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POSTERIOR DISTRIBUTION OF NONDIFFERENTIABLE FUNCTIONS.1

Toru Kitagawa2, José-Luis Montiel-Olea3 and Jonathan Payne4

This paper examines the asymptotic behavior of the posterior distribution
of a possibly nondifferentiable function g(θ), where θ is a finite-dimensional pa-
rameter of either a parametric or semiparametric model. The main assumption
is that the distribution of a suitable estimator θ̂n, its bootstrap approximation,
and the Bayesian posterior for θ all agree asymptotically.

It is shown that whenever g is Lipschitz, though not necessarily differen-
tiable, the posterior distribution of g(θ) and the bootstrap distribution of
g(θ̂n) coincide asymptotically. One implication is that Bayesians can interpret
bootstrap inference for g(θ) as approximately valid posterior inference in a
large sample. Another implication—built on known results about bootstrap
inconsistency—is that credible sets for a nondifferentiable parameter g(θ) can-
not be presumed to be approximately valid confidence sets (even when this
relation holds true for θ).

Keywords: Bootstrap, Bernstein-von Mises Theorem, Directional Differ-
entiability, Posterior Inference.

1. INTRODUCTION

This paper studies the posterior distribution of a real-valued function g(θ), where
θ is a parameter of finite dimension in either a parametric or semiparametric model.
We focus on transformations g(θ) that are Lipschitz continuous but possibly non-
differentiable. Some stylized examples are:

|θ|,max{0, θ},max{θ1, θ2}.

Parameters of the type considered in this paper arise in different applications in eco-
nomics and statistics: the welfare level attained by an optimal treatment assignment
rule in the treatment choice problem (Manski (2004)); the regression function in a
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regression kink model with an unknown threshold (Hansen (2015)); the eigenvalues
of a random symmetric matrix (Eaton and Tyler (1991)); and the value function
of stochastic mathematical programs (Shapiro (1991)). The lower and upper bound
of the identified set in a partially identified model are also examples of parameters
that fall within the framework of this paper.1

The potential nondifferentiability of g(·) poses different challenges to frequentist
inference. For example, different forms of the bootstrap lose their consistency when-
ever differentiability is compromised; see Dümbgen (1993), Beran (1997), Andrews
(2000), Fang and Santos (2015), and Hong and Li (2015). To our knowledge, the
literature has not yet explored how the Bayesian posterior of g(θ) relates to neither
the sampling nor the bootstrap distribution of available plug-in estimators when g
is allowed to be nondifferentible.
This paper studies these relations in large samples. The main assumptions are that:

(i) there is an estimator for θ, denoted θ̂n, which is
√
n-asymptotically distributed

according to some random vector Z (not necessarily Gaussian), (ii) the bootstrap
consistently estimates the asymptotic distribution of θ̂n and (iii) the Bayesian pos-
terior distribution of θ coincides with the asymptotic distribution of θ̂n; i.e., the
Bernstein-von Mises Theorem holds for θ.2

This paper shows that—after appropriate centering and scaling—the posterior dis-
tribution of g(θ) and the bootstrap distribution of g(θ̂n) are asymptotically equiva-
lent. This means that the bootstrap distribution of g(θ̂n) contains, in large samples,
the same information as the posterior distribution for g(θ).3 Indisputably, these
asymptotic relations are straightforward to deduce for (fully or directionally) differ-
entiable functions. However, our main result shows that the asymptotic equivalence
between the bootstrap and posterior distributions holds more broadly; highlighting
that such a relation is better understood as a consequence of the continuous mapping

1For example, treatment effect bounds (Manski (1990), Balke and Pearl (1997)); bounds in auc-
tion models (Haile and Tamer (2003)); bounds for impulse-response functions (Giacomini and Kita-
gawa (2015), Gafarov, Meier, and Montiel Olea (2015)) and forecast-error variance decompositions
(Faust (1998)) in Structural Vector Autoregressions.

2See, for example, DasGupta (2008), p. 291 for a Bernstein-von Misses theorem for regular
parametric models where Z is Gaussian; Ghosal, Ghosh, and Samanta (1995), p. 2147-2150 for a
Bernstein-von Mises theorem for a class of parametric models whose likelihood ratio process is not
Locally Asymptotically Normal; and Castillo and Rousseau (2015), p. 2357 for a Bernstein-von
Mises theorem for semiparametric models where an efficiency theory at rate

√
n is available.

3Other results in the literature concerning the relations between bootstrap and posterior inference
have focused on the Bayesian interpretation of the bootstrap in finite samples, for example Rubin
(1981), or on how the parametric bootstrap output can be used for efficient computation of the
posterior, for example Efron (2012).
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theorem, as opposed to differentiability and the delta method.
This result provides two useful insights. First, Bayesians can interpret bootstrap-

based inference for g(θ) as approximately valid posterior inference in a large sample.
Thus, Bayesians can use bootstrap draws to conduct approximate posterior inference
for g(θ) (if computing θ̂n is simpler than Markov Chain Monte Carlo (MCMC)
sampling).
Second, we show that whenever nondifferentiability causes a bootstrap confidence

set to cover g(θ) less often than desired—which is known to happen even under
mild departures from differentiability—a credible set based on the quantiles of the
posterior will have distorted frequentist coverage as well. In the case where g(·)
only has directional derivatives, as in the pioneering work of Hirano and Porter
(2012), the unfortunate frequentist properties of credible sets can be attributed to
the fact that the posterior distribution of g(θ) does not coincide with the asymptotic
distribution of g(θ̂n).
The rest of this paper is organized as follows. Section 2 presents a formal statement

of the main results. Section 3 presents an illustrative example: the absolute value
transformation. Section 4 concludes. All the proofs are collected in the Appendix.

2. MAIN RESULTS

Let Xn = {X1, . . . Xn} be a sample of size n from the model f(Xn | η), where
η is a possibly infinite dimensional parameter taking values in some space S. We
assume there is a finite-dimensional parameter of interest, θ : S → Θ ⊆ Rp, and
some estimator θ̂n of θ. Let θ0 denote the true parameter—that is, θ0 ≡ θ(η0) with
data generated according to f(Xn|η0). Consider the following assumptions:

Assumption 1 The function g : Rp → R is Lipschitz continuous with constant
c. That is;

|g(x)− g(y)| ≤ c||x− y|| ∀ x, y ∈ Rp.

Assumption 1 implies—by means of the well-known Rademacher’s Theorem (Evans
and Gariepy (2015), p. 81)—that g is differentiable almost everywhere in Rp. Thus,
the functions considered in this paper allow only for mild departures from differ-
entiability.4 We have made Lipschitz continuity our starting point—as opposed to

4Moreover, we assume that g is defined everywhere in Rp which rules out examples such as the
ratio of means θ1/θ2, θ2 6= 0 discussed in Fieller (1954) and weakly identified Instrumental Variables
models.
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some form of directional differentiability—to emphasize that the asymptotic relation
between Bootstrap and Bayes inference does not hinge on delta-method considera-
tions.

Assumption 2 The sequence Zn ≡
√
n(θ̂n − θ0) d→ Z.

Despite being high-level, there are well-known conditions for parametric or semi-
parametric models under which Assumption 2 obtains (see, for example, Newey and
McFadden (1994) p. 2146). The asymptotic distribution of Zn is typically normal,
but our main theorems does not exploit this feature (and thus, we have decided
leave the distribution of Z unspecified).
In order to state the next assumption, we introduce additional notation. Define

the set:

BL(1) ≡
{
f : Rp → R

∣∣∣ sup
a∈Rk

|f(a)| ≤ 1 and |f(a1)−f(a2)| ≤ ||a1−a2|| ∀a1, a2
}
.

Let φ∗n and ψ∗n be random variables whose distribution depends on the data Xn.
The Bounded Lipschitz distance between the distributions induced by φ∗n and ψ∗n

(conditional on the data Xn) is defined as:

β(φ∗n, ψ∗n; Xn) ≡ sup
f∈BL(1)

∣∣∣E[f(φ∗n)|Xn]− E[f(ψ∗n)|Xn]
∣∣∣.

The random variables φ∗n and ψ∗n are said to converge in Bounded Lipschitz dis-
tance in probability if β(φ∗n, ψ∗n; Xn) p→ 0 as n→∞.5

Let P denote some prior for θ and let θP∗n denote the random variable with law
equal to the posterior distribution of θ in a sample of size n. Let θB∗n denote the
random variable with law equal to the bootstrap distribution of θ̂n in a sample of
size n.

Remark 1 In a parametric model there are different ways of bootstrapping the
distribution of θ̂n. One possibility is a parametric bootstrap, which consists in gen-
erating draws (x1, . . . xn) from the model f(xi; θ̂n) followed by an evaluation of the
ML estimator for each draw (Van der Vaart (2000) p. 328). Another possibility is
the multinomial bootstrap, which generates draws (x1, . . . xn) from its empirical dis-
tribution. Different options are also available in semiparametric models. We do not

5For a more detailed treatment of the bounded lipschitz metric over probability measures see the
‘β’ metric defined in p. 394 of Dudley (2002).
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take a stand on the specific bootstrap procedure used by the researcher as long as
it is consistent.

The following assumption restricts the prior P for θ and the bootstrap procedure
for θ̂n:

Assumption 3 The centered and scaled random variables:

ZP∗n ≡
√
n(θP∗n − θ̂n) and ZB∗n ≡

√
n(θB∗n − θ̂n),

converge (in the Bounded Lipschitz distance in probability) to the asymptotic dis-
tribution of θ̂n, denoted Z, which is independent of the data. That is,

β(ZP∗n , Z; Xn) p→ 0

and
β(ZB∗n , Z; Xn) p→ 0.

Sufficient conditions for Assumption 3 to hold are the consistency of the boot-
strap for the distribution of θ̂n (Horowitz (2001), Van der Vaart and Wellner (1996)
Chapter 3.6, Van der Vaart (2000) p. 340) and the Bernstein-von Mises Theorem for
θ (see DasGupta (2008) for parametric versions and Castillo and Rousseau (2015)
for semiparametric ones).6

The following theorem shows that under the first three assumptions, the Bayesian
posterior for g(θ) and the frequentist bootstrap distribution of g(θ̂n) converge (after
appropriate centering and scaling). Note that for any measurable function g(·), be it
differentiable or not, the posterior distribution of g(θ) can be defined as the image
measure induced by the distribution of θP∗n under the mapping g(·).

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold. Then,

β(
√
n(g(θP∗n )− g(θ̂n)),

√
n(g(θB∗n )− g(θ̂n)); Xn) p→ 0.

6Note that the Berstein-von Mises Theorem is oftentimes stated in terms of almost-sure con-
vergence of the posterior to a Gaussian distribution (DasGupta (2008) p. 291) or possibly to a
non-Gaussian limit (Ghosal et al. (1995)) in terms of the total variation distance. This mode of
convergence (total variation metric) implies convergence in the bounded Lipschitz metric in proba-
bility. In this paper, all the results concerning the asymptotic behavior of the posterior are presented
in terms of the Bounded-Lipschitz metric. This facilitates comparisons with the boostrap.
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That is, after centering and scaling, the posterior distribution g(θ) and the bootstrap
distribution of g(θ̂n) are asymptotically close to each other in terms of the Bounded
Lipschitz metric in probability.

Proof: See Appendix A.1. Q.E.D.

The intuition behind Theorem 1 is the following. The centered and scaled posterior
and bootstrap distributions can be written as:

√
n(g(θP∗n )− g(θ̂n)) =

√
n(g(θ0 + ZP∗n /

√
n+ Zn/

√
n)− g(θ̂n)),

√
n(g(θB∗n )− g(θ̂n)) =

√
n(g(θ0 + ZB∗n /

√
n+ Zn/

√
n)− g(θ̂n))

Since ZP∗n and ZB∗n both converge to a common limit Z and the function g is Lips-
chitz, then the centered and scaled posterior and bootstrap distributions (conditional
on the data) can both be well approximated by:

√
n(g(θ0 + Z/

√
n+ Zn/

√
n)− g(θ̂n))

and so the desired convergence result obtains. As the proof of the theorem illus-
trates, the asymptotic relation between the Bootstrap and Bayes distributions is
a consequence of a (Lipschitz) continuous mapping theorem, and not of the delta
method.

Failure of Bootstrap/Bayes Inference: Theorem 1 established the large-
sample equivalence between the bootstrap distribution of g(θ̂n) and the posterior
distribution of g(θ). We now use this Theorem to make a concrete connection be-
tween the coverage of bootstrap-based confidence sets and the coverage of Bayesian
credible sets based on the quantiles of the posterior.
We start by assuming that a nominal (1−α) bootstrap confidence set fails to cover

g(θ) at a point of nondifferentiability. Then, we show that a (1−α− ε) credible set
based on the quantiles of the posterior distribution of g(θ) will also fail to cover g(θ)
for any ε > 0.7

This result is not a direct corollary of Theorem 1 as there is some extra work
needed to relate the quantiles of the bootstrap distribution of g(θ̂n) and the quantiles

7The adjustment factor ε is introduced because the the quantiles of both the bootstrap and the
posterior remain random even in large samples.
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of the posterior of g(θ). To establish such connection, we work under the following
assumption:

Assumption 4 There exists a function hθ0(Z,Xn) such that:

i) β(
√
n(g(θB∗n )− g(θ̂n)), hθ0(Z,Xn); Xn) p→ 0.

ii) The cumulative distribution function of Y ≡ hθ0(Z,Xn) conditional on Xn,
denoted Fθ0(y|Xn), is Lipschitz continuous in y—almost surely in Xn for every
n—with a constant k that does not depend on Xn.

The first part of Assumption 4 simply requires the distribution of
√
n(g(θB∗n )−g(θn)),

conditional on the data, to have a well defined limit (which is neither assumed nor
guaranteed by Theorem 1).

Remark 2 Note that the first part of Assumption 4 is satisfied if g is directionally
differentiable, i.e., there exists a continuous function g′θ0

: Rp → R such that for any
compact set K ⊆ Rp and any sequence of positive numbers tn → 0:8

sup
h∈K

∣∣∣t−1
n (g(θ0 + tnh)− g(θ0))− g′θ0(h)

∣∣∣→ 0.

Assumption 4 then holds with hθ0(Z,Xn) = g′θ0
(Z + Zn) − g′θ0

(Zn) by the delta
method for directionally differentiable functions shown in Proposition 1 in Dümb-
gen (1993) and equation A.41 in Theorem A.1 in Fang and Santos (2015).9

The second part of Assumption 4 requires the limiting distribution of the bootstrap
to be well-behaved enough at points of possible nondifferentiability. In particular, we

8Equivalently, one could say there is a continuous function g′θ : Rk → R such that for any
converging sequence hn → h:∣∣∣∣√n(g(θ0 + hn√

n

)
− g(θ0)

)
− g′θ0 (hn)

∣∣∣∣→ 0.

See p. 479 in Shapiro (1990). The continuous, not necessarily linear, function g′θ(·) will be referred
to as the (Hadamard) directional derivative of g at θ0.

9For the sake of completeness, Lemma 4 in Appendix A.3 shows that if Assumptions 1, 2, 3 hold
and g is directionally differentiable (in the sense defined in Remark 2). Then,

β(
√
n(g(θP∗n )− g(θ̂n)), g′θ0 (Z + Zn)− g′θ0 (Zn) ; Xn) p→ 0

holds, where Z is as defined in Assumption 3 and Zn =
√
n(θ̂n − θ0).
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exploit the Lipschitz continuity of the limiting distribution to relate the bootstrap
quantiles with nearby quantiles of the posterior distribution. A sufficient condition
for the second part of Assumption 4 to hold is that the density of Y , conditional on
the data, admits an upper bound independent of Xn. This will be the case in the
illustrative example we consider.

We now present the main definitions that will be used in the statement of next
Theorem.

Set-up for Theorem 2: Let qBα (Xn) be defined as:

qBα (Xn) ≡ inf
c
{c ∈ R | PB∗(g(θB∗n ) ≤ c |Xn) ≥ α}.

The quantile based on the posterior distribution qPα (Xn) is defined analogously. A
nominal (1 − α)% two-sided confidence set for g(θ) based on the bootstrap distri-
bution g(θB∗n ) can be defined as follows:

CSBn (1− α) ≡
[
qBα/2(Xn) , qB1−α/2(Xn)

]
.(2.1)

This is a typical confidence set based on the percentile method of Efron, p. 327 in
Van der Vaart (2000).

Definition We say that the nominal (1− α)% bootstrap confidence set fails to
cover the parameter g(θ) at θ by at least dα% (dα > 0) if:

(2.2) lim sup
n→∞

Pθ
(
g(θ) ∈ CSBn (1− α)

)
≤ 1− α− dα,

where Pθ refers to the distribution of Xi under parameter θ.

The next theorem shows the coverage probability of the Bayesian credible set for
g(θ) in relation to the coverage probability of its bootstrap confidence set.

Theorem 2 Suppose that the nominal (1− α)% bootstrap confidence set fails to
cover g(θ) at θ by at least dα%. If Assumptions 1 to 4 hold then for any ε > 0 :

lim sup
n→∞

Pθ
(
g(θ) ∈

[
qP(α+ε)/2(Xn) , qP1−(α+ε)/2(Xn)

])
≤ 1− α− dα.
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Thus, for any 0 < ε < dα, the nominal (1−α−ε)% credible set based on the quantiles
of the posterior fails to cover g(θ) at θ by at least (dα − ε)%.

Proof: See Appendix A.2. Q.E.D.

The intuition behind the theorem is the following. For convenience, let θ∗n denote
either the bootstrap or posterior random variable and let c∗β(Xn) denote the β-
critical value of g(θ∗n) defined by:

c∗β(Xn) ≡ inf
c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ β}.

We show that c∗β(Xn) is asymptotically close to the conditional β-quantile of hθ(Z,Xn),
denoted by cβ(Xn). More precisely, we show that for arbitrarily small 0 < ε < β

and δ > 0, the probability that c∗β(Xn) ∈ [cβ−ε/2(Xn), cβ+ε/2(Xn)] is greater than
1− δ for sufficiently large n. Note that this result cannot be obtained directly from
the fact that the difference between c∗β(Xn) and cβ(Xn) is op(1).
Because under Assumptions 1 to 4 the critical values of both the bootstrap and

posterior distributions are asymptotically close to the quantiles of hθ(Z,Xn), we
can show that for a fixed ε > 0 and sufficiently large n:

Pθ
(
g(θ) ∈ CSBn (1− α)

)
= Pθ

(
g(θ) ∈

[
qP(α+ε)/2(Xn) , qP1−(α+ε)/2(Xn)

])
− δ.

It follows that when the (1−α)%–bootstrap confidence set fails to cover the param-
eter g(θ) at θ, then so must the (1− α− ε)%–credible set.10

10It immediately follows that the reverse also applies. If the (1− α)%–credible set fails to cover
the parameter g(θ) at θ, then so must the (1 − α − ε)%–bootstrap confidence set. Note that our
approximation holds for any fixed ε, but we cannot guarantee that our approximation holds if we
take the limit.
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Posterior Distribution of g(θP∗) under Directional Differentiabil-
ity: In Theorem 2 we chose to remain agnostic about the specific form of hθ(Z,Xn)
at points of nondifferentiability. Our theorem shows that any assumption about the
specific form of nondifferentiability—such as the existence of directional derivatives—
does not play any role in establishing the asymptotic relation between Bootstrap
and Posterior inference.

There are some benefits, however, in being more explicit about the form in which
differentiability is violated. For instance, if g(·) is assumed to be directionally dif-
ferentiable (as defined in Remark 2) the posterior g(θP∗) can be characterized more
explicitly.

Lemma 4 in Appendix A.3 shows that if Assumptions 1, 2, 3 hold and g is direc-
tionally differentiable in the sense defined in Remark 2, then:

β(
√
n(g(θP∗n )− g(θ̂n)), g′θ0(Z + Zn)− g′θ0(Zn) ; Xn) p→ 0,

where Z is as defined in Assumption 2 and Zn =
√
n(θ̂n − θ0).

The distribution g′θ0
(Z + Zn) − g′θ0

(Zn) (which still depends on the sample size)
provides a large-sample approximation to the distribution of g(θP∗n ). Our result
shows that, in large samples, after centering around g(θ̂n), the data will only affect
the posterior distribution through Zn =

√
n(θ̂n − θ0).

The approximating distribution g′θ0
(Z +Zn)− g′θ0

(Zn) has appeared in the litera-
ture before, see Proposition 1 in Dümbgen (1993) and equation A.41 in Theorem A.1
in Fang and Santos (2015). Thus, verifying the assumptions for any of these papers
in combination with our Theorem 1 would suffice to derive the limiting distribution
of g(θP∗) under directional differentiability. In order to keep the exposition self-
contained, we decided to present a simpler derivation of this law using our Lipschitz
continuity assumption.

Note that if g′θ0
(·) is linear (which is the case if g is fully differentiable), then the

derivative can be characterized by a vector g′θ0
and

√
n(g(θP∗n ) − g(θ̂n)) converges

to:
g′θ0(Z + Zn)− g′θ0(Zn) = g′θ0(Z),

where (g′θ0
)T denotes the transpose of g′θ0

. This is the same limit as one would
get from applying the delta method to g(θ̂n). Thus, under full differentiability, the
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posterior distribution of g(θ) can be approximated as:

g(θP∗n ) ≈ g(θ̂n) + 1√
n
g′θ0(Z).

Moreover, this distribution coincides with the asymptotic distribution of the plug-in
estimator g(θ̂n), by a standard delta-method argument.
If g′θ0

is nonlinear the limiting distribution of
√
n(g(θP∗n )− g(θ̂n)) becomes a non-

linear transformation of Z. This nonlinear transformation need not be Gaussian, and
need not be centered at zero (even if Z is). Moreover, the nonlinear transformation
g′θ0

(Z + Zn) − g′θ0
(Zn) is different from the asymptotic distribution of the plug-in

estimator g(θ̂n) which is given by g′θ0
(Z).11 Thus, one can say that for directionally

differentiable functions:

g(θP∗n ) ≈ g(θ̂n) + 1√
n

(g′θ0(Z + Zn)− g′θ0(Zn)), where Zn =
√
n(θ̂n − θ0).

11This follows from an application of the delta-method for directionally differentiable functions
in Shapiro (1991)) or from Proposition 1 in Dümbgen (1993).
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3. ILLUSTRATION OF MAIN RESULTS FOR |θ|

The main result of this paper, Theorem 1, can be illustrated in the following
simple parametric environment. Let Xn = (X1, . . . Xn) be an i.i.d. sample of size n
from the statistical model:

Xi ∼ N (θ, 1).

Consider the following family of priors for θ:

θ ∼ N(0, (1/λ2)),

where the precision parameter satisfies λ2 > 0. The transformation of interest is the
absolute value function:

g(θ) = |θ|.

It is first shown that when θ0 = 0 this environment satisfies Assumptions 1 to 4.
Then, the bootstrap and posterior distributions for g(θ) are explicitly computed and
compared.

Relation to main assumptions: The transformation g is Lipschitz continuous
and differentiable everywhere, except at θ0 = 0. At this particular point in the
parameter space, g has directional derivative g′0(h) = |h|. Thus, Assumption 1 is
satisfied.

We consider the Maximum Likelihood estimator, which is given by θ̂n = (1/n)
∑n
i=1Xi

and so
√
n(θ̂n − θ) ∼ Z ∼ N (0, 1). This means that Assumption 2 is satisfied.

This environment is analytically tractable so the distributions of θP∗n and θB∗n can
be computed explicitly. The posterior distribution for θ is given by:

θP∗n |Xn ∼ N
( n

n+ λ2 θ̂n,
1

n+ λ2

)
,

which implies that:

√
n(θP∗n − θ̂n)|Xn ∼ N

( λ2

n+ λ2
√
nθ̂n,

n

n+ λ2

)
.

Consequently,
β
(√

n(θP∗n − θ̂n) , N (0, 1);Xn
)

p→ 0.
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This implies that under, θ0 = 0, the first part of Assumption 3 holds.12

Second, consider a parametric bootstrap for the sample mean, θ̂n. We decided
to focus on the parametric bootstrap to keep the exposition as simple as possible.
The parametric bootstrap is implemented by generating a large number of draws
(xj1, . . . , xjn), j = 1, . . . , J from the model

xji ∼ N (θ̂n, 1), i = 1, . . . n,

recomputing the ML estimator for each of the draws. This implies that the bootstrap
distribution of θ̂n is given by:

θB∗n ∼ N (θ̂n, 1/n),

and so, for the parametric bootstrap it is straightforward to see that:

β
(√

n(θB∗n − θ̂n) , N (0, 1);Xn
)

= 0.

This means that the second part of Assumption 3 holds.

Finally, Remark 2 implies that the first part of Assumption 4 is verified with:

h0(Z,Xn) = g′0(Z + Zn)− g′0(Zn) = |Z + Zn| − |Zn|.

The (conditional) p.d.f. of Y ≡ g′0(Z + Zn)− g0(Zn) = |Z + Zn| − |Zn| is that of a
folded normal (shifted by minus |Zn|). Therefore:

F0(y|Xn) = 1√
2π

exp
(
− 1

2(y + |Zn| − Zn)2
)

+ 1√
2π

exp
(
− 1

2(y + |Zn|+ Zn)2
)
,

this expression follows by direct computation or by replacing cosh(x) in equa-

12The last equation follows from the fact that for two Gaussian real-valued random variables
X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2) we have that:∣∣∣E[f(X)]− E[f(Y )]

∣∣∣ ≤√ 2
π

∣∣∣σ2
1 − σ2

2

∣∣∣+
∣∣∣µ1 − µ2

∣∣∣.
Therefore:

β
(√

n(θP∗n − θ̂n) , N (0, 1);Xn
)
≤
√

2
π

∣∣∣ n

n+ λ2 − 1
∣∣∣+
∣∣∣ λ2

n+ λ2

√
nθ̂n

∣∣∣.
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tion 29.41 in p. 453 in Johnson, Kotz, and Balakrishnan (1995) by (1/2)(exp(x) +
exp(−x)). Note that:

F0(y|Xn) ≤
√

2
π
,

which implies that the second part of Assumption 4 holds. To see this, take y1 > y2.
Note that:

Fθ(y1|Xn)− Fθ(y2|Xn) =
∫ y1

y2
h(y|Xn)dy ≤ (y1 − y2)

√
2
π
.

An analogous argument for the case in which y1 ≤ y2 implies that the second part
of Assumption 4 is verified.

Asymptotic Behavior of Posterior Inference for g(θ) = |θ|: Since As-
sumptions 1 to 4 are satisfied, Theorem 1 holds.
In this example the posterior distribution of g(θ∗P )|Xn is given by:

∣∣∣ 1√
n+ λ2

Z∗ + n

n+ λ2 θ̂n
∣∣∣, Z∗ ∼ N (0, 1)

and therefore
√
n(g(θ∗P )− g(θ̂n) can be written as :

∣∣∣ √
n√

n+ λ2
Z∗ + n

n+ λ2
√
nθ̂n

∣∣∣− ∣∣∣√nθ̂n∣∣∣, Z∗ ∼ N (0, 1).(3.1)

Theorem 1 shows that when θ0 = 0 and n is large enough, this expression can be
approximated in the Bounded Lipschitz metric in probability by:∣∣∣Z + Zn

∣∣∣− ∣∣∣Zn∣∣∣ =
∣∣∣Z +

√
nθ̂n

∣∣∣− ∣∣∣√nθ̂n∣∣∣, Z ∼ N (0, 1).(3.2)

Observe that at θ0 = 0 the sampling distribution of the plug-in ML estimator for
|θ| is given by:

√
n(|θ̂n| − |θ0|) ∼ |Z|.

Thus, the approximate distribution of the posterior differs from the asymptotic dis-
tribution of the plug-in ML estimator and the typical Gaussian approximation for
the posterior will not be appropriate.

Asymptotic Behavior of Parametric Bootstrap Inference for g(θ) = |θ|:
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The parametric bootstrap distribution of |θ̂n|, centered and scaled, is simply given
by: ∣∣∣Z +

√
nθ̂n

∣∣∣− |√nθ̂n|, Z ∼ N(0, 1),

which implies that posterior distribution of |θ| and the bootstrap distribution of |θ̂n|
are asymptotically equivalent.

Graphical interpretation of Theorem 1: One way to illustrate Theorem 1
is to compute the 95% credible sets for |θ| when θ0 = 0 using the quantiles of the
posterior. We can then compare the 95% credible sets to the 95% confidence sets
from the bootstrap distribution (we have shown that Theorem 1 and Assumption 4
imply that, in large samples, these quantiles are close to each other in probability).
Observe from (3.2) that the approximation to the centered and scaled posterior

and bootstrap distributions depends on the data via
√
nθ̂n. Thus, in Figure 1 we

report the 95% credible and confidence sets for data realizations
√
nθ̂n ∈ [−3, 3]. In

all four plots the bootstrap confidence sets are computed using the parametric boot-
strap. Posterior credible sets are presented for four different priors for θ: N (0, 1/5),
N (0, 1/10), γ(2, 2)− 3 and (β(2, 2)− 0.5)× 5. The posterior for the first two priors
is obtained using the expression in (3.1), while the posterior for the last two priors
is obtained using a the Metropolis-Hastings algorithm (Geweke (2005), p. 122).

Coverage of Credible Sets: In this example, the two-sided confidence set based
on the quantiles of the bootstrap distribution of |θ̂n| fails to cover |θ| when θ = 0.
Theorem 2 showed that the two-sided credible sets based on the quantiles of the
posterior should exhibit the same problem. This is illustrated in Figure 2. Thus, a
frequentist cannot presume that a credible set for |θ| based on the quantiles of the
posterior will deliver a desired level of coverage.
As Liu, Gelman, and Zheng (2013) observe, although it is common to report

credible sets based on the α/2 and 1 − α/2 quantiles of the posterior, a Bayesian
might find these credible sets unsatisfactory. In this problem, it is perhaps more
natural to consider one-sided credible sets or Highest Posterior Density sets. In the
online Appendix B we consider an alternative example, g(θ) = max{θ1, θ2}, where
the decision between two-sided and one-sided credible sets is less obvious, but the
two-sided credible set still experiences the same problem as the bootstrap.
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4. CONCLUSION

This paper studied the asymptotic behavior of the posterior distribution of pa-
rameters of the form g(θ), where g(·) is Lipschitz continuous but possibly nondiffer-
entiable. We have shown that the bootstrap distribution of g(θ̂n) and the posterior
of g(θ) are asymptotically equivalent.
One implication from our results is that Bayesians can interpret bootstrap infer-

ence for g(θ) as approximately valid posterior inference in large samples. In fact,
Bayesians can use bootstrap draws to conduct approximate posterior inference for
g(θ) whenever bootstraping g(θ̂n) is more convenient than MCMC sampling. This
reinforces observations in the statistics literature noting that by “perturbing the
data, the bootstrap approximates the Bayesian effect of perturbing the parameters”
(Hastie, Tibshirani, Friedman, and Franklin (2005), p. 236).13

Another implication from our main result—combined with known results about
bootstrap inconsistency—is that it takes only mild departures from differentiabil-
ity (such as directional differentiability) to make the posterior distribution of g(θ)
behave differently than the limit of

√
n(g(θ̂n) − g(θ)). We showed that whenever

nondifferentiability causes a bootstrap confidence set to cover g(θ) less often than
desired, a credible set based on the quantiles of the posterior will have distorted
frequentist coverage as well.

13Our results also provide a better understanding of what type of statistics could preserve, in
large samples, the equivalence between bootstrap and posterior resampling methods, a question
that have been explored by Lo (1987).
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APPENDIX A: MAIN THEORETICAL RESULTS.

A.1. Proof of Theorem 1

Lemma 1 Suppose that Assumption 1 holds. Suppose that θ∗n is a random variable satisfying:

sup
f∈BL(1)

∣∣∣E[f(Z∗n) |Xn]− E[f(Z∗)]
∣∣∣ p→ 0,

where Z∗n =
√
n(θ∗n− θ̂n) and Z∗ is a random variable independent of Xn = (X1, . . . , Xn) for every

n. Then,

sup
f∈BL(1)

∣∣∣E[f(
√
n(g(θ∗n)− g(θ̂n))) |Xn](A.1)

− E[f(
√
n(g(θ0 + Z∗/

√
n+ Zn/

√
n)− g(θ̂n))) |Xn]

∣∣∣ p→ 0,

where θ0 is the parameter that generated the data and Zn =
√
n(θ̂n − θ0).

Proof: By Assumption 1, g is Lipschitz continuous. Define ∆n(a) =
√
n(g(θ0 +a/

√
n+Zn/

√
n)−

g(θ̂n)). Observe that ∆n(·) is Lipschitz since:

|∆n(a)−∆n(b)| = |
√
n(g(θ0 + a/

√
n+ Zn/

√
n)− g(θ0 + b/

√
n+ Zn/

√
n))|

≤ c‖a− b‖,

(by Assumption 1).

Define c̃ = max{c, 1}. Then, the function (f ◦∆n)/c̃ is an element of BL(1) (if f is). Consequently,∣∣∣E[f(
√
n(g(θ∗n)− g(θ̂n))) |Xn]

− E[f(
√
n(g(θ0 + Z∗/

√
n+ Zn/

√
n)− g(θ̂n))) |Xn]

∣∣∣
= c̃

∣∣∣E[f ◦∆n(Z∗n)
c̃

∣∣∣Xn
]
− E
[
f ◦∆n(Z∗)

c̃

∣∣∣Xn
]∣∣∣,

(since θ∗n = θ0 + Z∗n/
√
n+ Zn/

√
n)

≤ c̃ sup
f∈BL(1)

∣∣∣E[f(Z∗n)|Xn]− E[f(Z∗)|Xn]
∣∣∣,

(since (f ◦∆n)/c̃ ∈ BL(1)).

Q.E.D.

Proof of Theorem 1: Theorem 1 follows from Lemma 1. Note first that Assumptions 1, 2 and
3 imply that the assumptions of Lemma 1 are verified for both θP∗n and θB∗n . Note then that:

sup
f∈BL(1)

∣∣∣E[f(
√
n(g(θP∗n )− g(θ̂n))) |Xn]− E[f(

√
n(g(θB∗n )− g(θ̂n))) |Xn]

∣∣∣
≤ sup

f∈BL(1)

∣∣∣E[f(
√
n(g(θP∗n )− g(θ̂n))) |Xn]
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− E
[
f
(√

n
(
g
(
θ0 + Z√

n
+ Zn√

n

)
− g(θ̂n)

))
|Xn

]∣∣∣
+ sup
f∈BL(1)

∣∣∣E[f(
√
n(g(θB∗n )− g(θ̂n))) |Xn]

− E
[
f
(√

n
(
g
(
θ0 + Z√

n
+ Zn√

n

)
− g(θ̂n)

))
|Xn

]∣∣∣.
Lemma 1 implies that both terms converge to zero in probability. Q.E.D.
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A.2. Proof of Theorem 2

We start by establishing a Lemma based on a high-level assumption implied by the second part
of Assumption 4. In what follows we use PZ to denote the distribution of the random variable Z
(which is independent of the data Xn for every n).

Assumption 5 The function hθ(Z,Xn) is such that for all positive (ε, δ) there exists ζ(ε, δ) > 0
and N(ε, δ) for which:

Pθ
(

sup
c∈R

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
> ε
)
< δ.

provided n ≥ N(ε, δ).

To see that Assumption 5 is implied by the second part of Assumption 4 simply note that:

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
,

equals:

Fθ(c+ ζ(ε, δ)|Xn)− Fθ(c− ζ(ε, δ)|Xn) ≤ 2ζ(ε, δ)k.

Note that the last inequality holds since, by assumption, Fθ(y|Xn) is Lipschitz continuous—for
almost every Xn for every n—with a constant k that does not depend on Xn. By choosing ζ(ε, δ)
equal to ε/4k, then

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
≤ ε

2 ,

for every c, implying that Assumption 5 holds.

We now show that any random variable satisfying the weak convergence assumption in the first
part of Assumption 4 has a conditional α-quantile that—with high probability—lies in between the
conditional (α− ε) and (α+ ε)-quantiles of the limiting distribution.

Lemma 2 Let θ∗n denote a random variable whose distribution, P ∗, depends on Xn = (X1, . . . , Xn)
and let Z be the limiting distribution of Zn ≡

√
n(θ̂n− θ) as defined in Assumption 2. Suppose that

β(
√
n(g(θ∗n)− g(θ̂n)), hθ(Z,Xn);Xn) p→ 0.

Define c∗α(Xn) as the critical value such that:

c∗α(Xn) ≡ inf
c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

Suppose hθ(Z,Xn) satisfies Assumption 5 and define cα(Xn) as:

PZ (hθ(Z,Xn) ≤ cα(Xn) |Xn) = α.
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Then for any 0 < ε < α and δ > 0 there exists N(ε, δ) such that for n > N(ε, δ):

Pθ(cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn)) ≥ 1− δ.

Proof: We start by deriving a convenient bound for the difference between the conditional dis-
tributions of

√
n(g(θ∗n)− g(θ̂)) and the distribution of hθ(Z,Xn). Define the random variables:

W ∗n ≡
√
n(g(θ∗n)− g(θ̂n)), Y ∗n ≡ hθ(Z,Xn).

Denote by PnW and PnY the probabilities that each of these random variables induce over the real
line. Let c ∈ R be some constant. By applying Lemma 5 in Appendix A.4 to the set A = (−∞, c)
it follows that for any ζ > 0:

|PnW ((−∞, c)|Xn)− PnY ((−∞, c)|Xn)|

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + min{(PnY (Aζ \A|Xn), PnY ((Ac)ζ \Ac|Xn)}

= 1
ζ
β(W ∗n , Y ∗n ;Xn) + min{PnY ( [c, c+ ζ] |Xn), PnY ( [c− ζ, c] |Xn)}

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn) ,

where for any set A, we define Aδ ≡ {y ∈ Rk : ‖x − y‖ < δ for some x ∈ A} (see Lemma 5).
Therefore: That is:

|P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) |

≤ 1
ζ
β(
√
n(g(θ∗n)− g(θ̂n)) , hθ(Z,Xn);Xn)

+ sup
c∈R

PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

We use this relation between the conditional c.d.f. of
√
n(g(θ∗n)− g(θ̂n)) and the conditional c.d.f.

of hθ(Z,Xn) to show that quantiles of these distributions should be close to each other.

To simplify the notation, define the functions:

A1(ζ,Xn) ≡ 1
ζ
β(
√
n(g(θ∗n)− g(θ̂n)) , hθ(Z,Xn);Xn),

A2(ζ,Xn) ≡ sup
c∈R

PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn) .

Observe that if the data Xn were such that A1(ζ,Xn) ≤ ε/2 and A2(ζ,Xn) ≤ ε/2 then for any
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c ∈ R:

|P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) |

≤ A1(ζ,Xn) +A2(ζ,Xn)

< ε.

This would imply that for any c ∈ R:

(A.2) −ε < P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) < ε.

We now show that this inequality implies that:

cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn),

whenever Xn is such that A1(ζ,Xn) ≤ ε/2 and A2(ζ,Xn) ≤ ε/2. To see this, evaluate equation
(A.2) at cα+ε(Xn). This implies that:

−ε < P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ cα+ε(Xn) |Xn)− (α+ ε).

Consequently:
cα+ε(Xn) ∈ {c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

Since:
c∗α(Xn) ≡ inf

c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α},

it follows that:
c∗α(Xn) ≤ cα+ε(Xn).

To obtain the other inequality, evaluate equation (A.2) at cα−ε(Xn). This implies that:

P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ cα−ε(Xn) |Xn)− (α− ε) < ε.

Note that cα−ε(Xn) is a lower bound of the set:

(A.3) {c ∈ R | P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

If this were not the case, there would exist c∗ in the set above such that c∗ < cα−ε(Xn). As a
consequence, the monotonicity of the c.d.f would then imply that:

α ≤ P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c∗ |Xn) ≤ P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ cα−ε(Xn) |Xn) < α,

which would imply that α < α; a contradiction. Therefore, cα−ε(Xn) is indeed a lower bound for
the set in (A.3) and, consequently:

cα−ε(Xn) ≤ c∗α(Xn) ≡ inf
c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

This shows that whenever the data Xn is such that A1(ζ,Xn) ≤ ε/2 and A2(ζ,Xn) ≤ ε/2

cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn).
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To finish the proof, note that by Assumption 5 there exists ζ∗ ≡ ζ(ε/2, δ/2) and N(ε/2, δ/2) that
guarantees that if n > N(ε/2, δ/2):

Pnθ (A2(ζ∗, Xn) > ε/2) < δ/2.

Also, by the convergence assumption of this Lemma, there is N(ζ∗, ε/2, δ/2) such that for n >

N(ζ∗, ε/2δ/2):

Pnθ (A1(ζ∗, Xn) > ε/2 ) < δ/2.

It follows that for n > max{N(ζ∗, ε/2, δ/2), N(ε/2, δ/2)} ≡ N(ε, δ)

Pθ(cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn))

≥ Pθ(A1(ζ∗, Xn) < ε/2 and A2(ζ∗, Xn) < ε/2)

= 1− Pθ(A1(ζ∗, Xn) > ε/2 or A2(ζ∗, Xn) > ε/2)

≥ 1− Pθ(A1(ζ∗, Xn) > ε/2)− Pθ(A2(ζ∗, Xn) > ε/2)

≥ 1− δ

Q.E.D.
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We have shown that if
√
n(g(θ∗n) − g(θ̂n)) is any random variable satisfying the assumptions of

Lemma 2, its conditional α-quantile lies—with high probability—between the conditional (α−ε) and
(α+ε) quantiles of the limiting distribution hθ(Z,Xn). The next Lemma considers the case in which
θ∗n is either θB∗n or θP∗n and characterizes the asymptotic behavior of the c.d.f. of

√
n(g(θ̂n)− g(θ))

evaluated at bootstrap and posterior quantiles. The main result is that the c.d.f evaluated at the
α-bootstrap quantile is—in large samples—close to same c.d.f evaluated at the (α− ε) and (α+ ε)
posterior quantiles. We note that this result could not be obtained directly from the fact that
the bootstrap and posterior quantiles converge in probability to each other, as some additional
regularity in the limiting distribution is needed. This is why it was important to establish Lemma
2 before the following Lemma.

Lemma 3 Suppose that Assumptions 1-4 hold. Fix α ∈ (0, 1). Let cBα (Xn) and cPα (Xn) denote
critical values satisfying:

cB∗α (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α},

cP∗α (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ α}.

Then, for any 0 < ε < α and δ > 0 there exists N(ε, δ) such that for all n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ,(A.4)

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ.(A.5)

Proof: Let θ∗ denote either θP∗n or θB∗n . Let cα(Xn) and c∗α(Xn) be defined as in Lemma 2. Under
Assumptions 1 to 4, the conditions for Lemma 2 are satisfied. It follows that for any 0 < ε < α and
δ > 0 there exists N(ε, δ) such that for all n > N(ε, δ):

Pθ(cα+ε/2(Xn) < c∗α(Xn)) ≤ δ/2 and Pθ(c∗α(Xn) < cα−ε/2(Xn)) ≤ δ/2.

Therefore:

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn))(A.6)

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn) and cα+ε/2(Xn) ≥ c∗α(Xn))

+ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn) and cα+ε/2(Xn) < c∗α(Xn))

(by the additivity of probability measures)

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + Pθ(cα+ε/2(Xn) < c∗α(Xn))

(by the monotonicity of probability measures)

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + δ/2.

Also, we have that:

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn))(A.7)

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn) and c∗α(Xn) ≥ cα−ε/2(Xn))
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≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) and c∗α(Xn) ≥ cα−ε/2(Xn))

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + Pθ(c∗α(Xn) ≥ cα−ε/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) or c∗α(Xn) ≥ cα−ε/2(Xn))

(using P (A ∩B) = P (A) + P (B)− P (A ∪B))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− (1− Pθ(c∗α(Xn) ≥ cα−ε/2(Xn)))

(since Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) or c∗α(Xn) ≥ cα−ε/2(Xn)) ≤ 1)

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− Pθ(c∗α(Xn) < cα−ε/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− δ/2.

Replacing c∗α by cB∗α in (A.7) and c∗α by cP∗α and α by α− ε in (A.6) implies that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn))− δ/2

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ/2.

Combining the previous two equations gives that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ.

This establishes equation (A.4). Replacing θ∗n by θB∗n in (A.6) and replacing θ∗n by θP∗n , α by α+ ε

(A.7) implies that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Zn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) + δ/2

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Zn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ/2

and combining the previous two equations gives that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ,

which establishes equation (A.5).
Q.E.D.
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Proof of Theorem 2: Define, for any 0 < β < 1, the critical values cBβ (Xn) and cPβ (Xn) as:

cB∗β (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ β},

cP∗β (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ β}.

Note that the critical values cB∗β (Xn), cP∗β (Xn) and the quantiles for g(θB∗n ) and g(θP∗n ) are related
through the equation:

qBβ (Xn) = g(θ̂n) + cB∗β (Xn)/
√
n

qPβ (Xn) = g(θ̂n) + cP∗β (Xn)/
√
n.

This implies that:

CSBn (1− α) =
[
g(θ̂n) + cB∗α/2(Xn)/

√
n , g(θ̂n) + cB∗1−α/2(Xn)

]
CSPn (1− α− ε) =

[
g(θ̂n) + cP∗α/2+ε/2(Xn)/

√
n , g(θ̂n) + cP∗1−α/2−ε/2(Xn)

]
.

Under Assumptions 1 to 4 we can apply the previous lemma. This implies that for n > N(ε, δ)

Pθ
(
g(θ) ∈ CSBn (1− α)

)
= Pθ

(
g(θ) ∈

[
g(θ̂n) + cB∗α/2(Xn)/

√
n , g(θ̂n) + cB1−α/2/

√
n
])

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗1−α/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α/2+ε/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗1−α/2−ε/2(Xn))− δ

(Replacing α by α/2, ε by ε/2 and δ by δ/2 in (A.5) and

replacing α by 1− α/2, ε by ε/2 and δ by δ/2 in (A.4))

= Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
− δ

This implies that for every ε > 0:

1− α− dα ≥ lim sup
n→∞

Pθ
(
g(θ) ∈ CSBn

)
≥ lim sup

n→∞
Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
,

which implies that

1− α− ε− (dα − ε) ≥ lim sup
n→∞

Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
.

This implies that if the bootstrap fails at θ by at least dα% given the nominal confidence level
(1− α)%, then the confidence set based on the quantiles of the posterior will fail at θ—by at least
(dα − ε)%—given the nominal confidence level (1− α− ε).



31

A.3. Posterior Distribution of g(θP∗) under directional differentiability

Lemma 4 let Z be the limiting distribution of Zn ≡
√
n(θ̂n−θ) as defined in Assumption 2. Let Z∗

be a random variable independent of both Xn = (X1, . . . , Xn) and Z and let θ0 denote the parameter
that generated the data. Suppose that g is directionally differentiable in the sense defined in Remark
2 of the main text. Then, Assumption 4 (i) holds with hθ0 (Z,Zn) = g′θ0

(
Z∗ + Zn

)
− g′θ0

(
Zn

)
.

Proof: We start by analyzing the limiting distribution of both:

√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ0))

and
√
n(g(θ0 + Zn√

n
)− g(θ0))

as a function of (Z∗, Zn). Note that the delta-method for directionally differentiable functions (e.g.,
Theorem 2.1 in Fang and Santos (2015)) and the continuity of the directional derivative implies
that jointly:

√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ0)) d→ g′θ0 (Z∗ + Z)

g′θ0 (Z∗ + Zn) d→ g′θ0 (Z∗ + Z)
√
n(g(θ0 + Zn/

√
n)− g(θ0)) d→ g′θ0 (Z)

g′θ0 (Zn) d→ g′θ0 (Z)

where Z is independent of Z∗. Note that the joint (and unconditional) convergence in distribution
above implies that:

An ≡
√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ̂n))

and
Bn ≡ g′θ0 (Z∗ + Zn)− g′θ0 (Zn)

are such that |An −Bn| = op(1), where the op(1) terms refers to convergence in probability uncon-
ditional on the data as a function of Z∗ and Zn.

Note that for any two random variables An and Bn we have that for any ε

sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣

is bounded above by:

ε+ 2PZ
∗
[ |An −Bn| > ε |Xn],

where the probability is taken over the distribution of Z∗, denoted PZ
∗
.14 Note that the uncondi-

tional convergence in probability result for |An −Bn| implies that:

14This is a common bound used in bootstrap analysis; see for example, Theorem 23.9 p. 333 in
Van der Vaart (2000).
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Eθ[PZ
∗
[ |An −Bn| > ε |Xn]]→ 0,

as the expectation is taken over different data realizations. Note that in light of the inequalities
above we have that:

(A.8) Pθ
(

sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ > 2ε

)
is bounded above by:

Pθ
(
ε+ 2PZ

∗
[ |An −Bn| > ε |Xn] > 2ε

)
,

which equals

Pθ
(
PZ

∗
[ |An −Bn| > ε |Xn] > ε/2

)
.

Thus, by Markov’s inequality:

Pθ
(

sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ > 2ε

)
≤ 2Eθ[PZ

∗
[ |An −Bn| > ε |Xn]]/ε.

Implying that:
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ p→ 0,

as desired.15 Q.E.D.

15We are extremely thankful to an anonymous referee who suggested major simplifications to the
previous version of the proof of this Lemma.
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A.4. Additional Lemmata

Lemma 5 (Dudley (2002), p. 395) Let W ∗n , Y ∗n be random variables dependent on the data
Xn = (X1, X2, . . . Xn) inducing the probability measures PnW and PnY respectively. Let A ⊂ Rk and
let Aδ = {y ∈ Rk : ‖x− y‖ < δ for some x ∈ A}. Then,

|PnW (A|Xn)− PnY (A|Xn)| ≤ 1
δ

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣

+ min{PnY (Aδ\A|Xn), PnY ((Ac)δ\Ac|Xn)}

Proof: First observe that:

PnW (A|Xn)− PnY (A|Xn) ≤ PnW (A|Xn)− PnY (Aδ|Xn) + PnY (Aδ|Xn)− PnY (A|Xn)

Define f(x) := max(0, 1− ‖x−A‖/δ). Then, δf ∈ BL(1) and:

PnW (A|Xn) =
∫
A

dPnW |Xn

≤
∫
fdPnW |Xn

( since f is nonnegative and f(x) = 1 over A )

=
∫
A

dPnY |Xn + 1
δ

(∫
A

δfdPnW |Xn −
∫
A

δfdPnY |Xn

)
≤
∫
fdPnY |Xn + 1

δ
sup

f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

=
∫
Aδ

fdPnY |Xn + 1
δ

sup
f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

≤ PnY (Aδ|Xn) + 1
δ

sup
f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

It follows that:

PnW (A|Xn)− PnY (A|Xn) ≤ 1
δ

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣+ (PnY (Aδ|Xn)− PnY (A|Xn))

An analogous argument can be made for Ac. In this case we get:

PnW (Ac|Xn)− PnY (Ac|Xn) ≤ 1
δ

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣+ (PnY ((Ac)δ|Xn)− PnY (Ac|Xn)),

which implies that:

PnW (A|Xn)− PnY (A|Xn) ≥ − 1
δ

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣− (PnY ((Ac)δ|Xn)− PnY (Ac|Xn))

The desired result follows. Q.E.D.



ONLINE APPENDIX B.

Toru Kitagawa1, José-Luis Montiel-Olea2 and Jonathan Payne3

1. MAX{θ1, θ2}

In this Appendix we illustrate Theorem 2 with an alternative example. Let (X1, . . . Xn)
be an i.i.d sample of size n from the statistical model:

Xi ∼ N2(θ,Σ), θ = (θ1, θ2)′ ∈ R2, Σ =
(
σ2

1 σ12

σ12 σ2
2

)
∈ R2×2,

where Σ is assumed known. Consider the family of priors:

θ ∼ N2(µ, (1/λ2)Σ), µ = (µ1, µ2)′ ∈ R2

indexed by the location parameter µ and the precision parameter λ2 > 0. The object
of interest is the transformation:

g(θ) = max{θ1, θ2}.

Relation to the main assumptions: The transformation g is Lipschitz con-
tinuous everywhere and differentiable everywhere except at θ1 = θ2 where it has
directional derivative g′θ(h) = max{h1, h2}. This implies that Assumption 1 is sat-
isfied.
Once again, we take θ̂n to be the maximum likelihood estimator given by θ̂n =

(1/n)
∑n
i=1Xi and so

√
n(θ̂n − θ) ∼ Z ∼ N2(0,Σ). Thus, Assumption 2 is satisfied.

The posterior distribution for θ is given by Gelman, Carlin, Stern, and Rubin
(2009), p. 89:

θP∗n |Xn ∼ N2
( n

n+ λ2 θ̂n + λ2

n+ λ2µ ,
1

n+ λ2 Σ
)
.

and so by an analogous argument to the absolute value example we have that:

β(
√
n(θP∗n − θ̂n),N2(0,Σ));Xn) p→ 0,

1University College London, Department of Economics, and Kyoto University, Department of
Economics. E-mail: t.kitagawa@ucl.ac.uk.

2Columbia University, Department of Economics. E-mail: montiel.olea@gmail.com.
3New York University, Department of Economics. E-mail: jep459@nyu.edu.
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which implies that Assumption 3 holds.
Finally, since g is directionally differentiable, Remark 2 (and Lemma 4) imply that

Assumption 4 (i) is satisfied by function:

hθ0(Z,Xn) = g′θ0(Z + Zn)− g′θ0(Zn)

= max{Z1 + Zn,1, Z2 + Zn,2} −max{Zn,1, Zn,2}

Define the random variable Y ≡ hθ0(Z,Xn) = max{Z1 + Zn,1, Z2 + Zn,2} −Mn,
where Mn ≡ max{Zn,1, Zn,2}. Based on the results of Nadarajah and Kotz (2008),
the (conditional) density of Y , denoted fθ0(y|Xn), is given by:

1
σ1
φ

(
Zn,1 − y −Mn

σ1

)
Φ
(

1√
1− ρ2

(
ρ(Zn,1 − y −Mn)

σ1
+ y +Mn − Zn,2

σ2

))

+ 1
σ2
φ

(
Zn,2 − y −Mn

σ2

)
Φ
(

1√
1− ρ2

(
ρ(Zn,2 − y −Mn)

σ2
+ y +Mn − Zn,1

σ1

))
,

where ρ = σ12/σ1σ2 and φ,Φ are the p.d.f. and the c.d.f. of a standard normal. It
follows that:

fθ0(y|Zn) ≤ 1√
2π

( 1
σ1

+ 1
σ2

)
.

and so, by an analogous argument to the absolute value case, Fθ0(y|Xn) is Lipschitz
continuous with Lipschitz constant independent of Zn and so Assumption 4(ii) holds.

Graphical illustration of coverage failure: Theorem 2 implies that cred-
ible sets based on the quantiles of g(θP∗n ) will effectively have the same asymp-
totic coverage properties as confidence sets based on quantiles of the bootstrap.
For the transformation g(θ) = max{θ1, θ2}, this means that both methods lead
to deficient frequentist coverage at the points in the parameter space in which
θ1 = θ2. This is illustrated in Figure 2, which depicts the coverage of a nominal
95% bootstrap confidence set and different 95% credible sets. The coverage is eval-
uated assuming θ1 = θ2 = θ ∈ [−2, 2] and Σ = I2. The sample sizes considered are
n ∈ {100, 200, 300, 500}. A prior characterized by µ = 0 and λ2 = 1 is used to cal-
culate the credible sets. The credible sets and confidence sets have similar coverage
as n becomes large and neither achieves 95% probability coverage for all θ ∈ [−2, 2].
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Remark 1 Dümbgen (1993) and Hong and Li (2015) have proposed re-scaling the
bootstrap to conduct inference about a directionally differentiable parameter. More
specifically, the re-scaled bootstrap in Dümbgen (1993) and the numerical delta-
method in Hong and Li (2015) can be implemented by constructing a new random
variable:

y∗n ≡ n1/2−δ
(
g

( 1
n1/2−δZ

∗
n + θ̂n

)
− g(θ̂n)

)
,

where 0 ≤ δ ≤ 1/2 is a fixed parameter and Z∗n could be either ZP∗n or ZB∗n . The
suggested confidence interval is of the form:

(1.1) CSHn (1− α) =
[
g(θ̂n)− 1√

n
c∗1−α/2, g(θ̂n)− 1√

n
c∗α/2

]

where c∗β denote the β-quantile of y∗n. Hong and Li (2015) have recently established
the pointwise validity of the confidence interval above.

Whenever (1.1) is implemented using posterior draws; i.e., by relying on draws
from:

ZP∗n ≡
√
n(θP∗n − θ̂n),

it seems natural to use the same posterior distribution to evaluate the credibility
of the proposed confidence set. Figure 2 reports both the frequentist coverage and
the Bayesian credibility of (1.1), assuming that the Hong and Li (2015) procedure
is implemented using the posterior:

θP∗n |Xn ∼ N2
( n

n+ 1 θ̂n ,
1

n+ 1I2
)
.

The following figure shows that at least in this example fixing coverage comes at
the expense of distorting Bayesian credibility.1

1The Bayesian credibility of CSHn (1− α) is given by:

P∗(g(θP∗
n ) ∈ CSHn (1− α)|Xn)

= P∗
(
g(θ̂n)− 1√

n
c∗

1−α/2(Xn) ≤ g(θP∗
n ) ≤ g(θ̂n)− 1√

n
c∗
α/2(Xn)

∣∣∣Xn

)
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