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Abstract

We show that the generalized method of moments (GMM) estimation problem

in instrumental variable quantile regression (IVQR) models can be equivalently for-

mulated as a mixed integer quadratic programming problem. This enables exact

computation of the GMM estimators for the IVQR models. We illustrate the use-

fulness of our algorithm via Monte Carlo experiments and an application to demand
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1 Introduction

The instrumental variable quantile regression (IVQR) and related models have been in-

creasingly popular for studying the impacts of possibly endogenous covariates on the

distribution of the outcome of interest. See a recent review by Chernozhukov and Hansen

(2013) and references therein for the latest developments in identification, estimation,

and inference as well as the list of empirical applications.

The IVQR model admits conditional moment restrictions which can be used to con-

struct the estimating equations for the GMM estimation of the model parameters. How-

ever, the sample counterparts of the IVQR estimating equations are discontinuous in the

parameters so that the resulting GMM estimation problem becomes a non-convex and

computationally non-trivial optimization problem. Honoré and Hu (2004) provided a

heuristic for computing the IVQR GMM estimates. Chernozhukov and Hansen (2006)

developed the inverse quantile regression (QR) estimator that is not directly a GMM

estimator but can be shown to be asymptotically equivalent to the IVQR GMM estima-

tor. Xu and Burer (2017) proposed an alternative algorithm for computing the inverse

QR estimator. The Markov chain Monte Carlo (MCMC) based Laplace type estimator

of Chernozhukov and Hong (2003) can also be used as an approximation of the IVQR

GMM estimator but it requires careful tunning in the MCMC implementation. Kaplan

and Sun (2015) proposed a smoothed estimating equation approach which facilitates the

GMM computation problem but requires the choice of the smoothing parameter.

In this paper, we are concerned with exact computation of the GMM estimates of the

IVQR parameters. As pointed out by Andrews (1997), heuristic algorithms for compu-

tation of GMM estimates that do not guarantee to find the exact global optimum or a

specific level of approximation to the global optimum may result in extremum estimators

which could exhibit statistical behavior that is quite different from that established by

theory. This source of computational uncertainty may impact on the empirical results.

Hence, as a complement to the previous work on the IVQR computation, our paper pro-

vides a method for exact computation of the IVQR estimates within the classical GMM

framework.

Our computational algorithm is based on the method of mixed integer optimization

(MIO). Specifically, we show that the IVQR GMM estimation problem can be equiva-

lently formulated as a mixed integer quadratic programming (MIQP) problem. Thanks to

the developments in MIO solution algorithms and fast computing environments, this re-

formulation allows us to solve for the exact GMM estimates by using the modern efficient

MIO solvers. Well-known numerical solvers such as CPLEX and Gurobi can be used to

effectively solve large-scale MIQP problems. See Jünger, Liebling, Naddef, Nemhauser,

Pulleyblank, Reinelt, Rinaldi, and Wolsey (2009), Achterberg and Wunderling (2013) and
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Bertsimas, King, and Mazumder (2016, Section 2.1) for discussions on computational ad-

vances in solving the MIO problems. For classic texts on the MIO methodology and

applications, see Nemhauser and Wolsey (1999) and Bertsimas and Weismantel (2005).

See also Florios and Skouras (2008), Bilias, Florios, and Skouras (2013), Kitagawa and

Tetenov (2015), Bertsimas, King, and Mazumder (2016) and Chen and Lee (2016) for

related but distinct work on solving non-convex optimization problems in statistics and

econometrics via the MIO approach.

The rest of this paper is organized as follows. In Section 2, we summarize the setup of

the IVQR model and the inverse quantile regression method of Chernozhukov and Hansen

(2006). In Section 3, we present the MIQP formulation of the IVQR GMM estimation

problem. We conduct a simulation study of the performance of the MIQP based GMM

estimates in Section 4 and illustrate the application of our computation approach in a

real data exercise concerning the demand estimation in Section 5. We then conclude the

paper in Section 6. Supplementary results of this paper are collated in Appendices A–C.

2 The instrumental variable quantile regression model

Let Y be an outcome of interest. We consider the quantile regression model under

endogeneity, which is characterized by the structural equation

Y = W ′θ(U), (2.1)

where U is an unobserved scalar random variable, W = (D,X) is a vector of covariates,

and θ(·) is a measurable function such that the mapping τ 7→ W ′θ(τ) is strictly increasing

in τ for almost every realization of W . The covariates D may not be independent of

U. We assume that there is a vector of instrumental variables, denoted as Z, which

can be excluded from (2.1) but can influence the endogenous variables D such that

dim(Z) ≥ dim(D) and

U |X,Z ∼ Uniform (0, 1) . (2.2)

Under these assumptions, it follows that, for τ ∈ (0, 1),

P (Y ≤ W ′θ(τ)|X,Z) = P (U ≤ τ |X,Z) = τ. (2.3)

The model set forth so far is the well known linear IVQR model which has been studied

by Chernozhukov and Hansen (2004, 2005, 2006, 2008), Chernozhukov, Hansen, and

Jansson (2007, 2009), and Kaplan and Sun (2015) among many others. The value of θ(τ)

in this model captures the impact of the covariates W on the outcome of an individual

whose unobserved heterogeneity U is fixed at U = τ . In the setting with counterfactual

3



outcomes, the quantile-specific parameter vector θ(τ) can be causally interpreted as the

structural quantile effect (Chernozhukov and Hansen, 2005). Therefore, given a random

sample, (Yi,Wi, Zi)
n
i=1 of n observations, we are interested in the estimation of θ(τ) for

some fixed values of τ ∈ (0, 1).

Note that, when there is no endogenous covariate, the IVQR model reduces to the

linear QR model of Koenker and Bassett (1978) where W = X and W ′θ(τ) is the τ

quantile of the distribution of Y conditional on W . However, in the presence of endoge-

nous variables D, the τ conditional quantile of Y given W is not warranted to be W ′θ(τ)

because of the statistical dependence between U and D. In this case, θ(τ) may not be

consistently estimated via the conventional QR approach. Availability of instrumental

variables Z that satisfy (2.2) is thus useful for validating the identifying restrictions (2.3),

which facilitate consistent estimation of θ(τ). See also Chernozhukov and Hansen (2013,

Section 4) for a review of alternative approaches on quantile models under endogeneity.

Chernozhukov and Hansen (2006) developed primitive conditions for the identifica-

tion of θ(τ) of the IVQR model. They also provided an inverse QR algorithm for the

estimation of θ(τ). To describe their algorithm, write θ = (α, β) such that W ′θ(τ) =

D′α (τ) + X ′β (τ). Let Ψi = Ψ (Xi, Zi) be a vector of transformations of instruments

with dim(Ψi) ≥ dim (α). Let A be a given positive definite matrix. The Chernozhukov-

Hansen inverse QR procedure proceeds as follows. Let

α̂(τ) ≡ arg infα∈A γ̂τ (α)′Aγ̂τ (α) , (2.4)

where (
β̂τ (α) , γ̂τ (α)

)
≡ arg inf(β,γ)∈B×G

1

n

∑n

i=1
ρτ (Yi −D′iα−X ′iβ −Ψ′iγ) , (2.5)

A, B and G are compact parameter spaces, and the check function ρτ is defined by

ρτ (u) = u (τ − 1 {u < 0}) for u ∈ R. The inverse QR estimator, denoted by θ̂IQR(τ), is

then defined by

θ̂IQR(τ) =
(
α̂(τ), β̂τ (α̂(τ))

)
.

In the procedure above, the function Ψ and the matrix A can vary across τ and be replaced

by their consistent estimates. Moreover, the QR objective function can be weighted across

observations. See Chernozhukov and Hansen (2006) for further details.

For implementation, Chernozhukov and Hansen (2006) proposed to solve the outer op-

timization problem (2.4) by the grid search method. The inner optimization problem (2.5)

is the standard quantile regression problem, which can be solved very efficiently. Thus,

when dim(α) = 1, the inverse QR method is computationally appealing because its imple-

mentation amounts to solving convex optimization sub-problems within a low-dimensional
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global search procedure. However, this computational merit diminishes rapidly with the

increase of the number of endogenous variables. Instead of performing grid search, Xu

and Burer (2017) proposed an alternative method to compute the inverse QR estimator.

Their approach is based on exact minimization of the quadratic norm as in (2.4) subject

to the optimality conditions for the linear programming formulation of the QR problem

of (2.5). Xu and Burer (2017) showed that the resulting computational problem reduces

to a quadratic programming problem subject to complementarity constraints for which

they developed a branch-and-bound algorithm to compute the exact solution.

3 Exact computation of the GMM based IVQR esti-

mator via the mixed integer optimization approach

The conditional moment restriction (2.3) can be used to form estimating equations for

the GMM estimation of θ (τ). That is,

E [(1 {Y ≤ W ′θ (τ)} − τ)L] = 0, (3.1)

where L is a vector of instruments consisting of functions of X and Z. As noted by

Chernozhukov and Hansen (2006), the inverse QR estimator, which is not directly a

GMM estimator, can be shown to be asymptotically equivalent to the GMM estimator

with the instruments LCH ≡ [X ′,Ψ (X,Z)′]′.

In this paper, we provide an algorithm for directly computing the GMM based IVQR

estimator using the orthogonality conditions (3.1). Let sτ (t) denote the vector (sτ,i(t))
n
i=1,

where sτ,i(t) ≡ 1 {Yi ≤ W ′
i t}−τ for i ∈ {1, ..., n}. Let G be the n-by-dim(L) matrix whose

ith row vector is L′i. Let Q̂ be a given positive definite matrix of dimension dim(L). The

GMM based IVQR estimator of θ (τ), denoted by θ̂GMM (τ), is given by

θ̂GMM (τ) = arg infθ∈Θ sτ (θ)′GQ̂G′sτ (θ) , (3.2)

where Θ is the compact parameter space of θ.1

We now present our computational algorithm, which is based on the method of mixed

integer optimization. Let cτ = (τ, ..., τ) denote the n dimensional vector of constants all

taking the same value specified by the quantile index τ . We note that the optimization

problem (3.2) can be equivalently formulated as the following constrained optimization

1Compactness of the parameter space is a standard assumption for deriving consistency of the GMM
estimator (see e.g., Newey and McFadden, 1994, Theorem 2.6). This assumption is difficult to relax
when the GMM objective function is non-convex. In practice, knowledge of the parameter space also
helps to tighten the global optimization problem in the GMM estimation.
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problem:

inf
e=(e1,...,en),θ∈Θ

(e− cτ )′GQ̂G′ (e− cτ ) (3.3)

subject to

ei (−Mi − ε) < Yi −W ′
iθ ≤ (1− ei)Mi, i ∈ {1, ..., n}, (3.4)

ei ∈ {0, 1}, i ∈ {1, ..., n}, (3.5)

where ε is a given small and positive real scalar (e.g. ε = 10−6 as in our simulation study),

and

Mi ≡ maxθ∈Θ |Yi −W ′
iθ| , i ∈ {1, ..., n}. (3.6)

Since (3.3) is a quadratic form and matrix GQ̂G′ is positive semi-definite, the objective

function is therefore convex in the control variables e. Given that these variables take

binary values, the formulation (3.3) results in a mixed integer quadratic programming

(MIQP) problem.

We now explain the equivalence between (3.2) and (3.3). Note that, for a given value

of θ ∈ Θ, the sign constraints (3.4) and the dichotomization constraints (3.5) enforce that

ei = 1{Yi ≤ W ′
iθ} for i ∈ {1, ...n}. Therefore, solving the constrained MIQP problem

(3.3) is equivalent to solving the GMM estimation problem (3.2). This equivalence enables

us to employ the modern MIQP solvers to exactly compute the GMM estimator θ̂GMM (τ).

For the implementation, note that the values (Mi)
n
i=1 in the inequality constraints (3.4)

can be computed by formulating the maximization problem in (3.6) as linear programming

problems, which can be efficiently solved by modern optimization solvers. Hence these

values can be easily computed and stored as the inputs to the MIQP formulation (3.3).

We can perform inference on θ (τ) using the GMM estimator θ̂GMM (τ). As noted by

Chernozhukov, Hansen, and Jansson (2009), we can take

Q̂ =
[
τ (1− τ)n−1

∑n

i=1
LiL

′
i

]−1

(3.7)

as a convenient and natural choice of the GMM weight matrix. By (2.3), this weight ma-

trix equals the inverse of the variance of n−1/2
∑n

i=1 sτ,i(θ (τ))Li conditional on (Li)
n
i=1.

Let ετ ≡ Y −W ′θ (τ). In the GMM estimation (3.2) with Q̂ given by (3.7), it is straight-

forward to establish via empirical process theory (see e.g., Pakes and Pollard, 1989) that

√
n(θ̂GMM (τ)− θ (τ))

d−→ N(0,Ω), (3.8)

where the asymptotic variance matrix Ω is given by

Ω = τ (1− τ)
[
ΣWLΣ−1

LLΣ′WL

]−1
,ΣWL = E [fετ (0|W,Z)WL′] ,ΣLL = E [LL′] . (3.9)
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We can estimate ΣLL by the sample analog Σ̂LL ≡ n−1
∑n

i=1 LiL
′
i. Let ε̂τ,i ≡ Yi −

W ′
i θ̂GMM (τ). Following Powell (1986), ΣWL can be consistently estimated by

Σ̂WL ≡ n−1
∑n

i=1
[K (ε̂τ,i/hn) /hn]WiL

′
i, (3.10)

where K (·) is a kernel function and hn is a bandwidth sequence satisfying that hn −→ 0

and
√
nhn −→∞. Specific rule-of-thumb choices of hn can be based on Koenker (1994).

See also Chernozhukov and Hansen (2006, Section 3.4) and Chernozhukov and Hansen

(2008, Section 4.4) for the estimation of the IVQR variance components. Based on these

results, it is therefore straightforward to construct the confidence interval estimates of

θ (τ) within the GMM framework.

4 Simulation study

In this section, we study the performance of the GMM estimator θ̂GMM (τ) in finite-

sample simulations. We used the MATLAB implementation of the Gurobi Optimizer to

solve the MIO problems for all numerical results of this paper.2 All computations were

done on a desktop PC (Windows 7) equipped with 32 GB RAM and a CPU processor

(Intel i7-5930K) of 3.5 GHz.

We generated n = 100 observations from the following simple location scale model:

Y = 1 +D1 +D2 +D3 + (0.5 +D1 + 0.25D2 + 0.15D3)ε, (4.1)

D1 = Φ(Z1 + v1), D2 = 2Φ(Z2 + v2), D3 = 1.5Φ(Z3 + v3),

where Φ denotes the cumulative distribution function of the standard normal random vari-

able, Z1, Z2 and Z3 are independent standard normal random variables, and (ε, v1, v2, v3)

is generated independently of (Z1, Z2, Z3) from multivariate normal distribution with

mean zero and variance 0.25V where

V =


1 0.4 0.6 −0.2

0.4 1 0 0

0.6 0 1 0

−0.2 0 0 1

 .
2The MATLAB codes for computing θ̂GMM (τ) are available from the authors via the website

https://github.com/LeyuChen/IVQR-GMM-computation-codes. This implementation requires the
Gurobi Optimizer, which is freely available for academic purposes.
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By Skorohod representation, we can rewrite the model (4.1) as

Y = θ0(U) + θ1(U)D1 + θ2(U)D2 + θ3(U)D3,

where U = Fε (ε) with Fε being the cdf of the unobservable ε, and

θ0 (τ) = 1+0.5F−1
ε (τ) , θ1 (τ) = 1+F−1

ε (τ) , θ2 (τ) = 1+0.25F−1
ε (τ) , θ3 (τ) = 1+0.15F−1

ε (τ) .

We used 500 simulation repetitions for the simulation experiments. In the GMM

estimation, we took W = (1, D1, D2, D3) and L = (1, Z1, Z2, Z3). The GMM weight

matrix Q̂ was constructed based on (3.7). We set the parameter space Θ in the MIQP

problem (3.3) to be the product of the intervals [θ̂j,2SLS − 10σ̂j,2SLS, θ̂j,2SLS + 10σ̂j,2SLS],

where for j ∈ {0, 1, 2, 3}, θ̂j,2SLS and σ̂j,2SLS, respectively denote the parameter estimate

and its estimated heteroskedasticity-robust standard error from the two-stage least square

regression of Y on the covariates W using L as the instruments. The value of ε in (3.4)

was set to be 10−6.

We now present the simulation results. First, we report the computational perfor-

mance of our MIQP algorithm for computing the IVQR GMM estimator. Table 1 gives

the summary statistics of the MIQP computation time in CPU seconds across simulation

repetitions. From this table, we can see that the MIQP problems (3.3) were solved very

efficiently in these simulations which incorporated three endogenous covariates. For the

two cases with τ ∈ {0.25, 0.75}, the computation time was comparable. Both cases could

be easily solved with the mean and median computation time not exceeding 100 seconds

and the maximum time below 200 seconds. The case of τ = 0.5 appeared to be the most

computationally demanding but its maximum time remained capped within 17 minutes.

Table 1: MIQP computation time (CPU seconds)

τ mean min median max
0.25 94 37 92 197
0.5 348 104 333 989
0.75 86 33 84 186

We note that the computation time for the case of τ = 0.5 exceeded that for the

other two cases uniformly over the four types of descriptive statistics in Table 1. This

can be intuitively explained as follows. For the MIQP problem (3.3), the binary control

variables ei at optimum, denoted as êi, should satisfy that êi = 1{Yi ≤ W ′
i θ̂GMM (τ)} for

i ∈ {1, ...n}. In Appendix A, we show that, for i ∈ {1, ...n}, êi converges in probability

to e∗i ≡ 1{Yi ≤ W ′
iθ(τ)}. By (2.3), the indicator e∗i is a Bernoulli(τ) random variable
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whose variance is τ (1− τ). This variance as a function of τ is inverted-U shaped with

the peak occurring at τ = 0.5, thus suggesting that, for the case of τ = 0.5, the MIQP

solver would have more difficult time in predicting and adjusting accordingly its search

direction for the optimizers êi.

Following this argument, we further present in Table 2, for a broader range of τ

values, the ratio of a summary statistic of the time for computing θ̂GMM (τ) over that

for computing θ̂GMM (0.5).3 It is evident that the results of Table 2 cohere well with our

conjecture that, for solving the problem (3.3), the MIQP computation time as a function

of τ is also inverted-U shaped with the most computationally difficult case occurring at

τ = 0.5.

Table 2: Computational performance comparison across quantiles relative to median

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mean ratio 0.015 0.103 0.274 0.480 1 0.553 0.311 0.125 0.019
min ratio 0.031 0.172 0.497 0.652 1 0.691 0.327 0.177 0.024
median ratio 0.016 0.107 0.288 0.509 1 0.547 0.317 0.130 0.020
max ratio 0.013 0.103 0.230 0.427 1 0.548 0.301 0.151 0.018

We now study the statistical performance of the IVQR GMM estimator. In Table 3,

we report the mean and median biases, root mean squared error (RMSE) and median

absolute error (MAE) of the GMM estimators θ̂GMM (τ) for τ ∈ {0.25, 0.5, 0.75}. From

these results, we find that the GMM estimators performed quite well in terms of esti-

mation bias. Across the three quantile cases, the estimators for θ1 (τ) appeared to have

larger dispersion in terms of both RMSE and MAE.

It is also interesting to assess how well the finite-sample behavior of the IVQR GMM

estimator can be approximated by asymptotic theory. For this purpose, our exact GMM

estimator can be used to eliminate the unquantified uncertainty on the solution inaccuracy

that might emerge in a heuristic optimization procedure. In Table 4, we estimated the

asymptotic standard error based on the formula (3.9) evaluated at true parameter values

of the simulation design. This quantity was then compared to standard deviation of

θ̂GMM (τ) in simulations. The results of Table 4 indicate that the finite-sample standard

error of the GMM estimator in this simulation setup, though being slightly larger, can

be well approximated by the asymptotic standard error.

In practice, for carrying out inference, the asymptotic variance of the GMM estimator

has to be estimated. We used the Gaussian kernel in the estimation of ΣWL. The band-

3To save computational time, we reduced the number of simulation repetitions to 100 for computing
the results of Table 2. Results of all the other tables of Section 4 remained to be based on 500 simulation
repetitions.
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Table 3: Finite-sample performance of the GMM estimator

mean median
bias RMSE bias MAE

θ0 (0.25) 0.0109 0.2436 0.0012 0.1643
θ1 (0.25) -0.0327 0.3554 -0.0048 0.2309
θ2 (0.25) 0.0003 0.1642 0.0031 0.1008
θ3 (0.25) 0.0064 0.2232 -0.0068 0.1522
θ0 (0.5) 0.0161 0.2498 -0.0037 0.1724
θ1 (0.5) -0.0412 0.3241 -0.0316 0.2315
θ2 (0.5) -0.0012 0.1561 0.0066 0.1038
θ3 (0.5) 0.0012 0.2047 0.0031 0.1396
θ0 (0.75) 0.0187 0.3046 0.0055 0.1849
θ1 (0.75) -0.0358 0.3425 -0.0264 0.2235
θ2 (0.75) -0.0022 0.1820 0.0062 0.1181
θ3 (0.75) 0.0035 0.2393 -0.0016 0.1538

Table 4: Comparison with asymptotic approximation

standard deviation asymptotic
in simulations standard error

θ0 (0.25) 0.2434 0.2297
θ1 (0.25) 0.3539 0.3256
θ2 (0.25) 0.1642 0.1572
θ3 (0.25) 0.2231 0.2059
θ0 (0.5) 0.2493 0.2296
θ1 (0.5) 0.3215 0.3049
θ2 (0.5) 0.1561 0.1474
θ3 (0.5) 0.2047 0.1994
θ0 (0.75) 0.3040 0.2744
θ1 (0.75) 0.3406 0.3400
θ2 (0.75) 0.1820 0.1664
θ3 (0.75) 0.2393 0.2283

width sequence hn in (3.10) was based on the Hall-Sheather bandwidth choice, which

was suggested by Koenker (1994) and also used by Chernozhukov, Hansen, and Jansson

(2009). We also checked the sensitivity of the inference results with respect to this band-

width choice. Specifically, we reported in Table 5 the finite-sample coverage probabilities

of the 95% confidence interval (CI) estimates for θ (τ), which were constructed based on

the normal approximation theory described in Section 3 with three different bandwidth

choices: hn ∈ {0.8hn,HS, hn,HS, 1.2hn,HS}, where hn,HS denotes the Hall-Sheather band-

width sequence. From Table 5, we find that the coverage probabilities results were not
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very sensitive across bandwidth values although the CI estimates were slightly under-

sized. We also notice that the CI estimates based on taking hn = hn,HS or hn = 1.2hn,HS

performed quite well in terms of overall performance.

Table 5: Coverage probabilities (95% CI)

0.8hn,HS hn,HS 1.2hn,HS
θ0 (0.25) 0.930 0.940 0.952
θ1 (0.25) 0.906 0.914 0.918
θ2 (0.25) 0.912 0.924 0.934
θ3 (0.25) 0.916 0.926 0.938
θ0 (0.5) 0.958 0.962 0.970
θ1 (0.5) 0.936 0.944 0.950
θ2 (0.5) 0.938 0.944 0.952
θ3 (0.5) 0.950 0.958 0.966
θ0 (0.75) 0.896 0.916 0.928
θ1 (0.75) 0.922 0.938 0.944
θ2 (0.75) 0.892 0.896 0.908
θ3 (0.75) 0.918 0.928 0.942

5 An illustrative empirical example: estimating the

demand for fish

We illustrate usefulness of our method for exact computation of the IVQR GMM esti-

mator in an empirical study of the demand for fish. We used the dataset constructed

by Graddy (1995) on the transactions of whiting in the Fulton fish market in New York.

The data were also previously studied in Chernozhukov and Hansen (2008) and Cher-

nozhukov, Hansen, and Jansson (2009) to illustrate the econometric methods developed

for quantile regression models with endogeneity. In what follows, we mainly focused on

analyzing the results estimated by the MIQP approach and comparing them to the inverse

QR estimation results.

The data consist of 111 observations on the price and quantity of whiting transactions

aggregated by day. The outcome variable Y is the logarithm of total amount of whitings

sold on each day and the endogenous explanatory variable D is the logarithm of the

average daily price. The exogenous explanatory variables include the indicators (Monday,

Tuesday, Wednesday and Thursday) for days of the week. The instrumental variables

are indicators (Stormy and Mixed) for weather conditions at sea. These instruments

capture the wave height and wind speed, which should affect the supplied quantity of fish
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and hence the price in the market but are unlikely to influence the demand for fish. See

Graddy (1995, 2006) for further details on the operation of the Fulton fish market, and

the data and variables used for this study.

Following Chernozhukov, Hansen, and Jansson (2009), we considered the simple de-

mand equation

Y = θ0 (U) + θ1 (U)D (5.1)

for the estimation of θ1, the price elasticity of the demand, which may vary across the

demand level U . We also augmented the specification (5.1) by incorporating the day effect

variables as additional controls, and then performed the estimation. Table 6 presents the

estimation results for θ1 (τ) under these two different specifications. For GMM estimation

results, we took L = (1, Stormy,Mixed) as instruments and configurated the MIQP

setting in the same fashion as in Section 4. We used the Gaussian kernel and the Hall-

Sheather bandwidth choice for estimating the standard deviation of the GMM estimator

and constructing the 95% CI for θ1 (τ). We also performed some sensitivity check and

found that the results were not very sensitive to the bandwidth choice. Moreover, we also

extracted the inverse QR and the corresponding 95% asymptotic CI estimation results

provided by Chernozhukov, Hansen, and Jansson (2009, Table 1) on the same estimating

model specifications and listed them in Table 6 for comparison.

We now summarize the results in Table 6. First, we find that, for both model specifi-

cations, the point estimates of the demand elasticity were all negative but the magnitudes

varied across quantile indices. Moreover, the CI results based on both the GMM and in-

verse QR methods indicate that the negativity of θ1 (τ) was significant for τ ∈ {0.25, 0.75}
but we could not reject the case of θ1 (τ) being zero at τ = 0.5. We note that, for the

same quantile index τ, the GMM and inverse QR estimates of θ1(τ) were somewhat dif-

ferent with the exception that both estimates nearly coincided for the case of τ = 0.5

under the basic specification (5.1). When the day effect variables were included as ad-

ditional controls, the values of θ̂1(τ) across these two estimation methods differed to a

larger extent in the case of τ = 0.25. The differences between the GMM and inverse QR

approaches in the estimation results could be due to the issue that the sample size is not

large enough for this empirical application. On the other hand, in the over-identification

context where the instruments outnumber the endogenous variables, the asymptotic vari-

ance of the inverse QR estimator is generally different from the variance form given by

(3.9) (see Chernozhukov and Hansen, 2008, Proposition 2). This fact also helps to explain

the differences between the two estimation approaches in the results of Table 6.
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Table 6: IVQR estimation of demand elasticity

τ = 0.25 τ = 0.5 τ = 0.75
Specification (5.1)

Estimation method: GMM via the MIQP implementation

θ̂1(τ) -1.0880 -0.8876 -0.9755
std. dev. 0.4773 0.5056 0.3027
95% CI (−2.0234,−0.1525) (−1.8787, 0.1034) (−1.5689,−0.3822)

Estimation method: Inverse QR

θ̂1(τ) -1.3680 -0.8860 -1.2685
std. dev. 0.5704 0.4673 0.3911
95% CI (−2.486,−0.250) (−1.802, 0.030) (−2.035,−0.502)

Specification (5.1) augmented with day fixed effects

Estimation method: GMM via the MIQP implementation

θ̂1(τ) -0.6915 -0.7152 -1.0904
std. dev. 0.3253 0.4828 0.2465
95% CI (−1.3290,−0.0540) (−1.6616, 0.2312) (−1.5735,−0.6074)

Estimation method: Inverse QR

θ̂1(τ) -1.3635 -0.5950 -1.1790
std. dev. 0.5304 0.4398 0.3653
95% CI (−2.403,−0.324) (−1.457, 0.267) (−1.895,−0.463)

6 Conclusions

In this paper, we have proposed a mixed integer quadratic programming approach for

estimating the IVQR model within the GMM framework. Our computational approach

can be used to find the exact global solution in the IVQR GMM estimation problem.

Modern mixed integer optimization solvers employ branch-and-bound type algorithms

which maintain along the solution process both the feasible solutions and lower bounds

on the optimal objective function value. For computationally demanding applications,

this feature enables us to solve for an approximate IVQR GMM estimator with a guar-

anteed approximation error bound, thus facilitating the design of an early stopping rule

as described in Chen and Lee (2016, Section 4.3). Development of such a theoretically

justified early stopping rule for the IVQR estimation problem is therefore a useful further

research topic.

One possible application of our approach is panel data quantile regression for group-
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level treatments (Chetverikov, Larsen, and Palmer, 2016). To deal with group-level un-

observables, the estimation procedure in Chetverikov, Larsen, and Palmer (2016) consists

of group-by-group quantile regression followed by two-stage least squares. They mention

(in their footnote 10) that the latter step could be replaced by an IV median regression,

if one is willing to replace the usual assumption that the group-level errors are uncor-

related with instruments with median uncorrelation (Komarova, Severini, and Tamer,

2012). This alternative step can be computed using our computation algorithm. It is

an interesting topic for future research to fully develop this alternative to IV quantile

regression for group-level treatments.

Our approach is limited to GMM estimators for parametric IVQR models. One

may consider semiparametric models with endogeneity. For example, Chen, Linton, and

Van Keilegom (2003) considered partially linear median regression with endogenous re-

gressors as one of their examples. Their proposed estimator consists of a two-step proce-

dure: in the first step, nonparametric median regression is carried out given the parameter

of interest and in the second step, GMM estimation is implemented with the first step

estimates as inputs. Our proposed algorithm is not directly applicable because of the

first nonparametric step. It is another interesting topic for future research to develop an

algorithm to compute this kind of two-step semiparametric quantile IV estimators.

A Asymptotic analysis of the binary-valued solutions

to the MIQP problem (3.3)

Let ê = (êi)
n
i=1 denote the solution of the binary control variables e = (ei)

n
i=1 to the MIQP

problem (3.3). We present in the following theorem the asymptotic properties of these

binary optimizers.

Theorem 1. Let e∗i ≡ 1{Yi ≤ W ′
iθ(τ)} for i ∈ {1, ..., n}. Suppose the support of the

distribution of W is bounded. Then, given (3.8), it holds that êi
p−→ e∗i for i ∈ {1, ..., n}.

Proof. Let ‖·‖ denote the Euclidean norm. Let εn be a sequence which tends to zero at

the rate slower than n−1/2. By (3.8), we have that

P
(∥∥∥θ̂GMM (τ)− θ(τ)

∥∥∥ > εn

)
−→ 0. (A.1)

By (A.1) and the boundedness condition on the distribution of the covariates, it follows

that

P
(

maxi∈{1,...,n}

∣∣∣W ′
(
θ̂GMM (τ)− θ(τ)

)∣∣∣ > εn

)
−→ 0. (A.2)
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Note that

P
(
W ′
iθ(τ) < Yi ≤ W ′

i θ̂GMM (τ)
)

≤ P
(
W ′
iθ(τ) < Yi ≤ W ′

i θ̂GMM (τ) ,maxi∈{1,...,n}

∣∣∣W ′
(
θ̂GMM (τ)− θ(τ)

)∣∣∣ ≤ εn

)
+P

(
maxi∈{1,...,n}

∣∣∣W ′
(
θ̂GMM (τ)− θ(τ)

)∣∣∣ > εn

)
≤ P (W ′

iθ(τ) < Yi ≤ W ′
iθ (τ) + εn) + P

(
maxi∈{1,...,n}

∣∣∣W ′
(
θ̂GMM (τ)− θ(τ)

)∣∣∣ > εn

)
.

By (A.2) and the continuity property of probability, we therefore have that P (W ′
iθ(τ) <

Yi ≤ W ′
i θ̂GMM (τ)) −→ 0 for i ∈ {1, ..., n}. Following similar arguments, it is straightfor-

ward to see that P
(
W ′
i θ̂GMM (τ) < YiW

′
i ≤ W ′

iθ(τ)
)

also tends to zero for i ∈ {1, ..., n}.
By the analysis of the MIQP formulation (3.3) given in Section 3, we can deduce that

êi = 1{Yi ≤ W ′
i θ̂GMM (τ)} for i ∈ {1, ...n}. Using these results, we thus have that

P (êi 6= e∗i ) = P
(
W ′
iθ(τ) < Yi ≤ W ′

i θ̂GMM (τ)
)

+P
(
W ′
i θ̂GMM (τ) < YiW

′
i ≤ W ′

iθ(τ)
)
−→ 0.

Hence, the statement êi
p−→ e∗i holds for i ∈ {1, ..., n}.

B Additional simulation results

B.1 Finite sample performance comparison of the MIQP based

estimation approach to the inverse QR approach

In Appendix B.1, we present simulation results on the comparison of the finite sample

performance of our MIQP approach to that of the inverse QR approach. The simulations

were based on the data generating design (4.1) as described in Section 4. In the GMM

estimation, we took W = (1, D1, D2, D3) and L = (1, Z1, Z2, Z3). For the inverse QR

approach, we set the values Ψi in (2.5) to be (Z1i, Z2i, Z3i) such that both our MIQP

based GMM estimator and the inverse QR estimator are asymptotically equivalent in

distribution (Chernozhukov and Hansen, 2006, Theorem 3), thus facilitating the perfor-

mance comparison for these two approaches. For implementation, both our MIQP and

the inverse QR approaches require a specification of the parameter space. In this sim-

ulation study, we considered two different parameter spaces: Θ̂ (10) and Θ̂ (20). Here,

Θ̂ (t) denotes the product of the intervals [θ̂j,2SLS − tσ̂j,2SLS, θ̂j,2SLS + tσ̂j,2SLS], where

for j ∈ {0, 1, 2, 3}, θ̂j,2SLS and σ̂j,2SLS, respectively denote the parameter estimate and

its estimated heteroskedasticity-robust standard error from the two-stage least square

regression of Y on the covariates W using L as the instruments.

We solved the inverse QR outer optimization problem (2.4) by searching over an
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evenly spaced grid in a three-dimensional cube induced by the constructed parameter

space. The step size along each dimension in the grid search was set to be 0.05. To

reduce the computational cost, we set the sample size to be 100 and used 100 simulation

repetitions for computing the finite sample performance results.

Table 7 gives the statistical performance results for the inverse QR and the MIQP

based GMM estimation approaches for the cases of τ ∈ {0.25, 0.5, 0.75}. From Table 7,

we find that both the inverse QR and the MIQP based GMM estimators on the whole

performed comparably well. We now compare in Table 8 the computational performance

of these two estimation approaches. The results of Table 8 indicate that the computation

time for the inverse QR approach was of similar magnitude across the quantile indices.

Specifically, the case of τ = 0.5 under this approach appeared to be least computationally

intensive. This finding is not surprising because the number of quantile regression sub-

problems (2.5) in the inverse QR procedure amounts to that of the grid points used for

solving (2.4), and solving the standard quantile regression for the upper or lower quantile

case is generally more computationally costly than that for the median case. By contrast,

the results of Table 8 concerning the MIQP performance echo with those of Table 2 and

reveal that solving the MIQP based IVQR GMM estimation problem for the upper and

lower quantile cases is far more computationally simpler than that for the median case.

We also find from Table 8 that, when we doubled the radius of the parameter space, the

increase in computation time under our MIQP approach appeared to be much milder than

that under the inverse QR approach. For the latter, this sharp increase in computation

time reflected the fact that the number of grid points used in the inverse QR procedure

increased exponentially in the radius of the parameter space.

B.2 Impacts of the sample size on the performance of the MIQP

based IVQR GMM estimator

In Appendix B.2, we conduct a simple simulation study to assess impacts of the sample

size on the performance of our MIQP based IVQR GMM estimation approach. Specifi-

cally, we doubled the sample size used in the simulations described in Section 4 and then

investigated how the MIQP computation time would scale up in this setting. For sim-

plicity, we used 100 simulation repetitions. Moreover, we enforced a computation time

limit of one hour above which we would terminate the MIQP solver and then take the

estimate θ̂GMM (τ) to be the best feasible solution discovered by the solver upon termi-

nation. Except for these modifications, the simulation and computing configurations in

this simulation study were the same as those used in Section 4.

We now present in Table 9 the summary statistics of the MIQP computation time in

CPU seconds and the percentage of the simulated datasets for which the MIQP solver
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Table 7: Finite sample performance results for the MIQP and inverse QR approaches

Inverse QR MIQP
mean median mean median
bias RMSE bias MAE bias RMSE bias MAE

Small parameter space (Θ̂ (10))
θ0 (0.25) -0.0169 0.2167 -0.0204 0.1575 -0.0131 0.2327 -0.0279 0.1682
θ1 (0.25) 0.0196 0.3114 0.0715 0.1782 0.0122 0.3146 0.0285 0.1777
θ2 (0.25) 0.0275 0.1419 0.0479 0.0945 0.0240 0.1406 0.0272 0.0780
θ3 (0.25) -0.0063 0.2148 0.0095 0.1257 -0.0071 0.2171 0.0066 0.1588
θ0 (0.5) 0.0147 0.2143 -0.0017 0.1670 0.0114 0.2180 0.0044 0.1445
θ1 (0.5) -0.0241 0.2889 0.0061 0.2102 -0.0124 0.2882 0.0495 0.2059
θ2 (0.5) 0.0167 0.1406 0.0304 0.0854 0.0152 0.1385 0.0287 0.0832
θ3 (0.5) -0.0304 0.1852 -0.0414 0.1189 -0.0266 0.1806 -0.0313 0.1334
θ0 (0.75) -0.0046 0.2779 -0.0234 0.1934 -0.0066 0.2737 0.0067 0.1844
θ1 (0.75) -0.0109 0.3455 0.0152 0.2045 -0.0167 0.3327 -0.0290 0.2317
θ2 (0.75) 0.0149 0.1562 0.0251 0.1077 0.0136 0.1571 0.0182 0.1079
θ3 (0.75) -0.0120 0.2332 -0.0104 0.1674 -0.0082 0.2281 -0.0013 0.1602

Large parameter space (Θ̂ (20))
θ0 (0.25) -0.0180 0.2173 -0.0457 0.1512 -0.0075 0.2418 -0.0056 0.1705
θ1 (0.25) 0.0182 0.3140 0.0483 0.1791 0.0038 0.3156 0.0000 0.1738
θ2 (0.25) 0.0270 0.1434 0.0350 0.0903 0.0223 0.1422 0.0167 0.0865
θ3 (0.25) -0.0026 0.2150 -0.0026 0.1313 -0.0103 0.2258 -0.0044 0.1705
θ0 (0.5) 0.0207 0.2189 -0.0053 0.1625 0.0110 0.2196 0.0116 0.1523
θ1 (0.5) -0.0325 0.2864 0.0109 0.2215 -0.0042 0.2935 0.0379 0.2093
θ2 (0.5) 0.0167 0.1411 0.0326 0.0961 0.0172 0.1374 0.0168 0.0896
θ3 (0.5) -0.0316 0.1852 -0.0394 0.1259 -0.0265 0.1801 -0.0233 0.1193
θ0 (0.75) -0.0035 0.2734 -0.0294 0.1891 0.0015 0.2713 0.0058 0.1982
θ1 (0.75) -0.0128 0.3525 0.0105 0.2215 -0.0166 0.3410 0.0290 0.2305
θ2 (0.75) 0.0154 0.1545 0.0283 0.1039 0.0138 0.1561 0.0338 0.0940
θ3 (0.75) -0.0112 0.2299 -0.0057 0.1643 -0.0156 0.2326 -0.0279 0.1710
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Table 8: Computation time (CPU seconds) for the MIQP and inverse QR approaches

Inverse QR MIQP
τ mean min median max mean min median max

Small parameter space (Θ̂ (10))
0.25 392 146 363 959 99 39 100 197
0.5 331 119 304 806 374 107 350 777
0.75 386 151 359 958 91 38 89 186

Large parameter space (Θ̂ (20))
0.25 3074 1174 2823 7441 132 64 129 201
0.5 2584 952 2401 6254 497 219 485 779
0.75 3101 1204 2848 7645 156 64 153 317

converged and θ̂GMM (τ) was exactly computed within the specified time limit. From

Table 9, we find that the solver converged to a global solution for all simulations with

τ ∈ {0.25, 0.75}. However, the case of τ = 0.5 remained the most computationally de-

manding and the solver for computing this case could not converge within the one-hour

time limit in 36% of the simulation repetitions. Comparing the computational perfor-

mance results in Tables 1 and 9, we also notice that, when we doubled the sample size, the

time for computing the MIQP problem (3.3) could scale up more than ten times. We note

that the computational scalability issue revealed in these results is not unexpected be-

cause the MIQP problem is known to be in the class of NP (Non-deterministic polynomial

time) complete problems (see e.g., Del Pia, Dey, and Molinaro, 2017). Namely, the com-

putational complexity for solving the MIQP problem may increase rapidly in the problem

size. However, in view of the advance of modern computing technology, it is expected

that in near future, the MIQP approach will become more tractable and computation-

ally attractive for solving the exact IVQR GMM computation problems with moderately

large sample size. Moreover, the MIQP solution method is based on branch-and-bound

type algorithms, which themselves can be well adapted to the parallel computing frame-

work thereby enhancing the computational performance for solving large scale problem

instances. See e.g., Gendron and Crainic (1994) for a classic survey on parallel branch-

and-bound algorithms.

In Table 10, we report the statistical performance of the MIQP based IVQR GMM

estimator in this simulation setting. Comparing this table to Table 3 of Section 4, we find

that the precision of the estimate θ̂GMM (τ) generally increased with the sample size. It

is worth noting that the statistical performance of the MIQP based estimation approach

remained quite good for the case of τ = 0.5 even though only 64% of the MIQP problems

(3.3) in the simulation for this estimation case could be exactly solved within the specified
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Table 9: MIQP computational performance statistics (sample size n = 200)

τ mean min median max solver convergence
0.25 1009 490 920 2739 100%
0.5 3007 1654 3120 3600 64%
0.75 1243 506 1185 2452 100%

time limit. This result echoes with the findings in the MIO literature that the MIO solver

could often locate the exact solution quickly yet it can take a longer time for the solver

to verify that the solution status is indeed exact (see e.g., Florios and Skouras, 2008). In

Table 11, we further compare the estimator bias and dispersion results for the cases where

the MIQP solver could not converge within the one-hour time limit and those where the

solver found the global solution within this time limit. These results also suggest that,

even in the presence of severe computation constraints, we may still get satisfactorily

approximate IVQR GMM estimates via the MIQP approach.

Table 10: Statistical performance of the GMM estimator (sample size n = 200)

mean median
bias RMSE bias MAE

θ0 (0.25) -0.0160 0.1637 -0.0059 0.1177
θ1 (0.25) 0.0186 0.2765 0.0279 0.2127
θ2 (0.25) -0.0001 0.1140 -0.0014 0.0702
θ3 (0.25) 0.0175 0.1576 0.0133 0.0895
θ0 (0.5) -0.0047 0.1693 -0.0130 0.1272
θ1 (0.5) -0.0012 0.2325 0.0094 0.1466
θ2 (0.5) 0.0024 0.0961 0.0165 0.0652
θ3 (0.5) 0.0132 0.1529 0.0265 0.1079
θ0 (0.75) 0.0185 0.1891 0.0134 0.0995
θ1 (0.75) -0.0194 0.2425 -0.0137 0.1572
θ2 (0.75) 0.0024 0.1204 0.0104 0.0682
θ3 (0.75) -0.0127 0.1594 0.0077 0.0999

C Alternative MIO based formulations of the IVQR

GMM estimation problem

In Appendix C, we provide two alternative MIO based formulations of the IVQR GMM

estimation problem. These alternative formulations complement the main MIQP formu-

lation (3.3) of this paper.
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Table 11: Performance comparison for the convergence and early termination cases

Solver did not converge within one hour Solver converged within one hour
mean median mean median
bias RMSE bias MAE bias RMSE bias MAE

θ0 (0.5) 0.0250 0.1668 0.0317 0.1067 -0.0213 0.1706 -0.0312 0.1412
θ1 (0.5) -0.0352 0.2672 -0.0173 0.2031 0.0180 0.2105 0.0350 0.1328
θ2 (0.5) -0.0035 0.0925 0.0076 0.0672 0.0057 0.0982 0.0239 0.0647
θ3 (0.5) 0.0020 0.1620 0.0185 0.0965 0.0195 0.1475 0.0412 0.1082

C.1 MIQP formulation based on special ordered set constraints

Suppose that the distribution of Y conditional on W is absolutely continuous with respect

to Lebesgue measure. Under this assumption, we can construct another MIQP based

formulation of the problem (3.2), which does not exploit the quantities (Mi)
n
i=1 of (3.6)

and can hence be robust to numerical computation issues that may arise when (Mi)
n
i=1

take extremely large values.

Recall that cτ = (τ, ..., τ) denotes the n dimensional vector of the same constant values

specified by the quantile index τ . If the outcome Y is continuously distributed conditional

on W , we note that the optimization problem (3.2) can be equivalently formulated as the

following MIQP problem:

inf
e=(ei)

n
i=1,r=(ri)

n
i=1,s=(si)

n
i=1,θ∈Θ

(e− cτ )′GQ̂G′ (e− cτ ) (C.1)

s.t. (3.5) and

ri − si = Yi −W ′
iθ, i ∈ {1, ..., n}, (C.2)

(ri, ei) : SOS-1, i ∈ {1, ..., n}, (C.3)

(si, 1− ei) : SOS-1, i ∈ {1, ..., n}, (C.4)

ri + si > 0, i ∈ {1, ..., n}, (C.5)

ri ≥ 0, si ≥ 0, i ∈ {1, ..., n}, (C.6)

where, for a pair of variables (x, y), the statement (x, y) : SOS-1 is a shorthand statement

for the condition that these two variables should be subject to the constraint of Type 1

special ordered set (SOS-1), which means at most one of them can take non-zero value.

We now explain the equivalence between the problems (3.2) and (C.1). By (C.5) and

(C.6), the values ri and si are non-negative but cannot be both zero. Thus, by (3.5) and
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the SOS-1 constraints (C.3) and (C.4), it follows that

ei = 1 ⇐⇒ ri = 0 and si > 0, (C.7)

ei = 0 ⇐⇒ ri > 0 and si = 0. (C.8)

By continuity of the distribution of Y given W , for any given value of θ ∈ Θ, the difference

Y −W ′θ is almost surely non-zero. Using this continuity assumption, and (C.2), (C.7)

and (C.8), we can deduce that the equations ei = 1{Yi ≤ W ′
iθ} for i ∈ {1, ...n} also hold

almost surely. Therefore, the MIQP problem (C.1) is almost surely equivalent to the

GMM estimation problem (3.2).

We note that mixed integer linear and quadratic optimization problems subject to

SOS-1 constraints can be exactly solved via the branch-and-bound type algorithms.

Hence, modern MIO solvers can also be used to compute the exact solution to the MIQP

problem (C.1). For implementation, we replace (C.5) by ri + si ≥ η, where η is a small

positive number (e.g. η = 10−5 as in our numerical study) that is larger than the solver’s

constraint feasibility tolerance level. This ensures that strict positivity of ri + si is well

enacted in numerical computation.

C.2 MILP formulation based on linearization of the IVQR GMM

objective function

We now present another MIO based formulation of the problem (3.2). This formulation is

based on linearizing the MIQP objective function of (3.3) and thereby results in a mixed

integer linear programming (MILP) problem.4

Let Γ̂ ≡ GQ̂G′. Note that, for e = (ei)
n
i=1 ∈ {0, 1}n,

(e− cτ )′ Γ̂ (e− cτ )

=
∑n

i=1

∑n

j=1
Γ̂ijeiej − 2e′Γ̂cτ + c′τ Γ̂cτ

= e′
(
diag(Γ̂)− 2Γ̂cτ

)
+ 2

∑n−1

i=1

∑n

j=i+1
Γ̂ijeiej + c′τ Γ̂cτ , (C.9)

where diag(Γ̂) denotes the diagonal vector of Γ̂. By (C.9), we can thus rewrite the MIQP

4We thank one referee for pointing out this MILP formulation of the IVQR GMM estimation problem.
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problem (3.3) as the following MILP problem:

inf
e=(ei)

n
i=1,(xij)1≤i<j≤n,θ∈Θ

e′
(
diag(Γ̂)− 2Γ̂cτ

)
+ 2

n−1∑
i=1

n∑
j=i+1

Γ̂ijxij + c′τ Γ̂cτ (C.10)

s.t. (3.4), (3.5) and

xij ≤ ei, 1 ≤ i < j ≤ n, (C.11)

xij ≤ ej, 1 ≤ i < j ≤ n, (C.12)

ei + ej − xij ≤ 1, 1 ≤ i < j ≤ n, (C.13)

xij ∈ {0, 1}, 1 ≤ i < j ≤ n. (C.14)

It is straightforward to see that xij = eiej under the dichotomization constraints (3.5)

and (C.14), and inequality constraints (C.11), (C.12) and (C.13). Hence, it follows that

the MILP problem (C.10) is equivalent to the MIQP problem (3.3) and therefore also

equivalent to the IVQR GMM estimation problem (3.2).

C.3 Computational performance comparison of the MIO for-

mulations (3.3), (C.1) and (C.10)

The MIQP formulation (C.1) does not require computation of the bounding quantities

(Mi)
n
i=1, albeit at the cost of incurring 2n additional control variables in the optimization

problem. While optimization over a linear objective function can be computationally

simpler, the MILP formulation (C.10) consists of 2n+ 3n(n− 1)/2 inequality constraints

and n+n(n−1)/2 binary controls whereas the MIQP formulation (3.3) has 2n inequality

constraints and only n binary controls. Therefore, compared to the formulation (3.3),

the computational performance of the alternative formulations (C.1) and (C.10) can be

more compromised as the sample size gets large.

We assess the computational performance of the MIO formulations (3.3), (C.1) and

(C.10) in a small scale simulation study. We use the same simulation data generating

design and computing configuration as in Section 4. To save computational time, we

used 100 simulation repetitions for which each simulated dataset contained n = 40 ob-

servations. From the simulation results, we note that the optimal objective function

values in all the three MIO formulations are identical across all the simulation repeti-

tions. Moreover, these minimized objective function values are identical to the GMM

objective function values of (3.2) evaluated at θ̂GMM (τ) computed via these three MIO

formulations. These numerical results consist with the mathematical equivalence between

the formulations (3.2), (C.1) and (C.10). However, as reported in Table 12, the MIQP

formulation (3.3) substantially outperformed the other two MIO formulations in terms

of CPU seconds required for computing the estimates θ̂GMM (τ).
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Table 12: Computation time (CPU seconds)

MIQP (3.3) MIQP (C.1) MILP (C.10)
τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
mean 1.08 2.75 0.95 29.22 110.87 27.05 38.12 183.73 57.56
min 0.37 0.99 0.39 4.90 8.47 4.01 23.87 122.94 20.68
median 1.08 2.59 0.83 28.29 105.19 26.88 37.19 183.87 57.46
max 2.31 5.44 1.91 51.84 209.21 93.00 66.91 254.44 98.75
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Honoré, B. E., and L. Hu (2004): “On the performance of some robust instrumental

variables estimators,” Journal of Business and Economic Statistics, 22(1), 30–39.
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