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Abstract

There are many interesting and widely used estimators of a functional with finite semi-

parametric variance bound that depend on nonparametric estimators of nuisance func-

tions. We use cross-fitting to construct such estimators with fast remainder rates. We

give cross-fit doubly robust estimators that use separate subsamples to estimate different

nuisance functions. We show that a cross-fit doubly robust spline regression estimator of

the expected conditional covariance is semiparametric efficient under minimal conditions.

Corresponding estimators of other average linear functionals of a conditional expectation

are shown to have the fastest known remainder rates under certain smoothness conditions.

The cross-fit plug-in estimator shares some of these properties but has a remainder term

that is larger than the cross-fit doubly robust estimator. As specific examples we consider

the expected conditional covariance, mean with randomly missing data, and a weighted

average derivative.
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1 Introduction

There are many interesting and widely used estimators of a functional with finite semi-parametric

variance bound that depend on the estimation, in a first step, of nuisance functions, such as

conditional expectations or densities. These include estimators of treatment effects, partially

linear models, and weighted average derivatives to name just a few. Because the nuisance

functions can often be high dimensional it is desirable to minimize the impact of estimating these

functions. By using cross-fitting to estimate the nuisance functions we obtain novel estimators

whose second order remainders converge to zero as fast as known possible. In particular, such

estimators are often root-n consistent under minimal smoothness conditions. Furthermore, such

estimators may have higher order mean square error that converges to zero as fast as known

possible.

Bias reduction is key to constructing semiparametric estimators with fast remainder rates.

The rates at which the variance of remainders goes to zero are quite similar for different semi-

parametric estimators but the bias rates differ greatly. It is all about the bias when seeking

semiparametric estimators with fast remainder rates.

We use cross-fitting, i.e. sample splitting, for bias reduction. We show how fast remainder

rates can be attained by using different parts of an i.i.d. sample to estimate different components

of an estimator. For plug-in estimators this approach eliminates "own observation" bias terms.

For doubly robust or other influence function corrected estimators this approach leads to the

estimation of separate nonparametric components from different subsamples. In particular,

we use cross-fitting for quadratic terms that are often present for doubly robust estimators.

Without cross-fitting, doubly robust estimators may have remainder rates that are slower than

plug-in estimators. With cross-fitting, doubly robust estimators improve on plug-in estimators

in our results, in the sense that remainder terms converge at faster rates. We also show how

the cross-fit bias reduction approach could be applied to any semiparametric estimator that is

a polynomial in nonparametric components.

We consider in detail regression spline estimation of average linear functionals of condi-

tional expectations. We construct cross-fit, plug-in and doubly robust functional estimators

that are semiparametrically efficient under minimal conditions when the nuisance functions are

in a Holder class of order less than or equal to one. When a nuisance function is Holder of

order exceeding one, we propose cross-fit doubly robust estimators that have remainders that

converge faster than the plug-in estimator. In the special case of the expected conditional covari-

ance functional, the cross-fit doubly robust estimator is semiparametric efficient under minimal

conditions. For other functionals, such as the mean with data missing at random or a weighted

average derivative, the cross-fit plug-in and doubly robust estimator is semiparametric efficient

under minimal conditions whenever the conditional expectation is Holder of order greater than

or equal to one-half the regressor dimension. In other words, the remainder goes to zero as fast
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as known possible whenever the conditional expectation is smooth enough. In the case where

the conditional expectation has fewer derivatives than one-half the regressor dimension, we only

show semiparametric efficiency under minimal conditions for the expected conditional covari-

ance, and not for other functionals. The higher order influence function (HOIF) estimators of

Robins et al. (2008, 2017) and Mukherjee, Newey, and Robins (2017) will be semiparamet-

ric efficient for these other functionals, including the mean with missing data, under minimal

conditions.

Cross-fit plug-in estimators have been considered by Bickel (1982) in the context of adap-

tive semiparametric efficient estimation, Powell, Stock, and Stoker (1989) for density weighted

average derivatives, and by many others. Kernel and series cross-fit plug-in estimators of the

integrated squared density and certain other functionals of a density have been shown to be

semiparametric efficient under minimal conditions by Bickel and Ritov (1988), Laurent (1996),

Newey, Hsieh, and Robins (2004), and Gine and Nickl (2008). Our cross-fit doubly robust

estimator appears to be novel as does the fact that a series regression plug-in estimator can

be semiparametric efficient under minimal conditions. Ayyagari (2010), Robins et al. (2013),

Firpo and Rothe (2016) and Chernozhukov et al.(2017) have considered doubly robust estima-

tors that eliminate own observation terms. Cross-fitting for the quadratic terms in doubly robust

estimation appears not to have been analyzed before.

The spline results of this paper make use of the Rudelson (1999) law of large numbers for

matrices similarly to Belloni et al.(2015). The results for the plug-in estimator for general splines

extend those of Ichimura and Newey (2017) to sample averages of functionals. The double

robustness of the estimators we consider is shown in Chernozhukov et al.(2017), where the

doubly robust estimators of Scharfstein, Rotnitzky, and Robins (1999) and Robins, Rotnitzky,

and van der Laan (2000) are extended to a wide class of average linear functionals of conditional

expectations.

Other approaches to bias reduction for semiparametric estimators have been proposed.

Robins et al.(2008, 2017) and Mukherjee, Newey, and Robins (2017) develop higher order influ-

ence function (HOIF) estimators with smaller bias. In Section 2 we will discuss the relationship

of this paper to HOIF. Cattaneo and Jansson (2017) propose promising bootstrap confidence

intervals for plug-in kernel estimators that include bias corrections. Also, Cattaneo, Jansson,

and Ma (2017) show that the jackknife can be used to reduce bias of plug-in series estimators.

In Section 2 we will describe the cross-fitting approach to bias reduction and show how it

relates to HOIF. Section 3 describes the linear functional and regression spline estimators we

consider. Sections 4, 5, and 6 give results for the plug-in estimator, the doubly robust expected

conditional covariance estimator, and doubly robust estimators of other linear functionals, re-

spectively.

Before explaining the results of this paper it is helpful to be more specific about our goal. We
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will consider i.i.d. data 1  . We are interested in an asymptotically linear semiparametric

estimator ̂ satisfying

√

³
̂ − 0

´
=

1√


X
=1

 () + (∆) ∆ −→ 0 (1.1)

where  () is the influence function of ̂ and ∆ characterizes the size of the remainder. Our

goal is to find estimators where ∆ converges to zero at the fastest known rate. To the best of

our knowledge there is not a general theory for such rates so we focus on examples.

For the integrated squared density, Bickel and Ritov (1988) gave a kernel based estimator

where the rate for∆ is fast enough that ̂ is semiparametric efficient under minimal conditions.

Because we consider series estimators of a conditional expectation we focus on the example of a

series estimator of the coefficients of a partially linear regression in Donald and Newey (1994).

The model there is [| ] =  0+ 0() where 0() is an unknown function of an × 1
vector . Consider the estimator ̂ obtained from regressing  on  and a ×1 vector () of
power series or regression splines in an i.i.d. sample of size . Assume that the functions 0()

and 0() = [| = ] are each members of a Holder class of order  and  respectively.

Define

∆∗ =
√
−(+) +− +− +

r





Donald and Newey (1994) showed that under regularity conditions, including  −→ 0, equa-

tion (1.1) is satisfied with∆ = ∆∗ Here
√
−(+) gives the rate at which the of

√
(̂−0)

goes to zero. Also, − and − are stochastic equicontinuity bias terms, and
p
 ac-

counts for stochastic equicontinuity and degenerate U-statistic variance terms. Overall, this ∆∗
goes to zero as fast as known possible for any functional estimator that can be inconsistent if

the nuisance function estimator has limit that is not the truth. Furthermore, there exists 

such that ∆∗ −→ 0 if and only if  +   2 which is the minimal condition of Robins et

al. (2009) for existence of a semiparametric efficient estimator of the coefficients 0 of a linear

projection of  on functions of the form +() (for some  and ()). These results suggest

that ∆∗ will go to zero as fast as possible and so motivate our goal of constructing estimators

with ∆ = ∆∗

2 Cross-Fitting and Fast Remainder Rates

To explain how cross-fitting can help achieve fast remainder rates we consider estimation of the

expected conditional covariance

0 = [( |)] = [ { − 0()}]
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where 0() = [|]. This object is useful in the estimation of weighted average treatment
effects as further explained below. We assume that the functions 0() and 0() = [| = ]

are each members of a Holder class of order  and  respectively.

One way to construct an estimator of 0 is the “plug-in” method where a nonparametric

estimator ̂ is substituted for 0 and a sample average for the expectation to form

̄ =
1



X
=1

{ − ̂()}

This estimator generally suffers from an "own observation" bias that is of order 
√
 when

̂ is a spline regression estimator, which converges to zero slower than ∆∗. This bias can be

eliminated by replacing ̂() with an estimator ̂−() that does not use  in its construction.

The resulting estimator of 0 is

̂ =
1



X
=1

{ − ̂−()}

This estimator is "cross-fit" in the sense that ̂− uses a subsample that does not include . The

cross-fitting eliminates the own observation bias. The remainder rate ∆ for ̂ will be faster

than for ̄, nearly as fast as ∆∗ in some cases explained below. This approach to eliminating

own observation bias when the first step is a density estimator has been used by Bickel (1982),

Bickel and Ritov (1988), Powell, Stock, and Stoker (1989), Laurent (1996), and others. The

result that such a cross-fit plug-in estimator can have nearly the fastest rate ∆∗ for a spline

regression first step appears to be novel.

Doubly robust estimators have another source of bias that can also be eliminated by cross-

fitting. To explain we consider a doubly robust estimator of the expected conditional covariance.

Let ̂−() and ̂−() be nonparametric estimators of 0() = [|] and 0() = [|]
that do not depend on the  observation. Consider the estimator

̌ =
1



X
=1

[ − ̂−()][ − ̂−()]

This estimator is doubly robust in the sense of Scharfstein, Rotnitzky, and Robins (1999) and

Robins, Rotnitzky, and van der Laan (2000), being consistent if either ̂− or ̂− are consistent.

It uses cross-fitting to eliminate own observation bias This estimator does have a nonlinearity

bias when ̂−() and ̂−() are constructed from the data. That bias is of the same order


√
 as the own observation bias for a spline regression plug-in estimator. This bias can be

thought of as arising from nonlinearity of ̌ in the two nonparametric estimators ̂−() and

̂−()

One can remove the nonlinearity bias in the doubly robust estimator by using different parts

of the data to construct the two nonparametric estimators. Let ̂−() be constructed from a
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subset of the observations that does not include observation  and let ̃−() be constructed

from a subset of the observations that does not include  or any observations used to form ̂−.

A cross-fit doubly robust estimator is

̃ =
1



X
=1

[ − ̃−()][ − ̂−()]

This estimator uses cross-fitting to remove both the own observation and the nonlinearity biases.

We will show that ∆∗ = ∆ when ̃−() and ̂−() are spline regression estimators for a

 × 1 vector of multivariate splines of at least order max{ }− 1 with evenly spaced knots.
Consequently, this estimator will be root-n consistent when  +   2 and  is chosen

appropriately, which is the minimal condition of Robins et al. (2009).

Remarkably, the doubly robust estimator ̌ where ̂−() and ̂−() use the same data

may have a slower remainder rate than the cross-fit plug-in estimator ̂. The use of the same

data for ̂−() and ̂−() introduces a bias term of size 
√
. Such a term is not present in

the cross-fit plug-in estimator. The 
√
 term is eliminated for the doubly robust estimator by

forming ̃−() and ̂−() from different samples. We find that the doubly robust estimator

̃ improves on the cross-fit plug in estimator by increasing the rate at which a certain part of

∆ goes to zero. Specifics will be given below.

We note that the own observation bias can also be thought of as nonlinearity bias. The

parameter 0 has the form

0 =

Z
{ − 0()}0()

where 0 denotes the distribution of  = (  ) This object is quadratic in 0 and 0 jointly.

The own observation bias can be thought of as a quadratic bias resulting from using all the

data to simultaneously estimate 0 and the distribution 0 of a single observation. The cross-fit

plug in estimator ̂ eliminates this nonlinearity bias. Also, the doubly robust estimator can

be thought of as estimating
R
[ − 0()][ − 0()]0() which is cubic in 0 0, and 0

jointly. The cross-fit doubly robust estimator can be thought of as eliminating the cubic bias

by estimating each of 0() 0(), and 0 from distinct groups of observations.

One possible concern about cross-fit doubly robust estimators is that each of the nonpara-

metric components ̂ and ̃ only uses part of the data. This does not affect remainder rates but

it could affect the finite sample efficiency of the estimators. One way to mitigate this effect is

to average estimators where different subsets of the data are used for each of ̂ and ̃. In this

paper we focus on remainder rates, so we leave consideration of such averages to future work.

Cross-fitting can be applied to eliminate bias terms for any estimator that depends on pow-

ers of nonparametric estimators. Such cross-fitting would replace each power by a product of

nonparametric estimators that are computed from distinct subsamples of the data, analogously

to the doubly robust estimators above.
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To describe our results let () be a vector of multivariate regression splines with evenly

spaced knots. Suppose that ̂−() = () [Σ∈I()()
 ]−1Σ∈I() is a series estimator

from regressing  on () in a subsample of observations indexed by I, where {I}=1 is a
partition of {1  }  ∈ I  is fixed and the number of elements of each I grows as fast as .
Suppose that for the doubly robust estimator ̃() is constructed analogously from a separate

subsample.

When  ≤ 1 and  ≤ 1 and () is a Haar basis of dummy variables that are indicator

functions of cubes partitioning the support of  we show that the cross-fit plug-in estimator

has ∆ = ∆∗ + ln()
− and the cross-fit doubly robust estimator has ∆ = ∆∗ Here

the cross plug-in estimator has nearly the fast remainder ∆∗ and the cross-fit doubly robust

estimator does have the fast remainder, so the doubly robust estimator improves on the plug-in

estimator in this sense. We also show that these results extend to all average linear functionals

of a conditional expectation that have finite semiparametric variance bound.

When  and  are any positive numbers and () is a spline basis of order at least

max{ }−1we show that the cross-fit plug in estimator has∆ = ∆∗+
p
 ln()12−

and the cross-fit doubly robust estimator has ∆ = ∆∗ Here the plug-in estimator has the fast

remainder ∆ = ∆∗ for   2 and the doubly robust estimator has ∆ = ∆∗ for all .

The doubly robust estimator improves on the plug-in estimator in having the fast remainder

rate. For other average linear functionals we show that the cross-fit doubly robust estimator has

∆ = ∆∗ +
p
3 ln()2312− which has ∆ = ∆∗ when [ ln()]

12− −→ 0

Thus in general the cross-fit doubly robust estimator improves on the plug-in estimator in having

a part of the remainder term that converges faster to zero than the plug-in estimator.

We note that the source of the term in ∆ that is added to ∆
∗
 in each case is the estimators

Σ̂ = Σ∈I()()
 ( = 1  ) of the second moment matrix Σ = [()()

 ] of the

regression splines. If each Σ̂ were replaced by Σ in the estimators then the resulting objects

would all have ∆ = ∆∗

We can use this fact to explain the remainder rate for the estimators. For brevity, we give

this explanation just for the plug-in estimator. Consider the plug-in object ̇ having the same

formula as ̂ except that ̂−() is replaced by ̇−() = ()Σ−1
P

∈I () Let ̄() =

()Σ−1[()0()]. Standard approximation properties of splines give the approximation

rates {[{0() − ̄()}2]}12 = (−) and {[{0() − ̄()}2]}12 = (−) By

the Cauchy-Schwartz inequality

√
[{0()− ̄()}{0()− ̄()}] ≤

√
{[{0()− ̄()}2]}12{[{0()− ̄()}2]}12

= (
√
−(+))

Note also that [̇−()] = ̄() = ()Σ−1[()0()] Then the root-n normalized bias of
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̇ is


h√


³
̇ − 0

´i
=
√


Z
{ − [̇−()]}0 ()−[{ − 0()}]

=
√
[{0()− ̄()}] =

√
[0(){0()− ̄()}] (2.1)

=
√
[{0()− ̄()}{0()− ̄()}] = (

√
−(+))

which has our desired ∆∗ rate. Also, there will be stochastic equicontinuity bias terms of order

− and − and stochastic equicontinuity variance and degenerate U-statistic variance

terms of order
p
. Overall the remainder for ̇ will satisfy ∆ = ∆∗. Thus, a cross-fit

plug-in object ̇ where Σ replaces each Σ̂ will have the fast remainder rate.

We note that the bias in equation (2.1) depends on the product −(+) of the approxi-

mation rate − for 0() and the approximation rate − for 0() rather than just the

bias rate − for the nonparametric estimator being plugged-in. This product form results

from the fact that the parameter of interest 0 has a finite semiparametric variance bound. The

product bias form in equation (2.1) for plug-in series estimators was shown in Newey (1994).

It is interesting to compare our estimators with HOIF estimators. We continue to focus

on the average conditional covariance. The HOIF estimator of that 0 can depend on initial

estimators ̂() and ̂() of 0() and 0() obtained from a training subsample. For a vector

of spline regressors () let Σ̂ be the sample second moment matrix of () from the training

sample. Let ̂() = Σ̂−1[()() − Σ̂] and

̂ =
1



X
=1

[ − ̂()][ − ̂()]− 1

(− 1)
X
6=
[ − ̂()]()

 Σ̂−1()[ − ̂()]

+

X
=1

(−1)+1(− 1− )!

!

X
6=
[ − ̂()]()



⎡⎣ X
1 6=···6= 6=6=

Π

=1̂()

⎤⎦ Σ̂−1()[ − ̂()]

where all the sums are over an estimation subsample that does not overlap with the training

sample. This ̂ is the empirical HOIF estimator of Mukherjee, Newey, and Robins (2017). By

Theorem 3 of Mukherjee, Newey, and Robins (2017) the bias of
√
(̂ −0) conditional on the

training sample has order

√
 k̂− 0k2 k̂ − 0k2

µ
 ln()



¶2

= k̂− 0k2 k̂ − 0k2 ln()
µ
 ln()



¶(−1)2


where kk2 = {[()2]}12 The order of this bias will be smaller than
p
 as long as

 grows no faster than 1− for some   0, although that is not needed for semiparametric

efficiency. As shown in Mukherjee, Newey, and Robins (2017), if  grows like
p
ln()  like

 ln()3 and other regularity conditions are satisfied then ̂ will be semiparametric efficient

under the minimal condition  +   2 of Robins et al.(2009).
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We can explain the different properties of HOIF and series estimators by comparing the

cross-fit plug-in estimator with the HOIF when the training sample estimators ̂ and ̂ are set

equal to zero. In that case the HOIF estimator is

̂ =
1



X
=1

 − 1

(− 1)
X
6=

()
 Σ̂−1()

+

X
=1

(−1)+1(− 1− )!

!

X
6=

()


⎡⎣ X
1 6=···6= 6=6=

Π

=1̂()

⎤⎦ Σ̂−1()
Consider ̌−() = () Σ̂−1

P
 6= ()( − 1) This is an estimator of 0() that is like a

series estimator except the inverse second moment matrix Σ̂−1 comes from the training sample

and the cross-moments
P

 6= ()(−1) from the estimation subsample. The first two terms
of the HOIF estimator can then be written as

̌ =
1



X
=1

[ − ̌−()]

Let  denote the training sample. Then we have

[̌ − 0| ] = [0(){0()− ̌−()}] = [0()0()]−[0()()
 ]Σ̂−1[()0()]

= [0()0()− ̄()̄()] +[0()()
 ](Σ−1 − Σ̂−1)[()0()]

= (−(+)) + Λ(Σ̂Σ)Λ(Σ̂Σ) = [0()()
 ](Σ−1 − Σ̂−1)[()0()]

Thus the bias of ̌ is the sum of the approximation bias −(+) and Λ(Σ̂Σ) The rest of

the HOIF estimator, i.e. ̂ − ̌, can be thought of as a bias correction for Λ(Σ̂Σ) Note that

[̂ − ̌| ] =
X
=1

(−1)+1(− 1− )!

!
[0()()]


h
Σ̂−1(Σ− Σ̂)

i
Σ̂−1[()0()]

Here we see that [̂ − ̌| ] is the negative of a Taylor expansion to order  of Λ(Σ̂Σ) in Σ̂

around Σ Therefore, it will follow that

[̂ − 0| ] = (−(+)) +(
°°°Σ̂−Σ

°°°

) = (−(+)) +(

µ
 ln()



¶2

)

where k·k is the operator norm for a matrix and the second equality follows by the Rudelson

(1999) matrix law of large numbers. This equation is similar to the conclusion of Theorem 3 of

Mukherjee, Newey, and Robins (2017).

In comparison with the HOIF estimator the cross-fit plug-in series estimator has a re-

mainder rate from estimating Σ that is ln()− for   ≤ 1 and Haar splines andp
 ln()12− more generally, without any higher order U-statistic correction for the
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presence of Σ̂−1 The cross-fit doubly robust estimator has ∆ = ∆∗ also without the need to

rely on any higher-order U-statistics. The key difference between the HOIF and these other

estimators is that the cross-split plug-in and doubly robust estimators use spline regression in

their construction and the HOIF estimator uses Σ̂−1 from a training subsample.

Previously the HOIF estimator was the only known method of obtaining an semiparametric

efficient estimator of the expected conditional covariance under the minimal conditions of Robins

et al.(2009). We find here that the cross-fit plug-in estimator with a Haar basis can do this for

  ≤ 1 and for a general spline basis with  ≥ 2 We also find that the cross-fit doubly

robust estimator can do this for all  and . These estimators are simpler than the HOIF

estimator in not requiring the higher order U-statistic terms It would be interesting to compare

the size of constants in respective remainder terms where HOIF could have an advantage by

virtue of its higher order influence function interpretation. That comparison is beyond the scope

of this paper.

The HOIF estimator remains the only known estimator that is semiparametric efficient under

the Robins et al.(2009) minimal conditions for the mean with missing data over all  and . We

expect that property of HOIF to extend to all the linear average functionals we are considering

in this paper.

In summary, cross-fitting can be used to reduce bias of estimators and obtain faster remainder

rates. If cross fitting is not used for either the plug-in or the doubly robust estimator there would

be an additional 
√
 bias term in the remainder. This extra term can increase the bias of the

estimator significantly for large  It is well known to be very important in some settings, such

as instrumental variables estimation as shown by Blomquist and Dahlberg (1999) and Imbens,

Angrist, and Krueger (1999). Also, its presence prevents the plug-in estimator from attaining

root-n consistency under minimal conditions. Cross-fitting eliminates this large remainder for

the linear functionals we consider and results in plug-in and doubly robust estimators with

remainders that converge to zero as fast as known possible for   ≤ 1 for   2, and for

any  and  for a doubly robust estimator of the expected conditional covariance.

3 Estimators of Average Linear Functionals

We will analyze estimators of functionals of a conditional expectation

0() = [| = ]

where  is a scalar component and  a subvector of . Let  represent a possible conditional

expectation function and ( ) denote a function of  and a possible realization  of a data

observation. We consider

0 =  [( 0)] 
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where ( ) is an affine functional of  for every  meaning ( )−( 0) is linear in .

There are many important examples of such an object. One of these is the expected condi-

tional covariance we consider in Section 2. There ( ) = [ − ()]. This object shows up

in different forms in the numerator and denominator of

0 =
[( |)]
[ (|)] 

Here 0 is the coefficient of  in the population least squares projection of  on functions of

the form  + () Under an ignorability assumption this object 0 can be interpreted as

a weighted average of conditional average treatment effects when  is a binary indicator for

treatment and  are covariates.

Another important example is the mean when data are missing at random. The object

of interest is 0 = [] where  is a latent variable that is not always observed. Let  be

an observed binary indicator where  = 1 if  is observed. Suppose that there are observed

covariates  such that  is mean independent of  conditional on , i.e. [| = 1 ] =

[|] Then for the observed variable  =  we have

[[| = 1 ]] = [[| = 1 ]] = [[|]] = 0

Let  = () and 0() = [|] Then for ( ) = (1 ) we have 0 = [( 0)].

A third example is a weighted average derivative, where the object of interest is

0 =

Z
() [0()1] 

for some weight function () with 1 continuously distributed and
R
() = 1. This object

is proportional to 10 in a conditional mean index model where [|] = ( 0) for some

unknown function (·) as in Stoker (1986). This object is included in the framework of this paper
for ( ) =

R
() [()1]  Assuming that () is zero at the boundary, integration by

parts gives

( ) = () =

Z
()() () = −()1

Throughout we will focus on the case where estimators of 0 have a finite semiparamet-

ric variance bound and so should be root-n consistently estimable under sufficient regularity

conditions. As discussed in Newey (1994), this corresponds to [ ( )] being mean square

continuous as a function of , so that by the Riesz representation theorem the following condition

is satisfied:

Assumption 1: There is 0 () with [0()
2] ∞ and for all  with [()

2] ∞,

 [ ( )−( 0)] =  [0 ()  ()]  (3.1)

11



The function 0() has an important role in the asymptotic theory. The bias in a series

estimator of 0 will depend on the expected product of biases in approximating 0() and

0(). Consequently there will be a trade-off in conditions that can be imposed on 0() and

0() so that the estimators of 0 have good properties.

To help explain this condition we give the form of 0() in each of the examples. In the

expected conditional covariance example iterated expectations gives

 [ ( )−( 0)] = −[()] = −[[|]()] = [0()()] (3.2)

0() = −[|]

In the missing data example, for the propensity score Pr( = 1|) = 0(), iterated expecta-

tions gives

 [ ( )−( 0)] = [(1 )] = [
0()

0()
(1 )] = [



0()
(1 )] (3.3)

= [


0()
()] = [0()()] 0() =



0()


In the average derivative example, multiplying and dividing by the pdf 0() of  gives

 [ ( )−( 0)] =

Z
()() =

Z
()

0()
()0() = [

()

0()
()] (3.4)

= [0()()] 0() =
()

0()


Our estimators of 0 will be based on a nonparametric estimator ̂ of 0 and possibly on a

nonparametric estimator ̃ of 0 The cross-fit plug-in estimator is given by

̂ =
1



X
=1

X
∈

( ̂)

where  ( = 1  ) is a partition of the observation index set {1  } into  distinct subsets
of about equal size and ̂ only uses observations not in  We will consider a fixed number of

groups  in the asymptotics. It would be interesting to consider results where the number of

groups grows with the sample size, even "leave one out" estimators where  only includes one

observation, but theory for those estimators is more challenging and we leave it to future work.

The doubly robust estimator makes use of ̃ that may be constructed from different obser-

vations than ̂ The doubly robust estimator is

̃ =
1



X
=1

X
∈

{( ̂) + ̃()[ − ̂()]} 

This estimator has the form of a plug-in estimator plus the sample average of ̃()[− ̂()]
which is an estimator of the influence function of

R
( ̂)0() The addition of ̃()[ −

12



̂()] will mean that the nonparametric estimators ̂ and ̃ do not affect the asymptotic

distribution of ̃ i.e. the limit distribution would be the same if ̂ and ̃ were replaced by

their true values and ∆ −→ 0. This estimator allows for full cross-fitting where ̃ and ̂ may

be based on distinct subsamples.

The cross-fit estimator ̃ is doubly robust in the sense that ̃ will be consistent as long as

either ̂ or ̃ is consistent, as shown by Chernozhukov et al.(2017). When ̂() is a series

estimator like that described above the cross-fit plug-in estimator ̂ is also doubly robust in

a more limited sense. It will be consistent with fixed () if either 0() or 0() is a linear

combination of (), as shown for the mean with missing data in Robins et al.(2007) and in

Chernozhukov et al.(2017) for the general linear function case we are considering.

Throughout the paper we assume that each data point  is used for estimation for some

group  and that the number of observations in group , the number used to form ̂, and the

number used to form ̃ grow at the same rate as the sample size. To make this condition precise

let ̄ be the number of elements in  ̂ be the number used to form ̂ and ̃ be the number

of observations used to form ̃. We will assume throughout that all the observations are used

for each , i.e. that either ̄ + ̂ =  or ̄ + ̂ + ̃ =  if different observations are used for

̂ and ̃.

Assumption 2: There is a constant   0 such that either ̄+̂ =  and min{̄ ̂} ≥
 or ̄+ ̂+ ̃ =  and min{̄ ̂ ̃} ≥  For the plug-in estimator groups are as close

as possible to being of equal size.

The assumption that the group sizes are as close to equal as possible for the plug-in estimator

is made for simplicity but could be relaxed.

We turn now to conditions for the regression spline estimators of 0() and 0(). We

continue to consider regression spline first steps where () is a  × 1 vector of regression
splines. The nonparametric estimator of 0() will be a series regression estimator where

̂() = () ̂ ̂ = Σ̂− ̂ Σ̂ =
1

̂

X
∈̂

()()
  ̂ =

1

̂

X
∈̂

()

where a  superscript denotes the transpose, ̂ is the index set for observations used to construct

̂(), and − denotes any generalized inverse of a positive semi-definite matrix . Under

conditions given below Σ̂ will be nonsingular with probability approaching one so that Σ̂
−
 = Σ̂−1

for each 

The doubly robust estimator ̃ uses an estimator of 0() The function 0() cannot gen-

erally be interpreted as a conditional expectation and so cannot generally be estimated by a

linear regression. Instead we use Assumption 1 and equation (3.1) to construct an estimator.

13



Let () = (( 1)−( 0) ( )−( 0)) . Then by Assumption 1,

[()] = [()0()]

so that ̃ =
P

∈̃ ()̃ is an unbiased estimator of [()0()] A series estimator of

0() is then

̃() = () ̃ ̃ = Σ̃− ̃ Σ̃ =
1

̃

X
∈̃

()()
 

Here ̃ is an estimator of the coefficients of the population regression of 0() on () but ̃

is not obtained from a linear regression. This type of estimator of 0() was used to construct

standard errors for functionals of series estimators in Newey (1994).

Now that we have specified the form of the estimators ̂ and ̃ we can give a complete

description of the estimators in each of the examples. For the expected conditional covariance

recall that ( ) = [ − ()] Therefore the plug-in estimator will be

̂ =
1



X
=1

X
∈

[ − ̂()] (3.5)

Also, as discussed above, for the expected conditional covariance 0() = −[| = ] and

() = −(), so that ̃() = −̃() where ̃() = () Σ̃−
P

∈̃ ()̃ is the

regression of  on () for the observations indexed by ̃ Then the doubly robust estimator is

̃ =
1



X
=1

X
∈
[ + ̃()][ − ̂()] =

1



X
=1

X
∈
{ − ̃[|]}[ − ̂()] (3.6)

where ̃[|] = −̃() is the predicted value from the regression of  on () This estimator

is the average of the product of two nonparametric regression residuals, where the average and

each of the nonparametric estimators can be constructed from different samples.

For the missing data example the estimators are based on series estimation of [| = 1 ].

Let () denote a×1 vector of splines,  = (  )  and () = (()  (1−)() ) . The
predicted value ̂(1 ) will be the same as from a linear regression of  on () for observations

with  = 1 That is, ̂(1 ) = () ̂ where

̂ = Σ̂− ̂ Σ̂ =
1

̂

X
∈̂

()()
  ̂ =

1

̂

X
∈̂

()

The cross-fit plug-in estimator is

̂ =
1



X
=1

X
∈

()
 ̂

14



The doubly robust estimator is based on an estimator of the inverse propensity score 0()
−1 =

10() given by

^()
−1
 = ()

 ̃  ̃

 = Σ̃− ̃


  Σ̃ =

1

̃

X
∈̃

()()
  ̃ =

1

̃

X
∈̃

()

where ̃ is the number of observation indices in ̃. This estimator of the inverse propensity

score is a version of one discussed in Robins et al.(2007). The cross-fit doubly robust estimator

is

̃ =
1



X
=1

X
∈

½
()

 ̂ + ̂()
−1
 [ − ()

 ̂]

¾


This has the usual form for a doubly robust estimator of the mean with data missing at random.

It differs from previous estimators in having the full cross-fit form where the nonparametric

estimators are based on distinct subsamples of the data.

For the average derivative example ( ) =
R
()() does not depend on  so we can

use all the data in the construction of the plug-in estimator. That estimator is given by

̂ =

Z
()̂() =  ̂,  =

Z
()() ̂ = [

X
=1

()()
 ]−

X
=1

() (3.7)

As shown in equation (3.4), 0() = 0()
−1() where 0() is the pdf of . Also here () = 

so the estimator of 0() is ()
 Σ̃−  The doubly robust estimator is then

̃ =
1



X
=1

X
∈
{
Z

()̂()+
h
()

 Σ̃− 
i
[ − ̂()]} (3.8)

Both the plug-in and the doubly robust estimators depend on the integral  =
R
()()

Generally this vector of integrals will not exist in closed form so that construction of these

estimators will require numerical computation or estimation of , such as by simulation.

We now impose some specific conditions on ().

Assumption 3: () = () where i) the support of  is [0 1]
,  is continuously

distributed with bounded pdf that is bounded away from zero; ii) () are tensor product b-

splines of order  with knot spacing approximately proportional to the number of knots; iii)

() is normalized so that min([()()
 ]) ≥   0 and sup∈[01] k()k ≤ 

√
; iv) 

is bounded and [2 |] is bounded away from zero.

Under condition i) it is known that there is a normalization such that condition iii) is

satisfied, e.g. as in Newey (1997). To control the bias of the estimator we require that the

true regression function 0() and the auxiliary function 0() each be in a Holder class of
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functions. We define a function () to be Holder of order  if there is a constant  such that

() is continuously differentiable of order ̄ = [] and each of its ̄ partial derivatives ∇̄()

satisfies |∇̄(̃)−∇̄()| ≤  k̃− k−̄ 

Assumption 4: 0() and 0() are Holder of order  and  respectively.

This condition implies that the population least squares approximations to 0() and 0()

converge at certain rates. Let  = min{1+ }  = min{1+ } Σ = [()()
 ],

 = Σ−1[()0()] () = ()   = Σ−1[()0()] () = ()  Then stan-

dard approximation theory for splines gives

[{0()− ()}2] = (−2) sup
∈[01]

|0()− ()| = (−)

[{0()− ()}2] = (−2)

We will use these results to derive the rates at which certain remainders converge to zero.

We also impose the following condition:

Assumption 5:  (|) ≤   −→∞, and  ln() −→ 0.

These are standard conditions for series estimators of conditional expectations. A bounded

conditional variance for  helps bound the variance of series estimators. The upper bound on

the rate at which  grows is slightly stronger than  −→ 0. This upper bound on  allows

us to apply the Rudelson (1999) law of large numbers for symmetric matrices to show that the

various second moment matrices of () converge in probability. Another condition we impose

is:

Assumption 6: max([()()
 ]) ≤  and {[{( )−( 0)}2]}12 = (−)

The first condition will be satisfied with  = 1 in the examples under specific regularity

conditions detailed below. The second condition gives a rate for the mean square error conver-

gence of ( ) −( 0) as  grows. In all of the examples this rate will be  =  In

other examples, including those where ( ) and () depend on derivatives with respect to

 we will have  growing with  and   

For the statement of the results to follow it is convenient to work with the remainder term

∆̄∗ =
√
−− +− +− +

r





This remainder coincides with the fast remainder ∆∗ when the spline order is high enough with

 ≥ max{ }− 1 The only cases where it would not be possible to choose such a  are for
the Haar basis where  = 0
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4 The Plug-in Estimator

In this Section we derive bounds on the size of remainders for the plug-in estimator. Some

bounds are given for general plug-in estimators, some for plug-ins that are series regression with

Haar splines, and some for other splines. We begin with a result that applies to all plug-ins.

The sample splitting form of the plug-in estimator allows us to partly characterize its prop-

erties under weak conditions on a general plug-in estimator that need not be a series regression.

This characterization relies on independence of ̂ from the observations in  to obtain relatively

simple stochastic equicontinuity remainders. Also, this result accounts for the overlap across

groups in observations used to form ̂. Let A denote an event that occurs with probability

approaching one. For example, A could include the set of data points where Σ̂ is nonsingular

for each 

Lemma 1: If Assumptions 1 and 2 are satisfied and there is ∆
 such that

1(A)

½Z
[( ̂)−( 0)]

20()

¾12
= (∆


 ) ( = 1  ) 

then for ̄() =
R
( )0()

√
(̂ − 0) =

1√


X
=1

[( 0)− 0] +
√


X
=1

̄


[̄(̂)− 0] +(∆


 )

If in addition there is ∆
 such that for each ( = 1  ) p

̂[̄(̂)− 0] =
1√
̂

X
∈

0()[ − 0()] +(∆

)

then for () = ( 0)− 0 + 0()[ − 0()]

√
(̂ − 0) =

1√


X
=1

() +(∆

 +∆

 + −1)

This result gives a decomposition of remainder bounds into two kinds. The first ∆
 is a

stochastic equicontinuity bound that has the simple mean-square form given here because of

the sample splitting. The second ∆
 is a bound that comes from the asymptotically linear

expansion of the linear functional estimator ̄(̂). For general b-splines we can apply Ichimura

and Newey (2017) to obtain ∆
. For zero order splines we give here sharper remainder bounds.

For series estimators the stochastic equicontinuity remainder bound ∆
 will be

∆
 =

r
( + 1)




+− 
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where  and  are as given in Assumption 6. As mentioned above, in the examples in this

paper  ≤  and  = . Here we can take ∆

 ≤ ∆̄∗, so the stochastic equicontinuity

remainder bound is the same size as ∆̄∗.

Our next result gives remainder bounds for the Haar basis.

Theorem 2: If Assumptions 1-6 are satisfied,  = 0 and [ln()]2 −→ 0 then

√
(̂ − 0) =

1√


X
=1

() +(∆̄
∗
 +∆

 +− ln())

If in addition  is bounded as a function of  and  =  then ∆
 ≤ ∆̄∗.

Here we see that for a Haar basis the order of the remainder term for the plug-in estimator

is a sum of the stochastic equicontinuity term ∆
 and ∆̄∗, with − ln() being the size of

the fast remainder up to ln() In the examples and other settings where  is bounded and

 =  the ∆

 remainder will just be of order ∆̄

∗
. The following result states conditions for

the examples.

Corollary 3: Suppose that Assumptions 1-3 and 5 are satisfied,  = 0, [ln()]2 −→ 0

and 0() is Holder of order  If either i) ̂ is the expected conditional covariance estimator,

[| = ] is Holder of order , [
2
 |] is bounded, or ii) ̂ is the missing data mean

estimator, Pr( = 1|) is bounded away from zero and is Holder of order  or iii) ̂ is the

average derivative estimator, () and 0() are Holder of order , and 0() is bounded away

from zero on the set where ()  0 then

√
(̂ − 0) =

1√


X
=1

() +(∆̄
∗
 +− ln())

The remainder bound means that the plug-in estimator can attain root-n consistency under

minimal conditions, when the dimension  is small enough. There will exist  such that ∆̄∗
goes to zero if an only if

12   +  =
min{1 }+min{1 }


 (4.1)

This condition can be satisfied for   4 but not for  ≥ 4 For  = 1 this condition will be

satisfied if and only if

 +  
1

2


which is the minimal condition of Robins et al.(2009) for existence of a semiparametric efficient

estimator for the expected conditional covariance and missing data parameters when  = 1. For

 = 2 we note that

min{1 }+min{1 } ≥ 1 if and only if  +  ≥ 1
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For  = 2 equation (4.1) is min{1 }+min{1 }  1, which requires both   0 and   0

and so is slightly stronger than the Robins et al.(2009) condition  +   1. For  = 3

the situation is more complicated. Equation (4.1) is stronger than the corresponding condition

 +   32 of Robins et al.(2009), although it is the same for the set of ( ) where  ≤ 1
and  ≤ 1 Along the diagonal where  =  the two conditions coincide as   34

The limited nature of these results is associated with the Haar basis, which limits the de-

gree to which smoothness of the underlying function results in a faster approximation rate. If

Theorem 2 and Corollary 3 could be extended to other, higher order b-splines, this limitation

could be avoided. For the present we are only able to do this for the doubly robust estimator of

a partially linear projection, as discussed in the next Section.

There is a key result that allows us to obtain the remainder bound ∆̄∗ in Theorem 2. Let

̂2 =
P

=1 ()[0()− ()], Σ̂ =
P

=1 ()()
, and Σ = [()()

  We show

in the Appendix that for the Haar basis

max([(Σ− Σ̂)̂2̂

2 (Σ− Σ̂)]) ≤ −2



µ




¶

 (4.2)

If b-spline bases other than Haar also satisfied this condition then we could obtain results

analogous to Theorem 2 and Corollary 3 for these bases. We do not yet know if other bases

satisfy this condition. The Haar basis is convenient in ()() being piecewise constant.

Cattaneo and Farrell (2013) exploited other special properties of the Haar basis to obtain sharp

uniform nonparametric rates.

For b-splines of any order we can obtain remainder rates by combining Lemma 1 with The-

orem 8 of Ichimura and Newey (2017).

Theorem 4: If Assumptions 1-6 are satisfied then

√
(̂ − 0) =

1√


X
=1

() +(∆̄
∗
 +∆

 + ∆̄) ∆̄ =

µ
 ln



¶12
(12)− 

If in addition  is bounded as a function of  and  =  then ∆
 ≤ ∆̄∗.

Here we see that the remainder bound for splines with   0 has an additional term ∆̄.

When  is large enough, i.e. 0() is smooth enough and the order of the spline is big enough,

so that   12 the additional ∆̄ will be no larger than ∆̄
∗
 Also, when   12 the condition

of Robins et al.(2009) for semiparametric efficient estimation is met for the expected conditional

covariance and missing data examples for any . Thus, when 0() is smooth enough to meet the

Robins et al.(2009) condition without imposing any smoothness on 0() the plug-in estimator

will have the remainder bound ∆̄∗

More generally there will exist a  such that ∆̄ + ∆̄∗ goes to zero if and only if

2min{+ 1 }+min{+ 1 }   (4.3)
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This condition is slightly stronger than that of Robins et al.(2009) which is 2 +2   Also,

the remainder may go to zero when when  is chosen to maximize the rate at which the mean

square error of ̂0() goes to zero. Setting
−2 proportional to is such a choice of. Here

the remainder term goes to zero for min{+ 1 }   [2(1 + )] and min{+ 1 }  2 a

stronger condition for  and the same condition for  as would hold if the remainder were ∆̄
∗
.

5 Partially Linear Projection

In this Section we consider a series estimator of partially linear projection coefficients. We

give this example special attention because the doubly robust estimator will have a remainder

bound that is only ∆̄∗. The remainder bounds we find for other doubly robust estimators may

be larger. What appears to make the partially linear projection special in this respect is that

0() is a conditional expectation of an observed variable. In other cases where 0() is not a

conditional expectation we do not know if the remainder bound will be ∆̄∗ for bases other than

Haar.

The parameter vector of interest in this Section is

0 =
¡
[{ −[|]} ]

¢−1
[{ −[|]}]

This vector 0 can be thought of as the coefficients of  in a projection of  on the set of

functions of the form   + () that have finite mean square. Note that this definition of 0

places no substantive restrictions on the distribution of data, unlike the conditional expectation

partially linear model where [| ] =  0 + 0()

The object 0 is of interest in a treatment effects model where  is a binary treatment,  is

the observed response,  are covariates, and outcomes with and without treatment are assumed

to be mean independent of  conditional on . Under an ignorability condition that the

outcome is mean independent of treatment conditional on covariates, [| = 1 ]−[| =
0 ] is the average treatment effect conditional on . Also for  = Pr( = 1|)

0 =
[(1− ){[| = 1 ]−[| = 0 ]}]

[(1− )]


Here we have the known interpretation of 0 as a weighted average of conditional average

treatment effects, with weights (1− )[(1− )]

It is straightforward to construct a cross-fit doubly robust estimator of 0. Let 0() =

[|] and 0() = −[|] as before, except that  may now be a vector. Also let 

denote the index set for the  group, and ̂ and ̃ the index sets for the observations used to

obtain ̂ and ̃ respectively. For any function () let

̄{()} = 1

̄

X
∈

() ̂{()} = 1

̂

X
∈̂

() ̃{()} = 1

̃

X
∈̃

()
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These represent sample averages over each of the groups of observations. Let ̂() ̂() and

̃() be series estimators of 0() and 0() given by

̂() = () ̂ ̂() = () ̂ ̃() = () ̃

̂ = Σ̂−1̂ ̂ = Σ̂−̂ ̃ = Σ̃−̃ Σ̂ = ̂{()()} Σ̃ = ̃{()()}
̂ = ̂{()} ̂ = ̂{()} ̃ = ̃{()}

The estimator we consider is

̃ =

Ã
X
=1

X
∈
[ − ̃()][ − ̂()]



!−1 X
=1

X
∈
[ − ̃()][ − ̂()] (5.1)

This estimator can be thought of as an instrumental variables estimator with left hand sides

variable  − ̂(), right hand side variables  − ̂() and instruments  − ̃() Here

the instrumental variables form is used to implement the cross-fitting and not to correct for

endogeneity. This form means that every element of the matrix that is inverted and of the vector

it is multiplying is a cross-fit doubly robust estimator of an expected conditional covariance like

that described earlier.

Theorem 5: If Assumptions 1 - 3 and 5 are satisfied, 0() = [− 0| = ] is Holder

of order  and each component of [| = ] is Holder of order ,  = [ (|)] exists
and is nonsingular, and Ω = [{ − 0()}{ − 0()}2 ] exists then for  =  −  0 −
0() and () = −1( −[|])

√
(̃ − 0) =

1√


X
=1

() +(∆̄
∗
)

The regularity conditions here are somewhat stronger than those of Donald and Newey

(1994), who do not require any restrictions on the marginal distribution of  nor use any

sample splitting. This strengthening is useful to achieve the fast remainder for partially linear

projections rather than for the coefficients 0 in the conditional mean model [| ] =
 0 + 0() of Donald in Newey (1994). The upper bound on the rate at which  can grow

is slightly stricter than in Donald and Newey (1994) due to the presence of the ln() term in

Assumption 5. Thus, under somewhat stronger conditions than those of Donald and Newey

(1994) the cross-fit doubly robust estimator of a partially linear projection has a fast remainder

just as in Donald and Newey (1994). Consequently, the estimator will be root-n consistent under

minimal conditions.

When the Robins et al. (2009) minimal condition ( + )  12 holds, consider a spline

with   max{ }− 1, so that  +  = ( + )  12. Then there will exist a  such
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that ∆̄∗ −→ 0 and hence ̃ will be semiparametric efficient. Thus we see that the doubly robust

estimator ̃ of equation (5.1)will be semiparametric efficient under nearly minimal conditions

and has a fast remainder term.

6 The Doubly Robust Estimator

In this Section we show that the cross-fit doubly robust estimator has improved properties

relative to the plug-in estimator, in the sense that the remainder bounds are smaller for the

doubly robust estimator. We have not yet been able to obtain the fast remainder for the doubly

robust estimator for general splines, for the same reasons as for plug-in estimators.

Before giving results for series estimators we give a result that applies to any doubly robust

estimator of a linear functional. LetA denote an event that occurs with probability approaching

one. For example, A could include the set of data points where Σ̂ is nonsingular.

Lemma 6: If Assumptions 1 and 2 are satisfied, ̂() and ̂() do not use observations in

,  (|) is bounded, and there are ∆
  ∆


, and ∆

, such that for each ( = 1  ),

1(A)

½Z
[( ̂)−( 0)]

20()

¾12
= (∆


 )

1(A)

½Z
0()

2[̂()− 0()]
20()

¾12
= (∆


)

1(A)

½Z
[̃()− 0()]

20()

¾12
= (∆


)

then

√
(̃−0) =

1√


X
=1

()− 1√


X
=1

X
∈
[̃()−0()][̂()− 0()]+(∆


 +∆

+∆
)

This result does not require that ̂() and ̂() be computed from different samples. It

only uses the sample splitting in averaging over different observations that are used to construct

̂ and ̃ Also, it is known from Newey, Hsieh, and Robins (1998, 2004) that adding the

adjustment term to the plug-in estimator makes the remainder second order. The conclusion

of Lemma 6 gives an explicit form of that result. Under weak conditions that only involve

mean-square convergence the doubly robust estimator has a remainder that is the sum of three

stochastic equicontinuity remainders and the quadratic, split sample remainder involving the

product of the estimation remainders for the two nonparametric estimators ̂ and ̃.
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For series estimators the doubly robust estimator will have ∆̄∗ as its primary remainder for

the Haar basis

Theorem 7: If Assumptions 1-6 are satisfied,  = 0, and [ln()]2 −→ 0 then

√
(̃ − 0) =

1√


X
=1

() +(∆̄
∗
 +∆

 )

If in addition  is bounded as a function of  and  =  then ∆
 ≤ ∆̄∗.

One improvement of the doubly robust estimator over the plug-in estimator is that the

remainder no longer contains the − ln() term. The elimination of this term is the direct

result of the doubly robust estimator having a smaller remainder than the plug-in estimator.

For splines of order   0 we can obtain a result for the doubly robust estimator that

improves on the plug-in remainder bound.

Theorem 8: If Assumptions 1-6 are satisfied then

√
(̃ − 0) =

1√


X
=1

() +(∆̄
∗
 +∆

 + ∆̃) ∆̃ =

s
3 [ln()]

2
(1 + )

3
(12)− 

If in addition  is bounded as a function of  and  =  then ∆
 ≤ ∆̄∗.

Here we see that the remainder bound for the doubly robust estimator will generally be

smaller than the remainder bound for the plug-in estimator because the term  ln() is

raised to the 3/2 power rather than the 1/2 power. Here it turns out that there will exist a 

such that all of the remainder terms go to zero if

4 + 3 ≥ 2

For example, if  =  and  ≥ max{ }− 1 this requires   27 which is only slightly
stronger than the   4 condition of Robins et al.(2009) that is required for existence of a

semiparametric efficient estimator. Also, existence of  such that the remainder will be of size

no larger than ∆̄∗ requires

2 +  ≥ 1
For example, if  =  this requires   13 which is weaker than the condition   12 for

the remainder for the plug-in estimator. In these ways the doubly robust estimator improves on

the plug-in estimator.
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7 Appendix

This Appendix gives the proofs of the results in the body of the paper. We begin with the proofs

of Lemma 1 and Lemma 6 because they are not restricted to series estimators.

Proof of Lemma 1: Define ∆̂ = ( ̂)−( 0)− ̄(̂)+0 for  ∈  and let ()


denote the set of observations  for  ∈ . Note that [∆̂|()] = 0 by construction for

 ∈  Also by independence of the observations, [∆̂∆̂|()] = 0 for   ∈  Furthermore,

[∆̂2
|()] ≤

R
[( ̂)−( 0)]

20() = ((∆

 )

2) for  ∈ . Then we have

[

Ã
1√


X
∈

∆̂

!2
|()] = 1


[

ÃX
∈

∆̂

!2
|()] = ̄


[∆̂2

|()] = ((∆

 )

2)

Therefore, by the Markov inequality we have
P

∈ ∆̂
√
 = (∆


 ) The first conclusion then

follows from

√
(̂ − 0) =

X
=1

1√


X
∈

∆̂ +
1√


X
=1

[( 0)− 0] +
√


X
=1

̄


[̄(̂)− 0]

For the second conclusion note by the subsamples being as close to equal size as possible,

̄

̂
=

̄

̂
=

1

(− 1) +(−1) =
1

(− 1) +(−1)

Then by

√


X
=1

̄


[̄(̂)− 0] =

1√


X
=1

̄

r
1

̂

p
̂[̄(̂)− 0] =

X
=1

̄

̂

1√


X
∈

() +(∆

)

=
1

− 1
1√


X
=1

X
∈

() +(∆

 + −1)

=
1

− 1
1√


X
=1

(

X
=1

()−
X
∈

()) +(∆

 + −1)

=
1√


X
=1

() +(∆

 + −1)

The conclusion then follows by the triangle inequality. Q.E.D.

Proof of Lemma 6: By adding and subtracting terms it follows that for  =  − 0()

and () = 0()[ − 0()]

̃()[ − ̂()] = ()− 0()[̂()− 0()] + [̃()− 0()]

− [̃()− 0()][̂()− 0()]
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The first conclusion of Lemma 1 with ( ) = 0()() gives

1√


X
=1

X
∈

0()[̂()− 0()] =
√


X
=1

̄



Z
()[̂()− 0()]0() +(∆


)

Assumption 1 and the first conclusion of Lemma 1 also give

√


X
=1

̄



Z
()[̂()− 0()]0() =

√


X
=1

̄


[̄(̂)− 0]

=
1√


X
=1

X
∈
[( ̂)−( 0)] +(∆


 )

In addition, if we take  =  and ( ) = () then
R
( )0() = 0, so that by Lemma

1,

1√


X
=1

X
∈
[̃()− 0()] = (∆


)

Then collecting terms we have

√
(̃ − 0) =

1√


X
=1

[( 0)− 0]

+
1√


X
=1

X
∈
{( ̂)−( 0) + ̃()[ − ̂()]}

=
1√


X
=1

() +
1√


X
=1

X
∈

0()[̂()− 0()] +(∆

 +∆

)

1√


X
=1

X
∈
{−0()[̂()− 0()] + [̃()− 0()]}

− 1√


X
=1

X
∈
[̃()− 0()][̂()− 0()]

=
1√


X
=1

()− 1√


X
=1

X
∈
[̃()− 0()][̂()− 0()]

+(∆

 +∆

 +∆
)

We now turn to proofs of the results involving series estimators. Let Σ = [()()
 ]. It

follows from Assumption 3 that Σ is nonsingular, so we can replace () by Σ−12() and so

normalize Σ =  without changing the assumptions. We impose this normalization throughout.

Also, throughout the Appendix  will denote a generic constant not depending on  or 
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We next prove the key result in eq. (4.2) for a zero order spline. Let () = 0()− ()

and ̂2 =
P

=1 ()() as in the body of the paper. Also let kk denote the operator
norm of a symmetric matrix , being the largest absolute value of eigenvalues.

Lemma A1: If Assumptions 1-6 are satisfied,  = 0 [ln()]2 −→ 0, then for ̂ =P−1
=0 ( − Σ̂)̂2 ̂ = Σ̂−1( − Σ̂) ̂2  = [ln()] and any constant ∆  0°°°[̂̂ ]

°°°

≤ 

−2 [ln()]2


 ̂ ̂ = (

−∆)

Proof: Let  = ()()
  ∆ =  − , and  = ()(). Note that [∆] = 0 and

[] = 0 For each  let  = 2 + 2. Let ̂ = ( − Σ̂)̂2 Then we have

[̂̂

 ] =

1

2+2

X
1=1

[
¡
Π

=1∆

¢
+1


+2

¡
Π
=+3∆

¢
]

Consider any (1  ) such that +1 6= +2 Let 
∗ = +1 and let 


∗ denote the vector of

observations other than ∗ Note that

[
¡
Π

=1∆

¢
+1


+2

¡
Π
=+3∆

¢
] = [[

¡
Π

=1∆

¢
∗


+2

¡
Π
=+3∆

¢ |
∗]]

We proceed to show that

[
¡
Π

=1∆

¢
∗


+2

¡
Π
=+3∆

¢ |
∗] = 0

Note that conditional on 
∗ we can treat all terms where  6= ∗ as constant. Also, because

+1 6= +2 all terms where  = ∗ depend only on (∗) Therefore for the scalar () =

0()− () we have

[
¡
Π

=1∆

¢
∗


+2

¡
Π
=+3∆

¢ |
∗] = [1((∗))(∗)(∗)2((∗))] = [((∗))(∗)]

where 1() and 2() are × and 1× matrices of functions of  and () = 1()2()

Let denote the interval where () is nonzero. Note that () = 1( ∈ ) for a constant

, and hence

((∗)) =

X
=1

1(∗ ∈ )  = ((0  0  0  0)
 )

Therefore by orthogonality of each () with () in the population,

[
¡
Π

=1∆

¢
∗


+2

¡
Π
=+3∆

¢ |
∗] =

X
=1

[1(∗ ∈ )(∗)] =

X
=1


−1
 [(∗)(∗)] = 0
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Therefore by iterated expectations, if +1 6= +2 we have

[
¡
Π

=1∆

¢
+1


+2

¡
Π
=+3∆

¢
] = 0

It then follows that for Ψ = [+1

+1
] = [()

2()()
 ] and ∆̃+1 = +1


+1
−Ψ

[̂̂

 ] =

1

2+2

X
1+1+3=1

[
¡
Π

=1∆

¢
+1


+1

¡
Π
=+3∆

¢
] = 


1 + 


2 



1 =

1

2+1

X
1 +3=1

[
¡
Π

=1∆

¢
Ψ
¡
Π
=+3∆

¢
]



2 =

1

2+2

X
1+1+3=1

[
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

Consider first 

2 . Note that∆ and ∆̃ are diagonal matrices, so that[

¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

is a diagonal matrix, with  diagonal element given by [
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

where

∆ = ()
2 −[()

2] ∆̃+1 = ()
2()

2 −[()
2()

2]

The largest absolute value of the eigenvalues of a diagonal matrix is the maximum of the absolute

values of the diagonal elements, so it suffices to show that the conclusion holds for these diagonal

elements. We will consider the  diagonal element but for notational convenience drop the 

subscript in what follows.

Note that ()
2 ≤  for some  that does not vary with  or  Also, for any random

variable  and  = [] note that by Jensen’s inequality, || ≤ [||] for  ≥ 1 Then for
any positive ,

[| − |] ≤ [(||+ ||)] ≤ [2−1 (|| + ||)] ≤ 2−1 ([||] + ||)] ≤ 2[||]

Then for any positive integer , by the triangle inequality and the definitions of ∆

|[∆
 ]| ≤ 2[()2] ≤ 2()−1[()2] ≤ (4)−1 ≤ ()−1 (7.1)

Also, by ()
2 ≤ −2 we have¯̄̄

[(∆)
∆̃]

¯̄̄
≤ [|∆| (()2()2 +[()

2()
2])] (7.2)

≤ [(()
2 +[()

2])+1]−2

≤ 2+1[()2+2]−2 ≤ 2+1()−2

≤ (4( + 1))−2 ≤ ()−2 
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Next consider



2 =

1

2+2

X
1+1+32+2=1

[
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

The only terms in this sum that are nonzero are those where every index  is equal to at

least one other index 0, i.e. where each index is "matched" with at least one other. Let

̃ = (1  +1 +3 2+2)
 denote the 2 + 1 dimensional vector of indices where each 

is an integer in [1 ] Let Υ denote a set of all such ̃ with specified indices that are equal

to each other, but those matched indices are not equal to any other indices. For example,

one Υ is the set of ̃ with 1 = +1 = +3 = · · · = 2+2 and another is the set of ̃ with

1 = 2 3 = · · · = 2+2 2 6= 3 For each  each group of index coordinates that are equal to

each other can be thought of as a group of matching indices that we index by  Let  denote

the number of indices in group  and  denote the total number of groups. Note that the

total number of indices is 2 + 1 =
P

=1
 . Also, by eqs. (7.1) and (7.2) for each ̃ ∈ Υ we

have

|[¡Π
=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]| ≤ −2

Y
=1

()
−1 = −2 ()2+1− 

Also, the number of indices in Υ is less than or equal to 
 since each match can be regarded

as a single index. Therefore,¯̄̄̄
¯ 1

2+2

X
̃∈Υ

[
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

¯̄̄̄
¯ ≤ 1

2+2

X
̃∈Υ

¯̄̄
[
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]
¯̄̄

≤
µ

1

2+2

¶
−2 ()2+1−

=
1


−2

µ




¶2+1−



By hypothesis  −→ 0 so that for large enough  we have   1. For such  we have

()
2+1− decreasing in  Also, the largest  is , because each group must contain at

least two elements. Therefore, for large enough  we have¯̄̄̄
¯ 1

2+2

X
̃∈Υ

[
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

¯̄̄̄
¯ ≤ 1


−2

µ




¶+1



Note that the bound on the right does not depend on . Let  denote the total number of

possible Υ. Then since [
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
] = 0 if ̃ ∈ ∪=1Υ we have

¯̄


2

¯̄
≤

X
=1

¯̄̄̄
¯ 1

2+2

X
̃∈Υ

[
¡
Π

=1∆

¢
∆̃+1

¡
Π
=+3∆

¢
]

¯̄̄̄
¯ ≤ 


−2

µ




¶+1
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Note that there are exactly 2+1 ways of forming 2+1 indices into  groups. Ignoring the fact

that we can exclude ways where any group has only one index we have the bound  ≤ 2+1.

Plugging in this bound into the above inequality and maximizing over diagonal elements gives

°° 
2

°°

≤ 2+1−2



µ




¶+1



Arguing similarly for 

1 gives °° 

1

°°

≤ 2−2



µ




¶



where we take 00 = 1

Next note that by  ln()2 −→ 0 we have  ≤ 1[2 ln()2] for large enough  Also,

 ln() ≤ 1 for all    Then for  large enough

−1X
=0

2
µ




¶

≤
−1X
=0

2
µ

1

2 ln()2

¶

≤
−1X
=0

µ


ln()

¶2 µ
1

2

¶

≤
−1X
=0

µ
1

2

¶

≤
∞X
=0

µ
1

2

¶

=
1

1− 
≤ 2

Similarly it follows that for large enough 

−1X
=0

2+1
µ




¶+1

≤ 1

2 ln()

−1X
=0

µ


ln()

¶2+1µ
1

2

¶

≤ 1

ln()


Then we have for large enough ,°°°°°
−1X
=0

[̂̂

 ]

°°°°°


≤
°°°°°
−1X
=0

¡


1 + 


2

¢°°°°°


≤
−1X
=0

³°° 
1

°°

+
°° 

2

°°


´
≤ −2



µ
2 +

1

ln()

¶
≤ −2




Also by the Cauchy Schwartz inequality, ̂̂ =
³P−1

=0 ̂

´³P−1
=0 ̂

´
≤ 2

P−1
=0 ̂̂


 

Therefore, for large enough 

°°°[̂̂ ]
°°°

≤ 2

°°°°°
−1X
=0

[̂̂

 ]

°°°°°


≤  ln()2−2




giving the first conclusion.

For the second conclusion note that for any ∆  0,

ln{∆[ln()]−2 ln()+2} = ln()[∆− 2 ln(ln())] + 2 ln(ln()) −→ −∞

29



It follows that [ln()]−2 ln()+2 = (−∆) for any ∆. Also, by  = ([1 ln()]
2
) we have

 ln ()  = (1 ln()) so thatµ
 ln()



¶2
= ([ln()]−2(ln())) = ([ln()]−2(ln())+2) = (−∆)

for any ∆  0. Then we have

1̂̂ ̂ ≤ 4̂2 ( − Σ̂)2 ̂2 ≤ 4̂2 ̂2
°°° − Σ̂

°°°2

= (

1−2



∙
 ln()



¸2
) = (

−∆)

for any ∆  0 by Rudelson’s (1999) law of large numbers for random matrices, giving the second

conclusion. 

In the Appendix we focus on one subset ̄ =  of observations and let ̂ and ̃ denote the

observations used to compute ̂ and ̃ respectively. Let ̄ ̂ ̃ denote the number of elements

of ̄  ̂, and ̃ respectively and

̄{()} = 1

̄

X
∈̄

() ̂{()} = 1

̂

X
∈̂

() ̃{()} = 1

̃

X
∈̃

()

denote averages over the respective subsets of observations.

Next we make a few definitions we will use throughout. Let       and  be as

defined following Assumption 4. Also, let

 =  − 0()  = 0()− ()  = ()− ()0() 

 = 0()− ()

̂1 = ̂{()} ̂2 = ̂{()} ̃1 = ̃{} ̃2 = ̃{()} Σ̂ = ̂{()()} Σ̃ = ̃{()()}
∆̂1 = Σ̂−̂1 ∆̂2 = Σ̂−̂2 ∆̃


1 = Σ̃−̃1  ∆̃


2 = Σ̃−̃2  Σ̄ = ̄{()()}

One piece of algebra we will use throughout is that, when Σ̂ and Σ̃ are nonsingular, by adding

and subtracting Σ̂−1̂{()0()} and Σ̃−1̃{()0()} respectively we have

̂ −  = ∆̂1 + ∆̂2 ̃ −  = ∆̃
1 + ∆̃

2  (7.3)

Some properties of these objects will be useful in the proofs to follow. We collect these

properties in the following result. Let 1̂ and 1̃ denote the indicator function that the smallest

eigenvalue of Σ̂ or Σ̃ is larger than 12 respectively. As in Belloni et al.(2015) Pr(1̂ = 1) −→ 1

and Pr(1̄ = 1) −→ 1. Also, let ̂ ̃ ̄ denote all the other observations other than those

indexed by ̂ ̃  or ̄ respectively and  = (1  ).
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Lemma A2: If Assumptions 1-6 are is satisfied then

i) 1̂
°°°∆̂1

°°° = 

µ




¶
; ii) 1̂

°°°∆̂2

°°° = 

µ
−2



¶
;

iii) 1̂
°°°∆̂

1

°°° = 

µ
(1 + )



¶
 iv) 1̂

°°°∆̂
2

°°° = 

µ




¶


v) 1̂
°°°̂ − 

°°°2 = 

µ




¶
; vi) 1̃

°°°̃ − 

°°°2 = 

µ




¶


vii) 1̂[∆̂1∆̂

1 | ̂] ≤ 


 viii) 1̂

Z
[̂()− 0()]

20() = (



+−2)

ix) 1̃

Z
[̃()− 0()]

20() = 

µ
( + 1)


+−2

¶


Proof: Note that for  =  − 0(), [
2
 |] =  (|) ≤ . Note that 1̂Σ̂−2 ≤ 4 in

the positive semi-definite semi-order so that

[1̂
°°°∆̂1

°°°2] ≤ 4[̂1 ̂1] = 4

̂2

X
∈̂

[()
()] =

4

̂
[k()k2 2 ] ≤

4

̂
[k()k2] = (




)

The first conclusion then follows by theMarkov inequality. Next, we have sup |()− 0()| =
(−) and hence for

[1̂
°°°∆̂2

°°°2] ≤ 4[̂2 ̂2] = 4

̂2

X
∈̂

[()
()] =

4

̂
[k()k2](−2) = 

µ
−2



¶


so the second equality also follows by the Markov inequality. Next, note that

[ ] ≤ 2[()()] + 2[0()2 k()k2] = (( + 1))

Then we have

[1̃
°°°∆̃

1

°°°2] ≤ 4[̃1 ̃1 ] =
4

̃2

X
∈̃

[ ] =
4

̂
[ ] = (

( + 1)


)

so the third conclusion follows from the Markov inequality. The fourth conclusion follows exactly

like the second conclusion. the fifth and sixth conclusions follow by eq. (7.3) and the triangle

inequality.

Next, note that by independence of the observations

[1̂∆̂1∆̂

1 | ̂] = 1̂Σ̂−1[̂1̂


1 |]Σ̂−1 = 1̂Σ̂−1

⎧⎨⎩ 1

̂2

X
∈̂

()()
[|]

⎫⎬⎭ Σ̂−1

= 1̂Σ̂−1

⎧⎨⎩ 1

̂2

X
∈̂

()()
[2 |]

⎫⎬⎭ Σ̂−1 ≤ 1̂
̂
Σ̂−1 ≤ 2
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giving the seventh conclusion.

Next, note that
R
()[()− 0()]0() = 0, so that

1̂

Z
[̂()− 0()]

20() = 1̂

Z
[̂()− () + ()− 0()]

20()

= 1̂
°°°̂ − 

°°°2 + 1̂−2 = 

µ



+−2

¶


giving the eighth conclusion. The last conclusion follows similarly. Q.E.D.

Next, we give an important intermediate result:

Lemma A3: If Assumptions 1-6 are satisfied then

1̂

Z
[( ̂)−( 0)]

20() = 

µ



+−2

¶


Proof: By linearity of ( ) −( 0), we have ( ̂) −( ) = () (̂ − ) Then by

Lemma A2,

1̂

Z
[( ̂)−( 0)]

20() ≤ 21̂
Z
[( ̂)−( )]

20() + 21̂

Z
[( )−( 0)]

20()

≤ 21̂(̂ − )[()()
 ](̂ − ) +(−2)

≤ 2 1̂
°°°̂ − 

°°°2 +(−2) = 

µ



+−2

¶
 

The proof of the results for the doubly robust estimators will make use of a few Lemmas,

that we now state.

Lemma A4: If Assumptions 1-6 are satisfied then the hypotheses of Lemma 6 are satisfied

with

∆
 =

r



+− ∆

 =

r



+− ∆

 =

r



+− 

Proof: The first conclusion follows by Lemma A3 and the second and third by parts viii)

and ix) of Lemma A2. .

Lemma A5: If Assumptions 1-6 are satisfied and ̂ and ̃ are computed from distinct

samples then for Σ̄ = ̄{()()}
√
̄{[̃()− 0()][̂()− 0()]} =

√
∆̂

2 Σ̄∆̃

1 +(∆̄

∗
 +∆

 )
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Proof: Let ̄2 = ̄{()[()− 0()]} and ̄2 = ̄{()[()− 0()]} Note that

̄{[̃()− 0()][̂()− 0()]}
= ̄{[() (̃ − ) + ()− 0()][()

 (̂ − ) + ()− 0()]}
= (̂ − ) Σ̄(̃ − ) + (̂ − ) ̄2 + (̂ − )

 ̄2 + ̄{[()− 0()][()− 0()]}

By the Markov inequality

√
̄{[()− 0()][()− 0()]} = (

√
−−) (7.4)

Note that

[̃2 (̃

2 )

 ] =
1

̄
[()()

 ( )
2] ≤ 

1




Therefore by Lemma A2 we have

[{1̂(̂ − ) ̄2}2|̄] = 1̂(̂ − )[̃2 (̃

2 )

 ](̂ − ) ≤ 1̂
1



°°°̂ − 
°°°2 = (



2
)

Then by the Markov inequality it follows that

√
(̂ − ) ̄2 = (

r



) (7.5)

It follows similarly that

√
(̂ − )

 ̄2 = (

r



) (7.6)

Next, note that

(̂ − ) Σ̄(̃ − ) = ∆̂
1 Σ̄(̃ − ) + ∆̂

2 Σ̄∆̃

2 + ∆̂

2 Σ̄∆̃

1 

Let 1̄ be the event that max(Σ̄) ≤ 2. Then by conclusion vii) of Lemma A2, and 1̄, 1̂, and 1̃ all
functions of  we have

[1̄1̂1̃{∆̂
1 Σ̄(̃ − )}2| ̂] = 1̄1̂1̃(̃ − )

 Σ̄[∆̂1∆̂

1 | ̂]Σ̄(̃ − )

≤ 
1


1̄1̃(̃ − )

 Σ̄2(̃ − ) ≤ 4 1

1̃
°°°̃ − 

°°°2
= (



2
)

Therefore we have
√
∆̂

1 Σ̄(̃ − ) = (

r



) (7.7)

Finally, note that by the Cauchy-Schwartz inequality

1̂∆̂
2 ∆̂2 ≤ 1̂2̂2 Σ̂−1̂2 ≤ 2̂{[()− 0()]

2} = (
−2)
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It follows similarly that 1̂(∆̂
2 )

 (∆̂
2 ) = (

−2) so that

√
1̄1̂1̃∆̂

2 Σ̄∆̃

2 ≤ 2

√


q
1̂∆̂

2 ∆̂2

q
1̃(∆̃

2 )
 (∆̃

2 ) = (
√
−−) (7.8)

The conclusion then follows by eqs. (7.4), (7.5), (7.6), (7.7), (7.8), and the triangle inequality.

Q.E.D.

Proof of Theorem 2: It follows by Lemma A2 that the first hypothesis of Lemma 1 is

satisfied with ∆
 =

p
+− . Let

̄() =

Z
[( )−( )]0() = [0()()]

where the first equality is a definition and the second follows by Assumption 1. Then the first

conclusion of Lemma 1 holds.

Next let  = ̂ and ̂ = ̂ for some  and () = 0()[ − 0()]. Then it follows as in

Ichimura and Newey (2017), pp. 29 that

1̂
√
[̄(̂)− 0 − 1



X
=1

()] = 1̂
³
̂1 + ̂2 + ̂3

´
 ̂1 =

√
[0(){()− 0()}]

(7.9)

̂2 =
√
 Σ̂−1̂2 ̂3 =

1√


X
=1

[()− 0()][ − 0()]

By ()− 0() orthogonal to () in the population and the Cauchy-Schwartz inequality,¯̄̄
̂1

¯̄̄
=
√
 |[{0()− ()}{0()− ()}]| ≤

√
{[{0()− ()}2][{0()− ()}2]}12

= (
√
−−) = (∆̄∗)

Also,

[̂23] = [{()− ()}22 ] ≤ [{()− ()}2] = (−2)

so by the Markov inequality,

̂3 = (
−) = (∆̄

∗
)

Next, note that ̂2 = ̂21 + ̂22 where ̂21 =  ̂2 and ̂22 =
√
 (Σ̂−1 − )̂2 As noted

following Assumption 4, sup |()− 0()| = (−), so that

[̂221] = [()()
 2 ] ≤ (−2) ≤ (−2)[0()

2] = (−2)

Then by the Markov inequality

̂21 = (
−) = (∆̄

∗
)
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Finally, note that (Σ̂−1 − )̂2 = ̂ + ̂ for ̂ and ̂ defined in the statement of Lemma A1,

so that for any ∆  0 we have

1̂̂222 = 1̂ ·  (̂ + ̂ )(̂ + ̂ ) ≤ 21̂ ·  (̂̂ + ̂̂ )

≤ −2 [ln()]2 +(
−∆+1),

for any . It then follows by eq. (7.9) and the triangle inequality that

√
[̄(̂)− 0] =

1√


X
=1

() +(∆̄
∗
 +− ln())

The first conclusion then follows from the second conclusion of Lemma 1. The second conclusion

follows by ∆
 = 

p
+− = (∆̄∗) when  is bounded and  = . 

Proof of Corollary 3: To prove this result it suffices to show that Assumptions 4 and 6

are satisfied in each of the examples with  bounded and  = 

For the conditional covariance 0() = −[| = ]. This being Holder of order  is a

hypothesis. Also, () =  · () so that

[()()
 ] = [2 ()()

 ] ≤ [()()
 ] ≤ 

by [2 |] bounded. Also  =  by

[{( )−( 0)}2] = [2 {()− 0()}2] ≤ −2 

For the missing data mean 0() = 0() is Holder of order  by 0() being bounded

away from zero and Holder of order  Furthermore () = (), so that by Assumption 3,

[()()
 ] = [()()

 ] ≤ 

and by  bounded and 0() bounded away from zero,

[{( )−( 0)}2] = [{()
  −[| = 1 ]}2]

= [


0()
{()− 0()}2]

≤ [{()− 0()}2] ≤ −2 

For the average derivative example 0() = ()0() which is Holder of order  by each

of () and 0() being Holder of order  and by 0() bounded away from zero where () is

non zero. Furthermore () =
R
()() so that by Cauchy-Schwartz,

[()()
 ] =

Z
()()

Z
()()

= [0()()][0()()
 ]

≤ [0()
2][()()

 ] ≤ 
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Furthermore,

[{( )−( 0)}2] = {
Z

()[()− 0()]}2

= [0(){()− 0()}]2

≤ [0()
2][{()− 0()}2] = (−2) 

Proof of Theorem 4: The conclusion follows from Lemma 1 and Theorem 8 of Ichimura

and Newey (2017) similarly to the proof of Theorem 2 above, with the conclusion of Theorem

8 of Ichimura and Newey replacing the argument following eq. (7.9) in the proof of Theorem 2.



Proof of Theorem 5: Let ̂() denote the series regression of  = − 0 on () in the
̂ sample. By a standard formula for instrumental variables estimation and series estimation,

√
(̂ − 0) = ̂−1 1√



X
=1

X
∈
[ − ̂()]

©
 − ̂()− [ − ̂()]

0
ª

(7.10)

= ̂−1 1√


X
=1

X
∈
[ − ̂()]

h
 − ̂()

i

Assume for the moment that  is a scalar and let  = . Then
P

=1

P
∈ [−̂()]

h
 − ̂()

i


is the doubly robust estimator with ( ) = [ − ()] i.e. for the expected conditional co-

variance. It then follows as in the proof of Corollary 3 that max{∆
 ∆


∆


} ≤ ∆̄∗ Then by

Lemmas 6 and A5, for () = [ − 0()],

1√


X
=1

X
∈
[ − ̂()]

h
 − ̂()

i
=

1√


X
=1

() +(∆̄
∗
) +

√
∆̂

2 Σ̄∆̃

1 

Note that here 0() = −[|] so that

̃1 = ̃{()− 0()()} = −̃{[− 0()]()}

Then we have

[1̃∆̃
1 ∆̃


1 | ̃] = 1̃

1

̃
Σ̃−1̃{()() (| = )}Σ̃−1 ≤ 




Therefore it follows by Lemma A2 that

[1̂1̃(∆̂
2 Σ̄∆̃


1 )
2| ̃] = 1̂∆̂

2[1̃∆̃

1 ∆̃


1 | ̃]∆̂2 ≤ 1̂


∆̂
2 ∆̂2 = (2)
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Then by the Markov inequality

√
∆̂

2 Σ̄∆̃

1 = 

Ãr




!
= (∆̄

∗
)

Consequently we have

1√


X
=1

X
∈
[ − ̂()]

h
 − ̂()

i
=

1√


X
=1

() +(∆̄
∗
) (7.11)

Next, note that

̄{[− ̃()][− ̂()]} = ̄{[− 0() + 0()− ̃()][− 0() + 0()− ̂()]}
= ̄{[− 0()]

2 + [− 0()][0()− ̃()]

+ [− 0()][0()− ̂()] + [0()− ̃()][0()− ̂()]}

Note that by Lemma A3 and [2 |] bounded,

1̃[(̄{[− 0()][0()− ̃()]})2|̃] = 1̃

̄

Z
[− 0()]

2[0()− ̃()]20()

≤ 
1̃



Z
[2 | = ][0()− ̃()]20()

≤ 
1̃



Z
[0()− ̃()]20() = 

µ
1



µ



+−2

¶¶


so that by the Markov inequality it follows that

̄{[− 0()][0()− ̃()]} = (∆̄
∗
) (7.12)

It follows similarly that

̄{[− 0()][0()− ̂()]} = (∆̄
∗
) (7.13)

Also, by the Cauchy-Schwartz inequality

1̂1̃
¯̄
̄{[0()− ̃()][0()− ̂()]}

¯̄
≤ (1̃̄{[0()− ̃()]

2})12(1̂̄{[0()− ̂()]
2})12

Also,

[1̃̄{[0()− ̃()]
2}|̃] = 1̃

Z
[̃()− 0()]

20() = 

µ



+−2

¶


so that 1̃̄{[0()−̃()]
2} = (+−2) It follows similarly that 1̂̄{[0()−̂()]

2} =
(+−2) so that

= ̄{[0()− ̃()][0()− ̂()]} = (∆̄
∗
) (7.14)
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Also, note that by [kk4] ∞

̄{[− 0()]
2} = [{− 0()}2] +

µ
1√


¶
= [{ − 0()}2] +(∆̄

∗
)

It then follows by eqs. (7.12), (7.13), (7.14) and the triangle inequality that

̄{[− ̃()][− ̂()]} = [{ − 0()}2] +(∆̄
∗
)

Applying this argument to each element of ̂ =
P

=1

P
∈[−̃()][−̂()]

 and each

group of observations  and summing up gives ̂ =  +(∆̄
∗
) It then follows by a standard

argument and nonsingularity of  that

̂−1 = −1 +(∆̄
∗
) (7.15)

Finally, it follows from eqs. (7.10), (7.11), (7.15) and from
P

=1 ()
√
 = (1) that

√
(̂ − 0) = [

−1 +(∆̄
∗
)][

1√


X
=1

() +(∆̄
∗
)] = −1 1√



X
=1

() +(∆̄
∗
) 

Proof of Theorem 7: By Lemmas 6 and A5 it suffices to show that 1̄1̂1̃
√
∆̂

2 Σ̄∆̃

1 =

(∆

 ) Note that

1̂∆̂2 = 1̂̂2 + 1̂̂ + 1̂̂ 

By [̂2̂

2 ] ≤ −1−2 and Lemma A2 iii) we have

[
³
1̄1̂1̃
√
̂2 Σ̄∆̃


1

´2
|̂] = 1̄1̃

³
∆̃
1

´
Σ̄[1̂̂2̂


2 ]Σ̄∆̃


1 ≤ 1̄1̃

³
∆̃
1

´
Σ̄[̂2̂


2 ]Σ̄∆̃


1

≤ −2 1̄1̃
³
∆̃
1

´
Σ̄2∆̃

1 = 

µ
(1 + )

1−2



¶
= ((∆


 )

2)

Also, by the first conclusion of Lemma A1 and by Lemma A2 iii),

[
³
1̄1̂1̃
√
̂ Σ̄∆̃

1

´2
|̂] = 1̄1̃

³
∆̃
1

´
Σ̄[1̂̂̂ ]Σ̄∆̃

1 ≤ 1̄1̃
³
∆̃
1

´
Σ̄[̂̂ ]Σ̄∆̃

1

≤ −2 ln()21̄1̃
³
∆̃
1

´
Σ̄2∆̃

1 = 

µ
(1 + )

1−2 [ln()]2



¶
= ((∆


 )

2)

Also by the second conclusion of Lemma A1 and Lemma A2 iii), for ∆  0 large enough,

1̄1̂1̃
√
∆̂

2 Σ̄∆̃

1 = (

(12)−∆p(1 + ))) = (∆

 )

The conclusion then follows by the Markov and triangle inequalities. Q.E.D.
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Proof of Theorem 8: By Lemmas 6 and A5 it suffices to show that 1̄1̂1̃
√
∆̂

2 Σ̄∆̃

1 =

(∆

 + ∆̃) Note that

1̄1̂1̃
√
∆̂

2 Σ̄∆̃

1 = 1 + 2 + 3 1 = 1̄1̂1̃

√
̂2 Σ̄∆̃


1 

2 = 1̄1̂1̃
√
∆̂

2 ( − Σ̂)Σ̄̃1 

3 = 1̄1̂1̃
√
∆̂

2 ( − Σ̂)Σ̄( − Σ̃)∆̃
1 

By Lemma A2 iii),

[ 21 |̂] ≤ 1̄1̃(∆̃
1 )

 Σ̄[̂2̂

2 ]Σ̄∆̃


1 ≤ −2 1̃(∆̃

1 )
 ∆̃

1 = (
−2 (∆

 )
2
)

so by the Markov inequality, 1 = (∆

 ) By Lemma A2 ii),

[ 22 |̃] ≤ 1̂√∆̂
2 ( − Σ̂)[̃1

³
̃1

´
]( − Σ̂)∆̂2 ≤ ∆̂


2 ( − Σ̂)2∆̂2

= ((1 + )
1−2



 ln()


)

Note that by the Markov inequality and  ln() −→ 0 it follows that 2 = (∆̄
∗
 +∆

 )

Finally, by the Caucy-Schwartz inequality and Lemma A2,

3 = (

r
3 ln()(1 + )

3
(12)−) = (∆̃)

The conclusion then follows by the triangle inequality. Q.E.D.
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