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Abstract

This article reviews recent advances in fixed effect estimation of panel data models for long panels,

where the number of time periods is relatively large. We focus on semiparametric models with unobserved

individual and time effects, where the distribution of the outcome variable conditional on covariates

and unobserved effects is specified parametrically, while the distribution of the unobserved effects is left

unrestricted. Compared to existing reviews on long panels (Arellano & Hahn, 2007; a section in Arellano

& Bonhomme, 2011) we discuss models with both individual and time effects, split-panel Jackknife bias

corrections, unbalanced panels, distribution and quantile effects, and other extensions. Understanding

and correcting the incidental parameter bias caused by the estimation of many fixed effects is our main

focus, and the unifying theme is that the order of this bias is given by the simple formula p/n for all

models discussed, with p the number of estimated parameters and n the total sample size.
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1 INTRODUCTION

One of the main advantages of panel data over cross-sectional or time series data is the possibility of

accounting for multiple sources of unobserved heterogeneity. This is accomplished by including individual

and time unobserved effects into the model, which control for any unobserved covariate that is either time

or cross-sectional invariant. In this article we consider fixed effect approaches to panel data models, where

no distributional assumption on the unobserved effects is imposed, therefore allowing the unobserved effects

to be arbitrarily related with the observed covariates. Fixed effects contrast with random effects approaches

that impose restrictions on the distribution of the unobserved effects conditional on the observed covariates.

We refer to Arellano (2003b), Baltagi (2008), Hsiao (2014), and Wooldridge (2010) for modern textbook

treatments on the difference between fixed and random effects.

We consider semiparametric models that specify parametrically some characteristic of the distribution

of the outcome variable of interest conditional on the observed covariates and unobserved effects. Exam-

ples include linear and nonlinear regression models for the conditional expectation, and generalized linear,

distribution and quantile regression models for the conditional distribution. Generalized linear models

include the most commonly used nonlinear models such as probit, logit, Poisson, negative binomial, pro-

portional hazard, and tobit models. The nonparametric or unspecified part of the model consists of the

joint distribution of the unobserved effects, exogenous covariates and initial conditions. We do not review

nonparametric panel models such as the nonseparable models considered in Altonji & Matzkin (2005), Ev-

dokimov (2010), Graham & Powell (2012), Hoderlein & White (2012), Chernozhukov, Fernández-Val, Hahn

& Newey (2013), Chernozhukov, Fernandez-Val, Hoderlein, Holzmann & Newey (2015), Chernozhukov,

Fernández-Val & Newey (2017a), Freyberger (2017), and Torgovitsky (2016), among others. We refer to

Matzkin (2007) for an excellent survey on nonparametric identification of nonseparable models including

results for panel data.

We analyze the properties of fixed effects estimators of model parameters. These estimators treat the

unobserved effects as parameters to be estimated. In linear models with strictly exogenous covariates and

individual effects, fixed effects is numerically equivalent to the within-group estimator that removes the

individual effects by taking differences within each individual. We also analyze fixed effects estimation of

average partial effects (APEs), which are averages of functions of the data, parameters and unobserved

effects. APEs are often the quantities of interest in nonlinear models because they correspond to marginal

effects of the covariates in some characteristic of the distribution of the outcome conditional on covariates

and unobserved effects, averaged over the observed and unobserved heterogeneity. The main challenge

with fixed effects estimators is to deal with the incidental parameter problem coming from the estimation

of the unobserved effects. The estimated unobserved effects, usually called fixed effects, can be very noisy

because there are few observations that are informative about them. Section 2 describes the incidental

parameter problem in detail.
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Motivated by the first panel data sets available, the econometric theory was initially designed for panels

where the number of time periods, T , is small compared to the number of cross-sectional units, N . This

theory analyzed identification, estimation and inference using a fixed-T asymptotic approximation that

considers sequences of panels with increasing N and fixed T . Consistent approaches under this approxima-

tion usually consist of removing the unobserved effects from the model by some smart transformation such

as differencing or conditioning on sufficient statistics. Examples include Mundlak (1978), Arellano & Bond

(1991) and Moreira (2009) for linear models; Cox (1958), Rasch (1960), Andersen (1970), Chamberlain

(1980), Manski (1987), Horowitz (1992), Honoré & Kyriazidou (2000), and Arellano & Carrasco (2003)

for static and dynamic binary choice models; Hausman, Hall & Griliches (1984) for static Poisson models;

Honoré (1992) for tobit models; Kyriazidou (1997, 2001) for sample selection models; and Muris (2017)

and Botosaru & Muris (2017) for ordered logit and probit models; Bonhomme (2012) provided a unifying

scheme for many of those methods.

The fixed-T approach has encountered several limitations. First, transformations to remove the unob-

served effects are not available for some models such as probit and quantile regression. This issue gets worse

in models with unobserved effects in multiple dimensions, where even if sufficient statistics exist condition-

ing on them can be computationally challenging (Hirji, Mehta & Patel, 1987; Charbonneau, 2014). Second,

differencing over time in dynamic linear models does not work well when the data are very persistent be-

cause it removes most of the information about the parameters. Third, removing the unobserved effects

from the model precludes the estimation of APEs in nonlinear models. Fourth, under fixed-T asymptotics

the incidental parameter problem of fixed effects estimation is a consistency problem, which is difficult to

tackle. Fifth, some models are not
√
N -estimable or not even point identified under the fixed-T approxi-

mation, see , e.g., Chamberlain (2010), Honoré & Tamer (2006), Chernozhukov, Fernández-Val, Hahn &

Newey (2013), Shi, Shum & Song (2014), and Pakes & Porter (2013).

All the limitations of the fixed-T approximation mentioned in the previous paragraph, together with the

recent availability of long panel datasets, has led to an alternative asymptotic approximation to panel data

that considers sequences of panels where both N and T increase. This large-T approximation, developed by

Phillips & Moon (1999) for linear models, deals with some of the shortcomings of the fixed-T approximation.

For example, most models are point identified with large-T and the incidental parameter problem of fixed

effects estimation becomes an asymptotic bias problem that is easier to tackle. Bias corrections have

been developed to provide improved fixed effects estimators of model parameters and APEs. This large-T

approximation can also be applied naturally to other types of data with a grouping structure similar to

panel data such as network and trade data.

The two alternative asymptotic approximations to panel data should be viewed as complements rather

than substitutes. For example, if a fixed T consistent estimator is available for the particular parameter

under consideration, then it generally should be used. Otherwise it is likely that the model is not point

identified for fixed-T . Then, one can either consider bounding the parameter if T is small, or drawing on
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a large-T consistent estimator if T is moderately large with respect to N . Honoré & Tamer (2006) and

Chernozhukov, Fernández-Val, Hahn & Newey (2013) showed that in some binary response models the

bounds for parameters and APEs can be very tight and shrink very rapidly with T . Thus, unless T is

very small, one can safely ignore that the model might only be set-identified and use large T consistent

estimators. Alternatively, one might entertain (correlated) random effects approaches that achieve fixed-T

point identification by imposing restrictions on the distribution of the unobserved effects.

This review focuses solely on fixed effects estimators of semiparametric panel models analyzed under

a large-T asymptotic approximation. Available survey articles on panel data estimation under fixed-

T approximations include Chamberlain (1984), Arellano & Honoré (2001), Honoré (2002), Arellano &

Bonhomme (2011), and Arellano & Bonhomme (2017). We concentrate mainly on the developments since

Arellano & Hahn (2007), which previously reviewed the large-T approach to panel data. This field has

grown sufficiently fast in recent years to justify another review. In particular, Arellano & Hahn (2007)

considered almost exclusively models with only unobserved individual effects, whereas we consider models

with unobserved effects in multiple dimensions such as individual and time effects. We also review the

estimation of distributional and quantile effects with panel data, which were not discussed in Arellano &

Hahn (2007). Our review relies heavily upon the important foundational work in this literature by Neyman

& Scott (1948), Nickell (1981), Cox & Reid (1987), Kiviet (1995), Phillips & Moon (1999), Lancaster (2000),

Hahn & Kuersteiner (2002), Lancaster (2002), Woutersen (2002), Arellano (2003a), Alvarez & Arellano

(2003), Li, Lindsay & Waterman (2003), Hahn & Newey (2004), Carro (2007), Fernández-Val (2009), Hahn

& Kuersteiner (2011), Fernández-Val & Lee (2013) and Dhaene & Jochmans (2015b), among others.

Outline: In Section 2 we describe the bias of maximum likelihood estimators (MLEs) in cross-sectional

samples, which allows us to establish some key results in a simplified setting. Those results are then gener-

alized to panel data models in Section 3, where we discuss the incidental parameter bias and bias correction

methods for fixed effected estimators of model parameters and average partial effects. A short heuristic

derivation of the main formulas in Section 3 is provided in the appendix. Section 4 discusses unbalanced

panels, multivariate fixed effects, distributional and quantile effects, and some further extensions of the

methods, before we conclude in Section 5.

Notation: In the following we denote by E the expectation with respect to the parametric part of

the model. Averages over cross-sectional and time-series samples are denoted by En = n−1
∑n

j=1, EN =

N−1
∑N

i=1, ET = T−1
∑T

t=1, and ENT = (NT )−1
∑N

i=1

∑T
t=1. For example, we write En`j(θ) for n−1

∑n
j=1 `j(θ)

in the next section. We also define Gn =
√
n (En − E), GN =

√
N (EN − ENE), GT =

√
T (ET − ETE),

and GNT =
√
NT (ENT − ENTE). The notations En and Gn are used in Section 2 for random samples,

whereas EN , ET , GN , GT and GNT are used in Section 3 for nonrandom panel samples, which explains

the additional sample averages before the expectations E. For example GNT `it =
√
NTENT (`it − E`it).

4



In Section 2 we often just write a bar to denote the expectation E, e.g. `it = E`it. Vector-valued vari-

ables are always arranged as column-vectors in the following. Thus, we write θ = (β, α, γ) to form the

column-vector θ as the concatenation of the column-vectors β, α and γ. Vector and matrix transposition

is denoted by a prime. We use
a∼ to denote asymptotic approximation to the distribution. For example,

if
√
n(β̂ − β0 − B/an) →d N (0, V ) for some sequence an such that an → ∞ as n → ∞, then we write

β̂ − β0
a∼ N (B/an, V/n).

2 THE INCIDENTAL PARAMETER PROBLEM

Incidental parameters are nuisance parameters whose dimension grows with the sample size. Neyman &

Scott (1948) showed that maximum likelihood estimators (MLEs) can be asymptotically biased in models

with incidental parameters. Here we provide a derivation based on a second-order asymptotic expansion

that the order of the bias of the MLEs in random samples is

bias ∼ p

n
, (1)

where p is the number of parameters and n is the sample size. This order corresponds with the inverse of

the number of observations per parameter. In the following sections we will see that the order of the bias

of fixed effects estimators of parameters and APEs can also be obtained using this simple heuristic formula

in more complex panel data samples.

2.1 Bias of Maximum Likelihood Estimators

Given a random sample {zj : 1 ≤ j ≤ n} of a random variable z that has density f(z, θ0) with respect to

some dominating measure, let

θ̂ = argmax
θ∈Rp

En`j(θ), `j(θ) := log f(zj , θ), (2)

be the maximum likelihood estimator (MLE) of the value of the p-dimensional parameter θ that is identified

by the population program

θ0 = argmax
θ∈Rp

E`j(θ). (3)

In the following expansions we assume that θ0 is uniquely determined by the first order conditions of

the program (3), θ 7→ `j(θ) is a.s. differentiable to sufficient order, and other regularity conditions that

allow us to bound remainder terms. We also assume that θ̂ is consistent, i.e., θ̂ →P θ0 under some norm.

Establishing this consistency might require delicate arguments in high dimensional settings where we let

p → ∞ as n → ∞. We denote derivatives of θ 7→ `j(θ) using superscripts θ, that is, `θj(θ) is the p-

dimensional gradient, `θθj (θ) is the p×p Hessian matrix, and, for k ∈ {1, . . . , p}, `θθθkj (θ) is the p×p matrix
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obtained by taking the partial derivative of the Hessian with respect to θk. We drop the argument θ from

all the functions whenever they are evaluated at θ0, e.g. `θj := `θj(θ0).

By consistency, the asymptotic properties of θ̂ are governed by the local properties of `j(θ) around θ0.

A second order Taylor expansion of the first order condition of (2) around θ = θ0 yields

0 = En`θj(θ̂) ≈ En`θj + En`θθj (θ̂ − θ0) +
1

2

p∑
k=1

En`θθθkj (θ̂ − θ0)(θ̂k − θ0,k).

We have En`θj = n−1/2Gn`
θ
j , because E`θj = 0 by the first order conditions of the population program (3).

Decomposing En`θθj = E`θθj +n−1/2Gn`
θθ
j and En`θθθkj = E`θθθkj +n−1/2Gn`

θθθk
j , and ignoring the term that

includes Gn`
θθθk
j because it is of small enough order, gives

n−1/2Gn`
θ
j + E`θθj (θ̂ − θ0) + n−1/2Gn`

θθ
j (θ̂ − θ0) +

1

2

p∑
k=1

E`θθθkj (θ̂ − θ0)(θ̂k − θ0,k) ≈ 0. (4)

The leading two terms of (4) give the standard first-order approximation θ̂ − θ0 ≈ n−1/2ψ1, where ψ1 :=

−
(

E`θθj

)−1
Gn`

θ
j is the influence function. Plugging this first-order approximation into the third and fourth

term of (4) and dropping low order terms yields the second-order approximation

θ̂ − θ0 ≈ n−1/2ψ1 + n−1ψ2, (5)

where

ψ2 := −
(

E`θθj

)−1
Gn`

θθ
j ψ1 −

1

2

p∑
k=1

(
E`θθj

)−1
E`θθθkj ψ1ψ1,k.

We now analyze the properties of the components of ψ1 = (ψ1,1, . . . , ψ1,p) and ψ2 = (ψ2,1, . . . , ψ2,p). For

each k ∈ {1, . . . , p}, ψ1,k has zero mean, finite variance and asymptotic normal distribution under standard

assumptions. Thus, ψ1 is a variance term that does not contribute to the bias of θ̂. To determine the mean

of the quadratic term ψ2,k, we assume for simplicity that E`θθj is a diagonal matrix.1 Then,

Eψ2,k =

p∑
l=1

E
(
`θkθlj `θlj + 1

2 `
θkθlθl
j

)
E`θkθkj E`θlθlj

, (6)

where we use the information equality E`θlj `
θm
j = −E`θlθmj to simplify the expression. This result shows

that Eψ2,k is proportional to p, because of the sum over l = 1, . . . , p, and therefore

Eθ̂ − θ0 ≈ n−1/2Eψ1︸ ︷︷ ︸
=0

+n−1Eψ2 ∼ n−1p,

which verifies the order of the bias in (1). The term ψ2 also has variance. However, the order of the

variance of the term n−1ψ2 is lower than the order of the variance of the term n−1/2ψ1 in the expansion

(5).

1This simplification is without loss of generality because we can diagonalize the Hessian by reparametrizing the model.
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2.2 Consequences for Inference

The asymptotic bias of the MLE has consequences for inference. Confidence intervals based on the first-

order asymptotic distribution might severely undercover even in large samples if the sample size is not

sufficiently large relative to the dimension of the parameters, more precisely when n = O(p2). To see this,

let ρ′θ, ρ ∈ Rp, be the inferential object of interest, and also let Eψ2/p = B = (B1, . . . , Bp). By standard

theory for MLE, ρ′ψ1 →d N (0, ρ′Ωρ) with Ω = −
(

E`θθj

)−1
, and ρ′ψ2/p →p ρ

′B, as n → ∞. Then, as

n→∞,

ρ′
(
θ̂ − θ0

)
a∼ N

(
p

n
ρ′B,

1

n
ρ′Ωρ

)
.

Consider ρ = ek, the unit vector with a one in position k. The standard asymptotic two-sided (1 − α)-

confidence interval for θk = e′kθ is

CI1−α(θk) = θ̂k ± zα/2Ω̂
1/2
kk /
√
n,

where Ω̂kk is a consistent estimator of Ωkk, the (k, k) element of Ω, and zα/2 is the (1 − α/2)-quantile of

the standard normal distribution.

Consider p/
√
n→ κ as n→∞. Then, the coverage of CI1−α(θk) in large samples is

Pr(θk ∈ CI1−α(θk)) = Pr(
√
n|θ̂k − θk| ≤ zα/2Ω̂

1/2
kk )→ Pr(|N (κBk,Ωkk)| ≤ zα/2Ω

1/2
kk )

= Φ(zα/2 − κBk/Ω
1/2
kk )− Φ(−zα/2 − κBk/Ω

1/2
kk ) < 1− α

if κBk 6= 0. This coverage can be much lower than the nominal level 1−α. For example, if κBk/Ω
1/2
kk = 1,

then the coverage probability of a 95% interval is less than 83% in large samples.

3 SEMIPARAMETRIC PANEL MODELS

3.1 Model

We observe the panel data set {(yit, xit) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}, for a scalar outcome variable of interest

yit and a vector of covariates xit. The subscripts i and t index individuals and time periods in traditional

panels, but they might index other dimensions in more general data structures such as firms and industries

or siblings and families. The observations are independent across i and weakly dependent across t.2 We

consider the semiparametric model for each i = 1, . . . , N :

yit | xti, α, γ ∼ f(· | xit, αi, γt;β), independently over t = 1, . . . , T, (7)

where xti = (xi1, . . . , xit), α = (α1, . . . , αN ), γ = (γ1, . . . , γT ), f is a known density with respect to some

dominating measure, and β is a dβ-vector of parameters. The variables αi and γt are scalar unobserved

2Long panel models with cross-sectional dependence are discussed in Pakel (2014).
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individual and time effects that in economic applications capture individual heterogeneity and aggregate

shocks, respectively.3 The model is semiparametric because it does not specify the distribution of these

effects nor their relationship with the covariates. The conditional density f represents the parametric part

of the model. The covariates xit are predetermined with respect to yit and might include lags of yit to

accommodate dynamic models. If the covariates xit are strictly exogenous with respect to yit, then xti can

be replaced by xTi = (xi1, . . . , xiT ) in the conditioning set. Strict exogeneity rules out dynamics and more

generally any feedback from the outcome to future values of the covariates, which might be restrictive in

applications.

Example (i) The simplest example of this model is the normal linear model with additive individual

and time effects yit = x′itδ + αi + γt + εit, εit | xti, α, γ ∼ N (0, σ2), where

f(y | xit, αi, γt;β) =
1√

2πσ2
exp

[
−(y − x′itδ − αi − γt)2

2σ2

]
, β = (δ, σ2). (8)

Example (ii) An example of a nonlinear model is the panel binary response single index model with

additive unobserved individual and time effects:

yit = 1(x′itβ + αi + γt ≥ εit), εit | xti, α, γ ∼ Fε,

where Fε is a known CDF such as the standard normal or logistic. In this case,

f(y | xit, αi, γt;β) = Fε(x
′
itβ + αi + γt)

y × [1− Fε(x′itβ + αi + γt)]
1−y × 1(y ∈ {0, 1}). (9)

Example (iii) Another example is a panel Poisson count response single index model with additive

unobserved individual and time effects where, for λit = exp(x′itβ + αi + γt),

f(y | xit, αi, γt;β) =
λyit exp(−λit)

y!
1 (y ∈ {0, 1, . . .}) . (10)

Let β0, α0 = (α01, . . . , α0N ), and γ0 = (γ01, . . . , γ0T ) denote the values of β, α and γ that generate

the data. We assume that these values are identified by the population conditional maximum likelihood

program

(β0, α0, γ0) ∈ argmax
(β,α,γ)∈Rdβ+N+T

ENT ¯̀
it(β, αi, γt), `it(β, αi, γt) = log f(yit | xit, αi, γt;β), (11)

where ¯̀
it(β, αi, γt) := E`it(β, αi, γt), the expected conditional log-likelihood with respect to the parametric

part of the model. This program can have multiple solutions for α0 and γ0. For example, in models that

3We refer to Fernández-Val & Lee (2013) for GMM panel models defined by moment conditions. We discuss models with

multivariate individual and time effects in Section 4.2.
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are additively separable in αi and γt such as the single index models above, `it(β, αi, γt) = `it(β, αi + γt),

the location translation αi + c and γt − c for a constant c does not change the objective function of the

program. In this case we assume that there exists a normalization that selects α0 and γ0 (e.g. α01 = 0 or

γ01 = 0).

3.2 Fixed Effects Estimator and Incidental Parameter Problem

The fixed effects (FE) estimator treats the realizations of α and γ as parameters to be estimated. It is the

solution to the sample conditional maximum likelihood program, for α̂ = (α̂1, . . . , α̂N ) and γ̂ = (γ̂1, . . . , γ̂T ),

(β̂, α̂, γ̂) ∈ argmax
(β,α,γ)∈Rdβ+N+T

ENT `it(β, αi, γt), (12)

which is the sample analog of (11). This program can also have multiple solutions for α̂ and γ̂. In that case

we adopt the same normalization as in the population program to select α̂ and γ̂. In the binary and count

response examples, we can obtain the FE estimator using standard software routines including individual

and time indicators for the unobserved effects. We discuss some computational aspects of the program

(12) in Section 3.6.

The FE estimator suffers from the incidental parameter problem (Neyman & Scott, 1948, see also

Lancaster, 2000 for a review). The incidental parameters are the individual and time fixed effects which

have dimensions N and T , respectively. Unless T is large, each individual fixed effect is very noisy because

only T observations are informative about it. Symmetrically, unless N is large, each time fixed effect is

very noisy. The noise in the fixed effects generally contaminates the estimators of the other parameters.

Exceptions include linear and Poisson models with strictly exogenous covariates where it is possible to

separate the estimation of the fixed effects from the other parameters. The asymptotic consequences of the

incidental parameter problem depend on the approximation adopted. It is a consistency problem under

a fixed-T or fixed-N approximation, whereas it becomes an asymptotic bias problem under a large-T and

large-N approximation, which we adopt here.

3.3 Asymptotic Bias

The FE program (12) can be seem as a special case of (2) with j = it, n = NT , θ = (β, α, γ) and

p = dβ + N + T . However, the random sampling assumption of Section 2.1 is not plausible for panel

data. The presence of the unobserved effects introduces heterogeneity in both dimensions, and assuming

independence is often too strong when one of the dimensions is time. Some adjustments to the expansion in

(5) are therefore required. We can still derive a second-order expansion θ̂− θ0 ≈ (NT )−1/2ψ1 + (NT )−1ψ2

for θ̂ = (β̂, α̂, γ̂) and θ0 = (β0, α0, γ0), but the expressions of ψ1 and ψ2 need to be modified to account for

heterogeneity and weak serial dependence. We provide these modifications in the appendix.
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To characterize the asymptotic bias of the component β̂ of θ̂, it is convenient to make `it(β, α, γ)

information-orthogonal between β and the rest of the parameters. This can be achieved by the transfor-

mation4

`∗it(β, αi, γt) := `it(β, αi + κ′iβ, γt + ρ′tβ), (13)

where the dβ-vectors κi and ρt are a solution to the system of equations5

ET
[
`
βαi
it + κi `

αiαi
it + ρt `

αiγt
it

]
= 0, i = 1, . . . , N,

EN
[
`
βγt
it + κi `

γtαi
it + ρt `

γtγt
it

]
= 0, t = 1, . . . , T. (14)

Here, as in Section 2.1, we drop the arguments of the partial derivatives of `it when they are evaluated at

the true values (β0, α0i, γ0t), and analogously we drop the arguments of partial derivatives of `∗it when they

are evaluated at the transformed true values (β0, α0i − κ′iβ0, γ0t − ρ′tβ0). Solving the program (12) with

`∗it(β, αi, γt) in place of `it(β, αi, γt) does not change the solution for β. The reparametrized program cannot

be used to compute the estimator because `∗it(β, αi, γt) depends on θ0, but it is a convenient theoretical

device to analyze the properties of β̂ because the Hessian ENT `
∗ θθ
it is block-diagonal between β and (α, γ).

We proceed by obtaining the bias from the infeasible log-likelihood `∗it, and then we can express it in

terms of the feasible likelihood `it using the one-to-one relationship between `it and `∗it. For example,

`∗βit = `βit + κi`
αi
it + ρt`

γi
it .

Under the orthogonal parametrization, the component of the influence function ψ1 = −(ENT `
∗ θθ
it )−1GNT `

∗ θ
it

corresponding to β simplifies to ψ1,β = −(ENT `
∗ββ
it )−1GNT `

∗β
it . Under standard conditions for MLE, as

N,T →∞,

ψ1,β →d N (0, H−1), H = − plim
N,T→∞

ENT `
∗ββ
it ,

where we use that ψ1,β is a martingale difference over t, and the conditional information equality. As in

the cross-sectional case, ψ1,β has zero mean and determines the asymptotic variance.

The component of the second term ψ2 corresponding to β also simplifies with the reparametrization.

4This transformation corresponds to the reparameterization α∗i = αi − κ′iβ and γ∗t = γt − ρ′tβ. The log-likelihood with

respect to these parameters is `it(β, α
∗
i + κ′iβ, γ

∗
t + ρ′tβ) =: `∗it(β, α

∗
i , γ
∗
t ), which gives (13) after renaming (α∗i , γ

∗
t ) as (αi, γt)

again.
5The solution for κi and ρt may not be unique. For example, if `it(β, αi, γt) = `it(β, αi + γt), then the system does not

uniquely determine κi and ρt, but only κi + ρt for all i, t. However, only κi + ρt will appear in our formulas for asymptotic

bias and variance of β̂ in that case, so the non-uniqueness of κi and ρt is not important.
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After some calculations that are detailed in the appendix,

ψ2,β := −
(
ENT `

∗ββ
it

)−1
N∑
i=1

−GT `
∗βαi
it GT `

αi
it

ET `
αiαi
it

+
ET `

∗βαiαi
it (GT `

αi
it )2

2
(
ET `

αiαi
it

)2


︸ ︷︷ ︸

=ψB2,β

−
(
ENT `

∗ββ
it

)−1
T∑
t=1

−GN`
∗βγt
it GN`

γt
it

EN`
γtγt
it

+
EN`

∗βγtγt
it (GN`

γt
it )

2

2
(
EN`

γtγt
it

)2


︸ ︷︷ ︸

=ψD2,β

.

This second-order term is the primary source of bias. By the law of large numbers for heterogenous weakly

dependent sequences as N,T →∞,

ψB2,β
N
→P H

−1 plim
N,T→∞

EN

−ET
∑T

s=t E
(
`αiit `

∗βαi
is

)
− ET `

∗βαiαi
it /2

ET `
αiαi
it

 =: B, (15)

and

ψD2,β
T
→P H

−1 plim
N,T→∞

ET

−ENE
(
`γtit `

∗βγt
it

)
− EN`

∗βγtγt
it /2

EN `
γtγt
it

 =: D. (16)

The expressions for B and D are almost symmetric with respect to the indices i and t, but there is no double

sum in D because we are assuming independence of observations across i, while we allow for predetermined

covariates over t. The expressions become symmetric when the covariates are strictly exogenous because

the terms of the double sum
∑T

s=t+1 in B drop out. Hence, the order of the bias is

ψ2,β

NT
=
ψB2,β + ψD2,β

NT
∼ B

T
+
D

N
∼ N + T

NT
,

which corresponds to the prediction from (1) since n = NT and p = dβ +N + T ∼ N + T .

The bias term B/T comes from the individual fixed effects since there are T observations that are

informative about each of them. Symmetrically, the bias term D/N comes from the time fixed effects

since there are N observations that are informative about each of them. Accordingly, the term D/N drops

out in models with only individual effects or becomes negligible relative to B/T when N � T . Hahn &

Kuersteiner (2002) and Alvarez & Arellano (2003) characterized B in dynamic linear panel models with

individual effects. For nonlinear models, Hahn & Newey (2004) and Hahn & Kuersteiner (2011) derived B

in the static and dynamic case, respectively. Fernández-Val & Weidner (2016) characterized B and D in

static and dynamic nonlinear models with individual and time effects.

The expressions of B and D can be further characterized in specific models.
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Example (i) In the linear model (8),

B = H−1 plim
N,T→∞

−ENT

{
T∑

s=t+1

εitx̃is

}
, D = 0, H = plim

N,T→∞
ENT

{
x̃itx̃

′
it

}
,

where x̃it is the residual of the linear projection of xit on the space spanned by the individual and time effects

(i.e. the two-way demeaned xit in the linear model that corresponds to the orthogonal transformation).

When the covariates are strictly exogenous, B = 0, i.e., there is no incidental parameter problem. Hahn &

Kuersteiner (2002) obtained this large T bias expansion of the Nickell (1981) bias for dynamic linear panel

models with only individual effects. Hahn & Moon (2006) showed that the bias expression carries over to

dynamic linear panel models with individual and time effects because D = 0.

Example (ii) In the binary response model (9) with standard normal link Fε = Φ or probit model, when

the covariates are strictly exogenous

B = H−1ENT
{
ωitx̃itx̃

′
it

ETωit

}
β0, D = H−1ENT

{
ωitx̃itx̃

′
it

ENωit

}
β0, H = ENT

{
ωitx̃itx̃

′
it

}
,

where x̃it is the residual of the linear projection of xit on the space spanned by the individual and time

effects under a metric weighted by ωit, ωit = φ2
it/[Φit(1 − Φit)], and φit and Φit are the standard normal

PDF and CDF evaluated at x′itβ0 + α0i + γ0t. In this case there is bias, which is a positive definite matrix

weighted average of β0. Fernández-Val (2009) derived this result in models with individual effects and

Fernández-Val & Weidner (2016) in models with individual and time effects.

Example (iii) In the Poisson model (10),

B = H−1 plim
N,T→∞

−ENT

{∑T
s=t+1(yit − λit)λisx̃is

ENλit

}
, D = 0, H = plim

N,T→∞
ENT

{
λitx̃itx̃

′
it

}
,

where x̃it is the residual of the linear projection of xit on the space spanned by the individual and time

effects under a metric weighted by λit. When the covariates are strictly exogenous, B = 0, i.e., there

is no incidental parameter problem. This is a well-known result for models with only individual effects

(e.g., Palmgren 1981),6 which was extended to models with individual and time effect in Fernández-Val &

Weidner (2016).

Finally, combining the properties of ψ1,β and ψ2,β, we conclude that as N,T →∞ such that N/T → κ,

0 < κ <∞,

β̂ − β0
a∼ N

(
B

T
+
D

N
,
H−1

NT

)
. (17)

6Hausman, Hall & Griliches, 1984 use the conditional likelihood approach to eliminate the incidental parameters, which

for the Poisson models turns out to be equivalent to fixed effect MLE, see Blundell, Griffith & Windmeijer (1999, 2002) and

Lancaster (2002).
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This asymptotic approximation prescribes that the fixed effects estimator can have significant bias relative

to its standard deviation. Moreover, by the argument given in Section 2.2, confidence intervals constructed

around the fixed effects estimator can severely undercover the components of β0 even in large samples.

Fernández-Val & Weidner (2016) showed that these prescriptions provide a good approximations to the

behaviour of the fixed effects estimator for small sample sizes through analytical and simulation examples.

3.4 Bias Corrections

The goal of the bias corrections is to remove the bias from the asymptotic distribution (17), ideally

without increasing the variance. In other words, we want to find a bias corrected estimator β̂BC such that

as N,T →∞,

β̂BC − β0
a∼ N

(
0,
H−1

NT

)
.

The corrected estimator therefore has small bias relative to its dispersion and the same variance as the

FE estimator in large samples. Moreover, the confidence intervals constructed around the bias corrected

estimator should have coverage close to their nominal level. We describe analytical and resampling methods

to carry out the bias corrections. These methods rely on the asymptotic distribution (17), together with

consistent estimators of the bias.

3.4.1 Analytical Bias Correction

The analytically bias corrected (ABC) estimator is

β̂ABC = β̂ − B̂

T
− D̂

N
,

where B̂ and D̂ are consistent estimators of B and D, i.e. B̂ →P B and D̂ →P D as N,T → ∞. In this

case, as N,T →∞ such that N/T → κ, 0 < κ <∞,

β̂ABC − β0 ≈
ψ1,β√
NT

+
1

T

(
ψB2,β
N
− B̂

)
+

1

N

(
ψD2,β
T
− D̂

)
≈

ψ1,β√
NT

,

since ψB2,β/N − B̂ →P 0 and ψD2,β/T − D̂ →P 0. Hence,

β̂ABC − β0
a∼ N

(
0,
H−1

NT

)
.

The estimators B̂ and D̂ are constructed from the analytical expressions of B and D given in (15) and

(16). Let ̂̀it = `it(β̂, α̂i, γ̂t) denote the log-likelihoods evaluated at the FE estimators, and define their

derivatives evaluated at the FE estimators analogously. Let ̂̀∗it(β, αi, γt) := `it(β, αi + κ̂′iβ, γt + ρ̂′tβ), with

κ̂i and ρ̂t defined analogously to κi and ρt in (14), but using the fixed effect estimates instead of the true
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value of the parameters. All derivatives of ̂̀∗it are evaluated at (β̂, α̂i− κ̂′iβ̂, γ̂t− ρ̂′tβ̂) in the following. Then,

the plug-in estimators of B and D are

B̂ = Ĥ−1ENT

{∑t+M∧T
s=t

̂̀αi
it
̂̀∗βαi
is − ̂̀∗βαiαiit /2

ET ̂̀αiαiit

}
,

and

D̂ = Ĥ−1ENT

{̂̀γt
it
̂̀∗βγt
it − ̂̀∗βγtγtit /2

EN ̂̀γtγtit

}
,

where Ĥ = −ENT ̂̀∗ββit , and M is a trimming parameter such that M/T → 0 and M →∞ as T →∞ (Hahn

& Kuersteiner, 2007). We can set M = 0 when the covariates are strictly exogenous. These estimators use

β̂, i.e. B̂ = B̂(β̂) and D̂ = D̂(β̂). It is possible to iterate the correction by (i) estimating B and D using

β̂ABC to obtain B̂2 = B̂(β̂ABC), D̂2 = D̂(β̂ABC) and β̂ABC2 = β̂ − B̂2/T − D̂2/N ; (ii) estimating B and D

using β̂ABC2 to obtain B̂3 = B̂(β̂ABC2), D̂3 = D̂(β̂ABC2) and β̂ABC3 = β̂ − B̂3/T − D̂3/N ; and so on. The

iteration does not affect the asymptotic distribution of the correction but might improve its small sample

properties.

Hahn & Kuersteiner (2011) developed the ABC for general dynamic nonlinear models with unobserved

individual effects, building on the analysis of Hahn & Kuersteiner (2002) for dynamic linear models and

Hahn & Newey (2004) for static nonlinear models. Fernández-Val & Weidner (2016) extended the ABC to

models with unobserved individual and time effects.

3.4.2 Leave-One-Out Jackknife Bias Correction

This correction is based on the Jackknife method introduced by Quenouille (1956) and Tukey (1958) for

cross-sectional data. We start by giving some intuition on how this method works using the example of

Section 2.7 Let θ̂(−j) denote the estimator of θ that leaves out the jth observation. The leave-one-out bias

corrected estimator is

θ̂JC = nθ̂ − (n− 1)θ̄n−1, θ̄n−1 =
1

n

n∑
j=1

θ̂(−j).

To understand how the correction works, assume the second-order expansion for the bias Eθ̂ − θ0 =

B1/n+B2/n
2 +o(n−2). Then, under identical distribution Eθ̂(−j)−θ0 = B1/(n−1)+B2/(n−1)2 +o(n−2)

for all j, so that

Eθ̂JC − θ0 = B1 +
B2

n
−B1 −

B2

n− 1
+ o(n−1) = o(n−1).

In other words (n− 1)(θ̄n−1 − θ̂) is an estimator of the first-order bias since (n− 1)E(θ̄n−1 − θ̂) = B1/n+

o(n−1).

Hahn & Newey (2004) introduced the Jackknife to panel models with individual effects, and Fernández-

Val & Weidner (2016) extended it to panel models with individual and time effects. To describe how to

7We refer to Shao & Tu (1995) for a rigourous analysis of the properties of the Jackknife.
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apply the Jackknife to panel data, it is convenient to introduce some notation. Let N = {1, . . . , N} and

T = {1, . . . , T} be the sets of indexes for the two dimensions of the panel. For the subsets of indexes

A ⊆ N and C ⊆ T, let β̂A,C denote the FE estimator of β in the subpanel with indexes (i, t) ∈ A × C =

{(i, t) : i ∈ A, t ∈ C}, that is

β̂A,C = argmax
β∈Rdβ

max
α∈R|A|

max
γ∈R|C|

∑
i∈A,t∈C

`it(β, αi, γt),

where |A| denotes the cardinality of the set A. With this notation the FE estimator of β is β̂ = β̂N,T.

Define the average leave-one-out estimators in each dimension as

βN−1,T =
1

N

N∑
i=1

β̂N\{i},T, βN,T−1 =
1

T

T∑
t=1

β̂N,T\{t}.

The panel Jackknife estimator for models with individual effects is T β̂N,T− (T −1)βN,T−1. The correction

(T−1)(βN,T−1−β̂N,T) removes the bias term B/T , analogously to the cross-sectional case discussed above.

A panel jackknife bias corrected (JBC) estimator that removes both bias terms can be formed as

β̂JBC = (N + T − 1)β̂N,T − (N − 1)βN−1,T − (T − 1)βN,T−1,

This correction removes the bias in large samples because (N − 1)E(βN−1,T − β̂N,T) ≈ D/N and (T −
1)E(βN,T−1 − β̂N,T) ≈ B/T . Moreover, it can be shown that under suitable conditions

β̂JBC − β0
a∼ N

(
0,
H−1

NT

)
.

An important limitation in the application of the leave-one-out Jackknife to panel data is that it requires

independence in both dimensions of all the variables. This is a very restrictive condition for panel data,

specially when one of the dimensions is time, as it rules out lagged-dependent variables or serially correlated

variables as covariates.

3.4.3 Split-Sample Jackknife Bias Correction

This correction is based on the split-sample Jackknife method introduced by Quenouille (1949) for time

series data. We again start by giving an intuitive description of this method in the context of the simple

model of Section 2. Assume that the sample size n is even and split the sample in two halves: {zj : 1 ≤
j ≤ n/2} and {zj : n/2 + 1 ≤ j ≤ n}. Let θ̂1 and θ̂2 denote the estimator of θ in each of the half-samples.

The split-sample jackknife bias corrected estimator is

θ̂SC = 2θ̂ − θ̃1/2 = θ̂ − (θ̃1/2 − θ̂), θ̃1/2 = (θ̂1 + θ̂2)/2.

Assume the first-order expansion for the bias Eθ̂−θ0 = B/n+o(n−1). The correction works asymptotically

because under stationarity Eθ̂1 = Eθ̂2 = θ0 + 2B/n+ o(n−1), so that

Eθ̂SC − θ0 =
2B

n
− 2B

n
+ o(n−1) = o(n−1).
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In other words θ̃1/2 − θ̂ is an estimator of the bias since E(θ̃1/2 − θ̂) = B/n+ o(n−1).

To define the panel version of this Jackknife correction we introduce

β̃N/2,T =
1

2

[
β̂{i≤dN/2e},T + β̂{i≥bN/2+1c},T

]
, β̃N,T/2 =

1

2

[
β̂N,{t≤dT/2e} + β̂N,{t≥bT/2+1c}

]
,

where d.e and b.c are the ceiling and floor functions, and we use the same notation as in the previous section.

Dhaene & Jochmans (2015b) introduced the split-sample jackknife to panel models with individual effects.

In this case the split-sample bias corrected (SBC) estimator is 2β̂N,T−β̃N,T/2. The correction β̃N,T/2−β̂N,T
removes the bias term B/T , analogously to the cross-sectional case. Fernández-Val & Weidner (2016)

extended the SBC estimator to panel models with individual and time effects, in which case the correct

linear combination is

β̂SBC = 3β̂N,T − β̃N/2,T − β̃N,T/2.

This correction removes both bias terms in large samples because E(β̃N/2,T − β̂N,T) ≈ D/N and E(β̃N,T/2−
β̂N,T) ≈ B/T . The intuition here is simple. The estimator β̃N,T/2 has double the bias than β̂N,T coming

from the estimation of the individual effects, because there are only half of observations, T/2, informative

about each of them. However, β̃N,T/2 has the same bias as β̂N,T coming from the estimation of the time

effects, because there are the same number of observations, N , informative about each of them. A similar

argument shows that the bias of β̃N/2,T is 2D/N +B/T . Under suitable conditions,

β̂SBC − β0
a∼ N

(
0,
H−1

NT

)
.

Quenouille (1956) already noted that Jackknife correction can be extended to higher order, and Dhaene &

Jochmans (2015b) discussed high-order Jackknife corrections, that is, elimination not only of the leading

bias of order T−1, but also of the next order bias term of order T−2, which can again be achieved by an

appropriate linear combination of split-panel fixed-effect estimates. A formal discussion of those higher-

order bias terms is given in Bun & Kiviet (2003) for dynamic linear models panel models and in Sun &

Dhaene (2017) for non-linear models.

3.4.4 Hybrid Jackknife Bias Correction

When the data are independent across one of the dimensions of the panel, it is not clear how to carry out

the sample split in this dimension. One possibility is to make multiple splits and average the resulting

corrected estimators for each split. Another possibility is a hybrid method that uses leave-one-out along

the independent dimension and split-sample along the weakly dependent dimension. For example, if we

assume independence over the cross-sectional dimension, then a hybrid jacknife estimator is

β̂HBC = (N + 1)β̂N,T − (N − 1)βN−1,T − β̃N,T/2.
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This correction removes the bias in large samples because (N−1)E(βN−1,T −β̂N,T) ≈ D/N and E(β̃N,T/2−
β̂N,T) ≈ B/T . Again, under suitable conditions

β̂HBC − β0
a∼ N

(
0,
H−1

NT

)
.

We refer to Cruz-González, Fernández-Val & Weidner (2015) for other examples of hybrid corrections.

3.4.5 Comparison

All the corrections produce estimators with the same asymptotic distribution, but they rely on different

sampling conditions and might involve the choice of tuning parameters. Compared to the JBC; ABC, SBC

and HBC work under more general sampling conditions because they do not require independence of the

data along both dimensions. However, SBC and HBC usually increase dispersion in small samples because

they estimate the parameters in smaller panels than JBC. Compared to ABC, SBC and HBC work under

less general sampling conditions because they rely on homogeneity in both dimensions in order for the bias

to be the same in all the subpanels. ABC does not use homogeneity, but requires coding the estimators

of the bias, which involves a delicate choice for the trimming parameter M when the covariates are not

strictly exogenous. In practice, we recommend to always carry out a sensitivity analysis reporting results

from both jackknife and analytical corrections and to try several values of M in the analytical correction

starting with M = 0, 1, 2, 3, 4.

Some of the differences can be appreciated in a simple cross sectional example where we can characterize

the moments of all the estimators. Consider the normal model z ∼ N (µ, σ2), σ2 > 0. The MLE of σ2

is the sample variance σ̂2 = n−1
∑n

j=1(zj − z̄)2, where z̄ = n−1
∑n

j=1 zj . As it is well-known, σ̂2 is

biased with Bias(σ̂2) = −σ2/n and Var(σ̂2) = 2σ4(n − 1)/n2. The ABC is σ̃2
ABC = (n + 1)σ̂2/n, which

has Bias(σ̃2
ABC) = −σ2/n2 and Var(σ̃2

ABC) = (n + 1)2Var(σ̂2)/n2. Iterating k times yields σ̃2
ABCk =

(
∑k

r=0 n
−r)σ̂2, which has Bias(σ̃2

ABCk) = −σ2/nk+1 and Var(σ̃2
ABCk) = (

∑k
r=0 n

−r)2Var(σ̂2). The JBC can

be shown to be σ̃2
JBC = nσ̂2/(n−1), the degrees-of-freedom corrected estimator, which has Bias(σ̃2

JBC) = 0

and Var(σ̃2
JBC) = n2Var(σ̂2)/(n−1)2. Let z̄1 and z̄2 be the sample means of z in the first and second halves

of the sample. Simple algebra shows that the SBC is σ̃2
SBC = σ̂2 + z̄2− z̄1z̄2, which has Bias(σ̃2

SBC) = 0 and

Var(σ̃2
SBC) = (n+ 2)Var(σ̂2)/n. A comparison of biases and variances reveals that in this case Bias(σ̂2) >

Bias(σ̃2
ABC) > Bias(σ̃2

ABCk) > Bias(σ̃2
JBC) = Bias(σ̃2

SBC), while Var(σ̂2) < Var(σ̃2
ABC) < Var(σ̃2

ABCk) <

Var(σ̃2
JBC) < Var(σ̃2

SBC).

Table 1 reports the results of a numerical simulation for a logit model with strictly exogenous covariates

and unobserved individual and time effects. The design is calibrated to the female labor force participation

(LFP) application in Fernández-Val (2009). Thus, we draw 500 panels of size N = 664 and T = 9, with

yit = 1(β′xit + αi + γt ≥ εit), i = 1, . . . , N, t = 1, . . . , T,
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Table 1: Logit Model with Strictly Exogenous Covariates (N = 664, T = 9)

Bias SD RMSE p; 95 Bias SD RMSE p; 95

FE ABC

kids0 2 14.3 9.6 17.3 0.64 -0.2 8.3 8.3 0.96

kids3 5 14.1 14.4 20.1 0.79 -0.2 12.6 12.5 0.96

kids6 17 14.5 34.0 36.9 0.93 0.7 29.8 29.8 0.97

SBC HBC

kids0 2 -0.3 11.7 11.7 0.86 -0.6 11.7 11.6 0.84

kids3 5 -0.0 18.4 18.4 0.84 1.2 19.3 19.3 0.81

kids6 17 -0.7 48.1 48.0 0.80 0.4 43.1 42.9 0.92

Notes: 500 simulations calibrated to the PSID 1980–1988.

Bias, SD and RMSE are in percentage of true value of the parameter.

Calculations in Stata with the command logitfe (Cruz-González et al., 2015).

where xit includes three fertility variables (the numbers of children aged 0-2, 3-5, and 6-17), the logarithm

of the husband’s earnings in 1995 thousands of dollars, and a quadratic function of age in years divided

by 10, whose values are taken for the PSID 1980–1988; and εit are independent draws from the standard

logistic distribution.8 The parameters (β, αi, γt) are calibrated to the FE logit estimates in the PSID 1980–

1988 with the observed LFP as the dependent variable. The table reports biases, standard deviations, root

mean square errors, and empirical coverage probabilities of confidence intervals with nominal level of 95%

for the FE, ABC, SBC and HBC estimators of the coefficients of the three fertility variables. The SBC is

the average over 50 partitions over the cross sectional dimension. All the results, except for the coverage

probabilities, are in percentage of the true value of the parameter. We find that the ABC drastically reduce

bias, dispersion and rmse, and have coverage probabilities close to their nominal level. The evidence for

the SBC and HBC is more mixed. While always reducing bias, they increase dispersion resulting in higher

rmse and lower coverage than the FE for the kids6 17 fertility variable.

3.4.6 Other methods

The methods discussed so far correct the estimator. The same methods can also be applied to correct

the first order conditions of the FE estimator of β. Namely, let L(β) = max(α,γ)∈RN+T ENT `it(β, αi, γt)
be the profile objective function of (12), where all the fixed effects have been concentrated out. Then, a

8The original PSID sample includes 1, 461 women, but only 664 of them have variation in the LFP variable over the years

of the panel.
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second-order expansion similar to (17) yields

dL(β0)

dβ

a∼ N
(
− b
T
− d

N
,
H

NT

)
. (18)

where b = HB and d = HD. This expression was derived in Bester & Hansen (2009) for models with

individual effects and Sun (2016a) for models with individual and time effects. Thus, the score of L(β) at

the true parameter value is not centered at zero, which is the source of the bias in β̂. A “profile-score bias

corrected estimator” is the solution to

dL(β̂PSBC)/dβ + b̂/T + d̂/N = 0,

where b̂ = b̂(β̂) and d̂ = d̂(β̂) are consistent estimators for b and d, respectively. An alternative score

correction that estimates simultaneously the parameter and bias terms can be formed as the solution to

dL(β̂PSBC2)/dβ + b̂(β̂PSBC2)/T + d̂(β̂PSBC2)/N = 0.

The analytical properties of this corrected profile-score are model specific, since they depend on the func-

tional form of b̂(β) and d̂(β). In particular, they may have multiple or no solution, even in the case

of concave log-likelihood, where the solution for the previous equation for β̂PSBC is unique. Dhaene

& Jochmans (2016) discussed this issue in detail for linear autoregressive panel models, and Dhaene &

Jochmans (2015a) explored the behaviour of these profile-score adjustments for other panel data models

with individual effects. Dhaene & Jochmans (2015b) developed jackknife methods to correct the scores in

models with individual effects.

Finally, Gonçalves & Kaffo (2015) show that bootstrap methods can correct for the Nickell bias in

dynamic linear panel models, and Kim & Sun (2016) show how to use the bootstrap to construct bias-

corrected estimators in non-linear panel models.

3.5 Average Partial Effects

The objects of interest in panel models are often ceteris paribus or partial effects, i.e. effects in the outcome

of changing each covariate while holding the rest of covariates and unobserved effects fixed (Chamberlain,

1984). In linear models the parameters correspond to partial effects. For example, in the model (8), the

components of β measure the partial effects of each of the covariates. This effect is the same for all the

individuals and time periods by linearity. In nonlinear models the partial effects depend not only on the

parameters but also on the covariates and unobserved effects. For example in the nonlinear model for the

conditional expectation E[yit | xit, αi, γt] = m(xit, αi, γt, β), the partial effect of changing the covariates

from x0
it to x1

it is

δit(αi, γt, β) = m(x1
it, αi, γt, β)−m(x0

it, αi, γt, β),
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where x1
it and x0

it might depend on xit. If xit is continuous and x 7→ m(x, αi, γt, β) a.s. differentiable, the

partial effect of a marginal change in the covariates is

δit(αi, γt, β) = ∂m(x, αi, γt)/∂x
∣∣
x=xit

.

In both cases the partial effects are heterogenous across i and t.

Example (ii) In the binary response model, if the kth covariate xk,it is binary, then the partial effect

of changing xk,it from 0 to 1 on the probability of yit = 1 conditional on the rest of the covariates and

unobserved effects is

δit(αi, γt, β) = Fε(βk + x′it,−kβ−k + αi + γt)− Fε(x′it,−kβ−k + αi + γt),

where βk is the kth element of β, and xit,−k and β−k include all elements of xit and β except for the kth

element.

Example (iii) In the count response example, if the kth covariate xk,it is continuous, then the partial

effect of a marginal change in xk,it on the average of yit conditional on the rest of the covariates and

unobserved effects is

δit(αi, γt, β) = βk exp(x′itβ + αi + γt),

where βk is the kth element of β.

One way to summarize the heterogeneity in the partial effects is to average them across the individuals

and time periods in the panel. This yields the in-sample average partial effect (APE)

δNT = ENT δit(αi, γt, β).

Another possibility is to assume that there is a population of individuals and time periods from where the

observed panel is drawn and consider the APE in this population. Under weak conditions this in-population

APE corresponds to

δ = plim
N,T→∞

δNT .

Yet another possibility is to average the partial effects of the individuals in the population over the time

periods in the sample

δT = plim
N→∞

δNT .

The choice of the relevant APE is application-specific.

The fixed effect estimator is the same for all the previous APEs. Thus, applying the plug-in principle,

δ̂NT = ENT δit(α̂i, γ̂t, β̂).
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However, the asymptotic distribution of δ̂NT depends on the APE of interest. The asymptotic distribution

around δNT is

δ̂NT − δNT
a∼ N

(
E

T
+
F

N
,

Σ

NT

)
,

where the expressions for the bias terms E, F , and the variance Σ are given in Fernández-Val & Weidner

(2016). The bias and variance here come from the estimation of the parameters and unobserved effects.

The distribution around δ becomes

δ̂NT − δ
a∼ N

(
E

T
+
F

N
,
Σ + aNTΩ

NT

)
, (19)

where the additional variance term, Ω = plimN,T→∞ (ENT [δit(αi, γt, β)− δ])2 /aNT , comes from the esti-

mation of the population mean δ using the sample mean δNT , and aNT = N ∨T because of the correlation

of δit(αi, γt, β) with δjt(αj , γt, β) and δis(αi, γs, β) induced by the individual and time effects. Similarly,

the distribution around δT is

δ̂NT − δT
a∼ N

(
E

T
+
F

N
,
Σ + TΩT

NT

)
,

where ΩT = plimN→∞ (ENT [δit(αi, γt, β)− δT ])2 /T. Analogously to the parameters, the bias in the asymp-

totic distribution of the estimators of the APEs can be removed using analytical and jackknife corrections

(Fernández-Val & Weidner, 2016).

The rate of convergence of δ̂NT differs depending on the APE of interest. Thus, δNT can be estimated

at the rate
√
NT , the same rate as the parameter β, whereas δ can be estimated at the rate

√
NT/aNT =

√
N ∧

√
T and δT at the rate

√
T . As a consequence of the slower rate of convergence, the asymptotic

distribution (19) simplifies to

δ̂NT − δ
a∼ N

(
0,
aNTΩ

NT

)
, (20)

after dropping terms of lower order.9 In other words the estimation of the parameters does not have first-

order effect on the distribution around δ. The reason is that the bias and standard deviation introduced

by the parameter estimation are of lower order compared to
√
NT/aNT . Despite this possible asymptotic

simplification, we recommend using the higher-order distribution in (19) to perform inference on δ, because

it provides a more accurate approximation to the finite-sample distribution of δ̂NT than the first-order

distribution (20).

3.6 Computation

The FE program (12) might look like computationally challenging due to the high dimension of the fixed

effects. However, there are two aspects of the program that greatly facilitate the computation. First, the

objective function is concave and smooth in the most commonly used cases such as the linear, Poisson, logit,

9Similarly the asymptotic distribution around δT simplifies to δ̂NT − δT
a∼ N (0,ΩT /N).
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probit, ordered probit, and tobit models. Second, the design matrix is sparse allowing the use of sparse

algebra methods to speed up the computation. The SBC correction preserves the computational properties

of the FE estimator as it only involves solving the program (12) in a small number of subsamples. The

JBC and HBC can be computationally more intensive than the SBC when the cross-sectional dimension

is large. The ABC also preserves the computational properties of the FE estimator, but requires to code

the estimators of the bias that are model specific.

The bias corrections are available in the statistical software packages Stata and R for some models.

Cruz-González, Fernández-Val & Weidner (2015) provided two Stata commands that implement the ana-

lytical and several jackknife corrections for estimators of parameters and APEs in logit and probit models

with individual and time effects. These commands also report standard errors for the estimates of the

parameter and APEs constructed using the asymptotic distribution. Sun (2016b) implemented in Stata

the split-sample jackknife estimator and score corrections for parameters in linear, logit and probit models

with individual effects. The command also has functionality for other single index user-supplied models

and reports standard errors based on the asymptotic distribution. All the previous Stata commands pro-

vide functionality for unbalanced panels. Stammann, Heiß & McFadden (2016) implemented the analytical

correction in R for estimators of parameters and APEs in logit and probit models with exogenous covariates

and individual effects.

4 EXTENSIONS

4.1 Unbalanced Panels

In the previous section, we assumed that the observations for all the combinations of the two indexes i

and t were observed, i.e. the panel was balanced. In empirical applications, however, it is common to

have unbalanced panels where some of the observations are missing due to sample attrition. This does not

introduce special theoretical complications provided that the source of the missing observations is random.

Perhaps due to this reason, we are not aware of any work in the panel literature that extends the bias

corrections explicitly to unbalanced panels. To fill this void, we provide without proof the asymptotic

distribution of the FE for unbalanced panels.

Let D be the set of all observed pairs (i, t), and n = |D| be the sample size. Define the operators

En := n−1
∑

(i,t)∈D, ET,i = |Di|−1
∑

t∈Di , and EN,t = |Dt|−1
∑

i∈Dt , where Di = {t : (i, t) ∈ D} and

Dt = {i : (i, t) ∈ D}. Let ait be an attrition indicator for the observation (i, t). The key regularity

conditions that are needed to derive the bias expressions are (i) |Di|/T → ci > 0 as T → ∞ for all i; (ii)

|Dt|/N → ct > 0 as N → ∞ for all t; and (iii) yit is independent of ait conditional on (xti, α, γ). The

first two conditions guarantee that the number of observations for each unobserved effects increases with

the sample size. The third condition imposes conditional missing at random in the attrition process. The
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asymptotic distribution of β̂ then becomes

β̂ − β0
a∼ N

(
Bu

T
+
Du

N
,
H−1
u

n

)
,

where Hu = −plimn→∞ En`
∗ββ
it , T = n/N is the average number of observations available for each cross-

sectional unit,

Bu = H−1
u plim

N,T→∞
EN

−ET,i
∑

t≤s∈Di E
(
`αiit `

∗βαi
is

)
− ET,i`

∗βαiαi
it /2

ET,i `
αiαi
it

 ,

N = n/T is the average number of observations available for each time period, and

Du = H−1
u plim

N,T→∞
ET

−EN,tE
(
`γtit `

∗βγt
it

)
− EN,t`

∗βγtγt
it /2

EN,t `
γtγt
it

 .

This result agrees with formula (1), because the order of the bias is T
−1
B + N

−1
D ∼ (N + T )/n. The

magnitude of the bias depends on the averages T and N , so having some units i and t with a very small

number of observations is not necessarily a serious problem from the perspective of incidental parameter

bias.

Regarding bias correction, the ABC for the case of unbalanced panels can be constructed using the

empirical analog of the bias expressions evaluated at the FE estimator. Jackknife corrections can be formed

by partitioning the panel in the same way as in the balanced case, i.e. without taking into account the

attrition. We refer to Dhaene & Jochmans (2015b), Cruz-González, Fernández-Val & Weidner (2015),

Chudik, Pesaran & Yang (2016) and Sun (2016b) for details.

4.2 Multivariate Fixed Effects

We now briefly discuss the case where the unobserved effects are vector-valued, i.e. αi ∈ Rdα and γt ∈ Rdγ

with dα ≥ 1 and dγ ≥ 1. We start by providing some motivating examples.

Example (iv) An important case is the normal linear model with interactive effects or factor structure,

yit = x′itδ + α′iγt + εit, εit | xti, α, γ, β ∼ N (0, σ2), where

f(y | xit, αi, γt;β) =
1√

2πσ2
exp

[
−(y − x′itδ − α′iγt)2

2σ2

]
, β = (δ, σ2),

Here, dα = dγ is the number of interactive effects. Bai (2009) showed that this model does not suffer

from the incidental parameter problem when the covariates are strictly exogenous and the semiparametric

model is correctly specified. However, he found that the FE least squares estimator has an asymptotic bias

structure of the form B/T +D/N under conditional heteroskedasticity and derived the expressions for B
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and D that can be used for analytic bias correction. Moon & Weidner (2017) showed that the FE least

squares estimator of δ suffers from a Nickell (1981) type incidental parameter bias when the covariates are

predetermined, even when the model is correctly specified. We refer to Bai & Wang (2016) for a recent

review on this model.

Example (v) Another example is a nonlinear single index factor model where

f(y | xit, αi, γt;β) = f(y, x′itβ + α′iγt), dα = dγ ,

where f is a known function such as f(y, u) = Fε(u)y(1 − Fε(u))1−y1(y ∈ {0, 1}) with a CDF Fε, for a

binary response model, or f(y, u) = [exp(u)y exp(− expu)/y!]1(y ∈ {0, 1, ...}) for a count response model.

Chen, Fernandez-Val & Weidner (2014) characterized the bias of the FE estimator for models where the

function u 7→ f(·, u) is log-concave including the probit, logit, ordered probit and Poisson. See also Chen

(2016), Boneva & Linton (2017) and Wang (2017) for other articles discussing this model.

The analysis of Section 3 carries over to the multivariate case with some minor adjustments. For the

second-order expansion of β̂ it is still convenient to define `∗it(β, αi, γt) as in (13), but now κi is a dβ × dα
matrix and ρt is a dβ × dγ matrix, which are solutions to

ET
[
`
βα′i
it + κi `

αiα
′
i

it + ρt `
αiγ
′
t

it

]
= 0, i = 1, . . . , N,

EN
[
`
βγ′t
it + κi `

αiγ
′
t

it + ρt `
γtγ′t
it

]
= 0, t = 1, . . . , T.

Here we need to be more careful with the column and row dimensions of matrices in the notation. For

example, `
βα′i
it := ∂(∂`it/∂β)/∂α′i is the dβ × dα matrix of second derivatives of `it. A second-order

asymptotic expansion similar to Section 3.3 gives

β̂ − β0
a∼ N

(
B

T
+
D

N
,
H−1ΩH−1

NT

)
,

where H = −plimN,T→∞ ENT `
∗ββ′

, Ω = plimN,T→∞ ENTE
(
`
∗β
`
∗β′
)

, B = H−1b and D = H−1d, and b

and d are dβ-vectors with elements

bk := EN

{
−Tr

[(
ET `

αiα
′
i

it

)−1
ET

T∑
s=t

E
(
`αiit `

∗βkα′i
is

)]

+
1

2
Tr

[(
ET `

αiα
′
i

it

)−1 (
ET `

∗βkαiα′i
it

)(
ET `

αiα
′
i

it

)−1
ET E

(
`αiit `

α′i
it

)]}
,

and

dk := ET
{
−Tr

[(
EN `

γtγ′t
it

)−1
EN E

(
`γtit `

∗βkγ′t
it

)]
+

1

2
Tr

[(
EN `

γtγ′t
it

)−1 (
EN `

∗βkγtγ′t
it

)(
EN `

γtγ′t
it

)−1
EN E

(
`γtit `

γ′t
it

)]}
.
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In contrast to Section 3.3, the expressions of the asymptotic bias and variance here do not use the

information equality to simplify terms, e.g., H−1ΩH−1 = H−1. These formulas remain valid in conditional

moment models where only a characteristic of the conditional distribution such as the expectation is cor-

rectly specified. This covers for example the linear model with interactive effects under heteroskedasticity,

that is, a version of Example (iv) that only imposes

E[yit | xit, αi, γt;β] = x′itβ + α′iγt.

The above formulas for asymptotic bias and variance thus contain those in Bai (2009) and Moon & Weidner

(2017) as special cases.10 However, these results rely on an auxiliary consistency proof, which is usually

model specific and therefore can be delicate. For example, it is difficult to show consistency in models with

interactive effects because the log-likelihood (β, α, γ) 7→ ENT `it(β, αi, γt) is not concave.

Analytical and jackknife corrections can be formed analogously to Section 3.4. For details we refer to

Arellano & Hahn (2016) for models with individual effects, Bai (2009) and Moon & Weidner (2017) for

linear models with interactive fixed effects, and to Chen, Fernandez-Val & Weidner (2014) for single-index

factor models. Fernández-Val & Vella (2011) developed bias corrections for two-step estimators of selection

and other control variable models with unobserved individual effects in both steps.

4.3 Distributional and Quantile Effects

Chernozhukov, Fernández-Val & Weidner (2017b) used nonlinear panel data methods to estimate distri-

butional and quantile effects. The idea is to model the distribution of the outcome conditional on the

covariates and unobserved effects via distribution regression, that is

Pr(yit ≤ y | xit, αi, γt) = Fy(x
′
itδ(y) + α′iπ(y) + γ′tξ(y)), β(y) = (δ(y), π(y), ξ(y)),

where Fy is a CDF such as the normal or logistic, y 7→ β(y) is a function-valued parameter, and the

dimension of αi and γt is unrestricted. Both Fy and β(y) can vary with y to accommodate heterogeneity

accross the distribution. At each y, the parameters are estimated by a binary response regression of

the outcome 1(yit ≤ y) on the covariates and fixed effects with the parametrization αi(y) = α′iπ(y) and

γt(y) = γ′tξ(y). The distributional and quantile effects are functionals of APEs. For example, the marginal

distribution of the potential outcome corresponding to xit = x0
it is the APE

F 0(y) = (NT )−1
N∑
i=1

T∑
t=1

Fy(δ(y)′x0
it + αi(y) + γt(y)),

and the corresponding τ -quantile is the functional

Q0(τ) = inf{y ∈ R : F 0(y) ≥ τ}.
10See Sun (2016a) for a related derivation.
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The τ -quantile effect of a change from xit = x0
it to xit = x1

it is

Q1(τ)−Q0(τ), (21)

where Q1(τ) is constructed using the same procedure as Q0(τ) but with x1
it in place of x0

it. Chernozhukov,

Fernández-Val & Weidner (2017b) applied bias corrections to estimate and make inference on quantile ef-

fects uniformly over quantile indexes. These methods applied to continuous, discrete and mixed continuous-

discrete outcomes.

The effect in (21) is a marginal quantile effect that has causal interpretation under standard conditional

ignorability conditions. Alternative conditional effects can be estimated by modelling the distribution of

the outcome conditional on the covariates and unobserved effects via quantile regression. The FE quan-

tile regression estimator, introduced by Koenker (2004), in general suffers from the incidental parameter

problem. Kato, Galvao & Montes-Rojas (2012) showed asymptotic normality and unbiasedness of the

FE quantile regression estimator in models with only individual effects under sequences where N/T → 0

as N,T → ∞. Galvao & Kato (2016) derived the asymptotic distribution of the estimator in the same

models, including the leading order 1/T bias, for a smoothed version of the quantile regression objective

function under sequences for which N and T grow at the same rate. Arellano & Weidner (2017) showed

that the bias of the FE estimator without smoothing is the same as in Galvao & Kato (2016) in models

with strictly exogenous regressors. Thus, in terms of leading order bias and variance the FE quantile

regression estimator behaves analogous to any other non-linear panel data model. However, the analysis in

Section 3 does not directly carry over to this case, because the quantile regression objective function is not

sufficiently smooth. We refer to Galvao & Kato (2016) for a recent review of quantile regression methods

for panel data.

4.4 Three Way Fixed Effects

Another natural extension of the panel semiparametric model of Section 3 is a model with three-way effects

for data with a multidimensional structure. Let `ijt(β, αi, γj , δt) = log f(yijt | xijt, αi, γj , δt;β) be the log-

likelihood of an outcome yijt conditional on xijt, with common parameter β and unobserved effects αi,

γj and δt. Here, we have three panel indices i = 1, . . . , I, j = 1, . . . , J and t = 1, . . . , T . For example in

an international trade application, Helpman, Melitz & Rubinstein (2008) are interested in analyzing the

volume of trade from country i to country j at year t. The corresponding fixed effect estimator is

(β̂, α̂, γ̂, δ̂) ∈ argmax
(β,α,γ,δ)∈Rdβ+I+J+T

I∑
i=1

J∑
j=1

T∑
t=1

`ijt(β, αi, γj , δt).

Example (vi) As an extension of Example (ii) above, consider a binary response single index model

yijt = 1(x′ijtβ + αi + γj + δt ≥ εit), εit | xti, α, γ, δ ∼ Fε,
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where Fε is a known CDF. For example, yijt can be an indicator of trade from country i to country j at

year t, xijt the level of tariffs from country i to country j at year t, αi is an exporter country effect, γj is

an importer country effect, and δt is a year effect.

Similar to the problem of unbalanced panels above, we are not aware of any formal discussion of

three-way fixed effect models in the econometrics literature on large panels, but such estimation prob-

lems certainly occur in applications. We provide a brief discussion here. In particular, we highlight the

applicability of the formula (1) to this case. According to that formula, the expected order of the in-

cidental parameter bias in β̂ is (I + J + T )/(IJT ), that is, we expect a leading order bias structure

B1/(IJ) +B2/(IT ) +B3/(JT ). Compared to the order of the standard deviation of β̂, 1/
√
IJT , the bias

is small, as long as all three panel dimensions are sufficiently large, in which case the incidental parameter

problem can be ignored. Thus, if I, J, T → ∞ such that I/JT → 0, J/IT → 0 and T/IJ → 0, then β̂

is asymptotically normal and unbiased, and standard MLE inference results are applicable to β̂, without

requiring any bias correction.

So far we have discussed a relatively benign three-way fixed effect model. A more difficult case is

`ijt(β, αij , γit, δjt) = log f(yijt | xijt, αij , γit, δjt;β) and

(β̂, α̂, γ̂, δ̂) ∈ argmax
(β,α,γ,δ)∈Rdβ+IJ+IT+JT

I∑
i=1

J∑
j=1

T∑
t=1

`ijt(β, αij , γit, δjt).

Here, the unobserved effects αij , γit and δjt are pair-specific, only constant along one of the panel dimen-

sions. It is still possible to estimate them consistently if I, J, T →∞. Applying the formula (1), we expect

the leading order incidental parameter bias to be of the form B1/I+B2/J +B3/T since p = IJ + IT +JT

and n = IJT . The order of this bias is never negligible compared to the order of the standard deviation

of β̂, 1/
√
IJT . For example, if I = J = T , then the order of the bias is I−1, greater than the order of

the standard deviation I−3/2. It is therefore particularly useful to develop bias corrections for models with

fixed effects in multiple dimensions.

5 CONCLUSION

We have reviewed developments for large panel data models since Arellano & Hahn (2007). A key insight

is that the order of the incidental parameter bias of the fixed effects estimators can be obtained from the

simple formula (1). This formula is useful to get an initial idea of the relevance of the bias in a given

application, but the exact magnitude of the bias is still very much model and data generating process

dependent. In particular, it is impossible to give any general answer to the question of how large T needs

to be for the large-T methods to perform well, see for example Greene (2004) for simulation results on

various non-linear panel data models. We have discussed bias correction methods that estimate the actual

size of the leading order bias. If this leading order bias is small (i.e. if the bias corrected estimator is close
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to the uncorrected estimator), then it is plausible to assume that the higher order bias terms are also small

and can be neglected. If the leading order bias is large (i.e. if the bias corrected estimator is very different

from the uncorrected estimator), then it is useful to conduct a Monte Carlo simulation calibrated to the

application of interest, in order to verify that the remaining bias is small and that the inference procedure

works well.

Fixed effect estimation methods for long panels have recently been applied to other data structures

such as network and trade data. Examples include Harrigan (1996), Anderson & van Wincoop (2003),

Santos Silva & Tenreyro (2006) and Helpman, Melitz & Rubinstein (2008), which estimate gravity equations

with unobserved importer and exporter country effects; and Graham (2017), Dzemski (2017), Shi & Chen

(2016) and Candelaria (2016), which apply large-T panel methods to network data with unobserved sender

and receiver effects. The large-T panel methods are particularly well-suited for this type of data because

typically N = T . Thus, trade/network usually correspond to square panel data sets where the two

dimensions index the same set of countries/individuals as senders and receivers.

There are alternative semiparametric methods to FE that are not reviewed here. An interesting recent

approach is the grouped fixed effects (GFE) of Hahn & Moon (2010) and Bonhomme & Manresa (2015)

for models with individual effects. Compared to FE, GFE is less affected by the incidental parameter

problem, because it restricts the distribution of the individual effects to be discrete. Large T is still required

to consistently estimate the group membership of individuals, but if the true heterogeneity structure is

indeed discrete, then no asymptotic bias correction is required for the parameters of interest, even if N is

much larger than T . The GFE approach imposes restrictions on the distribution of the individual effects,

but is more flexible in other dimensions than FE. For example, it permits to include individual effects that

change over time. Bonhomme, Lamadon, Manresa et al. (2017) characterized the approximation properties

of GFE when the distribution of the individual effects is continuous. They showed that GFE is an effective

dimension reduction device in this case, but suffers from the incidental parameter problem.

APPENDIX: BIAS DERIVATION FOR PANEL MODELS

We want to provide a heuristic derivation of the bias formulas (15) and (16). Compared to section 2.1,

one needs to define θ = (β, α, γ), replace the observation index j by the double index it, and account for

nonrandom sampling across i and t. The appropriate generalization of the second-order expansion in (5)

then reads

θ̂ − θ0 ≈ (NT )−1/2ψ1 + (NT )−1ψ2, (22)
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where

ψ1 := −
(
ENT `

θθ
it

)−1
GNT `

θ
it,

ψ2 := −
(
ENT `

θθ
it

)−1
GNT `

θθ
it ψ1 −

1

2

p∑
k=1

(
ENT `

θθ
it

)−1 (
ENT `

θθθk
it

)
ψ1ψ1,k.

Here, the expected Hessian E`θθj in (5) was replaced with the sample average of the expected Hessian

ENT `
θθ
it = (NT )−1

∑
i,t E` θθit , and analogously for the third derivative term E`θθθkj . Similarly, we need

to define GNT `
θθ
it here as GNT `

θθ
it = (NT )−1/2

∑
i,t

(
`θθit − `

θθ
it

)
. Apart from those changes the derivation

in section 2.1 still applies. One always first needs an additional consistency argument for θ̂ before the

expansion (22) becomes applicable.

One-way Fixed Effects

We start by considering the estimation problem (12) with only individual specific effects, that is, (β̂, α̂) =

argmax
(β,α)∈Rdβ+N ENT `it(β, αi). It is convenient to define

`∗it(β, αi) := `it(β, α
∗
i (β, αi)), α∗i (β, αi) = αi −

(
ET `

αiαi
it

)−1 (
ET `

βαi
it

)′
β. (23)

The profile objective functions maxα ENT `it(β, αi) and maxα ENT `∗it(β, αi) have the same maximizer β̂,

because we have simply re-parameterized αi. ENT `∗it(β, αi) is information-orthogonal between β and αi, i.e.

ENT `
∗βαi
it = 0 for all i = 1, . . . , N , where the omitted parameter means evaluation at the true parameters

after the parameter transformation.11 Thus, the expected Hessian of the objective function ENT `∗it(β, αi)
is a block-diagonal matrix, with one dβ × dβ block ENT `

∗ββ
it , and the rest of the matrix diagonal. By

applying the expansion (22) to ENT `∗it(β, αi) with θ = (β, α) we find

β̂ − β0 ≈ (NT )−1/2ψ1,β + (NT )−1ψ2,β, (24)

with

ψ1,β = H−1
NTGNT `

∗β
it , ψ2,β ≈ H−1

NT

N∑
i=1

−
(
GT `

∗βαi
it

)
GT `

αi
it

ET `
αiαi
it

+

(
ET `

∗βαiαi
it

)
(GT `

αi
it )2

2
(
ET `

αiαi
it

)2

 ,
where HNT = −ENT `

∗ββ
it . In ψ2,β we have dropped the terms that would originate from GNT `

ββ
it , `

βββ
it

and `
ββαi
it , because they only give smaller order terms. We also used that partial derivatives with respect

11We can express partial derivatives of `∗it(β, αi) in terms of partial derivatives of `it(β, αi), for example, `∗ βαi
it (β, αi) =

`βαi
it (β, α∗i (β, αi))− `αiαi

it (β, α∗i (β, αi))
(
ET `

αiαi
it

)−1 (
ET `

βαi
it

)
. From this we also immediately find that ET `

∗ βαi
it = 0, which

also implies ENT `
∗ βαi
it = 0.
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to only αi are equal for `it and `∗it. The leading bias of order T−1 in β̂ is thus given by N−1Eψ2,β ≈ BNT ,

where

BNT := H−1
NTEN

−ET
∑T

s=t E
(
`αiit `

∗βαi
is

)
ET `

αiαi
it

+

(
ET `

∗βαiαi
it

)
ET E (`αiit )2

2
(
ET `

αiαi
it

)2

 . (25)

The last formula is also valid for conditional moment models, where the information equality E (`αiit )2 =

−`αiαiit may not hold. Assuming a correctly specified likelihood and applying the information equality gives

the result for B = plimN,T→∞BNT in equation (15).

Two-way Fixed Effects

We now include the time effects as well, as in (12), that is, we use the expansion (22) with θ = (β, α, γ).

Some normalization of α and γ may be required, and this can also result in the Hessian matrix ENT `
θθ
it to

be singular, which needs to be accounted for in (22) by, for example, applying a pseudo-inverse instead of

the regular inverse, but for our heuristic discussion here this is not important.

Consider `∗it(β, αi, γt) as defined in (13). This definition of `∗it guarantees that the expected Hessian

matrix of ENT `∗it(β, αi, γt) is a block-diagonal matrix when evaluated at the true parameters, with two

non-zero blocks ENT `
∗ββ
it and ENT `

∗φφ
it , where φ = (α, γ). Here, ENT `

∗φφ
it is not a diagonal matrix, but its

diagonal elements dominate, and in Fernández-Val & Weidner (2016) it is shown that its (pseudo-) inverse

can be approximated by the inverse of its diagonal part. The expansion in (24) is thus almost unchanged,

we just need to add the terms in ψ2,β that stem from summing over the parameters γt as well,

β̂ − β0 ≈ (NT )−1/2ψ1,β + (NT )−1ψ2,β,

where

ψ1,β = H−1
NTGNT `

∗β
it , ψ2,β ≈ H−1

NT

N∑
i=1

−GT `
∗βαi
it GT `

αi
it

ET `
αiαi
it

+
ET `

∗βαiαi
it (GT `

αi
it )2

2
(
ET `

αiαi
it

)2


+H−1

NT

T∑
t=1

−GN`
∗βγt
it GN`

γt
it

EN`
γtγt
it

+
EN`

∗βγtγt
it (GN`

γt
it )

2

2
(
EN`

γtγt
it

)2

 ,
with HNT = −ENT `

∗ββ
it . We again dropped terms from ψ2,β that are asymptotically irrelevant. We now

find (NT )−1Eψ2,β ≈ T−1BNT +N−1DNT , where the formula for BNT in (25) is unchanged, and the time

effects incidental parameter bias reads

DNT = H−1
NTET

−EN E
(
`γtit `

∗βγt
it

)
EN `

γtγt
it

+

(
EN `

∗βγtγt
it

)
EN E (`γtit )

2

2
(
EN `

γtγt
it

)2

 ,
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where we have not used the information equality, yet, so that the formula holds for conditional moment

models as well. Using E (`γtit )
2

= −` γtγtit then gives the result for D = plimN,T→∞DNT in equation (16) of

the main text.
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