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Abstract. In this paper, we describe how to test for the presence of measure-
ment error in explanatory variables. First, we discuss the test of such hypotheses
in parametric models such as linear regressions and then introduce a new Stata
command [R] dgmtest for a nonparametric test proposed inWilhelm| (2018b)). To
illustrate the new command, we provide Monte Carlo simulations and an empirical
application to testing for measurement error in administrative earnings data.
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1 Introduction

In this paper, we describe how to test for the presence of measurement error in explana-
tory variables. Specifically, consider an outcome Y (e.g. earnings) that depends on an
explanatory variable X* (e.g. schooling). We do not observe X* directly, but only two
variables X and Z that are related to X*. We suspect X to be an error-contaminated
measurement of X* (e.g. schooling as reported in a survey) and Z is a variable related
to X*, perhaps an instrument (e.g. distance to college) or a repeated measurement (e.g.
schooling as reported in another survey). The hypothesis of no measurement error in
X is

H()ZP(X:X*):]., (1)

In the schooling example, testing Hy could be useful as a first-step model specification
test to tell the researcher whether measurement error is an important feature of the
data that should be modelled. However, testing Hy may also be of direct economic
interest because, for example, the null of no measurement error can often be shown
to be implied by the absence of frictions in a structural economic model (e.g. [Chetty
(2012), Wilhelm| (2018b))). A test of Hy can therefore be interpreted as a test of the
absence of such frictions.

In a finite sample, we may not be able to detect measurement error even though X is
in fact mismeasured. The reason is that measurement errors might be small relative to
the overall sampling noise. In this sense, we can interpret the test of Hy as finding out
whether measurement error is severe enough for the data to tell the difference between
models with and without measurement error.

st0001




2 dgmtest

In this paper, we describe how to test for the presence of measurement error with-
out imposing any parametric restrictions and, in fact, without requiring the model to
be identified. Both of these aspects are important for empirical practice. First, when
testing for measurement error it is important to allow for nonlinearities in the relation-
ship of Y and X* because measurement error in X can make the relationship appear
nonlinear when it isn’t and make it appear linear when it isn’t (Chesher| (1991))). To dis-
entangle measurement error form nonlinearities therefore requires a procedure that can
allow for nonlinearities. Second, nonparametric measurement error models are identified
only under fairly strong conditions and their estimation involves complicated procedures
such as Fourier transforms and operator inversions (Schennach| (2016)). However, Wil-
helm| (2018b)) shows that testing for the presence of measurement error does not require
identification of the model and is thus possible without such strong assumptions. In
particular, the test is able to detect a wide range of nonclassical measurement error
models. Another byproduct of avoiding identification of the model is that complicated
estimation techniques are not necessary. In fact, the test we describe only employs
standard nonparametric regression techniques.

The null hypothesis depends on the latent variable X* and thus cannot directly
be tested. In Section [2] this paper therefore first describes how to convert the null
hypothesis into a testable restriction in terms of the observable variables Y, X, Z in
a simple example, a linear regression model. In this model, Hy can easily be tested
using existing Stata commands following Hausman! (1978)). Section |3| then describes
the extension of such ideas to the nonparametric framework as recently proposed by
Wilhelm| (2018b). We introduce the new Stata command [R] dgmtest that implements
a test of Hy without imposing any parametric restrictions. Section [] reports the results
of Monte Carlo simulations for this new command and Section [l concludes with an
empirical example in which we show how to test for measurement error in administrative
earnings data.

Related Literature [Mahajan| (2006) proposes a test for the presence of measurement
error when the explanatory variable X* and the observed measure X are binary. There
are also some existing tests for the presence of measurement error in parametric models
that require identification and consistent estimators of the model: Hausman| (1978),
Chesher| (1990), |Chesher et al.|(2002), Hahn and Hausman| (2002), and [Hu/ (2008). Re-
lated to [Hausman| (1978)), in empirical work it is common to estimate linear regressions
by OLS and IV, and then attribute a difference in the two estimates to the presence
of measurement error, treating the IV estimate as the consistent and unbiased one. Of
course, this strategy is valid only if the true relationship of interest is in fact linear, the
measurement error is classical, and the model is identified. None of these assumptions
are required in the nonparametric approach described in the present paper.

In principle, one could imagine constructing a test for the presence of measurement
error by comparing an estimator of the model that accounts for the possibility of mea-
surement error with one that ignores it, similar in spirit to the work by Durbin| (1954),
Wu (1973)), and Hausman| (1978)). If the difference between the two is statistically sig-
nificant, then one could conclude that this is evidence for the presence of measurement
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error. However, this strategy would require identification and consistent estimation of
the measurement error model, which leads to overly strong assumptions, the necessity
of solving ill-posed inverse problems in the continuous variable case, and potentially
highly variable estimators. These difficulties can all be avoided by the nonparametric
approach described in this paper.

2 Linear Regression Model

Consider the linear regression model for an outcome Y and an explanatory variable
X*, assuming for simplicity that there are no further regressors (the extension to the
presence of additional controls is straightforward and discussed below),

Y=a+pBX" +¢, E(X™) =0. (2)

Instead of X*, we observe a measurement X of X* and an instrumental variable (IV)
Z which depends on X* (i.e. E(X*Z) # 0), but is excluded from the outcome equa-
tion (i.e. E(eZ) = 0). Testing for the presence of measurement error in this context
is straightforward (Hausman| (1978)). Under the null of no measurement error OLS
consistently estimates (8, but under the alternative of some measurement error it is
inconsistent. The IV estimator, however, is consistent under both the null and the al-
ternative. Therefore, one can simply compute both estimators and compare them. If
their difference is statistically significant, that indicates the presence of measurement
€rror.

To better understand the connection to the nonparametric test described in the next
section it might be instructive to note that the test based on the difference of OLS and
IV estimators is equivalent to testing significance in an expanded regression. To see
this, suppose there is no measurement error in X, then

Y=a+BX +e¢, E(X)=0.

Therefore, when regressing Y onto both X and Z, the exclusion of the IV implies that
the coefficient of Z must be zer(ﬂ, i.e. we test the hypothesis of no measurement error
by instead testing

7=0 (3)
in the regression

Y=a+pX+7Z+¢
In conclusion, we have shown that the null of no measurement error, , implies in
the linear regression model. The only assumption for this to be true is that holds

and that the IV is excluded from the outcome equation, i.e. E(¢Z) = 0. Therefore, a
rejection of the restriction implies a rejection of the hypothesis of no measurement

error, .

1. [Hausman| (1978) suggests running a regression of Y on X and the projection X of X onto Z. Then,
Hy implies that the coefficient of X must be zero.
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However, without further assumptions, failing to reject does not necessarily imply
failing to reject the null of no measurement error, . Suppose X = X* + nx, so that
nx represents the measurement error in X. If the measurement error in X is assumed
to be classical (i.e. it does not depend on the level of the regressor nor on the regression
error: E(enyx) =0 and E(X*n) = 0) and some further regularity conditions hold, then
it is easy to see that the null hypothesis Hy not only implies but is, in fact, also implied
by . Therefore, failing to reject may be interpreted as failing to reject Hy and
rejecting may be interpreted as rejecting Hy.

Consider the following simulated example. First, we simulate data without measure-
ment error in the regressor (X = X*):

. set obs 200

. gen double z = rnormal(0,1)

. gen double u = rnormal(0,0.5)
. gen double e = rnormal(0,0.5)
. gen xs = 0.5%z + u

. gen x = Xxs

. geny =xs + e

Then we regress Y on X and Z (and a constant):

. regy x z

Source | SS af MS Number of obs = 200

+ F(2, 197) = 190.55

Model | 110.874464 2 55.437232 Prob > F = 0.0000
Residual | 57.3145743 197 .290936925 R-squared = 0.6592
+ Adj R-squared = 0.6558

Total | 168.189038 199 .845171047 Root MSE = .53939

y | Coef . Std. Err. t P>t [95% Conf. Interval]

x | 1.052337 .0747708 14.07 0.000 .904883 1.199791

z | -.0218478 .0585315 -0.37 0.709 -.1372765 .093581

_cons | -.0184318 .0381422 -0.48 0.629 -.0936512 .0567876

to find that Z is not significant at any reasonable confidence level (p-value is 0.709).
Therefore, we fail to reject the null of no measurement error as expected. Now, we
generate a measurement error-contaminated regressor (X # X*):

. gen double eta = rnormal(0,0.5)
. gen X = xs + eta

Again, we regress Y on X and Z (and a constant):

. Teg y x z
Source | SS daf MS Number of obs = 200
+ F(2, 197) = 116.36
Model | 91.0844045 2 45.5422023 Prob > F = 0.0000
Residual | 77.1046338 197 .39139408 R-squared = 0.5416
+ Adj R-squared = 0.5369
Total | 168.189038 199 .845171047 Root MSE = .62561
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y | Coef . Std. Err. t P>|t] [95% Conf. Interval]
x | .5981834 .0608373 9.83 0.000 .4782075 .7181593
z | .2439546 .0578135 4.22 0.000 .1299419 .3579674
_cons | -.0331463 . 0442702 -0.75 0.455 -.1204506 .054158

to find that now Z is significant at every reasonable confidence level (p-value is 0.000).
Therefore, we strongly reject the null of no measurement error.

In the presence of additional, correctly measured, controls in the regression model,
we would proceed exactly as above except that we would include the additional controls
in the regression command.

3 Nonparametric Model — the New dgmtest Command

While the approach to testing Hy in the previous section is straightforward and intu-
itive, its validity relies on strong assumptions: linearity in the outcome equation and
classical measurement error in X. Since nonlinearities in the regression equation and
measurement error in X may manifest themselves in similar ways (Chesher| (1991))), it is
important to allow for nonlinearities in the relationship between Y and X* when testing
for measurement error. In addition, a large literature has documented that measure-
ment error in economic data is rarely classical (see the survey by [Bound et al. (2001)),
for example). In this section, we describe how to test Hy in nonlinear models with
nonclassical measurement error.

Suppose the variable Z is related to X™*, but at the same time excluded from the
outcome model in the sense that

E(Y|X*,Z) = E(Y|X*) as. (4)

i.e. it can affect outcomes only through the true explanatory variable X*. Then it
is easy to see that, under Hy, Z must also be excluded from the outcome equation
conditional on the observed X:

E(Y|X,Z)=E(Y|X) as. (5)

Unlike Hy, this is a restriction that depends only on observables and can directly be
tested without making any parametric assumptions about how the conditional mean of
Y depends on X*. In fact, [Wilhelm| (2018b|) shows that, under additional assumptions,
Hjy not only implies, but is also implied by the observable restriction . Therefore,
failing to reject may be interpreted as failing to reject Hy and rejecting may be
interpreted as rejecting Hy.

The main assumptions required for this equivalence result are, first, the exclusion re-
striction , second, a relevance condition that ensures Z is sufficiently strongly related
to X* and, third, monotonicity of the conditional mean function z* — E(Y|X* = z*).
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The exclusion restriction is similar to the exclusion restriction in the linear IV model,
in the sense that Z cannot appear in the outcome equation, at least conditional on X *.
To satisfy the relevance condition we need to be able to find two values of Z, say z1, 22,
such that the probability mass functions of X*|Z = z; and X*|Z = z2 do not cross more
than once. This assumption is testable under the additional assumption that X and X*
are sufficiently strongly monotonically related because, in that case, we must also have
that the probability mass functions of X|Z = z; and X|Z = 25 do not cross more than
once (see Appendix A.3 in ) Finally, monotonicity of the relationship
between the outcome and the explanatory variable is a weak assumption that is often
directly implied by economic theory, e.g. when the conditional mean E(Y|X* = z*)
is a production, cost, or utility function. Examples can be found in [Matzkin| (1994),
Olley and Pakes| (1996), Cunha et al.| (2010), Blundell et al.| (2012, 2016), Kasy] (2014)),
Hoderlein et al.|(2016), |Chetverikov and Wilhelm| (2017]),[Wilhelm| (2018a)), among many
others.

In some applications, Z may be excluded from the outcome equation only after
conditioning on some additional, correctly measured controls W, i.e. the exclusion
restriction is replaced by

E(Y|X*W,Z)=E(Y|X*,W)  as.. (6)

This additional conditioning on W is necessary, for example, in cases in which W de-
termines both Y and Z. Under (@, the null hypothesis Hy then implies

E(Y|X,W,Z)=E(Y|X,W)  as. (7)

The null hypothesis is, in fact, equivalent to @ under conditions similar to those re-
quired for the equivalence of Hy and . In the implementation of the test we allow for
two types of additional controls, say W = (W7, W5), where the vector W is included in
the conditional mean in a nonseparable fashion and the vector W5 is additively separable
and linear:

E(YIX, W) = g(X, W) +7'W,

for some function g and some vector of coefficients 7.

There exist many tests of the conditional mean independence in and , for
example [Gozalo| (1993), [Fan and Li| (1996), Delgado and Gonzalez Manteigal (2001)),
Mahajan| (2006), and Huang et al. (2016). Therefore, any of those could be used for
testing for the presence of measurement error. In the following subsections we introduce
a new Stata command [R] dgmtest that implements the test by [Delgado and Gonza-|
llez Manteiga) (2001). This test has some desirable properties such as relatively simple
implementation and its ability to detect alternatives at the \/n-rate.

3.1 The Test by Delgado and Gonzalez Manteiga (2001)

We briefly describe the test by Delgado and Gonzalez Manteigal (2001)) in the case in
which there are no additional controls W. The authors rewrite the null hypothesis of
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conditional independence, (5)), as
E[T(X,Z)] =0,

where
T(z,2) = Ep [fx(X){Y — Ep(Y|X)}1{X < 2}1{Z < z}],

1{A} is equal to one if the event A holds, zero otherwise, and fx is the density of X.
Given a random sample {(Y;, X;, Z;)}", from the distribution of (Y, X, Z), consider
the empirical analogue T, (x, z) of T'(z, 2):

T(o2) i oy 50 K () (- ) 1 < o2 < 2,

where h is a bandwidth parameter and K a kernel function. |[Delgado and Gonza-
lez Manteigal (2001) propose two test statistics: the Cramér-von Mises statistic T, :=
ny i Tn(Xi, Z;)* and the Kolmogorov-Smirnov statistic Ty, := sup, , , [v/nTy(z, 2)|.
Critical values of the test are computed using a multiplier bootstrap.

Testing the version with additional controls, , is a simple extension of the above
test. In the presence of additively separable controls W5, we perform the test in two
steps. First, we compute an estimator 7 of 7 as in |Robinson| (1988)). Then, we apply
Delgado and Gonzalez Manteigal (2001))’s test as described above, replacing Y; by Y; —
' X;.

3.2 Syntax

The [R] dgmtest command implements the test by [Delgado and Gonzalez Manteiga
(2001). The syntax of the command is as follows:

dgmtest depvar expvar [zf] [m] [, qz(#) qu2(#) teststat(string)
kernel (string) bootdist(string) bw(#) bootnum(#) ngrid(#) qgrid(#)]

The two required arguments of the command are depvar (the outcome variable Y))
and expvar (a list of variables containing all elements of X, W, and Z). Basically, expvar
consists of two sets of explanatory variables: the variables X and W = (W3, W), which
are significant under the null, and the variable Z, which is not significant under the
null. Therefore, ezpvar should consist of at least two variables (X and Z), but possibly
more (W). The order of the variables in expvar is as follows: X, Wy, Wa, and Z.

3.3 Options

We now describe the options of the command. If options are left unspecified, the
command runs on the default settings.

gz(integer) is the dimension of Z. The default is 1.
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qw2(integer) is the dimension of Wy. The default is 0, which means there are no
additional controls Ws.

teststat(string) is the type of test statistic to be used: CvM and KS represent the
Cramér-von Mises and Kolmogorov-Smirnov statistics, respectively. The default is
CvM.

kernel (string) is the kernel function. The default kernel is the Epanechnikov kernel
(epanechnikov). Alternatively, we can choose one among two other Epanechnikov
kernels order of 2 and 4 with the support [—1, 1] (epan2 and epan4), biweight kernel
(biweight), Gaussian kernel (normal), rectangle kernel (rectangle), and triangular
kernel (triangular).

bootdist (string) is the distribution of the bootstrap multiplier variable. Follow-
ing [Delgado and Gonzalez Manteiga) (2001)), it should have a zero mean and unit
variance. The default is mammen in |[Hardle and Mammen| (1993)), which is the
two point distribution attaching masses (v/5+ 1) /2v/5 and (v5—1) /2V/5 to the
points — (\/5 — 1) /2 and (\/5 + 1) /2, respectively. Alternatively, we can choose
the Rademacher distribution (rademacher) or the continuous uniform distribution

on (—v3,v/3) (uniform).

bw(real) is the bandwidth h, taken to be the same for every component of (X, W7).
The default is n~ /3, which is a rule of thumb in [Delgado and Gonzalez Manteiga
(2001)), where n is the sample size and ¢ the dimension of (X, W7).

bootnum(integer) is the number of bootstrap samples for the computation of the test’s
critical value. The default is 500.

ngrid(integer) is the number of equally spaced grid points used to compute the supre-
mum of the Kolmogorov-Smirnov statistic, if that statistic is chosen via the option
teststat. The default is 0, which means that the sample serves as the grid. Choos-
ing 0 is required for calculating the exact Kolmogorov-Smirnov statistic, but it is a
burden when we perform a simulation with a large sample, so one might want to
choose a positive number smaller than the sample size in that case. The user need
not specify this if CvM is used for teststat.

ggrid(real) is a quantile probability between 0 and 1 to set the min and max values
of the grid points in the previous option. If ggrid is smaller than 0.5, the min value
is the qgrid-quantile and the max value is the (1-qgrid)-quantile. The default is 0,
so that in that case the grid ranges from the min to the max value in the sample.
The user need not specify this if CvM is used for teststat.

3.4 Saved Results

The command dgmtest generates the following results in e ():
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Scalars
e(N) number of observations e(btpv) bootstrap p-value
e(dimXwW1) dimension of (X, W1) e(btcvl) 1% bootstrap critical value
e (dimW2) dimension of Wa e(btcvb) 5% bootstrap critical value
e(dimZz) dimension of Z e(btcv10) 10% bootstrap critical value
e(stat) scalar value of the test statistic e(ngrid) number of grid points
e (bootnum) number of bootstrap samples  e(qgrid) quantile probability for min or
e (bw) bandwidth h max values of grid points
Macros
e(cmd) dgmtest e(teststat) type of test statistic
e(title) nonparametric significance test e(bootdist) distribution of bootstrap
e(kernel) type of kernel function multiplier variable

3.5 A Simple Example

Consider again the simple simulated example from Section [2| First, perform the non-
parametric test for measurement error on the correctly measured explanatory variable,
using the default settings of the dgmtest command:

. dgmtest y xs z

Delgado and Manteiga test

HO: E[Y | X,W1,Z] = E[Y | X,Wi]
————— parameter settings --——--

Test statistic: CvM (default)

Kernel: epanechnikov (default)

bw = n~(1/3q) (default)

bootstrap multiplier distribution: mammen (default)

number of observations: 200
bandwidth: .17099759

dimension of (X,W1): 1

dimension of W2: 0O

dimension of Z: 1

number of bootstrap samples: 500

CvM = .0023243

bootstrap critical value at 1%: .01183001
bootstrap critical value at 5%: .00939969
bootstrap critical value at 10%: .00781435
p(CvM < CuM*) = .812

The p-value of the Cramér-von Mises version of the test is 0.812 which means we fail
to reject the null of no measurement error at all reasonable confidence levels. Now, we
perform the test on mismeasured explanatory variable, again using the default settings
of the command:

. dgmtest y x z
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Delgado and Manteiga test

HO: E[Y | X,W1,Z] = E[Y | X,W1]

————— parameter settings -----
Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n~(1/3q) (default)

bootstrap multiplier distribution: mammen (default)
number of observations: 200

bandwidth: .17099759

dimension of (X,W1): 1

dimension of W2: 0O

dimension of Z: 1
number of bootstrap samples: 500

CvM = .01688708

bootstrap critical value at 1%: .01369306
bootstrap critical value at 5%: .01035709
bootstrap critical value at 10%: .00813346
p(CvM < CvMx) = .002

As expected the nonparametric test detects the measurement error and strongly rejects
the null of no measurement error (p-value is 0.002) at all reasonable confidence levels.

4 Monte Carlo Simulation

In this section, we present a small simulation study investigating the finite sample
performance of the measurement error test.

We consider the following outcome equation
*2 1 * 2
Y =X"+oX + N (0,02) (8)
with different models for the measurement system:

ModelI: X =X*"+D-N(0,0%3,5), Z=X"+N(0,0.3%);

Model II: X = X*+D-N (0,0%,5) e X 7% Z=x"+N(0,0.3%);

Model III: X = X*+ DN (0,0%,5) e 7% Z = X"+ N (0,0.3%) e X 02,
Model IV: X = X*+D-N (0,0%,1), Z=—(X*-1)2+N(0,02?%).

E
E

The value for o, is 0.5 for the models I, II, and III, and 0.2 for the model IV. In all
four models, X* ~ U [0, 1] and the random variable D is Bernoulli(1 — A), where 1 — X
is the probability of measurement error in X occurring. 1 — X = 0 means there is no
measurement error in X, which represents the null hypothesis. To generate alternatives,
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we increase 1 — A on a grid up to one. We also vary the standard deviation of the
measurement error in X, oprp, in {0.2,0.5,1}. Therefore, alternatives get closer to the
null as we decrease 1 — X and/or oy . We also vary the sample size n € {200,500},
but all models are simulated on 1,000 Monte Carlo samples. Following Delgado and
Gonzalez Manteigal (2001)), we use the bandwidth rule-of-thumb value n~/3. Simulation
results for different choices of bandwidths, which are not presented here, are very similar.

The Cramér-von Mises statistics are generated by
. dgmtest Y X Z, kernel(epan2) bootnum(100)

The Kolmogorov-Smirnov test statistics with 10 grid points are generated by
. dgmtest Y X Z, teststat(KS) kernel(epan2) bootnum(100) ngrid(10) qgrid(0.05)

Table [1| shows the rejection frequencies of the test. Overall the test controls size
well and possesses power against all alternatives. These findings are consistent with the
Monte Carlo simulation results in [Wilhelm| (2018b)).
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Table 1: Rejection frequencies from the simulation experiment.

n = 200 n = 500
oy 1—X 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Model 1

0.2 0.164 0.377 0.600 0.789 0.270 0.677 0.922 0.983
0.5 CvM  0.049 0.394 0.853 0981 0995 0.049 0.777 0.996 1.000 1.000
1.0 0.319 0.847 0.994 0.999 0.683 0.997 1.000 1.000
0.2 0.143 0.316 0.538 0.711 0.242 0.611 0.875 0.973
0.5 KS 0.051 0.377 0.836 0.973 0996 0.054 0.697 0.995 1.000 1.000
1.0 0.314 0.813 0.988 0.998 0.652 0.996 1.000 1.000
Model I1

0.2 0.123 0.240 0.374 0.537 0.190 0.436 0.717 0.886
0.5 CvM  0.049 0.322 0.767 0.956 0.992 0.049 0.630 0.986 1.000 1.000
1.0 0.370 0.876 0.996  0.998 0.755 0.999 1.000 1.000
0.2 0.111  0.211 0.322 0.490 0.166 0.380 0.642 0.856
0.5 KS 0.051 0.287 0.713 0.934 0.986 0.0564 0.567 0.974 1.000 1.000
1.0 0.357 0.845 0.990 0.998 0.698 0.995 1.000 1.000
Model IIT

0.2 0.149 0.312 0.512 0.706 0.235 0.591 0.852 0.963
0.5 CvM  0.0561 0.399 0.876 0.986 1.000 0.055 0.782 0.997 1.000 1.000
1.0 0.472 0.952 1.000 1.000 0.875 1.000 1.000 1.000
0.2 0.127 0.287 0.429 0.632 0.201 0.523 0.819 0.950
0.5 KS 0.050 0.376 0.848 0.983 0.998 0.053 0.736 0.996 1.000 1.000
1.0 0.446  0.952 0.998 1.000 0.844 1.000 1.000 1.000
Model IV

0.2 0.586 0.941 0.997 1.000 0.938 1.000 1.000 1.000
0.5 CvM  0.076 0912 1.000 1.000 1.000 0.061 1.000 1.000 1.000 1.000
1.0 0.828 1.000 1.000 1.000 0.999 1.000 1.000 1.000
0.2 0.464 0.889 0.990 0.998 0.847 0.999 1.000 1.000

0.5 KS 0.062 0.898 1.000 1.000 1.000 0.052 0.998 1.000 1.000 1.000
1.0 0.802 1.000 1.000 1.000 0.999 1.000 1.000 1.000
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Figure 1: Nonparametric density estimates of administrative earnings (“ssearn77”) and
survey earnings (“repearn77”) in 1977, using cross-validated bandwidths.

5 Example: Testing for the Presence of Measurement
Error in Administrative Earnings Data

In this section, we test for measurement error in the U.S. Social Security Administra-
tion’s measure of earnings. While measurement error in survey responses is a wide-
spread concern that has occupied a large literature (Bound et al.| (2001)), only recently
empirical researchers have emphasized concerns about the reliability of administrative
data (e.g. |[Fitzenberger et al.| (2006)), Kapteyn and Ypmal (2007), Abowd and Stinson
(2007)), (Groen| (2011))).

The data come from the 1978 Current Population Survey-Social Security Earnings
Records Exact Match File. The sample selection is similar to [Wilhelm| (2018b) except
that we only consider white singles of age between 25 and 60 who work full time the
full year. The sample size is 2,683 individuals. The dataset contains a survey measure
of earnings in 1977 (repearn77) from the CPS and two administrative measures of
earnings in 1977 and in 1976 (ssearn77 and ssearn76), the earnings records of the
social security administration. We denote by Y the survey measure and by X and Z
the administrative measures in 1977 and 1976, respectively. A test for the presence of
measurement error in X as in Hy is then a test of the presence of measurement error in
administrative earnings in 1977.

Figure [I] shows nonparametric density estimates of survey and administrative earn-
ings. Figure [2| plots the nonparametric density estimate of the difference between ad-
ministrative and survey earnings. There is substantial probability mass within USD
£1,000 which are large deviations relative to the maximum earnings in the sample
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Figure 2: Nonparametric density estimate of the difference in administrative and survey
earnings in 1977, using a cross-validated bandwidth.

pdf of admin given past admin earnings
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Figure 3: Nonparametric estimate of the conditional density of administrative earn-
ings in 1977 given lagged administrative earnings being in the 2nd or 9th percentile.
Bandwidths are chosen by cross-validation.

(USD 16, 500).

The exclusion restriction (4]) is likely to hold in this context because the measurement
errors in survey and administrative earnings come from very different sources (see the
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Figure 4: Nonparametric estimate of E[Y|X, Z], where Y is survey earnings in 1977,
X and Z are administrative earnings in 1977 and 1976, respectively. Bandwidths are
chosen by cross-validation.

more detailed discussion in [Wilhelm| (2018b)). To assess the relevance of the second
measurement Z, which here is lagged administrative earnings, we plot the density of
administrative earnings in 1977 given those in 1976. Figure [3] shows this density for
those individuals with lagged earnings in the 2nd and 9th percentile of the 1976 earnings
distribution. The graph shows that the second measurement 7, lagged administrative
earnings, shifts the earnings distribution in the next period to the right as we go from
the 2nd to the 9th percentile. In particular, the two densities seem to cross only once,
which is consistent with the relevance condition that is needed for the equivalence of
Hj and the observable restriction .

Figureshows nonparametric estimates of the conditional mean E(Y|X =z, Z = 2)
as a function of z for three values of x. If there was no measurement error in X, then
implies that this conditional mean should not vary with z. The graphs suggests
that there is some variation in that dimension, particularly for small and large values of
earnings, but the graph does not contain any information about whether this variation
is statistically significant. We therefore now discuss the results of the formal test of Hy.

The test is performed using the new command [R] dgmtest with its default settings
except we increase the number of bootstrap samples to 5,000:

. dgmtest repearn77 ssearn77 ssearn76, bootnum(5000)

Delgado and Manteiga test
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Table 2: Test results.

p-value test stat. cval 1% cval 5%  cval 10% h  sample size
full sample 0.026 0.512 0.631 0.418 0.336  0.072 2,682
males 0.141 0.276 0.597 0.404 0.321 0.102 944
females 0.100 0.318 0.583 0.407 0.319 0.083 1,738
< highschool 0.080 0.290 0.759 0.759 0.111  0.169 206
highschool 0.210 0.143 0.616 0.459 0.210 0.091 1,329
> highschool 0.072 0.818 1.504 0.922 0.721  0.096 1,147

HO: E[Y | X,W1,Z] = E[Y | X,W1]
————— parameter settings -----

Test statistic: CvM (default)

Kernel: epanechnikov (default)

bw = n"(1/3q) (default)

bootstrap multiplier distribution: mammen (default)

number of observations: 2682
bandwidth: .07197479

dimension of (X,W1): 1

dimension of W2: O

dimension of Z: 1

number of bootstrap samples: 5000

----- test results -----

CvM = .51238949

bootstrap critical value at 1%: .63053938
bootstrap critical value at 5%: .41803533
bootstrap critical value at 10%: .33279162
p(CvM < CuM*) = .0262

The test produces a p-value of 0.0262 so we reject the null of no measurement error
in administrative earnings at high confidence levels. Table [2| shows the test results for
the full sample as well as for subsamples with the same gender and education. The
p-values for the low and high education groups are about 8% and 7%, which is some
evidence for the presence of measurement error, but weaker than in the full sample. For
individuals in the middle education group there is no evidence of measurement error.
Similarly, we cannot reject the null on the subsamples of males and females. Of course,
the sample sizes on the subsamples are significantly smaller than on the full sample, so
it may be harder to reject the null for that reason.
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