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ABSTRACT

This paper presents a simple non-asymptotic method for carrying out inference in IV models.
The method is a non-Studentized version of the Anderson-Rubin test but is motivated and analyzed
differently. In contrast to the conventional Anderson-Rubin test, the method proposed here does not
require restrictive distributional assumptions, linearity of the estimated model, or simultaneous equations.
Nor does it require knowledge of whether the instruments are strong or weak. It does not require testing
or estimating the strength of the instruments. The method can be applied to quantile IV models that may
be nonlinear and can be used to test a parametric IV model against a nonparametric alternative. The
results presented here hold in finite samples, regardless of the strength of the instruments.
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NON-ASYMPTOTIC INFERENCE IN INSTRUMENTAL VARIABLES ESTIMATION

1. INTRODUCTION

Instrumental variables (IV) estimation is an important and widely used method in applied
econometrics. However, inference based on IV estimates is problematic if the instruments are weak or
the number of instruments is large. With weak or many instruments, conventional asymptotic
approximations can be highly inaccurate. Nelson and Startz (1990a, 1990b) illustrate this problem with a
simple model. Angrist and Krueger (1991) is a well-known empirical application in which the problem
arises. Bound, Jaeger, and Baker (1995) and Hansen, Hausman, and Newey (2008) provide detailed
discussions of the problems of inference in Angrist and Krueger (1991).

Exact finite sample methods for inference in IV estimation exist but depend on strong
assumptions about the population from which the data are sampled and/or require the model being
estimated to be linear in the unknown parameters. This paper presents a simple method for carrying out
inference in IV models that is easy to implement and does not rely on strong assumptions or asymptotic
approximations. The method is a modification of the well-known Anderson-Rubin (1949) test but does
not require restrictive distributional assumptions, linearity of the estimated model, or knowledge of
whether the instruments are strong or weak. It does not require testing or estimating the strength of the
instruments. The results presented here hold in finite samples under mild assumptions that are easy to
understand, regardless of the strength of the instruments. The method described here also can be used to
carry out inference in quantile IV models that may be nonlinear and to test a parametric IV model or
guantile IV model against a nonparametric alternative.

There is a long history of research aimed at developing reliable methods for inference in IV
estimation, and the associated literature is very large. One stream of research has been concerned with
deriving the exact finite-sample distributions of IV estimators and test statistics based on IV estimators.
The test of Anderson and Rubin (1949) is a well-known early example of this research. Phillips (1983)
and the references therein present additional results of early research in this stream. Recent examples of
exact finite-sample results include Andrews and Marmer (2008); Andrews, Moreira, and Stock (2006);
Dufour and Taamouti (2005); and Moreira (2003, 2009). Obtaining exact finite-sample results often
requires strong assumptions about the population from which the data are sampled. Most results are
based on the assumption that the data are generated by a linear simultaneous equations model whose
stochastic disturbances are homoskedastic and normally distributed with a known covariance matrix.
Andrews and Marmer (2008) assume a linear model but not a system of simultaneous equations or

normality.



Another stream of research derives non-standard or higher order asymptotic approximations to
the distributions of IV estimators and test statistics. Staiger and Stock (1997), Wang and Zivot (1998),
Stock and Wright (2000), Andrews and Cheng (2012), Andrews and Mikusheva (2016), and Carrasco and
Tchuente (2016) are examples of the literature on non-standard first-order asymptotic approximations.
Examples of higher-order expansions include Holly and Phillips (1979), Rothenberg (1984), and the
references therein. Kitamura and Stutzer (1997); Imbens, Spady, and Johnson (1998); Newey and Smith
(2004); and Guggenberger and Smith (2005), among others, discuss estimators with improved higher-
order properties.

A third stream of research aims at deriving the asymptotic distributions of estimators and test
statistics when the number of instruments is an increasing function of the sample size and, with most
methods, the instruments may be weak. Andrews and Stock (2007a) review much of this literature.
Examples include Bekker (1994); Kleibergen (2002); Andrews and Stock (2007b); Hansen, Hausman,
and Newey (2008); and Newey and Windmeijer (2009). Some research in this stream includes weakening
the assumptions used to obtain the exact finite-sample distributions of certain statistics and finding the
resulting asymptotic distributions of these statistics. See, for example, Andrews, Moreira, and Stock
(2006) and Andrews and Soares (2007).

The approach taken here is different from the approaches in the foregoing literature. A

hypothesis H, about a finite-dimensional parameter can be tested by using a test statistic that is a

guadratic form in the sample analog of the identifying moment conditions. This statistic is a non-
Studentized version of the Anderson-Rubin (1949) statistic (see, also, the S statistic of Stock and Wright
2000) but is motivated and analyzed differently. Except in special cases, its finite-sample distribution is a
complicated function of the unknown population distribution of the observed variables. We overcome
this problem by approximating the unknown population distribution with a normal distribution. The
finite-sample distribution of the resulting approximate test statistic can be computed by simulation with
any desired accuracy. We obtain a finite-sample bound on the difference between the true and nominal

probabilities of rejecting a correct H, when the critical value is obtained by using the simulation

procedure. In contrast to the tests cited in the foregoing two paragraphs, the test presented here is non-
asymptotic. That is, the bound on the difference between the true and nominal probabilities of rejecting a
correct null hypothesis holds in finite samples.

The normal approximation used here is a multivariate generalization of the Berry-Esséen theorem
and due to Bentkus (2003). Other normal approximations have been developed by Chernozhukov,
Chetverikov, and Kato (2017) and Spokoiny and Zhilova (2015), among many others. Chernozhukov,
Chetverikov, and Kato (2013) and Spokoiny and Zhilova (2015) provide reviews. The error of Bentkus’s

(2003) approximation converges to zero more rapidly as the sample size increases than errors of the other
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approximations when the number of instruments and exogenous covariates is small compared to the
sample size.

Section 2 of this paper describes the version of the standard IV model that we consider, the
hypotheses that are tested, and the test method. Section 3 presents the main result for the model of
Section 2. Section 4 presents extensions to quantile IV models and to testing a parametric model against
a nonparametric alternative. Section 5 presents the results of a Monte Carlo investigation of the
numerical performance of the method. Section 6 presents conclusions. The proofs of theorems are

presented in the appendix, which is Section 7.

2. THE STANDARD IV MODEL, HYPOTHESES, AND METHOD
2.1 The Model and Hypotheses
The model considered in this this section and Section 3 is
(1) Y=g(X,0)+U; EU|Z)=0,
where Y is a scalar outcome variable, X is a vector of covariates, U is a scalar random variable, g isa

known real-valued function, and & is an unknown finite-dimensional vector of constant parameters. The
parameter @ is contained in a compact parameter set ® c RY for some d >1. One or more components
of X may be endogenous. Z is a vector of instruments for X . The elements of Z include any
exogenous components of X . U can have any (possibly unknown) form of heteroskedasticity that is
consistent with (2.1) and the regularity conditions given in Section 3. Let q denote the dimension of Z.
The dimension of X does not enter the notation used in this paper.

Let {Y;,X;,Z;: i=1,...,n} be an independent random sample from the distribution of (Y, X,Z).

Let Z;; (i=1,..,n; j=1,..,9} denote the j’th componentof Z;. For any 6 € ®, define

q (n 2
Tn(0)=n—1Z{Zzi,-[Yi —g(xi,e)]} .

j=1 Li=t
Denote the covariance matrix of the random vector Z[Y —g(X,0)] by Z(@).

We consider two hypotheses about &, one simple and one composite. The simple null hypothesis
IS
(22) Hy: 0=6,
for some g, € ® against the alternative

Hi: 0=6,.



Under hypothesis (2.2), %(6,) = E(ZZUZ). The matrix E(ZZ'U?) will be denoted by = without the
argument @, when this will not cause confusion.

To describe the composite null hypothesis, let ¢ be a subvector of &, and let 6 =(%',5")". The
composite null hypothesis is
(23) Hy: 9=9,.
The alternative hypothesis is

Hi: 82 4.
For the composite hypothesis, define B={b: (9),b") € ®}. A hypothesis about a linear combination of

components of & can be put into the form (2.2) or (2.3) by redefining the components of € and,

therefore, does not require a separate formulation.

2.2 Test Statistics
The statistic for testing the simple null hypothesis (2.2) is T,(6,). Let c,(6,) denote the o -

level critical value for testing the simple hypothesis H,: €=6,. Thatis, c,(6,) isthe 1-« quantile of
the distribution of T,(8,). The test of the composite null hypothesis (2.3) consists of testing whether
there isa b e B for which the point (%),b")" is contained in a confidence region for @. Therefore, testing
(2.3) can be reduced to testing (2.2). Define &(b) = (%,b")" forany beB. Let c,(b) denote the -
level critical value for testing the simple hypothesis H,: 6 = d(b). That is, c,(b) is the 1-« quantile
of the distribution of T, [6(b)]. If hypothesis (2.3) is correct, then the simple hypothesis Hy: 0= é(ﬂo)
is correct for some S, 3.

The critical values c,(6,) and c,(b) are unknown in applications. Let ¢, (6,) and € (b),
respectively, denote the estimators of these quantities described in Section. 2.3.  Hypothesis (2.2) is
rejected at the « level if T, (6,) >C,(6,). Hypothesis (2.3) is rejected at the « level if Tn[é(b)] >, (b)
for every b e B. Computationally, the test consists of solving the nonlinear optimization problem
(2.4) mirgiergize:{Tn[é(b)]—éa(b)}.

Hypothesis (2.3) is rejected if the optimal value of the objective function in (2.4) exceeds zero. Under
hypothesis (2.3), the rejection probability does not exceed P[T,(6,) >¢,(6,)], where 6, is the true value

of @ in (2.1). We obtain an upper bound on P[T,(6,) > €,(6,)] that does not depend on 6,. Therefore,
it suffices to bound the probability of rejecting hypothesis (2.2).



The o level test based on T,(6,) has asymptotic power exceeding « against alternatives whose
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“distance” from H, is O(n"" ), but the test does not have optimal asymptotic power in general. The

statistic T,,(6,) and its quantile analog that is described in Section 4 are designed to avoid the need for
estimating € and the inverses of matrices that may be nearly singular. Estimators of @ and inverses of
nearly singular matrices can be very imprecise, and non-asymptotic inference about an estimator of @ is
difficult or impossible in nonlinear models. A test that requires possibly imprecise estimation of ¢ and

inverses of matrices can have low finite-sample power, and there can be a large difference between the

true and nominal probabilities with which the test rejects a correct null hypothesis.

2.3 The Test Procedure
Under the simple null hypothesis (2.2),

o]

i=1

25) T,(@)=n">]

q
=

where U; =Y; - g(X;,6,). If the distribution of ZU were known, the finite-sample distribution of

T,(6,) could be computed from (2.5) by simulation. However, the distribution of ZU is unknown. To

overcome this problem, define V to be the qx1 vector whose j’th component (j=1,...,q)Iis

V= n‘l’zzn:zijui :

i=1

Then E(V)=0, E(W') =X, and T,(6,) =VV . Let I be a consistent estimator of =, and let V be a
gx1 random vector that is distributed as N (0,2) . Define
(26) T.(6,)=VV.
The distribution of fn (6,) can be computed with any desired accuracy by simulation. Let ¢, (6,) denote
the 1— o quantile of the distribution of fn (6y). Then
27)  P[T,(6)>C(G)]=a.
Section 3 presents a non-asymptotic upper bound on |P[T,(6,)>¢,(6,)]-«| that holds with high

probability under Hy. Accordingly, the test procedure proposed here consists of:
1. Estimate X using the estimator ) consisting of the qx g matrix whose (j,k) component is

~ n ~ ~
S =0T ZaZg Y - 9(X 01 — HjHy
i1

where



i =01 Zi 0 - (X, )]
=

2. Use simulation to compute the distribution of 'fn(Ho) and the critical value €, (6,) by

repeatedly drawing V from the N(0,%) distribution.
3. Reject Hy atthe o level if T,(6,) > €, (6,) -
The critical value of 'I:n[é(b)], ¢, (b), is estimated by replacing 6, with 6(b) in steps 1-2. Section 5

presents Monte Carlo evidence on the numerical performance of this procedure.

It is not difficult to derive the asymptotic distribution of T,(6,). See Theorem 3.2 in Section 3.
This distribution depends on the unknown population parameter X. The finite-sample distribution of
fn(eo) is the asymptotic distribution of T,(6,) with X replaced by $. Thus, the foregoing
computational procedure is a simulation method to compute the estimated asymptotic distribution of
T,(6,). The main result for model (2.1), which is given in Theorem 3.1, is a bound on the difference

between the unknown finite-sample distribution of T,(6,) and its estimated asymptotic distribution,
which is the finite-sample distribution of 'I:n (6y). A similar result for the quantile version of T,(8,) is

given in Theorem 4.1. The distributions of T,(6,), 'I:n (6y) , and their quantile versions are not chi-square

because, to avoid the need for inverting estimated matrices, these statistics are not Studentized.

3. MAIN RESULT FOR MODEL (2.1)
This section presents the non-asymptotic upper bound on |P[T,(6,) > ¢, (6)]—a| in model

(2.1). Make the following assumptions, which are stated in a way that accommodates tests of both simple
hypothesis (2.2) and composite hypothesis (2.3).
Assumption 1: (i) {Y;, X;,Z;: i=1,...,n} is an independent random sample from the distribution

of (Y, X,Z). (ii)) 60O, and O is acompact set.
Assumption 2: The equation EZ[Y —g(X,8)]=0 has a unique solutionin ® at 6 =6, .
Assumption 3: (i) Z(@) is nonsingular for every 8 ®. (ii) Let 2}&(0) denote the (j,k)
component of 71(6). There is a constant Cs <o such that |Z}i}(¢9)|scz for each j,k=1,...,q and

every 0.



Define the qx1 vectors ¢ =2U and ¢ =3""?¢. Define the gxq matrix 7=2ZU? Let &
and ¢ (j=1...,q) denote the j’th components of & and ¢, respectively. Let ny (j.k=1,...,9)

denote the (j,k) component of 7.

Assumption 4: (i) There is a finite constant m; such that E | £; |3 <m, forevery j=1,..,q. (ii)
There is a finite constant ¢>max[max; E(&F), max;, E(7§)] such that E|&;|"<¢"r! and

Elny |'<¢rt forevery r=345.. and jk=1..q.
Assumption 1 specifies the sampling process. Assumption 2 states that &, is identified.

Assumption 3 establishes mild non-singularity conditions. For example, if U and Z are independent,

then Assumption 3 requires cov(Z) to be non-singular. Assumption 4 requires the distributions of the
components of £ and 7 to be thin-tailed. The assumption is satisfied, for example, if these distributions

are sub-exponential.

For any t >0 define
. (%jyz
n
and
F(t) =Cya’[r(®) +r(®)°].
The following theorem gives the non-asymptotic upper bound on | P[T,(6,) > €, (6,)]— «| in model (2.1).

The theorem is stated in terms of a test of hypothesis (2.2). As was explained in Section 2.2, testing
hypothesis (2.3) can be reduced to testing hypothesis (2.2).
Theorem 3.1: Let assumptions 1-4 and hypothesis (2.2) hold. Define ¢, (6,) as in (2.7). If

max[qgf(t),r(t)] <1, then

390+l
40097, Cxq 27 F(t-2logq)

(34 [PMa(6) > ¢ ()] e SnTJF min %{f(t —2logq) —log[1-r(t—2log q)]}ll2

with probability at least 1—4e™". W

The probability that the T, test rejects a correct simple or composite null hypothesis does not
exceed P[T,(6y)>¢,(6,)]. The upper bound on this probability does not depend on the structural
function g, ,, or how X is related to the instruments. In particular, the upper bound on the probability

of rejecting a correct simple or composite null hypothesis does not depend on the strength or weakness of

the instruments.



The non-asymptotic bound in (3.1), like other large deviations bounds in statistics and the Berry-
Esséen bound, tends to be loose unless n is large because it accommodates “worst case” distributions of
(Y, X,Z). For example, the distribution of Z[Y —g(X;,6,)] might be far from multivariate normal. The
numerical performance of the test procedure of Section 2.3 in less extreme cases is illustrated in Section

5.

-2

The bound on the right-hand side of (3.1) decreases at the rate n as n increases if g remains

1/2

fixed. If q increases as n increases, the bound is O(q? /n¥?) and converges to zero if g*/n—0. In

12

practice, this implies that the left-hand side of (3.1) is likely to be close to zero only if q2 /n~< is close to

zero. The ratio g*/n is larger than the ratio obtained by several others. Newey and Windmeijer (2009)

obtained asymptotic normality with g®/n — 0. Andrews and Stock (2006) obtained a similar result for a
linear simultaneous equations model. Faster rates of increase of g as a function of n are possible under

stronger assumptions. See, for example, Bekker (1994). In contrast to these results, (3.1) is non-
asymptotic, holds under weak distributional assumptions, and does not require linearity or simultaneous
equations.
To obtain the asymptotic distribution of T,(6,) under local alternatives, define
(B2) 6 =6,+nY%
for some finite gqx1 vector x. Let {1;: j=1,...,q} denote the eigenvalues of = and Z; (j=1,..,q)
denote the j’th component of Z. Make
Assumption 5: (i) og(x,0)/06 exists and is a continuous function of @ for all 4 in a
Let IT denote the orthogonal matrix that diagonalizes X. That is IIXIT'= A , where A is the
diagonal matrix whose diagonal elements are the eigenvalues , 1;, of £. Let y; be the j’th element of

the gx1 vector

y= HZ_ME[Z—GQ(X’%) K:| .
o6

We now have
Theorem 3.2: Let assumptions 1-4 hold. Let {;512(7]2): j=1,...,q} be independent random
variables that are distributed as non-central chi-square with one degree of freedom and non-central

parameters 7/]2. Under the sequence of local alternatives (3.2)



q
To(6) > D 42505 .
j=1

Theorem 3.2 implies that the « level test based on T,(6,) has asymptotic power exceeding o

against alternatives whose “distance” from H is O(n‘”z).

4. QUANTILE IV MODELS AND TESTING A PARAMETRIC MODEL AGAINST A
NONPARAMETRIC ALTERNATIVE

Section 4.1 treats quantile IV models. Section 4.2 treats tests of model (2.1) and quantile

IV models against a nonparametric alternative.

4.1 Inference in Quantile IV Models
The quantile model is

(41) Y=9(X,0)+U; PU<0[Z)=ag,
where 0<ag <1. As in model (2.1), Y is the dependent variable, X is a possibly endogenous

explanatory variable, and Z is an instrument for X . The null hypotheses to be tested are (2.2) and (2.3).
However, as is explained in Section 2.2, testing hypothesis (2.3) can be reduced to testing hypothesis
(2.2). Therefore, only a test of hypothesis (2.2) is described in this section. Jun (2008) and Andrews and
Mikusheva (2016) describe asymptotic tests for quantile 1V models that are robust to weak instruments.
Other asymptotic tests of (2.2) can be based on any estimation method that yields an estimator of 6 that
is asymptotically normally distributed after suitable centering and scaling. The test presented in this

section is non-asymptotic and does not require g to be a linear function of X . Chernozhukov, Hansen,

and Jansson (2009) describe an exact finite-sample test of a hypothesis about a parameter in a class of
parametric quantile IV models that is more restrictive than (4.1). The method of Chernozhukov, Hansen,
and Jansson (2009) does not apply to (4.1).!

Let {¥;,X;,Z;: i=1,..,n} be an independent random sample from the distribution of (Y, X,Z)

in(4.1). Let Z; (i=1,..,n; j=1,..,q} denote the j’th component of Z;. Forany 6 € ®, define

q[.n 2
Ton(0) = nlzl:Z ZiWo; (‘9)} ,

=1l i=1

! Chernozhukov, Hansen, and Jansson (2009) treat the model Y =g(X,8,U), where g is strictly

increasing in U and certain other conditions hold. This model is more restrictive than (4.1) because it
specifies a parametric model for all quantiles of Y , whereas (4.1) is a parametric model for only one
quantile.



where
Wei (0) = 1[Y; —9(X;,0) <0]-aq .
Define
W (0) = I[Y — g(X,0) <0]-ag.
Denote the covariance matrix of the random vector ZW (6) by %(6) . Define g =%q(6), and let iQ
be the consistent estimator of X5 that is defined in the next paragraph. The statistic for testing hypothesis
(2.2) is Tp(6p) . Let Vi, bea gx1 random vector that is distributed as N(0,%). Define
(42)  Ton(6) =VVo -
Let Cq,(6) denote the 1—« quantile of the distribution of an(eo) .
The test procedure is:

1. Estimate Xq using the estimator iQ consisting of the gx g matrix whose (j,k) component
IS
- 1% 2
Soik =N Y ZiZyWoi (6h)” — g ok
i=1

where

~ 1 n

foj =N ZiWe;i (6p) -
i=1

2. Use simulation to compute the distribution of 'an(HO) and the critical value ¢y, (6)) by
repeatedly drawing \7Q from the N(O,iQ) distribution.
3. Reject Hy atthe a level if T, (6) > Coy (6)

To obtain a non-asymptotic upper bound on |P[TQn(90)>éQa(90)]—a| make the following

assumptions.

Assumption Q1: (i) {Y;,X;,Z;: i=1..n} is an independent random sample from the
distribution of (Y, X,Z). (ii) 6€®,and © isa compact set.

Assumption Q2: The equation EZ{I[Y —g(X,0) <0]-ag}=0 has a unique solution in © at
9:90.

10



Assumption Q3: (i) Xo () is nonsingular for every 0 ®. (ii) Let za}k(e) denote the (j,k)
component of 2(51(9) . There is a constant Cqy <o such that |25}k (0)|<Cqy foreach jk=1,..,q and

every 0 0.

Define the qx1 vectors &G =2ZWq(6,) and g’sz(‘?”chQ. Define the gxqg matrix

77Q=ZZWQ(00)2 Let Sy and Jo; (j=1..,q) denote the j’th components of &, and ¢,

respectively. Let ngy (J,k=1,...,q) denote the (j,k) component of 7q .
Assumption Q4: (i) There is a finite constant m; such that E | J; |3 <mjy for every j=1,..,q.
(if) There is a finite constant /¢ >max[max; E(¢5;), max;, E(ng)] such that E|&y['< /g r! and

E | 7ok "< ¢GMr! forevery r=34,5,.. and jk=1,..,q.

Forany t >0 define

60t 1/2
o0-( 52

and
i) = Cquz[rQ (t)+rg ®1.
The following theorem gives the non-asymptotic bound on | P[Ty, (6y) > Cq,, (65)] - e |-

Theorem 4.1: Let assumptions Q1-Q4 and hypothesis (2.2) hold. If max[qr(t),r(t)]<1, then

400q7"m, Cosa° 2y (t—2l0g q)
(4.3) |P[TQ (&) >6Qa ()] -a|£——7H—=+minq 1 . 12
" 72 f{r‘? (t-2logq) - log[L - Fy (t - 2log )]}

with probability at least 1—4e™". W

The asymptotic distribution of Tg,(6,) under the sequence of local alternative hypotheses (3.2)

is given in Theorem 4.2 (iii).

4.2 Testing a Parametric Model against a Nonparametric Alternative

This section explains how the methods of Sections 2 and 4 can be used to carry out a non-
asymptotic test of a parametric model against a nonparametric alternative. Horowitz (2006) and Horowitz
and Lee (2009) describe an asymptotic tests of models (2.1) and (4.1) against nonparametric alternatives.
The tests described in this section are non-asymptotic.

Consider, first, model (2.1). Let G be a function that is identified by the relation

11



(44)  E[Y-G(X)|Z]=0,

where Y , X ,and Z are as defined in Section 2.1. The null hypothesis, H(')“P , tested in this section is
(45) G(x)=9(x,0)

for some #<® and almost every xesupp(X), where g is a known function. The alternative
hypothesis, HlNP, is that there is no 8 € ® such that (4.5) holds for almost every x esupp(X). The
sequence of local alternatives used to obtain the asymptotic distribution of the test under HlNP is

(46)  G(X)=g(X,6,)+nY2A(X),

for some 6, € ®, where A(x) a function such that E [Z;A(X)[<o. To carry out the test, define T, (6)

as in Section 2.1 and €, (@) as in Section 2.3 after replacing 6, with . The test of Hé\‘P consists of

solving the optimization problem

(4.7)  minimize: [T,(6)—-¢,(0)].
0O

Hé“P is rejected at the o level if the optimal value of the objective function in (4.7) exceeds zero.
Theorem 3.1 provides a non-asymptotic upper bound on |P[T,(6,)>¢,(6))]—«| under H, and,
therefore, on | P[T,,(6) > ¢, (0)]—«| forany 0€®.

Now consider model (4.1). The test of H(')\‘P for model (4.1) consists of solving the optimization

problem

mir‘1gi£ize: [Ton (8) — Cq, (O)]-
Theorem 4.1 provides a non-asymptotic upper bound on |P[Tq,(6) >6Qa (6y)]—- | and, therefore, on
| P[Ton (0) > Cq, (0)] - | forany 0 ®.

We now obtain the asymptotic distributions of T,(6,) and Tq,(6,) under the nonparametric
local alternative (4.6). We also obtain the asymptotic distribution of T, (6,) under the parametric local
alternative (3.2). Let fyx ; denote the probability density of U conditional on X,Z whenever this

guantity exists. Make assumption Q5 for model (4.1) and assumption Q6 for models (2.1) and (4.1).
Assumption Q5: (i) There is a neighborhood A of u=0 such that for all ue N/ and all

(x,z) esupp(X,Z), fyx z(u) exists, fyx 2 (u) isacontinuous function of u, and | fyx 7 (u)|< M, for
all u, and (x,z) and some constant M; <oo. (ii) ESUPyeg jk1,..q1Zj09(X,0)/06 |< .

Assumption Q6: (i) Alternative hypothesis (4.6) holds. (ii) E |Z;A(X)[< forall j=1,..,q.
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Let {1o;: 1=12,..,q} denote the eigenvalues of Z,. Let I1, denote the orthogonal matrix that
diagonalizes X, . Define IT as in Section 3. Let z; be the j’th element of the gqx1 vector

=Tz Y2E[ZA(X)].
Let yq; be the j’th element of the gx1 vector

_ a9(X,6
¥o =M Ey, {z%mum O] X,Z)]

Let zq; be the j’th element of the gx1 vector
7o =—ToZ Ex, [ ZA(X) Ty 2 (01X, 2) ],
where « isasin (3.2). We now have

Theorem 4.2: (i) (Model 2.1 with a nonparametric alternative hypothesis). Let assumptions 1-3

and Q6 hold. Let {;(J?(rf): j=1...,q} be independent random variables that are distributed as non-

central chi-square with one degree of freedom and non-central parameters 72

j - Under the sequence of

local alternatives (4.6)
q
T,(6) —¢ Zﬂj){?(ﬂg) :
j=1
(ii) (Model 4.1 with a nonparametric alternative hypothesis). Let assumptions Q1-Q3, Q5(i), and
Q6 hold. Let {;(J?(z-éj): j=1,...,q} be independent random variables that are distributed as non-central
chi-square with one degree of freedom and non-central parameters réj . Under the sequence of local
alternatives (4.6)
q
TQn('go)—>d ZZQjZ]?(Téj)
j=1
(iii) (Model 4.1 with a parametric alternative hypothesis). Let assumptions Q1-Q3 and Q5 hold.
Let {Z]?(yéj) : j=1,...,q} be independent random variables that are distributed as non-central chi-square
with one degree of freedom and non-central parameters 75,—. Under the sequence of local alternatives

(3.2)
q
T, (&) -1 ZﬂQjZJZ(J/éj)- u
=1

Theorems 3.2 and 4.2 imply that « level tests based on T,(6,) and Tq,(6,) have asymptotic
power exceeding « against parametric and nonparametric alternatives whose “distance” from H, is

o).
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5. MONTE CARLO EXPERIMENTS
This section reports the results of a Monte Carlo investigation of the numerical performance of
the test procedure described in Section 2.2. Section 5.1 presents the results of experiments with a correct

null hypothesis. Section 5.2 presents results about the power of the test.

5.1 Probability of Rejecting a Correct Null Hypothesis

The probability of rejecting the correct composite hypothesis (2.3) cannot exceed the probability
of rejecting the correct simple hypothesis (2.2) with 6, = (%, f;) for some £, such that 6, satisfies
(2.1). Therefore, an upper bound on the probability of rejecting a correct simple or composite hypothesis
can be obtained by carrying out an experiment with a simple hypothesis. Accordingly, experiments for
correct null hypotheses were carried out only for simple hypotheses. When a simple hypothesis is correct,

i=1

Tn (90) = nilz

g
j=1
The distribution of T,(6,) does not depend on the function g or the distribution of X , so these are not
specified in the designs of the experiments.

Experiments were carried out with sample sizes of n=100 and n=1000, and with q=1, 2, 5,
and 10 instruments. The instruments were sampled independently from the N(0,1) distribution. Six
distributions of U were used. These are:

1. The uniform distribution: U ~U[-2,2].

2. A mixture of the N(0,1) and N(2.5,1) distributions centered so that U has mean 0. The
mixing probabilities are p=0.75 and p=0.25, respectively, for the N(0,1) and N(2.5,1) distributions.
The resulting mixture distribution is skewed.

3. A mixture of the N(0,1) and N(4,1) distributions centered so that U has mean 0. The
mixing probabilities are p=0.75 and p=0.25, respectively, for the N(0,1) and N(4,1) distributions.
The resulting mixture distribution is bimodal.

4. The Laplace distribution..

5. The Student t distribution with 10 degrees of freedom. This distribution does not satisfy
assumption 5.

6. The difference between two lognormal distributions.

The nominal rejection probability was 0.05. There were 1000 Monte Carlo replications per experiment.

The results of the experiments are shown in Table 1. The differences between the empirical and

nominal probabilities of rejecting H, are small when q=1. The empirical rejection probabilities tend to

14



be below the nominal rejection probability of 0.05 when n=100 and q>2 or n=1000 and g>5. This

behavior is consistent with Theorem 3.1. When n is fixed and g increases, the difference between the
true and nominal rejection probabilities decreases at the rate g% /nY?. When n=100, q2/nY? =0.10 if

q=1, but q?/nY2=0.40if q=2. When n=1000, q/n¥2=0.13 if q=2, but q*/nY?=0.79 if
q=5. The increases in the differences between the true and nominal rejection probabilities reflect the

1/2

large increases in the value of q/n¥? as q increases from 1 to 2 when n=100 and from 2 to 5 when

n=1000.

5.2 The Power of the Test

This section presents Monte Carlo estimates of the power of the T, test described in Section 2.2.
To provide a basis for judging whether the power is high or low, the power of the T, test is compared

with the power of the test of Anderson and Rubin (1949).

In the experiments reported in this section, data were generated from two models, one where H,,
is simple and one where it is composite. The model for the simple H, is

Y = BoX +U

X=x'Z+V

V=>1-p*2e+pU,
where Z ~N(0,15); 1, is the gxq identity matrix; U and ¢ have the distributions listed in Section
51, p=0.75; ;=10 or £, =0.20, depending on the experiment; and = =ce,, where e, is a qx1
vector of ones and ¢ =0.50 or 0.25, depending on the experiment. The instruments are relatively strong
when ¢=0.50 and relatively weak when ¢=0.25. The null hypothesisis Hy: #=0.

The model for the composite Hy, is

Y =BXi+ X, +U

Xi=7n'Z+V

V=>1-p*2e+pU,
where Z ~N(0,1,); X; is the endogenous explanatory variable, X, is exogenous; X, ,U, and ¢ have
the distributions listed in Section 5.1, p=0.75; g =p,=1 or g =p,=0.20, depending on the

experiment; and 7 =ce,, where ¢=0.50 or 0.25. The null hypothesisis Hy: 8, =0.
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With both models, the sample sizes are n=100 and n=1000, and the numbers of instruments
are g=1, 2,5, and 10. The nominal level of the test is 0.05.

The results of the experiments with the simple H, are shown in Table 2 for ¢ =0.50 and Table 3
for c=0.25. The results of the experiments with the composite H, are shown in Table 4 for ¢ =0.50
and Table 5 for ¢=0.25. In most experiments, the power of the T, test is similar to the power of the
Anderson-Rubin test. This is not surprising because the T, statistic is a non-Studentized version of the
Anderson-Rubin statistic. However, the Anderson-Rubin test is not a substitute for the T, test. The T,
test applies to nonlinear and quantile models, but the Anderson-Rubin test does not apply to these models.

The power of the T, test, like that of the Anderson-Rubin test, can be lower than the power of
certain other tests if the number of instruments is large. However, the number of instruments is small
(often one) in most applications. The power of the T, test is similar to that of other tests when the

number of instruments is small.

6. CONCLUSIONS

This paper has presented a non-asymptotic method for carrying out inference in models estimated
by instrumental variables. The method is a non-Studentized version of the Anderson-Rubin (1949) test
but is motivated and analyzed differently. The method is easy to implement and, in contrast to the
conventional Anderson-Rubin test, does not require restrictive distributional assumptions, linearity of the
estimated model, or simultaneous equations. Nor does it require knowledge of the strength of the
instruments. The method can be applied to quantile IV models a that may be nonlinear and can be used to
test a parametric IV or quantile IV model against a nonparametric alternative. The results presented here
hold in finite samples, regardless of the strength of the instruments. The results of Monte Carlo

experiments have illustrated the numerical performance of the method.

7. APPENDIX: PROOFS OF THEOREMS
This section presents the proofs of Theorems 3.1, 3.2, 4.1, and 4.2. Assumptions 1-4 and
hypothesis (2.2) hold for lemmas 7.1-7.3 and the proof of Theorem 3.1.
Lemma 7.1: Let Let {v;: i=1..,n} be random gx1 vectors with the N(0,1,,) distribution.

Define

-I:n (00) = {nyzivi’ JE {nmznlvi] .
i=1 i=1
Then
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N 400q"*m
(7.1) sup|Prrn(eo)sa]—Pﬁn(ﬁo)ﬁallﬁ—:m o

a>0
Proof: Foreach i=1,...,n, define
vV, =2(Z0)).

Then E(V;) =0, E(VV,) = | guq» @nd

n ! n
T,(6) =(n1’22 \ZJ Z[n”zz \ZJ
i=1 i=1
For any a >0, the set

A={,,..V, : T,(6,) <a}
is convex. Therefore, (7.1) follows from Theorem 1.1 of Bentkus (2003). See, also, Corollary 11.1 of
Dasgupta (2008). Q.E.D.

Define r(t) asin Theorem 3.1. Define w=%-%.

Lemma 7.2: Forany >0 and anyz >0 such that
(7.2) r(t)<1,
(73) oy [<r)+r()?
uniformly over j,k =1,...,q with probability at least 1—4q2% ™, and
(74)  |E ) |<Cealr(t) +r(t)°]
uniformly over j,k =1,...,q with probability at least 1—4q% ™.

Proof: Define

mj =EZy;[Yr - 9(X1, 6p)]-

Then

n

> [2Za U — E(ZyZy U - (it — ) iy — 1)
i1

-1
|oj |=n

Zn:[zijzikuiz —E(Z;ZyUD)]

<n” 10— 1)~ 140 |

Bernstein’s inequality gives

P[n‘1

n

D 1ZiZy U - E(Z;ZyU7)]
i1

> r(t)} <2t
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for each (j,k)=1,...,q and
Pl 2 - 1y |2 r(0)] < 2¢7*
foreach j=1,...,q . Therefore,
P[maxj‘k |y |<r(t)+ r(t)2]>1—4q2e‘t,

thereby establishing (7.3). In addition,

q
(75) [E 7o)k [<CeY oyl
/=1

Therefore, inequality (7.4) follows from (7.3) and (7.5). Q.E.D.

Define the random variables V ~ N (0,) and, conditional on £, V ~ N(0,%). Also define

E, =sup | P[T,(6y) <a]-P[T, (6)) <a]|=sup | P(VV <a)-P(VV <a)|.

Lemma 7.3: Define 7(t) as in Theorem 3.1. Forany t>0 such that (7.2) holds and gr(t) <1,

Cya°27 (1))
p S min 1 12 -

NG {F(t) —log[1—F(t)]}

[1]

with probability at least 1—2q%e".

Proof: Let TV(R,P,) be the total variation distance between distributions P, and P,. For any
set Sc R and gx1 random vector v , defineand Sy ={v: $V2) ¢ S}. Then,

PV eS)-P(V eS)=PE Y e&)-PE 'V es) .,
By the definition of the total variation distance,

2, SSgp IPEYH €8)-PE™WV e S) [STVIN(O, 4,q), N(0,.27'D)],

By DasGupta (2008, p. 23),

g9 27 1

TVIN(O,1,,,).N(O,Z )] <min{ 4 Uo

-1 -1
E[Tr(z £~ lguq) — log det(= 2)] ,
where for any gqxqg matrix A,
q
2 2
[A]" = 2 @k
jk=1

But

S g =2 E-T) =2,
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q q
1 1
|E70) k1< D1 Zjlox |<Cs Y oy |,
/=1 =1

and

2 1/2

HZ‘li —

axq

q q
<Cyq"? Z[Z| @k |J

k=1\ r=1
By Lemma 7.2

P[maxj,k | [<r(t)+ r(t)z] >1-4q%™.
Therefore,
DRI

q2o+t < Cyq329 (1)

gxq
with probability exceeding 1- 4q2e‘t.

Now consider

~ ~ l/2
i[Tr(z-lz ) logdet(z15) [

NG

We have

TrE = 14q) =Tr(C o).
But

(@) j < Cyalr(t) +r(t)*]
with probability exceeding 1—4q% ™. Therefore
Tr(z o) <F(t),

and

~ ~ Tl ~ U
S [TrEE 1) - logdet=5) | <[ r() - logdet(z15) |

NG

with probability exceeding 1—4q% ™.

1
N

In addition,

logdet(= %) = logdet(l .., + = ).

gxq
Let F(t)<1. By Corollary 1 of Brent, Osborne, and Smith (2015)

det(l ., +3 " w) >1—F(t)

axq

and
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logdet(l g +2 ') > log[1—F(t)]

with probability exceeding 1—2q2e‘t. Therefore,

1 ~12 1o, V2 1. = 12
ﬁ[Tr(z S~ 1,,p) - logdet( 2)] sﬁ{r(t)—log[l—r(t)]}
and
Cxq*2% ()]
E,<ming 1

- {F(t)—log[L—F()]}"?

with probability at least 1—4qg%e™. Q.E.D.
Proof of Theorem 3.1: By the triangle inequality
sup| P[T, (6y) < a] - P[T, (6) < al|

a>0

=sup | P[T, (6) < a] - P[T, (6) < a]+ P[T,(6,) <a] - P[T,(6,) < a]|

a>0

< sup{| P[T, (65) < ] - P[T, (6) < al | +| P[T, (6) < a] - P[T, (6) < al [}

a>0

<sup | P[T, (6p) <@l - P[T,(6p) <all +Slilé>| P[T,(6) <a] - P[T, (6) <al|

a>0 a>

<sup | P[T, (6) < al - P[T, () < a] | +Z,.

a0
Now combine lemmas 7.1 and 7.3. Q.E.D.
Proof of Theorem 3.2: Let Z; be the qx1 vector whose j ’th component is Z;j. ATaylor series

expansion yields

2 2 1 3g(Xi, 0
nY2Y ZiIY - 9(X;.6)]=n"2> ZU; +n 12‘@%&
i=1 i=1 i=1

where & is between 9; and ¢, . It follows from the multivariate generalization of the Lindeberg-Levy
theorem and Theorem 2 of Jennrich (1969) that
_12% og( X, 6,
V2N Zi[Y, - g(X,6)] > £+ E[Z%}c,

i=1
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where £~ N(0,Z). Asin Section 3, let IT denote the orthogonal matrix that diagonalizes X . That is

IIZIT = A , where A is the diagonal matrix whose diagonal elements are the eigenvalues ,/11- ,of 2.

Define

sz_ﬂzE[Z 89(X190)}(_
00’

Then
To(6p) > (&+2Y%7) (& +2Y%7)

==V 4y +7)

={(E Y2+ PYMIE Y2+ 7).
The theorem now follows from the properties of quadratic forms of normal random variables. Q.E.D.

Proof of Theorem 4.1: Replace ZU with ZW(6,) in lemmas 7.1-7.3. Then proceed as in the
proof of Theorem 3.1. Q.E.D.

Let Fy, denote the distribution function of (X,Z) and Fy; denote the conditional distribution

function of X given Z.
Proof of Theorem 4.2:

Part (i): Part (i) follows from the multivariate generalization of the Lindeberg-Levy central limit
theorem and the definition of 7.

Part (ii): Arguments like those used in the proof of Theorem 3.2 show that

Y2 Zy{I1Y; - 9(X;,6) < 0] -8} > & + gy,
i1

where & ~N(0,Zq) and
gy = lim n2E (Z, {1V - 9(X, 6) <0]-ag}).
Under alternative hypothesis (4.6),
7o = lim "?EZ, {P[U <n"Y?A(X) | Z;]-ag}-.

n—oo

Now

P[U <n"Y2A(X)|Z,] =jp[u <n"Y2A(X) | X =x,Z,1dFy ; (X] Z;)

= [ Fup 2= Y2A0) | X = X, Z31dFy (x| 24).
By a Taylor series expansion
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Fuix .z [-n2A(X) | X =x,2,]= Fux z(01 X =X%,27) - Y2 fuix,z (01 X =X%Z;)A(X),
where  is between 0 and n™Y2A(x) . Therefore,

P[U <n"Y2A(X)|Z,]
= [ Fupx 2 (01X = X, Z3)dFy z (x1Z0) =2 fyp 2 (01X = X, Z3)A(X)0Fy (] 24)

=ag =0 [ fup 2 (01X =X, Z) APz (x| Zy).
In addition,
[ fupx 2 (@1X =x,Z0) ARy 2 (X1 Z0) > [ fue 2 01 X =%, Z) Az (x| Zy)
as n—oo. Therefore,
n2{P[U <n"Y2A(X)|Z,]-ag}— —j fux 2 (01X =%,Z)A(X)dFy 7 (X]Zy) |
and

Qi %—IZ;A(X) fux 2 (01 X = x,Z; = 2)dFyz (x| 2)dF, (2)
= _J-ZjA(X) fux .z (0] X = x,Z; = 2)dFyz (X, 2)

= —Exz[Z;A(X) fyjx 2 (0] X, Z)].

Part (ii) now follows from arguments like those used in the proof of Theorem 3.2.

Part (iii): Under local alternative hypothesis (3.2),

g(x,6,) = g(x,go)Jrn—l/Z%KJro(n—yz) '

Therefore, the arguments made for local alternative hypothesis (4.6) apply to local alternative hypothesis
(3.2) after replacing A(x) with [6g(x,6,)/00']x . It follows that under local alternative hypothesis (3.2)
q
Ta(60) > D Agizi (7)) -
j=1

This proves Theorem 3.2(iii). Q.E.D.
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Table 1: Empirical Probabilities of Rejecting Correct Null Hypotheses at the Nominal 0.05 Level

Distr. n g=1 q=2 g=>5 g=10

Uniform 100 0.046 0.053 0.041 0.025
1000 0.049 0.052 0.050 0.062

Skewed 100 0.053 0.039 0.036 0.030
1000 0.050 0.049 0.033 0.037

Bimodal 100 0.052 0.035 0.041 0.035
1000 0.056 0.044 0.034 0.038

Laplace 100 0.043 0.032 0.031 0.013
1000 0.041 0.049 0.044 0.043

t(10) 100 0.052 0.036 0.029 0.013
1000 0.048 0.033 0.035 0.046

Diff. betw. Lognormals | 100 0.041 0.027 0.016 0.010
1000 0.053 0.062 0.035 0.031
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Table 2: Powers of the T, and Anderson-Rubin Tests at the Nominal 0.05 Level

Distr. n Bo c g=1|9g=1|9=2 | g=2 | g=5 | q=5 | q=10 | g=10
T, AR T, AR | T, AR N AR
Uniform 100 | 1.0 |0.50 | 0.642 | 0.649 | 0.817 | 0.837 | 0.965 | 0.981 | 0.994 | 0.999
1000 | 0.20 | 0.50 | 0.635 | 0.632 | 0.848 | 0.851 | 0.994 | 0.995 | 1.00 1.00
Skewed 100 | 1.0 | 0500439 | 0.454 | 0.581 | 0.617 | 0.827 | 0.884 | 0.944 | 0.978
1000 | 0.20 | 0.50 | 0.436 | 0.433 | 0.655 | 0.659 | 0.924 | 0.920 | 0.989 | 0.990
Bimodal 100 | 1.0 |0.50]0.270 | 0.280 | 0.366 | 0.377 | 0.561 | 0.619 | 0.712 | 0.829
1000 | 0.20 | 0.50 | 0.269 | 0.271 | 0.417 | 0.420 | 0.643 | 0.658 | 0.849 | 0.854
Laplace 100 | 1.0 |0.50 | 0.510 | 0.502 | 0.654 | 0.683 | 0.842 | 0.903 | 0.946 | 0.987
1000 | 0.20 | 0.50 | 0.486 | 0.483 | 0.663 | 0.667 | 0.923 | 0.938 | 0.998 | 0.999
t(20) 100 | 1.0 |0.50|0.481 | 0.486 | 0.642 | 0.665 | 0.826 | 0.888 | 0.911 | 0.975
1000 | 0.20 | 0.50 | 0.487 | 0.488 | 0.663 | 0.664 | 0.922 | 0.925 | 0.992 | 0.998
Diff. betw. | 100 | 1.0 |0.50 | 0.142 | 0.135 | 0.216 | 0.221 | 0.248 | 0.337 | 0.304 | 0.481
Lognormals
1000 | 0.20 | 0.50 | 0.143 | 0.137 | 0.191 | 0.181 | 0.310 | 0.334 | 0.388 | 0.449
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Table 3: Powers of the T,, and Anderson-Rubin Tests of a Simple Null Hypothesis at the Nominal

0.05 Level
Distr. n Bo c g=1|9g=1|q9q=2 | g=2 | g=5 | q=5 | g=10 | g=10

T, AR T, AR | T, AR N AR

Uniform 100 | 1.0 |0.25]0.226 | 0.235 | 0.309 | 0.317 | 0.420 | 0.482 | 0.558 | 0.661

1000 | 0.20 | 0.25 | 0.303 | 0.298 | 0.412 | 0.418 | 0.674 | 0.685 | 0.878 | 0.890

Skewed 100 | 1.0 |0.25|0.144 | 0.150 | 0.190 | 0.201 | 0.289 | 0.332 | 0.332 | 0.444

1000 | 0.20 | 0.25 | 0.194 | 0.202 | 0.308 | 0.305 | 0.473 | 0.475 | 0.648 | 0.657

Bimodal 100 | 1.0 |0.25]0.105 | 0.101 | 0.125 | 0.129 | 0.176 | 0.204 | 0.173 | 0.251

1000 | 0.20 | 0.25 | 0.127 | 0.125 | 0.184 | 0.185 | 0.269 | 0.265 | 0.366 | 0.364

Laplace 100 | 1.0 |0.25]0.195 | 0.175 | 0.234 | 0.231 | 0.278 | 0.326 | 0.330 | 0.466

1000 | 0.20 | 0.25 | 0.210 | 0.207 | 0.296 | 0.286 | 0.462 | 0.467 | 0.679 | 0.695

t(20) 100 | 1.0 |0.25|0.163 | 0.159 | 0.206 | 0.210 | 0.303 | 0.361 | 0.345 | 0.497

1000 | 0.20 | 0.25 | 0.203 | 0.204 | 0.275 | 0.274 | 0.436 | 0.453 | 0.673 | 0.703

Diff.  betw. | 100 | 1.0 | 0.25|0.061 | 0.064 | 0.085 | 0.087 | 0.080 | 0.111 | 0.058 | 0.157
Lognormals

1000 | 0.20 | 0.25 | 0.092 | 0.089 | 0.086 | 0.093 | 0.121 | 0.129 | 0.139 | 0.178
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Table 4:

Powers of the T, and Anderson-Rubin Tests of a Composite Null Hypothesis at the

Nominal 0.05 Level

Distr. n B, Bo c g=1|9g=1|9=2|qg=2 | g=5|q9q=51| q=10 | g=10
T, AR T, AR | T, AR N AR
Uniform 100 | 1.0 0.50 0.427 | 0.387 | 0.643 | 0.590 | 0.907 | 0.899 | 0.981 | 0.997
1000 | 1.0 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 | 0.20 0.50 0.432 | 0.396 | 0.661 | 0.630 | 0.923 | 0.917 | 1.0 0.999
Skewed 100 | 1.0 0.50 0.293 | 0.258 | 0.378 | 0.345 | 0.714 | 0.693 | 0.882 | 0.903
1000 | 1.0 0.50 0.998 | 0.998 | 1.0 1.0 1.0 1.0 1.0 1.0
1000 | 0.20 0.50 0.320 | 0.276 | 0.395 | 0.362 | 0.740 | 0.721 | 0.920 | 0.918
Bimodal 100 | 1.0 0.50 0.127 | 0.093 | 0.215 | 0.156 | 0.398 | 0.321 | 0.571 | 0.558
1000 | 1.0 0.50 0.912 | 0.943 | 0.999 | 0.998 | 1.0 1.0 1.0 1.0
1000 | 0.20 0.50 0.136 | 0.122 | 0.223 | 0.171 | 0.432 | 0.338 | 0.615 | 0.610
Laplace 100 | 1.0 0.50 0.307 | 0.252 | 0.457 | 0.381 | 0.716 | 0.707 | 0.886 | 0.928
1000 | 1.0 0.50 0.999 | 0.999 | 1.0 1.0 1.0 1.0 1.0 1.0
1000 | 0.20 0.50 0.342 | 0.309 | 0.461 | 0.420 | 0.742 | 0.728 | 0.910 | 0.936
t(10) 100 | 1.0 0.50 0.308 | 0.224 | 0.464 | 0.410 | 0.687 | 0.674 | 0.860 | 0.913
1000 | 1.0 0.50 0.998 | 0.999 | 1.0 1.0 1.0 1.0 1.0 1.0
1000 | 0.20 0.50 0.328 | 0.288 | 0.477 | 0.430 | 0.710 | 0.688 | 0.881 | 0.910
Diff. betw. | 100 | 1.0 0.50 0.075 | 0.053 | 0.097 | 0.073 | 0.171 | 0.143 | 0.189 | 0.210
Lognormals
1000 | 1.0 0.50 0.543 | 0.648 | 0.876 | 0.819 | 0.989 | 0.985 | 1.0 1.0
1000 | 0.20 0.50 0.083 | 0.077 | 0.099 | 0.084 | 0.182 | 0.166 | 0.220 | 0.213
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Table 5:

Powers of the T, and Anderson-Rubin Tests of a Composite Null Hypothesis at the

Nominal 0.05 Level

Distr. n B Bo T g=1|9g=1|9=2 | qg=2 | g=5|q=51| q=10 | g=10
T, AR T, AR | T, AR N AR
Uniform 100 | 1.0 0.25 0.116 | 0.076 | 0.138 | 0.120 | 0.270 | 0.263 | 0.431 | 0.391
1000 | 1.0 0.25 0.896 | 0.846 | 0.996 | 0.981 | 1.0 1.0 1.0 1.0
1000 | 0.20 0.25 0.137 | 0.062 | 0.229 | 0.240 | 0.483 | 0.462 | 0.791 | 0.685
Skewed 100 | 1.0 0.25 0.073 | 0.043 | 0.110 | 0.070 | 0.157 | 0.116 | 0.243 | 0.201
1000 | 1.0 0.25 0.688 | 0.605 | 0.905 | 0.856 | 0.997 | 0.992 | 1.0 1.0
1000 | 0.20 0.25 0.082 | 0.035 | 0.125 | 0.090 | 0.278 | 0.250 | 0.524 | 0.488
Bimodal 100 | 1.0 0.25 0.050 | 0.029 | 0.042 | 0.028 | 0.069 | 0.039 | 0.097 | 0.083
1000 | 1.0 0.25 0.403 | 0.326 | 0.642 | 0.525 | 0.916 | 0.846 | 0.993 | 0.984
1000 | 0.20 0.25 0.060 | 0.042 | 0.076 | 0.058 | 0.126 | 0.088 | 0.231 | 0.185
Laplace 100 | 1.0 0.25 0.070 | 0.046 | 0.101 | 0.073 | 0.151 | 0.125 | 0.213 | 0.204
1000 | 1.0 0.25 0.708 | 0.621 | 0.921 | 0.872 | 1.0 0.999 | 1.0 1.0
1000 | 0.20 0.25 0.080 | 0.042 | 0.159 | 0.090 | 0.320 | 0.294 | 0.500 | 0.465
t(10) 100 | 1.0 0.25 0.078 | 0.054 | 0.096 | 0.066 | 0.159 | 0.110 | 0.215 | 0.200
1000 | 1.0 0.25 0.693 | 0.613 | 0.920 | 0.847 | 0.996 | 0.992 | 1.0 1.0
1000 | 0.20 0.25 0.104 | 0.042 | 0.156 | 0.110 | 0.273 | 0.255 | 0.533 | 0.488
Diff. betw. | 100 | 1.0 0.25 0.040 | 0.026 | 0.045 | 0.027 | 0.035 | 0.024 | 0.055 | 0.054
Lognormals
1000 | 1.0 0.25 0.153 | 0.115 | 0.261 | 0.173 | 0.492 | 0.382 | 0.734 | 0.635
1000 | 0.20 0.25 0.039 | 0.031 | 0.040 | 0.028 | 0.046 | 0.022 | 0.074 | 0.048
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