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Abstract

Many time-series exhibit “long memory”: Their autocorrelation function

decays slowly with lag. This behavior has traditionally been modeled via unit

roots or fractional Brownian motion and explained via aggregation of heteroge-

nous processes, nonlinearity, learning dynamics, regime switching or structural

breaks. This paper identifies a different and complementary mechanism for long

memory generation by showing that it can naturally arise when a large number

of simple linear homogenous economic subsystems with short memory are in-

terconnected to form a network such that the outputs of the subsystems are fed

into the inputs of others. This networking picture yields a type of aggregation

that is not merely additive, resulting in a collective behavior that is richer than

that of individual subsystems. Interestingly, the long memory behavior is found

to be almost entirely determined by the geometry of the network, while being

relatively insensitive to the specific behavior of individual agents.

Keywords: Long memory, fractionally integrated processes, spectral dimen-

sion, networks, fractals.

1 Introduction

It is widely recognized that many economic and financial time-series data exhibit

“long memory” (e.g., Mandelbrot and Ness (1968), Granger and Ding (1996), Baillie

(1996), Comte and Renault (1996)), so that shocks have a persistent effect. Long

memory can equivalently be characterized via a slow rate of decay of the autocor-

relation function with lag or by a divergence of the power spectrum near the origin

(Baillie (1996)). Explaining and modeling these features has led to an active litera-

ture on fractional Brownian motion (e.g., Mandelbrot and Ness (1968), Granger and

Ding (1996), Comte and Renault (1996), Baillie (1996)), aggregation (e.g., Granger

(1980), Zafaroni (2004), Abadir and Talmain (2002), Chambers (1998)), structural
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seminar participants at Cemmap/UCL, at the University of Cambridge and at the Harvard/MIT

Econometrics seminar and anonymous referees for useful comments and acknowledges support from

NSF grants SES-1061263/1156347, SES-1357401 and SES-1659334.
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breaks and/or regime switching (e.g., Diebold and Inoue (2001), Perron (1989), Per-

ron and Qu (2007), Davidson and Sibbertsen (2005), Granger and Ding (1996)) unit

roots (e.g., Hall (1978), Nelson and Plosser (1982), Perron (1988), Phillips (1987)),

learning dynamics (e.g., Alfarano and Lux (2005), Chevillon and Mavroeidis (2011)),

nonlinearity (e.g., Chen, Hansen, and Carrasco (2010), Miller and Park (2010)), as

well as other mechanisms (e.g., Parke (1999), Calvet and Fisher (2002)). While these

approaches all identify plausible mechanisms generating a long memory behavior, the

search for a simple structural explanation for long memory is still actively ongoing

(especially for the popular “fractionally integrated” processes). The goal of this paper

is to identify a new, different and arguably more universal mechanism.

We demonstrate that long memory can naturally arise when a large number of

simple economic subsystems (or agents) are interconnected to form a network such

that the outputs of each of the subsystems are fed into the inputs of others. The

agents are “simple” in the sense that they are linear, have a short memory and are

homogenous (although our results are also robust to the presence of heterogeneity).

Networking yields a type of aggregation that is not merely additive, resulting in

a collective behavior that is richer than that of individual subsystems. The long

memory behavior is found to be mainly determined by the network geometry, while

being relatively insensitive to the specific behavior of individual agents.

We show that the key geometric factor, called the spectral dimension, can be cal-

culated for general classes of networks. These classes include not only simple periodic

networks, but also more general fractal networks, which provide a useful description

of social and economic networks (Song, Havlin, and Makse (2005), Inaoka, Ninomiya,

Taniguchi, and Takayasu (2004)). Fractals (Mandelbrot and Ness (1968)) are math-

ematical objects that exhibit some form of self-similarity across scales, thus mimick-

ing people’s natural tendency of aggregating into hierarchical structures (e.g., work

groups, departments, firms, conglomerate, sectors, etc.). Drawing from the literature

on diffusion on fractals (Havlin and Ben-Avraham (1987)), we show that a variety

of plausible network structures exhibit a wide range of spectral dimensions and thus

generate long memory processes with a wide range of power spectra characteristics.

Our results are distinct from the known fact that long-memory fractionally in-

tegrated processes can arise from the additive aggregation of an infinite number of

heterogenous times series (Granger (1980)), when some individual series approach a

unit-root behavior arbitrarily closely. In contrast, in our framework, all subsystems,

on their own, have short memory, thus demonstrating that the aggregation via the

network structure is the sole source of the long memory behavior.
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Our framework also differs from recent efforts directed at connecting network

structure and the propagation of adverse shocks, which focus on the “contagion” of

catastrophic events in specific sectors, such as bank failure (e.g. Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2015), Elliott, Golub, and Jackson (2014), Gouriéroux, Héam,

and Monfort (2012), among others) over just a few time periods. In contrast, our

model generates long memory even from every day shocks, and not just through rare

catastrophic events, and makes specific predictions regarding the network’s spectral

response within an infinite-horizon framework.

The implications of the economy’s network structure on aggregate fluctuations is

also receiving considerable attention (e.g., Long and Plosser (1983), Horvath (1998),

Dupor (1999), Gabaix (2011), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi

(2012)). This strand of literature does not seek to generate long memory behavior,

however, and instead centers on explaining why micro-level noise does not simply

average out in the aggregate or how business cycles can arise.

The present paper generates general classes of long memory behavior by consid-

ering a general dynamic model in the limit of large networks characterized by scaling

laws (including, but not limited to, fractal networks). In this limit, the effect of net-

work geometry on the small-frequency spectrum dominates the effect of individual

subsystems, a feature that could not be captured by earlier finite network models. We

thus make a direct link between so far distinct literatures, the study of long memory

and of the structure of economic networks.

In the sections below, we first develop a general method to calculate a network’s

spectral response as a function of a simple parameter with a natural geometric in-

terpretation. We then calculate this parameter for infinite periodic networks in any

number of dimensions, before focusing on fractal networks, which enable a richer range

of possible long memory behaviors. The Supplemental Material (Schennach (2018))

provides a simple empirical example to illustrate the theory.

2 Vector autoregressive formulation

We construct the generating process via a collection of elementary short-memory sub-

systems (the nodes) interconnected as a network (see Figure 1). Each subsystem

takes a number of “input” variables as given (e.g. supply of various input goods) and

decides the value of output variables (e.g. quantity produced). Without loss of gener-

ality, we consider agents that have only one output (since multiple outputs can merely

be modeled as multiple agents taking the same inputs but yielding different outputs).

The terms “input” or “output” do not necessarily refer to goods being purchased or

sold. “Input” denotes information the system takes as given and cannot change while
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an “output” denotes variables the subsystem can decide and that provides informa-

tion that can propagate to other subsystems. We place no fundamental restrictions in

the direction of the flow of information (except when considering specific examples).

If the “output” of subsystem A goes to subsystem B, the output could be sent to

another subsystem C or back to the same subsystem A.

Origin Destination

Figure 1: General ideas underying of the approach. Exogenous short-memory noise

is fed in to a network of short-memory subsystems at the “origin”. This noise is

then propagated, through numerous paths of various geometries and lengths, to the

“destination”. It is the sum of all of these indirect effects that generates the long

memory property of the noise monitored at the “destination”.

We consider networks consisting of linear subsystems (that is, their output is linear

in the input history). If we further assume that the dynamic response of each system

to noise is invariant with respect to time shifts, we can then model the response of

each subsystem via a convolution (i.e., a linear translation-invariant filter).1 Working

in the linear limit not only makes the problem analytically tractable, but also offers the

advantage of illustrating that nonlinearity is not necessary to generate long memory

within our framework. One can also interpret our linear approach as a linearization

of the network’s nonlinear subsystems that is justified in the limit of small noise.

In a discrete time framework, the behavior of such interconnected linear agents

can be fully expressed as a vector autoregressive process:2

 =
X∞

=0
− +  (1)

where  is a  ×1 vector of each individual agent’s output at time ,  is a  ×

matrix of coupling coefficients for a given lag  and  is a ×1 vector of idiosyncratic
zero mean shocks (whose covariance structure will be specified later). Vector autore-

gressive dynamics arise naturally as the solution to numerous utility maximization

problems or as the linearization of such solutions around an equilibrium and are often

used to describe model economies (e.g. Long and Plosser (1983), Foerster, Sarte, and

1Satisfying this translation invariance assumption may involve working with some deterministic

transformation of the model, e.g. discounted present-values or logarithms of some variables.
2Our approach can easily be adapted to continuous processes, since our proofs rely on a spectral

representation – see ealier version of the present paper Schennach (2013).
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Watson (2011), Özgür and Bisin (2013)). For finite  , the dynamics of such system

is well-characterized,3 but considering the  →∞ limit opens the way to a broader

range of interesting dynamics.

To present the main ideas more transparently, we assume that the effect of all

inputs on the outputs have the same time-dependence, up to a multiplicative pref-

actor. This assumption is often satisfied when all the agents solve the same type of

optimization problem.

Assumption 1 The sequence of matrices  factor as  =  , where  is a

lag-dependent scalar and  is a constant  × matrix satisfying4
P

=1 = 1 for

 = 1      .

This factorization implies that the network structure is encoded in the  matrix,

while the individual dynamic response of an agent is encoded in the  sequence. We

relax this assumption, to allow for some form of heterogeneity, in Section C.4 of the

Supplemental Material.

To fix the ideas, it is helpful to provide a specific idealized example of impulse

response function  for a simple and stylized variant of the classic model economy

of Long and Plosser (1983). In this model, each agent  of the network produces one

good  using other goods  6=  as inputs, according to a Cobb-Douglas production

function with constant returns to scale and a randommultiplicative productivity shock

(unknown to the agents at the time of making production decisions). The vector  in

Equation (1) contains the log output of each good (up to an additive constant shift).

Goods are perishable (i.e. last only one time period) and agents chose the allocation

of goods to optimize expected production.

Unlike Long and Plosser’s model, labor inputs are here also provided through

a network and treated symmetrically with the other inputs. In this approach, the

constraint of a constant total labor force is not imposed, which can be interpreted

as labor being measured in productivity-weighted units that can evolve over time

through networking interactions. Labor not entering into the production of goods can

enter into the “production” of a more productive labor force (e.g. via training) or

into the “production” of leisure, viewed as a consumption good. Our model can be

solved in the same fashion as Long and Plosser’s original model, by taking the limit

of zero labor share and relabelling one good as labor.5 The quantity dynamics of this

3In particular, finite networks can only generate long memory of a unit-root type: See Theorem

6 and 7 in the working paper version of the present paper (Schennach (2013)).
4As every agent is already assumed to have the same response function , the conditionP
=1 = 1 can be seen as a normalization to ensure a unique factorization.
5See Section D.1 of the Supplemental Material for details
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economy follows Equation (1) and satisfies Assumption 1 with  = 1 { = 1}, with a
matrix  whose entries  are equal the equilibrium cost shares of each commodity

 in the production of another commodity  and with disturbances  related to the

agents’ random productivity shocks.

A simple “one-lag” autoregressive process (i.e. with  = 1 { = 1}) is also suffi-
cient to cover a broad range of model economies that include durable capital goods

or labor (see Equation (10) and Section V in Foerster, Sarte, and Watson (2011)),

after linearization of the model around the equilibrium. More fundamentally, our

subsequent analysis actually holds for very general forms of the sequence , which is

helpful to consider more complex models of firm behavior. For instance, some models

of learning often take the form of such general convolutions (Chevillon and Mavroei-

dis (2011)). Other examples would be when each agent can be described by a state

space or dynamic latent variable model (Harvey, Koopman, and Shephard (2004)).

Such a model would then admit a representation in the form of a general convolution

(an autoregressive process that could have infinite order), when expressed solely in

the terms of observable variables, even if the original formulation of the model had a

single lag.

With some concrete examples of agent behavior in mind, we can proceed to study

the network dynamics. Letting denote the entire history of  (and similarly for ),

we can introduce the convolution operator  (operating on a sequence of vectors),

defined as [] ≡
P∞

=0 −. (In the simple one-lag case,  is a standard lag

operator.) With this notation, Equation 1 reduces to

 =  +  (2)

where the convolution  and the multiplication by a matrix  actually commute

( = ), since they separately act in the time and spatial domains, respec-

tively. By repeated substitution of  by its expression from (2), we directly obtain

an infinite moving-average representation:

 =
X∞

=0


assuming this sum converges. In the absence of noise, this system adopts a nonrandom

steady-state equilibrium  = 0. For simplicity of exposition, we consider how this

equilibrium is perturbed by introducing a stationary short-memory common shock at

one (or more) point(s) in the network (hereafter called the “origins” and labelled by

) and by measuring its impact at other arbitrary points in the network (hereafter

called the “destinations” and labelled by ). To capture this noise source setup, we

let  =  where  is a scalar sequence and  is a selection vector containing

unit entries where perfectly correlated noise is to be introduced and zeros elsewhere.
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(Multiple uncorrelated noise sources can be easily handled by calculating the resulting

 for each source separately and adding the corresponding power spectra and/or

autocorrelation functions. A more general noise covariance structure can be reduced

to the uncorrelated case by appropriately redefining the network, as shown in Section

C.2 of the Supplemental Material.)

The aggregate impact of the input noise(s) on many points of the network can be

determined by introducing a selection vector  having unit entries for the destination

point(s) of interest and zero elsewhere. We are thus interested in the quantity  ≡¡

¢0
, which can be written as:

 =
¡

¢0X∞

=0
 =

X∞
=0


 (3)

where

 ≡
¡

¢0
  (4)

In this formalism, information regarding the geometry of the network (and the choice

of destination vector  and origin vector ) is encoded in the scalar  coefficients. For

the remainder of the paper, we will (i) see how the  determine whether the limiting

process (3) has long memory and (ii) determine the behavior of the coefficients  for

a range of economically motivated, yet idealized, examples of networks.

3 Long memory behavior

Since our building blocks are stationary processes and translation-invariant operators,

it is natural to state our results in terms of spectral representations. Following stan-

dard practice (see, e.g., Lobato and Robinson (1996), Baillie (1996), Granger and Ding

(1996)) we consider a divergence of the power spectrum at the origin as a signature

of a process exhibiting long memory. In this section, we will see how the asymptotic

rate of decay of the coefficients  very directly determines the rate of divergence of

the power spectrum at the origin.

We first state our regularity conditions regarding the process  and operator .

Assumption 2 The stochastic process  admits the moving average representation

 =
P∞

=0 − where  are independent  (0 1) random variables (indexed by )

and where the real sequence  satisfies (i)
P∞

=0 || ∞ and (ii)
P∞

=0  6= 0.
Assumption 3 The real sequence  defining the convolution  satisfies (i)

P∞
=0 ||

(1 + 2) ∞, (ii) P∞
=0  = 1, (iii)

P∞
=0  6= 0 and (iv)

P∞
=0 

2  (
P∞

=0 )
2
.

Although it is not necessary for the applicability of our approach, Assumption

2 singles out Gaussian processes for simplicity of exposition. This assumption also

rules out the degenerate case making any divergence in the spectrum at the origin

impossible because the input noise has no zero-frequency component.
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Assumption 3(i) is a standard constraint on the tail behavior of  that implies that

its spectrum ̃ () ≡ P∞
=0 

 is twice continuously differentiable. It also implies

that  belongs to 1. Assumption 3(ii) imposes constant returns to scale (when

combined with Assumption 1). Assumption 3(iii) rules out an exceptional case that

would eliminate the leading term of one of our asymptotic expansions. Assumption

3(iv) is automatically satisfied if, in addition,  ≥ 0, but holds more generally as well.
Assumption 3(iv) implies that the spectrum ̃ () does not exceed 1 in magnitude near

the origin (and, in fact, can be replaced by that latter condition without affecting the

results). It should be noted that, in our leading example of the stylized Long and

Plosser-type model,  = 1 { = 1} and  thus trivially satisfies Assumption 3.

The requirement that our sequences of coefficient  and  belong to 1 is a trans-

parent way to ensure that all our building blocks have short-memory, so that any

long-memory behavior must be due to the network structure. Note that 1 mem-

bership implies 2 membership, a property that is central to the theory of stochastic

processes (Doob (1953)). A side-benefit is that 1 is closed under convolutions, so

convolutions can be freely iterated without worries about domains of validity.

To circumvent well-known difficulties in defining the power spectrum of poten-

tially nonstationary processes (Mandelbrot and Ness (1968), Flandrin (1989), Loyne

(1968)), we view a long memory process as a limiting case of a sequence of stationary

processes. Accordingly, we define a sequence  ̄ of stationary processes.

Definition 1 Let  ̄ =
P̄

=0 
 where  satisfies Assumption 3 and  satisfy-

ing Assumption 2 and define the corresponding spectrum ̃̃ () =
P̄

=0  (̃ ())

̃ (),

where tilded symbols denote spectra associated with the corresponding process or con-

volution: ̃ () =
P∞

=0 
 and ̃ () =

P∞
=0 

.

Each  ̄ is associated with a corresponding well-defined power spectrum |̃̄ ()|2
and we study the behavior of lim̄→∞ |̃̄ ()|2 ≡ |̃∞ ()|2 as a function of the asymp-
totic behavior of the sequence of weights . Here we consider the leading case of a

power law behavior for  – more general behaviors are considered in Section C.1 of

the Supplemental Material.

Theorem 1 Let Assumptions 1-3 hold. If |0|  ∞ and
P∞

=1 | − −|  ∞ for

some  ∈ R+ and  ∈ R, then there exists a neighborhood N of the origin such

that, for all  ∈ N\{0}, the limiting power spectrum of  ̃, defined as |̃∞ ()|2 ≡
lim̄→∞ |̃̄ ()|2, has the following properties:
(i) If  ≤ 1 and  6= 0, then

|̃∞ ()|2 =  ||−2 + 
¡||−2¢ (5)

for  = 1 −  and some  ∈ R\ {0}, (with the convention that ||−2 ≡ |ln |||2 for
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 = 0) and

(ii) if   1 or if  = 0, then

|̃∞ ()|2 = +  (1) (6)

for some  ∈ R.
This result states conditions under which the resulting limiting power spectrum

|̃∞ ()|2 exhibits the same asymptotic behavior (||−2 as → 0) as the a widely used

fractionally integrated process of order . Empirically, this behavior can be detected

by observing a linear trend in a plot of (an estimated) log power spectrum ln |̃∞ ()|2
as a function of ln for small values .

The proof of this Theorem, given in Appendix A, can be informally outlined as

follows: The spectral representation of the series
P∞

=0 
 is

P∞
=0  (̃ ())


. For

the sequence  = −(1−) this series is very closely related to a Taylor series of

the function (1− )
−
. Since ̃ () = 1 −  +  () for some  6= 0 under our

assumptions, combining these results yields a spectral representation of the form

(1− 1 + +  ())
−
= −−+

¡
−

¢
, i.e., a power spectrum of the form ||−2.

This result can easily be shown to be unaffected by summable deviations of the power

law  = −(1−).

Intuitively, long memory arises because each additional convolution lengthens the

tail of the impulse response, and because the additive contributions of infinitely many

different paths yield a nonsummable aggregate impulse response, even though indi-

vidual agents have a summable impulse response function. Note that the lengthening

of the tail can occur even if the onset of the agents’ response is instantaneous (i.e.

 (0) 6= 0). Of course, long memory cannot arise if the agents only have an instanta-
neous response, but that situation is ruled out by Assumption 3(iii).

In the case where the limiting power spectrum |̃∞ ()|2 is integrable (  12),

we can also establish a stronger form of convergence that implies the existence of a

stationary long-memory limiting process ∞ () with a power spectrum behaving as

||−2 as ||→ 0.

Theorem 2 Let the Assumptions of Theorem 1 hold. Assume that |̃ ()|  1 for  ∈
]0 ] and that |̃ ()| is uniformly bounded for  ∈ [0 ]. If P∞

=0 || ∞ or if  

12, there exists a stationary process ∞ () with spectrum ̃∞ () ≡ lim→∞ ̃ () and

corresponding moving average representation ∞ () such that
R 
0
|̃ ()− ̃∞ ()|2

 → 0,
P∞

=0 | ()− ∞ ()|2 → 0 and 
£| ()− ∞ ()|2¤ → 0 for almost any

given  ∈ R and P∞
=−∞

£| ()− ∞ ()|2¤ () → 0 for a given absolutely inte-

grable, bounded and continuous weighting function  ().

One can also establish a similar convergence result that covers both integrable
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(  12) and non integrable ( ≥ 12) limiting power spectra |̃∞ ()|2 by focusing
on increments of the processes (see Section C.3 of the Supplemental Material).

Our results for infinite networks also have implications for the large but finite

networks found in the real world. The following theorem establishes that behaviors of

finite and infinite networks are similar in a way that makes them empirically difficult

to distinguish.

Theorem 3 Consider an infinite network N∞ and let ̃∞ () and ∞ () respectively
denote the spectrum and the coefficients obtained for a given set of origin nodes O
and a set destination nodes D. Consider a finite network N∗ containing O ∪ D and

all nodes of N∞ that are within ∗ hops of at least one node in O∪D. Let ̃∗ () and
∗ respectively denote the spectrum and the coefficients associated with O and D in

the finite network. Assume that |̃ ()|  1 for  ∈ ]0 ]. Then, under Assumptions
1-3, for any given min  0,

sup
∈[min]

|̃∞ ()− ̃∗ ()| ≤ 2̄

1− ̄
̄
∗+1 (7)

where ̄ = sup∈[min] |̃ ()|  1 and ̄ = supmax {|∞ |  |∗|} ∞.
This result follows from the fact that series of the form

P∞
=0  (̃ ())


(used in

the proof of Theorem 1) converge exponentially fast for || ≥  (since then |̃ ()|  1).
Hence, a truncated series (representing a set of finite pathways that can fit within a

finite network), tends to be very close to its limiting value for an infinite network. The

region || ≥  where this fast convergence takes place is precisely the only portion of

the spectrum that is empirically accessible, since the finite duration of recorded time

series limits the smallest frequency for which the spectrum can be reliably determined.

4 Network models

Now that have characterized the connection between the spectrum of the network re-

sponse and the asymptotic behavior of the coefficients , thanks to Theorems 1 and 2,

we turn to the question of determining these coefficients for natural and economically-

motivated classes of network geometries and show that power law decays  ∝ −

with any  ∈ ]0 1] can be realized.
To do this, we exploit the following simple geometric interpretation of the coeffi-

cients  ≡
¡

¢0
. If the matrix contains only nonnegative elements, it can be

viewed as the transition matrix of a Markov chain, or random walk,6 on a network.

(It is only this geometric interpretation that relies on  ≥ 0 – the definition of

 holds more generally.) Consider some vector 
 that has a single nonzero element

6Here, the term is used more broadly, since the random walk’s node-to-node hops are not neces-

sarily independent.
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at  representing the starting point of the random walker. This walker then jumps to

another node  with a probability . The probability distribution of the random

walker will then be given by the row vector
¡

¢0
 . After  jumps, the distribution

is
¡

¢0
. The probability that a random walker lands on the source node7 is then

selected by multiplying by , to yield  =
¡

¢0
. A similar interpretation holds

when  or  have multiple nonzero elements: One then has multiple simultaneous

random walks with different start and end points.8

As initial examples of network, we consider simple periodic networks in  dimen-

sions in which the nodes are indexed by points  ∈ Z, for a fixed positive integer
.

Theorem 4 Consider a network with nodes on Z, all of which are reachable. If 

and  have a single nonzero element, the coupling coefficients matrix  (  ∈ Z)
satisfies (i)  = ++ for all    ∈ Z, (ii)   0 for all  ∈ Z, (iii)
 = and  ≥ 0 for all   ∈ Z and (iv) for each  ∈ Z,  6= 0 for a finite
number of , then  = −2 +

¡
−1−2

¢
for some   0.

Interestingly,  = 1 (a linear network) gives us  scaling as 
−12 and therefore

a long memory process of order 1− 12 = 12 by Theorem 1. Similarly  = 2 gives

an order of 1− 22 = 0 (i.e. a spectrum with a logarithmic divergence at the origin).
For  = 3 4    the sequence −2 is absolutely summable, so that no long memory

results. However, this does not imply that high-dimensional networks cannot generate

any long memory behavior. The aggregate output of a group of nodes can exhibit long

memory in networks of an arbitrarily high dimension. One can show that, if one con-

siders the sum of the nodes outputs over a subspace of dimension  of the periodic lat-

tice, then the power law from Theorem 4 becomes  = −(−)2+
¡
−1−(−)2

¢
,

so the dimension of the aggregate considered offsets the effect of the dimensionality of

the network. The reason for this result is simply that the problem reduces to studying

a random walk consisting of jumps across different hyperplanes, since jumps within

one hyperplane are irrelevant. This effectively removes  dimensions from the random

walk, which then behaves like a random walk on a −  dimensional lattice.

To fill in the gaps in the integral exponents generated by the periodic lattices, we

7That the random walk proceeds backward from the destination to the source is merely a conse-

quence of the choice of normalization
P

=1 = 1. One could alternatively consider models where

columns of  add up to one and the natural random walk interpretation would then hold from the

origin to the destination.
8It should be noted that, in the  →∞ limit, the most interesting cases arise when the fraction

of nonzero elements in the origin vector  or in the destination vector  decays to zero as  →∞.
Otherwise, the  may not decay to zero (since a constant vector is a eigenvector of  with unit

eigenvalue, by Assumption 1).
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would need networks that effectively have a “fractional dimension”. Such mathemat-

ical objects, called fractals (Mandelbrot (1982)), have been constructed and derive

their properties from the power law nature of their self-similarity across scales. Frac-

tals have proven to be an effective tool to represent many natural and human-made

phenomena (Mandelbrot and Ness (1968)) and actual social or economic networks

have been observed to exhibit self-similarity across scales (Song, Havlin, and Makse

(2005), Inaoka, Ninomiya, Taniguchi, and Takayasu (2004)).

Since there is a direct relationship between random walks on a network and the 

coefficients, we can borrow a key result from the literature on random walks (or diffu-

sions) in fractals (e.g., Havlin and Ben-Avraham (1987)): The probability  that a

random walker visits a given point after  steps scales as −̃2 asymptotically, where

̃ is a positive real number known as the spectral dimension that is related to the

geometry of the network (but not uniquely determined by other common descriptors,

such as the degree distribution). There is therefore a rather direct correspondence

with diffusion on periodic lattices in Euclidian space. This finding comes from a com-

bination of formal analytical treatments of various self-similar fractals (such as the

Sierpinski Gasket) as well as from thorough Monte Carlo simulations on random sta-

tistically self-similar fractals (such as those obtained via diffusion-limited aggregation

(Witten and Sander (1981))) guided by renormalization arguments (ben Avraham

and Havlin (2005), Given and Mandelbrot (1983), Havlin and Ben-Avraham (1987)).

Among the many examples of networks with a well-defined spectral dimension, we

describe here in more detail examples of network classes that represent natural hier-

archical extensions of network connectivities commonly used in theoretical economic

models. For conciseness, we only report the relevant spectral dimensions ̃ (which

yields the scaling  ∝ −̃2), referring the reader to the original references for formal

statements and proofs. Our examples cover the entire range of spectral dimensions

̃ ∈ ]0 2] that yield long memory processes.
The first class generalizes star networks that arise in certain network formation

games (see, e.g., Proposition 3 in Jackson (2005)) or in studies of the effect of the simul-

taneous presence of highly and weakly connected agents (e.g., Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi (2012)). Here we consider hierarchical star geometries

(Figure 2): Not only can firms be connected via a star network, but so can sectors of

the economy, at various levels of aggregation. Some models of network formation ac-

tually generate such networks: Optimal transportation networks often take the form

of minimal spanning trees (Sharkey (1995)), which exhibit a statistically self-similar

nature (Steele, Shepp, and Eddy (1987)). Simple hierarchical star networks can be

12



Figure 2: Example of a hierarchical star-like network ( = 2 case)).

constructed by starting with a node connected to 2 identical neighbors (located

along each the  Cartesian axes). One then repeatedly applies the following gener-

ating rule: Replace each node by a star consisting of 2+ 1 nodes, as illustrated in

Figure 2. The spectral dimension of such a network has been calculated analytically

(Christou and Stinchcombe (1986)):

̃ =
2 ln (2+ 1)

ln 3 + ln (2+ 1)
 (8)

Possible spectral dimensions thus range from ̃ = 1 (for  = 1) to ̃ → 2 (in the

limit as  → ∞). While Equation (8) only yields discrete values of ̃ in ]1 2[,

on can fill-in the whole continuum of values ̃ ∈ ]1 2[ by simply alternating two
different generating rules (corresponding to different ) at each step of the recursion

to interpolate between the values of ̃ generated by Equation (8), as shown more

formally in Theorem 5 of Appendix B. Other examples of star-like networks can be

found in Given and Mandelbrot (1983).

Another common type of network is a ring, which is used to model weakly con-

nected firms (e.g. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)). We consider here

more general hierarchical ring networks, where, at each step of the generation process,

the generating rule consists of replacing one link of the network by a ring of  + 

nodes such that the original nodes are  hops apart on the ring along one side of the

ring and  hops apart along the other side (see Figure 3), with each link being of

equal strength. The spectral dimension of such a network is (see Rozenfeld, Havlin,

and ben Avraham (2007) and Appendix B):

̃ = 2
ln (+ )

ln ()
(9)

with   ∈ {2 3 4   }. Possible spectral dimensions thus range from ̃ = 1 (taking

the limit as   → ∞ with  →  ∈ R\ {0}) to ̃ → 2 (if  →  ∈ {0∞})
and any values in between (again via Theorem 5 in Appendix B). This model can

be generalized to  pathways of different lengths (Tejedor (2012)). Hierarchical ring

13



Figure 3: Example of a hierarchical ring-like network, a (2,3)-flower.

networks can model the fact that two sectors of the economy may appear connected

by a single link when viewed at a coarse level of aggregation, while a finer level of

disaggregation may actually reveal that the connection takes place via a number of

intermediary links, possibly along multiple (competing) pathways. Another interest-

ing connection is that hierarchical ring networks can generate a so-called scale-free

degree distribution (Rozenfeld, Havlin, and ben Avraham (2007)) (i.e. the number

of neighbors follows a power law, or Pareto, distribution) for which there is empirical

evidence in economic networks (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi

(2012)).

Another network topology with economic relevance is an idealized supply chain,

which models the production of a good that requires consecutive steps performed

by a sequence of firms on the “backbone” of the supply chain. Each of these firms

also requires inputs from other firms located on side attachments (the “fibers”). The

simplest example is the linear “comb” structure of Figure 4. One can consider more

general structures where the backbone and the fibers are themselves arbitrary fractal

networks with spectral dimensions ̃ and ̃ , respectively, and the resulting spectral

dimension, as shown by Cassi and Regina (1996) in the context of a diffusion problem

unrelated to economic networks, is:

̃ = ̃ + ̃ − ̃̃

2
 (10)

provided ̃  4 and ̃  2. Their results also enable the study the effect of

aggregation: If the destination nodes  consist of an entire fiber, the appropriate

exponent becomes:

̃ = ̃ − ̃̃

2
= ̃

Ã
1− ̃

2

!
 (11)

This setup illustrates a simple way to construct networks that produce aggregated

signals with long memory having any order of power law decay that can approach the

unit root case arbitrarily closely. Our hierarchical star and ring examples delivered

fractal networks with any spectral dimensions in ]1 2[ and we observe here that any

value of ̃ in ]0 1[ can be obtained via Equation (11) for some choice of ̃, ̃ ∈ ]1 2[.
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backbone

fibers

Figure 4: Simple example of a generalized supply chain: A “comb” structure.

In the examples so far, the nonzero elements of the coupling coefficients matrix

 were either identical or bounded away from zero. Nontrivial spectral dimensions

can also be obtained by relaxing that constraint in an otherwise nonfractal network.

For instance, consider a linear chain of nodes, each linked to its 2 nearest neighbors

and where the jump probabilities ±1 are each drawn at random (but kept fixed

over time) from the density  () ∝ −1 { ∈ [0 12]} for some  ∈ [0 1[. The asso-
ciated spectral dimension is ̃ = (1− )  (2− ) (ben Avraham and Havlin (2005)),

thus showing that a range of long memory behaviors can also be obtained in simple

networks with strong heterogeneity in the coupling coefficients.

We now have demonstrated simple plausible networks that can exhibit any spectral

dimensions ̃ ∈ ]0 2]. Hierarchical star and ring networks cover the ]1 2[ range, which
is extended to ]0 1[ via a simple supply chain construction. The special cases ̃ =

{1 2} are covered by simple periodic lattices. Theorem 1, then leads to the conclusion
that the divergent spectrum characteristic of fractionally integrated long memory

processes of any order can be naturally obtained from the collective behavior of a

population of linear homogenous agents interconnected through a (possibly) fractal

network with idealized, yet economically motivated, geometries.

In empirical settings, if one has access to a specific observed network structure,

it is unnecessary to attempt to recreate this network via generating rules. Instead, a

suitable power law behavior can be directly detected as a linear trend (with a slope in

the range [−1 0]) in a plot of (ln ()  ln), with  computed from Equation (4). This
method works best when one has access to a very “disaggregated” version of the net-

work geometry data, since this enables a plot of (ln() ln()) over the widest possible

range of values of ln before finite size artifacts set in, which facilitates the identifi-

cation of a linear trend. This type of evidence alone would suggest the applicability of

our mechanism, independently of whether or not the network can be constructed via

iteration of a simple generating rule.9 Section D.2 of the Supplemental Material pro-

vides an empirical example of such an analysis, based on the “input-output accounts”

9One can also create examples of networks with a well-defined spectral dimension but that exhibit

no self-similarity – see Appendix B.
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database compiled by the Bureau of Economic Analysis and describing interactions

between sectors of the US economy.

5 Conclusion

We show that long memory can naturally arise when a large number of simple linear

homogenous economic subsystems with a short memory are interconnected to form a

network. The long memory behavior then is largely determined by the geometry of the

network while being relatively insensitive to the specific behavior of individual subsys-

tems. Under weak regularity conditions, the power spectrum of the network’s response

to exogenous short-memory noise exhibits the same power spectrum signature as a

fractionally integrated processes (), with  related to the scaling properties of the

network (its spectral dimension). This work not only provides a plausible structural

model for the generation of fractionally integrated long memory processes, but also

demonstrates that long memory is possible without nonlinearity, heterogeneity, unit

roots or near unit roots, learning or structural breaks (although these mechanisms can

obviously play a role as well). The proposed approach also makes a direct connection

between the literatures focusing on long memory processes, economic networks and

diffusion on fractals. It also suggests that the spectral dimension would be a very use-

ful descriptor to add to the list of commonly used summary statistics (e.g., de Paula

(2016)) to characterize networks (degree distribution, centrality, betweenness, etc).

A Proofs

The following Lemmas summarize well-known results from the theory of stochastic

processes (e.g., Doob (1953), Chap. XI, Section 9):

Lemma 1 If  ∈ 1 (and thus  ∈ 2) then it also admits a spectral representation

̃ () ≡ P∞
=0 

and an associated power spectrum |̃ ()|2. Moreover, ̃ () is a
bounded and square-integrable function defined for any  ∈ R. A corresponding result
holds with   ̃ replaced by   ̃, respectively, with ̃ () =

P∞
=0  () 

.

For conciseness, we often call the “spectral representation” simply the “spectrum”,

reserving the term “power spectrum” (or “spectral density”) for its modulus square.

The ̃ () is traditionally called the gain function while the  is the usual impulse

response function. The following lemma summarizes a simple form of convolution

theorem.

Lemma 2 Let 0 ∈ 1 and let 
 =  ⊗ · · · ⊗ 1 ⊗ 0 with 1      ∈ 1 for some

 ∈ N and with ⊗ denoting convolutions. Then  ∈ 1 and the spectral representation

of these quantities are related through ̃ () = ̃ () · · · ̃1 () ̃0 ().
Note that Lemma 2 does not let us conclude that lim→∞  ∈ 1. In fact, it is

precisely the fact that lim→∞  6∈ 1 in general that allows us to consider long mem-

ory processes via a limiting process (since processes with summable moving average

representation necessarily have short memory).
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Definition 2 To avoid ambiguities due to the multivalued nature of the fractional

power function, we define:

()
 ≡

½ || 2 if   0

|| −2 if   0
Moreover, the following convention for powers of  is useful to avoid special cases:

If  = 0, then

()
 ≡ − ln () ≡

½
ln ||+ 2 if   0

ln ||− 2 if   0

Lemma 3 Assumption 3 implies that (i) for some finite  ∈ R+\ {0}, ̃ () =
1 +  +  () and |̃ ()|2 = 1 − 2 + 

¡
2
¢
as  → 0 and (ii) there exists a

neighborhood N of the origin such that |̃ ()|  1 for all  ∈ N\{0}.
Proof. Assumption 3(i) implies that ̃ () is everywhere twice continuously dif-

ferentiable. Thus, in particular, near the origin, we have the expansion ̃ () =

0 −1− 1
2
2

2 + 
¡
2
¢
with 0 1 2 finite. Assumption 3(i) also implies that

the moment theorem applies up to order 2, so that  =
P∞

=0 
. By Assumption

3(ii) 0 = 1. Since  is real, the real part of ̃ () is symmetric while its imaginary

part is anti-symmetric. Therefore, 1 and 2 must be real. Assumption 3(iii) im-

plies that 1 ∈ R\ {0} and the first conclusion of the lemma follows. Next, we note
that |̃ ()|2 = ¡1− 1

2
2

2
¢2
+21

2 + 
¡
2
¢
= 1− 2

2 + 1
4
22

4 +21
2 + 

¡
2
¢
=

1 − (2 −21)
2 + 

¡
2
¢
, where 2 − 21  0 by assumption 3(iv). It follows that

|̃ ()|  1 in some neighborhood of the origin.
Lemma 4 Assumption 2 implies that ̃ () =  +  (1) for some  ∈ R\ {0}.
Proof. Assumption 2 implies that the Fourier transform ̃ () is continuous, thus

implying an expansion of the form  +  (1). Moreover  is real, so  = ̃ (0) is real

as well and nonzero by Assumption 2.

Lemma 5 Let Assumptions 2-3 hold. Let  and 0 be two sequences such thatP∞
=0 | − 0|  ∞. Then, the corresponding ̃∞ () and ̃∞0 () are such that (i)

|̃∞ ()− ̃∞0 ()| is continuous and uniformly bounded in a neighborhood N of the

origin and (ii) whenever |̃∞ ()|2 =  ||−2+
¡||−2¢ (for  ∈ R and  ∈ R+) we

also have |̃∞0 ()|2 = ̃ ||−2 + 
¡||−2¢ for some ̃ ∈ R (with ̃ =  if   0).

Proof of Lemma 5. Let ∆ ≡  − 0 and let ∆̃ () = ̃ () − ̃0 () denote
the corresponding spectrum. To prove the result, we exploit the fact that a uniformly

convergent sequence of continuous functions converges to a continuous function. Since,

by Assumption 3 and Lemma 3, |̃ ()| ≤ 1 for  ∈ N , some neighborhood of the
origin and since

P∞
=0 |∆| ∞ by assumption, we can write, for  ∈ N ,

|∆̃̄ ()−∆̃∞ ()| =
¯̄̄̄
¯

∞X
=̄+1

∆ (̃ ())


¯̄̄̄
¯ ≤

∞X
=̄+1

|∆| |̃ ()| ≤
∞X

=̄+1

|∆|→ 0

as ̄ → ∞. Therefore, ∆̃̄ () converges uniformly to ∆̃∞ () as ̄ → ∞ over all

 ∈ N . This, combined with the fact that ∆̃̄ () is continuous in  for any finite ̄

and  ∈ N (since it is a finite sum of continuous functions) implies that ∆̃∞ () is
continuous in N and we also have ∆̃∞ () =  +  (1) as → 0. It follows that, for
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 ≥ 0, and as → 0,

̃∞0 () = ̃∞ () +∆̃∞ () =  ||− + 
¡||−¢+ +  (1) = ̃ ||− + 

¡||−¢
for some finite nonzero ̃ (that equals  if   0).

Proof of Theorem 1. By Assumption 3 and Lemma 3, (i) for some finite  6= 0,
̃ () = 1−+  () as → 0 and (ii) there exists a neighborhood N of the origin

such that |̃ ()|  1 for all  ∈ N\{0}. Also, by Lemma 4, ̃ () = + (1) as → 0

for some  ∈ R\ {0}.
By Lemma 5, we can focus on the case where  = − since absolutely summable

deviations from such power law will only contribute to a constant in the spectrum

near the origin and hence will not affect the type of divergence that occurs in the

spectrum at the origin. Furthermore, we consider the case  = 1 without loss of

generality to simplify the notation.

Consider first the special case10  = 0 and hence  = 1, so that  = 1. By

Lemma 2, the spectrum of is given by (̃ ())

̃ () and thus the spectrum of  isP

=0 (̃ ())

̃ () (and the corresponding power spectrum is |P

=0 (̃ ())

̃ ()|2).

For all  ∈ N\{0}, the series P∞
=0 (̃ ())

 ≡ lim→∞
P

=0 (̃ ())

is convergent

because |̃ ()|  1 and we can directly evaluate this geometric series:
̃∞ () = ̃ ()

∞X
=0

(̃ ())

= ̃ ()

1

1− ̃ ()

= ( +  (1))
1

1− 1 ++  ()
= ( +  (1))

1

+  ()

=  (1 +  (1))
−1



1

1 +  () 
= 

−1



1 +  (1)

1 +  (1)

=
−1


(1 +  (1)) =

−1


+ 

¡
−1

¢
Next, we consider the more general cases where  ∈ ]0 1[. Consider the Taylor

series  (1− )
−
=
P∞

=0 
0


 for ||  1 for any nonzero constant , where
0 = 

1

!

Y
=1

(+  − 1)

(with 00 ≡  by convention) and note that, for  ∈ N\{0},
̃∞0 () ≡ ̃ ()

∞X
=0

0 (̃ ())

= ̃ () (1− ̃ ())

−
=  ( +  (1)) (1− 1 ++  ())

−

=  ( +  (1))− (+  ())
−
= − ()− (1 +  (1)) (1 +  () )

−

= − ()− (1 +  (1)) =
−

()
 + 

¡||−¢
There remains to show that  is sufficiently close to 0 so that ̃∞ () has the
same asymptotic behavior as ̃∞0 (). By Lemma 5, it is sufficient to show that

10This case could be combined with the more general case  ∈ ]0 1[ below, but this simple case
illustrates the idea of the proof with the least technical complications.
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P∞
=0 | − 0| ∞. To this effect, note that

0 = 

Y
=1

(+  − 1)


= 

Y
=1

µ
1− 



¶
where  ≡ 1− . Let  = ln (

0) and observe that

 =  ln+

X
=1

ln
³
1− 



´
= ln (1− ) +  ln+

X
=2

ln
³
1− 



´
= ln (1− ) + 

X
=2

(ln  − ln ( − 1)) +
X

=2

ln
³
1− 



´
= ln (1− )− 

X
=2

ln
 − 1


+

X
=2

ln
³
1− 



´
= ln (1− )−

X
=2

 ln

µ
1− 1



¶
+

X
=2

ln
³
1− 



´
= ln (1− ) +

X
=2

µ
ln
³
1− 



´
−  ln

µ
1− 1



¶¶
(12)

Note that since ln (1− ) = −− 1
2
2+ (3) as → 0, the summand in (12) is such

that

ln
³
1− 



´
−  ln

µ
1− 1



¶
= −


− 1
2

³


´2
− 

µ
−1

− 1
2

1

2

¶
+

¡
−3
¢

= −

− 2

2
−2 +




+



2
−2 +

¡
−3
¢
=

 (1− )

2
−2 +

¡
−3
¢

(13)

Since −2 is a summable sequence, it follows that the series (12) converges, i.e. ∞ ≡
lim→∞  is well-defined and finite. We can also conclude that

 − ∞ =

∞X
=+1

µ
ln
³
1− 



´
−  ln

µ
1− 1



¶¶
=

∞X
=+1

µ
 (1− )

2
−2 +

¡
−3
¢¶

≤
Z ∞



µ
 (1− )

2
−2 +

¡
−3
¢¶

 = 
¡
−1

¢


Now, set the constant  = exp (−∞) and consider  = −. We have
0 −  = 0 − − = − (0

 − 1)
= − ( exp ln (0

)− 1) = − ( exp ()− 1)
= − (exp ( − ∞)− 1) = −

¡
exp

¡

¡
−1

¢¢− 1¢ (14)

= −
¡
1 +

¡
−1

¢− 1¢ = 
¡
−−1

¢


Since
P∞

=1 
−−1 ∞, we haveP∞

=1 |0 − | ∞ and the result follows.11

11To cover the   1 case (i.e. ̄  0), one would need to consider the expansions (13) and (14) to

higher order to obtain an expression for 0 −  of the form 1
−̄−1 +2

−̄−2 + · · ·+
−̄−

with  sufficiently large so that ̄ +   1. The corresponding spectrum ̃∞ () would then admit
the expansion 0

−+1
−(−1)+ · · ·+

−(−)+ finite terms and Equation (5) would still hold
for   1.

19



For  = 0, consider − ln (1− ) =
P∞

=1 
0


 with 0 =
1

for  ≥ 1 and 00 = 0.

Note that, for  ∈ N\{0},
̃∞0 () ≡

∞X
=0

0 (̃ ())

= − ln (1− ̃ ()) = − ln (1− 1 ++  ())

= − ln (+  ()) = − ln ( (1 +  (1)))

= − ln () + ln (1 +  (1)) = − ln () +  (1)

= − ln ()− ln () +  (1) = − ln () + (1) = − ln () +  (|ln |||)
The same conclusion holds for ̃∞ () since 0 and  differ only for  = 0, implying

that
P∞

=0 | − 0| ∞ and enabling the use of Lemma 5.

We now consider the final case where either   1 or
P∞

=0 ||  ∞ (i.e.  =

0). In this case, conclusion (i) of Lemma 5 with 0 = 0 delivers the desired result:

̃∞ () =  +  (1).

Lemma 6 Let  → 0 be a real, positive and decreasing sequence and  ∈ [− ],
then for any  ∈ N, ¯̄̄̄

¯
X

=1




¯̄̄̄
¯ ≤ 

2

̄X
=1



where ̄ ≡ d2 ||e (where d·e denotes the “round up” operation).
Proof. Let  () = 

1−−
R 
0
de for  ∈ R+ and note that  () for  ∈ N∗

matches the partial sum
P

=1 
:

 () =


1− −

Z 

0

de
 =



1− −

X
=1

Z 

−1
de



=


1− −

X
=1



Z 

−1
 =



1− −

X
=1


 − (−1)


=

X
=1




Now, observe that  () traces out a spiral in the complex plane as  increases and let

D be the closed and finite region bounded by the curve  () for  ∈ [0 ̄] and the
segment joining  (̄) with the origin. That is, D contains the first complete “turn”

of the spiral (which corresponds to terms 1 to ̄ of the series). Since  is decreasing,

the region D will also enclose all subsequent “turns” of the spiral and we can write¯̄̄̄
¯

X
=1




¯̄̄̄
¯ ≤ max

∈D
kk = sup

∈[0̄]
| ()| ≤ sup

∈[0̄]

¯̄̄̄


1− −

¯̄̄̄ Z 

0

¯̄
de
¯̄ ¯̄

¯̄


=

Ã
sup

∈[−]

¯̄̄̄


1− −

¯̄̄̄!
sup

∈[0̄]

Z 

0

de ≤ 

2

Z ̄

0

de =


2

̄X
=1



for any  ∈ N.
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Proof of Theorem 2. First note that |̃ ()|  1 for  ∈ ]0 ] implies that
̃ ()→ ̃∞ () pointwise for any  ∈ ]0 ], since

|̃ ()− ̃∞ ()| =
¯̄̄̄
¯̃ ()

∞X
=+1

̃ ()


¯̄̄̄
¯ ≤ |̃ ()|

∞X
=+1

|| |̃ ()|

≤ |̃ ()|
µ
sup


||
¶ ∞X

=+1

|̃ ()| =
µ
sup


||
¶
|̃ ()| (1− |̃ ()|)−1 |̃ ()|+1 

where |̃ ()|+1 → 0 as |̃ ()|  1 for  ∈ ]0 ] and where all the prefactors are finite
by assumption.12

The proof then proceeds by first showing that
R 
0
|̃∞ ()|2  ∞, thus implying

that
P∞

=0 |∞ ()|2  ∞, which in turn implies, that there exists some stationary
process ∞ () with moving average representation ∞ () and with spectrum ̃∞ ().
Then, we show that there exists some ̄ () also satisfying

R 
0
(̄ ())

2
  ∞ such

that

|̃ ()− ̃∞ ()|2 ≤ (̄ ())2
for all , so that, by Lebesgue dominated convergence theorem, lim→∞

R 
0
|̃ ()− ̃∞ ()|2  =R 

0
lim→∞ |̃ ()− ̃∞ ()|2  = 0. This implies that

P∞
=0 | ()− ∞ ()|2 → 0,

from which the mean square convergence of  () to ∞ () follows by standard ar-
guments (e.g., Doob (1953), Chap. XI, Section 9).

The
P∞

=0 || ≡ 1 ∞ case (including the   0 case) is simple:

|̃∞ ()| ≤ |̃ ()|
∞X
=0

|| |̃ ()| ≤ |̃ ()|
∞X
=0

|| 1 = |̃ ()|1 ≡ ̄ ()

|̃ ()− ̃∞ ()| =
¯̄̄̄
¯̃ ()

∞X
=+1

̃ ()


¯̄̄̄
¯ ≤ |̃ ()|

∞X
=+1

|| |̃ ()|

≤ |̃ ()|
∞X

=0

|| |̃ ()| ≤ |̃ ()|1 ≡ ̄ ()

where
R 
0
|̃ ()|2  ∞.

For the  ∈ ]0 12[ case, we consider some small cutoff ̄  0 and compute a

separate bound for large (|| ≥ ̄) and small (|| ≤ ̄) frequencies.

To find a bound on |̃ ()| for || ≥ ̄, we note that, by Assumption 3, and Lemma

3, |̃ ()|2 = 1− 2
2 + 

¡
2
¢
for some 2  0 as → 0 and thus

|̃ ()| ≤ 1− 3
2 (15)

for some 3 ∈ ]0 22[ for all || ≤ ̄ sufficiently small. We can then show that for

̄ sufficiently small, the maximum of |̃ ()| over the set £̄ ¤ is reached at  = ̄.

The maximum of |̃ ()| in any set of the form £
̄ 

¤
for ̄  0 is reached at some

∗, by compactness of the set and continuity of ̃ () (by Assumption 3(i)) and by
Assumption (iv), ̃ (∗)  1. Such a ̃ (∗) would eventually be exceed by

¯̄
̃
¡
̄
¢¯̄
for

12Note that if there existed sequence  such that |
|→∞, then we would have P∞=0 || ≥P∞

=0 |
|→∞. Having  = −(1−) with   12 also rules out |

|→∞.
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̄ sufficiently small since ̃
¡
̄
¢ → 1 as ̄ → 0. This contradiction is avoided only if

∗ = ̄ for all ̄ sufficiently small. Hence |̃ ()| ≤ 1−3̄
2
for || ≥ ̄ for sufficiently

small ̄.

Letting  = 1− , we can then write, for || ≥ ̄,

|̃∞ ()| = |̃ ()|
¯̄̄̄
¯1 +

∞X
=1

− (̃ ())
¯̄̄̄
¯ ≤ |̃ ()|

Ã
1 +

∞X
=1

− |̃ ()|
!

≤ |̃ ()|
Ã ∞X

=0

³
1− 3̄

2
´!

=
|̃ ()|

1−
³
1− 3̄

2
´

=
|̃ ()|
3̄

2
≤ 4 |̃ ()| ≡ ̄ ()

and

| ()− ∞ ()| = |̃ ()|
¯̄̄̄
¯

∞X
=+1

− (̃ ())
¯̄̄̄
¯ ≤ |̃ ()|

∞X
=+1

− |̃ ()|

≤ |̃ ()|
∞X

=1

|̃ ()| ≤ |̃ ()|
∞X

=0

³
1− 3̄

2
´

= |̃ ()| 1

1−
³
1− 3̄

2
´ = |̃ ()|

3̄
2
≤ 4 |̃ ()| ≡ ̄ ()

for some 3 4  0 and where ̃ is such that
R
||≥̄ |̃ ()|2  ≤

R |̃ ()|2   ∞
since ̃ ∈ L2 (R) because  ∈ L2 (R+).
For || ≤ ̄, since ̃∞ () =  ||− + 

¡||−¢, we have
|̃∞ ()| ≤ 4 ||−

which satisfies
R
||≤̄ ||−2  ∞ for  ∈ [0 12[. Also, since ̃ () = 1++ ()

(from Lemma 3), we have, by Lemma 6,

|̃ ()− ̃∞ ()|

= |̃ ()|
¯̄̄̄
¯

∞X
=+1

− (̃ ())
¯̄̄̄
¯ = |̃ ()| |̃ ()|

¯̄̄̄
¯
∞X

=1

(+ )
−
(̃ ())



¯̄̄̄
¯

≤ |̃ ()| |̃ ()|
d5||eX
=1

(+ )
− |̃ ()| ≤ |̃ ()| |̃ ()|

d5||eX
=1

(+ )
− |̃ ()|

≤ 

2

d5||eX
=1

− ≤ 2
Ã
1 +

Z 5||

1

−

!
=



2

³
1 +

£
1−¤5||

1

´
=



2

Ã
1 +

µ
5

||
¶1−

− 1
!
=



2

µ
5

||
¶1−

= 6 ||−

for some finite 5 6  0 and where de denotes the smallest integer no smaller than
. Hence, we can set ̄ () = 6 ||− for || ≤ ̄, which is square integrable over

|| ≤ ̄ for  ∈ [0 12[.
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Proof of Theorem 3. We first observe that the coefficient ∗ for the finite network
satisfy ∗ = ∞ for  = 0     ∗ since paths shorter than ∗+1 must be the same in
the finite and in the infinite networks by construction For  ∈ [min ], we then have

|̃∞ ()− ̃∗ ()| =
¯̄̄̄
¯
∞X
=0

∞ (̃ ())
 −

∞X
=0

∗ (̃ ())


¯̄̄̄
¯

=

¯̄̄̄
¯
∞X
=0

∞ (̃ ())
 −

∗X
=0

∗ (̃ ())
 −

∞X
=∗+1

∗ (̃ ())


¯̄̄̄
¯

≤
¯̄̄̄
¯
∞X
=0

∞ (̃ ())
 −

∗X
=0

∗ (̃ ())


¯̄̄̄
¯+

¯̄̄̄
¯

∞X
=∗+1

∗ (̃ ())


¯̄̄̄
¯

=

¯̄̄̄
¯

∞X
=∗+1

∞ (̃ ())


¯̄̄̄
¯+

¯̄̄̄
¯

∞X
=∗+1

∗ (̃ ())


¯̄̄̄
¯

≤
∞X

=∗+1

|∞ | |̃ ()| +
∞X

=∗+1

|∗| |̃ ()|

≤
∞X

=∗+1

̄̄ +

∞X
=∗+1

̄̄ = 2̄
∗+1

∞X
=0

̄ =
2̄

∗+1

1− ̄

where the infinite series converges, since ̃  1 by assumption. Also note that ̄ ∞
under Assumption 1.

Proof of Theorem 4. The fact that the network is a translation-invariant periodic

network with nodes  ∈ Z and that  = ++ and  ≥ 0 for all    ∈
Z implies that the problem of determining the value of

¡

¢0
 is equivalent to

determining the distribution of a random variable taking value in Z and generated
according to +1 =  + +1 for  = 0     − 1 with increments +1 taking

value in Z, independent from 0 and 0 for 0 ≤  and identically distributed.

The assumption that  =  implies that the distribution of  is symmetric

about the origin. The assumption that   0 implies that  [ = 0]  0 while

the fact that  6= 0 for a finite number of  implies that  is supported on a finite

number of points. The assumption that all nodes are reachable implies that Var []

is nonsingular. The fact that  has a single nonzero element indicates that the initial

condition is 0 = 0 (without loss of generality, due to translation-invariance) while

the fact that  has a single element implies that we need to calculate  [ = 0] for

some fixed 0 ∈ Z.
Let  denote the distribution of  (the same for any ). Note that the distribution

of  (denoted ⊗, the -fold convolution of  with itself) is supported on Z, so
that  [ = 0] can be written in the form

 [ = 0] =

Z
R
 (− 0) 

⊗ () (16)

where  : R 7→ R is a continuous function such that  (0) = 1 and  () = 0 for

 ∈ Z\ {0} (its value for  ∈ R\Z is not restricted, other than to satisfy continuity).
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A convenient choice of  () is

 () =

Y
=1

sin ()




Note that  () is continuous (even at  = 0), sin () = 0 for any integer  and

 (0) = 1 (as defined via a limit). The function  () is the inverse Fourier transform

of a rectangular function on [− ]:
 () = (2)

−
Z
∈[−]

−

Using Parseval’s identity, we can write (16) in terms of Fourier transforms:

 [ = 0] = (2)
−
Z
∈[−]

·0
³
̃ ()

´


where ̃ () is the characteristic function of the probability measure  and, by the

Convolution Theorem,
³
̃ ()

´
is the characteristic function of the probability mea-

sure ⊗.
We can further decompose  [ = 0] as

 [ = 0] = (2)
−
Z
∈B(−12+)

·0
³
̃ ()

´
 +1 (17)

where B () denotes an open ball of radius  centered at the origin,  ∈ ]0 18[ and
where 1 is a remainder:

1 = (2)
−
Z
∈[−]\B(−12+)

·0
³
̃ ()

´
 (18)

To bound 1, we observe that, since  is supported on a finite subset of Z, the
characteristic function ̃ () is a sum of a finite number of terms of the form ·,
with  ∈ Z. The assumption that  [ = 0]  0 implies that the term ·0 = 1

is present in this sum. As a result,
¯̄̄
̃ ()

¯̄̄
can only reach the value 1 when all term

· have the same phase, i.e., if  (2) ∈ Z. Hence, in the set [− ],
¯̄̄
̃ ()

¯̄̄
can

only reach 1 at  = 0. Since  is supported on a bounded set, any of its moments

are finite and thus ̃ () is differentiable (any number of times) and, in particular, it

admits a Taylor expansion about  = 0:

̃ () = 1 +
1

2
0̃ (2) (0)  +

¡kk4¢ (19)

where we exploit the facts that ̃ (0) = 1 and that the distribution of  is symmetric

about 0, so all odd terms vanish. Also the second derivative ̃ (2) (0) is a negative-

definite  ×  matrix by the moment theorem, since Var [] is positive-definite by

assumption. The expansion (19) implies that there exists 1  0 such that
¯̄̄
̃ ()

¯̄̄
≤

1−1 kk2 for any  ∈ B (1) for some 1  0. Let 0 ≡ argmax∈[−]\B(1)
¯̄̄
̃ ()

¯̄̄
,

which exists since ̃ () is continuous and [− ] \B () is compact. Since
¯̄̄
̃ ()

¯̄̄
only reaches 1 at  = 0, we must have

¯̄̄
̃ (0)

¯̄̄
 1. Let 1 =

³
1 +

¯̄̄
̃ (0)

¯̄̄´
2
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and pick 2 ∈ ]0 1] such that for any  ∈ B (2) we have
¯̄̄
̃ ()

¯̄̄
 1. Such an 2

always exists since
¯̄̄
̃ ()

¯̄̄
≤ 1 − 1 kk2 for  ∈ B (1). It follows that for any 

such that −12+  2, we have
¯̄̄
̃ ()

¯̄̄
≤ 1 − 1

¡
−12+

¢2
= 1 − 1

−1+2 for any

 ∈ [− ] \B ¡−12+¢. We can now bound the ³̃ ()´ term in (18) as:

sup
∈[−]\B(−12+)

¯̄̄³
̃ ()

´ ¯̄̄
= sup

∈[−]\B(−12+)

¯̄̄
exp

³
 ln ̃ ()

´¯̄̄
≤ exp

¡
 ln

¡
1− 1

−1+2¢¢ = exp ¡ ¡−1−1+2 +
¡
−2+4

¢¢¢
= exp

¡−12 +
¡
−1+4

¢¢ ≤ exp ¡−22¢
for some 2 ∈ ]0 1[ for all  sufficiently large. We then have

|1| ≤ (2)
−
Z
∈[−]\B(−12+)

¯̄
·0

¯̄
exp

¡−22¢ 
≤ (2)

−
exp

¡−22¢ Z
∈[−]

 = exp
¡−12¢ 

which goes to 0 faster than any negative power of .

We now come back to  [ = 0] given by Equation (17), in which we now write³
̃ ()

´
as exp

³
̃ ()

´
with ̃ () = ln ̃ (). Note that since ̃ () is differentiable

(any number of times) and since ̃ () is nonvanishing in a neighborhood of  =

0 (because we established above that ̃ () = 1 + 
¡
2
¢
), ̃ () admits a Taylor

expansion about  = 0:

̃ () = ̃ (0) + ̃ (1) (0)  +
1

2
̃ (2) (0) 2 +

1

6
̃ (3) (0) 3 +

1

24
̃ (4)

¡
̄
¢
4

= ̃ (2) (0) 2 + ̃ (4)
¡
̄
¢
4

where ̄ ∈ [0 ] is a mean value and, for simplicity, we let an expression such as
̃ ()

¡
̄
¢
 stand for

P
1

̃
()
1

¡
̄
¢
1 · · ·  . We used symmetry of the distribu-

tion of  to obtain the second expression. Note that ̃
(2) (0) is negative-definite by

the moment theorem and the nonsingularity of the variance of . We then have

 [ = 0] = (2)
−
Z
∈B(−12+)

·0 exp
³
̃ (2) (0) 2 + ̃ (4)

¡
̄
¢
4
´
 +1

Next, we make the change of variable  = −12̃

 [ = 0] = (2)
−
Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0)−1̃

2
+ ̃ (4)

¡
−12̄

¢
−2̃

4
´
×

× −2̃ +1 = (2)
−

−20 +1
where

0 =

Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0) ̃

2
+ ̃ (4)

¡
−12̄

¢
−2̃

4
´
̃
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in which the mean value ̄ lies in
h
0 ̃
i
. We then have

0 =

Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0) ̃

2
´
̃ +2

=

Z
̃∈B()

µ
1 + −12̃ · 0 − −1

2
̃·0

³
̃ · 0

´2¶
exp

³
̃ (2) (0) ̃

2
´
̃ +2

=

Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´
̃ +2 +3 +4

= 0 +2 +3 +4 +5
where we have introduced the remainder terms:

2 =

Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0) ̃

2
´³
exp

³
̃ (4)

¡
−12̄

¢
−1̃

4
´
− 1
´
̃

3 = −
−1

2

Z
̃∈B()

̃·0
³
̃ · 0

´2
exp

³
̃ (2) (0) ̃

2
´
̃

4 = −12
Z
̃∈B()

̃ · 0 exp
³
̃ (2) (0) ̃

2
´
̃

5 =

Z
̃∈R\B()

exp
³
̃ (2) (0) ̃

2
´
̃

and the constant 0 =
R
̃∈R exp

³
̃ (2) (0) ̃

2
´
̃  0. Considering each term in turn,

we have

|2| ≤
Z
̃∈B()

¯̄̄


−12̃·0
¯̄̄
exp

³
̃ (2) (0) ̃

2
´³
exp

³
̃ (4)

¡
−12̄

¢
−1̃

4
´
− 1
´
̃

=

Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´³
exp

³
̃ (4)

¡
−12̄

¢
−1̃

4
´
− 1
´
̃

Let ̄ (4) ≡ sup∈B(3)
¯̄̄
̃ (4) ()

¯̄̄
for some 3  0. For  sufficiently large, we eventually

have −12̄ ≤ 3 and we can write

|2| ≤
Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´ ¡
exp

¡
̄ (4)−14

¢− 1¢ ̃
=

¡
exp

¡
̄ (4)−1+4

¢− 1¢ Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´
̃

=
¡
1 + ̄ (4)−1+4 + 

¡
−1+4

¢− 1¢ Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´
̃

= 
¡
−1+4

¢ Z
R
exp

³
̃ (2) (0) ̃

2
´
̃

where the last integral is finite since ̃ (2) (0) is negative-definite. Next,

|3| ≤ −1

2

Z
̃∈B()

¯̄̄
̃·0

¯̄̄ ³
̃ · 0

´2
exp

³
̃ (2) (0) ̃

2
´
̃

≤ −1

2

Z
̃∈R

³
̃ · 0

´2
exp

³
̃ (2) (0) ̃

2
´
̃ = 

¡
−1

¢
26



where the last integral is finite since ̃ (2) (0) is negative-definite.

Next, 4 vanishes by the symmetry of exp
³
̃ (2) (0) ̃

2
´
(in ̃). Finally,

|5| ≤
Z
̃∈R\B()

exp

µ

°°°̃°°°2¶ ̃ = 

Z ∞


 exp

¡−2¢ 
≤ 

Z ∞


exp (−2)  = 

2
exp (−2)

where  is the smallest eigenvalue of −̃ (2) (0). In the second line, we have ex-

pressed the integral in polar coordinates with  being the radius and  is the (− 1)-
dimensional “surface” of a hypersphere of radius 1. The second inequality holds for

some 2  0 for  sufficiently large and yields an expression that decays faster than

any power of .

Collecting the order of the remainders, we have, with  = (2)
−

0  0,

 [ = 0] = (2)
−

−2
¡
0 +

¡
−1+4

¢
+

¡
−1

¢
+ 0 +

¡
exp

¡−22¢¢¢+
+ (exp (−1)) = −2 +

¡
−1−2

¢
B Miscellaneous results regarding spectral dimension

Equation (9) can be obtained from Equation 3.30 in Havlin and Ben-Avraham (1987):

̃ = 2, where  is the fractal dimension and  is the so-called walk dimension.

For a ( )-flower (with  ≤  by convention), we have  = ln ()  (ln) (see

Section 4.3 in Rozenfeld, Havlin, and ben Avraham (2007)) and  = ln (+ )  (ln)

(see Equation (9) in Rozenfeld, Havlin, and ben Avraham (2007)).

Next, we state a general result regarding networks generated by combining different

generating rules.

Theorem 5 Let  and  be two mutually compatible
13 generating rules for two

self-similar fractal networks with spectral dimension ̃ and ̃, respectively. The gen-

erating rule  increases the number of nodes by a factor  at each application (and

similarly for  and ). Let  and  be two sequences of positive integers such

that  ( + )→  ∈ R+ and apply the following sequence of generating rules
· · ·
³

()

 ()


´() ³

(+1)

 (+1)


´(+1)
· · ·

where () denotes  repetitions of rule . Then, the resulting network has spectral

dimension ̃ = ̃+ (1− ) ̃, where  =
³
1 +

(1−)


ln
ln

´−1
. Note that the mapping

from  ∈ [0 1] to  ∈ [0 1] is one-to-one and onto,14 so all values of ̃ ∈
h
̃ ̃

i
are

reachable via suitable choices of the  and  sequences.

13We say that two generating rules are mutually compatible if they can be applied sequentially in

any order. Generating rules for the hierachical star networks for any  are mutually compatible and

similarly for the generating rules of hierachical ring networks of any  . However, star and ring

generating rules cannot be combined.
14 if one includes, by convention, the limiting value  = 0 when  = 0
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Proof. The self-similar network generated by is characterized by a nested sequence

of subsets  of the network that are mutually identical up to a scaling factor. Let

 denote the expected residence time of a random walker in region  and let

 denote the fraction of the network’s nodes that lie in region . By a standard

renormalization group argument (see Section 2.1 in Havlin and Ben-Avraham (1987)),

if a generating rule  for a self-similar fractal yields a spectral dimension of ̃, this

indicates that these quantities satisfy +1 =  +  (1) and +1 = 
with

̃ = 2
ln

ln


Similar definitions and results hold for the network generated by .

We now define the generating rule  as the application of the following generating

rule:

     | {z }
 times

      | {z }
 times



and consider the network obtained in the limit of the iterated application of . We

can then define a sequence of nested (not necessarily self-similar) subsets  of the

network such that


+1
= 

 
 +  (1)



+1

=   

The spectral dimension associated with those sequences is then obtain via a limit (as

→∞):
2
ln

 


ln 
= 2

 ln +  ln

 ln +  ln
= 2


+

ln +


+
ln


+

ln +


+
ln

→ 2
 ln + (1− ) ln

 ln + (1− ) ln
=
2 (ln)  (ln)

1 +
(1−) ln
 ln

+
2 (ln)  (ln)

1 +
 ln

(1−) ln

=
̃

1 +
+

̃

1 +−1
=

1

1 +
̃ +

µ
1− 1

1 +

¶
̃ = ̃ + (1− ) ̃

where  =
(1−) ln
 ln

and  = (1 +)
−1
and the result is shown.

This theorem actually constructs networks that do not exhibit self-similarity, since

the number of times each rule is applied consecutively constantly changes across scales,

and yet, they still have a well-defined spectral dimension. This shows that the classic

case of a self-similar fractal network is not a necessary condition for our mechanism

of long-memory generation to apply. One can even take two generating rules, each of

which, in isolation, yields the same spectral dimension. Then, one could just apply

one of these two rules at random or repeat each rule a random number of times.

One can even randomize which rule is used in different portions of the network at

each step of the generation algorithm. The resulting network still has a well-defined

spectral dimension, but the randomness in the application of the generating rule make

it impossible to even have statistical self-similarity.
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Supplement to “Long memory via networking”

Susanne M Schennach

Abstract

This Supplement Material includes various extension of the paper’s main

results, namely (i) deviations from power laws in the  coefficients (ii) the pres-

ence of multiple sources of noise in the network (iii) the possibility of non inte-

grable limiting power spectra and (iv) heterogeneity in the agents’ responses. It

also includes the description of a simple and stylized variant of the Loss-Plosser

model as well as a “toy” application based on the “input-output accounts”

database compiled by the Bureau of Economic Analysis.

C Some Extensions

C.1 Deviations from power laws

The assumed power-law behavior for  in Theorem 1 may seem specific, but other

natural possibilities either yield uninteresting or implausible results. One obvious

generalization is  = −(1−) for   ∈ R. However, the   0 case falls under

case (ii) of Theorem 1 and yields a short memory process. The case   0 yields a

spectrum that diverges at all  such that |̃ ()|  − and not just at  = 0. In that
case, even a perturbation of a finite duration would be magnified by the network to

such an extent that the overall economy would leave the local equilibrium considered

in a finite time and visit another equilibrium. The process would then presumably

repeat itself until a stable equilibrium (with non-explosive ) is found. In a sense,

the economy should plausibly self-organize to rule out cases where ̃∞ () diverges for
 6= 0. In this sense,  = 0 is the only nontrivial and plausible case.15
While the results of Theorem 1 are already robust to deviations from exact power

laws that are absolutely summable, we can also handle deviations of the  coefficients

from a power law that are bigger than absolutely summable. For instance, consider

the case where the  (for  ≥ 1) admit an expansion of the form
 =

̄X
=1


−(1−) + 0 (20)

where 1  2  · · ·  ̄ and
P∞

=1 |0|  ∞. One can apply Theorem 1 to each

individual term to yield the conclusion that the resulting power spectrum |̃∞ ()|2
would then have the behavior

|̃∞ ()|2 =
̄X

=1


¡||−2¢ = 

¡||−21¢ as ||→ 0

15It is straightforward to extend Theorem 1 to allow for   1, thus covering cointegrated processes

(e.g., Avarucci and Velasco (2009)) or “mildly explosive” processes (e.g., Phillips and Magdalinos

(2007)). (The necessary adjustments are outlined in footnote 11 in the Appendix, to avoid cluttering

the main proof with lengthy manipulations.)
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since 1   for  = 2     ̄. Taking ̄ finite is without much loss of generality, since

eventually, for some , the power law would become absolutely integrable (if consec-

utive exponents  are at least some finite distance from each other). Expansions of

the form (20) can be obtained, for instance, if the  coefficients can be written as

 =  (−1) where  (·) is a function such that ( ()) admits a Taylor expansion
around  = 0 for some real , so this extension brings considerable generality.

C.2 Multiple sources of noise

In this section, we consider the effect of multiple sources of noise with an arbitrary

covariance structure introduced at multiple points of the network. We maintain the

Gaussian assumption. It turns out that the general covariance case can always be

reduced to the uncorrelated noise case (across the spatial dimension) by a suitable

redefinition of the network. Specifically, consider again our general vector autoregres-

sive setup  =
P∞

=0−+ 12, but where the noise now has the general form

 12 for some general correlation matrix  and with  being a  (0 ) noise vector.

This model can equivalently be written via an augmented state vector ( 0


∗0
 )

0
as∙



∗


¸
=

∞X
=0

∙
  121 { = 0}
0 0

¸ ∙
−
∗

−

¸
+

∙
0



¸


which has the same basic form as Equation (1) with a noise that is spatially uncor-

related. This construction amounts to building a network with twice the number of

nodes containing the original network (as modeled via) and an additional network

(modeled via  ) whose role is solely to propagate each component of the uncorrelated

noise vector  to multiple nodes of the original network.

For uncorrelated noise sources, we can easily compute the  coefficients via Equa-

tion (4) associated with one source node  at the time (setting all but one element

of  to zero) while considering a given fixed set of destination nodes (via ). Let

|̃∞ ()|2 denote the power spectrum obtained when only source node  is active. Since
the noise sources are independent, the overall power spectrum is simply the sum of

the individual power spectra
P

=1 |̃∞ ()|2.
C.3 Non integrable power spectra

One can also establish a convergence result similar to Theorem 2 that covers both

integrable (  12) and non integrable ( ≥ 12) limiting power spectra |̃∞ ()|2
by focusing on increments of the processes. Working with increments is a standard

technique (see Mandelbrot and Ness (1968) and Comte and Renault (1996), for in-

stance) that offers the advantage of providing finite-variance quantities even in the

presence of nonstationarity in the process.

Theorem 6 Let the Assumptions of Theorem 1 hold. Assume that |̃ ()|  1 for

 ∈ ]0 ], that |̃ ()| is uniformly bounded for  ∈ [0 ], and consider the differenced
process

∆ () ≡  ()−  (−∆)

for a given ∆ ∈ Z and any  ∈ N (with corresponding moving average representa-
tion ∆ () ≡  () −  (−∆) and spectrum ∆̃ () ≡ ¡

1− ∆
¢
̃ ()). Let

̃∞ () ≡ lim→∞ ̃ () with a corresponding moving average representation ∞ ().
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Then, there exists a stationary process ∆∞ () with moving average representation16

∆∞ () ≡ ∞ ()− ∞ (−∆) and spectrum ∆̃∞ () ≡ ¡1− ∆
¢
̃∞ () satisfyingR 

0
|∆̃ ()−∆̃∞ ()|2 → 0,

P∞
=0 |∆ ()−∆∞ ()|2 → 0 and 

£|∆ ()−∆∞ ()|2
¤→

0 for almost any given  ∈ R and
P∞

=−∞
£|∆ ()−∆∞ ()|2

¤
 () → 0 for a

given absolutely integrable, bounded and continuous weighting function  ().

Proof. The proof is similar to the one of Theorem 2 and we focus here on the

differences. It is clear that the differenced process ∆ () admits the moving average

representation:

∆ () =

X
=−∞

( (− )−  (−∆− )) ()

where the kernel  (− )−  (−∆− ) is absolutely integrable/summable since

it is a difference of two absolutely integrable/summable terms. Its Fourier transform

is thus well-defined and equal to:

∆̃ () =

∞X
=0

( ()−  (−∆))  = ̃ ()− ∆̃ () =
¡
1− ∆

¢
̃ ()

The pointwise limit of ∆̃ () also poses no problem (as in Theorem 2):

∆̃∞ () ≡ lim
→∞

¡
1− ∆

¢
̃ () =

¡
1− ∆

¢
̃∞ () ,

with the additional advantage that ∆̃ (0) = 0 and therefore ∆̃∞ (0) = 0 (so the

 = 0 point is no longer exceptional).

Now observe that, for some sufficiently small ̄  0,Z 

0

|∆̃∞ ()|2  =

Z
≤̄

¯̄¡
1− ∆

¢
̃∞ ()

¯̄2
+

Z 

̄

¯̄¡
1− ∆

¢
̃∞ ()

¯̄2


≤
Z
≤̄

1 |∆|2 ||−2 +
Z 

̄

2 |̃∞ ()|2 

≤
Z
≤̄

1 ||2(1−) +
Z 

̄

2 |̃ ()|2  ∞
for some finite constant 1  0 and where 1 −  ≥ 0. Hence ∆̃∞ ∈ L2 (R) and
therefore the corresponding ∆∞ is also in L2 (R+) and the corresponding process
∆∞ () is stationary.
Next, we again make use of Lebesgue’s dominated convergence theorem to show

that
R 
0
|∆̃ ()−∆̃∞ ()|2  → 0, which requires the existence of a square inte-

grable ̄ () such that |∆̃ ()−∆̃∞ ()| ≤ ̄ (). For || ≥ ̄, we proceed as in

Theorem 2 after noting that the prefactor
¡
1− ∆

¢
is bounded in magnitude by 2.

For || ≤ ̄, we proceed as in Theorem 2, after noting that the prefactor
¡
1− ∆

¢
is bounded in magnitude by 2 || for some finite 2  0. This leads to a ̄ () that

has the form ||1− (instead of ||−), which is clearly square integrable for || ≤ ̄

for any  ∈ [0 1].
C.4 Heterogeneity

To allow for heterogeneity in the agents’ responses, we relax Assumption 1 as follows.

16We take the convention that ∞ () = 0 for   0.
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Assumption 4 The autoregressive coefficient matrix in Equation (1) factors as =

 where the  are fixed constants (satisfying
P

=1 = 1 for  = 1      .)

while the impulse response function  of each agent is chosen at random once at

 = −∞ and kept constant thereafter.

The assumption allows for the effect of each input  on the output of each node

 of the network to be characterized by a different convolution operation. We view

the network structure as fixed (via the deterministic ) and allow for heterogeneity

in the agents (via the random impulse response functions ). We place no specific

assumption regarding the covariance structure of between the different elements of

, although we will need to constrain the amount of possible dependence.

This section provides conditions under which the conclusion of Theorem 1 actually

holds with probability 1 for such randomly constructed networks. A key feature of the

result is the existence of an average spectral representation denoted ̄ (). In essence,

there are so many very long pathways that connect the origin and the destination,

that the fluctuations in the  across the different   quickly average out to a single

effective value representative of the whole network. To state our result, we introduce

a few convenient definitions that are heterogenous analogues of previously defined

quantities.

Definition 3 Let ̃ () =
P∞

=0 
. Let P denote the set of paths connect-

ing the origin nodes to the destination nodes in  steps (each element  of P is a

(+ 1)-dimensional vector of integer specifying which sequence of nodes are visited

by the path). For any maximum path length ̄ ∈ N, the spectral representation of the
aggregate output of the destination nodes is given by

̃̄ () = ̃ ()

̄X
=0

X
∈P

Y
=1

¡
̃+1 ()+1

¢
 (21)

and we let  =
P

∈P
Q

=1+1 (which coincides with the earlier definition via

Equation (4) after expanding the matrix product).

Equation (21) merely states that the output is the sum of the effect of the input

noise (modeled via ̃ ()) through the various possible pathways , of lengths up to ̄,

joining the origin and the destination nodes. Along each path, the noise is filtered as it

goes through the network. Going from node  to node +1, its spectral representation

is multiplied by ̃+1 () (the spectral response of node +1) and weighted by the

link strength +1 .

Theorem 7 Let ̃ satisfy Assumption 2 and let Assumption 4 hold. Let ̄ () ≡
lim→∞

³P
∈P

¡Q

=1+1

¢

£Q

=1 ̃+1 ()
¤´1

. Assume that ̄ () exists, sat-

isfies Assumption 3 and is such that



⎡⎣ÃX
∈P

Ã
Y
=1

+1

!Ã
Y
=1

̃+1 ()

̄ ()
− 1
!!2⎤⎦ ≤ −3− (22)

for some    0 for all  in some neighborhood of the origin. Then, the conclusion

of Theorem 1 for ̃̄ () holds with probability 1.

To prove this result, we first need a simple Lemma.
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Lemma 7 Let  be a deterministic sequence and let the corresponding ̃
∞ () satisfy

̃∞ () =  ()
−
+

¡
()

−¢
(for  ∈ R and  ∈ R+). Let 0 be a random sequence

such that 
£
(0 − )

2
¤ ≤  (1 + )

−3−
for some   0, then the corresponding

̃∞0 () satisfies ̃∞0 () =  ()
−
+ 

¡
()

−¢
with probability one.

Proof. To simplify the notation let the sequence start at index  = 1 instead of 0.

By Lemma 5, it suffices to show that
P∞

=1 |0 − | is finite with probability one, i.e.
 [
P∞

=1 |0 − | ≥ ]→ 0 as  →∞. Let ∆ = 0−  and for a given , let  =


¡P∞

=1 
−1−3¢−1. Note that P∞

=1 
−1−3  ∞ and that  → ∞ =⇒  → ∞.

Then note that |∆| ≤ −1−3 for all  ∈ N∗ implies thatP∞
=1 |∆| ≤ . Taking

the contrapositive of that statement yields that the event
P∞

=1 |∆| ≥  implies

the event |∆| ≥ −1−3 for some  ∈ N∗. Then write


" ∞X
=1

|∆| ≥ 

#
≤ 

£|∆| ≥ −1−3 for some  ∈ N∗¤
≤

∞X
=1


£|∆| ≥ −1−3

¤
=

∞X
=1


£|∆|2 ≥ 2−2−23

¤
≤

∞X
=1


£|∆|2

¤
2−2−(23)

≤
∞X
=1

−3−

2−2−(23)
=



2

∞X
=1

−1−3

where we have used, in turn, (i) the fact that if two events are such that  =⇒
 then  [] ≥  [], (ii) for any sequence of events , we have  [∪] ≤P

  [], (iii) monotonicity of the function 2 for  ≥ 0 (iv) Markov’s inequality

 [ ≥ ] ≤  []  applied to the random variable  = |∆|2, (v) the assumption

£|∆|2

¤ ≤ −3−. Since
P∞

=1 
−1−3  ∞, it follows that, as  → ∞,  → ∞

and  [
P∞

=1 || ≥ ]→ 0, as desired.

Proof of Theorem 7. From Definition 3, we have  =
P

∈P
Q

=1+1 and

thus

̃̄ () = ̃ ()

̄X
=0

X
∈P

Y
=1

¡
̃+1 ()+1

¢
= ̃ ()

̄X
=0

(̄ ())

X
∈P

Ã
Y
=1

+1

!Ã
Y
=1

̃+1 ()

̄ ()

!

= ̃ ()

̄X
=0

(̄ ())

X
∈P

Y
=1

+1 +
X
∈P

Ã
Y
=1

+1

!Ã
Y
=1

̃+1 ()

̄ ()
− 1
!

= ̃ ()

̄X
=0

(̄ ())


Ã
 +

X
∈P

Ã
Y
=1

+1

!Ã
Y
=1

̃+1 ()

̄ ()
− 1
!!

= ̃0 ()

̄X
=0

( +∆) (̄ ())
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where

∆ =
X
∈P

Ã
Y
=1

+1

!Ã
Y
=1

̃+1 ()

̄ ()
− 1
!

Hence, Lemma 7 applies directly when ∆ satisfies the variance bound assumed in

the present Theorem.

Condition (22) is stated in somewhat high-level form for maximum generality, but

it is relatively easy to realize that it is a weak restriction. This condition places a

limit on the order of magnitude of the variance of a certain average. (The weighting

factor
Q

=1+1 sums up to one over all paths in P, so the sum is a weighted

average.) This average is taken over all possible pathways and effectively samples the

spectral representation of the impulse response of large number of agents. Typically,

the number of possible pathways of length  is an exponentially increasing function

of  (because at each node there are certain number of possible ways to go and these

alternative multiply to give the number of paths). Hence, unless the covariance of

the summand across two pathways is extremely strong, the decrease of the variance

of the average with  should often satisfies the bound (22).

Note that (22) bounds the heterogeneity in the response of paths, while placing

only weak restrictions on the heterogeneity in the response of individual agents. Even

if the economy is characterized by agents whose response ̃ () varies significantly

with  and , it is still plausible that the response
Q

=1 ̃+1 () of most paths  ∈ P

could be very similar due to an averaging effect over the responses of many different

agents sampled along the path. This assumption is plausible even in an economy with

a mixture of very large firms (e.g. banks that are “too big to fail”, such as some banks

in the recent banking crisis.) and very small firms. In that case, as most paths will

likely go through some of the same large firms, the responses
Q

=1 ̃+1 () of two

paths would tend to be quite similar, since they would often include some identical

̃+1 () terms. The fact that only the average ̄ () needs to satisfy Assumption

3, and not the individual ̃ (), brings considerable generality to the result. In

particular, the constant results to scale assumption need not hold at the node level

but only at a global level.

D A simplified Long and Plosser model

D.1 Model

In this section, we show how the Long and Plosser model (hereafter LP) and its

solution can be specialized to our setup where there are no separate labor inputs.

LP’s production function has the form

 = 

−1

Y
=1




−1 (23)

where  is labor inputs for the production of good  and  is a parameter such that

the constant returns to scale  +
P

=1 = 1 constraint holds. All other variables

are as in our model. LP’s representative consumer maximizes his expected discounted
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utility:

 = 

" ∞X
=

−0


Y
=1



¯̄̄̄
¯ −1 −1

#
(24)

where  is leisure, equal to  −
P

=1  where  is the total labor available, and

0 is a parameter and all other variables are as in our model. Defining

 ≡  + 

X
=1



LP show that the solution to this model is

 =

µ




¶


 = 0

Ã
0 + 

X
=1



!−1


 =

µ




¶


 = 

Ã
0 + 

X
=1



!−1


ln  =  ln −1 +  + ln 
where  is a vector of constants and the ln function is applied element-by-element.

Our production function is a special case of Equation (23) obtained in the limit

as  → 0 while adjusting  to preserve the constant returns to scale constraint. As

a result, the solution to our model reduces to:

 =

µ




¶


 = 

 =

µ




¶


 = 0

ln  =  ln −1 +  + ln 
and substituting the solution  =  into the utility yields

 = 

" ∞X
=

−0

Y
=1



¯̄̄̄
¯ −1 −1

#


which is equivalent to our utility (Equation (24)) up to an irrelevant multiplicative

constant 0. Observe that the solution remains well-behaved in the limit of  → 0.

In particular, the form of the time-evolution of ln  is preserved; the only difference

is that the coefficients  must now satisfy
P

=1 = 1 instead of
P

=1 =

1 −   1. Within the original Long-Plosser model, when   0, labor’s ability to

adjust instantaneously effectively dampens the noise and always yields exponentially

decaying  coefficients (since
P

=1  1) and thus short-memory processes as

7



solutions. The limit  → 0 leads to more interesting long-memory dynamics in the

large-network limit.

It should be noted that the absence of a separate labor input ( → 0 limit) does

not mean that the model does not allow for labor inputs. Labor can be supplied via

the network and treated symmetrically as part of the remaining inputs . The limit

 → 0 then implies that the fraction of labor input that can adjust instantaneously

to shocks is infinitesimal, which is arguably no less plausible than assuming that the

entire labor force can adjust instantaneously to shocks.

D.2 Empirical Example

One way to empirically assess if the proposed mechanism for long memory generation

is plausible is to verify if the  coefficients in a toy model based on real economic

network data indeed obey a power law with the appropriate exponent. For this pur-

pose, we use the so-called “input-output accounts” database compiled by the Bureau

of Economic Analysis describing interactions between sectors of the US economy. We

use the most disaggregated version of this data since it already contains all the in-

formation about information propagation (or “diffusion”) over all scales, small and

large. This strategy enables a plot of (ln() ln()) over as many orders of magnitude

as possible, thus facilitating the identification of a linear trend.

We construct the network following the same procedure as in Acemoglu, Car-

valho, Ozdaglar, and Tahbaz-Salehi (2012), using a reconstructed Commodity-by-

Commodity Direct Requirements table for year 2002, available in their supplemen-

tary material. These represent the equilibrium cost shares of each commodity  in the

production of another commodity . (Following Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi (2012), we use the terms industries and commodities interchangeably.)

In the Long and Plosser-type model, these shares are equal to the Cobb-Douglass

parameters  of the production function (Equation (23) with  = 0). We include

an additional node  in the network to model labor supply. In the same spirit as in

Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) (see p. 1998), and in ac-

cordance with our constant return to scale assumption, we set the labor share in the

production of good  to  = 1−
P

 6=.

To close the loop, the labor force must take input from the economy for their

livelihood. We do not have quantitative data on this, hence we assume that the

workers take inputs from all industries  = 1     ( − 1) with equal equilibrium
share  =  ( − 1) and from each other with share  = 1 − . We used

 = 075, but the results are not very sensitive to this parameter.

In this empirical example, there is no reason to expect that the  coefficients

should be the same for every choice of source and destination node. As an example,

we pick the group of industries that are numbered, according to North American In-

dustry Classification System (NAICS), with a leading "2". These correspond largely

to primary sector industries (such as mining and utilities). We compute the  coeffi-

cients via Equation (4), setting both the destination vector  and origin vector  to

be a vector selecting all industries in this group. This corresponds to computing the

spectrum of the aggregate response of this group of industries to a common shock.

8



-1.5

-1.0

-0.5

 0.0

 0.5

 0.0  0.5  1.0  1.5  2.0  2.5
ln(n)

ln(cn)
γ ≈ 0.58

Figure 5: Evidence of power law scaling − with  ≈ 058) in the  coefficients (i.e.
the probability of reaching a given point of the network after  steps of a random

walk) in a network representing the US economy as 418 “sectors”.

The resulting  coefficients are shown in Figure 5 and reveal evidence of a power

law  = − in this industry group with an exponent of  ≈ 058, as obtained

with a standard linear least squares regression of the data in logarithmic form. This

corresponds to  = 1 −  ≈ 042, i.e., a power spectrum behaving as ||−2 =

||−084 near the origin, resulting in a long memory network behavior of a fractionally
integrated nature of order  ≈ 042. Although this is, strictly speaking, a finite

network, one can still observe a behavior that would be expected from an infinite

network for “short” paths, because “short” paths do not “feel” the boundary of the

network. Of course, if we increased the range of , the graph would flatten out, as

would be expected for a finite network (since the  would be asymptotically constant

in that case).
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Figure 6: Convergence of the simulated spectrum () to a power law (−, with
 = 042), as the maximum path length  increases to infinity.
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We can pursue this example a bit further and explicitly calculate the spectrum

associated with the power law  ∝ −058 for our simplified Long-Plosser model.
We employ the expression ̃̄ () =

P̄

=0  (̃ ())

̃ (), in which ̃ () =  (since

there is a single lag in the autoregressive representation in this model) and ̃ () = 1

(assuming a standard white noise as noise source). Figure 6 illustrates how ̃̄ ()

converges to a power law − as ̄ increases. One can see that, as ̄ → ∞, the
oscillations around the limiting power law decrease in magnitude and the interval over

which the spectrum is well described by a power law expands towards zero frequency.
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