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QUANTILE REGRESSION 40 YEARS ON

ROGER KOENKER

Abstract. Since Quetelet’s work in the 19th century social science has iconified
“the average man,” that hypothetical man without qualities who is comfortable
with his head in the oven, and his feet in a bucket of ice. Conventional statistical
methods, since Quetelet, have sought to estimate the effects of policy treatments for
this average man. But such effects are often quite heterogenous: medical treatments
may improve life expectancy, but also impose serious short term risks; reducing class
sizes may improve performance of good students, but not help weaker ones or vice
versa. Quantile regression methods can help to explore these heterogeneous effects.
Some recent developments in quantile regression methods are surveyed below.

1. Introduction

Quantiles offer a convenient way to summarize univariate probability distributions
as exemplified by Tukey’s ubiquitous boxplots. In contrast to moments, which char-
acterize global features of the distribution and are consequently strongly influenced
by tail behavior, quantiles are inherently local and are nearly impervious to small
perturbations of distributional mass. We can move mass around above and below
the median without disturbing it at all, provided of course that mass is not trans-
ferred from above the median to below, or vice-versa. This locality of the quantiles is
highly advantageous for the same reasons that locally supported basis functions are
advantageous in nonparametric regression, because it assures a form of robustness
that is lacking in many conventional statistical procedures, notably those based on
minimizing sums of squared residuals.

When there are covariates – and there are almost always covariates when econo-
metric problems get really interesting – we can’t rely on sorting as a strategy for
computing quantiles. Instead, fortunately, there is a simple, elegant optimization al-
ternative. Univariate quantiles emerge as solutions to the piecewise linear expected
loss problem,

min
a

Eρτ (Y − a),
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2 Quantile Regression

where ρτ (u) = (τ − I(u < 0))u and τ ∈ (0, 1). When the distribution of Y admits a
unique τth quantile we may differentiate,

Eρτ (Y − a) = τ

∫ ∞
a

(y − a)dFY (y) + (τ − 1)

∫ a

−∞
(y − a)dFY (y)

to obtain the first order condition,

0 = τ

∫ ∞
α

dFY (y) + (τ − 1)

∫ α

−∞
dFY (y)

= FY (α)− τ,

so α = F−1Y (τ). When there are multiple values such that FY (y) = τ , it is con-
ventional to choose the smallest, i.e., α = inf{y : FY (y) ≥ τ}. Corresponding to
these population quantiles are analogous expressions for the sample quantiles with
FY replaced by the empirical distribution function Fn(y) = n−1

∑n
i=1 I(Yi ≤ y). Ad-

missibility of the univariate sample quantile under the loss ρτ was considered by Fox
and Rubin (1964), but the origin of such solutions under asymmetric linear loss go
back at least to Edgeworth (1888a).

Regression estimators minimizing sums of absolute residuals also have a long his-
tory. Already in the 18th century, Boscovich, and somewhat later Laplace, advocated
a form of bivariate regression that constrained the mean residual to be zero, and min-
imized the sum of absolute residuals to find the remaining slope parameter estimate.
A century later Edgeworth (1888b) proposed removing the intercept constraint and
determining both slope and intercept parameters by minimizing the sum of absolute
residuals. He provided an effective algorithm for computing the estimator that antic-
ipates modern simplex methods. For further details see Koenker (2017). Edgeworth’s
proposal languished until it was revived in the 1950’s when it was recognized as a
linear program. An early application of median regression in economics appears in
the work of Arrow and Hoffenberg (1959) who found it convenient for estimating
input-output coefficients subject to positivity constraints. Although there was a gen-
eral recognition that the median, or `1, or LAD approach had the advantage that it
was more resistant to outliers than the usual least squares estimator, a drawback of
the approach in addition to the unfamiliarity of its computational methods was the
absence of a formal inference apparatus.

Nor, as far as I am aware, was there any recognition that it might be interesting
to consider quantile regression models other than the median. Gib Bassett and I
began exploring this territory in the mid-1970’s. We started with the observation
that as long as the model “contained an intercept,” that is that the linear span of
the covariate/design matrix, X, included a constant vector, then solutions to the
regression analogue of our elementary problem,

min
b∈Rp

n∑
i=1

ρτ (yi − x>i b),
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had the property that roughly τn of the residuals, ri = yi − x>i b̂, i = 1, · · · , n
would be positive and (1− τ)n would be negative. This follows immediately from the

subgradient condition requiring that at the optimum, β̂(τ),

0 ∈ ∂b
n∑
i=1

ρτ (yi − x>i b)|b=β̂(τ).

Here, ∂bρτ (yi − x>i b) = −ψτ (yi − x>i b)xi with ψτ (u) = τ − I(u < 0) for u 6= 0,
and is set-valued, with ∂bρτ (yi − x>i b) = [−τ, 1 − τ ]xi, when the residual is zero.
When the observations are in “general position” so no more than p observations lie
on a hyperplane of of dimension p in the regression sample space, the subgradient
condition implies that τ must lie between N/n and (N +p)/n where N is the number
of observations below the fitted hyperplane, i.e., having strictly negative residuals.
This seemed to justify our conjecture that solutions β̂(τ) of such problems could be
considered analogues of the sample quantiles for the linear model, estimating the
parameters of models that specified affine conditional quantile functions for Y |X.

Inference proved to be a somewhat harder nut to crack. We began be deriving a
combinatorial expression for the finite sample density of β̂(τ) based on the foregoing
gradient optimality condition. Since this involved a summation over all

(
n
p

)
elementary

subset solutions that corresponded to exact fits of p observations, it didn’t seem to be
terribly practical at first. But eventually we were able to show that this density had a
simple Gaussian limiting form that fully justified the regression quantile terminology
that we had begun to use. In due course these results appeared in Koenker and
Bassett (1978).

Since then many people have contributed to an effort that has gradually built an
extensive toolbox for estimation and inference about conditional quantile models. In
the remaining pages I will try to briefly survey these developments and suggest a few
areas that seem ripe for future development.

2. Inference for Conditional Quantile Models

A fundamental precept of statistics is that estimates of effect magnitudes should be
accompanied by some assessment of the precision of these estimates. In this section
we will review a variety of methods that have evolved to address this task for quantile
regression.

2.1. Binary Treatment Effects. The simplest quantile regression setting is the
binary treatment response or two-sample model, where we have a treatment indicator,
Di that takes the value 1 for “treated” observations and 0 for “control” observations.
In the classical mean treatment version interest focuses exclusively on the difference
in the means of the two samples,

EYi|Di = α + βDi
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This is typically justified by the location shift model expressed as,

Yi = α + βDi + ui

where the ui’s are either implicitly or explicitly assumed to be independent and iden-
tically distributed. Thus, effectively, the treatment is thought to shift the entire
response distribution in lockstep by the amount, β.

In contrast, the quantile treatment effect model,

QY |D(τ,D) = α(τ) + β(τ)D

recognizes that the distribution of the response can be arbitrarily different under the
treatment and control regimes. In this formulation α(τ) denotes the quantile function
of the response for controls, F−1Y |D(τ), and β(τ) denotes the difference between the

quantile functions of the treatment and control response: F−1Y |D=1(τ) − F−1Y |D=0(τ).

This QTE is closely related to the Lehmann (1974) proposal to generalize the mean
treatment effect model by considering the horizontal difference between the treatment
and control distribution functions, which he defined as the function ∆(y) such that,

FY |D=1(y) = FY |D=0(y + ∆(y)).

Thus, the scalar mean treatment effect becomes a functional object capable of fully
describing the difference between the treatment and control distributions.

To this point we have been silent about possible endogoneity/selection issues that
might arise regarding treatment assignment, we will address such issues in Section X.x
below. Since we are almost inevitably unable to observe both treatment and control
response for individual subjects, we are consequently constrained to inference about
marginal distributions. The presumption underlying the QTE is that a control subject
with response α(τ) will, if treated, have have response α(τ)+β(τ). This presumption
is sometimes referred to as “rank invariance,” as for example, in Heckman, Smith,
and Clements (1997).

As long as treatment is randomly assigned estimation of the QTE is easily impl-
mented. Given a sample {(yi, di) : i = 1, · · · , n} we can simply solve for,

(α̂(τ), β̂(τ)) = argmin(a,b)

n∑
i=1

ρτ (yi − a− bdi).

For this we don’t even need any linear programming machinery since the problem
separates into two distinct problems with solutions given by the ordinary sample
quantile for the control and treatment samples. See Koenker (2005) for further details.
As a consequence, inference about the QTE in the binary treatment model can also
rely on classical large sample theory for the ordinary sample quantiles. Since the
two samples are independent we have that β̂(τ) has finite dimensional asymptotic
distributions, √

n(β̂(τ)− β(τ)) ; N (0, λ0Ω
0 + λ1Ω

1),



Roger Koenker 5

where Ωk
ij = (τi − τi ∧ τj)/(fk(F−1k (τi))fk(F

−1
k (τj))) for k = 1, 2 and i, j : 1, · · · , p,

and λk = n/nk, provided that the relative sample sizes, nk/n stay bounded away
from zero and one as n → ∞. Of course, this begs the question of how to estimate
the matrices, Omegak, since they involve the conditional density functions of the
two samples. This has spawned a rather extensive literature, and a brief overview is
provided in Koenker (2005).

The foregoing theory enables us to construct pointwise confidence bands for the
QTE using the estimated covariance matrix. Uniform bands pose somewhat more of
a challenge; one attractive approach would be to employ the asymptotic version of
the Hotelling (1939) approach described in Koenker (2011). Various other resampling
approaches have also been recently suggested notably by Belloni, Chernozhukov, and
Kato (2016) and Hagemann (2016).

Given the traditional emphasis placed on location shift models of treatment re-
sponse, e.g. Cox (1984), it is of some interest to explore tests of this hypothetical
model. Such tests are closely related to classical goodness of fit tests involving es-
timated parameters. One approach to such testing, following Khmaladze (1981) is
described in Koenker and Xiao (2002).

2.2. Multiple Treatments, Concomitant Covariates and Interactions. Ex-
panding the binary treatment paradigm to permit multiple treatment options raises
some new issues especially from the testing perspective, however QTEs can still be
based on univariate sample quantile differences and therefore confidence regions can
be based on theory essentially similar to that already described. A tantalizing prob-
lem of increasing significance in many fields is that of treatment assignment: Given
an estimated model of treatment effects how should we go about assign new subjects
to various treatment regimes? Such questions, especially in the medical arena, re-
quire answers to thorny risk assessment questions where a distribution perspective on
heterogeneous treatment effects can be crucial. A novel perspective on these issues is
offered in recent work of Wang, Zhou, Song, and Sherwood (2016) based partially on
Manski (2004).

When there are concomitant covariates in addition to the treatment indicator vari-
ables more new questions arise. If treatment assignment is fully randomized it is
tempting to simply ignore these covariates; this is the viewpoint articulated by Freed-
man (2008), who argues that bias induced by misspecified introduction of extraneous
covariate effects is likely to be more damaging than any benefits that may accrue
from variance reduction. This argument has at least equal force in the quantile re-
gression setting as it does for mean regression. Presumably randomization leaves us
with treatment D that is stochastically independent of other covariates, say X, so
further conditioning on X won’t help and may hinder when the functional form of
the X conditioning is ill chosen. Of course when treatment is assigned “on observ-
ables” X then the case for their inclusion is much more compelling. Kadane and
Seidenfeld (1996) provide a nice discussion of this in the light of Student’s (1931)
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infamous critique of the Lanarkshire milk experiment. Rather than relying on such
selection-on-observables arguments several authors have opted instead for propen-
sity score reweighting. An early example of this is the work of Lipsitz, Fitzmaurice,
Molenberghs, and Zhao (1997) with later contributions by Firpo (2007) and others.
The extensive recent work on so-called “doubly-robust” methods that combine these
approaches could also be employed as recently suggested by Diaz (2016).

Somewhat neglected in the econometrics literature on treatment reponse and pro-
gram evaluation is the potentially important role of interactions of covariates with
treatment variables. Although interactions feature prominently in the classical anal-
ysis of variance literature and appear in some recent high-dimensional linear model
research, econometrics has tended to focus attention on main effects of treatment.
Interactions, if present, must play an essential role in post-analysis treatment assign-
ment. More work needs to be done to develop better diagnostic tools to incorporate
such effects. Cox (1984) offers an extensive agenda of open research topics many of
which could be fruitfully extended to the quantile regression setting.

2.3. Method of Quantiles. It is not uncommon to face quantile regression settings
with exclusively discrete covariates. In such cases, we can consider each cell of the
covariate space, that is each distinct vector of covariates, as determining a separate
subsample. As long as the sample sizes in each of these cells is reasonably large
we can compute cell specific sample quantiles, each of which can be expected to be
approximately Gaussian. When one or more of the discrete covariates arise from
binning continuous covariates like age, or job tenure, and we are willing to consider
imposing a linearity condition, or some weaker parametric restriction on these cell
specific quantiles, it is natural to consider weight least squares estimation of the
restricted model. This is the approach proposed by Chamberlain (1994), and applied
more recently by Bassett, Tam, and Knight (2002) and Knight and Bassett (2007).

Because conditional quantile functions completely characterize all that is observ-
able about univariate conditional distributions they provide natural building blocks
for structural models. Just as linear least squares estimation of reduced form mod-
els constitute a foundation for structural estimation of Gaussian linear simultaneous
equation models, quantile regression provides a foundation for nonparametric struc-
tural models. This perspective has been elaborated in recent work of Matzkin (2015).

2.4. Nonlinear (in parameters) Quantile Regression. Once in a while we may
be faced with specifications of conditional quantile models that are nonlinear in pa-
rameters,

QYi(τ |x) = g(x, θ(τ))

which can be estimated in the immediately obvious manner,

θ̂(τ) = argminθ

n∑
i=1

ρτ (yi − g(xi, θ)).
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Prime examples of such circumstances are the Powell (1986) estimator of the (Tobit)
censored regression model, and the Manski (1975) maximum score estimator of the
binary response model. In both cases we have a linear in parameters latent response
model that posits,

QY ∗i
(τ |x) = x>β,

but the observable response, Yi = max{0, Y ∗i } in the former case, and Yi = I(Y ∗i > 0)
in the latter. Since Qh(Y )(τ) = h(QY (τ)) for any monotone transformation, h, see
e.g. Koenker (2005) p. 39, it follows that the Powell estimator,

β̂(τ) = argminβ
∑

ρτ (yi −max{0, x>i β})

and the Manski estimator,

β̂(τ) = argmin‖β‖=1

∑
ρτ (yi − I(x>i β > 0))

consistently estimates the parameters of the latent variable model, up to scale in the
latter case.

Other parametric transformation models offer further examples. The venerable
Box-Cox power family of transformations, adapted to the quantile regression setting
asserts that,

Qh(Y,λ)(τ |X) = x>β(τ)

where h(y, λ) = (yλ − 1)/λ. Of course if λ is known we can easily estimate the
linear parameters, β(τ), however joint estimation of (λ(τ), β(τ)) requires more effort.
Machado and Mata (2000) propose estimating the nonlinear model,

QY (τ |X) = h−1λ (x>β(τ)),

where h−1λ (z) = (λz + 1)1/λ, and Fitzenberger, Wilke, and Zhang (2009) suggest a
modification to account for circumstances in which λx>i β + 1 < 0. More recently
Mu and He (2007) have proposed an alternative estimator in which λ is estimated
by minimizing a sum of squared cumsum residuals. Performance of these methods
is sensitive to heterogeneity of the conditional density of the response as would be
expected based of the large sample theory we have already sketched. A third option
that doesn’t appear to have been explored in the literature is to simply rescale the
response by dividing by its geometric mean, ỹi = yi/ȳ, where ȳ = (

∏
yi)

1/n and then
estimate λ by solving,

min
λ,β

∑
ρτ (h(ỹi, λ)− x>i β).

The rescaling of the response accounts for the Jacobian term from the Box-Cox trans-
formation of the response, as in the conventional mean regression setting. This for-
mulation may provide a more homogeneous conditional density in some applications.
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Optimization over the scalar λ is easily handled via grid search or other naive meth-
ods. For more complicated nonlinear in parameter models it is possible to use iter-
ative versions of the interior point methods that underlie linear in parameter fitting
as described in Koenker and Park (1996).

3. Nonparametric Quantile Regression

There is an extensive literature on nonparametric quantile regression that relaxes
the strict linearity in covariate assumptions of the foregoing methods while preserving
the convenient linear in parameters structure that facilitates efficient computation.
Chaudhuri (1991) considers the asymptotic behavior of locally polynomial quantile
regression estimators and establishes conditions under which these estimators achieve
optimal rates of convergence. Subsequently, work of Lee (2003) and Lee, Mammen,
and Park (2010) extended the locally polynomial approach to partially linear and
additive models respectively.

As nonparametric quantile regression models become more conplex local fitting and
backfitting to accommodate new components become more burdensome and the liter-
ature has evolved toward sieve methods. See, for example the influential early work of
Stone (1994) and the survey of Chen (2007). Basis function expansions can be readily
adapted to particular applications and more easily incorporate partially linear and
additive components. The obvious challenge is the control the parametric dimension
of the resulting models. Penalty methods, particularly the `1 penalty of Donoho,
Chen, and Saunders (1998) and Tibshirani (1996), have emerged as critical tools for
dimension reduction. The lasso is especially convenient in the quantile regression
setting since it maintains the linear programming structure of the original problem.
This was a primary motivation for the use of total variation roughness penalties in
Koenker, Ng, and Portnoy (1994) and Koenker and Mizera (2004) where `1 penalties
were imposed on linear transforms of model parameters, effectively controlling total
variation of the derivatives of the fitted functions. A crucial aspect of the compu-
tational strategy underlying these methods is the sparse linear algebra employed to
represent high dimensional design matrices and to solve systems of linear equations
required at each iteration of the interior point algorithms used for fitting. This is par-
ticularly evident in applications like that of Koenker (2011) where multiple additive
components result in several thousand model parameters. In such cases there may be
several Lagrangian parameters controlling the additive nonparametric components as
well as a more conventional lasso λ that controls the effective number of active linear
covariate effects.

A variety of proposals have been made for how to choose these penalty parameters,
but I think that it is fair to say that no consensus has been reached. In prior work I
have recommended some form of information criterion in which model dimension is
represented by an estimate of the number of observations interpolated by the fitted
model. This is a variant of the Meyer and Woodroofe (2000) divergence measure of
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dimension since,

div(ŷ) =
n∑
i=1

∂ŷi/∂yi,

has summands that take the value one when yi is interpolated and zero otherwise in
the quantile regression setting. However, the proposal of Belloni and Chernozhukov
(2011) which constructs a reference distribution for λ’s based on a pivotal represen-
tation of the gradient condition seems to be a very attractive alternative approach.

Even more formidable than λ-selection is the task of post-selection inference in these
high dimensional nonparametric settings. Consequently, this topic has spawned con-
siderable recent research and controversy. Most of this work has focused on resampling
methods as exemplified in the quantile regression context by Belloni, Chernozhukov,
and Kato (2015) and Belloni, Chernozhukov, and Kato (2016). I believe that the
Hotelling tube methods described in Koenker (2011) offer an attractive alternative
for some applications. Simulation evidence on their performance for construction of
uniform confidence bands for univariate nonparametric components is provided there
as well as discussion of an application to modeling sources of malnutrition in India.

4. Time-series Models

Econometric timeseries analysis has traditionally relied on Gaussian models that
exclusively employ first and second moment information. However it is now widely
recognized that asymmetries and heavy tail behavior, features that are essentially
invisible when estimating Gaussian models, can be revealed with the aid of quantile
regression methods. Koenker and Xiao (2006) consider quantile autoregressive (QAR)
models of the form,

QYt(τ |Ft) = α0(τ) +

q∑
i=1

αi(τ)Yt−i.

When the αi(τ) do not depend upon τ for i = 1, · · · , q, we have the familiar iid error
autoregression with errors having quantile function α0. More generally, we have a
random coefficient QAR(q) model with Yt generated as,

Yt = α0(Ut) +

q∑
i=1

αi(Ut)Yt−i.

with Ut ∼ U [0, 1]. This is a rather special random coefficient model, however, since
all its coefficients are driven by the same iid uniform random variables. In the ter-
minology of Schmeidler (1986) the coefficients are comonotonic. The simplest case of
the QAR(1) model,

Yt = α0(Ut) + α1(Ut)Yt−1.
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is instructive. Let µi =
∫
0
, 1αi(t)dt and ω2

i =
∫ 1

0
α2
i (t)dt with ω0 <∞ and ω1 < 1, then

Yt is covariance stationary with n−1
∑

(Yt−µy)2 ; N (0, ω2
y) where µy = µ0/(1−µ1),

and ω2
y = ω2

0(1 + µ1)/((1− µ0)(1− ω2
1)).

To illustrate, suppose that α1(τ) = min{1
2

+ 5τ, 1} and α0 = Φ−1(τ). Simulating
the model by drawing a sequence of iid random uniforms we see that runs of Ut > 0.1
behave precisely as if the series were a standard Gaussian unit root model. However,
as soon as we see a Ut < 0.1, the model’s mean reversion tendency kicks in, and
stationarity is salvaged. This simple example demonstrates the capability of QAR
models to mimic some features of common nonstationary time series while preserving
essential features of stationarity.

In Figure 1 we illustrate the the estimated α̂1(τ) process from the augmented
Dickey-Fuller type model,

QYt(τ |Ft) = α0(τ) + α1(τ)Yt−1 +
4∑
j=1

δj(τ)∆Yt−j.

where Yt is the three month US Treasury bill rate observed monthly over the period
1971-2015. The horizontal solid line represents the least squares estimate of 0.99
strongly suggesting unit root behavior. Evidence from the QAR estimates clearly
contradicts the constant coefficient unit root hypothesis, although in this case the
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Figure 1. Estimated QAR α̂1(τ) coefficient for three-month US Treasury
bills based on monthly data 1971-2015.
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explosive behavior of α̂1(τ) for τ > 0.5 compensates for the mean reversion tendency
when τ < 0.5 and we are left on the edge of the QAR stationarity conditions in this
example.

An obvious critique of the linear QAR model comes from the observation that
when the QAR slope coefficient depends upon τ there must be a sub-region of the
support of Yt for which the ordering of quantiles is reversed. Thus, the linear in
lagged Yt’s formulation must be regarded, at best, as a local approximation. See, for
example, the discussion and response of Koenker and Xiao (2006). One remedy for
this predicament is to resort to nonlinear formulations of the QAR model in lagged
Yt’s. Chen, Koenker, and Xiao (2009) explore one approach to models of this type
based on copula specifications.

Complementary to the time domain formulations of the QAR model is the relatively
recent development of frequency domain methods. Building on earlier work of Li
(2008) and Li (2012), Hagemann (2011) and Kley, Volgushev, Dette, and Hallin
(2016) have proposed variants of quantile spectral analysis. The initial proposal of Li
considered the harmonic quantile regression model,

QYt(τ, ωj) = α0(τ, ωj)α1(τ, ωj) cos(tωj) + α2(τ, ωj) sin(tωj)

estimable at the Fourier frequencies, ωj = 2πj/n. Alternatively, we can base the
analysis on the periodogram of the level crossing process, Zt(τ) = I(Xt < F−1Xn

(τ))

where F−1Xn
(τ) denotes the τth unconditional sample quantile of the observed Xt’s.

Both approaches allow researchers to explore frequency domain features of time series
by focusing attention on local behavior at or near specific quantiles, recognizing that
cyclic behavior can be quite different in the upper tail of the distribution than in
the middle or in the lower tail. Extensions to locally stationary time series and
cross-spectral relationships among variables are topics of active current research.

5. Longitudinal Data

Longitudinal, or panel, data poses numerous challenges for anyone contemplating
extending the quantile regression paradigm. My first encounter with these challenges
involved estimation of reference growth charts for height based on a sample of Finnish
children and reported in Wei, Pere, Koenker, and He (2005). Our objective was to
develop a practical approach to estimating growth charts based on quantile regression
methods and illustrate their use on a reference sample of 2305 Finnish children ob-
served, on average, 20 times between the ages of 0 and 20. At the time the state of the
art for estimating such charts was the LMS method of Cole and Green (1992), which
assumed that heights at each age, Y (t), could be transformed to normality by the clas-
sical Box-Cox power transformation, that is that (Y (t)λ(t)−1)/λ(t) ∼ N (µ(t), σ2(t)),
or at least approximately so. To impose smoothness on the resulting quantile growth
curves penalty functions of the usual cubic smoothing spline type were appended to
the Box-Cox log likelihood.
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Figure 2. Comparison of LMS and QR Growth Curves: The figure
illustrates three families of growth curves, two estimated with the LMS
methods of Cole and Green, and one using quantile regression methods.

In Figure 2 we illustrate a comparison of the quantile regression estimates based
on a B-spline basis expansion with 16 knots and two variants of the Cole-Green
estimates: one with penalty parameters chosen with the default setting resulting in
effective dimension of the (λ(t), µ(t), σ(t)) functions of (7, 10, 7), the other with a less
restrictive choice of the penalty parameters with effective dimension (22, 25, 22). The
latter closely mimicked the QR estimates. On the right side of this figure we illustrate
the two age dependent paths of the (λ(t), µ(t), σ(t)) estimates. The default default
λ’s tend to oversmooth, whereas the more flexible model, while quite nicely matching
the QR results yields a rather erratic estimate of the underlying Box-Cox parameter
paths. To reenforce this message we illustrate in Figure 3 the corresponding growth
velocity curves. Separate estimates were made for infants between the ages of 0 and
2, and older children ages 2-18, as well as distinguishing girls and boys. For the
younger children there is generally good agreement between the QR estimates and
the more flexible Cole-Green estimates, however for the older children the Cole-Green
estimates exhibit substantially more variability than the QR estimates of velocity. As
has been already emphasized an advantage of the QR sieve approach is that it makes
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Growth Velocity Curves
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Figure 3. Comparison of LMS and QR Growth Velocity Curves: The
figure illustrates three families of growth curves of the prior figure, now
representing the estimated velocity of growth.

it relatively easy to condition on additional covariates. In the growth curve setting
this was illustrated by incorporating an AR(1) component and midparent’s height as
additional explanatory variables.

The econometric literature on panel data has focused considerable attention on
unobserved individual specific effects. Ever since the influential work of J. Neyman
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(1948) we have struggled to come to terms with these effects. In a rather naive
attempt to introduce them into longitudinal settings for quantile regression, Koenker
(2004) considered the model,

QYit(τ |xit) = αi + x>itβ(τ).

The proposed estimation strategy was to minimize the penalized QR objective,

R(α, β) =
m∑
j=1

n∑
i=1

Ti∑
t=1

ρτj(yit − αi + x>itβ(τj)) + λ‖α‖1.

Two features of the estimator were intended to control the ill effects of the αi’s: first,
they were assumed to be independent of τ , thus representing a pure location shift of
the conditional distribution of the response, and second, their `1 norm was controlled
by the penalty parameter λ. We can interpret this procedure in several ways, none
terribly compelling. If we view the αi’s as individual specific fixed effects, then the
penalty term is simply a shrinkage scheme: reduced variability of the vector α may
help to improve the precision of the estimates of primary interest, β. If instead, we
view the αi’s as random, then the Bayesian interpretation of the penalty term suggests
that shrinkage could be justified by a Laplace (double exponential) prior on the vector
α. Why double exponential? Aside from the obvious computational convenience there
seems to be little credible motivation. As we know from the extensive lasso literature
the `1 penalty tends to behave like a hard threshholding rule, shrinking some of the
αi’s all the way to zero, while leaving others alone. This may be desirable in some
applications, but perhaps not in others.

Subsequent literature has elaborated on this approach as well as introducing a va-
riety of new alternatives. Lamarche (2010) has clarified the role of the shrinkage
parameter λ and suggested straegies for choosing it. Galvao (2011) has explored
dynamic variants of the model and proposed insturmental variable methods for es-
timation, and Kato, Galvao, and Montes-Rojas (2012) have substantially improved
upon prior results on rate requirements for asymptotic inference.

A considerably more sophisticated approach to quantile regression methods for
panel data has been recently proposed by Arellano and Bonhomme (2016). Their
approach may be interpreted as an elaboration of the Chamberlain (1984) correlated
random effects approach to classical mean regression methods for panel data. Rather
than specifying individual specific parametric effects, Arellano and Bonhomme (2016)
posit latent variables that enter the model as if they were observable covariates.
Estimation proceeds by a variant of the EM algorithm in which the latent covariates
are imputed by methods similar to those introduced by Wei and Carroll (2009) for
dealing with quantile regression models with measurement error in the covariates.
This approach has several advantages over prior panel methods, not the least of which
is that there is a clear conditional quantile interpretation, albeit one that conditions
on the latent covariates.
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6. Duration Models

Quantile regression offers an attractive modeling strategy for duration, or survival,
data where interest focuses on restricted regions of the conditional distribution and
censoring renders identificaiton of mean effects problematic. My first encounter with
these issues was working on Koenker and Geling (2001) where we had the luxury of
having a sample of 1.2 million uncensored observations of medfly lifetimes. A simple
logarithmic accelerated failure time model allowed us to consider extreme tail behavior
and covariate effects in a more comprehensive manner than was possible with other
standard modeling strategies. A striking example of the latter virtue was the gender
cross-over in survival functions for medflies. In most parametric and semiparametric
survival models including the Cox proportional hazard model covariates exert a scalar
shift effect on hazards or survival probabilities that must be either positive or negative
over the entire time scale. Such models cannot accommodate effects like gender cross-
over in which a treatment, or a characteristic like gender, has a positive impact on
survival at early ages, but then becomes a negative influence at more advanced ages.

Of course it is highly unusual to encounter duration data that doesn’t exhibit some
form of censoring. As we have already noted, Powell (1986) showed that quantile
regression could be adapted to various forms of fixed censoring, thereby relaxing the
restrictive conditions imposed by earlier Gaussian likelihood methods. Random cen-
soring of the type typically encountered in biostatistics resisted quantilification until
Portnoy (2003) proposed a shrewd recursive scheme that generalized the well known
Kaplan-Meier estimator to the regression setting. Observing, as in Efron (1967), that
Kaplan-Meier redistributes mass to the right for right censored response, Portnoy
proposed a similar procedure in regression leading to a sequence of weighted quantile
regression estimates. Somewhat later, Peng and Huang (2008) using a martingale
estimating equation formulation like that underlying the Nelson-Aalen estimator,
proposed a closely related procedure. Subsequent work has greatly expanded the ap-
plicability of these methods, to competing risks, recurrent events, double censoring
and other settings. See the recent survey papers of Ying (2017), Peng (2017) and Li
and Peng (2017) for further details.

Noting that censoring shares many features with recent work on missing data mod-
els, Yang, Narisetty, and He (2016) have recently proposed a clever data augmenta-
tion approach that encompasses a wide variety of censored quantile regression models.
This approach seems very promising especially for settings like interval censoring that
seem otherwise quite intractable.

7. Causal Models and Instrumental Variables

Causal inference, not to be confused with casual empiricism, has been a longstand-
ing focus of econometrics. Indeed it is sometimes claimed that causal modeling is
what distinguishes econometric analysis from the “merely descriptive” subject of sta-
tistics. This has always seemed to me to be a little self-serving, but there is an element
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of truth to it. It has become increasingly difficult to maintain this monopoly, as not
only the statisticians but also the computer scientists have taken up the banner of
causal inference.

Once one abandons the comfortable world of mean effects and linear structural
models and embraces the diversity inherent in nonlinear, nonseparable models of
distributional effects many open problems present themselves. To my mind the most
compelling general approach to these problems is that set out by Chesher (2003).
This approach draws on the Rosenblatt (1952) transform and may also be viewed as
an extension of the influential, if somewhat controversial, work of Strotz and Wold
(1960) on recursive, or triangular, models of linear structural equations.

If X is a scalar random variable with absolutely continuous distribution function
F , then Z = F (X) ∼ U [0, 1], that is Z is uniformly distributed on the unit interval.
Rosenblatt noted that this simple idea could be extended to k-variate random vari-
ables having absolutely continuous distribution F (x1, · · · , xk) by defining the trans-
formation z = Tx by recursive conditioning,

z1 = P{X1 ≤ x1} ≡ F1(x1)

z2 = P{X2 ≤ x2|X1 = x1} ≡ F2(x2|x1)
...

zk = P{Xk ≤ xk|X1 = x1, · · · , Xk−1 = xk−1} ≡ F2(x2|x1, · · · , xk),

so the random vector, Z = TX is uniformly distributed on the unit cube in Rk.
This leads us immediately to recursively conditioned quantile functions, QY1|X)(τ |x),
QY2|Y1,X)(τ |y1, x), . . . , QYk|Y1,...Yk−1,X)(τ |y1, · · · , yk−1, x), as an equivalent way to char-
acterize the distribution. Of course there are k! ways of doing this, one for each
ordering of the Y ’s so we require a causal ordering of the response vector. Chesher
provides an elegant nonparametric elaboration of this approach with general iden-
tification and estimation results. Ma and Koenker (2006) considers more restrictive
parametric formulations, and suggest a control variate estimation strategy. Wei (2008)
illustrates the approach for estimating bivariate children’s growth contours for height
and weight where there is a compelling biological argument for the causal precedence
of height.

When some components of Y are discrete point identification generally fails, and
one must resort to bounds analysis and set valued identification results as demon-
strated in Chesher (2005). Since many econometric applications involve discrete en-
dogonous variables alternative approaches framed in terms of instrumental variables
have proven to be very influential. The first of these approaches was that of Abadie,
Angrist, and Imbens (2002) who considered the very typical case of binary treatment
with binary instrumental variable. This setting is often encountered in experimental
settings where treatment is offered to a randomly selected group, but participants
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cannot be compelled to accept the treatment, so there is voluntary compliance. This
is usually described as the “intent to treat” model.

Abadie, Angrist, and Imbens (2002) adopt the potential outcome framework un-
derlying earlier work on local average treatment effects as in Imbens and Angrist
(1994). Given a vector of conditioning covariates, X, and a binary treatment indica-
tor D, suppose we have a binary instrumental variable, Z, independent of outcome
and treatment status conditional on X. Let D1 denote (random) treatment status
when Z = 1, and D0 when Z = 0, and assume that P(D1 ≥ D0|X) = 1. The objec-
tive is to identify the treatment effect on the compliers, that is on the subpopulation
with D1 > D0, those that actually switch to the treatment option when given the
opportunity to do so. Compliers are not individually recognizable in the sample, but
they are probabilistically recognizable via the following subterfuge. Let

κ(D,Z,X) = 1− D(1− Z)

1− π0(X)
− Z(1−D)

π0(X)

with π0(X) = P(Z = 1|X). When D = Z, κ = 1, otherwise it is negative. Weighting
the usual quantile regression objective function by consistent estimates of the κ’s
yields a consisten estimator of the quantile treatment effect, α̂, solving,

min
α,β

n∑
i=1

κ̂iρτ (yi − αdi − x>i β).

Negative weights are, however, problematic from a computational point of view since
they contribute concave summands to what is otherwise a nice, convex objective. So
Abadie, Angrist, and Imbens (2002) propose replacing the κ̂i’s by estimates of the
modified, conditional weights,

κν = E(κ|Y,D,X) = 1− D(1− ν0)
1− π0(X)

− ν0(1−D)

π0(X)

where ν0 = E(Z|Y,D,X) = P(Z = 1|Y,D,X), which is shown under the specified
conditions to satisfy κν = P(D1 > D0|Y,D,X) > 0. Obviously, there are still signifi-
cant challenges in estimating the weights, κν , but at least their positivity restores the
convexity of the objective function facilitating the minimization step.

In a series of papers Chernozhukov and Hansen (2004, 2005, 2006, 2008) have
introduced a broader framework for instrumental variable methods for quantile re-
gression. Their approach has been thoroughly reviewed in Chernozhukov and Hansen
(2013), so I will be rather brief here. Again, the potential outcomes formalism is
adopted and for each potential outcome, Yd for d ∈ D, there is a quantile function
QYd(τ |d, x) = q(d, x, τ) so Yd = q(d, x, Ud) with Ud ∼ U [0, 1]. Conditional on X and
for each d ∈ D, Ud is independent of the instrumental variable, Z. The treatment,
D, is determined as D = δ(Z,X, V ) for some random vector, V , and conditional
on (X,Z, V ), the Ud are iid. This last condition, which Chernozhukov and Hansen
(2013) refer to as “rank similarity.” may be viewed as a somewhat relaxed version
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of the rank invariance condition we have described earlier as underlying more naive
interpretations of the QTE. Rank similarity does not require that subjects have the
same rank under each treatment regime, but only that “the expectation of any func-
tion of the rank Ud does not vary across the treatment states.” Charnozhukov and
Hansen (2013, p 65). This precludes systematic differences in subjects’ ranks across
treatments as would occur for example if a medical treatment rather miraculously
made the most frail patients most robust, and vice versa, or helped only the most
frail and most robust leaving intermediate cases unimproved.

Under the foregoing assumptions the moment condition, P{Y ≤ q(D,X, τ)|X,Z} =
τ can be employed to construct an estimator of the structural QTE. In practice such
moment conditions, lacking both smoothness and convexity, are rather awkward;
fortunately, a more tractable alternative is provided. Consider the linear specification
q(D,X, τ) = D>α(τ) + X>β(τ). By the independence, or exclusion, assumption on
Z, we may consider estimating the model,

QY−D>α|X,Z(τ |X,Z) = X>β(τ) + Z>γ(τ, α),

for various α and trying to minimize ‖γ(τ, α)‖W = γ(τ, α)>Wγ(τ, α with respect to
α. Ideally, one would like to choose W to be the inverse of a reasonable estimate
of the covariance matrix of ĝamma. It is a useful exercise to show that the mean
regression analogue of this procedure is equivalent to classical two stage least squares.
Weaker forms of the Chernozhukov and Hansen conditions lead to moment inequality
conditions and back toward the theory of Chesher (2005).

8. Errors in Variables, Missing Data and Sample Selection

Going back to the earliest days of econometrics it has been recognized that conven-
tional least squares estimates can be badly biased when covariates are measured with
error. Wald (1940) and Durbin (1954) review this early literature and describe instru-
mental variable methods intended to ameliorate these effects. I will briefly describe
some recent developments for treating measurement errors of this type in quantile
regression methods.

Wei and Carroll (2009) consider the linear quantile regression model,

(1) QY (τ |x) = x>β0(τ),

however, x, is not observed, instead we observe a surrogate, w, that satisfies the
condition that fY (y|x,w) = fY (y|x). This surrogacy condition implies that w is
uninformative about Y conditional on X. Since the usual estimating equations,

n−1
∑

ψτ (yi − x>i β)xi = 0,

are unavailable, we must instead consider the revised equations,

n−1
∑∫

x

ψτ (yi − x>β)xf(x|yi, wi)dx = 0,
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which replaces the xi by their conditional expectations. We are unlikely to know any-
thing about the conditional density f(x|yi, wi) a priori, however under the surrogacy
condition,

f(x|yi, wi) =
f(yi|x)f(x|wi)∫

x
f(yi|x)f(x|wi)dx

.

Assuming that the linear conditional quantile model holds for all τ ∈ (0, 1), we can
express f(y|x) in terms of the difference quotient,

f(y|x) = lim
h→0

h

x>(β0(τy + h)− β0(τy))
,

where τy = {τ ∈ (0, 1)|x>β(τ) = y}. Estimation proceeds by what Wei and Carroll
refer to as a nonparametric analogue of the EM algorithm. There is assumed to be
a reliable estimator of f(x|w), perhaps based on replicated observations and a para-
metric model of the measurement error. Then θ ≡ (β(τ1), · · · , β(τm)) is initialized
using the naive estimator that simply replaces x by its surrogate w, in 1. Weights
are then constructed on a grid of x values, and θ is reestimated from the weighted
quantile regression objective function at each of the τk’s, and the process is repeated
until convergence is achieved.

Gridding for τ ∈ (0, 1) isn’t worrisome, but the gridding on x may be more so,
especially when the dimension of x is large, say bigger than one. What matters
of course is the “affected” dimension of x, the number of coordinates subject to
measurement error; this is accounted for in f(x|w), which admits the possibility that
some coordinates of x are accurately measured.

The approach of Wei and Carroll (2009) reveals an important but somewhat para-
doxical feature of the quantile regression paradigm. It is usually emphasized that a
cardinal virtue of these methods is that they are local, relying only on data near a
particular conditional quantile, and undisturbed by what may be going on elsewhere
in the conditional distribution. But when we assert that 1 holds for all τ ∈ (0, 1), we
have taken a leap of faith onto the quagmire of global semiparametric models. Al-
though Wei and Carroll (2009) restrict estimation of their original model to a discrete
grid of τ ∈ (0, 1), they explicitly tie these estimates together with the assumption
that the coordinates βj(τ) can be approximated by a linear splines with algebraic
tail behavior. Indeed, when we compute the weights 8 we require estimates of the
global conditional density. Obviously, there are several other strategies that might
be employed to produce alternative estimates of such conditional densities. What,
if anything, makes quantile regression advantageous for this purpose? I would argue
that the main advantages are the linear parameterization, perhaps in some form of
basis expansion, and the efficient computation that this facilitates. Given a family of
independently estimated conditional quantile functions it is also easy to impose fur-
ther structure such as smoothness, or particular forms of tail behavior as illustrated
in the Wei-Carroll approach. These advantaes are also apparent in the recent work
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of Chernozhukov, Fernndez-Val, and Galichon (2010), Wang, Li, and He (2012) and
Arellano and Bonhomme (2016).

Several other approaches to estimation of quantile regression models with errors
in variables have been proposed. An analogue of orthogonal least squares regression
is considered in He and Liang (2000). Wang, Stefanski, and Zhu (2012) propose a
modification of the usual quantile regression objective function adapted to the Gauss-
ian measurement error model. And Schennach (2008) constructs an elegant general
approach to deal with nonparametric measurement error employing deconvolution
methods.

It is common especially in applications based on survey data to encounter missing
covariates. Two general approaches have emerged for dealing with this eventuality:
reweighting a la propensity score methods, and multiple imputation. Both approaches
have been explored in the quantile regression setting, the former approach requires
reliable estimation of a model for missingness, the latter requires a model for the
conditional distribution of the missing observations. Both approaches and their com-
bination are discussed in Wei (2017), and the references provided there.

Sample selection is a potentially serious source of bias in many applications as
stressed in the seminal work of Heckman (1974) and Gronau (1974). While the
parametric approach of Heckman (1979) has been enormously influential, attention as
gradually shifted towards models with less stringent conditions. The Frechet bounds
analysis of Manski (1993) constitutes an attractive, if pessimistic, option, while the
additive control variate approach of Buchinsky (2001) is more pragmatic. In recent
work Arellano and Bonhomme (2015) have sought to bridge this gap and proposed an
intriguing copula based approach that ultimately reliew on a novel modification of the
usual quantile regression objective function in which each observation is assigned an
individual specific τ̂i that depends upon the estimated copula linking the outcome and
selection models evaluated at the covariate vector of the selection model. Given these
τ̂i’s, the efficient computational machinery of quantile regression can be employed,
but specification and estimation of the copula and the selection model remain serious
challenges.

9. Multivariate and Functional Data

It is hardly surprising that the problem of extending the simple idea of estimating
conditional quantile functions for a univariate response to multivariate response has
proven difficult. Even without any conditioning covariates, it is unclear how one
should go about “inverting” a distribution function F : Rd → (0, 1). Even the notion
of the multivariate median is controversial. We have already described one proposal
based on the Rosenblatt transform that relies on a causal ordering of the coordinates
of the response. This formulation gives us a way, for example, to ask: How do changes
in the τ1 quantile of height impact changes in the τ2 quantile of weight? But what
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if we would like to reverse the causal direction? Maybe we should just resist this
temptation, but it is almost irresistible so let’s briefly describe some current options.

Suppose for the moment we have no covariates, only our Y ∈ Rd response. Let u
be a d-vector with ‖u‖ = 1, and denote Yu = u>Y and its orthogonal complement as
Y ⊥u . Then,

γ(τ, u) = argminγ=(α,β)Eρτ (Yu − α− β>Y ⊥u )

defines a family of hyperplanes indexed by (τ, u). Of course since γ(τ, u) = γ(1 −
τ,−u) we need only consider τ ∈ (0, 1/2]. Kong and Mizera (2012) consider contour
sets determined by the empirical analogues of these directional conditional quantile
hyperplanes and show that the resulting polyhedral contour sets correspond to Tukey
halfspace depth contours. This formulation easily accommodates additional linear
covariates as shown in Hallin, Paindaveine, and Šiman (2010) who also provide a
nice computational refinement based on parametric linear programming. Further
extensions to nonparametric formulations are provided in Hallin, Lu, Paindaveine,
and Šiman (2015).

In an exciting new development Carlier, Chernozhukov, and Galichon (2016) have
proposed a vector quantile regression notion motivated by classical Monge-Kantorovich
optimal transport theory. Their approach maintains two essential properties of the
univariate conditional quantile functions: namely that the map (u, x) 7→ QY |X(u|x)
be monotone in u, and satisfy the representation,

Y = QY |X(U |X), U |X ∼ U(0, 1)d.

For d = 1 this is all very familiar, but how should we interpret monotonicity in u,
for u ∈ Rd? Carlier, Chernozhukov, and Galichon (2016), employing earlier results of
McCann and Brenier, show that there is a unique mapping satisfying these conditions
with monotonicity in u interpreted as the requirement that the map u 7→ QY |X(u|x)
is the gradient of a convex function, so,

(QY |X(u|x)−QY |X(u′|x))(u− u′) ≥ 0,

for all u and u′ in (0, 1)d and x ∈ X , the support of the conditioning covariates.
As in the univariate setting it is convenient to consider linear parameterizations,

QY |X(u|x) = β0(u)>f(x),

so we would have the representation, Y = β0(U)>f(X), with U |X ∼ U(0, 1)d. Here
β(u) is a p by dmatrix of coefficients, and f(X) is a p vector of conditioning covariates,
possibly including basis expansion and interaction terms. This formulation leads to
a linear programming problem for computing β(u) for both population and sample
settings.

The inherent ambiguity of the multivariate quantile problem arises from the fact
that there are many maps Q such that if U ∼ U(0, 1)d then Q(U |x) ∼ FY |X=x, any one
of which determine a transport from the d dimensional uniform distribution function
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FU to FY |X=x. Among these choices, the vector quantile regression selection of Car-
lier, Chernozhukov, and Galichon (2016) is the one that minimizes the Wasserstein
distance E‖Q(U |X)− U‖2. Many interesting questions remain about this appealing
formulation. A valuable introduction to optimal transport from a broad economic
perspective may be found in the monograph of Galichon (2016).

Functional data analysis has become increasingly important since the appearance
of Ramsay and Silverman (1997), but it is received only limited attention in the
quantile regression setting, despite the fact that applications to growth curves, pollu-
tion concentrations and shape analysis seem to cry out for more flexible methods. A
notable exception to this neglect is the work of Kato (2012) who considers function
valued covariates and scalar response as an ill-posed inverse problem regularized by
truncation of a principal component derived basis expansion. Function valued re-
sponse poses new challenges closely related to the problems of vector response. A
novel recent attack on these issues is described in Choudhury and Chaudhuri (2017).

10. Computational Methods

More data and more complex models have put increased stress on computational
resources thoughout statistics and led to many innovations including computational
methods for quantile regression. Early simplex based methods of linear program-
ming have gradually given way to interior point methods as described in Portnoy and
Koenker (1997), and sparse algebra has further expanded the scope of these meth-
ods allowing models with several thousand parameters to be efficiently estimated
as illustrated in Koenker (2011). But new demands exceed the capabilities of even
these methods and the advent of distributed computing has shifted attention toward
gradient descent methods. Koenker (2017) briefly describes one approach to such
strategies for quantile regression based on the alternating direction method of multi-
pliers (ADMM) approach of Parikh and Boyd (2014).

I have tried to maintain a comprehensive package of quantile regression software for
the R language, R Core Team (2016), acessible on the CRAN network as quantreg,
Koenker (2016), And other R contributors have extended its capabilities. SAS has
now cloned some of the features of the quantreg package, including some of the
survival analysis methods. Stata has a more limited quantile regression capabilities
based on the original simplex algorithm implementation described in Koenker and
d’Orey (1987). Implementations of the interior point algorithm described in Portnoy
and Koenker (1997) for Matlab and Ox are available from my website.

11. Conclusion

Gaussian models and methods have encouraged the misconception that all things
empirical are revealed by conditional means, and perhaps one or two more moments.
Quantile regression offers a set of complementary methods designed to explore data
features invisible to the inveiglements of least-squares. As data sources become richer
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and awareness of the importance of heterogeneity increases, quantile regression meth-
ods have become more relevant. The scope of quantile regression methods has broad-
ened considerably in recent years, thanks to the efforts of numerous researchers. I
hope that this process will continue.
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