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Abstract

We consider a variable selection problem for the prediction of binary out-

comes. We study the best subset selection procedure by which the explana-

tory variables are chosen by maximizing Manski (1975, 1985)’s maximum

score type objective function subject to a constraint on the maximal num-

ber of selected variables. We show that this procedure can be equivalently

reformulated as solving a mixed integer optimization (MIO) problem, which

enables computation of the exact or an approximate solution with a definite

approximation error bound. In terms of theoretical results, we obtain non-

asymptotic upper and lower risk bounds when the dimension of potential

covariates is possibly much larger than the sample size. Our upper and lower

risk bounds are minimax rate-optimal when the maximal number of selected

variables is fixed and does not increase with the sample size. We illustrate

usefulness of the best subset binary prediction approach via Monte Carlo

simulations and an empirical application of the work-trip transportation

mode choice.
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1 Introduction

Prediction of binary outcomes is an important topic in economics and various

scientific fields. Let Y ∈ {0, 1} be the binary outcome of interest and W a vector

of covariates for predicting Y . Assume that the researcher has a training sample

of n independent identically distributed (i.i.d.) observations (Yi,Wi)
n
i=1 of (Y,W ).

For w ∈ W , let

bθ(w) ≡ 1 {w′θ ≥ 0} , (1.1)

whereW is the support of Wi, θ is a vector of parameters, and 1 {·} is an indicator

function that takes value 1 if its argument is true and 0 otherwise.

One reasonable prediction rule is to choose θ such that it maximizes the prob-

ability of making the correct prediction P [Y = bθ(W )]. However, this is infeasible

in practice since the joint distribution of (Y,W ) is unknown. A natural sample

analog is to maximize the sample average score which equals the proportion of

correct predictions under the prediction rule (1.1) in the training sample. This

maximization problem is equivalent to the maximum score estimation in binary

response models and is pioneered by Manski (1975, 1985). Thus, we call the

corresponding prediction rule the maximum score prediction rule. See Manski

and Thompson (1989), Jiang and Tanner (2010), and Elliott and Lieli (2013) for

prediction in the maximum score approach.

This prediction problem has the same structure as the binary classification

problem, which is extensively studied in the statistics and machine learning lit-

erature. For example, see the classic work of Devroye, Györfi, and Lugosi (1996)

among many others. In this literature, the empirical risk minimization (ERM)

classifier over the class of binary classifiers specified by (1.1) is defined as a mini-

mizer of 1− Sn(θ). In other words, the ERM classification rule is identical to the

maximum score prediction rule.

In this paper, we address the covariate selection issue in the framework of

predicting the binary outcome Yi using the class of linear threshold-crossing pre-

diction rules bθ(Wi) defined by (1.1). We study the best subset selection procedure

by which the covariates are chosen among a collection of candidate explanatory

variables by maximizing the empirical score subject to a constraint on the maxi-
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mal number of selected variables. In other words, we investigate theoretical and

numerical properties of the `0-norm constrained maximum score prediction rules.1

To the best of our knowledge, Greenshtein (2006) and Jiang and Tanner (2010)

are the only existing papers in the literature that explicitly considered the same

prediction problem as ours. Greenshtein (2006) considered a general loss func-

tion that includes maximum score prediction as a special case in the i.i.d. setup.

Greenshtein (2006) focused on a high dimensional case and established conditions

under which the excess risk converges to zero as n→∞. Jiang and Tanner (2010)

focused on the prediction of time series data and obtained an upper bound for the

excess risk. Neither Greenshtein (2006) nor Jiang and Tanner (2010) provided any

numerical results for the best subset maximum score prediction rule. In contrast,

we focus on cross-sectional applications and emphasize computational aspects.

The main contributions of this paper are twofold: first, we show that the best

subset maximum score prediction rule is minimax rate-optimal and second, we

demonstrate that it can be implemented via mixed integer optimization. The

first contribution is theoretical and builds on the literature of empirical risk mini-

mization (Tsybakov, 2004; Massart and Nédélec, 2006, in particular). Specifically,

we obtain non-asymptotic upper and lower risk bounds when the dimension of

potential covariates is possibly much larger than the sample size n. Our upper

and lower risk bounds are minimax rate-optimal when the maximal number of

selected variables is fixed and does not increase with n. The existing results of

finite-sample upper and lower risk bounds for the binary prediction problem fo-

cus on the case where there is no variable selection and the set of covariates is

fixed and low-dimensional. Our risk bound results extend to the setup under the

`0-norm constraint when the set of potential covariates is high-dimensional.2

The second contribution is computational. We face two kinds of computational

challenges. One challenge comes from the nature of the objective function and the

other is from the best subset selection. The maximum score objective function is

a piecewise constant function whose range set contains only finitely many points.

Hence the maximum of the score maximization problem is always attained yet the

maximizer is generally not unique. It is known that computing the maximum score

estimates regardless of the presence of the `0 constraint is NP (non-deterministic

polynomial-time)-hard (see, e.g., Johnson and Preparata, 1978). See Manski and

1Here, the `0-norm of a real vector refers to the number of non-zero components of the vector.
2Raskutti, Wainwright, and Yu (2011) developed minimax rate results for high-dimensional

linear mean regressions. We have used in the derivation of our lower risk bound a technical lemma
of their paper (Raskutti, Wainwright, and Yu, 2011, Lemma 4), which is based on the approx-
imation theory literature. Nonetheless, Our results are not directly obtainable from Raskutti,
Wainwright, and Yu (2011), who considered the least squares type objective function.
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Thompson (1986) and Pinkse (1993) for first generation algorithms for maximum

score estimation.

Our computation algorithm is based on the method of mixed integer optimiza-

tion (MIO). Florios and Skouras (2008) provided compelling numerical evidence

that the MIO approach is superior to the first-generation approaches. Kitagawa

and Tetenov (2015) used a MIO formulation that is different from Florios and

Skouras (2008) to solve maximum score type problems. The objective of interest

in Kitagawa and Tetenov (2015) is to develop treatment choice rules by maximiz-

ing an empirical welfare criterion, which resembles the maximum score objective

function. They derived minimax optimality and used the MIO formulation to

implement their algorithm. Neither Florios and Skouras (2008) nor Kitagawa and

Tetenov (2015) were concerned with the variable selection problem.

These second generation approaches are driven by developments in MIO solvers

and also by availability of a much faster computer compared to the period when the

first generation algorithms were proposed. In fact, fast developments in computing

environments have made the MIO approach even more attractive now than 2000s.

Florios and Skouras (2008) reported that they obtained the exact maximum score

estimates using Horowitz (1993)’s data in 10.5 hours. In this application, the

sample size was n = 842 and there were 4 parameters to estimate.

It is well known that use of a good and tighter parameter space can strengthen

the performance of a global optimization procedure including the MIO approach.

In this paper, we propose a data driven approach to refine the parameter space.

Using a state-of-the-art MIO solver as well as a tailor-made heuristic to choose

the parameter space, it took us less than 5 minutes to obtain the exact maximum

score estimates using the same dataset with the same number of parameters to

estimate.3 This is a dramatic improvement at the factor of more than 100 relative

to the numerical performance reported in Florios and Skouras (2008). In other

words, we demonstrate that hardware improvements combined with the advances

in MIO solvers and also with a carefully chosen parameter space have made the

maximum score approach empirically much more relevant now than ten years ago.

The second numerical challenge is concerned with constrained optimization

with the `0-norm constraint. It is well known that the `0-norm constraint renders

the variable selection problem NP-hard even in the regression setup where the

objective function is convex and smooth (see, e.g., Natarajan, 1995; Bertsimas,

King, and Mazumder, 2016). Recently Bertsimas, King, and Mazumder (2016)

proposed a novel MIO approach to the best subset variable selection problem when

least squares and least absolute deviation risks are concerned. They demonstrated

3This numerical result can be found in Online Appendix E of the paper.
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that the MIO approach can efficiently deliver a provably optimal solution to the

resulting `0-norm constrained risk minimization problem for a variety of datasets

with practical problem size. Our implementation of the best subset maximum

score prediction rules combines insights from Bertsimas, King, and Mazumder

(2016), Florios and Skouras (2008), and Kitagawa and Tetenov (2015). We present

two alternative MIO solution methods that complement each other.

In practical applications, it is useful to consider an approximate solution by

adopting an early termination rule. In our empirical application, by setting an

explicitly pre-specified optimization error, we were able to obtain approximate

maximum score estimates with Horowitz (1993)’s data in around 10 minutes when

both an intercept term and one specific random covariate are always selected but

5 auxiliary variables were selected out of 9 potential covariates. This suggests that

fast developments in computing environments will enable us to solve an empirical

problem at a practically relevant scale in very near future. We provide additional

numerical evidence in Monte Carlo experiments in a high-dimensional setup when

the number of potential covariates is larger than the sample size.

The remainder of this paper is organized as follows. In Section 2, we describe

our prediction rule. Section 3 establishes theoretical properties of the proposed

prediction rule. In Section 4, we present computation algorithms using the MIO

approach, and in Section 5, we conduct a simulation study on the performance

of our prediction rule in both low and high dimensional variable selection prob-

lems. In Section 6, we illustrate usefulness of our prediction rule in the empirical

application of work-trip mode choice using Horowitz (1993)’s data. We then con-

clude the paper in Section 7. Appendix A contains proofs of all theoretical results.

Supplementary material of this paper are collated in online appendices.

2 A Best Subset Approach to Maximum Score

Prediction of Binary Outcomes

In this section, we describe our proposal of the best subset maximum score predic-

tion rule. Following Magnus and Durbin (1999) and Danilov and Magnus (2004),

we distinguish between focus covariates that are always included in the prediction

rule and auxiliary covariates of which we are less certain. We thus decompose the

covariate vector W as W = (X,Z), where X is a (k + 1)-dimensional vector of

focus covariates and Z is a p-dimensional vector of auxiliary covariates.

Noting that baθ(w) = bθ(w) for any positive real scalar a, we adopt the same

scale normalization method as in Horowitz (1992) and Jiang and Tanner (2010)
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by restricting the magnitude of the coefficient of one of the focus covariates to

be unity. Specifically, write X = (X0, X̃) where X0 is a scalar variable and X̃ is

the remaining k-dimensional subvector of focus covariates. The parameter vector

θ in (1.1) is decomposed accordingly as θ = (α, β, γ), where α ∈ {−1, 1} and

(β, γ) ∈ Θ,4 which is a subset of Rk+p. In this notation, the binary prediction rule

has the following form:

bα,β,γ(w) = 1{αx0 + x̃′β + z′γ ≥ 0} for w ∈ W . (2.1)

We consider a parsimonious variable selection method by which the constituted

prediction rule does not include more than a pre-specified number of auxiliary

covariates. For any p dimensional real vector c, let ‖c‖0 ≡
∑p

j=1 1{cj 6= 0} be the

`0-norm of c. We carry out the `0-norm constrained covariate selection procedure

by solving the constrained maximization problem

max(α,β,γ)∈{−1,1}×Θq Sn(α, β, γ), (2.2)

where the objective function Sn is defined as

Sn(θ) ≡ n−1
∑n

i=1
1{Yi = bθ(Wi)} (2.3)

and the `0-norm constrained parameter space is given as

Θq ≡ {(β, γ) ∈ Θ ⊂ Rk+p : ‖γ‖0 ≤ q} (2.4)

for a given positive integer q.

As we discussed in the introduction, solving for the exact maximizer for (2.2) is

desirable yet can be computationally challenging. It is hence practically useful to

consider an approximate solution, which is constructed below, to the maximization

problem (2.2).

For any ε ≥ 0, let (α̂, β̂, γ̂) ∈ {−1, 1} ×Θq be an approximate maximizer with

ε tolerance level such that

Sn(α̂, β̂, γ̂) ≥ max(α,β,γ)∈{−1,1}×Θq Sn(α, β, γ)− ε almost surely. (2.5)

We refer to the prediction rule defined by 1{α̂x0+x̃′β̂+z′γ̂ ≥ 0} as the approximate

best subset maximum score binary prediction rule.5 The value of ε can be specified

for early termination of the solution algorithm to the problem (2.2). In Section 4,

4The parameter space of θ is defined as {−1, 1} ×Θ, which is slightly incoherent notation.
5The dependence of (α̂, β̂, γ̂) on ε is suppressed for simplicity of notation.
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we will present an algorithm that allows for computing an approximate solution to

(2.2) within a definite approximation error bound specified by the tolerance level

ε. In what follows, we use PRESCIENCE as shorthand for the approximate best

subset maximum score binary prediction rule.6

Remark 1. In terms of model selection, there are several aspects one needs to

consider. First, one needs to specify the covariate vector W . We recommend

starting with a large set of covariates for W since we have a built-in model selection

procedure. Second, it is necessary to decide which covariates belong to X (focus

covariates) and Z (auxiliary covariates). What consists of auxiliary covariates

depends on particular applications. The auxiliary covariates correspond to the

part of the model specification the researcher is not sure about. For example, they

could be some higher order terms or interaction terms. If a researcher does not have

concrete ideas about the auxiliary covariates, we recommend letting the auxiliary

covariates be all regressors except one the researcher is specifically interested in.

Third, it is required to choose q (the `0-norm constraint). The constant q is an

important tuning parameter in our procedure. A particular choice of q can be

motivated in some specific applications. Generally speaking, for the purpose of

prediction, there is the standard tradeoff between flexibility, which require a larger

q, and the risk of over-fitting, which pushes for a smaller q. We recommend using

cross validation to choose q, as we will demonstrate in our empirical example and

Monte Carlo experiments.

3 Theoretical Properties of PRESCIENCE

In this section, we study the theoretical properties of PRESCIENCE. Let F denote

the joint distribution of (Y,W ). For (α, β, γ) ∈ {−1, 1} ×Θ, let

S(α, β, γ) ≡ P (Y = bα,β,γ(W )) . (3.1)

Note that S(α, β, γ) depends on the joint distribution F . Given a cardinality

bound q, let

S∗q ≡ sup(α,β,γ)∈{−1,1}×Θq S(α, β, γ). (3.2)

That is, S∗q is the supremum of S(α, β, γ) given the `0-norm constraint.

Following the literature on empirical risk minimization (see, e.g., Devroye,

Györfi, and Lugosi (1996), Lugosi (2002), Tsybakov (2004), Massart and Nédélec

(2006), Greenshtein (2006) and Jiang and Tanner (2010) among many others), we

6It comes from the aPpRoximate bEst S(C)ubset maxImum scorE biNary prediCtion rulE.
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assess the predictive performance of PRESCIENCE by bounding the difference

Un ≡ S∗q − S(α̂, β̂, γ̂), (3.3)

where (α̂, β̂, γ̂) is defined by (2.5) and depends on the given tolerance level ε. The

difference Un is non-negative by the definition of S∗q . Hence, a good prediction

rule will result in a small value of Un with a high probability and also on average.

Throughout this section, we assume that ε = 0 for simplicity. Before presenting

our theoretical results, we first introduce some notation. For any two real numbers

a and b, let a ∨ b ≡ max{a, b}. Let s ≡ k + q and

rn ≡ s ln(p ∨ n) ∨ 1. (3.4)

Theorem 1. Assume s ≥ 1. Then for all σ > 0, there is a universal constant

Mσ, which depends only on σ, such that

P

(
Un > 2

√
Mσrn
n

)
≤ exp(−σrn), (3.5)

provided that

(4s+ 4) ln (Mσrn) ≤ rn + (6s+ 5) ln 2. (3.6)

Theorem 1 establishes that the tail probability of Un decays exponentially in

rn. Moreover, this result is non-asymptotic: inequality (3.5) is valid for every

sample size n for which condition (3.6) holds. By comparing the leading terms

on both sides of inequality (3.6), we can see that condition (3.6) is satisfied, for

instance, if

4[ln(s) + ln(ln(p ∨ n)) + ln(Mσ)] ≤ 1

2
ln(p ∨ n). (3.7)

Hence, condition (3.6) is satisfied easily when p ∨ n takes a relatively large value

compared to s. If (p ∨ n) diverges to infinity, then s can diverge at a sufficiently

slow rate.

Theorem 1 implies that

E [Un] = O
(
n−1/2

√
s ln(p ∨ n)

)
= o(1), (3.8)

provided that

s ln(p ∨ n) = o(n) (3.9)
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holds. This allows the case that

ln p = O(nα) and s = o(n1−α) for 0 < α < 1. (3.10)

In other words, the predictive performance of PRESCIENCE remains good even

when the number of potentially relevant covariates (p) grows exponentially, pro-

vided that the number of selected covariates (s) can only grow at a polynomial

rate. Greenshtein and Ritov (2004) and Greenshtein (2006) consider the case

where p grows at a polynomial rate. For this case, condition (3.9) implies that

s = o (n/ lnn), which coincides with the optimal sparsity rate established by

Greenshtein and Ritov (2004) and Greenshtein (2006) under which a sequence of

predictor selection procedures subject to the sparsity constraint can be shown to

be persistent.

Remark 2. For the case with ε > 0, it is straightforward to modify theoretical

results presented above such that the rate result (3.8) continues to hold provided

that

ε = O
(
n−1/2

√
s ln(p ∨ n)

)
. (3.11)

3.1 An Upper Bound under the Margin Condition

The result obtained in the previous subsection is derived under the i.i.d. setup but

does not hinge on other regularity conditions on the underlying data generating

distribution F . The result can be improved under additional assumptions on the

distribution F . In this section, we consider a condition that is called the margin

condition in the literature under which we may obtain a sharper result on the

upper bound of E [Un]. As before, the derived bound will be non-asymptotic.

It is necessary to introduce additional notation. Let

Bq≡{bθ : θ ∈ {−1, 1} ×Θq} . (3.12)

That is, Bq is the class of all prediction rules in (2.1) with the `0-norm constraint.

For w ∈ W , let

η(w) ≡ P (Y = 1|W = w), (3.13)

b∗(w) ≡ 1 {η(w) ≥ 0.5} . (3.14)

For any measurable function f : W 7→R, let ‖f‖1 = E [|f(W )|] denote the L1-

norm of f . The functions η and b∗ as well as the L1-norm ‖·‖1 depend on the data
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generating distribution F . For any indicator function b :W 7→ {0, 1}, let

S̃ (b) ≡ P (Y = b(W )) . (3.15)

We now state the following regularity condition.

Condition 1 (Margin Condition). There are some ϑ ≥ 1 and h > 0 such that,

for every binary predictor b :W 7→ {0, 1},

S̃ (b∗)− S̃ (b) ≥ hϑ ‖b∗ − b‖ϑ1 . (3.16)

Condition 1 is termed as the margin condition in the literature (see, e.g., Mam-

men and Tsybakov (1999), Tsybakov (2004) and Massart and Nédélec (2006)). For

any binary predictor b,

S̃(b∗)− S̃(b) = E [|2η(W )− 1| |b∗(W )− b(W )|] , (3.17)

so that S̃(b) is maximized at b = b∗. Hence, Condition 1 implies that the functional

S̃ (·) has a well-separated maximum. See Proposition 1 of Tsybakov (2004) and the

following discussions on the margin condition. Suppose that there exist universal

positive constants C and α such that

P{|η(W )− 1/2| ≤ t} ≤ Ctα

for all t > 0. Then by modifying the proof of Proposition 1 of Tsybakov (2004)

slightly, we can show that (3.16) holds with ϑ = (1 + α)/α.

Recall that it is not necessary to assume (3.16) to establish the risk consistency,

as shown in Theorem 1. We show below that we can obtain a tighter upper bound

on E [Un] under (3.16). Let

ρn ≡ 1 ∨ [ln 2 + q ln p+ (s+ 1) ln (n+ 1)] . (3.18)

The next theorem, which is an application of Massart and Nédélec (2006, Theorem

2), establishes a finite-sample bound on E [Un] under the margin condition.

Theorem 2. There are universal constants K and K ′ such that

E [Un] ≤
[
S̃ (b∗)− supb∈Bq S̃ (b)

]
+K ′

(
K2ρn
nh

)ϑ/(2ϑ−1)

, (3.19)
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provided that Condition 1 holds with

h ≥
(
K2ρn
n

) 1
2ϑ

. (3.20)

For p ∨ n sufficiently large, we have that ρn ≤ 5s ln(p ∨ n); thus, inequality

(3.20) can hold under condition (3.9) in large samples, provided that h is fixed or

does not go to zero too rapidly.

The first term on the right-hand side of inequality (3.19) represents the bias

term. Equation (3.17) implies that there is no bias term, namely S̃ (b∗) = supb∈Bq S̃ (b)

if b∗ ∈ Bq. Therefore, Theorem 2 implies that

E [Un] = O

([
s ln(p ∨ n)

nh

]ϑ/(2ϑ−1)
)
, (3.21)

provided that b∗ ∈ Bq.7 The rate of convergence in (3.21) doubles that in (3.8)

when h is fixed and ϑ = 1. We notice that, if b∗ /∈ Bq, the upper bound derived

in Theorem 2 would asymptotically reduce to the non-zero bias term S̃ (b∗) −
supb∈Bq S̃ (b) and hence the margin condition alone does not suffice for deducing

there is improved rate of convergence. Nevertheless, the rate result (3.8) still holds

regardless of the validity of the presumption that b∗ ∈ Bq.
We now remark on the condition that b∗ ∈ Bq in the context of the binary

response model specified below. Suppose that the outcome Y is generated from a

latent variable threshold crossing model (see, e.g., Manski, 1975, 1985):

Y = 1{W ′θ∗ ≥ ξ}, (3.22)

where θ∗ denotes the true data generating parameter vector and ξ is an unobserved

latent variable whose distribution satisfies that

Med(ξ|W = w) = 0 for w ∈ W . (3.23)

Let θ0 ≡ arg supθ∈{−1,1}×Θq S(θ). For simplicity, assume that θ0 ∈ {−1, 1} × Θq

so that the maximum is attained.

7For the case with ε > 0, it is also straightforward to modify Theorem 2 such that the rate
result (3.21) continues to hold provided that

ε = O

([
s ln(p ∨ n)

nh

]ϑ/(2ϑ−1))
.
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Proposition 1. Assume that the model given by (3.22) and (3.23) is correctly

specified. Suppose that Condition 1 holds. Then b∗ ∈ Bq if and only if W ′θ0 and

W ′θ∗ have the same sign with probability 1.

Manski (1988, Proposition 2) showed that, for the binary response model spec-

ified by (3.22) and (3.23), the true parameter value θ∗ is identified relative to

another value θ if and only if the event that W ′θ and W ′θ∗ have different sign

occurs with positive probability. Therefore, Proposition 1 implies that b∗ ∈ Bq
if and only if the “pseudo-true” value θ0 is observationally equivalent to θ∗. In

particular, this implies that θ∗ = θ0 if θ∗ is point-identified.

It would be interesting to study the role of the bias when b∗ 6= Bq using

the framework of sieve estimation (Chen, 2007). As pointed by Elliott and Lieli

(2013, Proposition 1), what matters is how well we can approximate the value of

optimum supθ∈{−1,1}×Θq S(θ), not the optimizer arg supθ∈{−1,1}×Θq S(θ). However,

it would be much more demanding to develop non-asymptotic theory when the

bias is present in our framework. We leave this as a topic for future research.

3.2 A Minimax Lower Bound under the Margin Condition

In this section, we derive a minimax lower bound under the margin condition. In

particular, we focus on the case that s = k + q is low-dimensional in that s does

not grow with sample size n and also consider a sufficient condition for the margin

condition.

Condition 1 is satisfied with ϑ = 1 whenever

|2η(w)− 1| ≥ h for w ∈ W . (3.24)

Massart and Nédélec (2006) introduced (3.24) as an easily interpretable margin

condition requiring that the conditional probability η(w) should be bounded away

from 1/2. Condition (3.24) holds under certain regularity assumptions on the

binary response model as indicated in the following proposition.

Proposition 2. Assume that the model given by (3.22) and (3.23) is correctly

specified. Suppose that there are universal constants κ1 > 0, κ2 > 0 such that (i)

P (|W ′θ∗| ≥ κ1) = 1 and (ii) there is some open interval T containing (−κ1, κ1)

such that P (ξ ≤ t|W = w) has a derivative (with respect to t) which is bounded

below by κ2 for every t ∈ T . Then condition (3.24) holds with h = 2κ1κ2.

Conditions (i) and (ii) in Proposition 2 assume that |W ′θ∗| is bounded away

from zero and the density of ξ conditional on W = w is bounded away from zero
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in a neighborhood of zero. While the latter condition is mild, the former is non-

trivial. Condition (i) can hold easily when all components of W are discrete, which

is not uncommon in microeconometric applications of binary response models

(see e.g., Komarova (2013) and Magnac and Maurin (2008)). In the presence of

continuous covariates, this condition becomes more restrictive.

For any real vector u, let ‖u‖E =
√
u′u denote the Euclidean norm of u. To

state a minimax lower bound, we first define the following class of distributions.

Definition 1. For every h ∈ (0, 1), let P(h,Bq) denote the class of distributions

F satisfying the following conditions: (i) b∗ ∈ Bq, (ii) condition (3.24) holds,

and (iii) there are constants cu > 0 and cl > 0 such that, for any two vectors

θ = (α, β, γ) , θ̃ =
(
α̃, β̃, γ̃

)
∈ {−1, 1} × Θq satisfying α = α̃ and β = β̃, it holds

that

cl

∥∥∥θ − θ̃∥∥∥
E
≤
∥∥bθ − bθ̃∥∥1

≤ cu

∥∥∥θ − θ̃∥∥∥
E
. (3.25)

The first two conditions in the definition of P(h,Bq) are already introduced in

the previous subsection. The new condition (iii) imposes that the Euclidean norm∥∥∥θ − θ̃∥∥∥
E

is equivalent to the L1-norm
∥∥bθ − bθ̃∥∥1

for two values θ and θ̃ that differ

only in the components corresponding to the auxiliary covariate coefficients. This

condition is concerned with restrictions on the distribution of the covariate vector

W . The following proposition gives sufficient conditions for verifying this norm

equivalence condition.

For any subset J ⊂ {1, ..., p}, let ZJ denote the |J |-dimensional subvector of

Z ≡ (Z(1), . . . , Z(p))′ formed by keeping only those elements Z(j) with j ∈ J . Let

Iq ≡ ∪(β,γ)∈ΘqSupp(X̃β+Z ′γ), where Supp(V ) denotes the support of the random

variable V .

Proposition 3. Suppose that s is fixed and does not grow with sample size n.

Assume that there are positive real constants L1, L2 and L3 such that (a) the

distribution of X0 conditional on (X̃, Z) has a Lebesgue density that is bounded

above by L1 and bounded below by L−1
1 on Iq, and (b) for any subset J ⊂ {1, ..., p}

such that |J | ≤ 2q, P (‖ZJ‖E ≤ L2) = 1 and the smallest eigenvalue of E (ZJZ
′
J)

is bounded below by L3. Then Condition (iii) stated in (3.25) holds with cu = L1L2

and cl = (L1L2)−1L3.

Condition (a) in Proposition 3 is mild. The first part of condition (b) holds with

L2 = L
√

2q if maxj∈{1,...,p}
∣∣Z(j)

∣∣ ≤ L with probability 1 for some universal positive

constant L. The second part of condition (b) is related to the sparse eigenvalue

assumption used in the high dimensional regression literature (see, e.g. Raskutti,

Wainwright, and Yu (2011)). For example, suppose that Z is a random vector
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with mean zero and the variance-covariance matrix Σ whose (i, j) component is

(Σ)(i,j) = ρ|i−j| for some constant ρ > 0. Then the smallest eigenvalue of Σ is

1 − ρ, independent of the dimension p. Thus, in this case, E (ZJZ
′
J) is bounded

below by 1− ρ.

We now state the result on the minimax lower bound for the predictive per-

formance of PRESCIENCE.

Theorem 3. Assume the parameter space Θ in (2.4) satisfies that there is a

universal constant κ > 0 such that

maxj∈{1,...,p} |γj| ≤ κ, (3.26)

where γj denotes the jth component of γ. Suppose p and q are even numbers and

q < 2p/3. Let φ ≡ 0.71. Then, for any binary predictor b̂ : W 7→ {0, 1}, which is

in the set Bq and is constructed based on the data (Yi,Wi)
n
i=1, we have that

supF∈P(h,Bq)E
[
S∗q − S̃ (̂b)

]
≥ φqcl (1− φ) (1− h)

32nhcu
ln

(
p− q
q/2

)
(3.27)

for h ∈ (0, 1), which is defined in (3.24), such that

h ≥

φ√q ln
(
p−q
q/2

)
8
√

2κncu

1/2

. (3.28)

For any estimator b̂ taking value in Bq, Theorem 3 implies that, as long as

P(h,Bq) is non-empty, there is some distribution F under which the average pre-

dictive risk E
[
S∗q − S̃ (̂b)

]
cannot be smaller than the lower bound term stated in

(3.27).

Suppose that (s, cl, cu) are fixed and does not increase or decrease with n. Then

this lower bound term is of order

O

(
(1− h) ln p

nh

)
. (3.29)

Comparing (3.29) to (3.21) evaluated at ϑ = 1, we see that, if h is also a universal

constant and p grows at a polynomial or exponential rate in n, then the upper

and lower bound results induce the same convergence rate and hence the binary

prediction method based on PRESCIENCE is rate-optimal in the minimax sense.

Remark 3. This minimax rate optimality is established under the assumption that

s is fixed. Theorem 3 does not provide a rate-optimal lower bound when s diverges

to infinity as n→∞, although it is a valid lower bound in any finite sample. It is
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an interesting open question for future research to investigate minimax optimality

when s→∞.

Remark 4. The assumption that p and q are even in Theorem 3 is innocuous

for the minimax rate-optimality result. This assumption is made to invoke the

known result (see Lemma 4 of Raskutti, Wainwright, and Yu (2011)) for the lower

bound on the complexity of the `0-ball. When p and/or q is odd, the lower bound

result still holds since we can always consider P(h,B′q) ⊂ P(h,Bq), where B′q is a

subspace of Bq for which the parameter vector θ is confined to a lower dimensional

space with dimension p− 1 and/or q − 1.

4 Implementation via Mixed Integer Optimiza-

tion

We now present algorithms for solving the maximization problem (2.2). It is

straightforward to see that solving (2.2) is the same as solving

max
{

max(β,γ)∈Θq Sn(1, β, γ),max(β,γ)∈Θq Sn(−1, β, γ)
}
.

In what follows, we focus on solving the sub-problem

max(β,γ)∈Θq Sn(1, β, γ) (4.1)

because the other case corresponding to α = −1 can be solved by replacing the

value of X0i with that of −X0i and then applying the same solution method as

developed for the case (4.1).

By (2.1) and noting that Yi ∈ {0, 1}, solving the problem (4.1) amounts to

solving

max(β,γ)∈Θq n
−1
∑n

i=1

[
(1− Yi) + (2Yi − 1) 1{X0i + X̃ ′iβ + Z ′iγ ≥ 0}

]
. (4.2)

We assume that the parameter space Θ is bounded and takes the polyhedral form:

Θ = {(β, γ) ∈ Rk+p : A1β + A2γ ≤ B}

for some real constant matrices A1 and A2 and some real constant vector B. Let

C ≡
∏p

j=1

[
γ
j
, γj

]
(4.3)

denote the smallest cube containing all values of γ in the pair (β, γ) confined by Θ.
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Writing γ = (γ1, ..., γp), we have that, if (β, γ) ∈ Θ, then −∞ < γ
j
≤ γj ≤ γj <∞

for j ∈ {1, ..., p}. Let

Mi ≡ max
(β,γ)∈Θ

∣∣∣X0i + X̃ ′iβ + Z ′iγ
∣∣∣ for i ∈ {1, ..., n}. (4.4)

Our implementation builds on the method of mixed integer optimization (in

particular, Bertsimas, King, and Mazumder (2016), Florios and Skouras (2008),

and Kitagawa and Tetenov (2015)) and present two alternative solution methods

that complement each other. The values (Mi)
n
i=1 can be computed by formulat-

ing the maximization problem in (4.4) as linear programming problems, which

can be easily and efficiently solved by modern numerical software such as MAT-

LAB. Hence these values can be computed and stored beforehand as inputs to the

algorithms that are used to solve the MIO problems described below.

4.1 Method 1

Our first solution method is based on an equivalent reformulation of the maxi-

mization problem (4.2) as the following constrained mixed integer optimization

(MIO) problem:

max
(β,γ)∈Θ,d1,...,dn,e1,...,ep

n−1
∑n

i=1
[(1− Yi) + (2Yi − 1) di] (4.5)

subject to

(di − 1)Mi ≤ X0i + X̃ ′iβ + Z ′iγ < di(Mi + δ), i ∈ {1, ...n}, (4.6)

ejγj ≤ γj ≤ ejγj, j ∈ {1, ..., p}, (4.7)∑p

j=1
ej ≤ q, (4.8)

di ∈ {0, 1}, i ∈ {1, ...n}, (4.9)

ej ∈ {0, 1}, j ∈ {1, ..., p}, (4.10)

where δ is a given small and positive real scalar (e.g. δ = 10−6 as in our numerical

study).

We now explain the equivalence between (4.2) and (4.5). Given (β, γ), the

inequality constraints (4.6) and the dichotomization constraints (4.9) enforce that

di = 1{X0i+X̃ ′iβ+Z ′iγ ≥ 0} for i ∈ {1, ...n}. Therefore, maximizing the objective

function in (4.2) for (β, γ) ∈ Θ subject to the constraints (4.6) and (4.9) is equiv-

alent to solving the problem (4.2) using all covariates. This part of formulation

is similar to the MIO formulation used by Kitagawa and Tetenov (2015, Section

5.1) for solving the maximum score type estimation problems without the variable
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selection constraint.

Following Bertsimas, King, and Mazumder (2016), we implement the best

subset variable selection feature through the additional constraints (4.7), (4.8)

and (4.10). The on-off constraints (4.7) and (4.10) ensure that, whenever ej = 0,

the auxiliary covariate Zj is excluded in the resulting PRESCIENCE. Finally, the

cardinality constraint ‖γ‖0 ≤ q is enacted through the constraint (4.8), which

restricts the maximal number of the binary controls ej that can take value unity.

Modern numerical optimization solvers such as CPLEX, Gurobi, MOPS, Mosek

and Xpress-MP can be used to effectively solve the MIO formulations (4.5) and

(4.14) of the PRESCIENCE problem. Most of the solution algorithms employed

by the MIO solvers can be viewed as complex and advanced refinements of the

well-known branch-and-bound method for solving MIO problems.8 Along the

branch-and-bound solution process, we can keep track of two important values:

the best upper and lower bounds on the objective value of the MIO problem

(4.5). The best lower bound corresponds to the objective function evaluated at

the incumbent solution, which is the best feasible solution discovered so far. The

best upper bound can be deduced by taking the maximum of the optimal objective

values of all the linear programming relaxation formulations of the branching MIO

sub-problems that have been solved so far. Let MIO gap denote the difference

between these two bounds. Note that the incumbent solution becomes optimal

when the MIO gap value reduces to zero.

We can use the MIO gap value to solve for the ε-level PRESCIENCE in-

troduced in Section 2. To see this, consider an early termination rule by which

the solution algorithm is terminated whenever MIO gap ≤ ε where ε is a given

tolerance level. Let (β̂, γ̂) be the incumbent solution upon termination of the

MIO solver. Because (β̂, γ̂) is in the feasible solution set of the problem (4.5),

by constraints (4.7) and (4.8), we have that ‖γ̂‖0 ≤ q . Moreover, by constraints

(4.6) and (4.9), we have that d̂i = 1{X0i + X̃ ′iβ̂ + Z ′iγ̂ ≥ 0} for i ∈ {1, ...n} so

that Sn(1, β̂, γ̂) is equal to the objective function in (4.5) evaluated at (d̂1, ..., d̂n).

Since (4.2) and (4.5) are equivalent maximization problems, it thus follows from

the construction of MIO gap value that

Sn(1, β̂, γ̂) ≥ max(β,γ)∈Θq Sn(1, β, γ)−MIO gap. (4.11)

Given the termination condition, we can therefore see that

Sn(1, β̂, γ̂) ≥ max(β,γ)∈Θq Sn(1, β, γ)− ε, (4.12)

8See Online Appendix B for further details of the branch-and-bound method.
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which yields an approximately optimal solution with the optimization tolerance

level ε for the problem (4.1).

The PRESCIENCE can also be solved by incorporating the constraints (4.7),

(4.8) and (4.10) in the MIO formulation of Florios and Skouras (2008) for solving

the maximum score estimation problem. We now present this alternative MIO

formulation below.

4.2 Method 2

Consider the constrained maximization problem:

max(β,γ)∈Θq n
−1
∑n

i=1
1
{

(2Yi − 1) (X0i + X̃ ′iβ + Z ′iγ) ≥ 0
}
. (4.13)

The problem (4.13) without the constraint ‖γ‖0 ≤ q reduces to the type of max-

imum score estimation problem studied by Florios and Skouras (2008). The ob-

jective function in (4.13) coincides with that in (4.1) with probability 1 as long

as the sum X0 + X̃ ′β + Z ′γ is continuously distributed. This condition holds

provided that the distribution of X0 conditional on (X̃, Z) is continuous. With

such a continuous covariate, we can also solve (4.1) by solving the following MIO

formulation of (4.13):

max
(β,γ)∈Θ,d1,...,dn,e1,...,ep

n−1
∑n

i=1
di (4.14)

subject to the constraints (4.7), (4.8), (4.9), (4.10), and

(1− 2Yi) (X0i + X̃ ′iβ + Z ′iγ) ≤Mi (1− di) , i ∈ {1, ...n}. (4.15)

Florios and Skouras (2008) showed that maximizing the objective function in

(4.14) for (β, γ) ∈ Θ subject to the constraints (4.9) and (4.15) is equivalent to

solving the problem (4.13) using all covariates. This can be seen from the fact that

the objective function of the MIO problem (4.14) is strictly increasing in di so that,

given (β, γ), it is optimal to set di = 1{(2Yi − 1) (X0i + X̃ ′iβ + Z ′iγ) ≥ 0} under

the constraints (4.9) and (4.15). Along similar arguments to those discussed for

the problem (4.5), it is also straightforward to verify that the variable selection

constraint ‖γ‖0 ≤ q is imposed through the constraints (4.7), (4.8) and (4.10).

Therefore, the maximization problems (4.13) and (4.14) are equivalent.
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4.3 Tightening the Parameter Space as a Warm Start to

the MIO Formulation of the PRESCIENCE Problem

The MIO formulations (4.5) and (4.14) depend on the specification of the param-

eter space Θ. It is well known that use of a good and tighter parameter space

can strengthen the performance of a global optimization procedure. Given an

initial specification of Θ, we propose below a data driven approach to refine the

parameter space.

Recall that Wi = (X0i, X̃i, Zi) is the entire covariate vector. Let W̃i denote

the vector (X̃i, Zi). For i ∈ {1, ...n}, let P̂i be an estimate of Pi ≡ P (Yi = 1|Wi).

Define the following sets recursively:

Θ1 ≡ Θ, Θ1 ≡
{

(t1, ..., tk+p) ∈ Θ : t1 ≥ l̂1

}
and, for m ∈ {2, ..., k + p},

Θm ≡
{

(t1, ..., tk+p) ∈ Θ : l̂s ≤ ts ≤ ûs for s ∈ {1, ...,m− 1}
}
, (4.16)

Θm ≡
{

(t1, ..., tk+p) ∈ Θm : tm ≥ l̂m

}
. (4.17)

where, for j ∈ {1, ..., k + p}, the quantities l̂j and ûj are defined respectively by

l̂j ≡ min
t∈Θj

tj subject to (4.18)

(X0i + W̃ ′
i t)(P̂i − 0.5) ≥ 0 for i ∈ {1, ...n}. (4.19)

ûj ≡ max
t∈Θj

tj subject to the constraints (4.19). (4.20)

If the binary outcome Yi is generated from the model specified by (3.22) and (3.23)

and the conditional probability P (Y = 1|W ) is nonparametrically estimated, the

interval [l̂j, ûj] is a nonparametric estimate of the identified set for the jth compo-

nent of the parameter vector t = (β, γ). In this case, the sign-matching constraints

(4.19) can be regarded as the empirical counterparts of the inequalities stated in

the set {
t ∈ Θ : (X0i + W̃ ′

i t)(P (Yi = 1|Wi)− 0.5) ≥ 0 almost surely
}
,

which contains those t values that are observationally equivalent to the true data

generating parameter value (see, e.g. Komarova, 2013; Chen and Lee, 2015). Our

procedures for computing l̂j and ûj are modified versions of Horowitz (1998, p.

62)’s linear programming formulations of the identified bounds on the parameter
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components. The formulations (4.18) and (4.20) differ from those of Horowitz

in that we further tighten the domain of t in these optimization problems by

exploiting the information of the upper and lower bound values that have been

solved so far.

When the covariate vector is of high dimension, nonparametric estimation of

P (Y = 1|W ) would suffer from the curse of dimensionality problem. In this paper,

we consider estimating this conditional probability by parametric methods such

as the logit or probit approach. In Monte Carlo experiments and an empirical

application, we estimate (Pi)
n
i=1 by the fitted choice probabilities from the logit

regression of Y on all the covariates.

Noting that the parametric model for estimating P (Y = 1|W ) may be misspec-

ified, for τ ≥ 1, we construct a conservative space Θ̂ (τ), which is a τ -enlargement

of the space
∏k+p

j=1

[
l̂j, ûj

]
as given below:

Θ̂ (τ) ≡
{
t ∈ Θ : −τ

(∣∣∣l̂j∣∣∣ ∨ |ûj|) ≤ tj ≤ τ
(∣∣∣l̂j∣∣∣ ∨ |ûj|) for j ∈ {1, ..., k + p}

}
.

We can solve the MIO problems (4.5) and (4.14) with the refined parame-

ter space Θ̂ (τ) in place of the original space Θ. Using the terminology used in

Bertsimas, King, and Mazumder (2016), we shall refer to these refined MIO rep-

resentations as the warm-start MIO formulations of the PRESCIENCE problem.

The value of τ is treated as a tuning parameter for solving the warm-start MIO

problems. The original formulations (4.5) and (4.14) based on the space Θ are

referred to as the cold-start MIO formulations.

Computation of the refined space Θ̂ (τ) requires solving 2 (k + p) simple linear

programming problems.9 This task can be done very efficiently even when p is

relatively large. On the other hand, the space Θ̂ (τ) is not always constructible

since the problems (4.18) and (4.20) may not admit any feasible solution. This

may occur due to the misspecification issue of using parametric choice probability

estimates. Alternatively, it can also occur when the postulated binary response

model specified by (3.22) and (3.23) itself is misspecified. As illustrated by Monte

Carlo simulations and a real data application in Online Appendices D and E, when

the refined space Θ̂ (τ) is available, solving the warm-start MIO formulations can

be computationally far more efficient than solving their corresponding cold-start

versions.

We conclude this subsection by commenting that our warm-start approach does

9Both the covering cube C and the quantities (Mi)
n
i=1 depend on the input parameter space.

Hence, for the warm-start formulations of (4.5) and (4.14), these objects are also computed

under the refined space Θ̂ (τ).
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not work well when p is greater than n. In this case, irrespective of the knowledge

of the true choice probabilities, the dimension of the vector of unknown coefficients

is larger than the number of inequalities given by the constraints (4.19) such that

these constraints may become ineffective for tightening the original parameter

bounds. It is a topic for future research how to devise a good wart-start option

for the high-dimensional setup.

5 Simulation Study

In this section, we study the performance of the PRESCIENCE method in Monte

Carlo experiments. Throughout this paper, we used the MATLAB implementa-

tion of the Gurobi Optimizer to solve the MIO problems for all computations.

Moreover, all numerical computations were done on a desktop PC (Windows 7)

equipped with 32 GB RAM and a CPU processor (Intel i7-5930K) of 3.5 GHz.10

Let V = (V1, ..., Vp+1) be a multivariate normal random vector with mean zero

and covariance matrix Σ with its element Σi,j = (0.25)|i−j|. The binary outcome

is generated according to the following setup:

Y = 1{W ′θ∗ ≥ ε},

where θ∗ denotes the value of the true data generating parameter vector, W =

(X,Z) is a (p + 2) dimensional covariate vector with the focus covariates X =

(X0, X̃) = (V1, 1) and the auxiliary covariates Z = (V2, ...Vp+1),

ε = 0.25σ(W )ξ,

and ξ is a N(0, 1) random variate independent of V . We set θ∗1 = 1, θ∗2 = 0,

and θ∗j = 0 for j ∈ {4, ..., p + 2}. The coefficient θ∗3 is chosen to be non-zero such

that, among the p auxiliary covariates, only the variable Z1 is relevant in the data

generating processes (DGP).

We consider the following two specifications for θ∗3 and σ(W ):

DGP(i) : θ∗3 = −0.35 and σ(W ) = 1.

DGP(ii) : θ∗3 = −1.5 and σ(W ) = 1 + 2 (V1 + V2)2 + (V1 + V2)4 .

10The MATLAB codes for implementing the PRESCIENCE approach are available from the
authors via the website https://github.com/LeyuChen/Best-Subset-Binary-Prediction.
This implementation requires the Gurobi Optimizer, which is freely available for academic pur-
poses.
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As before, the parameter vector θ in (1.1) is decomposed as θ = (α, β, γ)

where α, β and γ are coefficients associated with X0, X̃ and Z, respectively. The

parameter space for the PRESCIENCE approach is specified to be

{(α, β, γ) ∈ Rp+2 : α = 1, (β, γ) = (β, γ1, ..., γp) ∈ [−10, 10]p+1} (5.1)

over which we compute PRESCIENCE via solving its corresponding MIO problem.

There were 100 simulation repetitions in each Monte Carlo experiment. For

each simulation repetition, we generated a training sample of n observations for

estimating the coefficients θ and a validation sample of 5000 observations for eval-

uating the out-of-sample predictive performance. The training sample size n was

set to be 100 for DGP(i) and 50 for DGP(ii). For each DGP setup, we performed

simulations with both the low and high dimensional covariate configurations. For

the low dimensional case, we set p = 10 for both DGP(i) and (ii). For the high

dimensional case, we set p = 200 for DGP(i) and p = 60 for DGP(ii).

Let M be a given class of prediction methods. For each m ∈M , let θ̂(m) denote

the coefficients computed under the prediction method m. Let in Score denote

the average of the in-sample objective values Sn(θ̂(m)) over all the simulation

repetitions. In each simulation repetition, we approximated the out-of-sample ob-

jective value S(θ̂(m)) using the generated validation sample. Let out Score denote

the average of S(θ̂(m)) over all the simulation repetitions. It is straightforward to

see that the theoretically best prediction rule b∗(w) in this simulation design takes

the form b∗(w) = 1 {w′θ∗ ≥ 0}. Hence, we also assess the predictive performance

of a given prediction method m ∈ M by its relative score, which is ratio of the

score evaluated at θ̂(m) over that evaluated at θ∗. Let in RS and out RS respec-

tively denote the average of in-sample relative scores Sn(θ̂(m))/ Sn(θ∗) and that

of out-of-sample relative scores S(θ̂(m))/S(θ∗) over all the simulation repetitions.

We also examine the variable selection performance of the prediction method.

We say that a variable Zj is effectively selected under the prediction method m

if and only if the magnitude of θ̂j+2(m) is larger than a small tolerance level (e.g.

10−6 as used in our numerical study) which is distinct from zero in numerical

computation. Let Corr sel be the proportion of the auxiliary covariate Z1 being

effectively selected. Let Orac sel be the proportion of obtaining an oracle vari-

able selection outcome where, among all the auxiliary covariates, Z1 was the only

one that was effectively selected. Let Num irrel denote the average number of

effectively selected auxiliary covariates whose true DGP coefficients are zero.
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We considered the following prediction methods:

M = {{PRESCIENCE (q) , q ∈ {1, 2, 3}},PRESCIENCE CV, logit lasso,probit lasso},
(5.2)

where PRESCIENCE(q) denotes the PRESCIENCE approach with a cardinality

bound q imposed on the auxiliary covariates, PRESCIENCE CV denotes the PRE-

SCIENCE approach using a data driven value of q ∈ {1, 2, 3} via the 5-fold cross

validation procedure, and logit lasso and probit lasso respectively denote the `1-

penalized logit and probit maximum likelihood estimation (MLE) approaches (see

e.g. Friedman, Hastie, and Tibshirani, 2010). Throughout this simulation study,

we employed the cold-start MIO formulation (4.5) to solve the PRESCIENCE

problems. For the simulation experiment with p < n, we computed the exact so-

lution to each PRESCIENCE problem. For the high dimensional case with p > n,

we solved for the PRESCIENCE solution with the tolerance level ε specified ac-

cording to the rule

ε = min{0.05, 0.5
√

ln(p ∨ n)/n}. (5.3)

Note that this early termination rule is compatible with the order of magni-

tude stated in the condition (3.11) for the convergence rate result (3.8). For

the logit lasso and probit lasso approaches, we used the MATLAB function las-

soglm to implement these two penalized MLE approaches for which we calibrated

the optimal lasso penalty parameter value among a sequence of 100 values via the

10-fold cross validation procedure. We used the default setup of lassoglm for

constructing this tuning sequence.

5.1 Simulation Results for the Homoskedastic Error De-

sign

We now present the simulation results under the setup of DGP(i), where the distri-

bution of the error term ε is independent of the covariates W . First, we report the

computational performance of our MIO solution algorithm to the PRESCIENCE(q)

problem. Table 1 gives the summary statistics of the MIO computation time in

CPU seconds across simulation repetitions. From this table, we can see that the

MIO problems for the PRESCIENCE computation were solved very efficiently in

the DGP(i) simulations where the number of the auxiliary covariates could be the

double of the sample size yet the maximum computation time was only around 5

minutes. It is also interesting to note that the PRESCIENCE computation time

was not monotone in q. This feature might be due to the branching strategy
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heuristics of the MIO branch-and-bound solution algorithms.

Table 1: PRESCIENCE(q) computation time (CPU seconds) under DGP(i)

p = 10 p = 200
q 1 2 3 1 2 3

mean 0.69 1.10 0.51 7.11 20.37 1.96
min 0.01 0.01 0.01 0.31 0.16 0.07

median 0.35 0.38 0.33 3.76 2.09 0.99
max 3.51 24.56 5.42 68.04 362.7 15.95

We next turn to the statistical performance of the binary prediction method. In

Tables 2 and 3, we compare the aforementioned predictive and variable selection

performance measures for the various prediction approaches given in (5.2). As

shown in these two tables, regardless of p, the in-sample fit in terms of in Score

and in RS for the PRESCIENCE(q) method increased with q. This finding is

expected because the in-sample objective function (2.3) is monotone in q by design

for the PRESCIENCE approach. Nonetheless, both tables indicate that out Score

and out RS also declined as q increased, thus resounding with the known issue

that in-sample overfitting may result in poor out-of-sample performance. When

the true number of effective auxiliary covariates is unknown, one can use a data-

driven choice of q via the cross validation procedure. From Tables 2 and 3, we

find that the PRESCIENCE CV approach indeed balanced well the in-sample

and out-of-sample predictive performances. Moreover, its predictive performance

measures were also comparable to those given by the logit lasso and probit lasso

approaches.

We now discuss the variable selection results. Table 2 indicates that all the six

prediction approaches had high Corr sel rates and hence were capable of effec-

tively selecting the relevant covariate Z1. However, the good performance in the

Corr sel criterion may come at the cost of overfitting. Therefore, we also have to

take into account the performance in excluding irrelevant auxiliary covariates. The

simulation design implies that the case with q = 1 is the most parsimonious PRE-

SCIENCE setup that correctly specifies the number of effective auxiliary covariates

in the DGP. Therefore, it is not surprising that PRESCIENCE(1) performed the

best in terms of Num irrel. We note that the PRESCIENCE CV approach also

performed very well in excluding the irrelevant variables. In fact, only the PRE-

SCIENCE(1) and PRESCIENCE CV approaches could yield a non-zero proba-

bility of inducing an oracle variable selection outcome whereas PRESCIENCE(q)

with q > 1 and the logit lasso and probit lasso approaches always included irrele-
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vant auxiliary covariates.

We also observe a similar pattern in the results of the DGP(i) setup with

p = 200. From Table 3, we find that the PRESCIENCE CV approach also bal-

anced very well the requirement for including the relevant but excluding the irrel-

evant variables. It is also noted that the logit lasso and probit lasso approaches

in this high dimensional simulation setup tended to select far more irrelevant vari-

ables than the PRESCIENCE approach, hence suffering from a larger extent of

overfitting.

Table 2: Comparison of prediction methods under DGP(i) with p = 10

method PRESCIENCE(q) PRESCIENCE CV logit lasso probit lasso
q = 1 q = 2 q = 3

Corr sel 0.93 0.99 1 0.97 1 1
Orac sel 0.93 0 0 0.51 0 0
Num irrel 0.07 1.01 1.99 0.71 5.03 4.75
in Score 0.948 0.964 0.974 0.960 0.947 0.944
in RS 1.028 1.046 1.058 1.042 1.028 1.024

out Score 0.904 0.901 0.898 0.903 0.904 0.904
out RS 0.982 0.979 0.976 0.981 0.983 0.983

Table 3: Comparison of prediction methods under DGP(i) with p = 200

method PRESCIENCE(q) PRESCIENCE CV logit lasso probit lasso
q = 1 q = 2 q = 3

Corr sel 0.78 0.88 0.89 0.86 0.99 0.99
Orac sel 0.78 0 0 0.51 0 0
Num irrel 0.22 1.12 2.11 0.73 21.18 20.38
in Score 0.943 0.965 0.972 0.957 0.981 0.977
in RS 1.032 1.056 1.063 1.047 1.073 1.070

out Score 0.893 0.891 0.883 0.895 0.876 0.876
out RS 0.971 0.969 0.960 0.973 0.953 0.953

To save space, we present details of the simulation results under the setup of

DGP(ii) in Online Appendix C. The results are similar to those under DGP(i).
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6 An Illustrative Application

We illustrate usefulness of PRESCIENCE in the empirical application of work-

trip mode choice. We used the transportation mode dataset analyzed by Horowitz

(1993). This dataset has also been well studied for illustration of econometric

methods developed for binary response models (e.g., see Florios and Skouras

(2008), Benoit and Van den Poel (2012, Section 4.3), and the references therein).

The previous literature focused on estimating slope coefficients in the binary re-

sponse model; however, in this section, we are mainly interested in the numerical

performance of alternative MIO algorithms and the result of covariate selection.

The data consist of 842 observations sampled randomly from the Washington,

D.C., area transportation study. Each record in the dataset contains the follow-

ing information for a single work trip of the traveler: the chosen transportation

mode, the number of cars owned by the traveler’s household (CARS), the transit

out-of-vehicle travel time minus automobile out-of-vehicle travel time in minutes

(DOV TT ), the transit in-vehicle travel time minus automobile in-vehicle travel

time in minutes (DIV TT ) and the transit fare minus automobile travel cost in

dollars (DCOST ).

The dependent variable Y is the traveler’s chosen mode of transportation such

that Y = 1 if the choice is automobile and 0 otherwise. Following Florios and

Skouras (2008), we standardized each of explanatory variables to have mean zero

and unit variance. Following Horowitz (1993) and Florios and Skouras (2008),

we specified the coefficient of DCOST to be unity and did not estimate that

parameter. We set the focus covariates X = (X0, X̃) to be (DCOST, 1), where the

constant term was included to capture the regression intercept and the parameter

α was set to be unity. The resulting PRESCIENCE problem hence reduced to

the maximization problem (4.1). We implemented the two MIO formulations

developed in Section 4 for solving this problem. To compare their computational

performance, we report the CPU time (in seconds) and the number of branch-

and-bound nodes that the MIO solver had explored to reach the optimal solution.

The former depends on both the computing hardware and software configurations

whereas the latter only depends on the solution algorithms employed by the MIO

solver.

For the auxiliary covariates, we set

Z = (CARS,DOV TT,DIV TT,CARS ×DOV TT,DOV TT ×DIV TT,

CARS ×DIV TT,CARS × CARS,DOV TT ×DOV TT,

DIV TT ×DIV TT ). (6.1)
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The covariate specification (6.1) allows us to approximate a smooth function of

the variables (CARS,DOV TT,DIV TT ) by its quadratic expansion.11 We are

interested in the data driven selection of these expansion terms through the PRE-

SCIENCE procedure. In this setup, we have that k = 1 and p = 9. We specified

the parameter space Θ to be [−10, 10]10. We computed the PRESCIENCE for

each q ∈ {1, 3, 5}. Since there are 10 unknown parameters in this setup, we solved

for the PRESCIENCE solutions with a non-zero tolerance level which was also

specified according to the rule (5.3). For n = 842, this amounts to setting the

MIO tolerance level to be about 4.4%. To further reduce the computational cost,

we adopted the warm-start strategy in the resulting MIO formulations. We set

τ = 1.5 and constructed (P̂i)
n
i=1 using the fitted choice probabilities from the logit

regression of Y on all the covariates to derive the refined space Θ̂ (τ) from the

initial parameter space Θ.

Table 4: Refined parameter bounds (τ = 1.5)

Covariate specification: k = 1, p = 9

Variable lower bound upper bound
Intercept -10 10
CARS -10 10
DOV TT -9.8299 9.8299
DIV TT -8.0158 8.0158
CARS ×DOV TT -6.0306 6.0306
DOV TT ×DIV TT -7.5870 7.5870
CARS ×DIV TT -5.7873 5.7873
CARS × CARS -4.2513 4.2513
DOV TT ×DOV TT -1.9552 1.9552
DIV TT ×DIV TT -5.7297 5.7297

Table 4 presents the refined parameter bounds derived from Θ̂ (τ) in this setup.

The results of Table 4 indicate that the size (measured in the volume of a (k + p)

dimensional cube) of Θ̂ (τ) is only about 0.99% of that of Θ; thus, there is a

considerable reduction in the parameter search space by using the refined space

Θ̂ (τ) in place of the original space Θ.

We now present in Table 5 the estimation results for the setup with the covari-

ate specification (6.1). From Table 5, we can see that the two MIO formulations

(4.5) and (4.14) yield the same set of selected variables across all the three cases

of q. The parameter estimates computed from both formulations are also qualita-

11In Online Appendix E, we report empirical results using Z = (CARS,DOV TT,DIV TT ).
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Table 5: Results Using Quadratic Expansion

Covariate specification: k = 1, p = 9

q 1 3 5
MIO formulation (4.5) (4.14) (4.5) (4.14) (4.5) (4.14)
focus covariates
DCOST 1 1 1 1 1 1
Intercept 3.6374 3.2803 4.5191 3.1493 5.4587 2.9101
auxiliary covariates
CARS 3.0404 2.4667 3.5782 2.4416 6.3592 2.1480
DOV TT 0 0 0.8390 0.3416 0 0
DIV TT 0 0 0 0 0 0
CARS ×DOV TT 0 0 0 0 -1.1798 -0.5332
DOV TT ×DIV TT 0 0 0 0 -3.7056 -0.4177
CARS ×DIV TT 0 0 -0.2744 0.1644 0 0
CARS × CARS 0 0 0 0 0 0
DOV TT ×DOV TT 0 0 0 0 1.3282 0.1835
DIV TT ×DIV TT 0 0 0 0 2.7936 0.0744
in-sample performance
maximized average score 0.8979 0.8979 0.9086 0.9086 0.9145 0.9097
MIO solver output
MIO gap 0.0428 0.0428 0.0428 0.0428 0.0428 0.0428
CPU time (in seconds) 55 259 65985 3931 566 778
branch-and-bound nodes 24547 71943 1521685 439394 208537 425053

tively similar in general. The variable CARS remains to be selected in all these

cases and its parameter estimate is also of the largest magnitude among all param-

eter estimates of the quadratic expansion variables. Moreover, there is very little

loss in the goodness of fit from adopting only CARS as the auxiliary covariate.

We now remark on the computational performance. For the cases of q ∈ {1, 5},
formulation (4.5) clearly outperformed formulation (4.14) in both the CPU time

and the number of branch-and-bounds used in the computation; however, both

MIO formulations performed quite well for these two variable selection cases. By

contrast, for the case of q = 3, both approaches incurred more computational

cost. In particular, it took around 18.3 hours and noticeably more branch-and-

bound nodes to solve the formulation (4.5) in the q = 3 scenario. On the whole,

these results suggest that the two MIO formulations (4.5) and (4.14) are valuable

complements for implementing the PRESCIENCE procedures.

By construction, the maximized average score of the best subset variable selec-

tion approach increases with the specified value of q, which restricts the maximal
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number of selected covariates in the resulting prediction rule. In this empirical

application, our results presented so far indicate that the in-sample predictive per-

formance of the parsimonious predictive model using an intercept term and only

the two variables (DCOST,CARS) seems comparable to that of a more complex

model using a richer set of covariates. We now investigate this issue further via

the method of cross validation (CV).

We conducted the 5-fold CV analysis to assess the out-of-sample predictive

performance of the PRESCIENCE methods for the selection of the variables spec-

ified by (6.1). As in Table 5, we considered the cases of q ∈ {1, 3, 5} for which we

implemented the corresponding PRESCIENCE procedures with a non-zero toler-

ance level. Because the training sample in each CV fold contains around 80% of

the original observations, we set the MIO tolerance level for early termination to

be about 4.9% by the rule (5.3).

Table 6: Summary of the 5-fold Cross Validation Results

Covariate specification: k = 1, p = 9

q 1 3 5
MIO formulation (4.5) (4.14) (4.5) (4.14) (4.5) (4.14)
average in-sample performance
MIO gap 0.0454 0.0475 0.0475 0.0475 0.0475 0.0475
maximized objective value 0.8993 0.8993 0.9100 0.9112 0.9127 0.9148
average out-of-sample performance
proportion of correct predictions 0.9026 0.8979 0.8884 0.8812 0.8932 0.8884

Table 6 summarizes the 5-fold CV results, which are based on the averages

over the performance results computed in each CV fold. From Table 6, we can see

that, for both MIO formulations, the in-sample maximized objective values were

already very similar across the three cases of q though they did strictly increase

with q. Moreover, irrespective of the MIO formulations, the parsimonious case of

q = 1 had the best out-of-sample performance.

We now inspect the variables selected in each of the 5 CV folds. Figure 1

summarizes the parameter estimates computed in each CV fold for the 9 auxiliary

covariates specified by (6.1). From this figure, we also note that CARS was

selected across all q cases in all CV folds. Its parameter estimate was also of a

relatively large magnitude when compared to those of other selected variables.

These cross-validation results further strengthen the finding that CARS may be

the most important predictive variable for the work-trip mode choice.
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Figure 1: Auxiliary Covariate Parameter Estimates in each CV-fold

Covariate specification: k = 1, p = 9

Notes: For each panel of Figure 1, the values in the horizontal axis correspond to the
indices of the 9 components of the auxiliary covariate vector defined by (6.1), whereas
the vertical axis displays the values of the parameter estimates.

7 Concluding Remarks

In this paper, we consider the variable selection problem for predicting binary

outcomes. We study the best subset selection procedure by which the covari-

ates are chosen by maximizing the maximum score objective function subject to

a constraint on the maximal number of selected covariates. We establish non-

30



asymptotic upper and lower risk bounds for the resulting best subset maximum

score binary prediction rule when the dimension of potential covariates is possi-

bly much larger than the sample size. The derived upper and lower risk bounds

are minimax rate-optimal when the maximal number of selected variables is fixed

and does not increase with the sample size. For implementation, we show that

the variable selection problem of this paper can be equivalently formulated as a

mixed integer optimization problem, which enables computation of the exact or

an approximate solution with a definite approximation error bound.

The present paper takes the maximum score approach for the binary prediction

problem. There is a large body of the literature that studies maximum score esti-

mation in various other aspects since the seminal work by Manski (1975, 1985). In

the context of semiparametric binary response models, advances of the maximum

score approach have been made in terms of point identification (Manski, 1988),

partial identification (Manski and Tamer, 2002; Komarova, 2013; Blevins, 2015;

Chen and Lee, 2015), asymptotic distribution (Kim and Pollard, 1990; Seo and

Otsu, 2017), panel data (Manski, 1987; Charlier, Melenberg, and van Soest, 1995;

Abrevaya, 2000), time series (Moon, 2004; Guerre and Moon, 2006; de Jong and

Woutersen, 2011), dynamic network formation (Graham, 2016), nonparametri-

cally generated regressors (Chen, Lee, and Sung, 2014), and so on. The numerical

approach employed in this paper can be adapted to these contexts.

Efficient computation is particularly demanding when it is necessary to obtain

maximum score estimates repeatedly many times. This difficulty naturally arises,

for example, in the context of resampling (Delgado, Rodrıguez-Poo, and Wolf,

2001; Abrevaya and Huang, 2005; Lee and Pun, 2006; Patra, Seijo, and Sen, 2015)

and change-point problems (Lee and Seo, 2008; Lee, Seo, and Shin, 2011). It would

be an interesting future research topic to investigate numerical performance of

our method (e.g. the warm-start procedure in Section 4.3) in these computation-

intensive problems.

The maximum score approach has produced many offsprings: smoothed max-

imum score estimation (Horowitz, 1992, 2002), multinomial choice estimation

(Matzkin, 1993; Fox, 2007), integrated maximum score estimation (Chen, 2010),

Bayesian method (Benoit and Van den Poel, 2012), alternative estimation based

on local nonlinear least squares (Blevins and Khan, 2013a,b; Khan, 2013), estima-

tion using local polynomial smoothing (Chen and Zhang, 2015), and non-Bayesian

Laplace type estimation (Jun, Pinkse, and Wan, 2015, 2017) among many oth-

ers. Some of these alternative estimation methods are equipped with algorithms

that are easier to compute than the maximum score estimation. It is an inter-

esting open question how to accommodate a variable selection problem in these
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alternative methods. One starting point can be the work by Jiang and Tanner

(2010) who considered empirical risk minimization under the `0 constraint with

Gibbs posterior as an alternative to maximum score prediction. It might be also

interesting to consider penalized estimation with the `1 and/or `2 penalty. The

maximum score approach is also closely related to the maximum utility estimation

framework (Lieli and Nieto-Barthaburu, 2010; Lieli and White, 2010; Elliott and

Lieli, 2013; Lieli and Springborn, 2013) for binary decision making under model

uncertainty. It would be interesting to generalize our results to this framework.

These are also topics for future research.

A Proofs of theoretical results

A.1 Proofs of Propositions 1, 2, and 3

Proof of Proposition 1. By (3.22) and (3.23), we have that

w′θ∗ ≥ 0⇐⇒ η(w) ≥ 1/2⇐⇒ b∗(w) = 1. (A.1)

Since the functional S̃(b∗) is maximized at b = b∗ and, by Condition 1, this

maximum is unique, we have that

b∗ ∈ Bq ⇐⇒ b∗ = bθ0 . (A.2)

By (1.1), we have that

bθ0(w) = 1⇐⇒ w′θ0 ≥ 0. (A.3)

Thus it follows from (A.1), (A.2) and (A.3) that b∗ ∈ Bq if and only if W ′θ0 and

W ′θ∗ have the same sign with probability 1.

Proof of Proposition 2. Let Gw(t) ≡ P (ξ ≤ t|W = w). By (3.22) and (3.23), we

have that η(w) = Gw(w′θ∗) and Gw(0) = 1/2. By condition (ii) of Proposition 2,

it hence follows that, if w′θ∗ ≥ κ1, then

η(w) ≥ Gw(κ1) ≥ 1/2 + κ1κ2.

On the other hand, by similar arguments, we have that, if w′θ∗ ≤ −κ1, then

η(w) ≤ Gw(−κ1) ≤ 1/2− κ1κ2.

Combing these results and using condition (i) of Proposition 2, we thus deduce

that condition (3.24) holds with h = 2κ1κ2.
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Proof of Proposition 3. Consider any two vectors θ = (α, β, γ) , θ̃ = (α̃, β̃, γ̃) ∈
{−1, 1} × Θq such that α = α̃ and β = β̃. We now prove this proposition for

the case α = α̃ = 1. The other case α = α̃ = −1 can be proved using identical

arguments and hence is omitted.

Assume α = α̃ = 1. Note that

∥∥bθ − bθ̃∥∥1

= P
(
−X̃β − Z ′γ ≤ X0 < −X̃β̃ − Z ′γ̃

)
+ P

(
−X̃β − Z ′γ > X0 ≥ −X̃β̃ − Z ′γ̃

)
= E

[
P
(
−X̃β − Z ′γ ≤ X0 < −X̃β̃ − Z ′γ̃|X̃, Z

)
1 {Z ′γ ≥ Z ′γ̃}

]
+E

[
P
(
−X̃β − Z ′γ > X0 ≥ −X̃β̃ − Z ′γ̃|X̃, Z

)
1 {Z ′γ ≤ Z ′γ̃}

]
.

By Condition (a) of Proposition 3, we hence have that

E [|Z ′ (γ − γ̃)|]L−1
1 ≤ ‖bθa − bθb‖1 ≤ E [|Z ′ (γ − γ̃)|]L1. (A.4)

Let J ≡ {j ∈ {1, ..., p} : γj 6= γ̃j}. Since ‖γ‖0 ≤ q and ‖γ̃‖0 ≤ q, we have

that |J | ≤ 2q. Therefore, Z ′ (γ − γ̃) = Z ′JδJ where ZJ denotes the subvector of

Z ≡ (Z(1), . . . , Z(p))′ formed by keeping only those elements Z(j) with j ∈ J and

δJ denotes the subvector of γ− γ̃ formed by keeping only those elements (γj − γ̃j)
with j ∈ J .

By Condition (b) and Cauchy-Schwarz inequality, we have that with probabil-

ity 1,

|Z ′JδJ | ≤ L2 ‖δJ‖E . (A.5)

and hence
δ′JZJZ

′
JδJ

L2
2 ‖δJ‖

2
E

≤ |Z ′JδJ |
L2 ‖δJ‖E

≤ 1. (A.6)

Using (A.6) and the assumption that the smallest eigenvalue of E (ZJZ
′
J) is

bounded below by L3, we thus have that

E [|Z ′JδJ |] ≥ L−1
2 L3 ‖δJ‖E . (A.7)

Noting that ‖δJ‖E =
∥∥∥θ − θ̃∥∥∥

E
and combining (A.4), (A.5) and (A.7), we conclude

that condition (3.25) holds with cu = L1L2 and cl = (L1L2)−1L3.
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A.2 Proofs of Theorem 1

Recall the notation θ = (α, β, γ). Let

Gn(θ) ≡
√
n [Sn(θ)− S(θ)] .

We first present the following lemma, which will be used to prove Theorem 1.

Lemma 1. For t > 0, there is a universal constant D such that

P

(
sup

θ∈{−1,1}×Θq

|Gn(θ)| > t

)
≤ 2

(
p

q

)(
Dt√

4s+ 4

)4s+4

e−2t2 .

Proof. Let m be a subset of the index set {1, ..., p} such that m contains only q

elements. Let M be the collection of all such subsets. Note that |M| =
(
p
q

)
. For

m ∈M, let

Γm ≡ {(β, γ) ∈ Θ : γj = 0 for j /∈ m}.

For any t > 0, we have that

P

(
sup

θ∈{−1,1}×Θq

|Gn(θ)| > t

)
≤
∑
m∈M

P

(
sup

(β,γ)∈Γm

|Gn(1, β, γ)| > t

)

+
∑
m∈M

P

(
sup

(β,γ)∈Γm

|Gn(−1, β, γ)| > t

)
. (A.8)

To complete the proof, it remains to derive the bounds on the tail probability

terms on the right hand side of the inequality above.

Consider the function fθ : {0, 1} ×W 7→{0, 1} defined by

fθ(y, w) ≡ 1 {y = bθ(w)}

= 1− y + (2y − 1) bθ.

For m ∈M, let

z+
m ≡ {fθ : θ ∈ {1} × Γm},

z−m ≡ {fθ : θ ∈ {−1} × Γm}.

For each m ∈M, by Lemmas 9.6 and 9.9 of Kosorok (2008), the class of functions

z+
m and z−m are both V C classes of functions with V C indices V (z+

m) and V (z−m)

satisfying that

V (z+
m) = V (z−m) ≤ 2s+ 3.
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For two measurable functions f and g and a given probability measure Q, define

the (semi-) metric

dQ(f, g) ≡

√∫
(f − g)2 dQ.

By Theorem 9.3 of Kosorok (2008), we have that, for some universal constant

K > 1 and 0 < ε < 1,

supQN
(
ε,z+

m, dQ
)
∨ supQN

(
ε,z−m, dQ

)
≤ K (2s+ 3) (16e)2s+3 (ε)−4(s+1)

≤
(

Λ(s)

ε

)4s+4

,

where

Λ(s) ≡
[
K (2s+ 3) (16e)2s+3] 1

4s+4

and, for a given class of functions z, N (ε,z, dQ) denotes the minimal number of

open balls (defined under the metric dQ) of radius ε required to cover z.

Observe that

Λ(s) ≤ 16Ke (2s+ 3)
1

4s+4 ≤ 32Ke, (A.9)

where the second inequality follows from the fact that i ≤ 2i for all integer i.

Using (A.9), we can apply Theorem 1.3 of Talagrand (1994) to deduce that,

for t > 0, there is a universal constant D such that

P

(
sup

(β,γ)∈Γm

|Gn(1, β, γ)| > t

)
∨ P

(
sup

(β,γ)∈Γm

|Gn(−1, β, γ)| > t

)

≤
(

Dt√
4s+ 4

)4s+4

e−2t2 . (A.10)

Lemma 1 hence follows by combining inequalities (A.8) and (A.10).

We now prove Theorem 1.

Proof of Theorem 1. By Lemma 1 and using the fact that
(
p
q

)
≤ pq, we have that,

for some universal constant D and for t > 0,

P

(
sup

θ∈{−1,1}×Θq

|Gn(θ)| > t

)
≤ 2pq

(
Dt√

4s+ 4

)4s+4

e−2t2 . (A.11)

For t ≥ D and s ≥ 1, the right hand side term of (A.11) can be further bounded

above by

pst8s+82−6s−5e−2t2 = eλ(s,p,t), (A.12)
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where

λ(s, p, t) ≡ −2t2 + (8s+ 8) ln t+ s ln p− (6s+ 5) ln 2.

For σ > 0, let

t =
√
Mσrn (A.13)

where

Mσ ≡ (1 + σ/2) ∨D2. (A.14)

Note that t ≥ D by (A.13) and (A.14). Thus with the t value specified by (A.13),

we have that

λ(s, p, t) ≤ (−2Mσ + 1) rn + (4s+ 4) ln (Mσrn)− (6s+ 5) ln 2 ≤ −σrn (A.15)

where the second inequality follows from (A.14) and (3.6).

It is straightforward to see that

Un = sup
θ∈{−1,1}×Θq

S(θ)− S(θ̂)

≤ sup
θ∈{−1,1}×Θq

|Sn(θ)− S(θ)|+ sup
θ∈{−1,1}×Θq

Sn(θ)− S(θ̂)

≤ sup
θ∈{−1,1}×Θq

|Sn(θ)− S(θ)|+ Sn(θ̂)− S(θ̂)

≤ 2 sup
(α,β,γ)∈{−1,1}×Θq

|Sn(θ)− S(θ)| .

Hence, we have that

P

(
Un > 2

√
Mηrn
n

)
≤ P

(
sup

θ∈{−1,1}×Θq

|Gn(θ)| >
√
Mηrn

)
. (A.16)

Therefore, Theorem 1 follows by putting together the results of A.11), (A.12) and

(A.15) and then concluding that the right hand side term of (A.16) is bounded

above by e−σrn under condition (3.6).

A.3 Proof of Theorem 2

We first introduce some notation which will be used in the proof Theorem 2. Let

A be a collection of subsets of W . For any subset S ⊂ W , let TA(S) denote the

trace of A on S defined by

TA(S) = {A ∩ S : A ∈ A} .

36



If A = ∪j∈JAj, then we have

TA(S) ⊂ ∪j∈JTAj(S) for S ⊂ W . (A.17)

We now prove Theorem 2.

Proof of Theorem 2. By (1.1), (3.1), (3.2) and (3.15), we have that

S(θ̂) = S̃
(
bθ̂
)

and S∗q = supb∈Bq S̃ (b) . (A.18)

Theorem 2 is an application of Theorem 2 of Massart and Nédélec (2006) to the

binary prediction problem. Massart and Nédélec (2006, Section 2.4) showed how

to apply their Theorem 2 to derive the risk upper bound for the empirical risk

minimizer. Using their derived results (Massart and Nédélec (2006, p. 2340)) in

their Theorem 2 for our setup, we conclude that, under Condition 1, there are

universal constants K and K ′ such that

E
[
S̃ (b∗)− S̃

(
bθ̂
)]

≤ 2
[
S̃ (b∗)− supb∈Bq S̃ (b)

]
+K ′

[(
K2 (1 ∨ E(HA))

nh

)θ/(2θ−1)

∧
√
K2 (1 ∨ E(HA))

n

]
,

(A.19)

where

A≡{Aθ : θ ∈ {−1, 1} ×Θq},

Aθ ≡ {w ∈ W : w′θ ≥ 0},

and HA is the random combinatorial entropy of A defined by

HA = ln (|TA({W1,W2, ...,Wn})|) .

Using (3.3) and (A.18), it follows that

Un = supb∈Bq S̃ (b)− S̃
(
bθ̂
)

=
[
supb∈Bq S̃ (b)− S̃ (b∗)

]
+
[
S̃ (b∗)− S̃

(
bθ̂
)]
. (A.20)

To complete the proof, it thus remains to derive an upper bound on the term

E(HA).

Let m be a subset of the index set {1, ..., p} such that m contains only q

elements. Let M be the collection of all such subsets. Note that |M| =
(
p
q

)
. For
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m ∈M, let

A+
m≡{Aθ : θ ∈ {1} × Γm},

A−m≡{Aθ : θ ∈ {−1} × Γm},

Γm ≡ {(β, γ) ∈ Θ : γj = 0 for j /∈ m}.

It is immediate to see that

A = ∪m∈M
(
A+
m ∪ A−m

)
. (A.21)

For each m ∈ M, by Lemmas 9.6 and 9.9 of Kosorok (2008), the family of sets

A+
m and A−m are both V C classes of sets with V C indices V (A+

m) and V (A−m)

satisfying that

V (A+
m) = V (A−m) ≤ s+ 2.

Hence by Corollary 1.3 of Lugosi (2002), we have that

∣∣TA+
m

({W1,W2, ...,Wn})
∣∣ ∨ ∣∣TA−

m
({W1,W2, ...,Wn})

∣∣ ≤ (n+ 1)s+1. (A.22)

By (A.17), (A.21) and (A.22), we thus have that

HA ≤ ln 2 + ln

(
p

q

)
+ (s+ 1) ln (n+ 1)

≤ ln 2 + q ln p+ (s+ 1) ln (n+ 1) . (A.23)

Theorem 2 therefore follows by combining the results (A.19), (A.20) and (A.23).

A.4 Proof of Theorem 3

Proof of Theorem 3. Define

Rn(h,Bq) = inf
b̂∈Bq

sup
F∈P(h,Bq)

EF

[
S̃ (b∗)− S̃ (̂b)

]
where the infimum is taken over the set of all binary predictors in Bq that are

constructed based on the data (Yi,Wi)
n
i=1. By (3.2), it follows that S∗q = S̃ (b∗)

under F ∈ P(h,Bq). Thus Theorem 3 is proved once we show that

Rn(h,Bq) ≥
φqcl (1− φ) (1− h)

32nhcu
ln

(
p− q
q/2

)
. (A.24)
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For any indicator function b ∈ Bq, let

ηb(w) ≡ [1 + (2b(w)− 1)h] /2 for w ∈ W .

Let Fb denote the joint distribution of (Y,W ) such that under Fb, the distribution

of W satisfies condition (3.25), and Y conditional on W = w follows a Bernoulli

distribution with parameter ηb(w) for every w ∈ W . By the same arguments as

those in the proof of Theorem 6 of Massart and Nédélec (2006, p. 2355), we can

deduce that, for any finite subset C of Bq,

{Fb : b ∈ C} ⊂ P(h,Bq) (A.25)

and

Rn(h,Bq) ≥
h

2
inf
b̂∈C

sup
b∈C

EFb

[∥∥∥b− b̂∥∥∥
1

]
. (A.26)

Consider the set

H ≡ {γ ∈ {−1, 0, 1}p : ‖γ‖0 = q} .

By Lemma 4 of Raskutti, Wainwright, and Yu (2011), we have that, for p, q even

and q < 2p/3, there is a subset A ⊂ H with cardinality

|A| ≥
(
p− q
q/2

)q/2
(A.27)

such that

‖γ − γ′‖0 ≥ q/2 for all γ, γ′ ∈ A. (A.28)

Let

D ≡{1} × {0} × εnA (A.29)

where 0 = (0, ..., 0) denotes the k-dimensional vector of which all elements take

value 0, and εn > 0 is a given sequence that will be chosen later. Note that, for

any θ, θ̃ ∈ D,

ε2n

∥∥∥θ − θ̃∥∥∥
0
≤
∥∥∥θ − θ̃∥∥∥2

E
≤ 4ε2n

∥∥∥θ − θ̃∥∥∥
0
. (A.30)

Now take

C = {bθ ∈ Bq : θ ∈ D} . (A.31)
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We then have that

Rn(h,Bq) ≥
h

2
inf
θ̂∈D

sup
θ∈D

EFbθ

[∥∥bθ − bθ̂∥∥1

]
(A.32)

≥ hcl
2

inf
θ̂∈D

sup
θ∈D

EFbθ

[∥∥∥θ − θ̂∥∥∥
E

]
(A.33)

≥ hclεn
2

inf
θ̂∈D

sup
θ∈D

EFbθ

[√∥∥∥θ − θ̂∥∥∥
0

]
(A.34)

≥
hclεn

√
q

2
√

2
inf
θ̂∈D

sup
θ∈D

PFbθ

(
θ̂ 6= θ

)
(A.35)

≥
hclεn

√
q

2
√

2
inf
θ̂∈D

[
1− inf

θ∈D
PFbθ

(
θ̂ = θ

)]
, (A.36)

where the infimum in (A.32) is taken over the set of all estimators θ̂ taking values

in D; (A.33) follows from (A.25), (A.31) and (3.25); (A.34) follows from (A.30);

(A.35) follows from (A.28).

By Lemma 8 of Massart and Nédélec (2006), we have that, for a given point

θ̃ ∈ D,

inf
θ∈D

PFbθ

(
θ̂ = θ

)
≤ φ ∨ K

ln (|D|)
, (A.37)

where

K =
n

|D| − 1

∑
θ∈D,θ 6=θ̃

K
(
Fbθ , Fbθ̃

)
,

and K
(
Fbθ , Fbθ̃

)
is the Kullback-Leibler information between Fbθ and Fb

θ̃
. For

θ̃, θ ∈ D and θ 6= θ̃, using Lemma 7 of Massart and Nédélec (2006), we have that,

for h < 1,

K
(
Fbθ , Fbθ̃

)
= h ln

(
1 + h

1− h

)∥∥bθ − bθ̃∥∥1

≤ 2cuh
2

1− h

∥∥∥θ − θ̃∥∥∥
E

≤ 4cuh
2εn

1− h

√∥∥∥θ − θ̃∥∥∥
0

≤ 4cuh
2εn
√

2q

1− h
,

where the last inequality follows since
∥∥∥θ − θ̃∥∥∥

0
≤ 2q for all θ̃, θ ∈ D. Hence, we

have that

K ≤ 4ncuh
2εn
√

2q

1− h
. (A.38)
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Putting together (A.36), (A.37) and (A.38), we have that

Rn(h,Bq) ≥
hεncl

√
q

2
√

2
(1− φ) (A.39)

provided that
4ncuh

2εn
√

2q

(1− h) ln (|D|)
≤ φ. (A.40)

By (A.27) and (A.29), condition (A.40) holds whenever

8ncuh
2εn
√

2q

(1− h) q ln
(
p−q
q/2

) ≤ φ. (A.41)

By (3.26), (A.29) and (A.31), we have that εn ≤ κ. Therefore, we can get the

result (A.24) by setting

εn =
φ
√
q (1− h) ln

(
p−q
q/2

)
8ncuh2

√
2

provided that this choice of εn also satisfies that εn ≤ κ, which can be easily seen

to hold under the condition (3.28) for the lower bound on the value of h.
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Online Appendices (NOT FOR PUBLICATION)

B The Branch-and-Bound Method for Solving

MIO Problems

For completeness of the paper and for readers who are unfamiliar with MIO, we

will present briefly the branch-and-bound method for solving the MIO problem.

For further details, see, e.g., Conforti, Cornuéjols, and Zambelli (2014) for a recent

and comprehensive study on the MIO theory and solution methods.

We take the formulation (4.5) as an expositional example and explain how

the branch-and-bound method can be used to solve this MIO problem. The

maximization problem (4.5) consists of n + p binary control variables. Let v =

(d1, ..., dn, e1, ..., ep) denote the (n+ p) dimensional vector collecting all these bi-

nary controls. Let S̃n (β, γ, v) denote the objective function of (4.5). We may

maximize S̃n over v by enumerating all possible values of v, which amounts to

exhaustively searching over a binary tree that has 2n+p leaf nodes. This naive

method is inefficient and becomes practically infeasible for large scale problems.

The branch-and-bound method improves the search efficiency by avoid visiting

those tree nodes which can be fathomed not to constitute the optimum.

Let Γ0 denote the space of the controls (β, γ, v) defined by all the constraints

stated in the MIO problem (4.5). Let Γ0 be an enlargement of Γ0, which is

defined analogously to Γ0 with the dichotomization constraints v ∈ {0, 1}n+p being

replaced by the constraints v ∈ [0, 1]n+p. Optimizing the objective function S̃n over

(β, γ, v) ∈ Γ0 reduces to a simple linear programming (LP) problem. Clearly, the

maximized objective value of this LP relaxation problem forms an upper bound

on the function S̃n (β, γ, v) defined on the original domain Γ0. Moreover, if the

solution for v in the LP relaxation problem turns out to be a vector of binary

values, we can deduce that the LP relaxation solution for (β, γ, v) is also the

solution to the MIO problem (4.5).

When the LP relaxation solution for v contains fractional-valued elements,

we choose a fractional-valued element vj and then construct the two LP sub-

problems, denoted as LP1 and LP ′1, which correspond to maximizing S̃n (β, γ, v)

over the subspaces Γ1 ≡ Γ0∩{(β, γ, v) : vj = 0} and Γ
′
1 ≡ Γ0∩{(β, γ, v) : vj = 1},

respectively. Consider the problem LP1 and note that the treatment of LP ′1 is

similar. There are four possible cases for LP1: (i) Γ1 is empty and hence LP1 is

infeasible. (ii) Γ1 is non-empty and the maximized objective value of LP1 is not

larger than the best known lower bound on the objective value of (4.5). (iii) Γ1 is
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non-empty, the maximized objective value of LP1 is larger than the best known

lower bound on the objective value of (4.5), and the solution for v of LP1 is in

{0, 1}n+p. (iv) Γ1 is non-empty, the maximized objective value of LP1 is larger

than the best known lower bound on the objective value of (4.5), and the solution

for v of LP1 contains fractional-valued elements.

For cases (i) and (ii), we can bypass further sub-problems of LP1 since these

will not yield a solution to the MIO problem (4.5). In other words, all nodes of

the binary search tree along the branch implied by LP1 can be pruned and need

not be further considered. For case (iii), we can update the best known feasible

solution to the MIO problem (4.5) as the optimal solution to the problem LP1.

For case (iv), the sub-domain Γ0∩{(β, γ, v) : vj = 0} may still contain an optimal

solution. Therefore, in case (iv), we branch on a fraction-valued component of the

LP1 solution for v to create further two sub-problems and then repeat this process

as described above.

C Simulation Results for the Heteroskedastic Er-

ror Design

In this part of the appendix, we report the simulation results under the setup of

DGP(ii) of Section 5, where the distribution of the error term ε admits a het-

eroskedasticity component. Table 7 gives the MIO computation time statistics for

solving the PRESCIENCE(q) problem under DGP(ii). Compared to the results

of Table 1, the PRESCIENCE problem appeared to be more computationally dif-

ficult for the high dimensional setup in the DGP(ii) design where the maximum

computation time could exceed 2.5 hours. However, the mean and median com-

putation time remained well capped below 6 minutes across all cases in Table 7.

In fact, the case of the MIO computation lasting over one hour appeared in only

3 out of the 100 repetitions for the PRESCIENCE(3) simulations in the setup of

p = 60.

We compare in Tables 8 and 9 the predictive and variable selection performance

results for the various prediction methods given in (5.2). The overall picture

revealed in these two tables is similar to that given in Tables 2 and 3. In particular,

the PRESCIENCE CV approach still had the best overall performance among the

six prediction approaches. We also note that the PRESCIENCE CV approach

could outperform the logit lasso and probit lasso approaches by a large margin

in both the in-sample and out-of-sample predictive performances for the DGP(ii)

design within a high dimensional variable selection setup. It is well known in
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Table 7: PRESCIENCE(q) computation time (CPU seconds) under DGP(ii)

p = 10 p = 60
q 1 2 3 1 2 3

mean 0.39 1.55 0.73 3.47 68.53 350.4
min 0.05 0.04 0.03 0.21 0.03 0.04

median 0.40 0.76 0.38 2.77 23.07 50.13
max 1.02 20.34 9.97 16.56 417.2 8552

Table 8: Comparison of prediction methods under DGP(ii) with p = 10

method PRESCIENCE(q) PRESCIENCE CV logit lasso probit lasso
q = 1 q = 2 q = 3

Corr sel 0.86 0.95 0.95 0.91 0.91 0.88
Orac sel 0.86 0.01 0 0.53 0.09 0.09
Num irrel 0.14 1.04 2.02 0.67 2.93 2.49
in Score 0.834 0.871 0.894 0.860 0.787 0.776
in RS 1.095 1.144 1.175 1.131 1.031 1.016

out Score 0.724 0.711 0.696 0.716 0.673 0.668
out RS 0.948 0.930 0.910 0.937 0.881 0.874

Table 9: Comparison of prediction methods under DGP(ii) with p = 60

method PRESCIENCE(q) PRESCIENCE CV logit lasso probit lasso
q = 1 q = 2 q = 3

Corr sel 0.76 0.82 0.88 0.82 0.64 0.63
Orac sel 0.76 0 0 0.41 0 0
Num irrel 0.24 1.18 2.12 0.88 4.53 4.17
in Score 0.842 0.894 0.927 0.880 0.766 0.759
in RS 1.103 1.171 1.216 1.153 1.000 0.990

out Score 0.713 0.693 0.673 0.700 0.608 0.608
out RS 0.934 0.907 0.881 0.917 0.797 0.796
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the binary prediction literature (see e.g. Elliott and Lieli, 2013) that the optimal

prediction rule in terms of score maximization does not hinge on knowing the true

distribution of Y given W , and binary prediction based on the MLE approach with

a misspecified likelihood can yield poor predictive performance. Noting that the

logit and probit likelihoods are both misspecified under DGP(ii), our simulation

results thus suggest that this known fact may also carry well through to the context

with variable selection.

D Additional Simulations on the Performance

of the Warm-Start MIO Approaches to the

PRESCIENCE Problem

In Appendix D, we conduct a simulation study on the performance of adopting

the warm-start strategy of Section 4.3 in solving the MIO formulations (4.5) and

(4.14). We used the setup of DGP(ii) of Section 5 for the simulation design. For

all simulation experiments in this section, we used a training sample of n = 100

observations over which we computed the exact solutions to all the MIO problems.

We set p, the dimension of the vector of auxiliary covariates, to be 10. We used

the space (5.1) as the parameter space Θ for the cold-start MIO solution approach

to the PRESCIENCE problem. For the warm-start MIO formulations, we set

τ = 1.5 and constructed (P̂i)
n
i=1 using the fitted choice probabilities from the logit

regression of Y on the entire covariate vector W to derive the space Θ̂ (τ) as a

refinement of the initial parameter space Θ. The number of simulation repetition

was set to be 100.

We now present the simulation results. Table 10 gives the summary statistics

of the MIO computation time in CPU seconds and the average of the maximized

scores over all the simulation repetitions. From this table, we note that, fixing the

start method, the average of maximized scores under the MIO formulation (4.5)

was identical to that under the MIO formulation (4.14). In fact, the maximized

score values computed under the two MIO formulations were also identical across

all the simulation repetitions. This matched the mathematical equivalence be-

tween the MIO problems (4.5) and (4.14). Across the start method, we find that

the warm start approach, which is based on a smaller parameter space, could miss

the global optimum. However, the difference of the cold and warm-start based

maximized objective values was very small. In fact, in no more than 7% of the

simulation repetitions did we observe the occurrence of such differences among

which the maximal difference was about 0.02.
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On the other hand, we observe significant reduction of computation time from

employing the warm start strategy across nearly all cases in Table 10. However, the

cold start approach might sometimes be less computationally costly than its warm

start version. Yet this happened only in the simulation with the MIO formulation

(4.5) and its ocurrence was rare (in only 1 out of 100 repetitions). Therefore, we

believe that the warm start method may be a useful heuristic device to improve

the computational efficiency for the MIO based computation of PRESCIENCE.

Finally, concerning the performance comparison of the MIO formulations (4.5)

and (4.14), Table 10 reveals that the formulation (4.5) tended to outperform the

formulation (4.14) in terms of computation time in the cold-start setting. This

tendency appeared to be reversed in the warm-start setting.

Table 10: Performance comparison of cold and warm-start MIO formulations

cold start warm start
q 1 2 3 1 2 3

MIO formulation (4.5)
maximized score 0.812 0.837 0.855 0.811 0.836 0.854

MIO computation time
mean 1.44 40.5 149 0.49 4.30 43.4
min 0.64 1.68 0.57 0.07 0.11 0.18

median 1.33 33.5 94.5 0.36 2.11 6.54
max 3.18 223 1102 1.31 59.7 3074

MIO formulation (4.14)
maximized score 0.812 0.837 0.855 0.811 0.836 0.854

MIO computation time
mean 7.78 79.2 401 0.55 4.32 19.4
min 0.55 1.09 0.42 0.05 0.09 0.11

median 4.66 63.2 242 0.40 1.92 5.05
max 31.3 868 3153 4.28 35.7 367

E Empirical Illustration for Best Subset Selec-

tion Using Linear Specification

In this section of the appendix, we report empirical results using the linear specifi-

cation of covariates. Specifically, we use the same focused covariates as constructed

in the main text; for auxiliary covariates Z, we consider the simple specification

where Z = (CARS,DOV TT,DIV TT ). Under this setup, we have that k = 1 and

p = 3. Following Florios and Skouras (2008), we set all unknown parameters to be
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within the range [−10, 10] and took the parameter space Θ to be [−10, 10]4. The

refined space Θ̂ (τ) was computed accordingly as described in Section 4.3. Table

11 presents the resulting refined parameter bounds derived from Θ̂ (τ).

Table 11: Refined parameter bounds (τ = 1.5)

Covariate specification: k = 1, p = 3

Variable lower bound upper bound
Intercept -7.8275 7.8275
CARS -5.4143 5.4143
DOV TT -1.9229 1.9229
DIV TT -0.7884 0.7884

We can clearly see from Table 11 that using the refined space Θ̂ (τ) helped

to reduce the parameter search space in both of the MIO formulations (4.5) and

(4.14). The extent of this reduction could be quite large even when the enlargement

parameter τ was set to be 1.5. In fact, the size of Θ̂ (τ) was merely about 0.64%

of that of Θ. Therefore, we can anticipate considerably computational efficiency

gain from using the warm-start MIO formulations.

In Table 12, we present comparative results of the warm-start and cold-start

approaches for the MIO formulations in (4.5) specified with different values of the

cardinality bound q. Since there are only 4 unknown parameters in this simple

setup, we set ε = 0 in (4.12) and solved for the exact PRESCIENCE.

To interpret the results of Table 12, first note that MIO gap = 0 for all MIO

problems in this table. Thus all these MIO solutions were exact; moreover, both

the cold-start and warm-start MIO approaches yielded the same maximized objec-

tive values and the parameter estimates for auxiliary covariates indeed respected

the `0-norm constraint specified in (2.4). The parameter estimates solved by these

two different approaches were very similar for the cases of q ∈ {1, 3}. Since the

maximum score objective function is a step function, it is not surprising to have

multiple solutions and thus the PRESCIENCE for a given value of q need not be

unique. This can be clearly seen from the case of q = 2, where the results of the

cold-start and warm-start methods differed in the covariate to be excluded from

the corresponding PRESCIENCE.

We now assess the computational efficiency of the warm-start and cold-start

approaches. From Table 12, we can see that both approaches performed very well.

Most of the MIO cases considered in this table were solved in few minutes and the

case taking the longest time was also solved in about half an hour. We also notice
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Table 12: Implementation Using MIO formulation (4.5)

Covariate specification: k = 1, p = 3

q 1 2 3
MIO start method warm cold warm cold warm cold
focus covariates
DCOST 1 1 1 1 1 1
Intercept 3.4654 3.4258 3.2447 5.2013 4.7953 4.9267
auxiliary covariates
CARS 2.7420 2.7191 2.7470 4.3828 3.6571 3.8179
DOV TT 0 0 0 0.9278 0.7951 0.7952
DIV TT 0 0 0.6653 0 0.3830 0.4978
in-sample performance
maximized score 756 756 763 763 765 765
maximized average score 0.8979 0.8979 0.9062 0.9062 0.9086 0.9086
MIO solver output
MIO gap 0 0 0 0 0 0
CPU time (in seconds) 15 13 112 903 253 1887
branch-and-bound nodes 6321 6120 62630 304708 129947 887349

from these results that, except for the case of q = 1 under which both approaches

were comparable, the cold-start formulation was clearly outperformed by its cor-

responding warm-start version. The difference in computational efficiency can be

sizable: the warm-start approach just took about 12% (13%) of the time and 20%

(14%) of the branch-and-bound nodes used by the cold-start approach to solve

the q = 2 (q = 3) case.

In this empirical application, the computational merit of using the refined

parameter space is also evident for the PRESCIENCE implementation using the

MIO formulation (4.14). The results for this formulation are summarized in Table

13.

As in Table 12, the parameter estimates from both the warm-start and cold-

start approaches in Table 13 are very similar for the cases q ∈ {1, 3}. For these

two cases, the parameter estimates as displayed in Tables 12 and 13 are also

qualitatively and quantitatively similar across the MIO formulations (4.5) and

(4.14). For the case of q = 2, in contrast to the results for the formulation (4.5),

the variable being excluded is the same for both warm-start and cold-start versions

of the formulation (4.14). We notice that the case of q = 3 reduces to the maximum

score estimation problem using all covariates; for this case, our MIO estimates are

quite similar to those computed by Florios and Skouras (2008) and both our and
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Table 13: Implementation Using MIO formulation (4.14)

Covariate specification: k = 1, p = 3

q 1 2 3
MIO start method warm cold warm cold warm cold
focus covariates
DCOST 1 1 1 1 1 1
Intercept 3.2803 3.2803 4.6701 5.2013 4.8270 4.9267
auxiliary covariates
CARS 2.4666 2.4667 3.4212 4.3828 3.7000 3.8179
DOV TT 0 0 0.9542 0.9278 0.8141 0.7952
DIV TT 0 0 0 0 0.3211 0.4978
in-sample performance
maximized score 756 756 763 763 765 765
maximized average score 0.8979 0.8979 0.9062 0.9062 0.9086 0.9086
MIO solver output
MIO gap 0 0 0 0 0 0
CPU time (in seconds) 62 470 81 6428 144 2052
branch-and-bound nodes 38163 139833 89977 4867501 154390 1539205

their maximized objective values are identical.

It can be noticed that, across all cases in Tables 12 and 13, the variable CARS

was always selected and its parameter estimate was of a much larger magnitude

than those of other selected auxiliary covariates. This indicates that CARS is

the most important variable among the three auxiliary covariates. Moreover, by

comparing the maximized average scores derived under difference cases of q, there

is very little loss in the goodness of fit from adopting the parsimonious specification

using only CARS as the auxiliary covariate.

Regarding the computational efficiency, we can clearly see from the results

across all cases of q in Table 13 that, for the MIO formulation (4.14), there was

huge performance gain from using the warm-start approach in terms of reduction

of the CPU time and branch-and-bound nodes. Putting together the results from

both Tables 2 and 3, we thus find that, regardless of the MIO formulations (4.5)

and (4.14), it is generally far more computationally efficient to adopt the warm-

start strategy in the implementation.

We now compare computational performance across the formulations (4.5)

and (4.14). From Tables 12 and 13, we can see that, for all three cases of q,

it took far fewer branch-and-bound nodes to solve the formulation (4.5) than to

solve the formulation (4.14). However, in terms of usage of the CPU time, the
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former formulation did not completely dominate the latter. This can be intuitively

explained as follows.

There are 2n inequalities stated in (4.6) of the formulation (4.5). By con-

trast, the number of inequalities in (4.15) of the formulation (4.14) is only half

of that amount. Hence, the corresponding LP relaxation problems in the branch-

and-bound solution procedure for the formulation (4.5) are likely to be tighter

than those for the formulation (4.14). This would help to reduce the number of

branching steps required to reach the optimum. On the other hand, for the for-

mulation (4.5), it may take much longer to solve at each node the corresponding

LP relaxation problem which contains a massive amount of inequality constraints.

Thus, there is a tradeoff between the computational cost per node and the total

number of required nodes in the solution procedure. This tradeoff may depend

on the sample size, the support of the data and the variable selection bound q.

Therefore, we find that each of these two MIO formulations has its strength and

hence both complement each other for solving the PRESCIENCE problems.
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