) < 1/(AT)EL[Ko(W)LJESP).  (F.61)
Then we have

En[E[Kw(W)pr (5 — & (u +6)) | &, 7, W] = Bn[E[Keo (W) (5 — &m0 | &, 70, W]]
> WItlhe p (g4 IVTad 8w} — K |VFad8llne — K

[En [BIK o (W) (7= H{G<a 74315 WII|
(B [Ko (W)22]} 172

where Ko := (f1/2 + 1)||rullnw and Kuy = SUPycrr,jelp]

Proof of Lemma[13 Let T, = support(n,), and Qu(n) := E,E[Ko(W)p-(§ — @'n) | &,7ry, W]. The proof

proceeds in steps.

Step 1. (Minoration) Define the maximal radius over which the criterion function can be minorated by a

quadratic function

74, = Sup T Qu(nu + 5) - Qu(’r]u) + Kn2|| fui‘l(SHn,w + Kan(S”l,w =z 1 ||\/E9~C'5Hn w?
- V6 € Ay, |V [u'8llnw <7

Step 2 below shows that r4, > da,. By construction of r4, and the convexity of Q. (-), || - |1,z and || - || n,e,

Qu(’r]u + 6) - Qu(nu) + Kn2|| fuj/énn,w + KnIH(S”l,w 2

> WE#dlhs p | IVEESls 106 Quu +8) = Qulth) + Kn2|VFu&'8llneo + K1 011,
ra 6 € Ay, |[VFu@bllu = ra,

5 VT auiw A{\wmann,wi}
TAy, 4

u an = -~
>bf%L>AMMWEwm@}

Step 2. (ra, = qa,) Let Fyz ., o denote the conditional distribution of § given Z,7,,w. From [4§], for
any two scalars w and v the Knight’s identity is

pr(w—v) —pr(w) = —v(r — H{w < 0}) + / (IH{w < z} — H{w < 0})d=. (F.65)
0
Using (F.65) with w = ¢; — Zin,, and v = Z;J and taking expectations with respect to ¢, we have
Qu(nu +6) — Qu(nu) = —En[E[Ke(W)(r — H{g < &'nu})Ti0 | T, 70, W]

Wm& ~
FEn | J3 "7 By o (@0 +1) = Fys o (@)
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Using the law of iterated expectations and mean value expansion, the relation

En[E [Ke(W)(T — g < #'nu})3'0 | 2,70, W]]|

= [Ep [Ko(W){Fylz,r0 0 (F 0+ 70) = Fglzr, w(0u) 6]

+E, [Ko(W){T = Fjz.0 00 (810 + 10) 86 | 2,70, W] |
SEp[Ko (W) fulral 126] + F'En[Ke(W)|ra*12'8]] + Kn1ll6]1,
< ”\/JTuTuHmWH fu53/5||n7w + f/||ru| n,W||ru53/5||n,w + Kn1H5||1,w
(24 DllralineVFE 8l nw + Kn1 161,

where we used our assumption on the approximation error and we have K3 = (f'/2+1)||ru|ln.. With that

and similar arguments we obtain for #z, ; € [0, ]

Qu(nu + 5) - QU(nu) + Kn2|| fujl(snn,w + Kn1||5||1,w >
Qu(nu +6) — Qu(nu) + En[E[Ke(W)(r — H{g < &'nu})T'6 | 2,70, W] =

= ]E'n, IOKW(W)i,(S Fgliﬂ.’u’w(f/nu + t) — Fg|i77u7w(f/nu)dtj|
Ko (W)E's . 2 N .
=E, fo ) tf517m o0 (E'00) + %fé‘i’”)w(x’nu + ti,t)dt]
- = - Ko (W), ~ -
> VT2 — § B K W& — B [ 50 4 fy o(#0) = Ty o (B + )]
> 1 IVFE8|5 o + 3 IV 017 o — § Bl K (W)[Z6]*] = (f /2)En [Ke(W)|7u| - |25]] -
(F.66)
Moreover, by assumption we have
En [KW(W)ITU‘ : |3~3,5|2} < 4}/EH[KW(W)fu|j/5|2] (F.67)

Note that for any ¢ such that ||\/f,%'6||n,o < @4, we have

IV fu'8llne < da, < 1/(2f") - En [Ko(W)ful2'6]]
It follows that (1/6)f'E, [K (W)|7'6?] < (1/8)E,[Ky (W) fu|#'6|?]. Combining this with we have

2 B, (Ko (W30 .

i]En[Kw(W)fup:n’&F] - %En[Kw(W)\sf:'am — %En [Ko(W)|ry| - 2'61*] > 0. (F.68)

Combining (F.66) and (F.68|) we have r4, > Ga,,. n

Lemma 13. Let W be a VC-class of sets with VC-index dy . Conditional on {(W;,%;),i = 1,...,n} we
have

> M| (Wi, 8)T, | < Snexp(—(M/4—3)%/32)

G, (KW(W) pr (G — & (nu +6)) — pr(§ — i'nu)>

16111,

Py sup
TET, mweW,
N < I8ll1,0 S N

where Sy, < 8pIN'| - |W| - |T1, with

~ d
maxicn [Filloo } v
n .

N <1+ [3vilog(N/N)| . (7] < 2ymisn Zillo p g5 o paw | fo
! N

N

Proof of Lemma[T3 Let girw(®) = Ka(Wi){pr(ii — #irw + ) — prlii — #mr)} < Ka(WoJb] since
Ko (W;) € {0,1}. Note that |gire(b) — girw(a)] < Ko(W;)|b — al. To easy the notation we omit the

conditioning on (&;, W;) from the probabilities.
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For any ¢ € RP, since p, is 1-Lipschitz, we have

grw('i/é) E, [{gTW(T 6)} ] E,[|Ke (W)T 5' ] _
VE:LI' (Gn( ”5”11w )) < H$I5||2 \ HI,‘SHQ =1

since by definition [18]1.e = 3, 1m0 = 5, 188l > 186 0.

Since we are conditioning on (W;, ;)7 the process is independent across ¢. Then, by Lemma 2.3.7 in
[72] (Symmetrization for Probabilities) we have for any M > 1

s
p sup G, (m
rET w€W,N<|8]11, <N 16111,

<2P< sup Gy, <M)‘>M/4

L=M=2" \ eT,mew,N<|l6]1,w<N 16111,

>M

where G¢ is the symmetrized process.

Consider Fy ;. = {0 : ||8]l1,o = t}. We will consider the families of F; , o for t € [N,N], 7 € T and
w e W.

We will construct a finite net 7 x W x N of T x W x [N, N] such that

=~/
G (WMN <3+ sup sup

sup 5
1611, reT,weWteN 0€Ft,r,w

T€T ,weEW,tE[N,N],0€F: + =

G (W)‘ =:3+ A°.

By triangle inequality we have

o (9r=(38)  gru(@$ o ((gr=(&'6 .;w(i'é o (97=(F8)  gra(d's
o (e o) <o oo ()

(F.69)

The first term in (F.69) is such that

G5 (2= - ax=(F0)) (Ko W)[& (1720 = 150

< 2R,
< N maXig<n Hxl”oo n[Kw(W)]”n‘rw - 777*le (F'7O)
< max;<n || il oo Bn [Ko (W) Ly|T — 7'].

Define a net 7 = {71,...,7r} such that
—1
|Tk:+1 _ Tk| g {2\/7maxz<n ”xZHOOLn} )

To bound the second term in (F.69), note that W is a VC-class. Therefore, by Corollary 2.6.3 in [72]
we have that conditional on (W;)™,, there are at most n?" different sets @ € W that induce a different
sequence {Ko(W1),...,Ko(W,)}. Thus we can choose a (data-dependent) cover W with at most ndw
values of w. Further, similarly to (F.71) we have ||n;w — n7&|1 < Ly||w — @] and

o o (Z'8 g (36
o (o)

N

R, (Ko (W& (N7 — n7)|] + 2B [| Ko (W) — Ko (W)]]6]]
wﬁ

maxign [1Zill oo En [ Ko (W) 170 — N7z l1
max;<y ||Zil| oo En[Ke (W)| Lyl — @|°.

N //\

=<

N

(F.71)
A ey max; z; dw /p
We define a net W such that [W| < ndv + {Zﬁ%Ln} v



60 BELLONI, CHEN, AND CHERNOZHUKOV

To bound the third term in 1 , note that for any 6§ € F; o, t < t, by considering 5= 5(t/t) € Firmw
we have
‘Go (gwiius) _ gm(z/fs(t”/t)))‘ < ‘Go (gwim) _ grw(i’é(f/t)))‘ +lee (gm(x 5GE/1)  grw(E 5(t/t)))‘
n t = n
= 1|G? (9w (T'6) — gre(F0[E/1])) | + |G, (gTw(x 6~(f N5 = 4]
< Vi, (=) 150 4 g, (K (W)E0) |~ 4
oy, (=t o] <

We let N be a e-net {N =: t1,ts, ..., tx := N} of [N, N] such that |t; — tsi1|/tr < 1/(2y/n). Note that we
can achieve that with [N| < 1+ |3y/nlog(N/N)|.

t—t
t

By Markov bound, we have

P(A” > K) < minyzo exp(—9 K)Elexp(1.A°)]
8p[T|- W] - [N mingo exp(—¢ K) exp (8¢%)
8p[T|- V| - [N exp(-K?/32)

here we set ¢y = K/16 and bound E[exp(¢.4°)] as follows

INCININ

Elexp (0A%)] < 2/7]-W-IN|  sup B exp<w sup G (“"’“”))]

(1, ) ET X WX 1611, =t t

= A R | o (KaW)#s) ]
<271V N s E exp<2z/»| sup G (2)””))

(1@, t)ET XWXN [6]l1, 0=t

v IRT Y. | [10]]1, |Gy (K= (W)Z;)
<3y 2|T]- W] - |N] sup E |exp | 2¢ | sup d
@ (rw ) ET x WX N loho—e t 9% {E (K (W)Z3]}1/2

o~ — - i GO
= 21T W - N sup Eep(m/}{ma | D
@ 2IT]- W]+ |(.,—1,—,vt)e7A‘><VAV><ﬁ - <0 {En[Ko 2]}1/2
G4 (Ko (W)i;)
< 4pIT1- W] - V] mf;‘;:&E {QXP (4w{En[Kw(W)3~c§]]}1/2
<o) 8PIT1 - W - [N exp (8¢°)

here (1) follows by exp(max;er |2:|) < 2|7 max;er exp(2;), (2) by contraction principle (apply Theorem 4.12
[64] with t; = Ko (W;)Z}6, and ¢i(t;) = pr (Ko(Wi)gi — Ko (Wi)Zin: + i) — pr (Ko (W33 — Ko (W3)Z5m7)
so that |¢;(s) — ¢i(t)| < |s — t] and ¢;(0) = 0, (3) follows by

|G (Ko (W)'0)| < [16]]1. I?ggIGZ(Kw(W)ij)/{En[Kw(W)i?]}l/QL

(4) by the definition of suprema, (5) we again use exp(max;ey |2;]) < 2|I| max;er exp(z;), and (6) exp(z) +
exp(—z) < 2exp(22/2).

Lemma 14 (Estimation Error of Refitted Quantile Regression). Consider an arbitrary vector 1, and suppose

[Mullo < s. Let 7w < Tulln,w, [support(fu)| < Sy and En[Ko(W){pr(9: — Zi7u) — pr (G — Tinu) ] < Qu for
all w e U hold. Furthermore, suppose that

E (K (W)p-r(?j - i’ﬁu) —pr (g — f’nu) _ElK (W)pT(g _ ‘%/ﬁu) — o — -’i‘,nu) W3 _ ti
" - Hﬁ“ - 77u||1,w “ H'?]/u - 7711”1,13 ’ = \/ﬁ

sup
u=(1,w)EU

Under these events, we have for n large enough,

_ (5u + 5)

IV [ (T — 1) I S Nu = m([(nl +t3/v/n) + Kpo + fry + Qll/z



QUANTILE GRAPHICAL MODELS 61

where ¢min(u, k) = inf) 5= || fufc’(SH%,w/HdHQ, provided that

sup f/En[KW(W)(lrul + |7‘11|2)|a~3/5|2]
W€, |13]l0 <Buts B [Kw (W) ful76]

where A, = {5 € R? : ||d]lo < Su + S}

+ N./qa, — 0. (F.72)

Proof of Lemma[I4 Let gu = Ty — 7, Which satisfies ngHO < Sy + s. By optimality of 77, in the refitted

quantile regression we have

En[Kw(W)p'r(gi - i;ﬁu)] - En [KW(W)pT(gi - ‘%;7771)] (F.73)

< ]EH[KW(W)pT(?]Z - j;ﬁu)] - En [KW(W)pTQjZ - @Uu)} < QU

where the second inequality holds by assumption.

Moreover, by assumption, uniformly over u € U, we have conditional on (W, Z;,r;, )", that

Gy, <Kw<W) pr(§ — &' (N _;|_§U|)) — pr (7 — j%U))

<t (F.74)

Thus combining relations (F.73|) and (F.74)), we have
E, [E[Ko(W){pu(y — 5'(% =+ gu)) — pu(f — i’/m)}ﬁv 7, w]] < ng||1,wt3/\/ﬁ + Q\u

Invoking the sparse identifiability relation of Lemma since the required condition on the approximation
errors 7,,’s holds by assumption (F.72)), for n large enough

IV FuZ"bull? o

4

MV Ta# Bl § < Ko VFE Bullno + 18l (Kt + b/ V) + Qu,

where ¢4, is defined with A, := {8 : ||6]jo < 5. + s}. Moreover, by the sparsity of §, we have ngﬂlw <
\/(§u + )/ Pmin (U, Sy + )|V fuZ’ Oulln, so that we have for ¢ = ||/ fuZ 0ulln, o>

2 o~
TAaatt < WK+ VGt 9) (5 T 9) K + t3/V}) + Qo

Note that for positive numbers (¢2/4) A (ga,t) < A + Bt implies t>/4 < A + Bt provided §a,/2 > B and
2¢%, > A. (Indeed, otherwise (t2/4) > gt so that ¢ > 4¢, which in turn implies that 2¢% + qa,t/2 <
(t2/4) A qa,t < A+ Bt.) Note that ga,/2 > B and 2%, > A is implied by condition when we set
A= @u and B = (K2 + \/(§u + 8)/Pmin (U, Sy + 5u){K1n +t3/v/n}). Thus the minimum is achieved in the

quadratic part. Therefore, for n sufficiently large, we have

Under the condition max;<,, ||Z;||% log(nVp) = o(nmin,c7 7(1 —7)), the next result provides new bounds

for the data driven penalty choice parameter when the quantile indices in 7 can approach the extremes.

Lemma 15 (Pivotal Penalty Parameter Bound). Let 7 = min,c7 7(1 — 7) and K,, = max;<, je[p| |Zi;/0;l,

G; = E,[#2]Y/2. Under K2log(p/T) = o(nz), for n large enough we have that for some constant C

AL =¢[Fr,... @) <O w

J
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iy % (1= 1{UiST})
G4/T(1—7)

where A(1 — &|@1,...,%,) is the 1 — & quantile of max;cp, supTGT’ conditional on

Z1y...,Tn, and U; are independent uniform(0,1) random variables.

Proof. Conditional on Z1,. .., &y, letting 65 = E,[27], we have that

" F(r—1{U <
nA = max sup Zl:lf] (r—H{U<7h .
J€lp) reT gi\/T(1—1)

Step 1. (Entropy Calculation) Let F = {Z;;(r — 1{U; < 7})/5, : 7 € T,j € [p]}, hr = /7(1 = 7), and
G ={f-/hr : 7 € T}. We have that

d(fr/he, fr/hz) < d(fr, fz)/he + d(fz/her, f7/Dz)
g d(f‘raf?)/h‘r + d(oyf?/h'?”hT - h?‘/hT
Therefore, since ||F|lgo < ||Gllg by hr < 1, and d(0, fz/hz) < 1/hz we have

N(€lGllo:0,Q) < N(el|Fllg/{2minhe}, F, QN (e/{2minh2}, T, - ).
Thus we have for some constants K and v that

N(elGll.6,@) < p(K/{eminh2})"

Step 2.(Symmetrization) Since we have E[g?] = 1 for all g € G, by Lemma 2.3.7 in [72] we have
P(A > ty/n) < 4P(max sup |Gy (g)] > t/4)
ISP reT
here G2 : G — R is the symmetrized process generated by Rademacher variables. Conditional on
(x1,u1), ..., (@n,un), we have that {G2%(g) : g € G} is sub-Gaussian with respect to the Lo(IP,)-norm
by the Hoeffding inequality. Thus, by Lemma 16 in [11], for 62 = sup,cg E,[g?] and 6, = 6,/||G
have

P,, W€

50 /2 )
P(sup |G (g)| > CK6,\/log(pK/7) | {Z:, Ui}iy) </ 6‘1{p(K/{6Hg$h3})“}‘c lde
0 T

geg

for some universal constant K.

In order to control &,, note that 62 = sup,cg ﬁ@n(gz) + E[g?]. In turn, since sup,cgEn[g*] <

62 max;<, G2, we have
B 6n/2 .
P(sup |G, (9%)] > CK8, max Gi/log(pK /1) | {Z:, Ui}i,) < / e H{p(E/{er})"} = Fde.
9€g IS 0
Thus with probability 1 — 01/2 e Yp(K [er)"} = +1de, since E[g?] = 1 and max;<, G; < K, /,/T, we have

5 o1 CKo/ R RTT)

Therefore, under K, +/log(pK/T) = o(y/n,/T), conditionally on {Z;}7_, and n sufficiently large, with
probability 1 — 2 f1/2 e Hp(K/{er})*}~C"+1de we have that

0
sup |Gy, ()] < 2CK +/log(pK /1)

9€g



QUANTILE GRAPHICAL MODELS 63

The stated bound follows since for C > 2

1/2 5 N 1/2 R 5
2/ e Yp(K/{ex})} ¢ Hde < {p/z} ¢ “2/ e de < {p/T} <t
0 0

APPENDIX G. INEQUALITIES

Lemma 16 (Transfer principle, [65]). Let S and ¥ be p x p matrices with non-negative diagonal entries,
and assume that for some n € (0,1) and s < p we have

Yo € R?, ||v]lo < s,v'S0 = (1= n)v'So
Let D be a diagonal matriz such that Dy > ikk — (1 = n)Xkk. Then for all § € RP we have
§'S6 > (1—n)d'Ss — ||DY26)2/(s — 1).

Lemma 17. Consider B, and B, with 1Bullo < s. Denote by Bﬁ‘ the vector with B\i‘j = Bujl{aazwﬂguﬂ > A}
where 6Z_ . = {En[Kw(W)(Z]‘?)Q]}l/Q, We have that

awj

”53 —Bullie < Bu — Bulli,w + s
[support(8y)] < s+ [|Bu — Bull1,w/A
<

1Z4(B2 = Bu)llnw < N1Z2%(Bu — Bu)llnye + ) $max(s, @) {2v/EA + |Bu — Bulliw/v/5}

here Gmax(m, @) = suby< o)y <m 12°0ln /0]l and Zg; = Z5 {E[K o (W)(Z5)?]} /2.

Proof. Let T,, = support(8,). The first relation follows from the triangle inequality

182 = Bullie = 1052 = Bu)rllne + (B el R
182 = Bu) .l + 1 (Bu = Bz 1w + 1Bz 1.0
A5+ 1(Bu = Bu) .l + 1 (Bu) g 1.0

As + ||Bu - ﬂu”l,w

N IN

To show the second result note that HBu —Buli= = {\support(gﬁ‘ﬂ — s}A. Therefore,
[support (3)] < s + [|Bu — Bull1,w /A
which yields the result.

To show the third bound, we start using the triangle inequality

129B2 = Bu) e < 12982 — Bu)lnseo + 1 2(Bus — Bu)llnyeo-

Without loss of generality, assume that the components are ordered so that |([/32‘ - Bu) |G, is decreasing.
Let Ty be the set of s indices corresponding to the largest values of |(8) — B.);|Gu;. Similarly define T}

as the set of s indices corresponding to the largest values of |(§;\ — Bu) jlou; outside Ufn;lle. Therefore,
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Bﬁ\ — Bu = “’/5] (ﬂA Bu)Tk Moreover, given the monotonicity of the components, ||(B7i‘ — B\U)Tk 2. <
(B — Bz, o Ja/v/5. Then, we have

1222 = B)lnwe = 1122 BT (B2 - B) o
1252 = Bu) = + zm 128 = Bl

<
< \/ Pmax(s, @)1 (B — +\/¢max(s w)ZmII( A)Tkllzw
< (

|
S
£
15
“
£}
@@
¥
+
S
=]
5
"
cn
a
%
>z
Q
<

\/ (l;max(87w){2)‘\/§+ Hﬁu - Bu

here the last inequality follows from the first result and the triangle inequality.

N

Lemma 18 (Supremum of Sparse Vectors on Symmetrized Random Matrices). Let U denote a finite set
and (Xiu)uez)7

Furthermore define

8y = CKVk (\/log Ul + /1 +10gp+logk\/10g(an)\/logn) /Vn,

where C' is a universal constant. Then,

i =1,...,n, be fixzed vectors such that X;, € RP and maxigicn maxuegHXmHOO < K.

E sup  max |E,[e(0'X,)%]|| <0 sup E,.[(0'X.,)3?].
10lo<k, lI0]|=1 ueld 16]lo<k,||6]|=1,ucli
Proof. See [14] for the proof. ]

Corollary 2 (Supremum of Sparse Vectors on Many Random Matrices). Let U denote a finite set and

(Xiu)uez}’ i=1,...,n, be independent (across i) random vectors such that X;,, € R? and

1<i<n ety

\/E[ max max || X;u||2] < K.

Furthermore define

b6n = CKVE <\/log Ul + /1 +logp+logk\/log(p\/n)\/logn) /\/n

here C' is a universal constant. Then,

E sup  max|E, [(0'X,)* — E[(0'X.)*]]|| <0n + 6 sup E,[E[(6'X,)?]].
1010 <k, 10]|=1 ueld 161lo<k,||6]|=1,ucld

We will also use the following result of [25].

Lemma 19 (Maximal Inequality). Work with the setup above. Suppose that F > SUp fe F |f| is a measurable
envelope for F with |F||pqy < 00 for some q > 2. Let M = max;<, F(W;) and 0% > 0 be any positive
constant such that sup ;e || fll5, < 0 <||F||%,. Suppose that there exist constants a > e and v > 1 such
that
log sup N (¢
Q

v

0.2) <wvlog(a/e), 0 <e< 1.
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F M F
Ep[suplGn(f)I]<K<\/v0210g<a” lrz) 4 ez o (2l ”P’2)>7
fer ol Vn ol

here K is an absolute constant. Moreover, for every t > 1, with probability > 1 —t~9/2,

Then

sup [Ga(f)] < (1 + )Bplsup [Ga(N)] + K(@)|(0 + n Z|Mpg)VE + a0 /2] pat],
fer feF

Vo > 0 where K(q) > 0 is a constant depends only on q. In particular, setting a > n and t = logn, with
probability > 1 — c(logn)~?,

sup |G (f)| < K(qg,¢) (U\/vlog (aHFJ

NG

here || M| p, < n'/9||F||p, and K(q,c) > 0 is a constant depending only on q and c.

fer

m) L tlMleg (allillm)) 7 (G.75)

APPENDIX H. CONFIDENCE REGIONS FOR FUNCTION-VALUED PARAMETERS BASED ON MOMENT
CONDITIONS

For completeness, in this section we collect an adaptation of the results of [14] that are invoked in our
proofs. The main difference is the weakening of the identification condition (which is allowed to decrease to
zero, see the parameter j, in Condition below). We are interested in function-valued target parameters

indexed by u € U C R%. The true value of the target parameter is denoted by
0° = (0uj)ueu,jefs), where 0,5 € O, for each w €U and j € [p).

For each u € U and j € [p], the parameter 6,,; is characterized as the solution to the following moment

condition:
E[ww (Wuja ‘guja nu,j)] =0, (H.76)

where W,,; is a random vector that takes values in a Borel set W,,; C Réw 70 = (Nuj)ueu,jelp) is a nuisance

parameter where n,,; € T,,; a convex set, and the moment function
wuj : Wuj X @uj X Tujn — ]R, (w,@,t) — T;Z)uj (’UJ, G,t) (H77)
is a Borel measurable map.

We assume that the (continuum) nuisance parameter n° can be modelled and estimated by 7 =
(Mg )ueu,jers)- We will discuss examples where the corresponding 7° can be estimated using modern regular-
ization and post-selection methods such as Lasso and Post-Lasso (although other procedures can be applied).

The estimator éuj of f,; is constructed as any approximate e,-solution in ©,; to a sample analog of the

moment condition (H.76)), i.e.,

max sup {|En[wUJ(Wujvéujvﬁuj)” — inf En[wuj(WUjagaﬁuj)”} < en = op(n~1/%5,). (H.78)
JEB] ueu 0;E€Oy;

As discussed before, we rely on an orthogonality condition for regular estimation of ¢,;, which we will

state next.
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Definition 1 (Near Orthogonality Condition). For each v € U and j € [p], we say that ), obeys a
general form of orthogonality with respect to H,; uniformly in u € U, if the following conditions hold: the

Géateaux derivative map

Du,j,f‘[ﬁuj - 77uj] = 0, E <¢uj{Wuj7 OujsNuj + 1 |:'F]u] - qu} })

rT=r

exists for all » € [0,1), 7 € Hyj, j € p, and u € U and vanishes at r = 0, namely,

|Du,j,0 [ﬁug — nuJ” < 5nn_1/2 for all ﬁuj S Huj- (H79)

In what follows, we shall denote by c¢g, ¢, and C some positive constants.

Assumption C1 (Moment Condition). Consider a random element W, taking values in a measure space
W, Aw), with law determined by a probability measure P € P,,. The observed data (Wiy)ueu )iy consist of
n i.i.d. copies of a random element (W, )ycyy which is generated as a suitably measurable transformation with
respect to W and uw. Uniformly for alln > ng and P € P,,, the following conditions hold: (i) The true param-
eter value 0,; obeys and is interior relative to ©,;, namely there is a ball of radius Cn=12u, logn
centered at 0, contained in ©y; for allu € U, j € [p] with u, = E[sup,cy jeip) [VIER[Vus (W, Ougs 1)l
(i1) For each w € U and j € [p], the map (0,1) € Oyj X Hyj — E[tpy;(W;, 0,m)]] is twice continuously differ-
entiable; (i) For allw € U and j € [p], the moment function 1,; obeys the orthogonality condition given in
Deﬁnitz’onfor the set Huj = Hujn specified in Assumption (iv) The following identifiability condition
holds: |E[thuj(Wuj, 0,mu)]| = 51Juj(0 — 0ui)| Aco for all 0 € Oy;, with Ju; := 0gE[thu; (Wuj, 0,1u)]lp—s
satisfies 0 < jp, < |Jy;j| < C < oo for allu €U and j € [p|; (v) The following smoothness conditions holds

ug

E ug Wu"797 —WYuj Wu'v§17 2
(a) SUPueut,jep],(0,0)€02;,(n,m)EH2, = ]({|oia|3)||ﬁ;|fe}aj w<e, B
(b) SUPycrs (0.m)€0u; xHusmre01) 1O [Wui (W, 0,105 + r{n = nus DI /0 = 1ujlle < Bin,

|02 [Wug (W Ous +r40—0us b mus+r{n—nu; D]| >
(€) SUDuerr (], (6,1)€Ou; xHusjm rel0,1) {10=0.; 12V =1, 123 < Ban.

Next we state assumptions on the nuisance functions. In what follows, let A, N\, 0, 6, \, 0, and 7, \, 0
be sequences of constants approaching zero from above at a speed at most polynomial in n (for example,
dn = 1/n° for some ¢ > 0).

Assumption C2 (Estimation of Nuisance Functions). The following conditions hold for each n = ng and all
P € P,. The estimated functions ,; € Hujn with probability at least 1 — Ay, Hyjn is the set of measurable

maps Ty; such that

sup max ||y — Nujlle < Tn,
ueld JE[P]

here the e-norm is the same as in Assumption [C1, and whose complexity does not grow too quickly in the
sense that F1 = {ty;(Wy;,0,m) :u € U,j € [p],0 € Ouj,n € Huyjn U {nu;}} is suitably measurable and its

uniform covering entropy obeys:
Slclzplog N(ellFillg.2, 71, [l - ll@.2) < snw.p) (oglan/€)) VO,

where Fy(W) is an envelope for Fi which is measurable with respect to W and satisfies Fy(W) >
SUP s, j€[5],0€0u; mEHuin [tu; (Wyj, 0,m)| and ||Fillpg < K for ¢ > 2. The complexity characteristics
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an = max(n, Kn,e) and s,z = 1 obey the growth conditions:

1/2 Sn(u.p) 10g(an) + nilsn(u,ﬁ)néKn log(ay,)

<
= . 11
{1V B1)(10/30) Y \/Snu ) log(an) + Sn(tp)" 2K, lf)g(an) logn < 6y,
and \/’ﬁBQn(l \Y Bln)(Tn/Jn)z < 5n
here Bipn, Bon, jn, q and o are defined in Assumption .

n- Tn

Theorem 5 (Uniform Bahadur representation for a Continuum of Target Parameters). Under Assumptions

and for an estimator (éuj)ueu,je[ﬁ] that obeys equation ,

\/ﬁagjl (0uj — 0uj) = Guiby; + Op(8y,) in £°U x [p)), uniformly in P € P,
here Pui (W) = =0, 4 T 0w (W, gy ) and o2; = B[ 202 (W, Oujs 1us)] -

The uniform Bahadur representation derived in Theorem [5]is useful in the construction of simultaneous
confidence bands for (6u;)ueu,je[z- This is achieved by new high-dimensional central limit theorems that
have recently been developed in [24] and [25]. We will make use of the following regularity condition. In what
follows d,, and A,, are fixed sequences going to zero, and we denote @uj(W) = —a;jlf;jlwuj(wuj, éuj, Tuj)
be the estimators of ﬁuj(W)7 with juj and 0,; being suitable estimators of J,; and o,;. In what follows,

I - llp, 2 denotes the empirical Ly(P,,)-norm with P, as the empirical measure of the data.

Assumption C3 (Score Regularity). The following conditions hold for each n = ng and all P € P,. (i)
The class of function induced by the score Fo = {¢u;(W) : w € U,j € [p]} is suitably measurable and its

uniform covering entropy obeys:
SgPIOgN(GHFOHQ,Qvfov I ll@.2) < en(log(An/e€)) VO,

here Fo(W) is an envelope for Fo which is measurable with respect to W and satisfies Fo(W) >
SUPyeu,jels] WW(W)\ and ||€0||p,q < L, for q > 4. Furthermore, ¢ < SUPyeu,jels) E[WW(W)W] < C'ALfl_2
for k=2,3,4. (it) The set Fo = {¢; (W) — ¢; (W) :u € U, j € [p]} satisfies the conditions log N (e, Fo.|| -
[, 2) < 0n(l0g(A,/€)) VO, and SUPyeu,jelp] En[{zzw(w) - 1ZUJ(W)}2] < 6n{pnpn log(An V) log(A, Vn)}!
with probability 1 — A,,.

Assumption imposes condition on the class of functions induced by &uj and on its estimators @uj.
Typically the bound L,, on the moment of the envelope is smaller than K, and in many settings p, = pn, < dy

the dimension of .

Next let N denote a mean zero Gaussian process indexed by U x [p] with covariance operator given by
E[ty; (W)t 5/ (W)] for j,5" € [p] and u,u’ € U. Because of the high-dimensionality, indeed p can be larger
than the sample size n, the central limit theorem will be uniformly valid over “rectangles”. This class of
sets are rich enough to construct many confidence regions of interest in applications accounting for multiple
testing. Let R denote the set of rectangles R = {z € R? : max;e4 2; < t,max;jep(—z;) < t} for all A, B C [p]
and ¢t € R. The following result is a consequence of Theorem [5| above and Corollary 2.2 of [26].

Corollary 3. Under Assumptions and Assumption (Z), with 8, = o({pnlog(A, vV n)}~?), and
pnlog(An V) = o({(n/L2)Y7 A (n'=2/9/12)V/3Y), we have that

sup sup ‘Pp <{sup nl/zagjl(éuj — HUJ)}le € R) —PpWN € R)‘ = o(1).
PeP, RER uel
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In order to derive a method to build confidence regions we approximate the process N by the Gaussian
multiplier bootstrap based on estimates 1),; of 1/_Juj, namely

~

~ 1 <~
G = (Guj)ueu,jelp) = {\f Zgilbuj(Wz‘)}
n 221 . ~
uelU,je(p]
here (g;)""_, are independent standard normal random variables which are independent from the data (W;)1,.
Based on Theorem 5.2 of [24], the following result shows that the multiplier bootstrap provides a valid

approximation to the large sample probability law of \/ﬁ(éw — Ouj)ucu,jelp) over rectangles.

Corollary 4 (Uniform Validity of Gaussian Multiplier Bootstrap). Under Assumptions
and Assumption with 6, = o({(1 + dw)pnlog(A, V n)}~Y?) and p,log(A, vV n) = o({(n/L2)" A
(n'=2/9/12)1/3}), we have that

sup sup ]Pp (tsup 20, By = 0}y € ) = Pr(G € RI (W] =ol)
PeP, RER ueU

APPENDIX I. CONTINUUM OF {1-PENALIZED M-ESTIMATORS

For the reader’s convenience, this section collects results on the estimation of a continuum of estimation

of high-dimensional models via ¢;-penalized estimators. We refer to [I4] for the proofs.

Consider a data generating process with a response variable (Y;),eys and observable covariates (X, )ueu
satisfies for each u € U,

6, € arg gg%{r}l} E[M,(Yy, Xy, 0,a,)], (1.80)

here 0, is a p-dimensional vector, a, is a nuisance function that capture the misspecification of the model,
M, is a pre-specified function, and the p,-dimensional (p, < p) covariate X, could have been constructed
based on transformations of other variables. This implies that

OpE[My (Y, X, 0y, a,)] =0 for all u € U.
The solution 6, is assumed to be sparse in the sense that for some process (6,,),ers satisfies
10ullo < s for all w e U.

Because of the nuisance function, such sparsity assumption is very mild and formulation encompasses
several cases of interest including approximate sparse models. We focus on the estimation of (6,),cy and
we assume that an estimate @, of the nuisance function a,, is available and the criterion M, (Y, Xu,0,) :=
M, (Yy, X, 0y, @) is used as a proxy for M, (Y, X, 0y, ay).

In the case of linear regression we have M,(y,z,0) = %(y — 2'0)%. In the logistic regression case, we
have M, (y,z,0) = —{1(y = 1)log G(2'0) + 1(y = 0)log(1 — G(2'#))} with G is the logistic link function
G(t) = exp(t)/{1 + exp(t)}. Additional examples include quantile regression models for u € (0, 1).

Example 8 (Quantile Regression Model). Consider a data generating process ¥ = F;‘lx(U) = X0y +
ry(X), with U ~ Unif(0,1), and X is a p-dimensional vector of covariates. The criterion M,(y,z,0) =

(u—1{y < 2/0})(y — 2'0) with the (trivial) estimate @, = 0 for the nuisance parameter a, = r,,.
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Example 9 (Lasso with Estimated Weights). We consider a linear model defined as f,Y = f,X'0, +
Tu + Cu, E[fuX(] = 0, here X are p-dimensional covariates, 6, is a s-sparse vector, and 7, is an ap-
proximation error satisfies sup, ¢y En[72] Sp slogp/n. In this setting, (Y, X) are observed and only an
estimator fu of f, is available. This corresponds to nuisance parameter a, = (fy,7,) and @, = (};,0) SO
that E,[M,(Y, X,0,a,)] = E,[f2(Y — X'0 — 7,)?] and E, [M, (Y, X,0)] = ]En[fg(Y - X'6)2].

We assume that n i.i.d. observations from dgps with holds, {(Yiu, Xiu)ucu}i—1, are observed to
estimate (0, )uczs- For each u € U, a penalty level A, and a diagonal matrix of penalty loadings \iu, we define

the ¢1-penalized M,,-estimator (Weighed-Lasso) as

-~

0 € argminE, (M, (Y, X, 0)] + %”@ueul. (1.81)

Furthermore, for each v € U, the post-penalized estimator (Post-Lasso) based on a set of covariates Tu is
then defined as

0, € arg nbinEn[Mu(Yu,Xu,G)] : support(d) C fu (1.82)

Potentially, the set fu contains support(@u) and possibly additional variables deemed as important (although
in that case the total number of additional variables should also obey the same growth conditions that s

obeys). We will set T, = support(6,,) unless otherwise noted.

In order to handle the functional response data, the penalty level A and penalty loading \f'u =
diag({lux, k = 1,...,p}) need to be set to control selection errors uniformly over u € Y. The choice of
loading matrix is problem specific and we suggest to mimic the following “ideal” choice \/I}uO = diag({lux, k =
1,...,p}) with

Luk = {Ep, [{09, My (Y, Xus 0, au) 2] }/2 (1.83)

which is motivated by the use of self-normalized moderate deviation theory. In that case, it is suitable to
set A so that with high probability

A N
2> csup pr;g]En [a(,Mu(Yu,Xu,eu,au)}H 7 (1.84)
n ueU oo

here ¢ > 1 is a fixed constant. Indeed, in the case that U is a singleton the choice above is similar to [21],
[13], and [20]. This approach was first employed for a continuum of indices I in the context of ¢;-penalized

quantile regression processes by [11].

To implement (I.84]), we propose setting the penalty level as

A= C\/E(I)_l(]- - g/{2pNn})a (185)

here N,, is a measure of the class of functions indexed by U, 1 — & (with £ = o(1)) is a confidence level
associated with the probability of event (I.84)), and ¢ > 1 is a slack constant. In many settings we can take

N,, = n% . If the set U is a singleton, N,, = 1 suffices which corresponds to what is used in [I7].

1.1. Generic Finite Sample Bounds. In this subsection we derive finite sample bounds based on As-
sumption below. This assumption provides sufficient conditions that are implied by a variety of settings

including generalized linear models.
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Assumption C4 (M-Estimation Conditions). Let {(Yiy, X, u € U),i = 1,...,n} be n i.i.d. observations
of the model and let T,, = support(6,,), here | Tullo < s, u € U. With pmbabzlzty 1 — A, we have that
for all w € U there are weights w,, = wy, (Y, Xu) and Cyy, such that:

(a) |]E7L[89Mu(yua Xu; eu) - aGMu(Yu, Xua aua au)} | un”\/ wuX/ 5”]}”7,,27
(b) (W < W, < LWy for £ > 1/c, and let ¢ = L sup,, o, ||\Ilu0||oo||\ll Hloos
(c) for all § € A, there is qa, > 0 such that

En [Mu(Yuv Xuy eu + 6)] - En [Mu(Yuv Xua au)] - ]En [aGMu(Yuv Xua eu)}/(s + 2Cvun”\/ W, ;(SH]P’HQ
> {IlVwa X015, 2} A{da,llvVwaXidle, 2} -

In many applications we take the weights to be w, = w,(X,) = 1 but we allow for more general weights.
Assumption a) bounds the impact of estimating the nuisance functions uniformly over u € Y. In the
setting with s-sparse estimands, we typically have C’un <{n7ls log(pn)}l/ 2. The loadings ¥, are assumed
larger (but not too much larger) than the ideal choice U0 defined in . This is formalized in Assumption
[C4(b). Assumption ¢) is an identification condition that will be imposed for specific choices of A, and
qa, - It relates to conditions in the literature derived for the case of a singleton ¢/ and no nuisance functions,

see the restricted strong convexityﬁ used in [63] and the non-linear impact coefficients used in [II] and [18].

The following results establish rates of convergence for the ¢;-penalized solution with estimated nuisance
functions (L.81]), sparsity bounds and rates of convergence for the post-selection refitted estimator (I.82)).
They are based on restricted eigenvalue type conditions and sparse eigenvalue conditions. With the restricted

eigenvalue is defined as Ky 2¢ = infsca, ¢ [[vVWa X, 0||p, 2/||07, || In the results for sparsity and post-selection

(X}

refitted models, the minimum and maximum sparse eigenvalues,

% and (b (m u) =
1<)l ]lo<m 1912 e 1<is]lo<m 1612

lvVwa X012,

Pr,2

)

¢min(ma ’LL) =
are also relevant quantities to characterize the behavior of the estimators.

Lemma 20. Suppose that Assumptzonn CY| holds with § € Ay = {0 : ||o7c]l1 < 2€[|07, 1} U {d : [[0]1 <
%"C’ nllvwe X! 6p, 2} and Ga, >3 {( )||‘1/uo||oo AV 9cC’un} . Suppose that X satisfies con-

MKy ,2¢8

dition with probability 1 — A,,. Then, with probability 1 — 2A,, we have uniformly over u € U
{(@+ DITuolloo 2L +92Cun }

||\/wu'X’L/L(§U_6U)HPn72 <3 Fu.2e
18— 0ull <3 { L2y Sl sl e, AL (L + 1) [ Buglloe 5L +92Cun |

Ruy,28 NRy,28

Lemma 21 (M-Estimation Sparsity). In addition to conditions of Lemma assume that with probability
1—A, foralluelU and § € RP we have

|{En[60Mu(Yu7 X’mé\u) - aOMu(YuaXuyeu)]}/al < LunH\/ wuX;L(S

P,,2-
Let My, = {m € N:m > 2¢max(m,u) L2} with L, = %" {Cun + Lun}, then with probability 1 — 3A,,
we have that

Su < mji\r/ll Gmax(m,u)L2  for all u € U.

me v

8Assumption (a) and (c) could have been stated with {Cun/+/s}||d]|1 instead of Cunllv/WuX6|lp,, ,2-
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Lemma 22. Let Ty,u € U, be the support used for post penalized estimator and 3, = ||Tu||0
its cardinality. In addition to conditions of Lemma suppose that Assumption (c) holds also for

Ay = {6 : |I6llo0 < 84 + s} with probability 1 — A, qa, > 2{%”?—:{5““3”4-30%} and qa, >

2{E, [ My (Y, Xu, éu)] —E,[My(Ya, Xu, 04)] fr/2. Then, we have uniformly over u € U
+ V3u + 5ul|En[Su]ll oo

||\/ wqul,,(éu - eu)”IP’n,Z < {En[Mu(Yu; Xua éu)] - En [Mu(y'um Xu7 eu)] 1+/2 —
¢min(3u + su,u)

+ 3Cun.

In Lemma if T, = support(gu), we have that
E’I’L[MU<YU7 Xu, éu)] - En[Mu(Yu; X’LH eu)] < ]En[Mu(Yu7 Xu7 é\u)] - En [Mu(yua XU7 eu)] < )\C/Hé\u - 9u||1
and sup, ¢y |En[Sullloc < C'A with high probability, C* < Lsup,,¢;, (W00l so -

These results generalize important results of the £1-penalized estimators to the case of functional response
data and estimated of nuisance functions. A key assumption in Lemmas is that the choice of A satisfies
. We next provide a set of simple generic conditions that will imply the validity of the proposed choice.
These generic conditions can be verified in many applications of interest.

Condition WL. For each u € U, let Sy, = 0o My (Y, Xu, 0, ay), suppose that:
(i) sup r}glgx{EHSuk|3]}1/3/{E[|Suk|2]}1/2<I>’1(1 —&/{2pN,}) < 6,nS, for allu €U, k € [p);
u€eU PP

(i) N, = N(e,U,dy), here € is such that with probability 1 — A,,:

[En [Su=S,]]le [E[SE, =S5 )+ (En—E)[S2 | <5
E[|Sur|?]1/2 E[|Suk[?] S

_1
<6,n~2, and sup max

sup max
dy(u,u)<e FSP

dy (u,u')<e FSP
The following technical lemma justifies the choice of penalty level A. It is based on self-normalized

moderate deviation theory.

Lemma 23 (Choice of ). Suppose Condition WL holds, let ¢ > ¢ > 1 be constants, £ € [1/n,1/logn], and
A= n® (1 —&/{2pN,}). Then for n > ng large enough depends only on Condition WL,

P ()\/n > csup |V En [09 My (Ye, X, O, au)mm) >1—¢—o0(f) — A,.
ueU

We note that Condition WL(ii) contains high level conditions. See [16] for examples that satisfy these
conditions. The following corollary summarizes these results for many applications of interest in well behaved
designs.

Corollary 5 (Rates under Simple Conditions). Suppose that with probability 1 — o(1) we have that Cyy, V
Lun < C{n~tslog(pn)}'/2, (Lc+1)/(le—1) < C, w,, = 1, and Condition WL holds with log N,, < C'log(pn).
Further suppose that with probability 1 — o(1) the sparse minimal and mazimal eigenvalues are well behaved,
¢ < Gmin(8ln, 1) < Pmax($ln, u) < C for some £, — oo uniformly over u € U. Then with probability 1 —o(1)

we have
~ slog(pn ~ s2log(pn ~
sup X8 — 0., 2 S /2B sup 1, — 0,01 < /B o sup . S s
u€eU n ueU n ueU
Moreover, if T, = support(é\u), we have that
~ slog(pn
up (X460, — 0., 2 S ) B
ueU n
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APPENDIX J. BOUNDS ON COVERING ENTROPY

Let (W;)_; be a sequence of independent copies of a random element W taking values in a measurable
space (W, Apy) according to a probability law P. Let F be a set of suitably measurable functions f: W — R,
equipped with a measurable envelope F': W — R. The proofs for the following lemmas can be found in [I6].

Lemma 24 (Algebra for Covering Entropies).  Work with the setup above.
(1) Let F be a VC subgraph class with a finite VC index k or any other class whose entropy is bounded above
by that of such a VC subgraph class, then the uniform entropy numbers of F obey

Sup log N(e[Fllq,2: F, I - ll@2) < {1+ klog(1/€)} VO

(2) For any measurable classes of functions F and F' mapping W to R,
log N(e|F' + F'llg2, F + F', || - l2) <log N (511Fll@,2, F. |l - lg,2) +1log N (51EF g2 F. |l - lg.2) -
log N(e[|F - F'llg2, F - F', || - llg2) <log N (511 Fllg.2. F. |l - l@2) +1og N (51F lg.2 F's 1l - l@.2) »
N(e|FV F'lg2, FUF, |- llg2) S N(elFllgz F. Il - llg2) + N (ellF'llg.2, /- |l - llg.2) -

(3) For any measurable class of functions F and a fized function f mapping W to R,

logsgpN(GHlfl “Flloz, f-Fill-llez2) < 10gSgPN(6/2HFHQ,27f, I lle2)

(4) Given measurable classes F; and envelopes F;, j =1,...,k, mapping W to R, a function ¢: RF 5 R
such that Jior fiv9i € Fj, |o(f1,-os fu) — d(g1, -+, 91)| < Zleglj(x)|ff(x) —gj(@)], Lj(z) > 0, and fized
functions f; € F;, the class of functions £ = {¢(fr,..., fx) —&(f1,..-, fu): fj € Fj,i=1,...,k} satisfies

k k
IOgSgPN 6” > L;F; an/l, [llez | < ZlogSgPN(iHFjHQ,%fw I lle.2) -
i=1 ’ =1

Proof. See Lemma L.1 in [16]. L]

Lemma 25 (Covering Entropy for Classes obtained as Conditional Expectations). Let F denote a class of
measurable functions f: W x Y — R with a measurable envelope F. For a given f € F, let f: W — R be
the function f(w) := [ f(w,y)dpw(y) here p, is a regular conditional probability distribution over y € Y
conditional on w € W. Set F = {f: f € F} and let F(w) := [ F(w,y)du,(y) be an envelope for F. Then,
forr,s > 1,

Qs Fill - llg.r) <logsup N((e/4)"|Flig o F. Il - ll5.,):
Q

here Q belongs to the set of finitely-discrete probability measures over W such that 0 < ||F||q.» < oo, and

log sup N (¢|| F|
Q

Q belongs to the set of finitely-discrete probability measures over W x Y such that 0 < ||FH@S < 00. In
particular, for every e >0 and any k > 1,

1ogsgpN(6,f_7 - llQ.k) < logsup N(e/2, F, || - [l x)-
Q

Proof. See Lemma L.2 in [I6]. ]
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