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ABSTRACT 
 

This paper presents a simple non-asymptotic method for carrying out inference in IV models.  
The method is a non-Studentized version of the Anderson-Rubin test but is motivated and analyzed 
differently.  In contrast to the conventional Anderson-Rubin test, the method proposed here does not 
require restrictive distributional assumptions, linearity of the estimated model, or simultaneous equations.  
Nor does it require knowledge of whether the instruments are strong or weak.  It does not require testing 
or estimating the strength of the instruments.  The method can be applied to quantile IV models that may 
be nonlinear and can be used to test a parametric IV model against a nonparametric alternative.  The 
results presented here hold in finite samples, regardless of the strength of the instruments.   
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NON-ASYMPTOTIC INFERENCE IN INSTRUMENTAL VARIABLES ESTIMATION 

1.  INTRODUCTION 

 Instrumental variables (IV) estimation is an important and widely used method in applied 

econometrics.  However, inference based on IV estimates is problematic if the instruments are weak or 

the number of instruments is large.  With weak or many instruments, conventional asymptotic 

approximations can be highly inaccurate.  Nelson and Startz (1990a, 1990b) illustrate this problem with a 

simple model.  Angrist and Krueger (1991) is a well-known empirical application in which the problem 

arises.  Bound, Jaeger, and Baker (1995) and Hansen, Hausman, and Newey (2008) provide detailed 

discussions of the problems of inference in Angrist and Krueger (1991).   

Exact finite sample methods for inference in IV estimation exist but depend on strong 

assumptions about the population from which the data are sampled and/or require the model being 

estimated to be linear in the unknown parameters.  This paper presents a simple method for carrying out 

inference in IV models that is easy to implement and does not rely on strong assumptions or asymptotic 

approximations.  The method is a modification of the well-known Anderson-Rubin (1949) test but does 

not require restrictive distributional assumptions, linearity of the estimated model, or knowledge of 

whether the instruments are strong or weak.  It does not require testing or estimating the strength of the 

instruments.  The results presented here hold in finite samples under mild assumptions that are easy to 

understand, regardless of the strength of the instruments.  The method described here also can be used to 

carry out inference in quantile IV models that may be nonlinear and to test a parametric IV model or 

quantile IV model against a nonparametric alternative. 

 There is a long history of research aimed at developing reliable methods for inference in IV 

estimation, and the associated literature is very large.  One stream of research has been concerned with 

deriving the exact finite-sample distributions of IV estimators and test statistics based on IV estimators.  

The test of Anderson and Rubin (1949) is a well-known early example of this research.  Phillips (1983) 

and the references therein present additional results of early research in this stream.  Recent examples of 

exact finite-sample results include Andrews and Marmer (2008); Andrews, Moreira, and Stock (2006); 

Dufour and Taamouti (2005); and Moreira (2003, 2009). Obtaining exact finite-sample results often 

requires strong assumptions about the population from which the data are sampled.  Most results are 

based on the assumption that the data are generated by a linear simultaneous equations model whose 

stochastic disturbances are homoskedastic and normally distributed with a known covariance matrix.  

Andrews and Marmer (2008) assume a linear model but not a system of simultaneous equations or 

normality. 
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 Another stream of research derives non-standard or higher order asymptotic approximations to 

the distributions of IV estimators and test statistics.  Staiger and Stock (1997), Wang and Zivot (1998), 

Stock and Wright (2000), Andrews and Cheng (2012), Andrews and Mikusheva (2016), and Carrasco and 

Tchuente (2016) are examples of the literature on non-standard first-order asymptotic approximations.  

Examples of higher-order expansions include Holly and Phillips (1979), Rothenberg (1984), and the 

references therein.  Kitamura and Stutzer (1997); Imbens, Spady, and Johnson (1998); Newey and Smith 

(2004); and Guggenberger and Smith (2005), among others, discuss estimators with improved higher-

order properties. 

 A third stream of research aims at deriving the asymptotic distributions of estimators and test 

statistics when the number of instruments is an increasing function of the sample size and, with most 

methods, the instruments may be weak.  Andrews and Stock (2007a) review much of this literature.  

Examples include Bekker (1994); Kleibergen (2002); Andrews and Stock (2007b); Hansen, Hausman, 

and Newey (2008); and Newey and Windmeijer (2009).  Some research in this stream includes weakening 

the assumptions used to obtain the exact finite-sample distributions of certain statistics and finding the 

resulting asymptotic distributions of these statistics.  See, for example, Andrews, Moreira, and Stock 

(2006) and Andrews and Soares (2007). 

 The approach taken here is different from the approaches in the foregoing literature.  A 

hypothesis 0H  about a finite-dimensional parameter can be tested by using a test statistic that is a 

quadratic form in the sample analog of the identifying moment conditions.  This statistic is a non-

Studentized version of the Anderson-Rubin (1949) statistic (see, also, the S  statistic of Stock and Wright 

2000) but is motivated and analyzed differently.  Except in special cases, its finite-sample distribution is a 

complicated function of the unknown population distribution of the observed variables.  We overcome 

this problem by approximating the unknown population distribution with a normal distribution.  The 

finite-sample distribution of the resulting approximate test statistic can be computed by simulation with 

any desired accuracy.  We obtain a finite-sample bound on the difference between the true and nominal 

probabilities of rejecting a correct 0H  when the critical value is obtained by using the simulation 

procedure.  In contrast to the tests cited in the foregoing two paragraphs, the test presented here is non-

asymptotic.  That is, the bound on the difference between the true and nominal probabilities of rejecting a 

correct null hypothesis holds in finite samples. 

 The normal approximation used here is a multivariate generalization of the Berry-Esséen theorem 

and due to Bentkus (2003).  Other normal approximations have been developed by Chernozhukov, 

Chetverikov, and Kato (2017) and Spokoiny and Zhilova (2015), among many others.  Chernozhukov, 

Chetverikov, and Kato (2013) and Spokoiny and Zhilova (2015) provide reviews.  The error of Bentkus’s 

(2003) approximation converges to zero more rapidly as the sample size increases than errors of the other 
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approximations when the number of instruments and exogenous covariates is small compared to the 

sample size. 

 Section 2 of this paper describes the version of the standard IV model that we consider, the 

hypotheses that are tested, and the test method.  Section 3 presents the main result for the model of 

Section 2.  Section 4 presents extensions to quantile IV models and to testing a parametric model against 

a nonparametric alternative.  Section 5 presents the results of a Monte Carlo investigation of the 

numerical performance of the method.  Section 6 presents conclusions.  The proofs of theorems are 

presented in the appendix, which is Section 7. 

2.  THE STANDARD IV MODEL, HYPOTHESES, AND METHOD 

 2.1  The Model and Hypotheses 

 The model considered in this this section and Section 3 is 

(2.1) ( , ) ; ( | ) 0Y g X U E U Zθ= + = , 

where Y  is a scalar outcome variable, X  is a vector of covariates, U  is a scalar random variable, g  is a 

known real-valued function, and θ  is an unknown finite-dimensional vector of constant parameters.  The 

parameter θ  is contained in a compact parameter set dΘ⊂   for some 1d ≥ .  One or more components 

of X  may be endogenous.  Z  is a vector of instruments for X .  The elements of Z  include any 

exogenous components of X .  U  can have any (possibly unknown) form of heteroskedasticity that is 

consistent with (2.1) and the regularity conditions given in Section 3.  Let q  denote the dimension of Z .  

The dimension of X  does not enter the notation used in this paper. 

 Let { , , : 1,..., }i i iY X Z i n=  be an independent random sample from the distribution of ( , , )Y X Z .  

Let ijZ  ( 1,..., ; 1,..., }i n j q= =  denote the j ’th component of iZ .  For any θ ∈Θ , define  

 
2

1

1 1
( ) [ ( , )]

q n

n ij i i
j i

T n Z Y g Xqq −

= =

  = − 
  

∑ ∑ . 

Denote the covariance matrix of the random vector [ ( , )]Z Y g X θ−  by ( )θΣ . 

 We consider two hypotheses about θ , one simple and one composite.  The simple null hypothesis 

is 

(2.2) 0 0:H θ θ=   

for some 0θ ∈Θ against the alternative 

 1 0:H θ θ≠ . 
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Under hypothesis (2.2), 2
0( ) ( )E ZZ Uθ ′Σ = .  The matrix 2( )E ZZ U′  will be denoted by Σ  without the 

argument 0θ  when this will not cause confusion. 

To describe the composite null hypothesis, let ϑ  be a subvector of θ , and let ( , )θ ϑ β′ ′ ′= .  The 

composite null hypothesis is 

(2.3) 0 0:H ϑ ϑ= . 

The alternative hypothesis is 

 1 0:H ϑ ϑ≠ . 

For the composite hypothesis, define 0{ : ( , ) }b bϑ′ ′ ′= ∈Θ .  A hypothesis about a linear combination of 

components of θ  can be put into the form (2.2) or (2.3) by redefining the components of θ  and, 

therefore, does not require a separate formulation.   

 2.2  Test Statistics 

 The statistic for testing the simple null hypothesis (2.2) is 0( )nT θ .  Let 0( )cα θ  denote the α -

level critical value for testing the simple hypothesis 0 0:H θ θ= .  That is, 0( )cα θ  is the 1 α−  quantile of 

the distribution of 0( )nT θ .  The test of the composite null hypothesis (2.3) consists of testing whether 

there is a b∈  for which the point 0( , )bϑ′ ′ ′  is contained in a confidence region for θ .  Therefore, testing 

(2.3) can be reduced to testing (2.2).  Define 0( ) ( , )b bθ ϑ′ ′ ′=


 for any b∈ .  Let ( )c bα  denote the α -

level critical value for testing the simple hypothesis 0 : ( )H bθ θ=


.  That is, ( )c bα  is the 1 α−  quantile 

of the distribution of [ ( )]nT bθ


.  If hypothesis (2.3) is correct, then the simple hypothesis 0 0: ( )H θ θ β=


 

is correct for some 0β ∈ .   

The critical values 0( )cα θ  and ( )c bα  are unknown in applications.  Let 0ˆ ( )cα θ  and ˆ ( )c bα , 

respectively, denote the estimators of these quantities described in Section. 2.3.   Hypothesis (2.2) is 

rejected at the α  level if 0 0ˆ( ) ( )nT cαθ θ> .  Hypothesis (2.3) is rejected at the α  level if ˆ[ ( )] ( )nT b c bαθ >


 

for every b∈ .  Computationally, the test consists of solving the nonlinear optimization problem 

(2.4) ˆminimize :{ [ ( )] ( )}n
b

T b c bαθ
∈

−



. 

Hypothesis (2.3) is rejected if the optimal value of the objective function in (2.4) exceeds zero.  Under 

hypothesis (2.3), the rejection probability does not exceed 0 0ˆ[ ( ) ( )]nP T cαθ θ> , where 0θ  is the true value 

of θ  in (2.1).  We obtain an upper bound on 0 0ˆ[ ( ) ( )]nP T cαθ θ>  that does not depend on 0θ .  Therefore, 

it suffices to bound the probability of rejecting hypothesis (2.2).    
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 The α level test based on 0( )nT θ  has asymptotic power exceeding α  against alternatives whose 

“distance” from 0H  is 1/2( )O n− , but the test does not have optimal asymptotic power in general.  The 

statistic 0( )nT θ  and its quantile analog that is described in Section 4 are designed to avoid the need for 

estimating θ  and the inverses of matrices that may be nearly singular.  Estimators of θ  and inverses of 

nearly singular matrices can be very imprecise, and non-asymptotic inference about an estimator of θ  is 

difficult or impossible in nonlinear models.  A test that requires possibly imprecise estimation of θ  and 

inverses of matrices can have low finite-sample power, and there can be a large difference between the 

true and nominal probabilities with which the test rejects a correct null hypothesis.   

 2.3  The Test Procedure 

 Under the simple null hypothesis (2.2),  

(2.5) 
2

1
0

1 1
( )

q n

n ij i
j i

T n Z Uq −

= =

 
=   

 
∑ ∑ , 

where 0( , )i i iU Y g X θ= − .  If the distribution of ZU  were known, the finite-sample distribution of 

0( )nT θ  could be computed from (2.5) by simulation.  However, the distribution of ZU  is unknown.  To 

overcome this problem, define V  to be the 1q×  vector whose j ’th  component ( 1,...,j q= ) is 

 1/2

1

n

j ij i
i

V n Z U−

=
= ∑ . 

Then ( ) 0E V = , ( )E VV ′ = Σ , and 0( )nT V Vθ ′= .  Let Σ̂  be a consistent estimator of Σ , and let V̂  be a 

1q×  random vector that is distributed as ˆ(0, )N Σ .  Define 

(2.6) 0
ˆ ˆ ˆ( )nT V Vθ ′= . 

The distribution of 0
ˆ ( )nT θ  can be computed with any desired accuracy by simulation.  Let 0ˆ ( )cα θ  denote 

the 1 α−  quantile of the distribution of 0
ˆ ( )nT θ .  Then 

(2.7) 0
ˆ ˆ[ ( ) ( )]n a oP T cθ θ a> = . 

Section 3 presents a non-asymptotic upper bound on 0 0ˆ| [ ( ) ( )] |nP T cαθ θ α> −  that holds with high 

probability under 0H .  Accordingly, the test procedure proposed here consists of: 

1. Estimate Σ  using the estimator Σ̂  consisting of the q q×  matrix whose ( , )j k  component is 

1 2
0

1

ˆ ˆ ˆ[ ( , )]
n

jk ij ik i i j k
i

n Z Z Y g X θ µ µ−

=
Σ = − −∑ , 

where 
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1
0

1
ˆ [ ( , )]

n

j ij i i
i

n Z Y g Xµ θ−

=
= −∑ . 

2. Use simulation to compute the distribution of 0
ˆ ( )nT θ  and the critical value 0ˆ ( )cα θ  by 

repeatedly drawing V̂  from the ˆ(0, )N Σ  distribution.   

3. Reject 0H  at the α  level if 0 0ˆ( ) ( )nT cαθ θ> . 

The critical value of ˆ [ ( )]nT bθ


, ˆ ( )c bα , is estimated by replacing 0θ  with ( )bθ


 in steps 1-2.  Section 5 

presents Monte Carlo evidence on the numerical performance of this procedure. 

 It is not difficult to derive the asymptotic distribution of 0( )nT θ .  See Theorem 3.2 in Section 3.  

This distribution depends on the unknown population parameter Σ .  The finite-sample distribution of  

0
ˆ ( )nT θ  is the asymptotic distribution of 0( )nT θ  with Σ  replaced by Σ̂ .  Thus, the foregoing 

computational procedure is a simulation method to compute the estimated asymptotic distribution of 

0( )nT θ .  The main result for model (2.1), which is given in Theorem 3.1, is a bound on the difference 

between the unknown finite-sample distribution of 0( )nT θ  and its estimated asymptotic distribution, 

which is the finite-sample distribution of 0
ˆ ( )nT θ .  A similar result for the quantile version of 0( )nT θ  is 

given in Theorem 4.1.  The distributions of 0( )nT θ , 0
ˆ ( )nT θ , and their quantile versions are not chi-square 

because, to avoid the need for inverting estimated matrices, these statistics are not Studentized.   

3.  MAIN RESULT FOR MODEL (2.1) 

 This section presents the non-asymptotic upper bound on 0 0ˆ| [ ( ) ( )] |nP T cαθ θ α> −  in model 

(2.1).  Make the following assumptions, which are stated in a way that accommodates tests of both simple 

hypothesis (2.2) and composite hypothesis (2.3). 

 Assumption 1:  (i) { , , : 1,..., }i i iY X Z i n=  is an independent random sample from the distribution 

of ( , , )Y X Z .  (ii) θ ∈Θ , and Θ  is a compact set.   

 Assumption 2:  The equation [ ( , )] 0EZ Y g X θ− =  has a unique solution in Θ  at 0θ θ= .  

 Assumption 3:  (i) ( )θΣ  is nonsingular for every θ ∈Θ .  (ii) Let 1( )jk θ−Σ  denote the ( , )j k  

component of 1( )θ−Σ .  There is a constant CΣ < ∞  such that 1| ( ) |jk Cθ−
ΣΣ ≤  for each , 1,...,j k q=  and 

every θ ∈Θ .  
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Define the 1q×  vectors ZUξ =  and 1/2ζ ξ−= Σ .  Define the q q×  matrix 2ZZ Uη ′=   Let jξ  

and jζ  ( 1,..., )j q=  denote the j ’th components of ξ  and ζ , respectively.  Let jkη  ( , 1,..., )j k q=  

denote the ( , )j k  component of η .  

 Assumption 4:  (i)  There is a finite constant 3m  such that 3
3| |jE mζ ≤  for every 1,...,j q= .  (ii) 

There is a finite constant 2 2
,max[max ( ), max ( )]j j j k jkE Ex η≥  such that 1| | !r r

jE rξ −≤   and 

1| | !r r
jkE rη −≤   for every 3,4,5,...r =  and , 1,...,j k q= .  

 Assumption 1 specifies the sampling process.  Assumption 2 states that 0θ  is identified.  

Assumption 3 establishes mild non-singularity conditions.  For example, if U  and Z  are independent, 

then Assumption 3 requires cov( )Z  to be non-singular.  Assumption 4 requires the distributions of the 

components of ξ  and η  to be thin-tailed.  The assumption is satisfied, for example, if these distributions 

are sub-exponential. 

 For any 0t >  define 

 
1/26( ) tr t

n
 =  
 
  

and 

 2 2( ) [ ( ) ( ) ]r t C q r t r tΣ= + . 

The following theorem gives the non-asymptotic upper bound on 0 0ˆ| [ ( ) ( )] |nP T cαθ θ α> −  in model (2.1).  

The theorem is stated in terms of a test of hypothesis (2.2).  As was explained in Section 2.2, testing 

hypothesis (2.3) can be reduced to testing hypothesis (2.2). 

 Theorem 3.1:  Let assumptions 1-4 and hypothesis (2.2) hold.  Define 0ˆ ( )cα θ  as in (2.7).  If 

max[ ( ), ( )] 1qr t r t < , then 

(3.1) 
{ }

3 1
7/4

3
0 0 1/21/2

2 ( 2log )400ˆ| [ ( ) ( )] | min 1 ( 2log ) log[1 ( 2log )]
2

q

n

C q r t qq mP T c
r t q r t qnαqq  α

+
Σ −

> − ≤ + 
− − − −





 

  

with probability at least 1 4 te−− .    

 The probability that the nT  test rejects a correct simple or composite null hypothesis does not 

exceed 0 0ˆ[ ( ) ( )]nP T cαθ θ> .  The upper bound on this probability does not depend on the structural 

function g , 0θ , or how X  is related to the instruments.  In particular, the upper bound on the probability 

of rejecting a correct simple or composite null hypothesis does not depend on the strength or weakness of 

the instruments. 
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The non-asymptotic bound in (3.1), like other large deviations bounds in statistics and the Berry-

Esséen bound, tends to be loose unless n  is large because it accommodates “worst case” distributions of 

( , , )Y X Z .  For example, the distribution of 0[ ( , )]iZ Y g X θ−  might be far from multivariate normal.  The 

numerical performance of the test procedure of Section 2.3 in less extreme cases is illustrated in Section 

5.  

 The bound on the right-hand side of (3.1) decreases at the rate 1/2n−  as n  increases if q  remains 

fixed.  If q  increases as n  increases, the bound is 2 1/2( / )O q n  and converges to zero if 4 / 0q n → .  In 

practice, this implies that the left-hand side of (3.1) is likely to be close to zero only if 2 1/2/q n  is close to 

zero.  The ratio 4 /q n  is larger than the ratio obtained by several others.  Newey and Windmeijer (2009) 

obtained asymptotic normality with 3 / 0q n → .  Andrews and Stock (2006) obtained a similar result for a 

linear simultaneous equations model.  Faster rates of increase of q  as a function of n  are possible under 

stronger assumptions.  See, for example, Bekker (1994).  In contrast to these results, (3.1) is non-

asymptotic, holds under weak distributional assumptions, and does not require linearity or simultaneous 

equations. 

 To obtain the asymptotic distribution of 0( )nT θ  under local alternatives, define  

(3.2) * 1/2
0n nθ θ κ−= +   

for some finite 1q×  vector κ .  Let { : 1,..., }j j qλ =  denote the eigenvalues of Σ  and jZ  ( 1,...,j q= ) 

denote the j ’th component of Z .  Make 

 Assumption 5:  (i) ( , ) /g x θ θ∂ ∂  exists and is a continuous function of θ  for all θ  in a 

neighborhood of 0θ  and all supp( )X X∈ .  (ii) , , 1,...,sup | ( , ) / |j k q j kE Z g Xq qq ∈Θ = ∂ ∂ < ∞ .  

 Let Π  denote the orthogonal matrix that diagonalizes Σ .  That is ′ΠΣΠ = Λ , where Λ  is the 

diagonal matrix whose diagonal elements are the eigenvalues , jλ , of Σ .  Let jγ  be the j ’th element of 

the 1q×  vector  

 1/2 0( , )g XE Z θg κ
θ

− ∂ = ΠΣ  ′∂ 
. 

We now have 

 Theorem 3.2:  Let assumptions 1-4 hold.  Let 2 2{ ( ) : 1,..., }j j j qχ γ =  be independent random 

variables that are distributed as non-central chi-square with one degree of freedom and non-central 

parameters 2
jγ .  Under the sequence of local alternatives (3.2) 
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 2 2
0

1
( ) ( )

q
d

n j j j
j

T q λ χ γ
=

→ ∑ .     

 Theorem 3.2 implies that the α level test based on 0( )nT θ  has asymptotic power exceeding α  

against alternatives whose “distance” from 0H  is 1/2( )O n− . 

4.  QUANTILE IV MODELS AND TESTING A PARAMETRIC MODEL AGAINST A 
NONPARAMETRIC ALTERNATIVE 

 Section 4.1 treats quantile IV models.  Section 4.2 treats tests of model (2.1) and quantile 

IV models against a nonparametric alternative. 

4.1  Inference in Quantile IV Models 

The quantile model is 

(4.1) ( , ) ; ( 0 | ) QY g X U P U Z aθ= + ≤ = , 

where 0 1Qa< < . As in model (2.1), Y  is the dependent variable, X  is a possibly endogenous 

explanatory variable, and Z  is an instrument for X .  The null hypotheses to be tested are (2.2) and (2.3).  

However, as is explained in Section 2.2, testing hypothesis (2.3) can be reduced to testing hypothesis 

(2.2).  Therefore, only a test of hypothesis (2.2) is described in this section.  Jun (2008) and Andrews and 

Mikusheva (2016) describe asymptotic tests for quantile IV models that are robust to weak instruments.  

Other asymptotic tests of (2.2) can be based on any estimation method that yields an estimator of θ  that 

is asymptotically normally distributed after suitable centering and scaling.  The test presented in this 

section is non-asymptotic and does not require g  to be a linear function of X .  Chernozhukov, Hansen, 

and Jansson (2009) describe an exact finite-sample test of a hypothesis about a parameter in a class of 

parametric quantile IV models that is more restrictive than (4.1).  The method of Chernozhukov, Hansen, 

and Jansson (2009) does not apply to (4.1).1 

 Let { , , : 1,..., }i i iY X Z i n=  be an independent random sample from the distribution of ( , , )Y X Z  

in (4.1).  Let ijZ  ( 1,..., ; 1,..., }i n j q= =  denote the j ’th component of iZ .  For any θ ∈Θ , define  

 
2

1

1 1
( ) ( )

q n

Qn ij Qi
j i

T n Z Wqq −

= =

 
=  

  
∑ ∑ , 

                                                      
1   Chernozhukov, Hansen, and Jansson (2009) treat the model ( , , )Y g X Uθ= , where g  is strictly 
increasing in U  and certain other conditions hold.  This model is more restrictive than (4.1) because it 
specifies a parametric model for all quantiles of Y , whereas (4.1) is a parametric model for only one 
quantile.  
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where  

( ) [ ( , ) 0]Qi i i QW I Y g X aθ θ= − ≤ − . 

Define 

 ( ) [ ( , ) 0]Q QW I Y g X aθ θ= − ≤ − . 

Denote the covariance matrix of the random vector ( )ZW θ  by ( )Q θΣ .  Define 0( )Q Q θΣ = Σ , and let ˆ
QΣ  

be the consistent estimator of QΣ  that is defined in the next paragraph.  The statistic for testing hypothesis 

(2.2) is 0( )QnT θ .  Let Q̂V  be a 1q×  random vector that is distributed as ˆ(0, )QN Σ .  Define 

(4.2) 0
ˆ ˆ ˆ( )Qn Q QT V Vθ ′= .   

Let 0ˆ ( )Qc α θ  denote the 1 α−  quantile of the distribution of 0
ˆ ( )QnT θ . 

The test procedure is: 

1. Estimate QΣ  using the estimator ˆ
QΣ  consisting of the q q×  matrix whose ( , )j k  component 

is 

1 2
0

1

ˆ ˆ ˆ( )
n

Qjk ij ik Qi Qj Qk
i

n Z Z W θ µ µ−

=
Σ = −∑ , 

where 

1
0

1
ˆ ( )

n

Qj ij Qi
i

n Z Wµ θ−

=
= ∑ . 

2. Use simulation to compute the distribution of 0
ˆ ( )QnT θ  and the critical value 0ˆ ( )Qc α θ  by 

repeatedly drawing Q̂V  from the ˆ(0, )QN Σ  distribution.   

3. Reject 0H  at the α  level if 0 0ˆ( ) ( )Qn QT c αθ θ>  

 To obtain a non-asymptotic upper bound on 0 0ˆ| [ ( ) ( )] |Qn QP T c αθ θ α> −  make the following 

assumptions. 

 Assumption Q1:  (i) { , , : 1,..., }i i iY X Z i n=  is an independent random sample from the 

distribution of ( , , )Y X Z .  (ii) θ ∈Θ , and Θ  is a compact set.   

Assumption Q2:  The equation { [ ( , ) 0] } 0QEZ I Y g X aθ− ≤ − =  has a unique solution in Θ  at 

0.θ θ=  
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 Assumption Q3:  (i) ( )Q θΣ  is nonsingular for every θ ∈Θ .  (ii) Let 1 ( )Qjk θ−Σ  denote the ( , )j k  

component of 1( )Q θ−Σ .  There is a constant QC Σ < ∞  such that 1| ( ) |Qjk QCθ−
ΣΣ ≤  for each , 1,...,j k q=  and 

every θ ∈Θ .  

Define the 1q×  vectors 0( )Q QZWξ θ=  and 1/2
Q Q Qζ ξ−= Σ .  Define the q q×  matrix 

2
0( )Q QZZ Wη θ′=   Let Qjξ  and Qjζ  ( 1,..., )j q=  denote the j ’th components of Qξ  and Qζ , 

respectively.  Let Qjkη  ( , 1,..., )j k q=  denote the ( , )j k  component of Qη .  

 Assumption Q4:  (i)  There is a finite constant 3m  such that 3
3| |QjE mζ ≤  for every 1,...,j q= .  

(ii) There is a finite constant 2 2
,max[max ( ), max ( )]Q j Qj j k QjkE Ex η≥  such that 1| | !r r

Qj QE rξ −≤   and 

1| | !r r
Qjk QE rη −≤   for every 3,4,5,...r =  and , 1,...,j k q= .   

For any 0t >  define 

 
1/26

( ) Q
Q

t
r t

n
 

=  
 



 

and 

 2 2( ) [ ( ) ( ) ]Q Q Q Qr t C q r t r tΣ= + . 

The following theorem gives the non-asymptotic bound on 0 0ˆ| [ ( ) ( )] |Qn QP T c αθ θ α> − .   

 Theorem 4.1:  Let assumptions Q1-Q4 and hypothesis (2.2) hold.  If max[ ( ), ( )] 1qr t r t < , then 

(4.3) 
{ }

3 1
7/4

3
1/20 0 1/2

2 ( 2log )
400ˆ| [ ( ) ( )] | min 1 ( 2log ) log[1 ( 2log )]

2

q
Q Q

Qn Q
Q Q

C q r t q
q mP T c
n r t q r t q

αqq  α

+
Σ −

> − ≤ + 
− − − −





 

  

with probability at least 1 4 te−− .    

 The asymptotic distribution of 0( )QnT θ  under the sequence of local alternative hypotheses (3.2) 

is given in Theorem 4.2 (iii). 

4.2  Testing a Parametric Model against a Nonparametric Alternative 

This section explains how the methods of Sections 2 and 4 can be used to carry out a non-

asymptotic test of a parametric model against a nonparametric alternative.  Horowitz (2006) and Horowitz 

and Lee (2009) describe an asymptotic tests of models (2.1) and (4.1) against nonparametric alternatives.  

The tests described in this section are non-asymptotic. 

Consider, first, model (2.1).  Let G  be a function that is identified by the relation 
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(4.4) [ ( ) | ] 0E Y G X Z− = , 

where Y , X , and Z  are as defined in Section 2.1.  The null hypothesis, 0
NPH ,  tested in this section is 

(4.5) ( ) ( , )G x g x θ=   

for some θ ∈Θ  and almost every supp( )x X∈ , where g  is a known function.  The alternative 

hypothesis, 1
NPH , is that there is no θ ∈Θ  such that (4.5) holds for almost every supp( )x X∈ .  The 

sequence of local alternatives used to obtain the asymptotic distribution of the test under 1
NPH  is  

(4.6) 1/2
0( ) ( , ) ( )G X g X n Xθ −= + ∆ , 

for some 0θ ∈Θ , where ( )x∆  a function such that | ( ) |jE Z X∆ < ∞ .  To carry out the test, define ( )nT θ  

as in Section 2.1 and ˆ ( )cα θ  as in Section 2.3 after replacing 0θ  with θ .  The test of 0
NPH  consists of 

solving the optimization problem 

(4.7) ˆminimize : [ ( ) ( )]nT cα
θ

θ θ
∈Θ

− .  

0
NPH  is rejected at the α  level if the optimal value of the objective function in (4.7) exceeds zero.  

Theorem 3.1 provides a non-asymptotic upper bound on 0 0ˆ| [ ( ) ( )] |nP T cαθ θ α> −  under 0H  and, 

therefore, on ˆ| [ ( ) ( )] |nP T cαθ θ α> −  for any θ ∈Θ .   

 Now consider model (4.1).  The test of 0
NPH  for model (4.1) consists of solving the optimization 

problem 

ˆminimize : [ ( ) ( )]Qn QT c α
θ

θ θ
∈Q

− . 

Theorem 4.1 provides a non-asymptotic upper bound on 0 0ˆ| [ ( ) ( )] |Qn QP T c αθ θ α> −  and, therefore, on 

ˆ| [ ( ) ( )] |Qn QP T c αθ θ α> −  for any θ ∈Θ . 

We now obtain the asymptotic distributions of 0( )nT θ  and 0( )QnT θ  under the nonparametric 

local alternative (4.6).  We also obtain the asymptotic distribution of 0( )nQT θ  under the parametric local 

alternative (3.2).  Let | ,U X Zf  denote the probability density of U  conditional on ,X Z  whenever this 

quantity exists.  Make assumption Q5 for model (4.1) and assumption Q6 for models (2.1) and (4.1). 

 Assumption Q5:  (i) There is a neighborhood   of 0u =  such that for all u∈  and all 

( , ) supp( , )x z X Z∈ , | , ( )U X Zf u  exists, | , ( )U X Zf u  is a continuous function of u , and | , 1| ( ) |U X Zf u M≤  for 

all u , and ( , )x z  and some constant 1M < ∞ .  (ii) , , 1,...,sup | ( , ) / |j k q j kE Z g Xq qq ∈Θ = ∂ ∂ < ∞ . 

 Assumption Q6:  (i) Alternative hypothesis (4.6) holds.  (ii) | ( ) |jE Z X∆ < ∞  for all 1,...,j q= .  
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 Let { : 1,2,..., }Qj j qλ =  denote the eigenvalues of QΣ .  Let QΠ  denote the orthogonal matrix that 
diagonalizes QΣ .  Define Π  as in Section 3.  Let jτ  be the j ’th element of the 1q×  vector  

 1/2 [ ( )]E Z Xτ −= ΠΣ ∆ . 
Let Qjγ  be the j ’th element of the 1q×  vector 

 1/2 0
| ,

( , ) (0 | , )Q Q XZ U X Z
g XE Z f X Zθg κ

θ
− ∂ = Π Σ  ′∂ 

. 

Let Qjτ  be the j ’th element of the 1q×  vector 

 1/2
| ,( ) (0 | , )Q Q XZ U X ZE Z X f X Zτ −  = −Π Σ ∆  , 

where κ  is as in (3.2).  We now have 

 Theorem 4.2:  (i) (Model 2.1 with a nonparametric alternative hypothesis).  Let assumptions 1-3 

and Q6 hold.  Let 2 2{ ( ) : 1,..., }j j j qχ τ =  be independent random variables that are distributed as non-

central chi-square with one degree of freedom and non-central parameters 2
jτ .  Under the sequence of 

local alternatives (4.6) 

 2 2
0

1
( ) ( )

q
d

n j j j
j

T q λ χ τ
=

→ ∑ . 

 (ii)  (Model 4.1 with a nonparametric alternative hypothesis).  Let assumptions Q1-Q3, Q5(i), and 

Q6 hold.  Let 2 2{ ( ) : 1,..., }j Qj j qχ τ =  be independent random variables that are distributed as non-central 

chi-square with one degree of freedom and non-central parameters 2
Qjτ .  Under the sequence of local 

alternatives (4.6) 

 2 2
0

1
( ) ( )

q
d

Qn Qj j Qj
j

T q λ χ τ
=

→ ∑ .   

(iii)  (Model 4.1 with a parametric alternative hypothesis).  Let assumptions Q1-Q3 and Q5 hold.  

Let 2 2{ ( ) : 1,..., }j Qj j qχ γ =  be independent random variables that are distributed as non-central chi-square 

with one degree of freedom and non-central parameters 2
Qjγ .  Under the sequence of local alternatives 

(3.2) 

 2 2
0

1
( ) ( ).

q
d

n Qj j Qj
j

T q λ χ γ
=

→ ∑ )    

 Theorems 3.2 and 4.2 imply that α level tests based on 0( )nT θ  and 0( )QnT θ  have asymptotic 

power exceeding α  against parametric and nonparametric alternatives whose “distance” from 0H  is 

1/2( )O n− . 
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5.  MONTE CARLO EXPERIMENTS 

 This section reports the results of a Monte Carlo investigation of the numerical performance of 

the test procedure described in Section 2.2.  Section 5.1 presents the results of experiments with a correct 

null hypothesis.  Section 5.2 presents results about the power of the test. 

 5.1  Probability of Rejecting a Correct Null Hypothesis 

 The probability of rejecting the correct composite hypothesis (2.3) cannot exceed the probability 

of rejecting the correct simple hypothesis (2.2) with 0 0 0( , )θ ϑ β′ ′=  for some 0β  such that 0θ  satisfies 

(2.1).  Therefore, an upper bound on the probability of rejecting a correct simple or composite hypothesis 

can be obtained by carrying out an experiment with a simple hypothesis.  Accordingly, experiments for 

correct null hypotheses were carried out only for simple hypotheses.  When a simple hypothesis is correct, 

 
2

1
0

1 1
( )

q n

n ij i
j i

T n Z Uq −

= =

 
=  

 
∑ ∑ . 

The distribution of 0( )nT θ  does not depend on the function g  or the distribution of X , so these are not 

specified in the designs of the experiments. 

 Experiments were carried out with sample sizes of 100n =  and 1000n = , and with 1q = , 2, 5, 

and 10 instruments.  The instruments were sampled independently from the (0,1)N  distribution.  Six 

distributions of U  were used.  These are: 

 1.  The uniform distribution:  ~ [ 2,2]U U − . 

 2.  A mixture of the (0,1)N  and (2.5,1)N  distributions centered so that U  has mean 0.  The 

mixing probabilities are 0.75p =  and 0.25p = , respectively,  for the (0,1)N  and (2.5,1)N  distributions.  

The resulting mixture distribution is skewed. 

 3.  A mixture of the (0,1)N  and (4,1)N  distributions centered so that U  has mean 0.  The 

mixing probabilities are 0.75p =  and 0.25p = , respectively, for the (0,1)N  and (4,1)N  distributions.  

The resulting mixture distribution is bimodal. 

 4.  The Laplace distribution.. 

 5.  The Student t  distribution with 10 degrees of freedom.  This distribution does not satisfy 

assumption 5. 

 6.  The difference between two lognormal distributions. 

The nominal rejection probability was 0.05.  There were 1000 Monte Carlo replications per experiment. 

 The results of the experiments are shown in Table 1.  The differences between the empirical and 

nominal probabilities of rejecting 0H  are small when 1q = .  The empirical rejection probabilities tend to 
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be below the nominal rejection probability of 0.05 when 100n =  and 2q ≥  or 1000n =  and 5q ≥ .  This 

behavior is consistent with Theorem 3.1.  When n  is fixed and q  increases, the difference between the 

true and nominal rejection probabilities decreases at the rate 2 1/2/q n .  When 100n = , 2 1/2/ 0.10q n =  if 

1q = , but 2 1/2/ 0.40q n = if 2q = .  When 1000n = , 2 1/2/ 0.13q n =  if 2q = , but 2 1/2/ 0.79q n =  if 

5q = .  The increases in the differences between the true and nominal rejection probabilities reflect the 

large increases in the value of 2 1/2/q n  as q  increases from 1 to 2 when 100n =  and from 2 to 5 when 

1000n = . 

 5.2  The Power of the Test 

 This section presents Monte Carlo estimates of the power of the nT  test described in Section 2.2.  

To provide a basis for judging whether the power is high or low, the power of the nT  test is compared 

with the power of the test of Anderson and Rubin (1949). 

 In the experiments reported in this section, data were generated from two models, one where 0H  

is simple and one where it is composite.  The model for the simple 0H  is 

 0Y X Uβ= +  

 X Z Vπ ′= +  

 2 1/2(1 )V Uρ ε ρ= − + , 

where ~ (0, )qZ N I ; qI  is the q q×  identity matrix; U  and ε  have the distributions listed in Section 

5.1; 0.75ρ = ; 0 1.0β =  or 0 0.20β = , depending on the experiment; and qceπ = , where qe  is a 1q×  

vector of ones and 0.50c =  or 0.25 , depending on the experiment.  The instruments are relatively strong 

when 0.50c =  and relatively weak when 0.25c = .  The null hypothesis is 0 : 0H β = .   

 The model for the composite 0H  is 

 1 1 2 2Y X X Uβ β= + +  

 1X Z Vπ ′= +  

 2 1/2(1 )V Uρ ε ρ= − + , 

where ~ (0, )qZ N I ; 1X  is the endogenous explanatory variable, 2X  is exogenous; 2X ,U , and ε  have 

the distributions listed in Section 5.1; 0.75ρ = ; 1 2 1β β= =  or 1 2 0.20β β= = , depending on the 

experiment; and qceπ = , where 0.50c =  or 0.25 .  The null hypothesis is 0 1: 0H β = . 
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With both models, the sample sizes are 100n =  and 1000n = , and the numbers of instruments 

are 1q = , 2, 5, and 10.  The nominal level of the test is 0.05. 

 The results of the experiments with the simple 0H  are shown in Table 2 for 0.50c =  and Table 3 

for 0.25c = .  The results of the experiments with the composite 0H  are shown in Table 4 for 0.50c =  

and Table 5 for 0.25c = .  In most experiments, the power of the nT  test  is similar to the power of the 

Anderson-Rubin test.  This is not surprising because the nT  statistic is a non-Studentized version of the 

Anderson-Rubin statistic.  However, the Anderson-Rubin test is not a substitute for the nT  test.  The nT  

test applies to nonlinear and quantile models, but the Anderson-Rubin test does not apply to these models. 

 The power of the nT  test, like that of the Anderson-Rubin test, can be lower than the power of 

certain other tests if the number of instruments is large.  However, the number of instruments is small 

(often one) in most applications.  The power of the nT  test is similar to that of other tests when the 

number of instruments is small.   

6.  CONCLUSIONS 

 This paper has presented a non-asymptotic method for carrying out inference in models estimated 

by instrumental variables.  The method is a non-Studentized version of the Anderson-Rubin (1949) test 

but is motivated and analyzed differently.  The method is easy to implement and, in contrast to the 

conventional Anderson-Rubin test, does not require restrictive distributional assumptions, linearity of the 

estimated model, or simultaneous equations.  Nor does it require knowledge of the strength of the 

instruments.  The method can be applied to quantile IV models a that may be nonlinear and can be used to 

test a parametric IV or quantile IV model against a nonparametric alternative.  The results presented here 

hold in finite samples, regardless of the strength of the instruments.  The results of Monte Carlo 

experiments have illustrated the numerical performance of the method. 

7.  APPENDIX:  PROOFS OF THEOREMS 

 This section presents the proofs of Theorems 3.1, 3.2, 4.1, and 4.2.  Assumptions 1-4 and 

hypothesis (2.2) hold for lemmas 7.1-7.3 and the proof of Theorem 3.1.   

 Lemma 7.1:  Let Let { : 1,..., }i i nn =  be random 1q×  vectors with the (0, )q qN I ×  distribution.  

Define 

 1/2 1/2
0

1 1
( )

n n

n i i
i i

T n nθ n n− −

= =

   
′= Σ      

   
∑ ∑ . 

Then 
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(7.1) 
7/4

3
0 0 1/2

0

400sup | [ ( ) ] [ ( ) ] |n n
a

q mP T a P T a
n

qq
≥

≤ − ≤ ≤ . 

 Proof:  For each 1,...,i n= , define  

 1/2 ( )i i iV Z U−= Σ . 

Then ( ) 0iE V = , ( )i i q qE VV I ×′ =  , and  

1/2 1/2
0

1 1
( )

n n

n i i
i i

T n V n Vθ − −

= =

′   
= Σ   
   

∑ ∑  .   

For any 0a ≥ , the set  

 1 0{ ,..., : ( ) }n nA V V T aθ= ≤    

is convex.  Therefore, (7.1) follows from Theorem 1.1 of Bentkus (2003).  See, also, Corollary 11.1 of 

Dasgupta (2008).  Q.E.D. 

 Define ( )r t  as in Theorem 3.1.  Define ˆω = Σ −Σ . 

 Lemma 7.2:  For any 0ε >  and any 0τ >  such that 

(7.2) ( ) 1r t ≤ , 

(7.3) 2| | ( ) ( )jk r t r tω ≤ +  

uniformly over , 1,...,j k q=  with probability at least 21 4 tq e−− , and  

(7.4) 1 2| ( ) | [ ( ) ( ) ]jk C q r t r tω−
ΣΣ ≤ +   

uniformly over , 1,...,j k q=  with probability at least 21 4 tq e−− .   

Proof:  Define 

 1 1 1 0[ ( , )]j jEZ Y g Xµ θ= − . 

Then 

 

1 2 2

1

1 2 2

1

ˆ ˆ| | [ ( )] ( )( )

ˆ ˆ[ ( )] | ( )( ) | .

n

jk ij ik i ij ik i j j k k
i

n

ij ik i ij ik i j j k k
i

n Z Z U E Z Z U

n Z Z U E Z Z U

ω µ µ µ µ

µ µ µ µ

−

=

−

=

= − − − −

≤ − + − −

∑

∑

 

Bernstein’s inequality gives 

 1 2 2

1
[ ( )] ( ) 2

n
t

ij ik i ij ik i
i

P n Z Z U E Z Z U r t e− −

=

 
− ≥ ≤ 

  
∑   
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for each ( , ) 1,...,j k q=   and 

 ˆ[| | ( )] 2 t
j jP r t eµ µ −− ≥ ≤   

for each 1,...,j q=  .  Therefore, 

 2 2
,max | | ( ) ( ) 1 4 t

j k jkP r t r t q eω − < + > −  , 

thereby establishing (7.3).  In addition, 

 (7.5) 1

1
| ( ) | | |

q

jk kCω ω−
Σ

=

Σ ≤ ∑ 



.  

Therefore, inequality (7.4) follows from (7.3) and (7.5).  Q.E.D. 

 Define the random variables ~ (0, )V N Σ  and, conditional on Σ̂ , ˆ ˆ~ (0, )V N Σ .  Also define 

 0 0
ˆ ˆ ˆsup | [ ( ) ] [ ( ) ] | sup | ( ) ( ) |n n n

a a
P T a P T a P V V a P V V aθ θ ′ ′Ξ = ≤ − ≤ = ≤ − ≤ . 

 Lemma 7.3:  Define ( )r t  as in Theorem 3.1.  For any 0t >  such that (7.2) holds and ( ) 1qr t < ,  

 
{ }

3 1

1/2

2 ( )]
min 1 ( ) log[1 ( )]

2

q

n

C q r t

r t r t

+
Σ

Ξ ≤ 
− −





 

. 

with probability at least 21 2 tq e−− . 

Proof:  Let 1 2( , )TV P P  be the total variation distance between distributions 1P  and 2P .  For any 

set ⊂   and 1q×  random vector ν  , define and 1/2{ : }νν Σ = Σ ∈  .  Then, 

1/2 1/2ˆ ˆ( ) ( ) ( ) ( )P V P V P V P V− −
Σ Σ∈ − ∈ = Σ ∈ − Σ ∈    ., 

By the definition of the total variation distance, 
1/2 1/2 1ˆ ˆsup | ( ) ( ) | [ (0, ), (0, )]n q qP V P V TV N I N− − −

Σ Σ ×Ξ ≤ Σ ∈ − Σ ∈ ≤ Σ Σ


  , 

By DasGupta (2008, p. 23), 

 

1 1

1
1/21 1

ˆ2
ˆ[ (0, ), (0, )] min 1 ˆ ˆ( ) logdet( ) ,

2

q
q q

p p
q q

q I
TV N I N

Tr I

+ −
×

−
× − −

×

 Σ Σ −


Σ Σ ≤ 
 Σ Σ − − Σ Σ  

 

where for any q q×  matrix A ,  

2 2

, 1

q

jk
j k

A a
=

= ∑ . 

But 
1 1 1ˆ ˆ( )q qI ω− − −

×Σ Σ − = Σ Σ −Σ = Σ , 



19 
 

 1 1

1 1
| ( ) | | | | |,

q q

jk j k kCω ω ω− −
Σ

= =

Σ ≤ Σ ≤∑ ∑  

 

 

and 

 

1/22
1 1/2

1 1

ˆ | |
q q

q q k
k

I C q ω−
× Σ

= =

   Σ Σ − ≤      
∑ ∑ 



 

By Lemma 7.2 

 2 2
,max | | ( ) ( ) 1 4 t

j k jkP r t r t q eω − < + > −  .   

Therefore, 

 1 1 3 1ˆ2 2 ( )q q
q qq I C q r t+ − +
× ΣΣ Σ − ≤   

with probability exceeding 21 4 tq e−− . 

 Now consider 

1/21 11 ˆ ˆ( ) logdet( )
2 q qTr I− −

× Σ Σ − − Σ Σ  . 

We have 
1 1ˆ( ) ( )q qTr I Tr ω− −

×Σ Σ − = Σ . 

But 

 1 2( ) [ ( ) ( ) ]jj C q r t r tω−
ΣΣ ≤ +  

with probability exceeding 21 4 tq e−− .  Therefore 

 1( ) ( )Tr r tω−Σ ≤  , 

and 

 
1/2 1/21 1 11 1ˆ ˆ ˆ( ) logdet( ) ( ) logdet( )

2 2q qTr I r t− − −
×   Σ Σ − − Σ Σ ≤ − Σ Σ     

with probability exceeding 21 4 tq e−− .   

In addition, 

 1 1ˆlogdet( ) logdet( )q qI ω− −
×Σ Σ = + Σ . 

Let ( ) 1r t < .  By Corollary 1 of Brent, Osborne, and Smith (2015) 

 1det( ) 1 ( )q qI r tω−
× + Σ ≥ −   

and 
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 1logdet( ) log[1 ( )]q qI r tω−
× + Σ ≥ −   

with probability exceeding 21 2 tq e−− .  Therefore, 

 { }
1/2 1/21 11 1ˆ ˆ( ) logdet( ) ( ) log[1 ( )]

2 2p pTr I r t r t− −
× Σ Σ − − Σ Σ ≤ − −     

and 

 
{ }

3 1

1/2

2 ( )]
min 1 ( ) log[1 ( )]

2

q

n

C q r t

r t r t

+
Σ

Ξ ≤ 
− −


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with probability at least 21 4 tq e−− .  Q.E.D. 

 Proof of Theorem 3.1:  By the triangle inequality 
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.  

Now combine lemmas 7.1 and 7.3.  Q.E.D.  

 Proof of Theorem 3.2:  Let iZ  be the 1q×  vector whose j ’th component is ijZ .  A Taylor series 

expansion yields 
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,  

where θ  is between *
nθ  and 0θ .  It follows from the multivariate generalization of the Lindeberg-Levy 

theorem and Theorem 2 of Jennrich (1969) that  
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where ~ (0, )Nξ Σ .  As in Section 3, let Π  denote the orthogonal matrix that diagonalizes Σ .  That is 

′ΠΣΠ = Λ , where Λ  is the diagonal matrix whose diagonal elements are the eigenvalues , jλ , of Σ .  

Define 

 1/2 0( , )g XE Z θg κ
θ

− ∂ = Σ  ′∂ 
 . 

Then 
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The theorem now follows from the properties of quadratic forms of normal random variables.  Q.E.D. 

 Proof of Theorem 4.1:  Replace ZU  with 0( )ZW θ  in lemmas 7.1-7.3.  Then proceed as in the 

proof of Theorem 3.1.  Q.E.D. 

 Let XZF  denote the distribution function of ( , )X Z  and |X ZF  denote the conditional distribution 

function of X  given Z .  

 Proof of Theorem 4.2: 

 Part (i):  Part (i) follows from the multivariate generalization of the Lindeberg-Levy central limit 

theorem and the definition of τ . 

 Part (ii):  Arguments like those used in the proof of Theorem 3.2 show that  
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 Under alternative hypothesis (4.6),  
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By a Taylor series expansion 
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 1/2 1/2
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where u  is between 0 and 1/2 ( )n x− ∆ .  Therefore, 
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In addition,  
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as n →∞ .  Therefore, 
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Part (ii) now follows from arguments like those used in the proof of Theorem 3.2. 

 Part (iii):  Under local alternative hypothesis (3.2), 
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Therefore, the arguments made for local alternative hypothesis (4.6) apply to local alternative hypothesis 

(3.2) after replacing ( )x∆  with 0[ ( , ) / ]g x θ θ κ′∂ ∂ .  It follows that under local alternative hypothesis (3.2) 
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This proves Theorem 3.2(iii).  Q.E.D. 
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Table 1:  Empirical Probabilities of Rejecting Correct Null Hypotheses at the Nominal 0.05 Level 
 

Distr. n  1q =  2q =   5q =  10q =  
      
Uniform 100 0.046 0.053 0.041 0.025 
 1000 0.049 0.052 0.050 0.062 
      
Skewed 100 0.053 0.039 0.036 0.030 
 1000 0.050 0.049 0.033 0.037 
      
Bimodal 100 0.052 0.035 0.041 0.035 
 1000 0.056 0.044 0.034 0.038 
      
Laplace 100 0.043 0.032 0.031 0.013 
 1000 0.041 0.049 0.044 0.043 
      
(10)t  100 0.052 0.036 0.029 0.013 

 1000 0.048 0.033 0.035 0.046 
      
Diff. betw. Lognormals 100 0.041 0.027 0.016 0.010 
 1000 0.053 0.062 0.035 0.031 
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Table 2:  Powers of the nT  and Anderson-Rubin Tests at the Nominal 0.05 Level 
 

Distr. n  0β   c  1q =  

nT   
1q =  

AR  
2q =  

nT   
2q =  

AR  
5q =  

nT  
5q =  

AR  
10q =  

nT  
10q =  

AR  
            
Uniform 100 1.0 0.50 0.642 0.649 0.817 0.837 0.965 0.981 0.994 0.999 
 1000 0.20 0.50 0.635 0.632 0.848 0.851 0.994 0.995 1.00 1.00 
            
Skewed 100 1.0 0.50 0.439 0.454 0.581 0.617 0.827 0.884 0.944 0.978 
 1000 0.20 0.50 0.436 0.433 0.655 0.659 0.924 0.920 0.989 0.990 
            
Bimodal 100 1.0 0.50 0.270 0.280 0.366 0.377 0.561 0.619 0.712 0.829 
 1000 0.20 0.50 0.269 0.271 0.417 0.420 0.643 0.658 0.849 0.854 
            
Laplace 100 1.0 0.50 0.510 0.502 0.654 0.683 0.842 0.903 0.946 0.987 
 1000 0.20 0.50 0.486 0.483 0.663 0.667 0.923 0.938 0.998 0.999 
            
(10)t  100 1.0 0.50 0.481 0.486 0.642 0.665 0.826 0.888 0.911 0.975 

 1000 0.20 0.50 0.487 0.488 0.663 0.664 0.922 0.925 0.992 0.998 
            
Diff. betw. 
Lognormals 

100 1.0 0.50 0.142 0.135 0.216 0.221 0.248 0.337 0.304 0.481 

 1000 0.20 0.50 0.143 0.137 0.191 0.181 0.310 0.334 0.388 0.449 
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Table 3:  Powers of the nT  and Anderson-Rubin Tests of a Simple Null Hypothesis at the Nominal 
0.05 Level 

 
Distr. n  0β   c  1q =  

nT  
1q =  

AR  
2q =  

nT   
2q =  

AR  
5q =  

nT  
5q =  

AR  
10q =  

nT  
10q =  

AR  
            
Uniform 100 1.0 0.25 0.226 0.235 0.309 0.317 0.420 0.482 0.558 0.661 
 1000 0.20 0.25 0.303 0.298 0.412 0.418 0.674 0.685 0.878 0.890 
            
Skewed 100 1.0 0.25 0.144 0.150 0.190 0.201 0.289 0.332 0.332 0.444 
 1000 0.20 0.25 0.194 0.202 0.308 0.305 0.473 0.475 0.648 0.657 
            
Bimodal 100 1.0 0.25 0.105 0.101 0.125 0.129 0.176 0.204 0.173 0.251 
 1000 0.20 0.25 0.127 0.125 0.184 0.185 0.269 0.265 0.366 0.364 
            
Laplace 100 1.0 0.25 0.195 0.175 0.234 0.231 0.278 0.326 0.330 0.466 
 1000 0.20 0.25 0.210 0.207 0.296 0.286 0.462 0.467 0.679 0.695 
            
(10)t  100 1.0 0.25 0.163 0.159 0.206 0.210 0.303 0.361 0.345 0.497 

 1000 0.20 0.25 0.203 0.204 0.275 0.274 0.436 0.453 0.673 0.703 
            
Diff. betw. 
Lognormals 

100 1.0 0.25 0.061 0.064 0.085 0.087 0.080 0.111 0.058 0.157 

 1000 0.20 0.25 0.092 0.089 0.086 0.093 0.121 0.129 0.139 0.178 
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Table 4:  Powers of the nT  and Anderson-Rubin Tests of a Composite Null Hypothesis at the 
Nominal 0.05 Level 

 
Distr. n  1 2,β β   c  1q =  

nT  
1q =  

AR  
2q =  

nT   
2q =  

AR  
5q =  

nT  
5q =  

AR  
10q =  

nT  
10q =  

AR  
            
Uniform 100 1.0 0.50 0.427 0.387 0.643 0.590 0.907 0.899 0.981 0.997 
 1000 1.0 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
 1000 0.20 0.50 0.432 0.396 0.661 0.630 0.923 0.917 1.0 0.999 
            
Skewed 100 1.0 0.50 0.293 0.258 0.378 0.345 0.714 0.693 0.882 0.903 
 1000 1.0 0.50 0.998 0.998 1.0 1.0 1.0 1.0 1.0 1.0 
 1000 0.20 0.50 0.320 0.276 0.395 0.362 0.740 0.721 0.920 0.918 
            
Bimodal 100 1.0 0.50 0.127 0.093 0.215 0.156 0.398 0.321 0.571 0.558 
 1000 1.0 0.50 0.912 0.943 0.999 0.998 1.0 1.0 1.0 1.0 
 1000 0.20 0.50 0.136 0.122 0.223 0.171 0.432 0.338 0.615 0.610 
            
Laplace 100 1.0 0.50 0.307 0.252 0.457 0.381 0.716 0.707 0.886 0.928 
 1000 1.0 0.50 0.999 0.999 1.0 1.0 1.0 1.0 1.0 1.0 
 1000 0.20 0.50 0.342 0.309 0.461 0.420 0.742 0.728 0.910 0.936 
            
(10)t  100 1.0 0.50 0.308 0.224 0.464 0.410 0.687 0.674 0.860 0.913 

 1000 1.0 0.50 0.998 0.999 1.0 1.0 1.0 1.0 1.0 1.0 
 1000 0.20 0.50 0.328 0.288 0.477 0.430 0.710 0.688 0.881 0.910 
            
Diff. betw. 
Lognormals 

100 1.0 0.50 0.075 0.053 0.097 0.073 0.171 0.143 0.189 0.210 

 1000 1.0 0.50 0.543 0.648 0.876 0.819 0.989 0.985 1.0 1.0 
 1000 0.20 0.50 0.083 0.077 0.099 0.084 0.182 0.166 0.220 0.213 
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Table 5:  Powers of the nT  and Anderson-Rubin Tests of a Composite Null Hypothesis at the 
Nominal 0.05 Level 

 
Distr. n  1 2,β β   π  1q =  

nT  
1q =  

AR  
2q =  

nT   
2q =  

AR  
5q =  

nT  
5q =  

AR  
10q =  

nT  
10q =  

AR  
            
Uniform 100 1.0 0.25 0.116 0.076 0.138 0.120 0.270 0.263 0.431 0.391 
 1000 1.0 0.25 0.896 0.846 0.996 0.981 1.0 1.0 1.0 1.0 
 1000 0.20 0.25 0.137 0.062 0.229 0.240 0.483 0.462 0.791 0.685 
            
Skewed 100 1.0 0.25 0.073 0.043 0.110 0.070 0.157 0.116 0.243 0.201 
 1000 1.0 0.25 0.688 0.605 0.905 0.856 0.997 0.992 1.0 1.0 
 1000 0.20 0.25 0.082 0.035 0.125 0.090 0.278 0.250 0.524 0.488 
            
Bimodal 100 1.0 0.25 0.050 0.029 0.042 0.028 0.069 0.039 0.097 0.083 
 1000 1.0 0.25 0.403 0.326 0.642 0.525 0.916 0.846 0.993 0.984 
 1000 0.20 0.25 0.060 0.042 0.076 0.058 0.126 0.088 0.231 0.185 
            
Laplace 100 1.0 0.25 0.070 0.046 0.101 0.073 0.151 0.125 0.213 0.204 
 1000 1.0 0.25 0.708 0.621 0.921 0.872 1.0 0.999 1.0 1.0 
 1000 0.20 0.25 0.080 0.042 0.159 0.090 0.320 0.294 0.500 0.465 
            
(10)t  100 1.0 0.25 0.078 0.054 0.096 0.066 0.159 0.110 0.215 0.200 

 1000 1.0 0.25 0.693 0.613 0.920 0.847 0.996 0.992 1.0 1.0 
 1000 0.20 0.25 0.104 0.042 0.156 0.110 0.273 0.255 0.533 0.488 
            
Diff. betw. 
Lognormals 

100 1.0 0.25 0.040 0.026 0.045 0.027 0.035 0.024 0.055 0.054 

 1000 1.0 0.25 0.153 0.115 0.261 0.173 0.492 0.382 0.734 0.635 
 1000 0.20 0.25 0.039 0.031 0.040 0.028 0.046 0.022 0.074 0.048 
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