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ABSTRACT. We propose a new specification test for assessing the validity of fuzzy regression discon-
tinuity designs (FRD-validity). We derive a new set of testable implications, characterized by a set of
inequality restrictions on the joint distribution of observed outcomes and treatment status at the cut-off.
We show that this new characterization exploits all the information in the data useful for detecting
violations of FRD-validity. Our approach differs from, and complements existing approaches that test
continuity of the distributions of running variables and baseline covariates at the cut-off since ours
focuses on the distribution of the observed outcome and treatment status. We show that the proposed
test has appealing statistical properties. It controls size in large sample uniformly over a large class of
distributions, is consistent against all fixed alternatives, and has non-trivial power against some local
alternatives. We apply our test to evaluate the validity of two FRD designs. The test does not reject the
FRD-validity in the class size design studied by Angrist and Lavy (1999) and rejects in the insurance
subsidy design for poor households in Colombia studied by Miller, Pinto, and Vera-Hernández (2013)
for some outcome variables, while existing density tests suggest the opposite in each of the cases.
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1. INTRODUCTION

In recent years, the regression discontinuity (RD) design first introduced by Thistlethwaite and

Campbell (1960) has become one of the most widely used quasi-experimental methods in program

evaluation studies. In the RD design, the probability of being treated changes discontinuously at a

known cut-off of an underlying assignment variable, i.e. the running variable. The RD design is

called sharp if the probability jumps from zero to one, and is called fuzzy otherwise. This cut-off

point is usually set by an administrative or legislative rule. For example, Angrist and Lavy (1999)

use Maimonides’s rule in Israel that forces a maximum class size of 40 to estimate the causal effect

of class size on student performance, and Lee (2008) investigates the effect of the incumbency

advantages on the next election in the United States House of Representatives.1

The RD design identifies the causal impact of the treatment at the cut-off by comparing the

outcomes of treated and non-treated individuals who lie close to the cut-off. The validity of the RD

design relies crucially on the assumption that the individuals right below and above the cut-off have

similar distributions of the unobservables. Hahn, Todd, and Van der Klaauw (2001, HTV hereafter)

first formalize this identification argument of causal effects at the cut-off using the framework of

potential outcomes, and subsequently, Frandsen, Frölich, and Melly (2012, FFM hereafter), Dong

and Lewbel (2015) and Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016) consider a refined set of

identifying conditions. In the fuzzy regression discontinuity (FRD) setting, the two key conditions for

identification, which we refer to as FRD-validity in this paper, are (i) local continuity, the continuity

of the distributions of the potential outcomes and treatment selection heterogeneity at the cut-off, and

(ii) local monotonicity, the monotonicity of the treatment selection response to the running variable

near the cutoff.

Credibility of FRD-validity is controversial in many empirical contexts. For instance, agents

(or administrative staff) may manipulate the value of their running variable to be eligible for their

preferred treatment. If their manipulation behavior depends on their underlying potential outcomes,

this can lead to a violation of the local continuity condition. As another example, when multiple

programs share the index of treatment assignment and its threshold (e.g. the poverty line), but an

individual’s treatment status is observed only for the treatment of interest, the potential outcome

1 Imbens and Lemieux (2008), Lee and Lemieux (2010) for surveys, and Cattaneo and Escanciano (2017) for recent
advances of the literature.
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distributions indexed by the treatment of interest can be discontinuous at the cut-off (see Miller, Pinto,

and Vera-Hernández (2013) and Carneiro and Ginja (2014) for examples and discussions of the issue).

Motivated by a clearer economic interpretation and the availability of testable implications, Lee

(2008) imposes a stronger set of identifying assumptions that implies continuity of the distributions

of running variable and covariates at the cut-off. Following his approach, researchers routinely

assess the continuity condition by applying the tests of McCrary (2008), Otsu, Xu, and Matsushita

(2013), Canay and Kamat (2018), and Cattaneo, Jansson, and Ma (2016). When the running variable

is manipulated, Gerard, Rokkanen, and Rothe (2018) provide a partial identification approach in

the presence of “one-sided manipulation”. As noted by McCrary (2008), however, in the absence

of Lee’s additional identifying assumption, the continuity of the distributions of running variable

and baseline covariates at the cut-off is neither necessary nor sufficient for FRD-validity. In other

words, rejection or acceptance of the existing tests is non-informative about FRD-validity or violation

thereof.

This paper proposes a novel test for FRD-validity. We first derive a new set of testable implications,

characterized by a set of inequality restrictions on the joint distribution of observed outcomes and

treatment status at the cut-off. These testable implications are necessary conditions for FRD-validity,

but we show that they cannot be strengthened without additional assumptions, i.e., they exploit all the

information in the data useful for detecting the violation of FRD-validity. We propose a nonparametric

test for these testable implications. The test controls size uniformly over a large class of distributions

of observables, is consistent against all fixed alternatives violating the testable implications, and has

non-trivial power against some local alternatives. Implementability and asymptotic validity of our

test neither restricts the support of Y nor presumes the continuity of running variable’s density at the

cut-off. Monte Carlo simulations show that the test performs well in finite samples.

The testable implications that our test assesses exploit the observations of not only the running

variable, but also treatment status and observed outcome, which the existing continuity tests never

make use of. A rejection of our test therefore implies the violation of FRD-validity no matter whether

one imposes additional restrictions of the type assumed in Lee (2008). Another unique feature of our

test is that when multiple outcomes are available within the same FRD design, the researchers can

assess the credibility of FRD-validity separately for each outcome variable. Our test thus significantly
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differs from and complements existing continuity tests, and we recommend implementing it in any

FRD study regardless of results that the continuity tests of the running variable yield.

To illustrate that our test can provide new insights in empirical applications, we apply it to the

designs studied in Angrist and Lavy (1999) and Miller, Pinto, and Vera-Hernández (2013). Angrist

and Lavy (1999) use the discontinuity of class size with respect to enrollment due to Maimonides’

rule to identify the causal effect of class size on student performance. We find that the FRD validity

in this example is not rejected by our test for all 4 outcome variables (Grade 4 Math and Verb, Grade

5 Math and Verb), even though an existing continuity test suggests evidence for discontinuity of the

running variable’s density at the cut-off (see Otsu, Xu, and Matsushita, 2013). Miller, Pinto, and

Vera-Hernández (2013) evaluate the impact of the “Colombia’s Régimen Subsidiado"–a publicly

financed insurance program–on 33 outcomes, where program eligibility is determined by a poverty

index. Although the continuity test supports continuity of the running variable density at the cutoff,

our test rejects FRD validity for 3 outcome variables (Household Education Spending, Total Spending

on Food, and Total Monthly Spending). This result suggests further investigation would be beneficial

for identifying and estimating the causal effect on these outcomes.

The rest of the paper is organized as follows. In Section 2, we lay out the main identifying

assumptions that our test aims to assess and derive their testable implications. Section 3 provides test

statistics and shows how to obtain their critical values. Monte Carlo experiments shown in Section 4

examine the finite sample performance of our tests. Section 5 presents the empirical applications.

We discuss possible extensions in Section 6, and conclude in Section 7. All proofs are collected in

the Appendix.

2. IDENTIFYING ASSUMPTIONS AND SHARP TESTABLE IMPLICATIONS

We adopt the potential outcome framework introduced in Rubin (1974). Let (Ω,F , P) be a

probability space, where we interpret Ω as the population of interest and ω ∈ Ω as a generic

individual in the population.

Let R be an observed continuous random variable with supportR ⊂ R. We refer to R as a running

variable. Let D(·, ·) : R×Ω → {0, 1} and D(r, ω) be the potential treatment that individual ω

would have received, had her running variable been set to r. For d ∈ {0, 1}, we define mappings
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Yd(·, ·) : R×Ω→ Y ⊂ R and let Yd(r, ω) denote the potential outcome of individual ω had her

treatment and running variable been set to d and r, respectively.

We view (Y1(r, ·), Y0(r, ·), D(r, ·))r∈R as random elements indexed by r and write them as

(Y1(r), Y0(r), D(r)) when it causes no confusion. By definition, D(R) ∈ {0, 1} is the ob-

served treatment and we abbreviate it as D. Likewise, we denote the observed outcome by

Y = Y1(R)D(R) + Y0(R)(1− D(R)) throughout the paper. We use P to denote the joint distribu-

tion of
(
(Y1(r), Y0(r), D(r))r∈R, R

)
, which induces the joint distribution of observables (Y, D, R).2

We assume throughout that the conditional distribution of (Y, D) given R = r is well-defined for

all r in some neighborhood of r0. Note that by letting the potential outcomes indexed also by r, we

allow the running variable to have direct causal effect on outcomes. This could be relevant in some

empirical applications as discussed in Dong and Lewbel (2015), and Dong (2018).

The main feature of the RD design is that the probability of being treated changes discontinuously

at a known threshold r0 ∈ R. In FRD designs considered here, D(r, ω) can take different values

for different ω but the proportion for which D(r, ω) = 1 varies discontinuously at r0. We also

follow the literature of FRD and assume that the two binary variables D+ ≡ limr↓r0 D(r) and

D− ≡ limr↑r0 D(r) are well defined for all ω.

Analogous to the local average treatment effect (LATE) framework (Imbens and Angrist (1994)),

we define the compliance status T(r, ω) of individual ω in a small neighborhood of the cut-off r0

based on how the potential treatment varies with r. Similar to FFM, Bertanha and Imbens (2014), and

Dong and Lewbel (2015), for ε > 0, we classify the population members into one of the following

five categories:

Tε(ω) =



A, if D(r, ω) = 1, for r ∈ (r0 − ε, r0 + ε),

C, if D(r, ω) = 1{r ≥ r0}, for r ∈ (r0 − ε, r0 + ε),

N, if D(r, ω) = 0, for all r ∈ (r0 − ε, r0 + ε),

DF, if D(r, ω) = 1{r < r0}, for r ∈ (r0 − ε, r0 + ε),

I, otherwise

, (1)

where A, C, N, DF and I represent “always takers”, “compliers”, “never takers”, “defiers” and

“indefinite”, respectively. The above definition coincides with the definition of types in FFM as

2For the purpose of exposition, we do not introduce other observable covariates X here. Section 6.1 incorporates X into
the analysis.
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ε → 0. As pointed out by Dong and Lewbel (2015), for a given ε and a given individual ω, this

definition implicitly assumes the group to which ω belongs does not vary with r. This way of

defining the treatment selection heterogeneity does not restrict the shape of P(D = 1|R = r) over

(r0 − ε, r0 + ε).

We are ready to present the main identifying assumptions of which we aim to test their implication.

In the statements of the assumptions we assume that all the limiting objects exist.

Assumption 1 (Local monotonicity). For t ∈ {DF, I}, limε→0 P(Tε = t|R = r0 + ε) = 0 and

limε→0 P(Tε = t|R = r0 − ε) = 0.

Assumption 2 (Local continuity). For d = 0, 1, t ∈ {A, C, N}, and measurable subset B ⊆ Y , we

have

lim
ε→0

P(Yd(r0 + ε) ∈ B, Tε = t|R = r0 + ε) = lim
ε→0

P(Yd(r0 − ε) ∈ B, Tε = t|R = r0 − ε).

Assumptions 1 and 2 play similar roles of the instrument exogeneity (exclusion and random

assignment) and the instrument monotonicity assumptions in the LATE framework. Assumption 1

says that as the neighborhood of r0 shrinks, the conditional proportion of defiers and indefinites

converges to zero, implying that only “always takers”, “compliers”, and “never takers” may exist at

the limit. The local continuity assumption says that the conditional joint distributions of potential

outcomes and compliance types are continuous at the cut-off. Our local continuity condition concerns

the distributional continuity rather than only the conditional mean (as in the HTV’s spirit).

The main feature of the FRD designs is that the probability of receiving treatment is discontinuous

at the cut-off.

Assumption 3 (Discontinuity). π+ ≡ limr↓r0 P(D = 1|R = r) 6= π− ≡ limr↑r0 P(D = 1|R =

r).

Assumptions 1 to 3 together guarantee the existence of compliers at the cut-off so that the

parameters of interest in the FRD design are well-defined. Under Assumptions 1 to 3, the complier’s

potential outcome distributions at the cut-off, defined by

FY1(r0)|C,R=r0
(y) ≡ lim

r→r0
P
(
Y1(r) ≤ y|T|r−r0| = C, R = r

)
,

FY0(r0)|C,R=r0
(y) ≡ lim

r→r0
P
(
Y0(r) ≤ y|T|r−r0| = C, R = r

)
,
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are identified by the following quantities:3 for all y ∈ Y ,

FY1(r0)|C,R=r0
(y) =

limr↓r0 EP[1{Y ≤ y}D|R = r]− limr↑r0 EP[1{Y ≤ y}D|R = r]
π+ − π−

,

FY0(r0)|C,R=r0
(y) =

limr↑r0 EP[1{Y ≤ y}(1− D)|R = r]− limr↓r0 EP[1{Y ≤ y}(1− D)R = r]
π+ − π−

.

This is analogous to the distributional identification result by Imbens and Rubin (1997) in the LATE

model. The identification of complier’s potential outcome distributions implies the identification of a

wide class of causal parameters including the complier’s average effect and local quantile treatment

effects.4 Our identification result modifies FFM’s Lemma 1 to accommodate the fact that we do not

exclude r from the potential outcomes.

Note that Assumption 3 can be tested using the inference methods proposed by Calonico, Cattaneo,

and Titiunik (2014) and Canay and Kamat (2018). Our test, hence, focuses on testing Assumptions 1

and 2.

The next theorem shows that local monotonicity and local continuity together imply a set of

inequality restrictions on the distribution of data.

Theorem 1. (i) Under Assumptions 1 and 2, the following inequalities hold:

lim
r↑r0

EP[1{y ≤ Y ≤ y′}D|R = r]− lim
r↓r0

EP[1{y ≤ Y ≤ y′}D|R = r] ≤ 0 (2)

lim
r↓r0

EP[1{y ≤ Y ≤ y′}(1− D)|R = r]− lim
r↑r0

EP[1{y ≤ Y ≤ y′}(1− D)|R = r] ≤ 0 (3)

for all y, y′ ∈ R.

(ii) For a given distribution of observables (Y, D, R), assume that the conditional distribution of

Y given (D, R) has the probability density function with respect to a dominating measure µ on Y ,

has integrable envelope with respect to µ, and whose left-limit and right-limit with respect to the

conditioning variable R are well defined at R = r0, µ−a.s. If inequalities (2) and (3) hold, there

exists a joint distribution of (D̃(r), Ỹ1(r), Ỹ0(r) : r ∈ R) such that Assumptions 1 and 2 hold, and

the conditional distribution of Ỹ = Ỹ1(R)D̃(R) + Ỹ0(R)(1− D̃(R)) and D̃ = D̃(R) given R = r

induces the conditional distribution of (Y, D) given R = r for all r ∈ R.

3For completeness, we show this identification result in Proposition 1 in Appendix C.2.
4Assumptions 1 and 2 play similar roles as FFM’s Assumptions I3 and I2, respectively. The main difference from FFM’s
assumptions is that FFM define the compliance status just at the limit, and assume that the conditional distributions of
potential outcomes given the limiting complying status and running variable are continuous at the cut-off.
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Theorem 1 (i) shows a necessary condition that the distribution of observable variables has to

satisfy under the FRD-validity conditions. In other words, a violation of inequalities (2) and (3)

informs that at least one of the FRD-validity conditions is violated. Theorem 1 (ii) clarifies that

inequalities (2) and (3) are the most informative way to detect all the observable violations of the FRD-

validity assumptions and the testable implications cannot be strengthened without further assumptions.

We, however, emphasize that FRD-validity is a refutable but not a confirmable assumption, i.e.,

finding inequalities (2) and (3) hold in data does not guarantee FRD-validity.

Remark 1. FRD-validity defined by Assumptions 1 and 2 does not constrain the marginal density of

R to be continuous at the cut-off. This contrasts with the testable implication of continuity of the

running variable density shown in Lee (2008) for the sharp RD setting and commonly assessed in

empirical practice. Lee’s testable implication comes with a restriction that assumes smooth potential

outcome equations with respect to continuously distributed unobservables. The testable implications

of Theorem 1 (i) are valid no matter whether one assumes Lee’s additional restrictions or not. In

addition, the testable implications of Theorem 1 (i) concern the joint distribution of (Y, D) local to

the cut-off, which the existing continuity tests for the running variable and observable covariates

never make use of. In this sense, our test developed below complements the existing continuity tests

and we recommend to implement it in any FRD studies whatever the results the continuity tests of

the running variable yield.

Remark 2. In analogy to the testable implications in the LATE model considered in Balke and Pearl

(1997), Imbens and Rubin (1997), Heckman and Vytlacil (2005), Kitagawa (2015), and Mourifié and

Wan (2017), we can interpret the testable implications of Theorem 1 (i) as an FRD version of the

non-negativity of the potential outcome density functions for the compliers at the cut-off.

Consider a closed interval [y, y + h] for h > 0. Following the argument in the proof of Theorem 1,

inequality (2) imply that

lim
r↓r0

EP[1{y ≤ Y ≤ y + h}D|R = r]− lim
r↑r0

EP[1{y ≤ Y ≤ y + h}D|R = r]

= lim
r→r0

EP[1{y ≤ Y1(r) ≤ y + h}|T|r−r0| = C, R = r]P(T|r−r0| = C|R = r) ≥ 0.
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We divide both sides by h and let h→ 0. Assume that we can switch the order of the limits and the

corresponding densities are well defined, we have

lim
r↓r0

P(D = 1|R = r) fY|D,R(y|1, r)− lim
r↑r0

P(D = 1|R = r) fY|D,R(y|1, r)

= lim
r→r0

fY1(r)|T|r−r0 |,R
(y|C, r)P(T|r−r0| = C|R = r) ≥ 0,

where fY|D,R and fY1(r)|T|r−r0 |,R
are the densities of the conditional distributions of Y given (D, R)

and Y1(r) given (T|r−r0|, R), respectively. Since limr→r0 P(T|r−r0| = C|R = r) = π+ − π− > 0,

inequality (2) is equivalent to limr→r0 fY1(r)|T|r−r0 |,R
(y|C, r) ≥ 0, i.e., the probability density of Y1

at the cut-off for the subpopulation of compliers is non-negative.

Remark 3. As the magnitude of propensity score jump π+ − π− gets smaller, we expect that the

inequalities of (2) and (3) get closer to binding. For instance, in the extreme case of π+ − π− = 0,

for a distribution satisfying the testable implication, inequalities (2) and (3) must hold with equalities,

i.e., the conditional distribution of (Y, D)|R is continuous at the cut-off. This means a distribution of

potential variables violating FRD-validity is more likely to violate the testable implications, as the

magnitude of the jump in the propensity score gets smaller. In the opposite direction, the testable

implication of Theorem 1 loses screening power when the FRD design is close to a sharp design.

Remark 4. In the LATE framework, de Chaisemartin (2017) argues that the Wald (IV) estimand

can have a well-defined causal interpretation under a weaker version of instrument monotonicity. A

parallel of his weaker monotonicity condition in the FRD setting can be written as follows: there

exists ε > 0

P(T|r−r0| = DF|Yd(r) = y, R = r) ≤ P(T|r−r0| = C|Yd(r) = y, R = r), d ∈ {0, 1}, y ∈ Y

for all r ∈ (r0 − ε, r0 + ε). It can be shown that our Theorem 1 holds by replacing Assumption 1

with this weaker monotonicity assumption and modifying Assumption 2 to include T = DF. That is,

the inequalities 2 and 3 remain to be unimprovable testable implications under this weaker version of

the local monotonicity assumption.

Bertanha and Imbens (2014) consider an alternative local monotonicity assumption that is more

restrictive than Assumption 1.
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Assumption 4 (Strong local monotonicity). There exists ε > 0 such that any individual in the

population is classified into one of the following three types based on their treatment selection

responses:

T =


A, if D(r) = 1, for r ∈ (r0 − ε, r0 + ε),

C, if D(r) = 1{r ≥ r0}, for r ∈ (r0 − ε, r0 + ε),

N, if D(r) = 0, for r ∈ (r0 − ε, r0 + ε).

(4)

This monotonicity implies that in some neighborhood of the cut-off, the compliance status is

invariant for any given individual. Indeed, the testable implications of Theorem 1 (i) remain valid.

Furthermore, it can be shown that strengthening Assumption 1 to Assumption 4 does not provide

more testable implications in that inequalities in Theorem 1 (i) remain to be unimprovable, i.e.,

Theorem 1 (ii) holds even if Assumption 1 is replaced by Assumption 4.5

Remark 5. The literature has considered the local independence assumption, which is a stronger

identifying assumption than local continuity of Assumption 2.

Assumption 5 (Local independence). There exists ε > 0 such that for d = 0, 1, (Yd(r), D(r)) is

jointly independent of R in the neighborhood (r0 − ε, r0 + ε) and limr↓r0 Yd(r) = limr↑r0 Yd(r) ≡

Yd(r0) a.s.

This assumption is slightly weaker than the HTV local independence assumption, since the

latter involves the local exclusion restriction that rules out causal dependence of Yd on R in the

neighborhood. Dong (2018) gives interesting comparison between the local continuity and HTV

local independence, and shows that the HTV local independence is restrictive to accommodate

various empirical RD specifications/models.6 The statement of Theorem 1 (i) indeed holds even if

Assumption 2 is replaced by Assumption 5.

5Given a distribution of observables, we prove Theorem 1 (ii) in Appendix C by constructing a distribution of potential
outcomes and selection types that satisfies the identifying assumptions. The distribution of potential outcomes and selection
types constructed there in fact satisfies Assumption 4.
6For example, a linear regression model with interactive terms Y = a + b(R− r0) + τD + τ1(R− r0)D + ε implies
treatment effect Y1 − Y0 = τ + τ1(r− r0) and HTV’s local independence essentially assumes that τ1 = 0, which can
be restrictive in many applications (see also discussions about the “treatment effect derivative” parameter in Dong and
Lewbel, 2015, for more details).
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3. TESTING PROCEDURE

This section proposes a testing procedure for the testable implications of Theorem 1 (i). We assume

throughout that a sample consists of independent and identically distributed (i.i.d.) observations,

{(Yi, Di, Ri)}n
i=1. Noting that the inequality restrictions of Theorem 1 (i) can be seen as infinitely

many unconditional moment inequalities local to the cut-off, we adopt and extend the inference

procedure for conditional moment inequalities developed in Andrews and Shi (2013) by incorporating

the local feature of the RD design. Implementability and asymptotic validity of our test neither

restricts the support of Y nor presumes the continuity of running variable’s density at the cut-off.7

Consider a class of instrument functions G indexed by ` ∈ L:

G = {g`(·) = 1{· ∈ C`} : ` ≡ (y, c) ∈ L} , where

C` = [y, y + c] ∩ Y and

L =
{
(y, c) : c−1 = q, and q · y ∈ {0, 1, 2, · · · , (q− 1)} for q = 1, 2, · · · , Q, · · ·

}
. (5)

G consists of indicator functions of closed and connected intervals on Y , and a countable set L

indexes the left endpoints and the widths of the intervals. Expressing the inequalities (2) and (3) by

νP,1(`) ≡ lim
r↑r0

EP[g`(Y)D|R = r]− lim
r↓r0

EP[g`(Y)D|R = r] ≤ 0, (6)

νP,0(`) ≡ lim
r↓r0

EP[g`(Y)(1− D)|R = r]− lim
r↑r0

EP[g`(Y)(1− D)|R = r] ≤ 0, (7)

for all ` ∈ L, we set up the null and alternative hypotheses as

H0 : νP,1(`) ≤ 0 and νP,0(`) ≤ 0 for all ` ∈ L,

H1 : H0 does not hold. (8)

Since H0 is equivalent to S ≡ supd∈{0,1},`∈L νP,d(`) ≤ 0, we construct our test statistic as a

standardized sample analog of S, which estimators of the unknown functions νP,d(`) weighted by

their standard errors are plugged in.

We construct ν̂d(`) an estimator for νP,d(`) by a difference of the two local linear regressions

estimated from below and above the cut-off with undersmoothing. We do not vary the bandwidths

7See Appendix B for regularity conditions for asymptotic validity of our test.
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over ` ∈ L for simplicity, but we allow them to vary across the cut-offs; let h+ = c+h and h− = c−h

be the bandwidths above and below the cut-off, respectively. We assume that their convergence rates

with respect to the sample size n are common as specified by h, e.g., h = n−1/4.5. The difference of

h+ and h− can be captured by possibly distinct constants c+ and c−.

Let σP,d(`) be the asymptotic standard deviation of
√

nh(ν̂d(`)− νP,d(`)) and σ̂d(`) be a uni-

formly consistent estimator for σP,d(`). See Algorithm 1 below for its construction. To ensure

uniform convergence of the variance weighted processes, we weigh ν̂d(`) by a trimmed version of

the standard error estimators, σ̂d,ξ(`) = max{ξ, σ̂d(`)}, where ξ > 0 is a trimming constant chosen

by users. We then define a Kolmogorov-Smirnov (KS) type test statistic,

Ŝn = sup
d∈{0,1}, `∈L

√
nh · ν̂d(`)

σ̂d,ξ(`)
. (9)

A large value of Ŝn is statistical evidence against the null hypothesis.

As done in Hansen (1996) and Barret and Donald (2003) in different contexts, we obtain asymp-

totically valid critical values by approximating the null distribution of the statistic using multiplier

bootstrap. Algorithm 1 below summarizes the implementation of our test. Theorems 2-4 in Ap-

pendix B show that the proposed test controls the size at pre-specified significant levels uniformly,

rejects fixed alternatives with probability approaching one, and has good power against a class of

local alternatives.

Algorithm 1. (Implementation)

i. Rescale the range of Y to unit interval and choose positive integer Q (e.g. Q = 15). Define

a finite class L according to equation (5) with q truncated at Q.

ii. For each ` ∈ L, let m̂1,+(`) and m̂1,−(`) be local linear estimators for limr↓r0 EP[g`(Y)D|R =

r] and limr↑r0 EP[g`(Y)D|R = r], respectively. Similarly, let m̂0,+(`) and m̂0,−(`) be local

linear estimators for limr↓r0 EP[g`(Y)(1− D)|R = r] and limr↑r0 EP[g`(Y)(1− D)|R =

r], respectively. See equation (18) in Appendix A for their closed-form expressions. Obtain

ν̂1(`) and ν̂0(`) as follows:

ν̂1(`) = m̂1,−(`)− m̂1,+(`), ν̂0(`) = m̂0,+(`)− m̂0,−(`). (10)
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iii. For each ` ∈ L, calculate a sample analog of the influence function

φ̂ν1,i(`) =
√

nh
(

w−n,i · (g`(Yi)Di − m̂1,−(`))− w+
n,i · (g`(Yi)Di − m̂1,+(`))

)
,

φ̂ν0,i(`) =
√

nh
(

w+
n,i · (g`(Yi)(1− Di)− m̂0,+(`))− w−n,i · (g`(Yi)(1− Di)− m̂0,−(`))

)
,

where the definitions of the weighting terms {(w+
n,i, w−n,i) : i = 1, . . . , n} are given in

Appendix A. We then estimate the asymptotic standard deviation σP,d(`) by σ̂d(`) =√
∑n

i=1 φ̂2
νd,i(`) and obtain the trimmed estimators as σ̂d,ξ(`) = max{ξ, σ̂d(`)}.8

iv. Calculate the test statistic Ŝn defined in equation (9).

v. Let an and Bn be sequences of non-negative numbers. For d = 0, 1 and ` ∈ L, define

ψn,d(`) as

ψn,d(`) = −Bn · 1
{√

nh · ν̂d(`)

σ̂d,ξ(`)
< −an

}
. (11)

Following Andrews and Shi (2013, 2014), we recommend to use an = (0.3 ln(n))1/2 and

Bn = (0.4 ln(n)/ ln ln(n))1/2.

vi. Draw U1, U2, · · ·Un as i.i.d. standard normal random variables that are independent of the

original sample. Compute the bootstrapped processes, Φ̂ν1(`) and Φ̂ν0(`), defined by

Φ̂ν1(`) =
n

∑
i=1

Ui · φ̂ν1,i(`), Φ̂ν0(`) =
n

∑
i=1

Ui · φ̂ν0,i(`).

vii. Iterate Step (vi) B̄ times (B̄ is a large integer) and denote the realizations of the bootstrapped

processes by
(

Φ̂b
ν1
(·), Φ̂b

ν0
(·) : b = 1, . . . , B̄

)
. Let q̂(τ) be the τ-th empirical quantile of{

sup
d∈{0,1}, `∈L

{
Φ̂b

νd
(`)

σ̂d,ξ (`)
+ ψn,d(`)

}
: b = 1, . . . , B̄

}
. For significance level α < 1/2, obtain

a critical value of the test ĉη(α) by ĉη(α) = q̂(1− α + η) + η, where η > 0 is an arbitrarily

small positive number, e.g., 10−6.9

viii. Reject H0 if Ŝn > ĉη(α).

8In the simulations, we set ξ =
√

a(1− a), where a = 0.0001. We also use a ∈ {0.001, 0.03, 0.5}. The results are
insensitive to the choice of a. These tuning parameters are motivated by the observation that the denominator of the
asymptotic variance takes the form of p`(1− p`), where p` = limr→r0 P(Y ∈ C`, D = d|R = r).
9This η constant is called an infinitesimal uniformity factor and is introduced by Andrews and Shi (2013) to avoid the
problems that arise due to the presence of the infinite-dimensional nuisance parameters νP,1(`) and νP,0(`).
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Remark 6. Following the existing papers in the moment inequality literature, Step (7) in Algorithm 1

uses the generalized moment selection (GMS) proposed by Andrews and Soares (2010) and Andrews

and Shi (2013). It is similar to the recentering method of Hansen (2005) and Donald and Hsu (2016),

and the contact set approach of Linton, Song, and Whang (2010). By estimating the null distribution

from data, employing GMS can result in a higher finite sample power of the test compared with the

test that sets the null distribution at a least favorable configuration.

4. SIMULATION

This section investigates the finite sample performance of the proposed test by conducting extensive

Monte Carlo experiments. We consider nine data generating processes (DGPs) including three DGPs,

Size1 - Size3, for examining the size property and six DGPs, Power1 - Power6, for examining the

power property. For all DGPs, we set the cutoff point at r0 = 0. We specify these DGPs either

by formulating the structural equations (Size1, Power1, and Power2) or by directly specifying the

distribution of observables (the rest of DGPs).

Size1 Let

(ε1, ε0, R, V)′ ∼ N(0, Σ), Σ =


0.25 0 0. 0

0 0.25 0 0

0 0 2 0

0 0 0 0.25

 .

So ε1, ε0, R and V are mutually independent. Define
Y1 = ε1,

Y0 = −3 + Y1 − ε0,

D = 1{V ≥ 0}.

(12)

Size2 Let R ∼ N(0, 1) truncated at −2 and 2. The propensity score P(D = 1|R = r) = 0.5 for

all r. Y|(D = 1, R = r) ∼ N(1, 1) for all r and Y|(D = 0, R = r) ∼ N(0, 1) for all r.

Size3 Same as Size2 except that

P(D = 1|R = r) = 1{−2 ≤ r < 0} (r + 2)2

8
+ 1{0 ≤ r ≤ 2}

(
1− (r− 2)2

8

)
.

In all these DGPs, the propensity scores are continuous at the cut-off (i.e., Assumption 3 does not

hold). Combined with FRD-validity (Assumptions 1 and 2), the distributions of the observables are
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also continuous at the cut-off, implying that these DGPs correspond to least favorable nulls in our

test. Size1 and Size2 have constant propensity scores, while in Size3, the left- and right-derivatives

of the propensity scores differ at the cut-off. As a result, the first-order bias term in the local linear

estimation in Size3 is nonzero.

For each DGP, we generate random samples of four sizes: 1000, 2000, 4000 and 8000. We

consider three data-driven choices of bandwidths: Imbens and Kalyanaraman (2012, IK), Calonico,

Cattaneo, and Titiunik (2014, CCT) and Arai and Ichimura (2016, AI). Note that all these data-driven

bandwidths are tuned to minimize the mean squared errors of the causal effect estimator instead of

optimizing the power property of our test. A choice of bandwidth that is in any sense optimal for

the purpose of testing is out of scope of this paper. For each bandwidth, we impose undersmoothing

by multiplying n
1
5−

1
c with c = 4.5 to each bandwidth.10 We consider q = 1, 2, · · · , Q in equation

(5), where we truncate the class of intervals at Q = 15. In large sample, larger Q in general delivers

higher power at the cost of heavier computation. We note that for the DGPs we consider in this

simulation exercise, our test produces very similar results when Q is greater than 10. For each

simulation design, we conduct 1000 repetitions with bootstrap iterations B̄ = 300.

TABLE 1. Size Property

AI IK CCT
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.008 0.032 0.076 0.006 0.043 0.081 0.018 0.056 0.128
Size1 2000 0.009 0.041 0.078 0.011 0.039 0.095 0.010 0.078 0.122

4000 0.007 0.034 0.073 0.006 0.044 0.090 0.012 0.054 0.102
8000 0.008 0.045 0.073 0.010 0.048 0.088 0.006 0.062 0.110
1000 0.012 0.037 0.081 0.004 0.040 0.075 0.016 0.066 0.142

Size2 2000 0.007 0.041 0.077 0.010 0.046 0.092 0.016 0.064 0.122
4000 0.012 0.043 0.087 0.013 0.050 0.095 0.014 0.052 0.128
8000 0.003 0.025 0.045 0.003 0.020 0.045 0.016 0.068 0.114
1000 0.006 0.032 0.067 0.007 0.033 0.069 0.006 0.044 0.078

Size3 2000 0.004 0.031 0.066 0.005 0.043 0.077 0.008 0.038 0.110
4000 0.005 0.028 0.063 0.009 0.039 0.072 0.014 0.042 0.100
8000 0.003 0.013 0.043 0.005 0.015 0.058 0.006 0.036 0.068

Table 1 demonstrates that overall the proposed test controls size well over these designs, in

particular when sample size is large.

10We run simulations for other choices of under-smoothing constant c ∈ [3, 5); the results are similar.
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To investigate the power property, we consider the following six DGPs that violate the FRD-validity

conditions:

Power1 Violation of local continuity (Assumption 2). (ε1, ε0, R, V) follows the same joint distribu-

tion as in Size1, but
Y1 = 1{R > 0}+ 1.25R1{R ≤ 0}+ ε1,

Y0 = −8 + 0.5R1{R > 0}+ 31{R ≤ 0}+ ε0,

D = 1{Y1 − 0.1Y0 + 1{R ≥ 0} > 4V}.

(13)

Power2 Violation of local monotonicity (Assumption 4). (ε1, ε0, R, V) follows the same joint

distribution as in Size1, but
Y1 = R + ε1,

Y0 = −4 + Y1 + ε0,

D = 1{Y1 − 0.1Y0 + 2V1{R ≥ 0} > 0}.

(14)

Power3 Let R ∼ N(0, 1) truncated at −2 and 2. The propensity score is given by

P(D = 1|R = r) = 1{−2 ≤ r < 0}max{0, (r + 2)2/8− 0.01}

+ 1{0 ≤ r ≤ 2}min{1, 1− (r− 2)2/8 + 0.01}

Let Y|(D = 0, R = r) ∼ N(0, 1) for all r ∈ [−2, 2], and Y|(D = 1, R = r) ∼ N(0, 1)

for all r ∈ [0, 2]. Let Y|(D = 1, R = r) ∼ N(−0.7, 1) for all r ∈ [−2, 0).

Power4 Same as Power3 except that Y|(D = 1, R = r) ∼ N(0, 1.6752) for all r ∈ [−2, 0).

Power5 Same as Power3 except that Y|(D = 1, R = r) ∼ N(0, 0.5152) for all r ∈ [−2, 0).

Power6 Same as Power3 except that Y|(D = 1, R = r) ∼ ∑5
j=1 ωjN(µj, 0.1252) for all r ∈ [−2, 0),

where ω = (0.15, 0.2, 0.3, 0.2, 0.15) and µ = (−1,−0.5, 0, 0.5, 1).

Figure 1 plots the potential outcome density at the cut-off for each of Power1 - Power6. The

testable implication of Theorem 1 (i) requires that the solid curves should lie above the dashed

curve everywhere. We can also see that Power1 and Power2 are two designs which give “stronger”

violations than Power3 - Power6, and hence we expect to see higher rejection rates for them.

Table 2 reports simulation results for the power property of our test. Overall, our test has good

power in detecting deviations from the null under all the three bandwidth choices. As expected
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FIGURE 1. Potential Outcome Densities
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earlier, we reject more often in the first two designs. It is also interesting to see that it is harder for

our test to reject in Power6. From Figure 1 we can see that the violation of null in Power6 occurs

sharply with many peaks over narrow intervals, whereas in other designs (e.g. Power3 and Power4)

mild violation occurs over relatively wide intervals. This phenomenon is consistent with what has

been noted in the literature: the Bierens (1982) and Andrews and Shi (2013) type method that we

adopt in this paper is efficient in detecting the latter type violations, see Chernozhukov, Lee, and

Rosen (2013, footnote 10) for related discussions.

17



TABLE 2. Power Property

AI IK CCT
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.998 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
Power1 2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.698 0.875 0.930 0.541 0.809 0.912 0.490 0.768 0.885

Power2 2000 0.859 0.960 0.979 0.836 0.956 0.985 0.790 0.956 0.987
4000 0.978 0.998 0.998 0.988 0.998 0.999 0.992 1.000 1.000
8000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.125 0.265 0.381 0.076 0.182 0.289 0.049 0.135 0.211

Power3 2000 0.289 0.510 0.641 0.218 0.436 0.550 0.126 0.278 0.396
4000 0.606 0.784 0.851 0.611 0.766 0.829 0.374 0.608 0.735
8000 0.924 0.977 0.985 0.932 0.979 0.990 0.791 0.901 0.933
1000 0.038 0.158 0.240 0.026 0.106 0.198 0.013 0.074 0.128

Power4 2000 0.130 0.292 0.402 0.104 0.249 0.374 0.045 0.159 0.250
4000 0.345 0.570 0.692 0.353 0.581 0.693 0.159 0.384 0.510
8000 0.743 0.889 0.942 0.763 0.902 0.949 0.547 0.761 0.869
1000 0.071 0.182 0.291 0.034 0.110 0.214 0.027 0.091 0.181

Power5 2000 0.124 0.302 0.431 0.109 0.270 0.382 0.069 0.183 0.286
4000 0.357 0.581 0.702 0.313 0.569 0.689 0.178 0.374 0.516
8000 0.752 0.895 0.935 0.760 0.896 0.934 0.541 0.751 0.826
1000 0.033 0.118 0. 222 0.014 0.072 0.146 0.003 0.044 0.096

Power6 2000 0.083 0.186 0.281 0.038 0.150 0.248 0.020 0.083 0.172
4000 0.133 0.329 0.448 0.121 0.285 0.433 0.069 0.178 0.302
8000 0.367 0.586 0.713 0.326 0.569 0.694 0.173 0.378 0.509

5. APPLICATIONS

To illustrate that our test can provide new insights to empirical practice, we assess FRD-validity in

the designs studied in Angrist and Lavy (1999, AL hereafter) and Miller, Pinto, and Vera-Hernández

(2013, MPV hereafter). AL study test score data in Israeli public schools to estimate the causal effect

of class size on student performance. MPV analyze the Colombian household data to evaluate the

impact of the “Colombia’s Régimen Subsidiado", a publicly financed insurance program, on various

outcome variables including measurements of household’s financial risk protection, use of medical

care, and health outcomes.

5.1. Maimonides’ Rule in Israel. Israel has been implementing Maimonides’ rule in public schools

since 1969. The rule limits a class size up to 40 and therefore creates discontinuous changes in the
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average class size as the total enrollment exceeds multiples of 40. For example, a public school

with 40 enrolled students in a grade can maintain one class, with (average) class size 40; another

public school with 41 enrolled students has to offer two classes, hence the average class size drops

discontinuously from 40 to 20.5. Maimonides’ rule offers an example of FRD design since some

schools in the data do not comply the treatment assignment rule.

Recent empirical evidence suggests that the density of the running variable (enrollment) is

discontinuous near some cut-offs (Otsu, Xu, and Matsushita (2013) and Angrist, Lavy, Leder-Luis,

and Shany (2017)). Along with the argument of Lee (2008) and McCrary (2008), this evidence raises

concerns about FRD-validity in this application.

Class size manipulation by parents. As argued in AL, parents may selectively exploit Maimonides’

rule by either (a) registering their children into schools with enrollments just above multiples of

40, hoping their children being placed in smaller size classes, or (b) withdrawing children from the

public schools with enrollments just below multiples of 40. The possibility of (a) would lead to an

increase in the density of enrollment counts just above a multiple of 40, while that of (b) would lead

to a decrease of the enrollment density just below the multiples of 40. In either case, we expect

to observe discontinuities of the density of the running variable at the cut-offs, as we can observe

most notably at the enrollment count of 40 in Figure 2. The class size manipulation by parents can

be a serious threat to the local continuity assumption. The parents who act according to (a) value

more the small class-size education and tend to be wealthier and more concerned with the children’s

education. Children with such parents could perform better. If this is the case, the potential outcome

distributions of the student’s test scores conditional on the running variable may shift abruptly across

the cut-off, leading to violation of local continuity.

Class size manipulation by the school board. On the other hand, AL defend FRD-validity by

arguing that manipulation of the class sizes by parents is less likely. Concerning the possibility

of (a), AL claim that: “ there is no way (for the parents) to know (exactly) whether a predicted

enrollment of 41 will not decline to 38 by the time school starts, obviating the need for two small

classes". For the possibility of (b), private elementary schooling is rare in Israel so that withdrawing

is not a feasible option for most parents. Angrist, Lavy, Leder-Luis, and Shany (2017) recently

re-investigate Maimonides’ rule and argue that the manipulation is operated mainly on the school
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FIGURE 2. Histograms for Enrollments by Schools: Panel A of Figure 6 in Angrist,
Lavy, Leder-Luis, and Shany (2017)
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board side. Angrist, Lavy, Leder-Luis, and Shany (2017) state that:“ A recent memo from Israeli

Ministry of Education (MOE) officials to school leaders admonishes headmasters against attempts to

increase staffing ratios through enrollment manipulation. In particular, schools are warned not to

move students between grades or to enroll those who are overseas so as to produce an additional

class." Although this type of manipulation can lead to the density jump observed in Figure 2, it

is not necessarily a serious threat to FRD-validity depending on the school board’s incentives to

manipulate. As argued in Angrist, Lavy, Leder-Luis, and Shany (2017), if the main motivation of the

manipulations is to increase their budgets — an increasing function of the number of classes, it may

well be the case that the manipulations around the cut-off is done independently of the children’s

unobserved talents. Then, FRD-validity can hold even when the density of the running variable is

discontinuous at the cut-offs.

Test Results. Our test focuses on the joint distribution of the observed outcomes and treatment status

in contrast to the tests that focus only on the marginal distribution of the running variable. Hence,

our test provides new empirical evidence that can contribute to the dispute about FRD-validity of

Maimonides’ rule reviewed above.

We apply the test proposed in Section 3 for each of the four outcome variables (grade 4 math and

verbal test scores, and grade 5 math and verbal test scores) by treating the three cutoffs 40, 80, and

120, separately. We consider the bandwidths (h = 3 and h = 5) used in AL, as well as the three
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data-driven bandwidth choices (AI, IK and CCT).11 We set the trimming constant at ξ = 0.00999 as

described in Algorithm 1 of Section 3.12

Table 3 displays the p-values of the tests. For all the cases considered, we do not reject the null

hypothesis at 10% significance level. The results are robust to the choice of bandwidths and the

choice of trimming constants, see Tables 5 to 7 in Appendix D for details. Despite that the density of

running variable appears discontinuous at the cut-off, “no rejection” of our test suggests empirical

support for the argument of “manipulation by the school board”—the type of manipulation which is

relatively innocuous for the AL’s identification strategy.

TABLE 3. Testing Results for Israeli School Data: p-values, ξ = 0.00999

3 5 AI IK CCT
g4math
Cut-off 40 0.986 0.934 0.767 0.978 0.968
Cut-off 80 0.909 0.865 0.715 0.944 0.888
Cut-off 120 0.443 0.702 0.665 0.604 0.568

g4verb
Cut-off 40 0.928 0.627 0.465 0.648 0.529
Cut-off 80 0.911 0.883 0.185 0.906 0.720
Cut-off 120 0.935 0.683 0.474 0.730 0.186

g5math
Cut-off 40 0.876 0.282 0.488 0.631 0.609
Cut-off 80 0.516 0.446 0.930 0.482 0.765
Cut-off 120 0.939 0.827 0.626 0.883 0.838

g5verb
Cut-off 40 0.594 0.893 0.953 0.906 0.938
Cut-off 80 0.510 0.692 0.504 0.525 0.929
Cut-off 120 0.696 0.811 0.601 0.699 0.781

5.2. Colombia’s Subsidized Regime. MPV study the impact of the Subsidized Regime (SR, tar-

geted to the poor households in Colombia) on financial risk protection, service use, and health

outcomes. The SR is a publicly financed health insurance program that subsidizes eligible Colom-

bians to purchase insurance from private and government-approved insurers. The program eligibility

11See Table 14 in Appendix D for the obtained bandwidths and the number of observations therein.
12We try different choices for the trimming constant ξ ∈ {0.0316, 0.1706, 0.5} and obtain similar results.
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is determined by a threshold rule based on a continuous index called Sistema de Identificacion de

Beneficiarios (SISBEN) ranging from 0 to 100 (with 0 being the most impoverished). SISBEN is

constructed by a proxy means-test using fourteen different measurements of the household’s well-

being. It is, however, well known that the original SISBEN index used to assign the actual program

eligibility was manipulated by either the households or the administrative authorities (see MPV

and the references therein for details). To circumvent this manipulation issue, MPV simulate their

own SISBEN index for each household using a collection of survey data from independent sources.

MPV then estimate a cut-off of the simulated SISBEN scores in each region by maximizing the

in-sample prediction performance for the actual program take-up. Using the cut-offs thus estimated,

MPV estimate the complier’s effects of the SR on 33 outcome variables in four categories: (i) risk

protection, consumption smoothing, and portfolio choice, (ii) medical care use, (iii) health status,

and (iv) behavior distortions, see Table 8 below and Table 1 of MPV for details.

Although the density of the simulated SISBEN score passes the continuity test (see MPV’s online

Appendix C), it does not necessarily imply FRD-validity, e.g., the conditional distributions of the

potential outcomes given the simulated SISBEN score may not be continuous at the cutoff.

For each of the 33 outcome variables, we implement our test using MPV’s simulated SISBEN

score as the running variable and the actual program enrollment as the treatment status. We consider

the three bandwidths (h = 2, 3, and 4) used in MPV as well as the three data-driven bandwidth

choices (AI, IK and CCT).13 We use the same set of trimming constants ξ as in the AL application

and again obtain similar results. We find robust evidence of rejecting the testable implications of

FRD-validity for the following three outcome variables: “household education spending”, “total

spending on food”, and “total monthly expenditure”. Their p-values are reported in Table 4 (results

for all other outcome variables and other choices of ξ are collected in Tables 8-11 in Appendix D to

save space).

A few remarks are in order. First, as can be seen in Tables 8-11, the three outcome variables

giving the robust rejections all belong to the first category: “risk protection, consumption smoothing,

and portfolio choice”. Our test does not provide evidences against the validity of other outcome

variables.14 Second, the density estimates of the conditional distributions of (Y, D) given R indicate

13See Table 15 in Appendix D for the obtained bandwidths and the number of observations therein.
14Researchers may want to consider the multiple-testing of a group of outcome variables and control the family-wise error
rate (FWER). The results in Table 8 imply that, for the first category of 10 outcome variables, the multiple testing procedure
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TABLE 4. Testing Results for Columbia’s SR Data: p-values (ξ = 0.00999)

MPV bandwidths Other bandwidth choice
Outcome variables 2 3 4 AI IK CCT
Household education spending 0.000 0.000 0.000 0.000 0.013 0.000
Total spending on food 0.000 0.000 0.000 0.000 0.000 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000

that the violations of the inequalities (2) and (3) of Theorem 1 happen for a range of relatively high

values of treated outcomes. For instance, Figure 3 draws the estimated outcome densities (by kernel

smoothing) of “total monthly expenditure” using observations within plus and minus 4 scores from

the cut-off. The horizontal axis is the normalized outcome variable (to the unit interval). From the

left column, we observe that the densities f (y, D = 1|R = r+) and f (y, D = 1|R = r−) cross

in their right tails. The figures for the other two outcome variables exhibit qualitatively similar

patterns (Figures 5 and 6 in Appendix D). Last, we also implement the tests conditioning on each

of the six regions in Columbia. The results are collected in Table 12 in Appendix D. We obtain

strong rejections in the “Atlantico”, “Oriental”, “Central”, and “Bogota” regions, and no rejection

in “Pacifico” and “Territorios Nacionales”. Taking into account the relative sample sizes across the

regions (Table 13), the Bogota sample seems to drive the test results of Table 4. Notice that the

magnitude of the propensity score jump for the Bogota sample is relatively small compared with the

samples in the regions giving no-rejections (see Figure 4). This observation is in line with Remark 3

of Section 2.

There can be multiple causes for why FRD-validity fails in this application. First, violation of local

continuity may arise as a byproduct of estimating the cut-off based on the simulated SISBEN score.

For instance, if there is some household characteristic that is not included in the construction of the

simulated SISBEN score but has a strong predictive power for program enrollment, the estimated

cut-off may pick up a value of the simulated SISBEN score across which the distributions of the

excluded characteristics differ most. If the distribution of household consumption variables well

depend on such excluded characteristic, it would result in the violation of local continuity. Second,

there could be other unobserved programs using the same SISBEN index with similar cutoffs. If

such programs affect the household budget significantly, we may expect the distribution of potential

of Holm (1979) concludes that H0 is rejected at the control of FWER at 1%. With all the outcomes (33 hypotheses), H0 is
rejected at the control of FWER at 5%.
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FIGURE 3. Estimated complier’s outcome density: Total spending on food

 

FIGURE 4. Enrollment Probability by Regions (from MPV Figure 2)

-.5
0

.5
1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Relative SISBEN Score

ATLANTICO

-.5
0

.5
1

1.
5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Relative SISBEN Score

ORIENTAL

0
.5

1
1.

5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Relative SISBEN Score

CENTRAL

0
.2

.4
.6

.8
1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Relative SISBEN Score

PACIFICO

.2
.4

.6
.8

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Relative SISBEN Score

BOGOTA DISTRITAL

0
.5

1
1.

5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Relative SISBEN Score

TERRITORIOS NACIONALES

Pr(Subsidized regime enrollment)

household consumption to be quite different between the two sides of the cutoff, again leading to the

violation of local continuity.15

15MVP suggest that the second channel is less likely to be the cause of the rejection of FRD validity of the three outcome
variables. See Table 2 in MPV for evidence that the enrollment rates for other programs do not change across the estimated
cut-offs.
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6. EXTENSIONS

In this section, we briefly discuss several extensions. Those include incorporating covariates and

combining our test with some of the existing tests. We also discuss the testable implications of other

FRD assumptions that have been used in the literature.

6.1. Incorporating Covariates. In the standard FRD design, it suffices to consider three variables:

the outcome, treatment status, and running variables, as we have done so far. Although the identifi-

cation of the treatment effect at the cut-off does not require covariates, they are often included in

empirical studies to increase efficiency. See Imbens and Kalyanaraman (2012), Calonico, Cattaneo,

Farrel, and Titiunik (2016), and Hsu and Shen (2016) for more detailed discussion. Another moti-

vation for incorporating the conditioning covariates arises when their distributions are suspected to

be discontinuous at the cut-off. If the potential outcome distributions depend on such covariates,

RD analysis without conditioning on them leads to violation of the local continuity assumption. See

Frölich (2007).

In what follows, we consider testing a version of FRD-validity where the local monotonicity and

local continuity are imposed conditional on a covariate vector X ∈ X ⊂ Rdx . We allow X to be

discrete or continuous. We assume that there are observations near the cutoff point conditioning on

each realization of x. The conditional version of FRD-validity is stated formally as follows:

Assumption 6. The limits π+(x) ≡ limr↓r0 P(D = 1|R = r, X = x) and π−(x) ≡ limr↑r0 P(D =

1|R = r, X = x) exist and π+(x) 6= π−(x) for all x ∈ X .

Assumption 7 (Local continuity conditional on X). For d = 0, 1, t ∈ {A, C, N}, and B ⊆ Y be a

measurable set, the conditional probability P(Yd(r) ∈ B, T|r−r0| = t|R = r, X = x) is continuous

in r at r0, for all x ∈ X .

Assumption 8 (Local monotonicity conditional on X). Let t ∈ {DF, I}. There exists a small ε > 0

such that P(T|r−r0| = t|R = r, X = x) = 0 for all r ∈ (r0 − ε, r0 + ε) and for all x ∈ X .

Theorem 1 can be immediately extended to the conditional version of FRD-validity by conditioning

additionally on X. To fit into our testing framework, it is convenient to rewrite the moment inequalities

conditional on X in terms of moment inequalities unconditional on X.
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To do so, let Z = (Y, X) and Z be the support of Z. We obtain the following inequalities as the

testable implications for Assumptions 6-8: for C a hypercube in Z :

lim
r↑r0

EP[1{Z ∈ C}D|R = r]− lim
r↓r0

EP[1{Z ∈ C}D|R = r] ≤ 0, (15)

lim
r↓r0

EP[1{Z ∈ C}(1− D)|R = r]− lim
r↑r0

EP[1{Z ∈ C}(1− D)|R = r] ≤ 0. (16)

In comparison to inequalities (2) and (3), the only difference is that the indicator functions in

(15) and (16) index boxes in Z instead of the intervals in Y . Accordingly, by defining a class of

instrument functions as

Gz = {g`(·) = 1(· ∈ C`) : ` ≡ (z, c) ∈ L} , where

C` = ×dx+1
j=1 [zj, zj + c] ∩ Z and

L =
{
(z, c) : c−1 = q, and q · zj ∈ {0, 1, 2, · · · , (q− 1)}dx+1 for q = 1, 2, · · ·

}
, (17)

we can implement the testing procedure of Section 3 to test the conditional version of FRD-validity.

6.2. Joint test. Our test complements the widely used continuity tests for the distribution of condi-

tioning covariates. Since continuity of the conditional distribution of some covariates at the cutoff

is often considered to be a supporting evidence for no-selection around the cut-off, it would be

worthwhile to combine our test with a continuity test.

Suppose we want to test the continuity of the distribution of covariates X at the cut-off jointly with

the testable implications of (2) and (3). Since continuity of the distribution of X is expressed as a set

of local moment equalities, a joint test can be obtained by modifying the test proposed in Section 3

to account for the additional set of equality constraints.

We hence consider testing inequalities (6) and (7) and the set of equalities indexed by j ∈ J ,

vx(j) ≡ lim
r↑r0

EP[1{X ∈ Cx
j }|R = r]− lim

r↓r0
EP[1{X ∈ Cx

j }|R = r] = 0.

where Cx
j is a hypercube or a quadrant in the space of covariates X and J forms a countable

collection thereof similarly to L defined in Section 3.

In the same manner as v̂n,d(`) is obtained in (10), we estimate vx(j) by v̂x(j) the difference of two

local linear estimators. Following the way Andrews and Shi (2013) incorporate moment equalities,
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we modify the KS test statistic of Section 3 as

Ŝjoint
n = max

{
sup

d∈{0,1}, `∈L

√
nh · v̂n,d(`)

σ̂n,d,ξ(`)
, sup

j∈J

√
nh · |v̂x(j)|
σ̂x

n,ξ(j)

}
,

where σ̂x
n,ξ(j) is an estimator for the asymptotic standard deviation of

√
nh(v̂x(j)− vx(j)). Critical

values for this test statistic can be obtained by a procedure similar to Algorithm 1. Some differences

are that for the moment equality constraints, we do not have the moment selection step and the

absolute values are taken for the estimators v̂x(j) and their bootstrap analogues when the KS statistic

is computed.

7. CONCLUSION

In this paper we propose a test for the key identifying conditions in the fuzzy regression design.

We characterize the set of sharp testable implications for FRD-validity and propose an asymptotically

valid test for it. Our test makes use of not only the information of running variable but also that of

outcome and treatment status. As illustrated in our empirical applications, our test provides empirical

evidence for or against FRD-validity, which would have been overlooked if one would have only

assessed the continuity of the running variable’s density at the cut-off.

A salient feature of our test is that by examining a density plot as done in Figure 3 of Section 5,

we can learn about a subpopulation (defined in terms of the range of observed outcomes) that plays a

role of refuting FRD-validity. Looking into the background of such subpopulation, we may be able

to understand why FRD-validity is violated in the given application. Given the rejection of our test,

one possible option to proceed is to relax FRD-validity and pursue the partial identification approach

to bound the parameter of interest.
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APPENDIX

We describe how to calculate the proposed test statistic in Appendix A. We formally state the

asymptotic validity of our test in Appendix B. All proofs are collected in Appendix C. Additional

empirical results of Section 5 are provided in Appendix D.

APPENDIX A. CALCULATING THE TEST STATISTICS

We first introduce notations. Let mP,d(`, r) = EP[g`(Y)Dd(1−D)1−d|R = r] and mP,d,+(`) =

limr↓r0 mP,d(`, r) and mP,d,−(`) = limr↑r0 mP,d(`, r) for d = 1, 0, then we can estimate νP,1(`) and

νP,0(`) respectively by Equation (10), which we restate below:

ν̂1(`) = m̂1,−(`)− m̂1,+(`), ν̂0(`) = m̂0,+(`)− m̂0,−(`),

where the right hand side terms m̂d,?(`), for d = 1, 0 and ? = +,−, are local linear estimators,

which can be constructed by the intercept estimates âd,+(`) and âd,−(`) in regressions of the form

(âd,+(`), b̂d,+(`)) = argmin
a,b

1
nh+

n

∑
i=1

1{Ri ≥ r0} · K
(

Ri − r0

h+

) [
g`(Yi)Dd

i (1− Di)
1−d − a− b ·

(
Ri − r0

h+

) ]2
,

(âd,−(`), b̂d,−(`)) = argmin
a,b

1
nh−

n

∑
i=1

1{Ri < r0} · K
(

Ri − r0

h−

) [
g`(Yi)Dd

i (1− Di)
1−d − a− b ·

(
Ri − r0

h−

) ]2
,

where K(·) is a kernel function and (h+, h−) are the bandwidths for the running variable specified

above and below the cut-off, respectively. In particular, we express h+ = c+h and h− = c−h,

with (c+, c−) be positive constants and h is a converging sequence indexed by sample size n. For

simplicity of analysis and implementation, we specify the bandwidths h+ and h− to be the same over

{g` : ` ∈ L}.

We can write the local linear estimators in the following form: for d = 1, 0 and ? = +,−

m̂d,?(`) =
n

∑
i=1

w?
n,i · g`(Yi)Dd

i (1− Di)
1−d, (18)
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where the weights are defined as

w+
n,i =

1
nh+
·

1{Ri ≥ r0} · K(Ri−r0
h+ )

[
ϑ̂+

2 − ϑ̂+
1 ·
(

Ri−r0
h+

)]
ϑ̂+

2 ϑ̂+
0 − (ϑ̂+

1 )
2

,

w−n,i =
1

nh−
·

1{Ri < r0} · K(Ri−r0
h− )

[
ϑ̂−2 − ϑ̂−1 ·

(
Ri−r0

h−

)]
ϑ̂−2 ϑ̂−0 − (ϑ̂−1 )

2
.

and for j = 0, 1, 2,

ϑ̂+
j =

1
nh+

n

∑
i=1

1{Ri ≥ r0} · K
(

Ri − r0

h+

)(
Ri − r0

h+

)j

,

ϑ̂−j =
1

nh−

n

∑
i=1

1{Ri < r0} · K
(

Ri − r0

h−

)(
Ri − r0

h−

)j

.

APPENDIX B. ASYMPTOTIC PROPERTIES OF THE PROPOSED TEST

In this appendix, we spell out the regularity conditions and state the theorems that guarantee the

asymptotic validity of our test. Their proofs are given in Appendix C.3.

We normalize the support of observed outcome Y to [0, 1].16 Let P be the collection of probability

distributions of observables (Y, D, R). We denote the Lebesgue density of the running variable, R,

by fR.

Let h2(·, ·) be a covariance kernel on L×L. LetH2 be the collection of all possible covariance

kernel functions on L×L. For any pair of h(1)2 and h(2)2 , we define the distance between them by

d(h(1)2 , h(2)2 ) = sup
{`1,`2∈L}

|h(1)2 (`1, `2)− h(2)2 (`1, `2)|. (19)

Let σP,d(`1, `2|r) = CovP(g`1(Y)Dd(1− D)1−d, g`2(Y)Dd(1− D)1−d|R = r) for d = 1, 0. We

denote their right and left limits at r0 by σP,d,+(`1, `2) = limr↓r0 σP,d(`1, `2|r) and σP,d,−(`1, `2) =

limr↑r0 σP,d(`1, `2|r). Existence of these limits is implied by the set of assumptions in Assumption 9

below.

16This support normalization is without loss of generality. If not, we can define Ỹ = Φ(Y) where Φ(·) is the CDF of
standard normal, as done in the first step of Algorithm 1.
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For j = 0, 1, 2, . . . , let ϑj =
∫ ∞

0 ujK(u)du. Let f+R (r0) = limr↓r0 fR(r0) and f−R (r0) =

limr↑r0 fR(r0). For d = 0, 1 and ? = +,−, define

h2,P,d,?(`1, `2) =

∫ ∞
0 (ϑ2 − uϑ1)

2K2(u)du · σP,d,?(`1, `2)

c? f ?R(r0)(ϑ2ϑ0 − ϑ2
1)

2
, (20)

which is the covariance kernel of the limiting process of
√

nh(m̂d,?(`)− mP,d,?(`)), with under-

smoothing bandwidths. It can be shown that the covariance kernel of the limiting processes of
√

nh(ν̂d(`)− νP,d(`)) is h2,P,d = h2,P,d,+ + h2,P,d,−.

We denote their v-th derivatives with respect to the running variable by m(v)
P,d, d = 1, 0. The

v-th derivative of fR is denoted similarly. For δ > 0, define Nδ(r0) = {r : |r − r0| < δ} as a

neighborhood of r around r0. Let N+
δ (r0) = {r : 0 < r − r0 < δ} and N−δ (r0) = {r : 0 <

r0 − r < δ} be one-sided open neighborhoods excluding r0.

Assumption 9. Let fR be common for all P ∈ P . There exist δ > 0, ε > 0, 0 < f̄R < ∞, and

0 ≤ M < ∞ such that for all P ∈ P ,

(i) fR(r) > ε on Nδ(r0).

(ii) fR(r) is continuous and bounded from above by f̄R on N+
δ (r0) ∪N−δ (r0), and f+R (r0) and

f−R (r0) exist.

(iii) fR(r) is twice continuously differentiable in r on N+
δ (r0) ∪ N−δ (r0) and | f (1)R (r)| ≤ M

and | f (2)R (r)| ≤ M on N+
δ (r0) ∪N−δ (r0);

(iv) for d = 0, 1 and for all ` ∈ L, mP,d(`, r) is twice continuously differentiable in r on

N+
δ (r0) ∪N−δ (r0);

(v) for d = 0, 1 and for all ` ∈ L, |m(1)
P,d(`, r)| ≤ M and |m(2)

P,d(`, r)| ≤ M on N+
δ (r0) ∪

N−δ (r0);

Assumption 9 (iii)-(v) imply that with undersmoothing bandwidths, the bias terms of the ν̂1(`)

and ν̂0(`) are asymptotically negligible uniformly over ` ∈ L. Note that Assumption 9 does not

restrict the support of Y and allows Y to be discrete, continuous, or their mixtures. Note also that we

allow fR(r) to be discontinuous at the cut-off, reflecting that the testable implications of FRD-validity

that we are focusing on does not require continuity of fR(r) at the cut-off.

Assumption 10. The kernel function K(·) and bandwidth h satisfy
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(i) K(·) is non-negative, symmetric, bounded by K̄ < ∞, and has a compact support in R (say

[−1, 1]).

(ii)
∫

K(u)du = 1, and
∫

u2K(u)du > 0,

(iii) h→ 0, nh→ ∞ and nh5 → 0 as n→ ∞.

Assumption 10 is standard and the triangular kernel used in our Monte Carlo studies and em-

pirical applications satisfies this assumption. Note that nh5 → 0 as n → ∞ corresponds to an

undersmoothing choice of bandwidth so that the bias term of v̂n,d converges to zero even after
√

nh

is multiplied.

Assumption 11. Let {Ui : 1 ≤ i ≤ n} be a sequence of i.i.d. random variables E[U] = 0,

E[U2] = 1, and E[|U|4] < M1 for some M1 < ∞, and {Ui : 1 ≤ i ≤ n} is independent of the

sample {(Yi, Di, Ri) : 1 ≤ i ≤ n}.

Assumption 11 is standard for the multiplier bootstrap (see, e.g., Hsu (2016)). Note the standard

normal distribution for U satisfies Assumption 11.

Assumption 12. an is a sequence of non-negative numbers satisfying limn→∞ an = ∞ and

limn→∞ an/
√

nh = 0. Bn is a sequence of non-negative numbers satisfying that Bn is non-

decreasing, limn→∞ Bn = ∞ and limn→∞ Bn/an = 0.

In our Monte Carlo study and empirical applications, we specify an = (0.3 ln(n))1/2 and

Bn = (0.4 ln(n)/ ln ln(n))1/2 following Andrews and Shi (2013, 2014).

Let P0 be the subset of P that satisfies Assumption 9 such that the null hypothesis in Equation (8)

holds under P if P ∈ P0. The next assumption states that P0 contains a distribution of data that

satisfies the moment inequalities {vP,d(`) : d = 0, 1, ` ∈ L} as equalities for some ` ∈ L.

Assumption 13. Let Lo
P,d ≡ {` ∈ L : νP,d(`) = 0}. There exists Pc ∈ P0 such that

(i) Either Lo
Pc,1 or Lo

Pc,0 under Pc is nonempty.

(ii) For d = 0, 1, h2,Pc,d,+ ∈ H2,cpt and h2,Pc,d,− ∈ H2,cpt, whereH2,cpt is a compact subset of

H2 with respect to the norm defined in Equation (19).

(iii) Either h2,Pc,1 = h2,Pc,1,+ + h2,Pc,1,− restricted to Lo
Pc,1 × Lo

Pc,1 is not a zero function or

h2,Pc,0 = h2,Pc,0,+ + h2,Pc,0,− restricted to Lo
Pc,0 ×Lo

Pc,0 is not a zero function.
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Theorem 2. Suppose Assumptions 9-12 hold. Then, for every compact subset H2,cpt of H2, the

following claims hold for the test procedure presented in Algorithm 1:

(a) lim supn→∞ sup{P∈P0 : d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt} P(Ŝn > ĉη(α)) ≤ α.

(b) If Assumption 13 also holds, then

lim
η→0

lim supn→∞ sup
{P∈P0: d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P(Ŝn > ĉη(α)) = α.

Theorem 2 (a) shows that our test has asymptotically uniformly correct size over a compact set

of covariance kernels. Theorem 2 (b) shows that our test is at most infinitesimally conservative

asymptotically when the null contains at least one Pc defined in Assumption 13. Theorem 2 extends

Theorem 2 of Andrews and Shi (2013) and Theorem 5.1 of Hsu (2017) to local moment inequalities

in the context of RD designs.

The next theorem shows consistency of our test against a fixed alternative.

Theorem 3. Suppose Assumptions 9-12 hold and α < 1/2. If there exists ` ∈ L such that either

νP1,1(`) > 0 or νP1,0(`) > 0, then limn→∞P(Ŝn > ĉη(α)) = 1.

We can also show that our test is unbiased against some
√

nh-local alternatives. We consider a

sequence of Pn ∈ P\P0 such that

νPn,d(`) = νPc,d(`) +
δd(`)√

nh
, (21)

for d = 1, 0 and some Pc ∈ P0 defined in Assumption 13. We consider local alternatives that satisfy

the next set of assumptions:

Assumption 14. A sequence of local alternatives {Pn ∈ P\P0 : n ≥ 1} satisfies the following

conditions:

(i) (21) holds under Pn,

(ii) for d = 0, 1, δd(`) ≥ 0 if ` ∈ Lo
Pc,d,

(iii) for d = 0, 1, δd(`) > 0 for some ` ∈ Lo
Pc,d.

(iv) for d = 0, 1, limn→∞ d(h2,Pn,d,+, h∗2,d,+) = 0 and limn→∞ d(h2,Pn,d,−, h∗2,d,−) = 0 for some

h∗2,d,+ ∈ H2 and h∗2,d,− ∈ H2.
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Assumption 14 (i) requires that the local alternatives converge to a boundary null Pc at rate

(nh)−1/2. Assumption 14 (ii) ensures that our test is unbiased and Assumption 14 (iii) makes sure

that Pn’s are not in P0. Assumption 14 (iv) restricts the asymptotic behavior of the covariance kernels

as considered in LA1(c) of Andrews and Shi (2013).

The following theorem shows that the asymptotic local power of our test is greater than or equal

to α when η tends to zero, i.e., our test is unbiased against those local alternatives that satisfy

Assumption 14.

Theorem 4. Suppose Assumptions 9 to 12 hold and α < 1/2. If a sequence of local alternatives

{Pn : n ≥ 1} satisfies Assumption 14, then limη→0 limn→∞P(Ŝn > ĉη(α)) ≥ α.

APPENDIX C. PROOFS

We first introduce a lemma that allows us to extend inequalities (2) and (3) to any Borel set in Y .

Lemma 1. Under the conditions of Theorem 1 (i), inequalities (2) and (3) hold for any closed

interval [y′, y], −∞ ≤ y′ ≤ y ≤ ∞, if and only if they hold for any Borel set in Y .

Proof. We focus on inequality (2). The claim concerning inequality (3) can be shown analogously.

The “if” part is trivial. We apply Andrews and Shi (2013, Lemma C1) to show the “only if” part. Let

C ≡ {[y, y′] : −∞ ≤ y ≤ y′ ≤ ∞} be the class of intervals and C be a generic element of C. Let

µ1(·) = limr↓r0 EP[1{Y ∈ ·}D|R = r]− limr↑r0 EP[1{Y ∈ ·}D|R = r], which is a well-defined

set function if Assumptions 1 and 2 hold. See the proof of Theorem 1 (i) below for existence of

the left- and right-limits of EP[1{Y ∈ ·}D|R = r]. It then holds that µ1 : C → R is a bounded

and countably additive set function satisfying µ1(∅) = 0 and µ1(C) ≥ 0 for any C. Applying

Andrews and Shi (2013, Lemma C1), since the smallest σ-algebra generated by C coincides with the

Borel σ-algebra B(Y), it follows that µ1(C`) ≥ 0 for any C` ∈ L implies that µ1(B) ≥ 0 for any

B ∈ B(Y). �

C.1. Proof of Theorem 1: Claim (i): Let B ⊂ R be an arbitrary closed interval. We have

lim
ε→0

EP[1{Y ∈ B}D|R = r0 + ε] ≥ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| ∈ {A, C}}|R = r0 + ε]

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = C}|R = r0 + ε]+ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 + ε],

33



where the first inequality follows by the definition of the compliance type. On the other hand, we

have

lim
ε→0

EP[1{Y ∈ B}D|R = r0 + ε]

≤ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| ∈ {A, C}}|R = r0 + ε] + lim
ε→0

P(T|r−r0| = I|R = r0 + ε)

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = C}|R = r0 + ε]+ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 + ε]

where the third line follows by Assumption 1. Hence,

lim
ε→0

EP[1{Y ∈ B}D|R = r0 + ε]

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = C}|R = r0 + ε] + lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 + ε].

(22)

Similarly, we have limε→0 EP[1{Y ∈ B}D|R = r0 − ε] ≥ limε→0 EP[1{Y1(r) ∈ B, T|r−r0| =

A}|R = r0 − ε] and

lim
ε→0

EP[1{Y ∈ B}D|R = r0 − ε]

≤ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 − ε] + lim
ε→0

P(T|r−r0| ∈ {I, DF}|R = r0 − ε)

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 − ε],

implying

lim
ε→0

EP[1{Y ∈ B}D|R = r0 − ε] = lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 − ε]. (23)

Taking the difference of equation (22) and equation (23) and employing Assumption 2 lead to the

desired inequality:

lim
r↓r0

EP[1{Y ∈ B}D|R = r]− lim
r↑r0

EP[1{Y ∈ B}D|R = r]

= lim
r↓r0

EP[1{Y1(r) ∈ B, T|r−r0| ∈ {C}}|R = r] ≥ 0. (24)
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Similarly we can show that

lim
r↑r0

EP[1{Y ∈ B}(1− D)|R = r]− lim
r↓r0

EP[1{Y ∈ B}(1− D)|R = r]

= lim
r↓r0

EP[1{Y0(r) ∈ B, T|r−r0| ∈ {C}}|R = r] ≥ 0. (25)

Note that the proof is also valid when Assumption 1 is replaced by Assumption 4.

Claim (ii): Suppose that the distribution of observables (Y, D, R) satisfies inequalities (2) and

(3). By Lemma 1, they hold for arbitrary Borel set. By the absolute continuity assumption, we

have the conditional density of (Y, D) given R denoted by fY,D|R(y, d|r). We denote the left- and

right-limits of fY,D|R at r0 by fY,D|R(y, d|r0,−) = limr↑r0 fY,D|R(y, d|r) and fY,D|R(y, d|r0,+) =

limr↓r0 fY,D|R(y, d|r), respectively.

In what follows, we construct a joint distribution of potential variables (Ỹ1(r), Ỹ0(r), D̃(r) : r ∈

R) that satisfies Assumptions 1 and 2 and matches with the given distribution of observables.

First, for d ∈ {0, 1}, consider outcome responses that are invariant to the running variable,

Ỹd(r) = Ỹd(r′) for all r, r′ ∈ R, a.s., i.e., the running variable has no direct causal impact for

anyone in the population. We can hence drop index r from the notations of the potential outcomes

and reduce them to (Ỹ1, Ỹ0) ∈ Y2. For the treatment selection response to running variable, consider

that only the following selection responses are allowed in the population:

D̃(r) =


1{r ≥ r0}, labeled as T̃ = C

1, labeled as T̃ = A

0, labeled as T̃ = N.

With these simplifications, constructing a joint distribution of (Ỹ1(r), Ỹ0(r), D̃(r) : r ∈ R) given R

is done by constructing a joint distribution of (Ỹ1, Ỹ0, T̃) ∈ Y2 × {C, A, N} given R, where T̃ does

not vary in |r− r0|. To distinguish the probability law of observables corresponding to the given

sampling process and the probability law of (Ỹ1, Ỹ0, T̃) to be constructed, we use P and f to denote

the former probability law and its density, and P to denote the latter.
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Let B ⊂ R be an arbitrary Borel Set. For always-taker’s potential outcome distributions, consider

P(Ỹ1 ∈ B, T̃ = A|r) =


P(Y ∈ B, D = 1|r), for r < r0,

∫
B min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ, for r ≥ r0,

and

P(Ỹ0 ∈ B, T̃ = A|r) =


Q(B)P(D = 1|r), for r < r0,

Q(B)
∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ, for r ≥ r0,
,

where Q(·) is an arbitrary probability measure on Y . The joint distribution of (Ỹ1, Ỹ0, T̃ = A) can

be constructed by coupling these distributions assuming for instance that Ỹ1 and Ỹ0 are independent

conditional on (T̃, R).

For never-taker’s potential outcome distributions, consider

P(Ỹ0 ∈ B, T̃ = N|r) =


P(Y ∈ B, D = 0|r), for r ≥ r0,

∫
B min

 fY,D|R(y, D = 0|r0,+),

fY,D|R(y, D = 0|r)

 dµ, for r < r0,

and

P(Ỹ1 ∈ B, T̃ = N|r) =


Q(B)P(D = 0|r), for r ≥ r0,

Q(B)
∫
Y min

 fY,D|R(y, D = 0|r0,+)

fY,D|R(y, D = 0|r)

 dµ, for r < r0.
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For complier’s potential outcome distributions, if π+ = π−, we specify no complier to exist in

the population. If π+ > π−, consider

P(Ỹ1 ∈ B, T̃ = C|r)

=



P(Y ∈ B, D = 1|r)−
∫

B min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ, for r ≥ r0,

(π+ − π−)−1

P(D = 1|r)−
∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ


×
[
limr↓r0 P(Y ∈ B, D = 1|r)− limr↑r0 P(Y ∈ B, D = 1|r)

]
, for r < r0.

and

P(Ỹ0 ∈ B, T̃ = C|r)

=



P(Y ∈ B, D = 0|r)−
∫

B min

 fY,D|R(y, D = 0|r0,+),

fY,D|R(y, D = 0|r)

 dµ, for r < r0,

(π+ − π−)−1

P(D = 1|r) +−
∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ


×
[
limr↑r0 P(Y ∈ B, D = 0|r)− limr↓r0 P(Y ∈ B, D = 0|r)

]
, for r ≥ r0.

If the distribution of (Y, D, R) satisfies the testable implications shown in the first claim, then it can

be shown that the conditional distribution of (Ỹ1, Ỹ0, T̃) given R = r thus constructed is a proper

probability distribution (i.e., nonnegative, additive, and sum up to one) for all r. We can also confirm

that the constructed distribution of (Ỹ1, Ỹ0, T̃) given R matches with the distribution of observables,

i.e., it satisfies, for any d = 1, 0, r ∈ R, and measurable set B ⊂ Y ,

P(Y ∈ B, D = d|r) = ∑
T̃:D̃(r)=d

P(Ỹd ∈ B, T̃|r).

We now check the conditional distribution of (Ỹ1, Ỹ0, T̃) given R constructed above satisfies As-

sumptions 1 and 2. First, by the construction of treatment selection response, P(T̃ = {DF, I}|r) = 0

for any r. Hence, Assumption 1 holds.

37



To check Assumption 2, note that

lim
r↓r0

P(Ỹ1 ∈ B, T̃ = A|r) = lim
r↓r0

∫
B

min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ

=
∫

B
min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r0,+)

 dµ =
∫

B
fY,D|R(y, D = 1|r0,−)dµ

= lim
r↑r0

P(Y ∈ B, D = 1|r) = lim
r↑r0

P(Ỹ1 ∈ B, T̃ = A|r),

where the third equality follows by the assumption that the distribution of (Y, D, R) satisfies in-

equality (2). Hence, P(Ỹ1, T̃ = A|r) is continuous at r = r0. Similar arguments apply to show that

P(Ỹ0, T̃ = A|r), P(Ỹ1, T̃ = N|r), and P(Ỹ0, T̃ = N|r) are all continuous at r0. For complier, we

have

lim
r↓r0

P(Ỹ1 ∈ B, T̃ = C|r)

= lim
r↓r0

P(Y ∈ B, D = 1|r)−
∫

B
min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ


= lim

r↓r0
P(Y ∈ B, D = 1|r)− lim

r↑r0
P(Y ∈ B, D = 1|r).

Also, by noting limr↓r0

∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ = π−, we obtain

lim
r↑r0

P(Ỹ1 ∈ B, T̃ = C|r) = lim
r↓r0

P(Y ∈ B, D = 1|r)− lim
r↑r0

P(Y ∈ B, D = 1|r).

Hence, we have shown that the constructed distribution of (Ỹ1, Ỹ0, T̃) given R satisfies Assumption 2.

This completes the proof of the second claim.

C.2. Identification of the complier’s potential outcome distributions.

Proposition 1. If Assumptions 1 to 3 hold, then the complier’s potential outcome distributions at the

cut-off,

FY1(r0)|C,R=r0
(y) ≡ lim

r→r0
P
(
Y1(r) ≤ y|T|r−r0| = C, R = r

)
,

FY0(r0)|C,R=r0
(y) ≡ lim

r→r0
P
(
Y0(r) ≤ y|T|r−r0| = C, R = r

)
,
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are identified by

FY1(r0)|C,R=r0
(y) =

limr↓r0 EP[1{Y ≤ y}D|R = r]− limr↑r0 EP[1{Y ≤ y}D|R = r]
π+ − π−

,

FY0(r0)|C,R=r0
(y) =

limr↑r0 EP[1{Y ≤ y}(1− D)|R = r]− limr↓r0 EP[1{Y ≤ y}(1− D)R = r]
π+ − π−

.

Proof. We first note that under Assumptions 1 and 2, π+ − π− = limr→r0 P(T|r−r0| = C|R = r).

Based on (24) in the proof of Theorem 1, we have

lim
r↓r0

EP[1{Y ≤ y}D|R = r]− lim
r↑r0

EP[1{Y ≤ y}D|R = r]

= FY1(r0)|C,R=r0
(y) · lim

r→r0
P(T|r−r0| = C|R = r)

= FY1(r0)|C,R=r0
(y) · (π+ − π−)

Hence, the identification result of FY1(r0)|C,R=r0
(y) is shown.

The identification result for FY0(r0)|C,R=r0
(y) can be shown similarly by using equation (25). We

omit the details for brevity. �

C.3. Lemmas and Proofs for Theorems in Appendix B. We show three lemmas that lead to the

theorems in Appendix B.

We first present a lemma that shows a Bahadur representation for m̂d,?, d = 0, 1 and ? = +,−,

uniform in ` ∈ L and P ∈ P subject to Assumption 9. This lemma extends the undersmoothing

case of Lemma 1 in Chiang, Hsu, and Sasaki (2017) by having an approximation that is uniform also

over the data generating processes P ∈ P . It also modifies the undersmoothing case of Theorem 1 in

Lee, Song, and Whang (2015) by focusing on the boundary point and uniformity over the class of

intervals rather than quantiles.

Given a class of data generating processes P , we say that a sequence of random variable Zn

converges in probability to zero P-uniformly if sup{P∈P} P(|Zn| > ε) → 0 as n → ∞ for any

ε > 0, which we denote by Zn = oP (1).

Lemma 2. Let P be a class of data generating processes satisfying Assumption 9, d = 1, 0, and

? = +,−. Under Assumption 10,

sup
{`∈L}

∣∣∣∣∣√nh(m̂d,?(`)−mP,d,?(`))−
1√
nh

n

∑
i=1

w?
i Ed,i(`)

∣∣∣∣∣ = oP (1), (26)

39



where w+
i =

[
ϑ2−ϑ1

(
Ri−r0

h+

)]
K
(

Ri−r0
h+

)
1{Ri≥r0}

c+ f+R (r0)(ϑ0ϑ2−ϑ2
1)

, w−i =

[
ϑ2+ϑ1

(
Ri−r0

h−

)]
K
(

Ri−r0
h−

)
1{Ri<r0}

c− f−R (r0)(ϑ0ϑ2−ϑ2
1)

, and Ed,i(`) =

g`(Yi)Dd
i (1− Di)

1−d −mP,d(`, Ri).

Proof. We provide a proof for the case of d = 1 and ? = + only, as proofs for the other cases are

similar. Substituting the mean value expansion, g`(Yi)Di = mP,1(`, Ri) + E1,i(`) = mP,1,+(`) +

h+m(1)
P,1(`, r0)

(
Ri−r0

h+

)
+

h2
+
2 m(2)

P,1(`, R̃i)
(

Ri−r0
h+

)2
+ E1,i(`), R̃i ∈ [0, Ri], we obtain

√
nh [m̂1,+(`)−mP,1,+(`)]

=
√

nh3 · c+
n

∑
i=1

w+
n,im

(1)
P,1(`, r0)

(
Ri − r0

h+

)
+
√

nh5 · c2
+

2

n

∑
i=1

w+
n,im

(2)
P,1(`, R̃i)

(
Ri − r0

h+

)2

(27)

+
√

nh ·
n

∑
i=1

w+
n,iE1,i(`) (28)

The first order conditions for the local linear regression implies the first term in (27) is zero. By

the boundedness of m(2)
P,1 (Assumption 9) (iv), the absolute value of the second term in (27) can be

bounded uniformly in ` ∈ L by M
√

nh5 c2
+
2

∣∣∣∣∑n
i=1 w+

n,i

(
Ri−r0

h+

)2
∣∣∣∣. Since we have

n

∑
i=1

w+
n,i

(
Ri − r0

h+

)2

=
(ϑ̂+

2 )
2 − ϑ̂+

1 ϑ̂+
3

ϑ̂+
2 ϑ̂+

0 − (ϑ̂+
1 )

2

=
ϑ2

2 − ϑ1ϑ3

ϑ2ϑ0 − ϑ2
1
+ oP (1),

where ϑ̂+
j is as defined in Appendix A, and the second line follows by Lemma 2 in Fan and Gijbels

(1992); for nonnegative finite j,

ϑ̂+
j = f+R (r0)ϑj + oP (1) (29)

holds where the P-uniform convergence here follows by Assumption 9 (i.e., P shares the common

marginal distribution of R). Hence, combined with the undersmoothing bandwidth (Assumption 10

(iii)), the second term in (27) is oP (1).
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The conclusion of the lemma is obtained by verifying sup{`∈L}
∣∣∣√nh ∑n

i=1 w+
n,iE1,i(`)− 1√

nh ∑n
i=1 w+

i E1,i(`)
∣∣∣ =

oP (1). Consider

sup
{`∈L}

∣∣∣∣∣√nh
n

∑
i=1

w+
n,iE1,i(`)−

1√
nh

n

∑
i=1

w+
i E1,i(`)

∣∣∣∣∣
≤c−1

+

∣∣∣∣∣ ϑ̂+
2

ϑ̂+
2 ϑ̂+

0 − (ϑ̂+
1 )

2
− ϑ2

f+R (r0)(ϑ2ϑ0 − ϑ2
1)

∣∣∣∣∣︸ ︷︷ ︸
(i)

· sup
{`∈L}

∣∣∣∣∣ 1√
nh

n

∑
i=1

K
(

Ri − r0

h+

)
1{Ri ≥ r0}E1,i(`)

∣∣∣∣∣︸ ︷︷ ︸
(ii)

+ c−1
+

∣∣∣∣∣ ϑ̂+
1

ϑ̂+
2 ϑ̂+

0 − (ϑ̂+
1 )

2
− ϑ1

f+R (r0)(ϑ2ϑ0 − ϑ2
1)

∣∣∣∣∣︸ ︷︷ ︸
(iii)

· sup
{`∈L}

∣∣∣∣∣ 1√
nh

n

∑
i=1

K
(

Ri − r0

h+

)(
Ri − r0

h+

)
1{Ri ≥ r0}E1,i(`)

∣∣∣∣∣︸ ︷︷ ︸
(iv)

.

(30)

Since (29) implies both terms (i) and (iii) in (30) are oP (1), it suffices to show that the terms (ii) and

(iv) in (30) are stochastically bounded uniformly in P ∈ P . Let j be a nonnegative integer and

f j
n,i(`) ≡

1√
h

K
(

Ri − r0

h+

)(
Ri − r0

h+

)j

1{Ri ≥ r0}E1,i(`).

Consider obtaining a P-uniform bounds for P(
√

n sup{`∈L}
∣∣∣ 1

n ∑n
i=1 f j

n,i(`)
∣∣∣ > ε) for ε > 0 (i.e.,

term (ii) corresponds to j = 0 and term (iv) corresponds to j = 1). By Markov’s inequality,

P

(
√

n sup
{`∈L}

∣∣∣∣∣ 1n n

∑
i=1

f j
n,i(`)

∣∣∣∣∣ > ε

)
≤ ε−1√nEP

[
sup
{`∈L}

∣∣∣∣∣ 1n n

∑
i=1

f j
n,i(`)

∣∣∣∣∣
]

= ε−1√n

(
EP

[
max

{
sup
{`∈L}

1
n

n

∑
i=1

f j
n,i(`), sup

{`∈L}

1
n

n

∑
i=1

(− f j
n,i(`))

}])

= ε−1√nEP

 sup
{ f j

i ∈F
+
n ∪F−n }

1
n

n

∑
i=1

f j
i

 , (31)

where F+
n ≡ { f j

n,i(`) : ` ∈ L} and F−n ≡ {− f j
n,i(`) : ` ∈ L}. Note that F+

n and F−n are

VC-subgraph classes whose VC-dimensions equal to 2 (see, e.g., Lemma A.1 in Kitagawa and

Tetenov (2018)) with a uniform envelope K̄/
√

h and an L2(P) envelope,

sup
{`∈L}

‖ f j
n,i(`)‖L2(P) ≤

[
c+ f̄R

∫ ∞

0
K2(u)u2jdu

]1/2

< ∞.
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Since F+
n ∪ F−n is a VC-subgraph class sharing the same uniform and L2(P) envelopes, a maxi-

mal inequality for VC-subgraph class of functions with bounded L2(P)-envelope (Lemma A.5 in

Kitagawa and Tetenov (2018)) applies and (31) can be bounded from above by

C1

(
c+ f̄R

∫ ∞

0
K2(u)u2jdu

)1/2

n−1/2

for all n satisfying nh ≥ C2K̄2

c+ f̄R
∫ ∞

0 K2(u)u2jdu
, where C1 and C2 are positive constants that do not depend

on P or bandwidth. Since nh → ∞, this maximal inequality with j = 0 and j = 1 imply term (ii)

and term (iv) in (30) are stochastically bounded P-uniformly. Hence,

sup
{`∈L}

∣∣∣∣∣√nh
n

∑
i=1

w+
n,iE1,i(`)−

1√
nh

n

∑
i=1

w+
i E1,i(`)

∣∣∣∣∣ = oP (1) (32)

holds. �

The next lemma shows the P-uniform convergence of the covariance kernel of w?
i Ed,i(·), the

summand in the Bahadur representation of Lemma 2.

Lemma 3. Let d = 1 or 0, and ? = + or −. For `1, `2 ∈ L, define

ĥ2,P,d,?(`1, `2) =
1

nh

n

∑
i=1

(w?
i )

2σP,d(`1, `2|Ri).

Let P be a class of data generating processes satisfying Assumption 9 and assume that the kernel

function and the bandwidth satisfy Assumption 10. Then,

sup
{`1,`2∈L}

∣∣∣ĥ2,P,d,?(`1, `2)− h2,P,d,?(`1, `2)
∣∣∣ = oP (1),

where h2,P,d,? is as defined in equation (20) above.

Proof. We show the claim for the case of d = 1 and ? = +. The other cases can be proven similarly.

Since

sup
{`1,`2∈L}

∣∣∣ĥ2,P,1,+(`1, `2)− h2,P,1,+(`1, `2)
∣∣∣

≤ sup
{`1,`2∈L}

∣∣∣ĥ2,P,1,+(`1, `2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣︸ ︷︷ ︸

(v)

+ sup
{`1,`2∈L}

∣∣∣EP[ĥ2,P,1,+(`1, `2)]− h2,P,1,+(`1, `2)
∣∣∣︸ ︷︷ ︸

(vi)

,
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we show P-uniform convergences of term (v) and term (vi) separately.

First, by exploiting Assumption 9, we can obtain a uniform upper bound of term (vi) as follows:∣∣∣EP[ĥ2,P,1,+(`1, `2)]− h2,P,1,+(`1, `2)
∣∣∣ ≤ 5M f̄R

∫ ∞
0 (ϑ2 − ϑ1u)2uK2(u)du

( f+R (r0))2(ϑ0ϑ2 − ϑ2
1)

2
h, (33)

which converges to zero as n→ ∞ since h→ 0. Since the marginal distribution of R is common for

P , this convergence is uniform in P ∈ P , so term (vi) is oP (1).

Regarding term (v), Jensen’s inequality bounds its mean by

EP

[
sup

{`1,`2∈L}

∣∣∣ĥ2,P,1,+(`1, `2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣]

≤ 1
[c+ f+R (r0)(ϑ0ϑ2 − ϑ2

1)]
2

EP

[
sup

{`1,`2∈L}

∣∣∣∣∣ 1n n

∑
i=1

fn,i(`1, `2)−EP( fn,i(`1, `2))

∣∣∣∣∣
]

, (34)

where fn,i(`1, `2) ≡ 1
h

[
ϑ2 − ϑ1

(
Ri−r0

h+

)]2
K2
(

Ri−r0
h+

)
· 1{Ri ≥ r0}E1,i(`1)E1,i(`2). Since E1,i(`1)E1,i(`2)

can be viewed as the sum of three indicator functions for intervals (indexed by `1 and `2), { fn,i(`1, `2) :

`1, `2 ∈ L} is a VC-subgraph class of functions with a uniform envelope h−1(ϑ2 + ϑ1)
2K̄2 and

L2(P)-envelope,

[EP( f 2
n,i(`1, `2))]

1/2 ≤ 1√
h

[
c+ f̄R

∫ ∞

0
(ϑ2 − ϑ1u)4 K4 (u) du

]1/2

.

Applying Lemma A.5 in Kitagawa and Tetenov (2018), we obtain

EP

[
sup

{`1,`2∈L}

∣∣∣∣∣ 1n n

∑
i=1

fn,i(`1, `2)− EP( fn,i(`1, `2))

∣∣∣∣∣
]
≤ C1

[
c+ f̄R

∫ ∞

0
(ϑ2 − ϑ1u)4 K4 (u) du

]1/2

(nh)−1/2

(35)

for all nh ≥ C2(ϑ2+ϑ1)
4K̄4

c+ f̄R
∫ ∞

0 (ϑ2−ϑ1u)4K4(u)du
, where C1 and C2 are positive constraints that do not depend on

P and h. Combining (34), (35), and Markov’s inequality, we conclude that the term (v) is oP (1). �

Exploiting the preceding two lemmas, the next lemma proves the functional central limit theorem

for m̂n,d,? along sequences of the data generating processes in P .

Lemma 4. Suppose that Assumptions 9 and 10 hold, and let {Pn} be a sequence of data generating

processes in P . Then, for any subsequence {kn} of {n} such that for d = 0, 1 and ? = +,−,
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limn→∞ d(h2,Pkn ,d,?, h∗2,d,?) = 0 for some h∗2,d,? ∈ H2, we have√
knh(m̂d,?(·)−mPkn ,d,?(·))⇒ Φh∗2,d,?

(·), (36)

where Φh2 denotes a mean zero Gaussian process with covariance kernel h2. In addition, we have

for d = 0, 1, √
knh(ν̂d(·)− νPkn ,d(·))⇒ Φh∗2,d

(·),

where h∗2,d = h∗2,d,+ + h∗2,d,−.

Proof. To simplify notation, we show this theorem for sequence {n}. All the arguments go through

with {kn} in place of {n}.

By Lemma 2, (36) follows if we show 1√
nh ∑n

i=1 w+
i E1,i(·) ⇒ Φh∗2,d,+

(·). For this purpose, we

apply the functional central limit theorem (FCLT), Theorem 10.6 of Pollard (1990), to the triangular

array of independent processes, { fn,i(·) : 1 ≤ i ≤ n}, where fn,i(`) = 1√
nh

w+
i E1,i(`), ` ∈ L.

Let their envelope functions be {Fn,i : 1 ≤ i ≤ n} with Fn,i = (nh)−1/2|w+
i |. Define empirical

processes indexed by ` ∈ L as Φ̂+
n (`) = ∑n

i=1 fn,i(`). First, since { fn,i(`) : ` ∈ L} is a VC-

subgraph class of functions (see, e.g., Lemma A.1 in Kitagawa and Tetenov (2018)), manageability

of { fn,i(`) : ` ∈ L, 1 ≤ i ≤ n} (condition (i) of Theorem 10.6 in Pollard (1990)) is implied by a

polynomial bound for the packing number of VC-subgraph class of functions (see, e.g., Theorem

4.8.1 in Dudley (1999)). For condition (ii) of Theorem 10.6 in Pollard (1990), note that

EPn [Φ̂
+
n (`1)Φ̂+

n (`2)] =
1
h

EPn

[
(w+

i )
2E1,i(`1)E1,i(`2)

]
= EPn [ĥ2,Pn,1,+(`1, `2)] = h2,Pn,1,+(`1, `2) + o(1)

→ h∗2,1,+(`1, `2),

as n → ∞, where the o(1) term in the second line follows from the bound shown in (33), and the

third line follows by the assumption on {Pn} in the current lemma. Condition (iii) of Theorem 10.6

in Pollard (1990) can be shown by noting

n

∑
i=1

EPn [F
2
n,i] =

1
h

EPn [(w
+
i )

2] ≤
f̄R
∫ ∞

0 (ϑ2 − ϑ1u)2K2(u)du
c+( f+R (r0))2(ϑ2ϑ0 − ϑ2

1)
2

.
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Condition (iv) of Theorem 10.6 in Pollard (1990) follows by that, for any ε > 0,

n

∑
i=1

EPn [F
2
n,i · 1{Fn,i > ε}] ≤

n

∑
i=1

EPn

[
F4

n,i

ε2

]
=

1
ε2nh2 EPn [(w

+
i )

4]

≤ (nh)−1 f̄R
∫ ∞

0 (ϑ2 − ϑ1u)4K4(u)du
ε2c3

+[ f+R (r0)(ϑ0ϑ2 − ϑ2
1)]

4
→ 0 as n→ ∞,

where the first inequality holds because 1{Fn,i > ε} ≤ (Fn,i/ε)ς for any ς > 0 and we take ς = 2

here.

To show condition (v) of Theorem 10.6 in Pollard (1990), note that

ρ̂2
1,+(`1, `2) =

n

∑
i=1

EPn( fn,i(`1)− fn,i(`2))
2

=h2,Pn,1,+(`1, `1)− 2h2,Pn,1,+(`1, `2) + h2,Pn,1,+(`2, `2) + o(1)

→h∗2,1,+(`1, `1)− 2h∗2,1,+(`1, `2) + h∗2,1,+(`2, `2) ≡ ρ2
1,+(`1, `2),

where the second line follows by (33). Note that the convergence in the last line holds uniformly

over `1, `2 ∈ L by Lemma 3, and this uniform convergence ensures condition (v) of Theorem 10.6

in Pollard (1990).

Hence, by FCLT of Pollard (1990), we obtain
√

nh(m̂1,+(`)−mPn,1,+(`))⇒ Φh2,1,+(`). Simi-

larly, we can show
√

nh(m̂1,−(`)−mPn,1,−(`))⇒ Φh2,1,−(`).

To show the second part, note that

√
nh(ν̂1(`)− νPn,1(`)) =

√
nh(m̂1,−(`)−mPn,1,−(`))−

√
nh(m̂1,+(`)−mPn,1,+(`))

⇒Φh∗2,1,−+h∗2,1,+
(`) = Φh∗2,1

(`),

where the weak convergence holds by the fact that m̂n,1,+(`) and m̂n,1,−(`) are estimated from

separate samples, so the two processes are mutually independent. The same arguments apply to the

d = 0 case. This completes the proof. �

Define, for d = 1, 0 and ? = +,−,

Φ̂u
n,d,?(`) =

n

∑
i=1

Ui · (
√

nhw?
n,i(g`(Yi)Dd

i (1− Di)
1−d − m̂n,d,?(`))).
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We denote the weak convergence conditional on a sample generated from a sample size dependent

distribution of data Pn by
Pn⇒.17 We denote the convergence in probability along the sequence {Pn}

by
Pn→.

Lemma 5. Suppose that Assumptions 9-11 hold, and let {Pn} be a sequence of data gener-

ating processes in P . For subsequence {kn} of {n} such that for d = 0, 1 and ? = +,−,

limn→∞ d(h2,Pkn ,d,?, h∗2,d,?) = 0 holds for some h∗2,d,? ∈ H2, then Φ̂u
kn,d,?

Pkn⇒ Φh∗2,d,?
. In addition, for

d = 0, 1, Φ̂u
νd,kn

Pkn⇒ Φh∗2,d
with h∗2,d = h∗2,d,+ + h∗2,d,− defined in (20).

Proof. To simplify notation, we show this theorem for sequence {n}, since all the arguments go

through with {kn} in place of {n}. For the first part, it is sufficient to show the case of Φ̂u
n,1,+ since

the arguments for other cases are the same. We use the same arguments of proof in Hsu (2016). We

define φ̂n,i,1,+(`) =
√

nhw+
n,i(g`(Yi)Di − m̂1,+(`)), so Φ̂u

n,1,+ = ∑n
i=1 Ui · φ̂n,i,1,+(`).

First, we note that the triangular array { f̂n,i(`) = Ui · φ̂n,i,1,+(`) : ` ∈ L, 1 ≤ i ≤ n} is

manageable with respect to envelope functions {F̂n,i = 2
√

nh|Ui| · |w+
n,i| : 1 ≤ i ≤ n}. Define

ĥ2,1,+(`1, `2) = ∑n
i=1 φ̂n,i,1,+(`1)φ̂n,i,1,+(`2). If we have

sup
{`1,`2∈L}

|ĥ2,1,+(`1, `2)− h∗2,1,+(`1, `2)|
Pn→ 0, (37)

and

nh
n

∑
i=1
|w+

n,i|
2 Pn→ M1, (38)

n3h3
n

∑
i=1
|w+

n,i|
4 Pn→ M2, (39)

for M1, M2 < ∞, adopting the proof of Theorem 2.1 of Hsu (2016) yields Φ̂u
n,1,+(`)

Pn⇒ Φh∗2,1,+
(`),

and similarly for Φ̂u
n,1,−(`)

Pn⇒ Φh∗2,1,−
(`). For the second part, note that Φ̂u

ν1,n(`) = Φ̂u
n,1,−(`)−

Φ̂u
n,1,+(`) and by the independence between the two simulated processes, we have Φ̂u

ν1,n(`)
Pn⇒

Φh∗2,1
(`).

17Extending the definition of conditional weak convergence given in Section 2.9 of Van Der Vaart and Wellner (1996)

to a sequence of data distributions, Φ̂u
n

Pn⇒ Φ means for any ε > 0, limn→∞ Pn(sup{ f∈BL} |Eu( f (Φ̂u
n))− E( f (Φ))| >

ε) = 0, where f maps random element Φ(·) to R, BL collects f with a bounded Lipschitz constant, and Eu(·) is the
expectation of (Ui : i = 1, . . . , n) conditional on the data.
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Hence, the rest of the proof focuses on verifying (37) - (39). For positive integer j < ∞ and

nonnegative integer k < ∞, a straightforward extension of Lemma 2 in Fan and Gijbels (1992) gives

(nh)(j−1)
n

∑
i=1
|w+

n,i|
j
(

Ri − r0

h+

)k

=

∫ ∞
0 K j(u)(ϑ2 − ϑ1u)jukdu

cj−1
+ [ϑ0ϑ2 − ϑ2

1]
j

+ oP (1), (40)

where the first term in the right hand side is finite and the assumption that P shares a fixed distribution

for R leads to this convergence being uniform over P . Hence, (38) and (39) hold, as {Pn} ∈ P .

To show (37), it suffices to show

sup
{`1,`2∈L}

|ĥ2,1,+(`1, `2)− h2,P,1,+(`1, `2)|

≤ sup
{`1,`2∈L}

|ĥ2,1,+(`1, `2)−EP[ĥ2,P,1,+(`1, `2)]|+ sup
{`1,`2∈L}

|EP[ĥ2,P,1,+(`1, `2)]− h2,P,1,+(`1, `2)|

(41)

=oP (1).

The proof of Lemma 3 shows that the second term in (41) converges to zero uniformly in P in the

proof of Lemma 3. We hence focus on showing that the first term in (41) is oP (1).

Rewrite φ̂n,i,1,+(`) as follows by applying the mean value expansion:

φ̂n,i,1,+(`) =
√

nhw+
n,i [mP,1(`, Ri)− m̂1,+(`) + E1,i(`)]

= w+
n,i â1(`) + â2,i(`) + â3,i(`),

where

â1(`) ≡ −
√

nh[m̂1,+(`)−mP,1,+(`)]

â2,i(`) ≡
√

nhw+
n,i

[
h+m(1)

P,+(`, Ri)

(
Ri − r0

h+

)
+

h2
+

2
m(2)

P,1(`, R̃i)

(
Ri − r0

h+

)2
]

,

â3,i(`) ≡
√

nhw+
n,iE1,i(`).
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Then, we have

ĥ2,1,+(`1, `2) = â1(`1)â1(`2)
n

∑
i=1

(w+
n,i)

2

︸ ︷︷ ︸
(i)

+
n

∑
i=1

â2,i(`1)â2,i(`2)︸ ︷︷ ︸
(ii)

+
n

∑
i=1

â3,i(`1)â3,i(`2)︸ ︷︷ ︸
(iii)

+
n

∑
i=1

w+
n,i [â1(`1)(â2,i(`2) + â3,i(`2)) + â1(`2)(â2,i(`1) + â3,i(`1))]︸ ︷︷ ︸

(vi)

+
n

∑
i=1

[â2,i(`1)â3,i(`2) + â2,i(`2)â3,i(`2)]︸ ︷︷ ︸
(v)

.

By Lemma 4 and (40), term (i) is oP (1) uniformly over `1, `2 ∈ L. By Assumption 9 (v), the absolute

value of term (ii) can be bounded by
{

2M(nh)∑n
i=1(w

+
n,i)

2
[(

Ri−r0
h+

)
+
(

Ri−r0
h+

)2
]}
· (h+ ∨ h2

+)

uniformly over `1, `2 ∈ L, which is oP (1) by (40) and h+ → 0. To examine term (vi), note that

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

w+
n,i â1(`1)â2,i(`2)

∣∣∣∣∣
≤(nh)−1/2 sup

{`∈L}
|â1(`)| · 2M(nh) ∑

i=1
(w+

n,i)
2

∣∣∣∣∣
(

Ri − r0

h+

)
+

(
Ri − r0

h+

)2
∣∣∣∣∣ · (h+ ∨ h2

+)

=oP (1),

where the final line follows by Lemma 4, equation (40), nh→ ∞, and h+ → 0. Note also that

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

w+
n,i â1(`1)â3,i(`2)

∣∣∣∣∣ ≤ (nh)−1 sup
{`∈L}

|â1(`)| · sup
{`∈L}

∣∣∣∣∣(nh)3/2
n

∑
i=1

(w+
n,i)

2E1,i(`)

∣∣∣∣∣ .

The proof for (32) in Lemma 2 can be extended to claim the following Bahadur representation:

sup
{`∈L}

∣∣∣∣∣(nh)3/2
n

∑
i=1

(w+
n,i)

2E1,i(`)−
1√
nh

n

∑
i=1

(w+
i )

2E1,i(`)

∣∣∣∣∣ = oP (1).

As in the proof of Lemma 4, we apply the FCLT to 1√
nh ∑n

i=1(w
+
i )

2E1,i(`) to conclude that

sup{`∈L}
∣∣∣(nh)3/2 ∑n

i=1(w
+
n,i)

2E1,i(`)
∣∣∣ is stochastically bounded uniformly in P . Combining with

Lemma 4 and nh → ∞, we obtain sup{`1,`2∈L}

∣∣∣∑n
i=1 w+

n,i â1(`1)â3,i(`2)
∣∣∣ = oP (1). This implies
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term (iv) is oP (1). Regarding term (v), we have

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

â2,i(`1)â3,i(`2)

∣∣∣∣∣
≤M(nh)−1/2(h+ ∨ h2

+)×
{

sup
{`∈L}

∣∣∣∣∣(nh)3/2 ∑
i=1

(w+
n,i)

2
(

Ri − r0

h+

)
E1,i(`)

∣∣∣∣∣
+ sup
{`∈L}

∣∣∣∣∣(nh)3/2 ∑
i=1

(w+
n,i)

2
(

Ri − r0

h+

)2

E1,i(`)

∣∣∣∣∣
}

. (42)

Similarly to the proof of (32) in Lemma 2, the two terms in the curly brackets of (42) can admit the

following Bahadur representation: for positive integer j < ∞,

sup
{`∈L}

∣∣∣∣∣(nh)3/2
n

∑
i=1

(w+
n,i)

2
(

Ri − r0

h+

)j

E1,i(`)−
1√
nh

n

∑
i=1

(w+
i )

2
(

Ri − r0

h+

)j

E1,i(`)

∣∣∣∣∣ = oP (1).

Similarly to the proof of Lemma 4, the FCLT applied to 1√
nh ∑n

i=1(w
+
i )

2
(

Ri−r0
h+

)j
E1,i(`) shows

that it is stochastically bounded uniformly in P . Accordingly, since nh→ ∞ and h+ → 0, the upper

bound in (42) is oP (1).

We now show term (iii) is the leading term such that sup{`1,`2}

∣∣∣∑n
i=1 â3,i(`1)â3,i(`2)−EP[ĥ2,P,1,+(`1, `2)]

∣∣∣ =
oP (1) holds. By modifying the proof of (32) by replacing f j

n,i(`) with fn,i(`1, `2) defined in the

proof of Lemma 3, we obtain the Bahadur-type uniform approximation,

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

â3,i(`1)â3,i(`2)− (nh)−1
n

∑
i=1

(w+
i )

2E1,i(`1)E1,i(`2)

∣∣∣∣∣ = oP (1).

We hence aim to verify
∣∣∣(nh)−1 ∑n

i=1(w
+
i )

2E1,i(`1)E1,i(`2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣ = oP (1). Note

that

EP

[∣∣∣∣∣(nh)−1
n

∑
i=1

(w+
i )

2E1,i(`1)E1,i(`2)−EP[ĥ2,P,1,+(`1, `2)]

∣∣∣∣∣
]

≤ 1
[c+ f+R (r0)(ϑ0ϑ2 − ϑ2

1)]
2

EP

[
sup

{`1,`2∈L}

∣∣∣∣∣ 1n n

∑
i=1

fn,i(`1, `2)−EP( fn,i(`1, `2))

∣∣∣∣∣
]

,

(43)
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where fn,i(`1, `2) is as defined in the proof of Lemma 3. Note that this upper bound coincides with

(34). Hence, the proof of Lemma 3 yields
∣∣∣(nh)−1 ∑n

i=1(w
+
i )

2E1,i(`1)E1,i(`2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣ =

oP (1). �

Lemma 6. Suppose that Assumptions 9 and 10 hold. Let {Pn} be a sequence of data gener-

ating processes in P . For any subsequence of kn of n such that for d = 0, 1 and ? = +,−,

limn→∞ d(h2,Pkn ,d,?, h∗2,d,?) = 0 for some h∗2,d,? ∈ H2, then for d = 0, 1, sup{`∈L} |σ̂
−1
d,ξ (`) −

σ−1
d,Pkn ,ξ(`)|

Pkn→ 0, where σd,Pkn ,ξ(`) ≡ max{h2,Pkn ,d(`, `), ξ}.

Proof. Using the notations defined in the proof of Lemma 5, we note, for d = 0, 1,

σ̂d,ξ(`) = max{ξ,
√

ĥ2
2,d,+(`, `) + ĥ2

2,d,−(`, `)}.

The uniform convergence of (41) shown in the proof of Lemma 5 implies

sup
{`∈L}

∣∣∣∣√ĥ2
2,d,+(`, `) + ĥ2

2,d,−(`, `)− h2,Pkn ,d(`, `)
∣∣∣∣ Pkn→ 0.

By the fact that the maximum operator is a continuous functional and the fact that σd,kn,ξ is bounded

away from zero, sup{`∈L} |σ̂
−1
d,ξ (`)− σ−1

d,Pkn ,ξ(`)|
Pkn→ 0 follows by the continuous mapping theorem.

�

Remark: Note that the results in Lemmas 4 and 5 hold jointly for d = 0 and d = 1. We omit the

results and proofs for brevity.

Proof of Theorem 2: Having shown Lemmas 4 to 6, we apply the same arguments as in Hsu (2017).

Let H1 denote the set of all functions from L to [−∞, 0]. Let h = (h1, h2), h1 = (h1,0, h1,1) and

h2 = (h2,0, h2,1), where h1,d ∈ H1 and h2,d = H2 for d = 0, 1. Define

T(h) = sup
{d∈{0,1},`∈L}

Φh2,d(`) + h1,d(`)

σd,Pkn ,ξ
.

Define c0(h1, h2, 1− α) as the (1-α)-th quantile of T(h). Similar to Lemma A2 of Andrews and Shi

(2013), we can show that for any ξ > 0,

lim supn→∞ sup
{P∈P0 : d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P
(

Ŝn > c0(hP
1,n, h2,P, 1− α) + ξ

)
≤ α, (44)
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where hP
1,n = (hP

0,d,n, hP
1,d,n) such that for d = 0, 1, hP

1,d,n =
√

nhνP,d(·) and hP
1,d,n belongs to H1

under P ∈ P0. Also, similar to Lemma A3 of Andrews and Shi (2013), we can show that for all

α < 1/2

lim supn→∞ sup
{P∈P0: d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P
(

c0(ψn, h2,P, 1− α) < c0(hP
1,n, h2,P, 1− α)

)
= 0,

(45)

where ψn = (ψn,0, ψn,1) with ψn(`) = (ψn,0(`), ψn,1(`)). As a result, to complete the proof of

Theorem 2, it suffices to show that for all 0 < ξ < η

lim supn→∞ sup
{P∈P0 : d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P
(

ĉη(α) < c0(ψn, h2,P, 1− α) + ξ
)
= 0. (46)

Let {Pn ∈ P0|n ≥ 1} be a sequence for which the probability in the statement of (46) evaluated

at Pn differs from its supremum over P ∈ P0 by δn or less, where δn > 0 and limn→∞ δn = 0. By

the definition of lim sup, such sequence always exists. Therefore, it is equivalent to show that for

0 < ξ < η,

limn→∞P
(

ĉn,η(α) < c0(ψn, h2,P, 1− α) + ξ
)
= 0, (47)

where ĉn,η(α) denotes the critical value under Pn. To be more specific, it is true that the limit on the

left hand side exists, but we want to show that it is 0. Given that we restrict to a compact setH2,cpt,

there exists a subsequence kn of n such that for d = 0, 1, h2,Pkn ,d,+ and h2,Pkn ,d,− converge to h∗2,d,+

and h∗2,d,−, respectively, for some h∗2,d,+, h∗2,d,− ∈ H2,cpt. Also, h∗2,d = h∗2,d,+ + h∗2,d,− for d = 0, 1.

By Lemmas 5 and 6,

Φ̂u
νd,kn

(·)
Pkn⇒ Φh∗2,d

(·),

sup
{`∈L}

|σ̂−1
d,ξ (`)− σ−1

d,Pkn ,ξ(`)|
Pkn→ 0

for d = 0, 1. By the definition of
Pkn⇒ and

Pkn→, there exists a further subsequence mn of kn such that

Φ̂u
νd,mn

(·) a.s.⇒ Φh∗2,d
(·),

sup
{`∈L}

|σ̂−1
d,ξ (`)− σ−1

d,Pmn ,ξ(`)|
a.s.→ 0,
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for d = 0, 1. For any ω ∈ Ω1 where

Ω1 ≡
{

ω ∈ Ω| for d = 0, 1, Φ̂u
νd,mn

(·)⇒ Φh∗2,d
(·),

sup
{`∈L}

|σ̂−1
d,ξ (`)− σ−1

d,Pmn ,ξ(`)| → 0
}

,

by the same argument for Theorem 1 of Andrews and Shi (2013), we can show that for any constant

amn ∈ R which may depend on h1 and P and for any ξ1 >,

lim sup
n→∞

sup
{h1,0,h1,1∈H1}

Pu
(

sup
{d∈{0,1},`∈L}

(
Φ̂u

νd,mn
(`)(ω) + h1,d

σ̂d,ξ(`)
) ≤ amn

)
− P

(
sup

{d∈{0,1},`∈L}
(

Φh∗2,d
(`) + h1,d

σd,Pmn ,ξ(`)
) ≤ amn + ξ1

)
≤ 0. (48)

(48) is similar to (12.28) in Andrews and Shi (2013). By (48) and by the similar argument for Lemma

A5 of Andrews and Shi (2013), we have that for all 0 < ξ < ξ1 < η,

lim infn→∞ ĉmn,η(α)(ω) ≥ c0(ψmn , h2,Pmn
, 1− α) + ξ1. (49)

Therefore, for any ω ∈ Ω1, (49) holds. Given that P(Ω1) = 1, we have that for all 0 < ξ < ξ1 < η

P
({

ω|lim infn→∞ ĉmn,η(α)(ω) ≥ c0(ψmn , h2,Pmn
, 1− α) + ξ1

})
= 1,

which implies that

limn→∞P(ĉmn,η(α) < c0(ψmn , h2,Pmn
, 1− α) + δ) = 0. (50)

Note that for any convergent sequence an, if there exists a subsequence amn converging to a, then an

converges to a as well. Therefore, (50) is sufficient for (47). Theorem 2(a) is shown by combining

(44), (45) and (46).

We next show Theorem 2(b). Under Assumption 13, consider pointwise asymptotics under

Pc ∈ P0. As in the proof of Proposition 1 of Barret and Donald (2003) and Lemma 1 of Donald and

Hsu (2016), we have Ŝn
d→ sup{(d,`): `∈Lo

Pc ,d}
Φh2,Pc ,d(`)/σd,Pc,ξ(`) whose CDF is denoted by H(a).

By Tsirel’son (1975), if either Φh2,Pc ,0 restricted to Lo
Pc,0 ×Lo

Pc,0 or Φh2,Pc ,1 restricted to Lo
Pc,1 ×Lo

Pc,1

is not a zero function, then H(a) is continuous and strictly increasing a ∈ (0, ∞) and H(0) > 1/2.

52



By the same proof for Theorem 2(b) of Andrews and Shi (2013), it is true that ĉη(α)→ c(1− α +

η)+ η where c(1− α+ η) denotes the (1− α+ η)-th quantile of sup(d,`): `∈Lo
Pc ,d

Φh2,Pc ,d(`)/σd,Pc,ξ(`).

Because H(a) is continuous at c(1− α), we have limη→0 c(1− α + η) + η = c(1− α). This suf-

fices to show that limn→∞ P(Ŝn > ĉη(α)) = α under Pc. Combined with the claim of (a) in the

current theorem, Theorem 2(b) holds. �

Proof of Theorem 3: Under any fixed alternative PA, the exists (d, `∗) such that νd(`
∗) > 0, so

Ŝn/
√

nh ≥ νd(`
∗)/σd,PA,ξ(`

∗) in probability that implies that Ŝn will diverge to positive infinity in

probability. Also, the ĉη(α) is bounded in probability, so limn→∞ P(Ŝn > ĉη(α)) = 1. �

Proof of Theorem 4: Define L++
d = {` ∈ Lo

Pc,d : δd(`) > 0}. For d = 1, 0, let σ∗d,ξ(`) ≡

max{ξ,
√
(h∗2,d,+(`, `))2 + (h∗2,d,−(`, `))2} be the limiting trimmed variance along the sequence

of local alternatives {Pn}. It can be shown that Ŝn
Pn⇒ sup{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`)

and ĉη(α)
Pn→ cη + η where cη is the (1− α + η)-th quantile of sup{(d,`):`∈Lo

Pc ,d}
Φh∗2,d

(`)/σ∗d,ξ(`).

Then, the limit of the local power is

P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ cη + η).

We need to consider the following two cases: (a) both h∗2,0 restricted to Lo
Pc,0 × Lo

Pc,0 and h∗2,1

restricted to Lo
Pc,1 ×Lo

Pc,1 are zero functions and (b) at least one of h∗2,0 restricted to Lo
Pc,0 ×Lo

Pc,0 or

h∗2,1 restricted to Lo
Pc,1 ×Lo

Pc,1 is not a zero function.

For case (a), because h∗2,0 restricted to Lo
Pc,0 ×Lo

Pc,0 and h∗2,1 restricted to Lo
Pc,1 ×Lo

Pc,1 are zero

functions, then sup{(d,`):`∈Lo
Pc ,d}
|Φh∗2,d

(`)| Pn→ 0 and Ŝn
Pn→ sup{(d,`):`∈Lo

Pc ,d}
δd(`)/σ∗d,ξ(`) > 0.

Also, it is true that cη + η = η and when η → 0, we have P(Ŝn > η) = 1 when η is small enough.

For case (b), when at least one of h∗2,0 restricted to Lo
Pc,0 ×Lo

Pc,0 or h∗2,1 restricted to Lo
Pc,1 ×Lo

Pc,1

is not a zero function, then by the continuity of the distribution of sup{(d,`):`∈Lo
Pc ,d}

(Φh∗2,d
(`) +

δd(`))/σ∗d,ξ(`) and sup{(d,`):`∈Lo
Pc ,d}

Φh∗2,d
(`)/σ∗d,ξ(`),

lim
η→0

P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ cη + η) = P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ c),
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where c is the (1− α)-th quantile of sup{(d,`):`∈Lo
Pc ,d}

Φh∗2,d
(`)/σ∗d,ξ(`). By assumption, δd(`) is

non-negative if ` ∈ Lo
Pc,d, so sup{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) first order stochastically

dominates sup{(d,`):`∈Lo
Pc ,d}

Φh∗2,d
(`)/σ∗d,ξ(`) and it follows that

P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ c) ≥ α.

This completes the proof for Theorem 4. �
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APPENDIX D. ADDITIONAL EMPIRICAL RESULTS FOR SECTION 5

TABLE 5. Testing Results for Israeli School Data: p-values, ξ = 0.0316

3 5 AL IK CCT
g4math
Cut-off 40 0.986 0.934 0.764 0.978 0.968
Cut-off 80 0.909 0.865 0.715 0.944 0.888
Cut-off 120 0.443 0.702 0.665 0.604 0.568

g4verb
Cut-off 40 0.928 0.627 0.465 0.641 0.529
Cut-off 80 0.911 0.883 0.185 0.906 0.720
Cut-off 120 0.935 0.683 0.474 0.730 0.186

g5math
Cut-off 40 0.876 0.282 0.482 0.631 0.609
Cut-off 80 0.516 0.446 0.930 0.482 0.765
Cut-off 120 0.939 0.827 0.626 0.883 0.838

g5verb
Cut-off 40 0.594 0.893 0.953 0.900 0.938
Cut-off 80 0.510 0.692 0.504 0.519 0.929
Cut-off 120 0.696 0.811 0.601 0.699 0.774

55



TABLE 6. Testing Results for Israeli School Data: p-values, ξ = 0.1706

3 5 AL IK CCT
g4math
Cut-off 40 0.986 0.934 0.945 0.978 0.959
Cut-off 80 0.909 0.865 0.713 0.944 0.878
Cut-off 120 0.443 0.702 0.660 0.565 0.540

g4verb
Cut-off 40 0.924 0.627 0.451 0.637 0.517
Cut-off 80 0.911 0.883 0.185 0.906 0.688
Cut-off 120 0.935 0.683 0.471 0.730 0.183

g5math
Cut-off 40 0.861 0.275 0.481 0.623 0.600
Cut-off 80 0.516 0.429 0.916 0.479 0.762
Cut-off 120 0.939 0.827 0.624 0.883 0.836

g5verb
Cut-off 40 0.594 0.893 0.953 0.934 0.938
Cut-off 80 0.510 0.671 0.496 0.513 0.946
Cut-off 120 0.696 0.811 0.594 0.699 0.757

TABLE 7. Testing Results for Israeli School Data: p-values, ξ = 0.5

3 5 AL IK CCT
g4math
Cut-off 40 0.984 0.934 0.940 0.978 0.950
Cut-off 80 0.907 0.853 0.832 0.936 0.893
Cut-off 120 0.443 0.683 0.633 0.557 0.519

g4verb
Cut-off 40 0.907 0.599 0.450 0.637 0.499
Cut-off 80 0.907 0.880 0.165 0.906 0.760
Cut-off 120 0.935 0.668 0.449 0.719 0.164

g5math
Cut-off 40 0.854 0.678 0.461 0.788 0.829
Cut-off 80 0.499 0.419 0.913 0.466 0.749
Cut-off 120 0.931 0.812 0.591 0.873 0.818

g5verb
Cut-off 40 0.955 0.875 0.946 0.926 0.936
Cut-off 80 0.499 0.664 0.930 0.504 0.938
Cut-off 120 0.665 0.795 0.708 0.688 0.750
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TABLE 8. Testing Results for Columbia’s SR Data: p-values (ξ = 0.00999, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.534 0.789 0.853 0.563 0.948 0.957
Individual outpatient medical spending 0.952 0.886 0.854 0.006 0.611 0.878
Variability of individual inpatient medical spending 0.502 0.792 0.870 0.655 0.937 0.959
Variability of individual outpatient medical spending 0.912 0.949 0.985 0.831 0.682 0.966
Individual education spending 0.150 0.191 0.174 0.016 0.896 0.093
Household education spending 0.001 0.000 0.000 0.000 0.007 0.000
Total spending on food 0.000 0.000 0.000 0.000 0.013 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000
Has car 0.973 0.758 0.865 0.996 0.724 0.991
Has radio 1.000 1.000 1.000 1.000 1.000 1.000

Medical care use
Preventive physician visit 0.615 0.990 1.000 1.000 0.368 0.978
Number of growth development checks last year 0.726 0.932 0.959 0.924 0.653 0.991
Curative care use 0.980 0.965 0.964 0.984 0.972 0.957
Primary care 0.919 0.920 0.946 0.994 0.966 0.952
Medical visit-specialist 0.979 0.936 0.734 0.927 0.897 0.634
Hospitalization 0.994 1.000 1.000 1.000 0.979 1.000
Medical visit for chronic disease 0.149 0.493 0.724 0.529 0.091 0.640
Curative care use among children 0.988 0.972 0.953 0.985 0.976 0.949

Health status
Child days lost to illness 0.602 0.678 0.800 0.768 0.659 0.859
Cough, fever, diarrhea 0.989 1.000 1.000 1.000 0.991 1.000
Any health problem 0.996 0.999 0.983 0.998 0.998 0.990
Birthweight (KG) 0.901 0.999 1.000 0.995 0.904 0.999

Behavioral distortions
Drank alcohol during pregnancy 0.425 0.743 0.870 0.930 0.190 0.937
Number of drinks per week during pregnancy 0.783 0.882 0.911 0.852 0.750 0.842
Months child breastfed 0.944 0.959 0.923 0.864 0.949 0.879
Folic acid during pregnancy 0.999 1.000 0.999 1.000 0.999 0.997
Number months folic acid during pregnancy 0.927 0.956 0.927 0.969 0.944 0.750
Contributory regime enrollment (ECV) 0.553 0.546 0.379 0.001 0.748 0.327
Contributory regime enrollment (DHS) 0.978 0.992 0.999 1.000 0.635 1.000
Other insurance (ECV) 0.890 0.932 0.928 0.876 0.818 0.904
Other insurance (DHS) 0.914 0.967 0.970 0.951 0.884 0.964
Uninsured (ECV) 0.675 0.688 0.450 0.079 0.751 0.682
Uninsured (DHS) 0.994 1.000 1.000 1.000 0.796 0.975
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TABLE 9. Testing Results for Columbia’s SR Data: p-values (ξ = 0.0316, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.526 0.775 0.846 0.555 0.936 0.950
Individual outpatient medical spending 0.93 0.854 0.818 0.005 0.561 0.839
Variability of individual inpatient medical spending 0.497 0.773 0.860 0.645 0.927 0.951
Variability of individual outpatient medical spending 0.868 0.933 0.972 0.954 0.619 0.951
Individual education spending 0.148 0.183 0.172 0.016 0.893 0.093
Household education spending 0.001 0.000 0.000 0.000 0.007 0.000
Total spending on food 0.000 0.000 0.000 0.000 0.013 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000
Has car 0.973 0.758 0.865 0.996 0.724 0.991
Has radio 1.000 1.000 1.000 1.000 1.0000 1.000

Medical care use
Preventive physician visit 0.615 0.990 1.000 1.000 0.368 0.978
Number of growth development checks last year 0.716 0.932 0.959 0.924 0.641 0.991
Curative care use 0.980 0.965 0.964 0.984 0.972 0.957
Primary care 0.919 0.920 0.946 0.994 0.966 0.952
Medical visit-specialist 0.979 0.936 0.734 0.927 0.897 0.634
Hospitalization 0.994 1.000 1.000 1.000 0.979 1.000
Medical visit for chronic disease 0.149 0.493 0.724 0.529 0.091 0.64
Curative care use among children 0.988 0.972 0.953 0.985 0.976 0.949

Health status
Child days lost to illness 0.602 0.678 0.800 0.768 0.659 0.859
Cough, fever, diarrhea 0.989 1.000 1.000 1.000 0.991 1.000
Any health problem 0.996 0.999 0.983 0.998 0.998 0.990
Birthweight (KG) 0.901 0.999 1.000 0.995 0.904 0.999

Behavioral distortions
Drank alcohol during pregnancy 0.425 0.743 0.870 0.930 0.190 0.937
Number of drinks per week during pregnancy 0.783 0.882 0.904 0.852 0.719 0.840
Months child breastfed 0.944 0.959 0.923 0.864 0.949 0.879
Folic acid during pregnancy 0.999 1.000 0.999 1.000 0.999 0.997
Number months folic acid during pregnancy 0.927 0.956 0.927 0.969 0.944 0.750
Contributory regime enrollment (ECV) 0.553 0.546 0.379 0.001 0.748 0.327
Contributory regime enrollment (DHS) 0.978 0.992 0.999 1.000 0.635 1.000
Other insurance (ECV) 0.890 0.932 0.928 0.876 0.818 0.904
Other insurance (DHS) 0.914 0.967 0.970 0.951 0.884 0.964
Uninsured (ECV) 0.675 0.688 0.450 0.079 0.751 0.682
Uninsured (DHS) 0.994 1.000 1.000 1.000 0.796 0.975

58



TABLE 10. Testing Results for Columbia’s SR Data: p-values (ξ = 0.1706, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.427 0.684 0.764 0.990 0.875 0.900
Individual outpatient medical spending 0.846 0.840 0.782 0.637 0.411 0.799
Variability of individual inpatient medical spending 0.373 0.636 0.786 0.966 0.834 0.913
Variability of individual outpatient medical spending 0.767 0.887 0.947 0.927 0.347 0.913
Individual education spending 0.137 0.162 0.156 0.077 0.870 0.267
Household education spending 0.001 0.000 0.002 0.000 0.005 0.000
Total spending on food 0.000 0.000 0.000 0.000 0.013 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000
Has car 0.973 0.758 0.865 0.996 0.724 0.991
Has radio 1.000 1.000 1.000 1.000 1.000 1.000

Medical care use
Preventive physician visit 0.615 0.990 1.000 1.000 0.368 0.978
Number of growth development checks last year 0.767 0.888 0.953 0.991 0.823 0.986
Curative care use 0.980 0.965 0.964 0.984 0.972 0.957
Primary care 0.919 0.920 0.946 0.994 0.966 0.952
Medical visit-specialist 0.979 0.936 0.734 0.927 0.897 0.634
Hospitalization 0.994 1.000 1.000 1.000 0.979 1.000
Medical visit for chronic disease 0.149 0.493 0.724 0.529 0.091 0.640
Curative care use among children 0.988 0.972 0.953 0.985 0.976 0.949

Health status
Child days lost to illness 0.602 0.678 0.800 0.768 0.659 0.859
Cough, fever, diarrhea 0.989 1.000 1.000 1.000 0.991 1.000
Any health problem 0.996 0.999 0.983 0.998 0.998 0.990
Birthweight (KG) 0.901 0.999 1.000 0.995 0.904 0.999

Behavioral distortions
Drank alcohol during pregnancy 0.425 0.743 0.870 0.930 0.190 0.937
Number of drinks per week during pregnancy 0.731 0.853 0.888 0.834 0.694 0.805
Months child breastfed 0.944 0.959 0.923 0.864 0.949 0.879
Folic acid during pregnancy 0.999 1.000 0.999 1.000 0.999 0.997
Number months folic acid during pregnancy 0.927 0.956 0.927 0.969 0.944 0.750
Contributory regime enrollment (ECV) 0.553 0.546 0.379 0.001 0.748 0.327
Contributory regime enrollment (DHS) 0.978 0.992 0.999 1.000 0.635 1.000
Other insurance (ECV) 0.890 0.932 0.928 0.876 0.818 0.904
Other insurance (DHS) 0.914 0.967 0.970 0.951 0.884 0.964
Uninsured (ECV) 0.675 0.688 0.450 0.079 0.751 0.682
Uninsured (DHS) 0.994 1.000 1.000 1.000 0.796 0.975
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TABLE 11. Testing Results for Columbia’s SR Data: p-values (ξ = 0.5, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.519 0.681 0.708 0.892 0.756 0.706
Individual outpatient medical spending 0.718 0.840 0.928 0.215 0.232 0.898
Variability of individual inpatient medical spending 0.366 0.612 0.691 0.898 0.631 0.765
Variability of individual outpatient medical spending 0.400 0.751 0.768 0.544 0.176 0.778
Individual education spending 0.103 0.108 0.109 0.288 0.777 0.194
Household education spending 0.001 0.000 0.002 0.025 0.021 0.000
Total spending on food 0.000 0.000 0.000 0.000 0.011 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000
Has car 0.973 0.758 0.865 0.996 0.724 0.991
Has radio 1.000 1.000 1.000 1.000 1.000 1.000

Medical care use
Preventive physician visit 0.615 0.990 1.000 1.000 0.368 0.978
Number of growth development checks last year 0.823 0.915 0.970 0.973 0.866 0.991
Curative care use 0.980 0.965 0.964 0.984 0.972 0.957
Primary care 0.919 0.920 0.946 0.994 0.963 0.952
Medical visit-specialist 0.959 0.924 0.725 0.913 0.870 0.634
Hospitalization 0.994 1.000 1.000 1.000 0.979 1.000
Medical visit for chronic disease 0.149 0.493 0.724 0.529 0.091 0.640
Curative care use among children 0.988 0.972 0.953 0.985 0.976 0.949

Health status
Child days lost to illness 0.602 0.678 0.800 0.768 0.659 0.859
Cough, fever, diarrhea 0.989 1.000 1.000 1.000 0.991 1.000
Any health problem 0.996 0.999 0.983 0.998 0.998 0.990
Birthweight (KG) 0.901 0.999 1.000 0.995 0.904 0.999

Behavioral distortions
Drank alcohol during pregnancy 0.425 0.743 0.870 0.930 0.190 0.937
Number of drinks per week during pregnancy 0.666 0.801 0.851 0.739 0.650 0.751
Months child breastfed 0.941 0.958 0.918 0.864 0.942 0.876
Folic acid during pregnancy 0.999 1.000 0.999 1.000 0.999 0.997
Number months folic acid during pregnancy 0.927 0.956 0.927 0.969 0.944 0.750
Contributory regime enrollment (ECV) 0.553 0.546 0.379 0.001 0.748 0.327
Contributory regime enrollment (DHS) 0.978 0.992 0.999 1.000 0.635 1.000
Other insurance (ECV) 0.869 0.913 0.916 0.867 0.802 0.891
Other insurance (DHS) 0.907 0.967 0.970 0.951 0.871 0.964
Uninsured (ECV) 0.675 0.688 0.450 0.079 0.751 0.682
Uninsured (DHS) 0.994 1.000 1.000 1.000 0.796 0.975
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TABLE 12. Testing Results for Columbia’s SR Data by Regions (ξ = 0.00999)

MPV bandwidths Other bandwidth choice
2 3 4 AI IK CCT

Atlantica
Household education spending 0.001 0.001 0.001 0.000 0.000 0.001
Total spending on food 0.009 0.008 0.026 0.000 0.015 0.020
Total monthly expenditure 0.000 0.001 0.000 0.000 0.000 0.000

Oriental
Household education spending 0.000 0.000 0.000 0.000 0.000 0.002
Total spending on food 0.000 0.001 0.000 0.000 0.001 0.002
Total monthly expenditure n.a.∗ n.a. n.a. n.a. n.a. n.a.

Central
Household education spending 0.000 0.098 0.058 0.000 0.000 0.000
Total spending on food 0.000 0.002 0.001 0.001 0.000 0.021
Total monthly expenditure 0.000 0.007 0.008 0.000 0.000 0.001

Pacifica
Household education spending 0.001 0.147 0.073 0.000 0.043 0.003
Total spending on food 0.150 0.237 0.236 0.013 0.107 0.385
Total monthly expenditure 0.091 0.347 0.231 0.002 0.071 0.125

Bogota
Household education spending 0.000 0.000 0.000 0.000 0.014 0.000
Total spending on food 0.000 0.000 0.001 0.003 0.002 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000

Territorios Nacionales
Household education spending 0.085 0.247 0.063 0.000 0.037 0.090
Total spending on food 0.029 0.310 0.032 0.000 0.057 0.281
Total monthly expenditure 0.227 0.271 0.349 0.001 0.364 0.752

∗: not available due to small sample size.
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TABLE 13. Subsample Sizes by Regions

Household Edu. Spending Total Spending on Food Total Monthly Exp.
Atlantica 3969 3969 1480

Oriental 1496 1496 452

Central 5341 5318 2728

Pacifica 6370 6370 3203

Bogota 43656 41108 14634

Territorios Nacionales 1137 1137 643
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TABLE 14. Sample Sizes and Bandwidths for the Israeli School Data

3 5 AI IK CCT
g4math
Cut-off 40 (n = 984) (n−, n+) 17 67 26 93 102 302 23 84 89 227

(h−, h+) 3 3 5 5 11.1 15.0 3.8 3.9 10.6 10.4

Cut-off 80 (n = 1376) (n−, n+) 29 45 76 71 292 142 29 45 206 107
(h−, h+) 3 3 5 5 15.0 9.3 2.8 2.8 10.5 10.6

Cut-off 120 (n = 976) (n−, n+) 27 20 66 34 189 66 47 34 117 60
(h−, h+) 3 3 5 5 15.0 10.4 4.0 4.2 8.7 9.0

g4verb

Cut-off 40 (n = 984) (n−, n+) 17 67 26 93 57 302 23 84 89 227
(h−, h+) 3 3 5 5 7.7 15.0 4.0 4.0 11.0 10.8

Cut-off 80 (n = 1376) (n−, n+) 29 45 76 71 270 142 55 54 206 107
(h−, h+) 3 3 5 5 13.7 9.7 3.2 3.2 10.2 10.4

Cut-off 120 (n = 976) (n−, n+) 27 20 66 34 189 93 66 34 138 66
(h−, h+) 3 3 5 5 15.0 13.3 4.3 4.4 10.3 10.7

g5math

Cut-off 40 (n = 983) (n−, n+) 19 77 38 112 143 328 29 94 47 130
(h−, h+) 3 3 5 5 15.0 15.0 4.0 4.0 5.6 5.5

Cut-off 80 (n = 1359) (n−, n+) 59 44 80 86 285 223 72 65 201 150
(h−, h+) 3 3 5 5 15.0 15.0 3.9 4.0 10.4 10.6

Cut-off 120 (n = 905) (n−, n+) 36 22 61 31 166 56 49 25 109 56
(h−, h+) 3 3 5 5 15.0 8.1 3.7 3.9 8.1 8.4

g5verb

Cut-off 40 (n = 983) (n−, n+) 19 77 38 112 58 268 38 112 70 184
(h−, h+) 3 3 5 5 6.4 11.5 4.2 4.1 7.2 7.0

Cut-off 80 (n = 1359) (n−, n+) 59 44 80 86 285 223 72 65 201 154
(h−, h+) 3 3 5 5 15.0 15.0 3.7 3.8 10.5 10.7

Cut-off 120 (n = 905) (n−, n+) 36 22 61 31 166 45 49 25 79 45
(h−, h+) 3 3 5 5 15.0 6.8 3.2 3.3 6.7 7.0

Note: h− and h+ denote the bandwidths specified for the left and right of the cutoff, respectively. The data driven
bandwidths presented in this table (AI, IK, and CCT) are under-smoothed by multiplying (∑n

i=1 1{Ri < r0})1/5−1/4.5

and (∑n
i=1 1{Ri ≥ r0})1/5−1/4.5, respectively. We set the upper-bound of the data driven bandwidths at 15. n− and n+

denote the number of observations with values of running variable in (r0 − h−, r0) and [r0, r0 + h+), respectively.
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TABLE 15. Sample Sides and Bandwidths for Columbia’s SR Data

Outcomes 2 3 4 AI IK CCT
HES (n−, n+) 1701 2521 2474 3783 3034 5204 3484 18798 1082 1423 3586 6611

(h−, h+) 2 2 3 3 4 4 54.99 11.8 1.11 1.05 5.23 4.96

TSF (n−, n+) 1664 2432 2420 3655 2979 5034 3410 18247 1050 1384 3512 6385
(h−, h+) 2 2 3 3 4 4 3.78 23.5 1.36 1.29 3.70 3.51

TME (n−, n+) 402 564 567 828 643 1136 732 4867 285 314 754 1398
(h−, h+) 2 2 3 3 4 4 6.08 8.32 0.99 0.92 2.12 1.98

HES: Household Education Spending; TSF: Total Spending on Food; TME: Total Monthly Expenditure.
Note: h− and h+ denote the bandwidths specified for the left and right of the cutoff, respectively. The data driven

bandwidths presented in this table (AI, IK, and CCT) are under-smoothed by multiplying (∑n
i=1 1{Ri ≤ r0})1/5−1/4.5

and (∑n
i=1 1{Ri > r0})1/5−1/4.5, respectively. We set the upper-bound of the data driven bandwidths at 15. n− and n+

denote the number of observations with values of running variable in (r0 − h−, r0) and [r0, r0 + h+), respectively.
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FIGURE 5. Estimated complier’s outcome density: Household education spending

 

FIGURE 6. Estimated complier’s outcome density: Total monthly spending
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