ECONSTOR

Make Your Publications Visible.

Lee, Sokbae; Salanié, Bernard

Working Paper
 Identifying effects of multivalued treatments

cemmap working paper, No. CWP34/18

Provided in Cooperation with:

Institute for Fiscal Studies (IFS), London

[^0]This Version is available at: https://hdl.handle.net/10419/189749

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^1]

Identifying effects of multivalued treatments

Sokbae Lee
Bernard Salanié

The Institute for Fiscal Studies Department of Economics, UCL
cemmap working paper CWP34/18

Identifying Effects of Multivalued Treatments*

Sokbae Lee ${ }^{\dagger} \quad$ Bernard Salanié ${ }^{\ddagger}$

May 30, 2018

Abstract

Multivalued treatment models have typically been studied under restrictive assumptions: ordered choice, and more recently unordered monotonicity. We show how treatment effects can be identified in a more general class of models that allows for multidimensional unobserved heterogeneity. Our results rely on two main assumptions: treatment assignment must be a measurable function of threshold-crossing rules, and enough continuous instruments must be available. We illustrate our approach for several classes of models.

KEYWORDS: Identification, selection, multivalued treatments, instruments, monotonicity, multidimensional unobserved heterogeneity.

[^2]
1 Introduction

Since the seminal work of Heckman (1979), selection problems have been one of the main themes in both empirical economics and econometrics. One popular approach in the literature is to rely on instruments to uncover the patterns of the self-selection into different levels of treatments, and thereby to identify treatment effects. The main branches of this literature are the local average treatment effect (LATE) framework of Imbens and Angrist (1994) and the local instrumental variables (LIV) framework of Heckman and Vytlacil (2005).

The LATE and LIV frameworks emphasize different parameters of interest and suggest different estimation methods. However, they both focus on binary treatments, and restrict selection mechanisms to be "monotonic". Vytlacil (2002) establishes that the LATE and LIV approaches rely on the same monotonicity assumption. For binary treatment models, these approaches require that selection into treatment be governed by a single index crossing a threshold.

Many real-world selection problems are not adequately described by single-crossing models. The literature has developed ways of dealing with less restrictive models of assignment to treatment. Angrist and Imbens (1995) analyze ordered choice models. Heckman, Urzua, and Vytlacil (2006, 2008) show how (depending on restrictions and instruments) a variety of treatment effects can be identified in discrete choice models that are additively separable in instruments and errors. More recently, Heckman and Pinto (2018) define an "unordered monotonicity" condition that is weaker than monotonicity when treatment is multivalued. They show that given unordered monotonicity, several treatment effects can be identified.

Even the most generally applicable of these approaches can still only deal with models of treatment that are formally analogous to an additively separable discrete choice model, as proved in Section 6 of Heckman and Pinto (2018). The key condition is that the data contain changes in instruments that create only one-way flows in or out of the treatment cells the analyst is interested in. In binary treatment models, this is exactly the meaning of monotonicity: there cannot be both compliers and defiers, so that LATE estimates the average treatment effect on compliers. Things are somewhat more complex in multivalued treatment models. Unless selection only

[^3]depends on one function of the instruments, there exist changes in instruments that generate two-way flows in and out of any treatment cell. Unordered monotonicity requires that we observe some changes in instruments that only induce one way-flows.

This is still too restrictive for important applications. For instance, many transfer programs (or many educational tests) rely on several criteria and combine them in complex ways to assign agents to treatments; and agents add their own objectives and criteria to the list. An additively separable discrete choice model may not describe such a selection mechanism. To see this, start from a very simple and useful application: the double hurdle model, which treats agents only if each of two indices passes a threshold ${ }^{2}$. While this is a binary treatment model, the existence of two thresholds makes it non-monotonic: if a change in instruments increases a threshold but reduces the other, some agents move into the treatment group and some move out of it.

The double hurdle model is still unordered monotonic, as any change in instruments that moves the two thresholds in the same direction only creates one-way flows. Now let us change the structure of the model slightly: there are still two thresholds, but we only treat agents who are above one threshold and below the other. As we will see in Section 2, any change in instruments that moves both thresholds generates two-way flows, and standard approaches to identification fail. This model of selection with two-way flows cannot be represented by a discrete choice model; it is formally equivalent to a discrete choice model with three alternatives in which the analyst only observes partitioned choices (e.g. the analyst only observes whether alternative 2 is chosen or not). Our identification results apply to this variant of the double hurdle model, and to all treatment models generated by a finite family of threshold-crossing rules. In fact, one way to describe our contribution is that it encompasses all additively separable discrete choice models in which the analyst only observes a partition of the set of alternatives.

To illustrate the applicability of our framework, assume that assignment to treatment can be described by a random utility model of choice. Now imagine that, as is common in practice, the analyst only observes choices between sets of treatments: e.g., various vocational programs have been aggregated into a "training" category in her dataset. Our methods allow identification of the effect of these different training programs on outcomes, provided that continuous instruments shift their mean

[^4]utilities. Variables such as distance to the locations of the training centers or other components of the "full cost" of treatment could serve as instruments in this application. For another example, consider a dynamic sequence of treatments such as the curriculum of a college student or the career of a worker. This could be represented as a "decision tree" in which various threshold-crossing rules govern the path of the individual through time. Again, this type of model can be analyzed using the techniques in this paper. Here we could use measures of performances of the worker, or the grades of the student, as (quasi) continuous instruments in order to infer the effect of each of the possible paths on outcomes. We study related examples more formally in Section 4.

Our analysis allows selection to be determined by a vector of threshold-crossing rules. Each of these rules compares a scalar unobservable to a threshold; these unobservables can be correlated with each other and with potential outcomes. We proceed in two steps. First assume that the thresholds are known to the analyst. We use their values as control variables to deal with multidimensional unobserved heterogeneity. One important difference with the unidimensional case is that in our setting LATEtype estimators can only recover a mixture of causal parameters on groups that cross different thresholds, and are therefore harder to interpret. We establish conditions under which one can identify a generalized version of the marginal treatment effects (MTE) of Heckman and Vytlacil (2005), as well as the probability distribution of unobservables governing the selection mechanism, and more aggregated treatment effects such as the average treatment effect (ATE), quantile treatment effects, the average treatment effect on the treated (ATT), and the policy-relevant treatment effect (PRTE).

Since thresholds often are not known a priori, the second step requires identifying them from the data. This is highly model-specific and the family of models encompassed in this paper is too large and diverse to allow for a general result. We limit our discussion to a few applications; in particular, we provide what we believe are new identification theorems for the double-hurdle model.

We give a detailed comparison of our paper to the existing literature in Section 5 . Let us here mention a few points in which our paper differs from the literature. Unlike Imbens (2000), Hirano and Imbens (2004), Cattaneo (2010), and Yang, Imbens, Cui, Faries, and Kadziola (2016), we allow for selection on unobservables. Gautier and Hoderlein (2015) study binary treatment when selection is driven by a rule that is
linear in a vector of unobservable heterogeneity. Lewbel and Yang (2016) consider a different non-monotonic rule for binary treatment to identify the average treatment effect. These two papers break monotonicity in different ways than ours. We focus on the point identification of marginal treatment effects, unlike the research on partial identification (see e.g. Manski (1990), Manski (1997) and Manski and Pepper (2000)). Chesher (2003), Hoderlein and Mammen (2007), Florens, Heckman, Meghir, and Vytlacil (2008), Imbens and Newey (2009), D'Haultfœuille and Février (2015), and Torgovitsky (2015) study models with continuous endogenous regressors. Each of these papers develops identification results for various parameters of interest. Our paper complements this literature by considering multivalued (but not continuous) treatments with more general types of selection mechanisms.

Heckman and Vytlacil (2007, Appendix B) and Heckman, Urzua, and Vytlacil (2008) and more recently Heckman and Pinto (2018) and Pinto (2015) are more closely related to our paper. But they focus on the selection induced by multinomial discrete choice models, whereas our paper allows for more general selection problems.

The paper is organized as follows. Section 2 sets up our framework; it motivates our central assumptions by way of examples. We present and prove our identification results in Section 3. Section 4 applies our results to three important classes of applications, including the models mentioned in this introduction. We relate our contributions to the literature in Section 5. Finally, Section 6 gives the proof of the main theorem. Some further results and details of the omitted proofs are collected in Online Appendices.

2 The Model and our Assumptions

We assume throughout that treatments take values in a finite set of treatments \mathcal{K}. This set may be naturally ordered, as with different tax rates. But it may not be, as when welfare recipients enroll in different training schemes for instance; this makes no difference to our results. We assume that treatments are exclusive. This involves no loss of generality as treatment values could easily be redefined otherwise. We denote $K=|\mathcal{K}|$ the number of treatments, and we map the set \mathcal{K} into $\{0, \ldots, K-1\}$ for notational convenience.

We denote $\left\{Y_{k}: k \in \mathcal{K}\right\}$ the potential outcomes. Let D_{k} be 1 if the k treatment is realized and 0 otherwise. The observed outcome and treatment are $Y:=\sum_{k \in \mathcal{K}} Y_{k} D_{k}$
and $D:=\sum_{k \in \mathcal{K}} k D_{k}$, respectively.
In addition to the covariates \boldsymbol{X}, observed treatment D and outcomes Y, the data contain a random vector \boldsymbol{Z} that will serve as instruments. We always condition on the value of \boldsymbol{X} in our analysis of identification, and thus suppress it from the notation. Observed data consist of a sample $\left\{\left(Y_{i}, D_{i}, \boldsymbol{Z}_{i}\right): i=1, \ldots, N\right\}$ of (Y, D, \boldsymbol{Z}), where N is the sample size. We denote the generalized propensity scores by $P_{k}(\boldsymbol{Z}):=$ $\operatorname{Pr}(D=k \mid \boldsymbol{Z})$; they are directly identified from the data. Our models of treatment assignment rely on functions of the instruments $Q_{j}(\boldsymbol{Z})$ that are a priori unknown to the econometrician and will need to be identified. We also introduce random vectors \boldsymbol{V} to represent unobserved heterogeneity.

Let G denote a function defined on the support \mathcal{Y} of Y, which can be discrete, continuous, or multidimensional. We focus on identification of the conditional counterfactual expectations $E\left(G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right)$ and on measures of treatment effects that can be derived from them. For example, a possible object of interest is the marginal treatment effect (MTE), defined as $E\left(Y_{k}-Y_{l} \mid \boldsymbol{V}=\boldsymbol{v}\right)$. This is similar to the MTE in the binary treatment model, in that it conditions on the value of unobserved heterogeneity in treatment. One important difference is that the link between the unobserved heterogeneity vector \boldsymbol{V} and the generalized propensity scores $\operatorname{Pr}(D=k \mid \boldsymbol{Z})$ is now more indirect.

Aggregating up would give the mean of the counterfactual outcome $G\left(Y_{k}\right)$ (conditional on the omitted covariates $\boldsymbol{X})$. Once we identify $E G\left(Y_{k}\right)$ for each k, we also identify the average treatment effect $E\left(G\left(Y_{k}\right)-G\left(Y_{j}\right)\right)$ between any two treatments k and j. Alternatively, if we let $G\left(Y_{k}\right)=\mathbb{1}\left(Y_{k} \leq y\right)$ for some y, where $\mathbb{1}(\cdot)$ is the usual indicator function, then the object of interest is the marginal distribution of Y_{k}. This leads to the identification of quantile treatment effects.

One of our aims is to relax the usual monotonicity assumption that underlies the LATE and LIV estimators. Consider the following, simple example where $K=3$, and treatment assignment is driven by a pair of random variables V_{1} and V_{2} whose marginal distributions are normalized to be $U[0,1]$.

Example 1 (Selection with Two-Way Flows). Assume that there are two thresholds $Q_{1}(\boldsymbol{Z})$ and $Q_{2}(\boldsymbol{Z})$ such that

- $D=0$ iff $V_{1}<Q_{1}(\boldsymbol{Z})$ and $V_{2}<Q_{2}(\boldsymbol{Z})$,
- $D=1$ iff $V_{1}>Q_{1}(\boldsymbol{Z})$ and $V_{2}>Q_{2}(\boldsymbol{Z})$,
- $D=2$ iff $\left(V_{1}-Q_{1}(\boldsymbol{Z})\right)$ and $\left(V_{2}-Q_{2}(\boldsymbol{Z})\right)$ have opposite signs.

We could interpret Q_{1} and Q_{2} as minimum grades or scores in a two-part exam or an eligibility test based on two criteria: failing both parts/criteria assigns you to $D=0$, passing both to $D=1$, and failing only one to $D=2$.

If F is the joint cdf of $\left(V_{1}, V_{2}\right)$, it follows that the generalized propensity scores are

$$
\begin{align*}
& P_{0}(\boldsymbol{Z})=F\left(Q_{1}(\boldsymbol{Z}), Q_{2}(\boldsymbol{Z})\right) \\
& P_{1}(\boldsymbol{Z})=1-Q_{1}(\boldsymbol{Z})-Q_{2}(\boldsymbol{Z})+F\left(Q_{1}(\boldsymbol{Z}), Q_{2}(\boldsymbol{Z})\right) \tag{2.1}\\
& P_{2}(\boldsymbol{Z})=Q_{1}(\boldsymbol{Z})+Q_{2}(\boldsymbol{Z})-2 F\left(Q_{1}(\boldsymbol{Z}), Q_{2}(\boldsymbol{Z})\right)
\end{align*}
$$

Take a change in the values of the instruments that increases both $Q_{1}(\boldsymbol{Z})$ and $Q_{2}(\boldsymbol{Z})$: both criteria, or both parts of the exam, become more demanding. Figure 1 plots this change in $\left(V_{1}, V_{2}\right)$ space. The black square represents the initial marginal observation, with $V_{1}=Q_{1}(\boldsymbol{Z})$ and $V_{2}=Q_{2}(\boldsymbol{Z})$; and the red circle at the other end of the arrow is the new marginal observation. In both cases, the quadrants delimited by the axes that intersect at the marginal observation define treatment cells. Observations in region (A) move from $D=1$ to $D=2$, those in region (B) move from $D=1$ to $D=0$, and those in regions (C) move from $D=2$ to $D=0$. This violates monotonicity, and even the weaker assumption that generalized propensity scores are monotonic in the instruments. Note also that observations in region (C) leave $D=2$, while those in region (A) move into $D=2$: there are two-way flows in and out of $D=2$. Moreover, it is easy to see that any change in the thresholds creates such two-way flows; Figure 2 illustrates it for changes in opposite directions, with observations in region (E) moving from $D=0$ to $D=2$, observations (F) moving from $D=2$ to $D=1$, observations (G) moving from $D=1$ to $D=2$, and observations (H) moving from $D=2$ to $D=0$.

Therefore this model violates the weaker requirement of unordered monotonicity of Heckman and Pinto (2018), which we describe in Section 5.3 unless we are only interested in treatment values 0 and 1.

To take a slightly more complicated example, consider the following entry game.
Example 2 (Entry Game). Two firms $j=1,2$ are considering entry into a new market. Firm j has profit π_{j}^{m} if it becomes a monopoly, and $\pi_{j}^{d}<\pi_{j}^{m}$ if both firms

Figure 1: Example 1

enter. The static Nash equilibria are simple:

- if for both firms $\pi_{j}^{m}<0$, then no firm enters;
- if $\pi_{j}^{m}>0$ and $\pi_{k}^{m}<0$, then only firm j enters;
- if for both firms $\pi_{j}^{d}>0$, then both firms enter;
- if $\pi_{j}^{d}>0$ and $\pi_{k}^{d}<0$, then only firm j enters;
- if $\pi_{j}^{m}>0>\pi_{j}^{d}$ for both firms, then there are two symmetric equilibria, with only one firm operating.

Now let $\pi_{j}^{m}=V_{j}-Q_{j}(\boldsymbol{Z})$ and $\pi_{j}^{d}=\bar{V}_{j}-\bar{Q}_{j}(\boldsymbol{Z})$, and suppose we only observe the number $D=0,1,2$ of entrants. Then

- $D=0$ iff $V_{1}<Q_{1}(\boldsymbol{Z})$ and $V_{2}<Q_{2}(\boldsymbol{Z})$
- $D=2$ iff $\bar{V}_{1}>\bar{Q}_{1}(\boldsymbol{Z})$ and $\bar{V}_{2}>\bar{Q}_{2}(\boldsymbol{Z})$

Figure 2: Example 1 (continued)

- $D=1$ otherwise.

This is very similar to the structure of Example 1; in fact it coincides with it in the degenerate case when for each firm, π_{m}^{j} and π_{d}^{j} have the same sign with probability on ${ }^{3}$,

2.1 The Selection Mechanism

These two examples motivate the weak assumption we impose on the underlying selection mechanism. In the following we use \boldsymbol{J} to denote the set $\{1, \ldots, J\}$.

Assumption 2.1 (Selection Mechanism). There exist a finite number J, a vector of unobserved random variables $\boldsymbol{V}:=\left\{V_{j}: j \in \boldsymbol{J}\right\}$, and a vector of known functions

[^5]$\left\{\boldsymbol{Q}_{j}(\boldsymbol{Z}): j \in \boldsymbol{J}\right\}$ such that any of the following three equivalent statements holds:
(i) the treatment variable D is measurable with respect to the σ-field generated by the events
$$
E_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z})):=\left\{V_{j}<Q_{j}(\boldsymbol{Z})\right\} \text { for } j \in \boldsymbol{J}
$$
(ii) each event $\{D=k\}=\left\{D_{k}=1\right\}$ is a member of this σ-field;
(iii) for each k, there exists a function d_{k} that is measurable with respect to this σ-field such that $D_{k}=d_{k}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))$.

Moreover, every treatment value k has positive probability.
The threshold conditions in Assumption 2.1 have the "rectangular" form $V_{j}<$ $Q_{j}(\boldsymbol{Z})$. Appendix E discusses a more general form of linear inequalities $\boldsymbol{\beta}_{j} \cdot \boldsymbol{V}<$ $Q_{j}(\boldsymbol{Z})$. Note that the fact that every observation belongs to one and only one treatment group imposes further constraints. We defer discussion of these constraints to section 4, where we show how they can be used for overidentification tests.

In this notation, the validity of the instruments translates into:
Assumption 2.2 (Conditional Independence of Instruments). Y_{k} and \boldsymbol{V} are jointly independent of \boldsymbol{Z} for each $k=0, \ldots, K-1$.

To describe the class of selection mechanisms defined in Assumption 2.1 more concretely, we focus on a treatment value k. We define $S_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z})):=\mathbb{1}\left(V_{j}<Q_{j}(\boldsymbol{Z})\right)$ for $j=1, \ldots, J$. The σ-field generated by $\left\{E_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z})): j=1, \ldots, J\right\}$ is obtained by taking unions, intersections, and complements of these E_{j} sets. These three operations correspond to taking sums, products, and differences of their indicator functions S_{j}. Therefore the function d_{k} referred to in Assumption 2.1.(iii) can be written as an algebraic sum of products of the S_{j} indicator functions. Let \mathcal{L} denote the set of all subsets $l=\left\{l_{1}, \ldots, l_{|l|}\right\}$ of \boldsymbol{J}. Then

$$
\begin{equation*}
d_{k}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))=\sum_{l \in \mathcal{L}} c_{l}^{k} \prod_{j \in l} S_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))=\sum_{l \in \mathcal{L}} c_{l}^{k} \prod_{m=1}^{|l|} S_{l_{m}}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z})) \tag{2.2}
\end{equation*}
$$

where the c_{l}^{k} are algebraic integers. Moreover, this decomposition is unique.
Since $d_{k}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))$ depends on \boldsymbol{V} and $\boldsymbol{Q}(\boldsymbol{Z})$ only through $\boldsymbol{S}:=\left\{S_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))\right.$: $j \in \boldsymbol{J}\}$, it will sometimes be convenient to express d_{k} as a function of \boldsymbol{S}, which we
denote $\mathcal{D}_{k}(\boldsymbol{S})$. For example, if $J=2$, we have $\mathcal{D}_{k}(\boldsymbol{S})=c_{\emptyset}^{k}+c_{\{1\}}^{k} S_{1}+c_{\{2\}}^{k} S_{2}+c_{\{1,2\}}^{k} S_{1} S_{2}$ for some algebraic integers $c_{\emptyset}^{k}, c_{\{1\}}^{k}, c_{\{2\}}^{k}$, and $c_{\{1,2\}}^{k}$.

To illustrate this, let us return to Example 1, with $J=2$ and $K=3$. For $k=0$, the selection mechanism is described by the intersection $E_{1} \cap E_{2}$, whose indicator function is $\mathcal{D}_{0}(\boldsymbol{S})=S_{1} S_{2}$. Similarly, for $k=1$ we find $\mathcal{D}_{1}(\boldsymbol{S})=\left(1-S_{1}\right)\left(1-S_{2}\right)$. Finally, for $k=2$ we have

$$
\mathcal{D}_{2}(\boldsymbol{S})=S_{1}\left(1-S_{2}\right)+\left(1-S_{1}\right) S_{2}=S_{1}+S_{2}-2 S_{1} S_{2}
$$

It is useful to think of the products in 2.2 as alternatives in a discrete choice model. For instance, $\left(1-S_{1}\right) S_{2}$ could be interpreted as "item 1" having negative value and "item 2" having positive value. In Example 1, $D_{2}=1$ informs us that the values of item 1 and of item 2 have opposite signs. In essence, we are dealing with discrete choice models with only partially observed choices. This analogy will prove useful.

2.2 Indices and Degrees

The term $l=\{1, \ldots, J\}=\boldsymbol{J}$, which corresponds to the product of all J indicator functions S_{j} in 2.2 , plays an important role in our analysis. We will call its c_{l} the index of the treatment.

Definition 2.1. Take a treatment value k in a treatment model with J thresholds. We call the coefficient $c_{\boldsymbol{J}}^{k}$ in (2.2) the index of treatment k.

In Example 1. the highest order term has a coefficient $c_{\{1,2\}}^{k}=-1$. With $J=2$ as in Example 1, the only treatments with a zero index are those which depend on only one threshold: e.g. $\mathbb{1}\left(V_{1}<Q_{1}\right)$. But with three or more thresholds $(J>2)$, it is not hard to generate cases in which a treatment value k depends on all J thresholds and still has zero index, as shown in Example 3.

Example 3 (Zero Index). Assume that $J=K=3$ and take treatment 0 such that

$$
\begin{aligned}
D_{0} & =\mathbb{1}\left(V_{1}<Q_{1}(\boldsymbol{Z}), V_{2}<Q_{2}(\boldsymbol{Z}), V_{3}<Q_{3}(\boldsymbol{Z})\right) \\
& +\mathbb{1}\left(V_{1}>Q_{1}(\boldsymbol{Z}), V_{2}>Q_{2}(\boldsymbol{Z}), V_{3}>Q_{3}(\boldsymbol{Z})\right) .
\end{aligned}
$$

Then the indicator function for $\left\{D_{0}=1\right\}$ is

$$
d_{0}=S_{1} S_{2} S_{3}+\left(1-S_{1}\right)\left(1-S_{2}\right)\left(1-S_{3}\right)=1-S_{1}-S_{2}-S_{3}+S_{1} S_{2}+S_{1} S_{3}+S_{2} S_{3},
$$

which has no degree three term.
When the index is zero as in Example3, the indicator function of the corresponding treatment k has degree strictly smaller than J. Since Assumption 2.1 rules out the uninteresting cases when treatment k occurs with probability zero or one, its indicator function cannot be constant; and its leading terms have degree $m \geq 1$. We call m the degree of treatment k. In Example 3, treatment value 0 has index 0 and degree 2.

The following lemma summarizes the discussion in Sections 2.1 and 2.2.
Lemma 2.1. Under Assumption 2.1, for each $k \in \mathcal{K}$ there exists a unique family of algebraic integers $\left(c_{l}^{k}\right)$ such that

$$
d_{k}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))=\sum_{l \in \mathcal{L}} c_{l}^{k} \prod_{j \in l} S_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))
$$

where \mathcal{L} is the set of all subsets $l=\left\{l_{1}, \ldots, l_{|| |}\right\}$of \boldsymbol{J}.
The leading terms of the multivariate polynomial $\mathcal{D}_{k}(\boldsymbol{S})$ have degree $1 \leq m \leq J$, which we also call the degree of treatment k.

- If $m=J$, then the leading term in $\mathcal{D}_{k}(\boldsymbol{S})$ is

$$
c_{J}^{k} \prod_{j=1}^{J} S_{j} .
$$

- if $m<J$, then $c_{J}^{k}=0$.

We call c_{J}^{k} the index of treatment k.

3 Identification Results

In this section we fix \boldsymbol{x} in the support of \boldsymbol{X} and we suppress it from the notation. All the results obtained below are local to this choice of \boldsymbol{x}. Global (unconditional)
identification results follow immediately if our assumptions hold for almost every \boldsymbol{x} in the support of \boldsymbol{X}.

We only treat the non-zero index in the text. We make this explicit in the following assumption.

Assumption 3.1 (Non-zero index). The index $c_{\boldsymbol{J}}^{k}$ defined in Lemma 2.1 is nonzero.
We analyze zero-index treatments in Appendix A. 1 .
We require that \boldsymbol{V} have full support:
Assumption 3.2 (Continuously Distributed Unobserved Heterogeneity in the Selection Mechanism). The joint distribution of \boldsymbol{V} is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^{J} and its support is $[0,1]^{J}$.

Note that when $J=1$, Assumptions 2.1 and 3.2 define the usual threshold-crossing model that underlies the LATE and LIV approaches. However, our assumptions allow for a much richer class of selection mechanisms when $J>1$. Our Example 1 illustrates that our "multiple thresholds model" does not impose any multidimensional extension of the monotonicity condition that is implicit with a single threshold model. Even when $K=2$, so that treatment is binary, J could be larger than one. This would allow for flexible treatment assignment: just modify Example 1 to obtain the double hurdle model

$$
D=\mathbb{1}\left(V_{1}<Q_{1}(\boldsymbol{Z}) \text { and } V_{2}<Q_{2}(\boldsymbol{Z})\right) .
$$

Let $f_{\boldsymbol{V}}(\boldsymbol{v})$ denote the joint density function of \boldsymbol{V} at $\boldsymbol{v} \in[0,1]^{J}$. Our identification argument relies on continuous instruments that generate enough variation in the thresholds. This motivates the following three assumptions.

For any function ψ of \boldsymbol{q}, define "local equicontinuity at $\overline{\boldsymbol{q}}$ " by the following property: for any subset $I \subset \boldsymbol{J}$, the family of functions $\boldsymbol{q}_{I} \mapsto \psi\left(\boldsymbol{q}_{I}, \boldsymbol{q}_{-I}\right)$ indexed by $\boldsymbol{q}_{-I} \in[0,1]^{|\boldsymbol{J}-I|}$ is equicontinuous in a neighborhood of $\overline{\boldsymbol{q}}_{I}$.

Assumption 3.3 (Local equicontinuity at $\boldsymbol{q})$. The functions $\boldsymbol{v} \mapsto f_{\boldsymbol{V}}(\boldsymbol{v})$ and $\boldsymbol{v} \mapsto$ $E\left(G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right)$ are locally equicontinuous at $\boldsymbol{v}=\boldsymbol{q}$.

Assumption 3.3 allows us to differentiate the relevant expectation terms. It is fairly weak: Lipschitz-continuity for instance implies local equicontinuity ${ }^{4}$.

[^6]Definition 3.1. Let \mathcal{Z} denote the support of \boldsymbol{Z}; and $\mathcal{Q}=\boldsymbol{Q}(\mathcal{Z})$ the range of variation of $\boldsymbol{Q}(\boldsymbol{Z})$.

The next two assumptions apply to the functions $\boldsymbol{Q}(\boldsymbol{Z})$ and in particular to their range of variation over the support \mathcal{Z} of \boldsymbol{Z}. The functions \boldsymbol{Q} are unknown in most cases, and need to be identified; in this part of the paper we assume that they are known. We will return to identification of the \boldsymbol{Q} functions in Section 3.2.

Assumption 3.4 (Open Range at \boldsymbol{q}). The point \boldsymbol{q} belongs to the interior of the range of variation of the thresholds \mathcal{Q}.

Assumption 3.4 ensures that we can generate any small variation in $\boldsymbol{Q}(\boldsymbol{Z})$ around \boldsymbol{q} by varying the instruments around \boldsymbol{z}. This makes the instruments strong enough to deal with multidimensional unobserved heterogeneity \boldsymbol{V}.

With J thresholds, Assumption 3.4 requires that \mathcal{Q} contains a J-dimensional neighborhood of \boldsymbol{q}. This in turn can only happen (given Assumption 3.3) if the range of variation of the instruments \mathcal{Z} contains an open subset of \mathbb{R}^{J}. Having J-dimensional continuous variation in the instruments is crucial to our approach.

For some corollaries, we use a global version of Assumptions 3.3 and 3.4. To state it formally, we need one last definition.

Definition 3.2. Let $\tilde{\mathcal{Q}} \subset \mathcal{Q}$ denote the set of values \boldsymbol{q} where Assumptions 3.3 and 3.4 both hold.

Assumption 3.5 (Global Condition). $\tilde{\mathcal{Q}}$ contains $(0,1)^{J}$.
Assumption 3.5 requires both that the variation in the instruments generate all possible values of the J thresholds and that Assumptions 3.3 and 3.4 hold everywhere. We do not need this rather stringent assumption to identify the marginal treatment effects; but it is useful to derive various parameters of interest that aggregate the marginal treatment effects.

3.1 Identification with a Non-Zero Index

We are now ready to prove identification of $E\left(G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{q}\right)$ when treatment k has a non-zero index. In the following theorem, for any real-valued function $\boldsymbol{q} \mapsto h(\boldsymbol{q})$, the notation

$$
T h(\boldsymbol{q}) \equiv \frac{\partial^{J} h}{\prod_{j=1}^{J} \partial q_{j}}(\boldsymbol{q})
$$

refers to the J-order derivative that obtains by taking derivatives of the function h at \boldsymbol{q} in each direction of \boldsymbol{J}, when this derivative exists.

Theorem 3.1 (Identification with a non-zero index). Let Assumptions 2.1, 2.2, 3.1, and 3.2 hold. Fix a value \boldsymbol{q} where Assumptions 3.3 and 3.4 hold; that is, $\boldsymbol{q} \in \tilde{\mathcal{Q}}$. Then the density of \boldsymbol{V} and the conditional expectation of $G\left(Y_{k}\right)$ are given $b y^{5]}$

$$
\begin{array}{r}
f_{\boldsymbol{V}}(\boldsymbol{q})=\frac{1}{c_{\boldsymbol{J}}^{k}} T \operatorname{Pr}(D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}) \\
E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{q}\right]=\frac{T E\left(G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right)}{T \operatorname{Pr}(D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q})}
\end{array}
$$

Proof of Theorem 3.1. See section 6.
For two treatment values k and ℓ, define the marginal treatment effect as

$$
\begin{equation*}
\Delta_{\mathrm{MTE}}^{(k, \ell)}(\boldsymbol{v}):=E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right]-E\left[G\left(Y_{\ell}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] . \tag{3.1}
\end{equation*}
$$

The MTE function $\boldsymbol{v} \mapsto \Delta_{\text {MTE }}^{(k, \ell)}(\boldsymbol{v})$ is the average treatment effect conditional on $\boldsymbol{V}=\boldsymbol{v}$. Since \boldsymbol{V} is the vector of unobservables that determine the selection mechanism, the MTE function reveals how treatment effects vary with the unobservables governing selection. As such, it captures the effect of selection and it allows the analyst to simulate counterfactual policies. It follows from Theorem 3.1 that if k and ℓ are two treatments to which all of our assumptions apply, then we can identify the marginal treatment effect of moving between these two treatments, as well as the quantile version of this MTE. We also identify the joint density function $\boldsymbol{v} \mapsto f_{\boldsymbol{V}}(\boldsymbol{v})$, which is an object of interest since it describes the dependence among elements of \boldsymbol{V}. Appendix A.1 extends Theorem 3.1 to zero-index treatment values; it shows that similar formulæ identify marginal treatment effects averaged over the missing threshold rules.

As in Heckman and Vytlacil (2005), we can identify various treatment effect parameters using Theorem 3.1. The following corollary shows that one can identify the average treatment effect (ATE), the average treatment effect on the treated (ATT), and the policy relevant treatment effect (PRTE) of Heckman and Vytlacil (2001).

[^7]The PRTE measures the average effect of moving from a baseline policy to an alternative policy. To define the PRTE, consider a class of policies that change \boldsymbol{Q} but that do not affect $E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right]$. Let D_{k}^{*} and Y^{*}, respectively, denote the treatment choice indicator and the outcome under a new policy \boldsymbol{Q}^{*}. Define $D^{*} \equiv \sum_{k \in \mathcal{K}} k D_{k}^{*}$.

Corollary 3.2. If Assumption 3.5 holds in addition to the conditions assumed in Theorem 3.1, then the average treatment effect (ATE) and the average treatment effect on the treated (ATT) are identified by

$$
\begin{align*}
E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right)\right] & =\int \Delta_{M T E}^{(k, \ell)}(\boldsymbol{v}) \omega_{A T E}(\boldsymbol{v}) d \boldsymbol{v} \tag{3.2}\\
E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid D=k\right] & =\int \Delta_{M T E}^{(k, \ell)}(\boldsymbol{v}) \omega_{A T T}^{k}(\boldsymbol{v}) d \boldsymbol{v} \tag{3.3}
\end{align*}
$$

where

$$
\begin{aligned}
\omega_{A T E}(\boldsymbol{v}) & :=f_{\boldsymbol{V}}(\boldsymbol{v}), \\
\omega_{A T T}^{k}(\boldsymbol{v}) & :=\frac{\operatorname{Pr}\left[d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{Z}))=1 \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v})}{\operatorname{Pr}(D=k)}
\end{aligned}
$$

Furthermore, policy relevant treatment effects (PRTEs) are identified by

$$
\begin{aligned}
E\left[G\left(Y^{*}\right)\right]-E[G(Y)] & =\sum_{k \in \mathcal{K}} \int \Upsilon_{k}\left(\boldsymbol{v}, \boldsymbol{Q}^{*}, \boldsymbol{Q}\right) E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v} \\
E\left[D^{*}\right]-E[D] & =\sum_{k \in \mathcal{K}} k \int \Upsilon_{k}\left(\boldsymbol{v}, \boldsymbol{Q}^{*}, \boldsymbol{Q}\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v} \\
E\left[D_{k}^{*}=1\right]-E\left[D_{k}=1\right] & =\int \Upsilon_{k}\left(\boldsymbol{v}, \boldsymbol{Q}^{*}, \boldsymbol{Q}\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

where

$$
\Upsilon_{k}\left(\boldsymbol{v}, \boldsymbol{Q}^{*}, \boldsymbol{Q}\right):=\operatorname{Pr}\left[d_{k}\left(\boldsymbol{v}, \boldsymbol{Q}^{*}(\boldsymbol{Z})\right)=1 \mid \boldsymbol{V}=\boldsymbol{v}\right]-\operatorname{Pr}\left[d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{Z}))=1 \mid \boldsymbol{V}=\boldsymbol{v}\right] .
$$

Proof of Corollary 3.2. See Appendix B.1.
In many applications, the range of variation of the thresholds may be limited so that Assumption 3.5 will not hold. However, it is still possible to construct bounds for the ATE, ATT and PRTE if $G\left(Y_{k}\right)$ is bounded. For example, consider the ATE with $G\left(Y_{k}\right)=\mathbb{1}\left(Y_{k} \leq y\right)$. As shown in the proof of Theorem 3.2, we can point-
identify $E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{q}\right] f_{\boldsymbol{V}}(\boldsymbol{q})$ by $\left(c_{\boldsymbol{J}}^{k}\right)^{-1} T E\left(G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right)$ for each $\boldsymbol{q} \in \tilde{\mathcal{Q}}$. In addition, we know that $G\left(Y_{k}\right)$ lies between 0 and 1. As in Manski (1990) and Heckman and Vytlacil (2000), using this fact we can bound $E G\left(Y_{k}\right)$ within the interval defined by

$$
\frac{1}{c_{\boldsymbol{J}}^{k}} \int_{\boldsymbol{q} \in \mathcal{S}_{\boldsymbol{Q}(\boldsymbol{Z})}} T E\left(G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right) d \boldsymbol{q}
$$

and

$$
\frac{1}{c_{\boldsymbol{J}}^{k}} \int_{\boldsymbol{q} \in \mathcal{S}_{\boldsymbol{Q}(\boldsymbol{Z})}} T E\left(G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right) d \boldsymbol{q}+1-\operatorname{Pr}(\boldsymbol{Q}(\boldsymbol{Z}) \in \mathcal{Q})
$$

and without further information, these bounds are sharp.
Finally, the analyst may only have discrete-valued instruments. A recent literature on the MTE focuses on this case (with binary treatment); it relies on assumed restrictions on the shape of the MTE function (see for example Brinch, Mogstad, and Wiswall (2017), Kowalski (2016) and Mogstad, Santos, and Torgovitsky (2017)). In future work it would be interesting to consider relaxing these restrictions within our framework.

3.2 Identification of Q

So far we assumed that the functions $\left\{\boldsymbol{Q}_{j}(\boldsymbol{Z}): j=1, \ldots, J\right\}$ were known (see Assumption 2.1). In practice we often need to identify them from the data before applying Theorems 3.1 or A.1. The most natural way to do so starts from the generalized propensity scores $\left\{P_{k}(\boldsymbol{Z}): k=0, \ldots, K-1\right\}$, which are identified as the conditional probabilities of treatment ${ }^{6}$.

First note that by definition (and by Assumption 2.2),

$$
\begin{aligned}
P_{k}(\boldsymbol{z}) & =\operatorname{Pr}(D=k \mid \boldsymbol{Z}=\boldsymbol{z}) \\
& =\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{z}))=1\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

Note that this is a J-index model. Ichimura and Lee (1991) consider identification of multiple index models when the indices are specified parametrically. Matzkin (1993,

[^8]2007) obtains nonparametric identification results for discrete choice model: \mathbf{F}^{7}; but her results only apply to a subset of the types of selection mechanisms we consider (discrete choice models when all choices are observed). Section 4 discusses identification of the \boldsymbol{Q} 's through the lens of several models.

4 Applications

Our framework covers a wide variety of commonly used models. For simplicity, we only illustrate its usefulness on two-threshold selection models in this section. These models generate different selection patterns. Not surprisingly, the identification conditions require somewhat stronger instruments as the number of treatment values-the information available to the analyst-decreases.

4.1 Selection with Two-Way Flows

Let us return to Example 1, in which

- $D=0$ iff $V_{1}<Q_{1}(\boldsymbol{Z})$ and $V_{2}<Q_{2}(\boldsymbol{Z})$,
- $D=1$ iff $V_{1}>Q_{1}(\boldsymbol{Z})$ and $V_{2}>Q_{2}(\boldsymbol{Z})$,
- $D=2$ iff $\left(V_{1}-Q_{1}(\boldsymbol{Z})\right)$ and $\left(V_{2}-Q_{2}(\boldsymbol{Z})\right)$ have opposite signs.

It is useful to start with some exclusion restrictions that help us identify $Q_{1}(\mathbf{Z})$ and $Q_{2}(\mathbf{Z})$ separately from the generalized propensity scores given in 2.1). Assume that

Assumption 4.1 (Two Continuous Instruments with Exclusion Restrictions).

1. The density of $\left(V_{1}, V_{2}\right)$ is continuous on $[0,1]^{2}$, with marginal uniform distributions.
2. The instruments $\mathbf{Z} \equiv\left(Z_{1}, Z_{2}\right)$ consist of two scalar random variables whose joint distribution is absolutely continuous with respect to the Lebesgue measure on its support \mathcal{Z}.

[^9]3. $Q_{1}(\mathbf{Z})$ does not depend on Z_{2}, and it is continuously differentiable with respect to Z_{1}.
4. $Q_{2}(\mathbf{Z})$ does not depend on Z_{1}, and it is continuously differentiable with respect to Z_{2}.

The first condition in Assumption 4.1 is just a normalization of the marginal distribution of each $V_{j} \in \boldsymbol{V}$. The crucial part of Assumption 4.1 is in the exclusion restrictions: Z_{1} affects Q_{1} but not Q_{2}, and Z_{2} affects Q_{2} but not Q_{1}. For example, if Q_{1} and Q_{2} represent minimum required grades on two parts of an exam, then Z_{1} should affect only the requirement on the first part, and Z_{2} should only affect the second part.

Theorem 4.1 (Identification of Q_{1} and Q_{2}). Under Assumption 4.1.
(i) the function

$$
P(\boldsymbol{Z}) \equiv 2 P_{0}(\boldsymbol{Z})+P_{1}(\boldsymbol{Z})
$$

is additively separable in Z_{1} and Z_{2} on \mathcal{Z}.
(ii) Q_{1} and Q_{2} are identified up to an additive constant. More precisely, take any $\left(z_{1}^{0}, z_{2}^{0}\right) \in \mathcal{Z}$. Then

$$
\begin{aligned}
& Q_{1}\left(z_{1}\right)=P\left(z_{1}, z_{2}^{0}\right)-P\left(z_{1}^{0}, z_{2}^{0}\right)+C_{1}^{0} \\
& Q_{2}\left(z_{2}\right)=P\left(z_{1}^{0}, z_{2}\right)-C_{1}^{0}
\end{aligned}
$$

where the constant C_{1}^{0} must satisfy the restrictions $\operatorname{Pr}(D=k)>0$ for each $k=0,1,2 \cdot 8$

Proof of Theorem 4.1. See Appendix B.2.
Suppose that the analyst has picked a point in the partially identified (Q_{1}, Q_{2}) set. Using these Q_{1} and Q_{2}, since the indices are all nonzero $\left(c_{\boldsymbol{J}}^{0}=c_{\boldsymbol{J}}^{1}=1\right.$ and $\left.c_{\boldsymbol{J}}^{2}=-2\right)$ we apply Theorem 3.1 to identify the joint density by

$$
\begin{equation*}
f_{V_{1}, V_{2}}\left(q_{1}, q_{2}\right)=\frac{1}{c_{\boldsymbol{J}}^{k}} \frac{\partial^{2} \operatorname{Pr}\left[D=k \mid Q_{1}(\boldsymbol{Z})=q_{1}, Q_{2}(\boldsymbol{Z})=q_{2}\right]}{\partial q_{1} \partial q_{2}}, \tag{4.1}
\end{equation*}
$$

[^10]where $k=0,1,2$.
Note that $f_{V_{1}, V_{2}}\left(q_{1}, q_{2}\right)$ is overidentified; checking equality between the right-hand sides of (4.1) for $k=0,1,2$ provides a specification test 9 . Similar remarks apply to the conditional expectations $E\left(Y_{k} \mid V_{1}=q_{1}, V_{2}=q_{2}\right)$; and as
$$
E\left(Y_{k} \mid V_{1}=q_{1}, V_{2}=q_{2}\right)=\frac{\partial^{2} E\left[Y D_{k} \mid Q_{1}(\boldsymbol{Z})=q_{1}, Q_{2}(\boldsymbol{Z})=q_{2}\right] / \partial q_{1} \partial q_{2}}{\partial^{2} \operatorname{Pr}\left[D=k \mid Q_{1}(\boldsymbol{Z})=q_{1}, Q_{2}(\boldsymbol{Z})=q_{2}\right] / \partial q_{1} \partial q_{2}}
$$
for each $k=0,1,2$, the identification of the marginal and average treatment effects follows immediately.

In practice, Q_{1} and Q_{2} are only identified up to the (restricted) additive constant C_{1}^{0} in Theorem 4.1(ii). As a consequence, $f_{V_{1}, V_{2}}\left(q_{1}, q_{2}\right)$ and $E\left(Y_{k} \mid V_{1}=q_{1}, V_{2}=q_{2}\right)$ are only identified up to the corresponding location shift in $\left(q_{1}, q_{2}\right)$. However, it is easy to check that 4.1) still yields a usable specification test.

4.2 The Double Hurdle Model

Let us now return to the double hurdle model of the introduction, where treatment is binary and the selection mechanism is governed by

$$
\begin{equation*}
D=1 \text { iff } V_{1}<Q_{1}(\boldsymbol{Z}) \text { and } V_{2}<Q_{2}(\boldsymbol{Z}), \tag{4.2}
\end{equation*}
$$

and $D=0$ otherwise.
Both treatment values have non-zero indices: $c_{J}^{1}=1$ and $c_{J}^{0}=-1$. But identification of Q_{1} and Q_{2}, which is a premise of Theorem 3.1, is far from straightforward. In fact, this case is more demanding than the selection model with two-way flows in Section 4.1 since we only have two treatment values. We observe the propensity score

$$
\begin{equation*}
\operatorname{Pr}(D=1 \mid \boldsymbol{Z})=F_{V_{1}, V_{2}}\left(Q_{1}(\boldsymbol{Z}), Q_{2}(\boldsymbol{Z})\right), \tag{4.3}
\end{equation*}
$$

which we denote $H(\boldsymbol{Z})$. This is a nonparametric double index model in which both the link function $F_{V_{1}, V_{2}}$ and the indices Q_{1} and Q_{2} are unknown; it is clearly underidentified without stronger restrictions. Matzkin (1993, 2007) considers nonparametric identification and estimation of polychotomous choice models. Our multiple hurdle model has a similar but not identical structure.

[^11]In order to identify \boldsymbol{Q}, we assume that there exist two instruments that are excluded from one of the thresholds. More precisely, let the vector of instruments be $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \boldsymbol{Z}_{-12}\right)$, with Z_{1} and Z_{2} scalar; we require that

- $Q_{1}(\boldsymbol{Z})$ does not depend on Z_{2}, and
- $Q_{2}(\boldsymbol{Z})$ does not depend on Z_{1}.

To simplify notation, we fix the value of \boldsymbol{Z}_{-12} and we denote $Q_{1}(\boldsymbol{Z})=G_{1}\left(Z_{1}\right)$ and $Q_{2}(\boldsymbol{Z})=G_{2}\left(Z_{2}\right)$, where G_{1} and G_{2} are two unknown functions. Note that the propensity score becomes $H\left(Z_{1}, Z_{2}\right)=F_{V_{1}, V_{2}}\left(G_{1}\left(Z_{1}\right), G_{2}\left(Z_{2}\right)\right)$.

We give two identification results under these exclusion restrictions. We first build on Lewbel (2000) and on Matzkin (1993, 2007)'s results to identify \boldsymbol{Q} and rely on full support restrictions (conditional on the value of \boldsymbol{Z}_{-12}):

Assumption 4.2. $Q_{1}=G_{1}\left(Z_{1}\right)$ and $Q_{2}=G_{2}\left(Z_{2}\right)$. Moreover,

1. The density of $\left(V_{1}, V_{2}\right)$ is continuous on $[0,1]^{2}$, with marginal uniform distributions.
2. G_{1} and G_{2} are strictly increasing C^{1} functions from possibly unbounded intervals $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ to $(0,1)$; that is, for every $t \in(0,1)$ there exist $z_{1} \in\left(a_{1}, b_{1}\right)$ and $z_{2} \in\left(a_{2}, b_{2}\right)$ such that $G_{1}\left(z_{1}\right)=G_{2}\left(z_{2}\right)=t$.
3. \mathcal{Z} is the rectangle $\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)$.

Theorem 4.2. Under Assumption 4.2, the functions $F_{\boldsymbol{V}}, G_{1}$ and G_{2} are identified from the propensity score $\operatorname{Pr}(D=1 \mid \boldsymbol{Z})$.

Proof. See Appendix B. 3 .
While Theorem 4.2 requires two continuous instruments that generate all possible values of the thresholds, various additional restrictions would relax this requirement. If for instance G_{1} and G_{2} were linear, we would be back to the linear multiple index model of Ichimura and Lee (1991).

Theorem 4.3 provides a complementary result and is useful when the instruments have limited support. It relies on a semiparametric restriction. Remember that we normalized the marginal distributions of V_{1} and V_{2} to be uniform over $[0,1]$; we now
assume that the codependence between V_{1} and V_{2} is described by a strict symmetric Archimedean copula ${ }^{10}$.

$$
\begin{equation*}
F_{V_{1}, V_{2}}\left(v_{1}, v_{2}\right)=\phi^{-1}\left(\phi\left(v_{1}\right)+\phi\left(v_{2}\right)\right), \tag{4.4}
\end{equation*}
$$

where ϕ belongs to the set Ψ of C^{2}, strictly decreasing, and convex functions from $[0,1]$ unto $[0,+\infty]$.

Assumption 4.3. $Q_{1}=G_{1}\left(Z_{1}\right)$ and $Q_{2}=G_{2}\left(Z_{2}\right)$. Moreover,
(a) the propensity score and the distribution of $\left(V_{1}, V_{2}\right)$ are described by (4.3) and (4.4) for unknown functions ϕ, G_{1}, and G_{2},
(b) the interior of the support \mathcal{Z} of $\left(Z_{1}, Z_{2}\right)$ contains a connected set \mathcal{N}, and
(c) G_{1} and G_{2} are C^{1} functions over the projections of \mathcal{N}, with derivatives bounded away from zero.

Let $H_{k}\left(z_{1}, z_{2}\right)$ denote the derivative of the propensity score $H\left(z_{1}, z_{2}\right)$ with respect to its k th argument $(k=1,2)$ and $H_{12}\left(z_{1}, z_{2}\right)$ the second-order cross derivative of $H\left(z_{1}, z_{2}\right)$. Note that the scale of ϕ is not identifiable in view of (4.4). Furthermore, if ϕ is specified nonparametrically as an element of Ψ, the location of ϕ is only identifiable when the argument of ϕ takes values close to 1 :

Theorem 4.3. Let Assumption 4.3 hold. Then

1. Over \mathcal{N}, the ratio

$$
\frac{H_{12}}{H_{1} H_{2}}\left(z_{1}, z_{2}\right)
$$

is non-negative and only depends on the value $h=H\left(z_{1}, z_{2}\right)$.
2. The function ϕ is identified up to scale and location in Ψ on the image $H(\mathcal{N})=$ $(\underline{h}, \bar{h}) \subset(0,1)$ of \mathcal{N} under H, where \mathcal{N} is given in Assumption 4.3(b).
3. The scale parameter for ϕ is an arbitrary negative number, which we normalize by imposing $\phi^{\prime}(\bar{h})=-1$; given this normalization, the location parameter for ϕ is bounded by

$$
0 \leq \phi(\bar{h}) \leq 1-\bar{h}
$$

[^12]If moreover $\sup _{\boldsymbol{z} \in \mathcal{N}} \operatorname{Pr}(D=1 \mid \boldsymbol{Z}=\boldsymbol{z})=1$, then $\bar{h}=1$ and ϕ is point-identified.
4. For any admissible value of the location parameter of ϕ, the functions G_{1} and G_{2} are identified on \mathcal{N} up to a common constant k : any other admissible $\left(\tilde{G}_{1}, \tilde{G}_{2}\right)$ must satisfy

$$
\begin{aligned}
& \phi\left(\tilde{G}_{1}\left(z_{1}\right)\right)=\phi\left(G_{1}\left(z_{1}\right)\right)-k \\
& \phi\left(\tilde{G}_{2}\left(z_{2}\right)\right)=\phi\left(G_{2}\left(z_{2}\right)\right)+k
\end{aligned}
$$

over the projections of \mathcal{N}. The number k is bounded above and below. If moreover $\sup _{\boldsymbol{z} \in \mathcal{N}} \operatorname{Pr}(D=1 \mid \boldsymbol{Z}=\boldsymbol{z})=1$, then G_{1} and G_{2} are point-identified on the projections of \mathcal{N}.

Proof. See Appendix B. 4 .

Our constructive identification starts by writing

$$
\begin{equation*}
\frac{\phi^{\prime \prime}}{\phi^{\prime}}(h)=-\frac{H_{12}}{H_{1} H_{2}}\left(z_{1}, z_{2}\right) \tag{4.5}
\end{equation*}
$$

for all $\left(z_{1}, z_{2}\right)$ such that $H\left(z_{1}, z_{2}\right)=h$. Once ϕ is identified from 4.5), then we proceed to identify G_{1} and G_{2}. The function G_{1}, for instance, would be identified by

$$
\phi\left(G_{1}\left(z_{1}\right)\right)=\phi\left(H\left(z_{1}, z_{2}^{0}\right)\right)-\phi\left(g_{2}^{0}\right)
$$

for a fixed z_{2}^{0} and a value g_{2}^{0} of $G_{2}\left(z_{2}^{0}\right)$.
Given more a priori restrictions on the function ϕ, identification results can be sharper. The following example illustrates this point by taking a parametric family of ϕ.

Example 4. Take the strict Clayton copula, which is generated by $\phi(u)=\left(u^{-\theta}-1\right) / \theta$ for $\theta>0$. This yields

$$
H\left(z_{1}, z_{2}\right)=\left(G_{1}\left(z_{1}\right)^{-\theta}+G_{2}\left(z_{2}\right)^{-\theta}-1\right)^{-1 / \theta}
$$

In this example, $\frac{\phi^{\prime \prime}}{\phi^{\prime}}(h)$ is simply $-(1+\theta) / h$. Therefore, it follows from 4.5) that θ
can be identified in closed form as

$$
\begin{equation*}
\theta=h \frac{H_{12}}{H_{1} H_{2}}\left(z_{1}, z_{2}\right)-1 \tag{4.6}
\end{equation*}
$$

for all $\left(h, z_{1}, z_{2}\right)$ such that $H\left(z_{1}, z_{2}\right)=h$. Note that the scale and location of ϕ are point-identified, given the parametric restriction.

Conversely, the constancy of the right-hand side of 4.6) characterizes a Clayton copula. To identify G_{1} and G_{2}, note that

$$
G_{1}\left(z_{1}\right)^{-\theta}+G_{2}\left(z_{2}\right)^{-\theta}=H\left(z_{1}, z_{2}\right)^{-\theta}+1 .
$$

Thus it is easy to see that G_{1} and G_{2} are identified up to a location constant ${ }^{11}$.

Once $Q_{1}(\boldsymbol{Z})$ and $Q_{2}(\boldsymbol{Z})$ are identified, then under our assumptions we identify the joint density by

$$
\begin{equation*}
f_{V_{1}, V_{2}}\left(q_{1}, q_{2}\right)=\frac{\partial^{2} \operatorname{Pr}\left[D=1 \mid Q_{1}(\boldsymbol{Z})=q_{1}, Q_{2}(\boldsymbol{Z})=q_{2}\right]}{\partial q_{1} \partial q_{2}}, \tag{4.7}
\end{equation*}
$$

and the marginal treatment effect is given by

$$
\begin{equation*}
E\left(Y_{1}-Y_{0} \mid V_{1}=q_{1}, V_{2}=q_{2}\right) f_{V_{1}, V_{2}}\left(q_{1}, q_{2}\right)=\frac{\partial^{2} E\left[Y \mid Q_{1}(\boldsymbol{Z})=q_{1}, Q_{2}(\boldsymbol{Z})=q_{2}\right]}{\partial q_{1} \partial q_{2}} \tag{4.8}
\end{equation*}
$$

Furthermore, it follows from Corollary 3.2 that under the additional Assumption 3.5, the ATE, ATT and PRTE parameters are identified as well.

4.3 Dynamic Treatment

To conclude our examples, let us consider a two-period model of dynamic treatment where treatment assignment D^{2} in the second period depends on the first-period treatment D^{1} and outcome Y^{1} :

$$
D^{1}=\mathbb{1}\left(V_{1}<Q_{1}\left(\boldsymbol{Z}^{1}\right)\right) \text { and } D^{2}=\mathbb{1}\left(V_{2}<Q_{2}\left(\boldsymbol{Z}^{2}, D^{1}, Y^{1}\right)\right)
$$

The analyst observes $\left(D^{1}, D^{2}, Y^{1}, Y^{2}, \boldsymbol{Z}^{1}, \boldsymbol{Z}^{2}\right)$. Theorem 3.1 applies to this model, provided only that the functions Q_{1} and Q_{2} are identified. The identification of Q_{1}

[^13]is straightforward. To identify Q_{2}, we use the results of Shaikh and Vytlacil (2011), which considers a model similar to our second-period treatment assignment. While they stress partial identification, their Remark 2.2 (p. 954) gives a sufficient condition for point identification. Translated in our notation, this requires that

1. the support of $\left(\boldsymbol{Z}^{2}, Q_{1}\left(\boldsymbol{Z}^{1}\right)\right)$ is the product of the support of \boldsymbol{Z}^{2} and the support of $Q_{1}\left(\boldsymbol{Z}^{1}\right)$, and that
2. for every value $\left(\boldsymbol{z}^{2}, y^{1}\right)$ of $\left(\boldsymbol{Z}^{2}, Y^{1}\right)$, there is a value $\overline{\boldsymbol{z}}^{2}$ such that $Q_{2}\left(\overline{\boldsymbol{z}}^{2}, 1, y^{1}\right)=$ $Q_{2}\left(\boldsymbol{z}^{2}, 0, y^{1}\right)$; and there is a value $\underline{\boldsymbol{z}}^{2}$ such that $Q_{2}\left(\underline{\boldsymbol{z}}^{2}, 0, y^{1}\right)=Q_{2}\left(\boldsymbol{z}^{2}, 1, y^{1}\right)$.

Assumption 1 above requires that the set of instruments in the second period has a component that does not affect treatment in the first period, and whose range of variation does not depend on the propensity score of the first period. Assumption 2 adds the requirement that the ranges of the second-period propensity scores are independent of the first-period treatment, for all values of the first-period outcome.

These assumptions require overlap between treatment branches. They would not hold, for instance, in a medical trial when patients are oriented towards completely different treatments depending on how they fare early on.

5 Relation to the Existing Literature

The existing literature is very large; we only discuss here the most directly relevant papers.

5.1 Ordered Treatments with Discrete Instruments

Angrist and Imbens (1995) consider two-stage least-squares (TSLS) estimation of a model in which the ordered treatment takes a finite number of values, and a discretevalued instrument is available. They show that the TSLS estimator obtained by regressing outcome Y on a preestimated $E(D \mid Z)$ converges to a weighted sum of average causal responses under some monotonicity assumption. Heckman, Urzua, and Vytlacil (2006, 2008) go beyond Angrist and Imbens (1995) by showing how the TSLS estimate can be reinterpreted in more transparent ways in the MTE framework. They also analyze a family of discrete choice models, to which we now turn.

5.2 Discrete Choice Models

Heckman, Urzua, and Vytlacil (2008, see also Heckman and Vytlacil (2007)) consider a multinomial discrete choice model of treatment. They posit

$$
\begin{equation*}
D=k \Longleftrightarrow R_{k}(\boldsymbol{Z})-U_{k}>R_{l}(\boldsymbol{Z})-U_{l} \text { for } l=0, \ldots, K-1 \text { such that } l \neq k, \tag{5.1}
\end{equation*}
$$

where the U 's are continuously distributed and independent of \boldsymbol{Z}. Then they study the identification of marginal and local average treatment effects under assumptions that are similar to ours: continuous instruments that generate enough dimensions of variation in the thresholds.

As they note, the discrete choice model with an additive structure implicitly imposes monotonicity, in the following form: if the instruments \boldsymbol{Z} change in a way that increases $R_{k}(\boldsymbol{Z})$ relative to all other $R_{l}(\boldsymbol{Z})$, then no observation with treatment value k is assigned to a different treatment. We make no such assumption, as Example 1 and Figure 1 illustrate. Our results extend those of Heckman, Urzua, and Vytlacil (2008) to any model with identified thresholds. ${ }^{12}$ We consider a discrete choice model with three alternatives as an example.

Example 5 (Discrete Choice Model with Three Alternatives). Suppose that $\mathcal{K}=$ $\{0,1,2\}$ with $K=3$. Let $\tilde{R}_{0,1}(\boldsymbol{Z})=R_{0}(\boldsymbol{Z})-R_{1}(\boldsymbol{Z}), \tilde{R}_{0,2}(\boldsymbol{Z})=R_{0}(\boldsymbol{Z})-R_{2}(\boldsymbol{Z})$ and $\tilde{R}_{1,2}(\boldsymbol{Z})=R_{1}(\boldsymbol{Z})-R_{2}(\boldsymbol{Z})$. Similarly, let $\tilde{U}_{0,1}=U_{0}-U_{1}, \tilde{U}_{0,2}=U_{0}-U_{2}$ and $\tilde{U}_{1,2}=U_{1}-U_{2}$. Let $V_{0,1}=F_{\tilde{U}_{0,1}}\left(\tilde{U}_{0,1}\right)$ and $Q_{0,1}(\boldsymbol{Z})=F_{\tilde{U}_{0,1}}\left(\tilde{R}_{0,1}(\boldsymbol{Z})\right)$. Define $V_{0,2}$, $V_{1,2}, Q_{0,2}(\boldsymbol{Z})$ and $Q_{1,2}(\boldsymbol{Z})$ similarly. Then the selection mechanism in 5.1) can be rewritten as

$$
\begin{aligned}
& \text { - } D=0 \text { iff } V_{0,1}<Q_{0,1}(\boldsymbol{Z}) \text { and } V_{0,2}<Q_{0,2}(\boldsymbol{Z}) \\
& \text { - } D=1 \text { iff } V_{0,1}>Q_{0,1}(\boldsymbol{Z}) \text { and } V_{1,2}<Q_{1,2}(\boldsymbol{Z}) \\
& \text { - } D=2 \text { iff } V_{0,2}>Q_{0,2}(\boldsymbol{Z}) \text { and } V_{1,2}>Q_{1,2}(\boldsymbol{Z}) .
\end{aligned}
$$

Our general result in Section 3 applies immediately once the $Q_{j, k}$'s are identified. This can be done, for example, by applying the results of Matzkin (1993, 2007).

There is a growing empirical literature on multivalued unordered treatments. Dahl (2002) develops a semiparametric Roy model for migration across U.S. states. In his

[^14]empirical work, the number of unordered treatment is 51 (50 states plus the District of Columbia) and he controls for selection bias by conditioning on migration probabilities. Kirkeboen, Leuven, and Mogstad (2016) use discrete instruments to obtain TSLS estimates of returns to different fields of study in postsecondary education in Norway. In their setup, the unordered treatments are different fields of study. Kline and Walters (2016) use data from the Head Start Impact Study to estimate a semiparametric selection model. Their model has three treatment cells: Head Start, competing preschool programs, and no preschool (that is, home care).

Broadly speaking, these papers are in the same vein as Roy models and discrete choice models. Our approach complements this literature by focusing on the role of unobserved heterogeneity and the selection mechanism.

5.3 Unordered Monotonicity

In an important recent paper, Heckman and Pinto (2018) introduce a new concept of monotonicity. Their "unordered monotonicity" assumption can be rephrased in our notation in the following way. Take two values \boldsymbol{z} and \boldsymbol{z}^{\prime} of the instruments \boldsymbol{Z} and any treatment value k.

Assumption 5.1 (Unordered Monotonicity). Denote $d_{k}(\boldsymbol{v}, \boldsymbol{z})$ and $d_{k}\left(\boldsymbol{v}, \boldsymbol{z}^{\prime}\right)$ the counterfactual values of the variable $d_{k}=\mathbb{1}(D=k)$ for an observation with unobserved heterogeneity \boldsymbol{v}. Then

$$
\begin{aligned}
d_{k}(\boldsymbol{v}, \boldsymbol{z}) & \geq d_{k}\left(\boldsymbol{v}, \boldsymbol{z}^{\prime}\right) \forall \boldsymbol{v} \\
\text { or: } d_{k}(\boldsymbol{v}, \boldsymbol{z}) & \leq d_{k}\left(\boldsymbol{v}, \boldsymbol{z}^{\prime}\right) \forall \boldsymbol{v} .
\end{aligned}
$$

Unordered monotonicity for treatment value k requires that if some observations move out of (resp. into) treatment value k when instruments change value from \boldsymbol{z} to \boldsymbol{z}^{\prime}, then no observation can move into (resp. out of) treatment value k. For binary treatments, unordered monotonicity is equivalent to the usual monotonicity assumption: there cannot be both compliers and defiers. When $K>2$, it is weaker than ordered choice. For example, suppose that there are three options $\{0,1,2\}$ and that a change of instruments makes option 1 less appealing. Under ordered choice, all agents who give up option 1 must fall back on option 0 , or all must fall back on option 2. Unordered monotonicity allows different agents to fall back on different
options. It still rules out two-way flows, that is agents moving from option 0 or 2 into option 1.

Heckman and Pinto (2018) show that unordered monotonicity (for well-chosen changes in instruments) is essentially equivalent to a treatment model based on rules that are additively separable in the unobserved variables - that is, the model of section 5.2. In this interpretation, changes in instruments that increase the mean utility of an alternative relative to all others are unordered monotonic for that alternative, for instance. We refer the reader to Section 6 of Heckman and Pinto (2018) for a more rigorous discussion, and to Pinto (2015) for an application to the Moving to Opportunity program.

Unlike us, Heckman and Pinto (2018) do not require continuous instruments; all of their analysis is framed in terms of discrete-valued instruments and treatments. Beyond this (important) difference, unordered monotonicity clearly obeys our assumptions. On the other hand, we allow for much more general models of treatment. It would be impossible, for instance, to rewrite our Examples 1,2 and 3 so that they obey unordered monotonicity. We illustrate this point using Example 1 below.

Example 1 (continued). In Example 1, $D=2$ iff $\left(V_{1}-Q_{1}(\boldsymbol{Z})\right)$ and $\left(V_{2}-Q_{2}(\boldsymbol{Z})\right)$ have opposite signs. Note that there are two unobserved categories within $D=2$:

$$
\begin{aligned}
& D=2 a \text { iff } V_{1}<Q_{1} \text { and } V_{2}>Q_{2}, \\
& D=2 b \text { iff } V_{1}>Q_{1} \text { and } V_{2}<Q_{2} .
\end{aligned}
$$

Each one is unordered monotonic; but because we only observe their union, $D=2$ is not unordered monotonic-increasing Q_{1} brings more people into $2 a$ but moves some out of $2 b$, so that in the end we have two-way flows, contradicting unordered monotonicity. To put it differently, the selection mechanism in Example 1 becomes a discrete choice model when each of four alternatives $d=0,1,2 a, 2 b$ is observed; however, we only observe whether alternative $d=0, d=1$ or $d=2$ is chosen in Example 1. This amounts to an unordered monotonic treatment that is observed through a coarser information partition; this coarsening destroys unordered monotonicity.

Appendix A. 2 provides a characterization of Heckman and Pinto's unordered monotonicity property as a subcase of our more general framework.

5.4 Other Nonmonotonic Models

It is also worth commenting on other papers that break monotonicity. Gautier and Hoderlein (2015) consider a triangular random coefficients model for the binary treatment case. Their model is motivated by a single agent Roy model with random coefficients. Its selection mechanism is governed by

$$
D=1\left\{V_{1}-Z_{1}-g\left(Z_{1}, \ldots, Z_{L}\right)-\sum_{j=2}^{J} V_{j} f_{j}\left(Z_{j}\right)>0\right\}
$$

where $\boldsymbol{V}=\left(V_{1}, \ldots, V_{J}\right)$ is a vector of unobserved random variables, $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{J}\right)$ is a vector of instruments that are independent of $\left(Y_{0}, Y_{1}, \boldsymbol{V}\right)$, and the functions f_{2}, \ldots, f_{J} and g are unknown. If we limit our attention to the case of two unobservables as in the double hurdle model, then the selection equation in Gautier and Hoderlein (2015) reduces to

$$
D=1\left\{V_{1}-Z_{1}-g\left(Z_{1}, Z_{2}\right)-V_{2} f_{2}\left(Z_{2}\right)>0\right\} .
$$

Here changes in Z_{1} conform to monotonicity; but changes in Z_{2} need not.
Lewbel and Yang (2016) consider a different non-monotonic selection mechanism for estimating the average treatment effect. They show that the average treatment effect is identified when a binary treatment is assigned by

$$
D=\mathbb{1}\left(\alpha_{0} \leq Z+V \leq \alpha_{1}\right),
$$

where V is an unobserved random variable; Z is a continuous variable that satisfies $E\left(Y_{j} \mid V, Z\right)=E\left(Y_{j} \mid V\right)$ for $j=0,1$ and $V \Perp Z$; and α_{0}, α_{1} are unknown parameters.

5.5 Models with Continuous Treatment

Chesher (2003) develops conditions to identify derivatives of structural functions in nonseparable models by functionals of quantile regression functions. In addition, Florens, Heckman, Meghir, and Vytlacil (2008) consider a potential outcome model with a continuous treatment. They assume a stochastic polynomial restriction and show that the average treatment effect can be identified if a suitable control function can be constructed using instruments.

Imbens and Newey (2009) also consider selection on unobservables with a continuous treatment. They assume that the treatment (more generally in their paper, an endogenous variable) is given by $D=g(Z, V)$, with g increasing in a scalar unobserved V. They identify the average structural function as well as quantile, average, and policy effects. Other more recent identification results along this line can be found in Torgovitsky (2015) and D'Haultfœuille and Février (2015) among others. One key restriction in this group of papers is the monotonicity in the scalar V in the selection equation. We do not rely on this type of restriction, but we only focus on the case of multivalued treatments. Hence, our approach and those of the papers cited in this subsection are complementary.

Finally, our approach shares some features with Hoderlein and Mammen (2007). They consider the identification of marginal effects in nonseparable models without monotonicity. They show how local average structural derivatives can be identified. Like ours, their approach relies on differentiation of observed functionals. The parameters of interest they study are quite different, however, and their selection mechanism is not as explicit as ours.

6 Proof of Theorem 3.1

Our proof has three steps. We first write conditional moments as integrals with respect to indicator functions. Then we show that these integrals are differentiable and we compute their multidimensional derivatives. Finally, we impose Assumption 3.1 and we derive the equalities in the theorem.

Step 1:

Under the assumptions imposed in the theorem, for any \boldsymbol{q} in the range of \boldsymbol{Q},

$$
\begin{aligned}
& E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \\
& =E\left[G\left(Y_{k}\right) \mid D=k, \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \operatorname{Pr}(D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}) \\
& =E\left[G\left(Y_{k}\right) \mid d_{k}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))=1, \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \operatorname{Pr}\left(d_{k}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))=1 \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right) \\
& =E\left[G\left(Y_{k}\right) \mid d_{k}(\boldsymbol{V}, \boldsymbol{q})=1\right] \operatorname{Pr}\left(d_{k}(\boldsymbol{V}, \boldsymbol{q})=1\right) \\
& =E\left[G\left(Y_{k}\right) \mathbb{1}\left(d_{k}(\boldsymbol{V}, \boldsymbol{q})=1\right)\right] \\
& =E\left(E\left[G\left(Y_{k}\right) \mathbb{1}\left(d_{k}(\boldsymbol{V}, \boldsymbol{q})=1\right) \mid \boldsymbol{V}\right]\right) \\
& =E\left(E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}\right] \mathbb{1}\left(d_{k}(\boldsymbol{V}, \boldsymbol{q})=1\right)\right),
\end{aligned}
$$

where the third equality follows from Assumption 2.2 and the others are obvious. As a consequence,

$$
\begin{align*}
& E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \\
& =\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v} \tag{6.1}
\end{align*}
$$

Let $b_{k}(\boldsymbol{v}) \equiv E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v})$ and $B_{k}(\boldsymbol{q})=E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]$. Then (6.1) takes the form

$$
B_{k}(\boldsymbol{q})=\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) b_{k}(\boldsymbol{v}) d \boldsymbol{v}
$$

Now recall from Lemma 2.1 that the indicator function of $D=k$ is a multivariate polynomial of the indicator functions S_{j} for $j \in \boldsymbol{J}$. Moreover,

$$
S_{j}(\boldsymbol{V}, \boldsymbol{Q}(\boldsymbol{Z}))=\mathbb{1}\left(V_{j}<Q_{j}(\boldsymbol{Z})\right)=H\left(Q_{j}(\boldsymbol{Z})-V_{j}\right),
$$

where $H(t)=\mathbb{1}(t>0)$ is the one-dimensional Heaviside function. Therefore we can rewrite the selection of treatment k as

$$
\begin{equation*}
\mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right)=\sum_{l \in \mathcal{L}} c_{l}^{k} \prod_{j \in l} H\left(q_{j}-v_{j}\right) \tag{6.2}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
B_{k}(\boldsymbol{q})=\sum_{l \in \mathcal{L}} c_{l}^{k} \int\left(\prod_{j \in l} H\left(q_{j}-v_{j}\right)\right) b_{k}(\boldsymbol{v}) d \boldsymbol{v} \tag{6.3}
\end{equation*}
$$

Step 2:

By Assumption 3.3, the function \boldsymbol{b} is locally equicontinuous; and by Assumption 3.4, it is defined over an open neighborhood of \boldsymbol{q}. This implies that all terms in (6.3) are differentiable along all dimensions of \boldsymbol{q}. To see this, start with dimension $j=1$. Any term l in (6.3) that does not contain 1 is constant in q_{1} and obviously differentiable. Take any other term and rewrite it as

$$
A_{l}\left(q_{1}\right) \equiv c_{l}^{k} \int_{0}^{q_{1}} \int\left(\prod_{j \in l} H\left(q_{j}-v_{j}\right)\right) b_{k}\left(v_{1}, \boldsymbol{v}_{-1}\right) d \boldsymbol{v}_{-1} d v_{1},
$$

where \boldsymbol{v}_{-1} collects all directions of \boldsymbol{v} in $l-\{1\}$.
Then for any $\varepsilon \neq 0$,

$$
\begin{aligned}
\frac{A_{l}\left(q_{1}+\varepsilon\right)-A_{l}\left(q_{1}\right)}{\varepsilon} & -c_{l}^{k} \int\left(\prod_{j \in l-\{1\}} H\left(q_{j}-v_{j}\right)\right) b_{k}\left(q_{1}, \boldsymbol{v}_{-1}\right) d \boldsymbol{v}_{-1} \\
& =\frac{c_{l}^{k}}{\varepsilon} \int_{q_{1}}^{q_{1}+\varepsilon} \int\left(\prod_{j \in l-\{1\}} H\left(q_{j}-v_{j}\right)\right)\left(b_{k}\left(v_{1}, \boldsymbol{v}_{-1}\right)-b_{k}\left(q_{1}, \boldsymbol{v}_{-1}\right)\right) d \boldsymbol{v}_{-1} d v_{1}
\end{aligned}
$$

Since the functions $\left(b_{k}\left(\cdot, \boldsymbol{v}_{-1}\right)\right)$ are locally equicontinuous at q_{1}, for any $\eta>0$ we can choose ε such that if $\left|q_{1}-v_{1}\right|<\varepsilon$,

$$
\left|b_{k}\left(q_{1}, \boldsymbol{v}_{-1}\right)-b_{k}\left(v_{1}, \boldsymbol{v}_{-1}\right)\right|<\eta ;
$$

and since the Heaviside functions are bounded above by one, we have

$$
\left|\frac{A_{l}\left(q_{1}+\varepsilon\right)-A_{l}\left(q_{1}\right)}{\varepsilon}-c_{l}^{k} \int\left(\prod_{j \in l-\{1\}} H\left(q_{j}-v_{j}\right)\right) b_{k}\left(q_{1}, \boldsymbol{v}_{-1}\right) d \boldsymbol{v}_{-1}\right|<\left|c_{l}\right| \eta .
$$

This proves that A_{l} is differentiable in q_{1} and that its derivative with respect to q_{1}, which we denote A_{l}^{1}, is

$$
A_{l}^{1}=c_{l} \int \prod_{j \in l-\{1\}} H\left(q_{j}-v_{j}\right) b_{k}\left(q_{1}, \boldsymbol{v}_{-1}\right) d \boldsymbol{v}_{-1} .
$$

But this derivative itself has the same form as A_{l}. Letting $\boldsymbol{v}_{-1,2}$ collect all com-
ponents of \boldsymbol{v} except $\left(q_{1}, q_{2}\right)$, the same argument would prove that since the functions $\left(b_{k}\left(\cdot, \boldsymbol{v}_{-1,2}\right)\right)$ are locally equicontinuous at $\left(q_{1}, q_{2}\right)$, the function A_{l}^{1} is differentiable with respect to q_{2} and its derivative is

$$
c_{l}^{k} \int\left(\prod_{j \in l-\{1,2\}} H\left(q_{j}-v_{j}\right)\right) b_{k}\left(q_{1}, q_{2}, \boldsymbol{v}_{-1,2}\right) d \boldsymbol{v}_{-1,2}
$$

Continuing this argument finally gives us the cross-derivative with respect to $\left(\boldsymbol{q}^{l}\right)$ as

$$
c_{l}^{k} \int b_{k}\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right) d \boldsymbol{v}_{-l}
$$

where \boldsymbol{v}_{-l} collects all components of \boldsymbol{v} whose indices are not in l.

Step 3:

Lemma 2.1 and Assumption 3.1 also imply that the leading term in the sum $\sum_{l} c_{l}^{l} \prod_{j \in l} H\left(q_{j}-v_{j}\right)$ is

$$
c_{J}^{k} \prod_{j=1}^{J} H\left(q_{j}-v_{j}\right) .
$$

Now take the J-order derivative of $B(\boldsymbol{q})$ with respect to all q_{j} in turn. By Lemma 2.1, the highest-degree term of B in \boldsymbol{q} is

$$
c_{\boldsymbol{J}}^{k} \int\left(\prod_{j=1}^{J} H\left(q_{j}-v_{j}\right)\right) b_{k}(\boldsymbol{v}) d \boldsymbol{v}
$$

as $c_{J}^{k} \neq 0$ under Assumption 3.1; all other terms have a smaller number of indices j.
This term contributes a cross-derivative

$$
c_{\boldsymbol{J}}^{k} b_{k}(\boldsymbol{q}),
$$

and all other terms generate zero-value contributions since each of them is constant in at least one of the directions j.

More formally,

$$
\begin{equation*}
T B_{k}(\boldsymbol{q})=\frac{\partial^{J} B_{k}(\boldsymbol{q})}{\prod_{j \in J} \partial q_{j}}=c_{\boldsymbol{J}}^{k} b_{k}(\boldsymbol{q}) . \tag{6.4}
\end{equation*}
$$

Given Assumptions 3.3 and 3.4, we can apply (6.4) successively to the pair of functions

$$
B_{k}(\boldsymbol{q})=E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \text { and } b_{k}(\boldsymbol{v})=E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v})
$$

as in (6.3), and to the pair of functions

$$
B_{k}(\boldsymbol{q})=\operatorname{Pr}[D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}] \text { with } b_{k}(\boldsymbol{v})=f_{\boldsymbol{V}}(\boldsymbol{v}) .
$$

The first pair gives us the second equality in the Theorem, and the second pair gives us the first equality.

References

Angrist, J. D., and G. W. Imbens (1995): "Two-stage least squares estimation of average causal effects in models with variable treatment intensity," Journal of the American Statistical Association, 90(430), 431-442.

Brinch, C. N., M. Mogstad, and M. Wiswall (2017): "Beyond LATE with a Discrete Instrument," Journal of Political Economy, 125(4), 985-1039.

Cattaneo, M. D. (2010): "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, 155(2), 138-154.

Chesher, A. (2003): "Identification in Nonseparable Models," Econometrica, 71(5), 1405-1441.

Dahl, G. B. (2002): "Mobility and the return to education: Testing a Roy model with multiple markets," Econometrica, 70(6), 2367-2420.
de Chaisemartin, C. (2017): "Tolerating Defiance? Local Average Treatment Effects without Monotonicity," Quantitative Economics, 8(2), 367-396.

D'Haultfeuille, X., and P. Février (2015): "Identification of Nonseparable Triangular Models With Discrete Instruments," Econometrica, 83(3), 1199-1210.

Florens, J. P., J. J. Heckman, C. Meghir, and E. Vytlacil (2008): "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, 76(5), 11911206.

Gautier, E., and S. Hoderlein (2015): "A Triangular Treatment Effect Model With Random Coefficients in the Selection Equation," http://arxiv.org/abs/1109.0362v4.

Heckman, J., and R. Pinto (2018): "Unordered Monotonicity," Econometrica, 86(1), 1-35.

Heckman, J. J. (1979): "Sample selection bias as a specification error," Econometrica, 47(1), 153-161.

Heckman, J. J., S. Urzua, and E. Vytlacil (2006): "Understanding instrumental variables in models with essential heterogeneity," Review of Economics and Statistics, 88(3), 389-432.
__ (2008): "Instrumental variables in models with multiple outcomes: The general unordered case," Annales d'économie et de statistique, 91/92, 151-174.

Heckman, J. J., and E. Vytlacil (2000): "Local Instrumental Variables," Technical Working Paper No. 252, National Bureau of Economic Research.
__ (2001): "Policy-relevant treatment effects," American Economic Review, 91(2), 107-111.
__ (2005): "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, 73(3), 669-738.

- (2007): "Econometric evaluation of social programs, part I: Causal models, structural models and econometric policy evaluation," in Handbook of econometrics, ed. by J. J. Heckman, and E. Leamer, vol. 6B, chap. 70, pp. 4779-4874. Elsevier, Amsterdam.

Hirano, K., and G. W. Imbens (2004): "The propensity score with continuous treatments," in Applied Bayesian Modeling and Causal Inference from IncompleteData Perspectives, ed. by A. Gelman, and X. Meng, pp. 73-84. Wiley-Blackwell.

Hoderlein, S., and E. Mammen (2007): "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, 75(5), 1513-1518.

Ichimura, H., and L.-F. Lee (1991): "Semiparametric least squares estimation of multiple index models: single equation estimation," in International Symposia in Economic Theory and Econometrics, ed. by W. A. Barnett, J. Powell, and G. Tauchen, pp. 3-49. Cambridge University Press.

Imbens, G. W. (2000):"The role of the propensity score in estimating dose-response functions," Biometrika, 87(3), 706-710.

Imbens, G. W., and J. D. Angrist (1994): "Identification and Estimation of Local Average Treatment Effects," Econometrica, 62(2), 467-475.

Imbens, G. W., and W. K. Newey (2009): "Identification and estimation of triangular simultaneous equations models without additivity," Econometrica, 77(5), 1481-1512.

Kirkeboen, L. J., E. Leuven, and M. Mogstad (2016): "Field of study, earnings, and self-selection," Quarterly Journal of Economics, 131(3), 1057-1111.

Kline, P., and C. R. Walters (2016): "Evaluating public programs with close substitutes: The case of Head Start," Quarterly Journal of Economics, 131(4), 1795-1848.

Kowalski, A. E. (2016): "Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments," Working Paper no. 22363, National Bureau of Economic Research.

Lewbel, A. (2000): "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, 97(1), 145-177.

Lewbel, A., and T. T. Yang (2016):"Identifying the average treatment effect in ordered treatment models without unconfoundedness," Journal of Econometrics, 195(1), 1-22.

Manski, C. F. (1990): "Nonparametric bounds on treatment effects," American Economic Review, 80, 319-323.
—_ (1997): "Monotone treatment response," Econometrica, 65, 1311-1334.
Manski, C. F., and J. V. Pepper (2000): "Monotone instrumental variables: with an application to the returns to schooling," Econometrica, 68(4), 997-1010.

Matzkin, R. L. (1993): "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, 58(1), 137-168.
_ (2007): "Heterogeneous choice," in Advances in economics and econometrics: theory and applications, ed. by R. Blundell, W. Newey, and T. Persson, vol. 2, chap. 4, pp. 75-110. Cambridge University Press.

Mogstad, M., A. Santos, and A. Torgovitsky (2017): "Using Instrumental Variables for Inference about Policy Relevant Treatment Effects," NBER Working Paper No. 23568.

Nelsen, R. B. (2006): An Introduction to Copulas. Springer, New York, NY, second edn.

Pinto, R. (2015): "Selection bias in a controlled experiment: the case of Moving to Opportunity," University of Chicago, mimeo.

Poirier, D. J. (1980): "Partial observability in bivariate probit models," Journal of Econometrics, 12(2), 209-217.

Shaikh, A., and E. Vytlacil (2011):"Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, 79, 949-955.

Tamer, E. (2003): "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," Review of Economic Studies, 70(1), 147-165.

Torgovitsky, A. (2015): "Identification of Nonseparable Models Using Instruments With Small Support," Econometrica, 83(3), 1185-1197.

Vytlacil, E. (2002): "Independence, monotonicity, and latent index models: An equivalence result," Econometrica, 70(1), 331-341.

Yang, S., G. W. Imbens, Z. Cui, D. E. Faries, and Z. Kadziola (2016): "Propensity score matching and subclassification in observational studies with multi-level treatments," Biometrics, 72(4), 1055-1065.

Online Appendices to "Identifying Effects of Multivalued Treatments"

Sokbae Lee ${ }^{*} \quad$ Bernard Salanié ${ }^{\dagger}$

May 30, 2018

Appendix A gives an identification result for the zero-index case, which was not dealt with in the text. It also provides a characterization of Heckman and Pinto's unordered monotonicity property as a subcase of our more general framework. Appendix B collects proofs of some of the results in the main text. Finally, Appendix C fills in the details of the entry game introduced in Section 2, and Appendix D compares our results with those of Heckman, Urzua, and Vytlacil (2008) in more detail. Appendix E discusses a more general form of threshold conditions than the "rectangular" threshold conditions in Assumption 2.1.

A Additional Results

A. 1 Identification with a Zero Index

Theorem 3.1 required that the index of treatment k be non-zero (Assumption 3.1). It therefore does not apply to, for instance, Example 3. Recall that in that example,

$$
D_{0}=\mathcal{D}_{0}(\boldsymbol{S})=1-S_{1}-S_{2}-S_{3}+S_{1} S_{2}+S_{1} S_{3}+S_{2} S_{3}
$$

and treatment 0 has degree $m^{0}=2<J^{0}=3$.
Note, however, that steps 1 and 2 of the proof of Theorem 3.1 apply to zero-index treatments as well; the relevant polynomial of Heaviside functions has leading term

$$
H\left(q_{1}-v_{1}\right) H\left(q_{2}-v_{2}\right)+H\left(q_{1}-v_{1}\right) H\left(q_{3}-v_{3}\right)+H\left(q_{2}-v_{2}\right) H\left(q_{3}-v_{3}\right),
$$

[^15]and we can take the derivative in $\left(q_{1}, q_{2}\right)$ for instance to obtain an equation that replaces 6.4):
$$
\frac{\partial^{2}}{\partial q_{1} \partial q_{2}} B_{0}(\boldsymbol{q})=\int b_{0}\left(q_{1}, q_{2}, v_{3}\right) d v_{3} .
$$

Applying this to $B_{0}(\boldsymbol{q})=\operatorname{Pr}[D=0 \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}]$ and $b_{0}(\boldsymbol{v})=f_{\boldsymbol{V}}(\boldsymbol{v})$, and then to $B_{0}(\boldsymbol{q})=E\left[Y D_{0} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]$ and $b_{0}(\boldsymbol{v})=E\left[G\left(Y_{0}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v})$, identifies

$$
\int f_{V_{1}, V_{2}, V_{3}}\left(q_{1}, q_{2}, v_{3}\right) d v_{3}=f_{V_{1}, V_{2}}\left(v_{1}, v_{2}\right)
$$

and

$$
\begin{aligned}
& \int E\left[G\left(Y_{0}\right) \mid V_{1}=q_{1}, V_{2}=q_{2}, V_{3}=v_{3}\right] f_{V_{1}, V_{2}, V_{3}}\left(q_{1}, q_{2}, v_{3}\right) d v_{3} \\
& =E\left[G\left(Y_{0}\right) \mid V_{1}=q_{1}, V_{2}=q_{2}\right] f_{V_{1}, V_{2}}\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Dividing through identifies a local counterfactual outcome:

$$
E\left[G\left(Y_{0}\right) \mid V_{1}=q_{1}, V_{2}=q_{2}\right] .
$$

Under Assumption 3.5, this also identifies $E G\left(Y_{0}\right)$. Moreover, we can apply the same logic to the pairs $\left(q_{1}, q_{3}\right)$ and $\left(q_{2}, q_{3}\right)$ to get further information on the treatment effects.

This argument applies more generally. It allows us to state the following theorem:
Theorem A. 1 (Identification with a zero index). Let Assumptions 2.1, 2.2 and 3.2 hold. Fix a value \boldsymbol{q} in $\tilde{\mathcal{Q}}$, so that Assumptions 3.3 and 3.4 also hold at \boldsymbol{q}. Let m be the degree of treatment k. Take l to be any subset of \boldsymbol{J} that corresponds to a leading term in the expansion of the indicator function of $\{D=k\}$. Denote \widetilde{T} the differential operator

$$
\widetilde{T}=\frac{\partial^{m}}{\prod_{i=1, \ldots, m} \partial_{l_{i}}}
$$

Then for $\boldsymbol{q}=\left(\boldsymbol{q}^{l}, \boldsymbol{q}^{\boldsymbol{J}-l}\right)$,

$$
\begin{array}{r}
f_{\boldsymbol{V}^{l}}\left(\boldsymbol{q}^{l}\right)=\frac{1}{c_{l}^{k}} \widetilde{T} \operatorname{Pr}[D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}] \\
E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}^{l}=\boldsymbol{q}^{l}\right]=\frac{\widetilde{T} E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]}{\widetilde{T} \operatorname{Pr}[D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}]} .
\end{array}
$$

Proof of Theorem A.1. The proof of Theorem A. 1 is basically the same as that of Theorem 3.1. Steps 1 and 2 of the proof of Theorem 3.1do not rely on any assumption about indices. They show that if we define

$$
W_{l}(\boldsymbol{q})=\int \prod_{j \in l} H\left(q_{j}-v_{j}\right) b_{k}(\boldsymbol{v}) d \boldsymbol{v}
$$

where the set $l \subset \boldsymbol{J}$, then its cross-derivative with respect to $\left(\boldsymbol{p}^{l}\right)$ is

$$
\int b_{k}\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right) d \boldsymbol{v}_{-l}
$$

where \boldsymbol{v}_{-l} collects all components of \boldsymbol{v} whose indices are not in l.
Now let m be the degree of treatment k. In the sum (6.3), take any term l such that $|l|=m$. Recall that \widetilde{T} denotes the differential operator

$$
\widetilde{T}=\frac{\partial^{m}}{\prod_{i=1, \ldots, m} \partial_{j_{i}}} .
$$

By the formula above, applying \widetilde{T} to term l gives

$$
c_{l} \int b_{k}\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right) d \boldsymbol{v}_{-l} .
$$

Moreover, applying \widetilde{T} to any other term l^{\prime} obviously gives zero if term l^{\prime} has degree less than m. Now take any other term l^{\prime} of degree m. As \widetilde{T} takes at least one derivative along a direction that is not in l^{\prime}, that term must also contribute zero.

This proves that

$$
\widetilde{T} B_{k}(\boldsymbol{q})=c_{l}^{k} \int b_{k}\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right) d \boldsymbol{v}_{-l}
$$

note that it also implies that $\widetilde{T} B_{k}(\boldsymbol{q})$ only depends on \boldsymbol{q}^{l}.

Applying this first to $b_{k}(\boldsymbol{v})=f_{\boldsymbol{V}}(\boldsymbol{v})$ and $B_{k}(\boldsymbol{q})=\operatorname{Pr}(D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q})$, then to $b_{k}(\boldsymbol{v})=E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v})$ and $B_{k}(\boldsymbol{q})=E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]$ exactly as in the proof of Theorem 3.1, we get

$$
\begin{aligned}
\int f_{\boldsymbol{V}}\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right) d \boldsymbol{v}_{-l} & =\frac{1}{c_{l}^{k}} \widetilde{T} \operatorname{Pr}(D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}) \\
\int E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right)\right] f_{\boldsymbol{V}}\left(\boldsymbol{q}^{l}, \boldsymbol{v}_{-l}\right) d \boldsymbol{v}_{-l} & =\frac{1}{c_{l}^{k}} \widetilde{T} E\left(G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right)
\end{aligned}
$$

Since the left-hand sides are simply $f_{\boldsymbol{V}^{l}}\left(\boldsymbol{v}^{l}\right)$ and $E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}^{l}=\boldsymbol{q}^{l}\right] f_{\boldsymbol{V}^{l}}\left(\boldsymbol{v}^{l}\right)$, the conclusion of the Theorem follows immediately.

Theorem A. 1 is a generalization of Theorem 3.1 (just take $m=J$). It calls for three remarks. First, we could weaken its hypotheses somewhat. We could for instance replace $(0,1)^{J}$ with $(0,1)^{m}$ in the statement of Assumption 3.5.

Second, when $m<J$ the treatment effects are overidentified. This is obvious from the equalities in Theorem A.1, in which the right-hand side depends on \boldsymbol{q} but the left-hand side only depends on \boldsymbol{q}^{I}.

Finally, considering several treatment values can identify even more, since \boldsymbol{V} is assumed to be the same across k. Theorem 3.1 would then imply that if there is any treatment value k with a nonzero index, then the joint density f_{V} is identified from that treatment value.

A. 2 Further Analysis of Unordered Monotonicity

Our formalism allows us to derive a new characterization of the unordered monotonicity property defined by Heckman and Pinto (2018). Take any treatment value k. In our model, a change in instruments \boldsymbol{Z} acts on the treatment assigned to an observation with unobserved characteristics \boldsymbol{V} through the indicator functions $S_{j}=\mathbb{1}\left(V_{j}<Q_{j}(\boldsymbol{Z})\right)$, which depend on the thresholds $\boldsymbol{Q}(\boldsymbol{Z})$.

Unordered monotonicity requires that there exist changes in thresholds $\Delta \boldsymbol{Q}$ such that for $\boldsymbol{Q}^{\prime}=\boldsymbol{Q}+\boldsymbol{\Delta} \boldsymbol{Q}$,

$$
\operatorname{Pr}\left\{d_{k}(\boldsymbol{V}, \boldsymbol{Q})=0 \text { and } d_{k}\left(\boldsymbol{V}, \boldsymbol{Q}^{\prime}\right)=1\right\} \times \operatorname{Pr}\left\{d_{k}(\boldsymbol{V}, \boldsymbol{Q})=1 \text { and } d_{k}\left(\boldsymbol{V}, \boldsymbol{Q}^{\prime}\right)=0\right\}=0,
$$

where the probabilities are computed over the joint distribution of \boldsymbol{V}.

In our framework, several thresholds are typically relevant for each treatment value. This makes the analysis of unordered monotonicity complex in general. To understand why, we start from the expression 2.2) of D_{k} as a polynomial of $\boldsymbol{S}=$ $\left(S_{1}, \ldots, S_{J}\right)$ for $S_{j}(\boldsymbol{V}, \boldsymbol{Q})=\mathbb{1}\left(V_{j}<Q_{j}\right)$. For any change in thresholds $\Delta \boldsymbol{Q}$ that induces changes in the indicators $\Delta \boldsymbol{S}$, Taylor's theorem yields

$$
\begin{equation*}
\Delta D_{k}=\sum_{m=1}^{J} \sum_{\alpha_{1}+\ldots+\alpha_{J}=m} \frac{1}{\alpha_{1}!\alpha_{2}!\cdots \alpha_{J}!} \frac{\partial^{m} \mathcal{D}_{k}(\boldsymbol{S})}{\partial S_{1}^{\alpha_{1}} \partial S_{2}^{\alpha_{2}} \ldots \partial S_{J}^{\alpha_{J}}} \prod_{l=1}^{J} \Delta S_{l}^{\alpha_{l}} \tag{A.1}
\end{equation*}
$$

where α_{j} is a nonnegative integer for $j=1, \ldots, J$. Note that this is an exact expansion since \mathcal{D}_{k} is a polynomial. Moreover, note that given a change in one threshold ΔQ_{j}, only S_{j} changes and

$$
\begin{equation*}
\Delta S_{j}=\mathbb{1}\left(0<V_{j}-Q_{j}<\Delta Q_{j}\right)-\mathbb{1}\left(\Delta Q_{j}<V_{j}-Q_{j}<0\right) . \tag{A.2}
\end{equation*}
$$

(We do not need to distinguish between the weak and strict inequalities since the distribution of V_{j} is absolutely continuous with respect to the Lebesgue measure.)

The changes ΔS_{j} can only take the values 0 or ± 1. In general higher-order terms in expansion A.1 may be nonzero. However, if the changes in thresholds $\Delta \boldsymbol{Q}$ are small then we can neglect the higher order terms since the values of \boldsymbol{V} for which several ΔS_{j} are nonzero occur with very small probability. To make this more precise, we use the following definition:

Definition A. 1 (Two-Way Flows). A change in thresholds $\Delta \boldsymbol{Q}$ generates two-way flows for treatment value k if and only if

$$
\lim _{\varepsilon \rightarrow 0}\left(\frac{\operatorname{Pr}\left(D_{k}(0)=0 \text { and } D_{k}(\varepsilon)=1\right)}{\varepsilon} \times \frac{\operatorname{Pr}\left(D_{k}(0)=1 \text { and } D_{k}(\varepsilon)=0\right)}{\varepsilon}\right)>0
$$

for $D_{k}(\varepsilon) \equiv d_{k}(\boldsymbol{V}, \boldsymbol{Q}+\varepsilon \Delta \boldsymbol{Q})$.
We now provide new characterizations of unordered monotonicity.
Theorem A. 2 (Characterizing Unordered Monotonicity in the Small). Fix a value \boldsymbol{Q} of the thresholds. Denote

$$
\nabla \mathcal{D}_{k}(\boldsymbol{S})=\frac{\partial \mathcal{D}_{k}}{\partial \boldsymbol{S}}(\boldsymbol{S})
$$

Assume that $J \geq 2$ and that there exist two values $j_{1} \neq j_{2}$ such that $\nabla_{j_{1}} \mathcal{D}_{k}$ and $\nabla_{j_{2}} \mathcal{D}_{k}$ are not identically zero. Then:

1. If each component of $\nabla \mathcal{D}_{k}(\boldsymbol{S})$ has a constant sign when \boldsymbol{S} varies over $\{0,1\}^{J}$, then some changes in thresholds do not generate two-way flows, and some others do.
2. If the sign of any component $\nabla_{j} \mathcal{D}_{k}(\boldsymbol{S})$ changes when S_{j} switches between 0 and 1, then any change in thresholds generates two-way flows.
(In these two statements, we take 0 to have the same sign as both -1 and +1.)
Proof of Theorem A.2. Take $\varepsilon>0$ small. Remember that given a change in thresholds $\varepsilon \Delta Q_{j}$,

$$
\Delta S_{j}=\mathbb{1}\left(0<V_{j}-Q_{j}<\varepsilon \Delta Q_{j}\right)-\mathbb{1}\left(\varepsilon \Delta Q_{j}<V_{j}-Q_{j}<0\right)
$$

which is zero or has the sign of ΔQ_{j}.
Under our assumptions on the distribution of \boldsymbol{V}, the probability that $\Delta S_{j} \neq 0$ is of order ε; the probability that $\Delta S_{j} \Delta S_{l} \neq 0$ is of order ε^{2}, etc. Given Definition A.1, we only need to work on the first-order terms in expansion (A.1) since the other terms generate vanishingly small corrections. That is, we use

$$
\begin{align*}
\Delta D_{k} & \simeq \sum_{j=1}^{J} \nabla_{j} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta S_{j} \tag{A.3}\\
& =\sum_{j=1}^{J} \nabla_{j} \mathcal{D}_{k}(\boldsymbol{S}) \times\left(\mathbb{1}\left(0<V_{j}-Q_{j}<\varepsilon \Delta Q_{j}\right)-\mathbb{1}\left(\varepsilon \Delta Q_{j}<V_{j}-Q_{j}<0\right)\right)
\end{align*}
$$

- Proof of part 1:

To prove part 1 of the theorem, assume that each derivative $\nabla_{j} \mathcal{D}_{k}$ has a constant sign, independent of $\boldsymbol{S} \in\{0,1\}^{J}$.
Then it is easy to find changes $\Delta \boldsymbol{Q}$ that only generate one-way flows. First take each ΔQ_{j} to have the sign of $\nabla_{j} \mathcal{D}_{k}$.

Since each ΔS_{j} has the sign of the corresponding ΔQ_{j}, each product term in the sum A.3 is non-negative, and so is the change in D_{k}. Obviously, changing the sign of all ΔQ_{j} 's would generate one-way flows in the opposite direction.

It is equally easy to find changes in instruments that generate two-way flows. Take the indices j_{1} and j_{2} referred to in the statement of the theorem. Take $\Delta Q_{m}=0$ for $m \neq j_{1}, j_{2}$. Then expansion A.3) becomes

$$
\Delta D_{k} \simeq \nabla_{j_{1}} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta S_{j_{1}}+\nabla_{j_{2}} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta S_{j_{2}}
$$

Choose some $\Delta Q_{j_{1}}, \Delta Q_{j_{2}} \neq 0$ such that

$$
\nabla_{j_{1}} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta Q_{j_{1}} \text { and } \nabla_{j_{2}} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta Q_{j_{2}}
$$

have opposite signs (which do not vary with \boldsymbol{S} by assumption).
Take $\left|V_{j_{1}}-Q_{j_{1}}\right|$ small and $\left|V_{j_{2}}-Q_{j_{2}}\right|$ not small, so that $\Delta S_{j_{1}}$ has the sign of $\Delta Q_{j_{1}}$ and $\Delta S_{j_{2}}=0$; then ΔD_{k} has the sign of $\nabla_{j_{1}} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta Q_{j_{1}}$. Permuting j_{1} and j_{2} generates the opposite sign; therefore such a change in thresholds generates two-way flows.

- Proof of part 2:

To prove part 2 of the theorem, take j such that $\nabla_{j} \mathcal{D}_{k}$ changes sign when the sign of $V_{j}-Q_{j}$ changes (so that S_{j} switches between 0 and 1). Let $\Delta Q_{m}=0$ for all $m \neq j$, so that

$$
\Delta D_{k} \simeq \nabla_{j} \mathcal{D}_{k}(\boldsymbol{S}) \times \Delta S_{j} .
$$

By the assumption in part 2 , the sign of ΔD_{k} is the sign of ΔS_{j} for some values of \boldsymbol{V} and the opposite sign for other values. Take any change in the threshold ΔQ_{j}. Since ΔS_{j} is zero or has the sign of $\Delta Q_{j}, \Delta D_{k}$ must take opposite values as \boldsymbol{V} varies.

To illustrate the theorem, first consider the double hurdle model, for which $\nabla \mathcal{D}_{1}(\boldsymbol{S})=$ $\left(S_{2}, S_{1}\right) \geq 0$. This case is covered by part 1 of Theorem A.2. Changes such that ΔQ_{1} and ΔQ_{2} have the same sign do not generate two-way flows, but changes that generate $\Delta Q_{1} \Delta Q_{2}<0$ do.

Now turn to the model of Example 1, where $\nabla \mathcal{D}_{2}(\boldsymbol{S})=\left(1-2 S_{2}, 1-2 S_{1}\right)$. This corresponds to part 2 of the Theorem, since the sign of $(1-2 s)$ depends on $s=0,1$.

Using the expansion A. 3 gives, with $j_{1}=1, j_{2}=2$:

$$
\Delta D_{2} \simeq\left(1-2 S_{2}\right) \times \Delta S_{1}+\left(1-2 S_{1}\right) \times \Delta S_{2}
$$

Depending on the values of \boldsymbol{V} and therefore of S_{1} and S_{2}, this can be

$$
\Delta S_{1}+\Delta S_{2}, \Delta S_{1}-\Delta S_{2}, \Delta S_{2}-\Delta S_{1}, \text { or }-\Delta S_{1}-\Delta S_{2}
$$

To get one way flows only, we would need to chaneg thresholds to induce $\Delta S_{1}, \Delta S_{2}=$ ± 1 such that the four numbers above have the same sign. But that is clearly impossible. Hence any change in instruments creates two-way flows.

B Additional Proofs

B. 1 Proof of Corollary 3.2

First consider the average treatment effect. Under Assumption 3.5, we have that

$$
E G\left(Y_{k}\right)=\int E\left(G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
$$

which implies (3.2) immediately.
Now consider $E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid D=k\right]$. Note that

$$
\begin{aligned}
& E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid D=k, \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \\
& =E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid d_{k}(\boldsymbol{V}, \boldsymbol{q})=1\right] \\
& =\frac{\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}}{\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid D=k\right] \\
& \left.=E E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid D=k, \boldsymbol{Q}(\boldsymbol{Z})\right]\right] \\
& =\int \frac{\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}}{\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}} d F_{\boldsymbol{Q}(\boldsymbol{Z}) \mid D}(\boldsymbol{q} \mid k) .
\end{aligned}
$$

By Bayes' rule, we have that

$$
d F_{\boldsymbol{Q}(\boldsymbol{Z}) \mid D}(\boldsymbol{q} \mid k)=\frac{\operatorname{Pr}[D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}]}{\operatorname{Pr}(D=k)} d F_{\boldsymbol{Q}(\boldsymbol{Z})}(\boldsymbol{q})
$$

Since

$$
\operatorname{Pr}[D=k \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}]=\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
$$

we have that

$$
\begin{aligned}
& E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid D=k\right] \\
& =\int \frac{\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}}{\operatorname{Pr}(D=k)} d F_{\boldsymbol{Q}(\boldsymbol{Z})}(\boldsymbol{q}) \\
& =\frac{\int \operatorname{Pr}\left(d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{Z}))=1\right) E\left[G\left(Y_{k}\right)-G\left(Y_{\ell}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}}{\operatorname{Pr}(D=k)} \\
& =\int \Delta_{\mathrm{MTE}}^{(k, \ell)}(\boldsymbol{v}) \omega_{\mathrm{TT}}^{k}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

We now move to the identification of the policy relevant treatment effects. Recall that in the proof of Theorem 3.1 (see equation (6.1)), we have that

$$
\begin{aligned}
& E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right] \\
& =\int \mathbb{1}\left(d_{k}(\boldsymbol{v}, \boldsymbol{q})=1\right) E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

Since $G(Y)=\sum_{k \in \mathcal{K}} G(Y) D_{k}$, we then have that

$$
\begin{aligned}
E[G(Y)] & =\sum_{k \in \mathcal{K}} E\left[E\left[G(Y) D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]\right] \\
& =\sum_{k \in \mathcal{K}} \int \operatorname{Pr}\left[d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{Z}))=1\right] E\left[G\left(Y_{k}\right) \mid \boldsymbol{V}=\boldsymbol{v}\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
E[D] & =\sum_{k \in \mathcal{K}} k E\left[E\left[D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]\right] \\
& =\sum_{k \in \mathcal{K}} k \int \operatorname{Pr}\left[d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{Z}))=1\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

and that

$$
\begin{aligned}
E\left[D_{k}=1\right] & =E\left[E\left[D_{k} \mid \boldsymbol{Q}(\boldsymbol{Z})=\boldsymbol{q}\right]\right] \\
& =\int \operatorname{Pr}\left[d_{k}(\boldsymbol{v}, \boldsymbol{Q}(\boldsymbol{Z}))=1\right] f_{\boldsymbol{V}}(\boldsymbol{v}) d \boldsymbol{v}
\end{aligned}
$$

Then the desired results follow immediately since the new policy only changes \boldsymbol{Q} to Q^{*}, while everything else remains the same.

B. 2 Proof of Theorem 4.1

It follows from (2.1) on page 7 that

$$
\begin{equation*}
Q_{1}(\boldsymbol{Z})+Q_{2}(\boldsymbol{Z})=2 P_{0}(\boldsymbol{Z})+P_{2}(\boldsymbol{Z}) \tag{B.1}
\end{equation*}
$$

The right hand side of $(\overline{\mathrm{B} .1})$ is identified directly from the data. Suppose that $\tilde{Q}_{1}(\boldsymbol{Z})$ and $\tilde{Q}_{2}(\boldsymbol{Z})$ also satisfy $\tilde{Q}_{1}(\boldsymbol{Z})+\tilde{Q}_{2}(\boldsymbol{Z})=2 P_{0}(\boldsymbol{Z})+P_{2}(\boldsymbol{Z})$, as well as Assumption 4.1. Then writing $\Delta_{j}(\boldsymbol{Z})=Q_{j}(\boldsymbol{Z})-\tilde{Q}_{j}(\boldsymbol{Z})(j=1,2)$ gives $\Delta_{1}(\boldsymbol{Z})=-\Delta_{2}(\boldsymbol{Z})$. But by Assumption 4.1, Δ_{1} does not depend on Z_{2}, and Δ_{2} does not depend on Z_{1}. Therefore we must have $\tilde{Q}_{1}\left(Z_{1}\right)=Q_{1}\left(Z_{1}\right)+C$ and $\tilde{Q}_{2}\left(Z_{2}\right)=Q_{2}\left(Z_{2}\right)-C$, where C is a constant. This proves that Q_{1} and Q_{2} are identified up to an additive constant.

Further, take any $\left(z_{1}^{0}, z_{2}^{0}\right) \in \mathcal{Z}$. If we take $Q_{2}\left(z_{2}\right)=P\left(z_{1}^{0}, z_{2}\right)-C_{1}^{0}$ for some constant C_{1}^{0}, then by (B.1),

$$
\begin{equation*}
Q_{1}\left(z_{1}\right)=P\left(z_{1}, z_{2}\right)-P\left(z_{1}^{0}, z_{2}\right)+C_{1}^{0} \tag{B.2}
\end{equation*}
$$

Since the right-hand side of ($\overline{\mathrm{B} .2}$) should not depend on z_{2}, we set

$$
\begin{aligned}
& Q_{1}\left(z_{1}\right)=P\left(z_{1}, z_{2}^{0}\right)-P\left(z_{1}^{0}, z_{2}^{0}\right)+C_{1}^{0} \\
& Q_{2}\left(z_{2}\right)=P\left(z_{1}^{0}, z_{2}\right)-C_{1}^{0}
\end{aligned}
$$

To describe the possible range of C_{1}^{0}, note that we require that
$\operatorname{Pr}(D=0)=\operatorname{Pr}\left[Q_{1}\left(Z_{1}\right)>0\right.$ and $\left.Q_{2}\left(Z_{2}\right)>0\right]>0$,
$\operatorname{Pr}(D=1)=\operatorname{Pr}\left[Q_{1}\left(Z_{1}\right)<1\right.$ and $\left.Q_{2}\left(Z_{2}\right)<1\right]>0$,
$\operatorname{Pr}(D=2)=\operatorname{Pr}\left[Q_{1}\left(Z_{1}\right)>0\right.$ and $\left.Q_{2}\left(Z_{2}\right)<1\right]+\operatorname{Pr}\left[Q_{1}\left(Z_{1}\right)<1\right.$ and $\left.Q_{2}\left(Z_{2}\right)>0\right]>0$.

That is, C_{1}^{0} must satisfy the following restrictions:

$$
\begin{aligned}
& \operatorname{Pr}\left[P\left(z_{1}^{0}, z_{2}^{0}\right)-P\left(Z_{1}, z_{2}^{0}\right)<C_{1}^{0}<P\left(z_{1}^{0}, Z_{2}\right)\right]>0, \\
& \operatorname{Pr}\left[P\left(z_{1}^{0}, Z_{2}\right)-1<C_{1}^{0}<1+P\left(z_{1}^{0}, z_{2}^{0}\right)-P\left(Z_{1}, z_{2}^{0}\right)\right]>0, \\
& \operatorname{Pr}\left[\max \left\{P\left(z_{1}^{0}, z_{2}^{0}\right)-P\left(Z_{1}, z_{2}^{0}\right), P\left(z_{1}^{0}, Z_{2}\right)-1\right\}<C_{1}^{0}\right] \\
& +\operatorname{Pr}\left[C_{1}^{0}<\min \left\{1+P\left(z_{1}^{0}, z_{2}^{0}\right)-P\left(Z_{1}, z_{2}^{0}\right), P\left(z_{1}^{0}, Z_{2}\right)\right\}\right]>0 .
\end{aligned}
$$

B. 3 Proof of Theorem 4.2

Recall that we denote $H\left(z_{1}, z_{2}\right)=\operatorname{Pr}\left(D=1 \mid Z_{1}=z_{1}, Z_{2}=z_{2}\right)$ the propensity score.
Under our exclusion restrictions, $H\left(z_{1}, z_{2}\right)=F_{V_{1}, V_{2}}\left(G_{1}\left(z_{1}\right), G_{2}\left(z_{2}\right)\right)$.
Let $f_{\boldsymbol{V}}\left(v_{1}, v_{2}\right)$ denote the density of $\boldsymbol{V}=\left(V_{1}, V_{2}\right)$. By construction,

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=F_{\boldsymbol{V}}\left(G_{1}\left(z_{1}\right), G_{2}\left(z_{2}\right)\right)=\int_{0}^{G_{1}\left(z_{1}\right)} \int_{0}^{G_{2}\left(z_{2}\right)} f_{\boldsymbol{V}}\left(v_{1}, v_{2}\right) d v_{1} d v_{2} \tag{B.3}
\end{equation*}
$$

Differentiating both sides of B.3) with respect to z_{1} gives

$$
\begin{equation*}
\frac{\partial H}{\partial z_{1}}\left(z_{1}, z_{2}\right)=G_{1}^{\prime}\left(z_{1}\right) \int_{0}^{G_{2}\left(z_{2}\right)} f_{\boldsymbol{V}}\left(G_{1}\left(z_{1}\right), v_{2}\right) d v_{2} \tag{B.4}
\end{equation*}
$$

Now letting $z_{2} \rightarrow b_{2}$ on both sides of (B.4) yields

$$
\begin{equation*}
\lim _{z_{2} \rightarrow b_{2}} \frac{\partial H}{\partial z_{1}}\left(z_{1}, z_{2}\right)=G_{1}^{\prime}\left(z_{1}\right)\left[\lim _{z_{2} \rightarrow b_{2}} \int_{0}^{G_{2}\left(z_{2}\right)} f_{\boldsymbol{V}}\left(G_{1}\left(z_{1}\right), v_{2}\right) d v_{2}\right] . \tag{B.5}
\end{equation*}
$$

The expression inside the brackets on the right side of (B.5) is 1 since $\lim _{z_{2} \rightarrow b_{2}} G_{2}\left(z_{2}\right)=$ 1 and the marginal distribution of V_{2} is $U[0,1]$. Therefore we identify G_{1} by

$$
\begin{equation*}
G_{1}\left(z_{1}\right)=\int_{a_{1}}^{z_{1}} \lim _{t_{2} \rightarrow b_{2}} \frac{\partial H}{\partial z_{1}}\left(t_{1}, t_{2}\right) d t_{1} . \tag{B.6}
\end{equation*}
$$

Analogously, we identify G_{2} by

$$
\begin{equation*}
G_{2}\left(z_{2}\right)=\int_{a_{2}}^{z_{2}} \lim _{t_{1} \rightarrow b_{1}} \frac{\partial H}{\partial z_{2}}\left(t_{1}, t_{2}\right) d t_{2} . \tag{B.7}
\end{equation*}
$$

Returning to (B.3), since G_{1} and G_{2} are strictly increasing we identify $F_{\boldsymbol{V}}$ by

$$
F_{\boldsymbol{V}}\left(v_{1}, v_{2}\right)=H\left(G_{1}^{-1}\left(v_{1}\right), G_{2}^{-1}\left(v_{2}\right)\right)
$$

B. 4 Proof of Theorem 4.3

B.4.1 Proof of part 1

Given our differentiability assumptions, we can take derivatives of the formula

$$
\begin{equation*}
\phi\left(H\left(z_{1}, z_{2}\right)\right)=\phi\left(G_{1}\left(z_{1}\right)\right)+\phi\left(G_{2}\left(z_{2}\right)\right) \tag{B.8}
\end{equation*}
$$

over \mathcal{N}. Using

$$
\frac{\partial^{2}(\phi \circ H)}{\partial z_{1} \partial z_{2}}\left(z_{1}, z_{2}\right)=0,
$$

we obtain

$$
\phi^{\prime \prime}(h) \frac{\partial H}{\partial z_{1}}\left(z_{1}, z_{2}\right) \frac{\partial H}{\partial z_{2}}\left(z_{1}, z_{2}\right)+\phi^{\prime}(h) \frac{\partial^{2} H}{\partial z_{1} \partial z_{2}}\left(z_{1}, z_{2}\right)=0
$$

with $h=H\left(z_{1}, z_{2}\right)$.
Take any smooth curve contained in \mathcal{N} and parameterize it as $h \rightarrow\left(z_{1}(h), z_{2}(h)\right)$ with $h=H\left(z_{1}(h), z_{2}(h)\right)$; then we have a differential equation

$$
\begin{equation*}
\phi^{\prime \prime}(h) \frac{\partial H}{\partial z_{1}}\left(z_{1}(h), z_{2}(h)\right) \frac{\partial H}{\partial z_{2}}\left(z_{1}(h), z_{2}(h)\right)+\phi^{\prime}(h) \frac{\partial^{2} H}{\partial z_{1} \partial z_{2}}\left(z_{1}(h), z_{2}(h)\right)=0 . \tag{B.9}
\end{equation*}
$$

Using (B.8), the partial derivatives H_{1} and H_{2} cannot take the value zero on \mathcal{N} since G_{1}^{\prime} and G_{2}^{\prime} are never zero. Therefore we can rewrite (B.9) as

$$
\frac{\phi^{\prime \prime}}{\phi^{\prime}}(h)=-\frac{H_{12}}{H_{1} H_{2}}\left(z_{1}(h), z_{2}(h)\right)
$$

over \mathcal{N}.
We note that this equation incorporates a sign constraint and overidentifying restrictions. For ϕ to be strictly decreasing and convex, we require $H_{12} /\left(H_{1} H_{2}\right) \geq 0$. Moreover, on any admissible curve the ratio $H_{12} /\left(H_{1} H_{2}\right)$ must be the same function of h, which we denote $R(h)$.

B.4.2 Proof of part 2

From now on we denote $(\underline{h}, \bar{h}) \subset(0,1)$ the image of \mathcal{N} by H.
We use the fact that $\partial \log \left(-\phi^{\prime}(h)\right) / \partial h=\phi^{\prime \prime}(h) / \phi^{\prime}(h)$ to obtain

$$
\log \left(-\phi^{\prime}(h)\right)=\int_{h}^{\bar{h}} R(t) d t+\log \left(-\phi^{\prime}(\bar{h})\right)
$$

so that

$$
\phi^{\prime}(h)=\phi^{\prime}(\bar{h}) \exp \left(\int_{h}^{\bar{h}} R(t) d t\right)
$$

Denoting

$$
\mathbb{T}(h):=\int_{h}^{\bar{h}} d k \exp \left(\int_{k}^{\bar{h}} R(t) d t\right)
$$

gives us $\phi(h)=\phi(\bar{h})-\phi^{\prime}(\bar{h}) \mathbb{T}(h)$. Note that by construction \mathbb{T} is a decreasing function and $\mathbb{T}(\bar{h})=0$. Moreover, $\phi^{\prime}(\bar{h})$ cannot be zero since ϕ would be constant.

B.4.3 Proof of part 3

If ϕ solves (B.8) then clearly so does $\alpha \phi$ for any $\alpha>0$; we normalize $\phi^{\prime}(\bar{h})=-1$. Hence, from now on, $\phi(h)=\phi(\bar{h})-\mathbb{T}(h)$. The constant $\phi(\bar{h})$ must be non-negative since ϕ cannot take negative values. Moreover, since ϕ is convex, $\phi^{\prime}(\bar{h})=-1$, and $\phi(1)=0$, we must have $\phi(\bar{h}) \leq 1-\bar{h}$. If moreover $\bar{h}=\sup _{\boldsymbol{z} \in \mathcal{N}} \operatorname{Pr}(D=1 \mid \boldsymbol{Z}=\boldsymbol{z})=1$, then $\phi(\bar{h})=\phi(1)=0$; this defines directly $\phi(h)=-\mathbb{T}(h)$ over $(\underline{h}, 1)$.

B.4.4 Proof of part 4

Since the model is well-specified, there is a solution G_{1}, G_{2} (the thresholds of the true DGP). In addition, since any other admissible ($\left.\tilde{G}_{1}, \tilde{G}_{2}\right)$ must satisfy

$$
\phi\left(\tilde{G}_{1}\left(z_{1}\right)\right)+\phi\left(\tilde{G}_{2}\left(z_{2}\right)\right)=\phi\left(H\left(z_{1}, z_{2}\right)\right)=\phi\left(G_{1}\left(z_{1}\right)\right)+\phi\left(G_{2}\left(z_{2}\right)\right)
$$

on \mathcal{N}, it must be that

$$
\begin{aligned}
& \phi\left(\tilde{G}_{1}\left(z_{1}\right)\right)=\phi\left(G_{1}\left(z_{1}\right)\right)-k \\
& \phi\left(\tilde{G}_{2}\left(z_{2}\right)\right)=\phi\left(G_{2}\left(z_{2}\right)\right)+k
\end{aligned}
$$

for some constant k. Any such constant must be such that $\phi\left(G_{1}\left(z_{1}\right)\right)-k$ and $\phi\left(G_{2}\left(z_{2}\right)\right)+k$ are both nonnegative for all z_{1} and z_{2} in the projections of \mathcal{N}. That is,

$$
-\inf \phi\left(G_{2}\left(z_{2}\right)\right) \leq k \leq \inf \phi\left(G_{1}\left(z_{1}\right)\right)
$$

If moreover $\sup _{\boldsymbol{z} \in \mathcal{N}} \operatorname{Pr}(D=1 \mid \boldsymbol{Z}=\boldsymbol{z})=1$, then $\bar{h}=1$. Take a sequence $\left(\boldsymbol{z}_{n}\right)$ such that $H\left(\boldsymbol{z}_{n}\right)$ converges to $\bar{h}=1$. Then $\phi\left(H\left(\boldsymbol{z}_{n}\right)\right)$ converges to zero, so that both $\phi\left(G_{1}\left(z_{1 n}\right)\right)$ and $\phi\left(G_{2}\left(z_{2 n}\right)\right)$ must converge to zero. The double inequality above implies that $k=0$, and G_{1} and G_{2} are point-identified on the projections of \mathcal{N}.

C The Entry Game

Let us return to Example 2, in which two firms $j=1,2$ are considering entry into a new market. Firm j has profit π_{j}^{m} if it becomes a monopoly, and $\pi_{j}^{d}<\pi_{j}^{m}$ if both firms enter. We saw that if $\pi_{j}^{m}>0>\pi_{j}^{d}$ for both firms, then there are two symmetric equilibria, with only one firm operating. Now assume that we observe not only the number of entrants as in Example 2, but also their identity. With profits given by $\pi_{j}^{m}=V_{j}-Q_{j}(\boldsymbol{Z})$ and $\pi_{j}^{d}=\bar{V}_{j}-\bar{Q}_{j}(\boldsymbol{Z})$, if only firm 1 entered then we know that $\pi_{1}^{m}>0$ and $\pi_{2}^{d}<0$, so that

$$
V_{1}>Q_{1}(\boldsymbol{Z}) \text { and } \bar{V}_{2}<\bar{Q}_{2}(\boldsymbol{Z})
$$

That still leaves two possible cases:

1. $\pi_{2}^{m}<0$, and the unique equilibrium has only firm 1 entering the market;
2. and $\pi_{2}^{m}>0$, and there is another, symmetric equilibrium with only firm 2 entering.

Now let us postulate an equilibrium selection rule that has a threshold structure: when both π_{1}^{m} and π_{m}^{2} are positive, firm 1 is selected to be the unique entrant if and only if $U<q(\boldsymbol{Z})$. Then the necessary and sufficient set of conditions for the entry of firm 1 only is

$$
V_{1}>Q_{1}(\boldsymbol{Z}) \text { and }\left(V_{2}<Q_{2}(\boldsymbol{Z}) \text { or }\left(\bar{V}_{2}<\bar{Q}_{2}(\boldsymbol{Z}) \text { and } U<q(\boldsymbol{Z})\right)\right) .
$$

This is again a special case of the general framework we analyze in this paper.

D Detailed Discussion of Heckman, Urzua, and Vytlacil (2008)

Heckman, Urzua, and Vytlacil (2008) consider a multinomial discrete choice model for treatment. They posit
$D=k \Longleftrightarrow R_{k}(\boldsymbol{Z})-U_{k}>R_{l}(\boldsymbol{Z})-U_{l}$ for $l=0, \ldots, K-1$ such that $l \neq k$,
where the U 's are continuously distributed and independent of \boldsymbol{Z}.
Define

$$
\boldsymbol{R}(\boldsymbol{Z})=\left(R_{k}(\boldsymbol{Z})-R_{l}(\boldsymbol{Z})\right)_{l \neq k} \quad \text { and } \boldsymbol{U}=\left(U_{k}-U_{l}\right)_{l \neq k}
$$

Then $D_{k}=\mathbb{1}(\boldsymbol{R}(\boldsymbol{Z})>\boldsymbol{U})$; and defining $Q_{l}(\boldsymbol{Z})=\operatorname{Pr}\left[\boldsymbol{U}_{l}<\boldsymbol{R}_{l}(\boldsymbol{Z}) \mid \boldsymbol{Z}\right]$ allows us to write the treatment model as

$$
\begin{equation*}
D=k \text { iff } \boldsymbol{V}<\boldsymbol{Q}(\boldsymbol{Z}), \tag{D.1}
\end{equation*}
$$

where each V_{l} is distributed as $U[0,1]$.
The applications they consider are GED certification (with three treatments: permanent high school dropout, GED, high school degree) and randomized trials with imperfect compliance (for example, no training, classroom training, and job search assistance).

They then study the identification of marginal and local average treatment effects under assumptions that are similar to ours: continuous instruments that generate enough dimensions of variation in the thresholds. They assume that \boldsymbol{V} is continuously distributed with full support; that $(\boldsymbol{U}, \boldsymbol{V}) \Perp Z$; and that all treatments have positive probabilities. More importantly, they make either

- assumption (a): for each treatment j, there is a component of \boldsymbol{Z} that drives some variation in R_{j} conditional on the other components, and in R_{j} only;
- assumption (b): for each treatment j, there is a component of \boldsymbol{Z} that drives continuous variation in R_{j} conditional on the other components, and no variation in the other components of R.

For any subset of treatments $\mathcal{J} \subset \mathcal{K}$, they define $Y_{\mathcal{J}}$ to be the outcome when the agent chooses the best treatment from \mathcal{J}. They also define $\Delta_{\mathcal{J}, \mathcal{L}}=Y_{\mathcal{J}}-Y_{\mathcal{L}}$, and in
particular the MTE

$$
E\left(\Delta_{\mathcal{J}, \mathcal{L}} \mid \boldsymbol{Z}, R_{\mathcal{J}}(\boldsymbol{Z})=R_{\mathcal{L}}(\boldsymbol{Z})\right)
$$

They show that

- if we take $\mathcal{J}=\{j\}$ and $\mathcal{L}=\mathcal{K}-\{j\}$, then the LATE is identified under (a) and the MTE is identified under (b);
- if we take any \mathcal{J} and $\mathcal{L}=\mathcal{K}-\mathcal{J}$, then the results are similar but the MTEs and LATEs are defined by conditioning on the values of the Q 's rather than on the Z 's.

They do not invoke any large support assumptions to obtain identification results mentioned just above.

However, if we take $\mathcal{J}=\{j\}$ and $\mathcal{L}=\{l\}$, then their corresponding identification results (see Theorem 3 of Heckman, Urzua, and Vytlacil (2008)) require a large support condition. To see their logic, suppose that $K=3$ and that one of the R_{j} 's is sufficiently negative that the probability of choosing one of the choices is arbitrarily small. This case effectively reduces to the binary treatment case; their LIV estimand, which is the limit of a sequence of Wald estimands, identifies the MTE.

We do not rely on this type of identification-at-infinity strategy since we identify the MTE via multidimensional cross derivatives. Note that our identification results are conditional on the assumption that \boldsymbol{Q} is already identified. A more stringent assumption on the support of \boldsymbol{Z} might be necessary to identify \boldsymbol{Q}, as demonstrated in Matzkin (1993, 2007). In this sense, our assumptions are not necessarily weaker than those of Heckman, Urzua, and Vytlacil (2008). We view our identification results and theirs as complementing each other.

E Non-rectangular Threshold Conditions

The threshold conditions we postulated in Assumption 2.1 have the "rectangular" form $V_{j}<Q_{j}(\boldsymbol{Z})$. Suppose that the threshold conditions $j=1, \ldots, J$ have the more general form

$$
\boldsymbol{\alpha}_{j} \cdot \boldsymbol{U} \leq R_{j}(\boldsymbol{Z})
$$

where the $\boldsymbol{\alpha}_{j}$ are possibly unknown parameter vectors in \mathbb{R}^{L} and $\boldsymbol{U}=\left(U_{1}, \ldots, U_{L}\right)$ is independent of \boldsymbol{Z}. For notational simplicity, assume that each (scalar) random
variable $u_{j} \equiv \boldsymbol{\alpha}_{j} \cdot \boldsymbol{U}$ has positive density everywhere; denote H_{j} its cdf. Then each threshold condition can be written equivalently as

$$
V_{j} \equiv H_{j}\left(u_{j}\right)<H_{j}\left(R_{j}(\boldsymbol{Z})\right) \equiv Q_{j}(\boldsymbol{Z})
$$

By construction, each V_{j} is distributed uniformly over $[0,1]$. Moreover, since each threshold Q_{j} is an increasing function of the corresponding R_{j} only, any exclusion restriction assumed on either form applies equally to the other, so that we can hope to identify the thresholds Q_{j} under suitable assumptions. If they are indeed identified, then we can apply Theorem 3.1 to recover the joint density of $\boldsymbol{V}=\left(V_{1}, \ldots, V_{j}\right)$ and the MTE conditional on \boldsymbol{v}.

The random variables \boldsymbol{V} and the thresholds \boldsymbol{Q} are only auxiliary objects, and the analyst is likely to be more interested in the \boldsymbol{U} and \boldsymbol{R}. If the cdf H_{j} were known, then we could write $R_{j}=H_{j}^{-1}\left(Q_{j}\right)$ and by the change-of-variables formula,

$$
f_{u}\left(u_{1}, \ldots, u_{J}\right)=f_{\boldsymbol{V}}\left(H_{1}^{-1}\left(u_{1}\right), \ldots, H_{J}^{-1}\left(u_{J}\right)\right) \times \prod_{j=1}^{J} H_{j}^{\prime}\left(u_{j}\right)
$$

In turn, knowing the joint distribution of \boldsymbol{u} directly gives the density of \boldsymbol{U} if $L=J$ and the matrix $\boldsymbol{\alpha}$ whose rows are the vectors $\boldsymbol{\alpha}_{j}^{\prime}$ is invertible:

$$
f_{U}(\boldsymbol{U})=f_{u}(\boldsymbol{\alpha} \boldsymbol{U}) \times|\boldsymbol{\alpha}| .
$$

If more realistically the H_{j} and $\boldsymbol{\alpha}_{j}$ are unknown, we may still use other restrictions. As an illustration, take a recursive system, where the matrix $\boldsymbol{\alpha}$ is lower-triangular with diagonal terms equal to one. Then since $U_{2}=u_{2}-\alpha_{21} u_{1}=H_{2}^{-1}\left(V_{2}\right)-\alpha_{21} H_{1}^{-1}\left(V_{1}\right)$, the independence of U_{1} and U_{2}, for instance, would translate into the independence of V_{1} and of the variable

$$
W_{2} \equiv H_{2}^{-1}\left(V_{2}\right)-\alpha_{21} H_{1}^{-1}\left(V_{1}\right) .
$$

Now $V_{2}=H_{2}\left(W_{2}+\alpha_{21} U_{1}\right)$, so this in turn implies that the (identified) distribution of V_{2} conditional of V_{1} must satisfy

$$
F_{V_{2} \mid V_{1}}\left(H_{2}\left(w_{2}+\alpha_{21} H_{1}^{-1}\left(v_{1}\right)\right) \mid v_{1}\right)=F_{W_{2}}\left(w_{2}\right)=H_{2}\left(w_{2}\right)
$$

for all w_{2} and v_{1}. But as the right-hand-side does not depend on v_{1}, this imposes restrictions that only hold for some choices of H_{1}, H_{2} and α_{21}. If we only know H_{2}, then

$$
w_{2}+\alpha_{21} H_{1}^{-1}\left(v_{1}\right)=F_{V_{2} \mid V_{1}}^{-1}\left(H_{2}\left(w_{2}\right) \mid v_{1}\right)
$$

overidentifies the product $\alpha_{21} H_{1}^{-1}\left(v_{1}\right)$; and if we also know H_{1}, then it overidentifies α_{21}. These results extend directly to higher-dimensional systems.

References

Heckman, J., and R. Pinto (2018): "Unordered Monotonicity," Econometrica, 86(1), 1-35.

Heckman, J. J., S. Urzua, and E. Vytlacil (2008): "Instrumental variables in models with multiple outcomes: The general unordered case," Annales d'économie et de statistique, 91/92, 151-174.

Matzkin, R. L. (1993):"Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, 58(1), 137-168.
__ (2007): "Heterogeneous choice," in Advances in economics and econometrics: theory and applications, ed. by R. Blundell, W. Newey, and T. Persson, vol. 2, chap. 4, pp. 75-110. Cambridge University Press.

[^0]: Suggested Citation: Lee, Sokbae; Salanié, Bernard (2018) : Identifying effects of multivalued treatments, cemmap working paper, No. CWP34/18, Centre for Microdata Methods and Practice (cemmap), London, https://doi.org/10.1920/wp.cem.2018.3418

[^1]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^2]: *We are grateful to the co-editor and to four anonymous referees for their comments. We also thank Stéphane Bonhomme, Eric Gautier, Joe Hotz, Thierry Magnac, Lars Nesheim, Rodrigo Pinto, Adam Rosen, Christoph Rothe, Azeem Shaikh, Alex Torgovitsky, Ed Vytlacil, and especially Jim Heckman for their very useful suggestions. We also benefited from comments of seminar audiences in Cambridge, Chicago, Duke, Georgetown, Harvard, MIT, NYU, UCL, and Yale. We would like to thank Junlong Feng and Cameron LaPoint for proofreading the paper. This research has received financial support from the European Research Council under the European Community's Seventh Framework Program FP7/2007-2013 grant agreement No. 295298-DYSMOIA and under the Horizon 2020 Framework Program grant agreement No. 646917-ROMIA.
 ${ }^{\dagger}$ Columbia University and Institute for Fiscal Studies, sl3841@columbia.edu.
 ${ }^{\ddagger}$ Columbia University, bsalanie@columbia.edu.

[^3]: ${ }^{1}$ de Chaisemartin (2017) shows that under a weaker condition, LATE estimates the average treatment effect on a specific subset of the compliers.

[^4]: ${ }^{2}$ See e.g. Poirier $\sqrt{1980}$) for a parametric version of this model.

[^5]: ${ }^{3}$ If the econometrician observes the identity of the entrants and not only their numbers, we face the usual partial identification problem generated by the existence of multiple equilibria (see e.g. Tamer, 2003). If equilibrium selection is modeled as an additional threshold-crossing rule, then our approach actually encompasses this case. We refer the reader to Online Appendix C, where we explain this in more detail.

[^6]: ${ }^{4}$ It would be easy to adapt our results to cases where, for instance, \boldsymbol{Q} has discontinuities. We do not pursue it in this paper.

[^7]: ${ }^{5}$ The proof of the theorem shows that these derivatives are well-defined.

[^8]: ${ }^{6}$ It would also be possible to seek identification jointly from the generalized propensity scores and from the cross-derivatives that appear in Theorems 3.1 or A.1, especially when they are overidentified. We do not pursue this here.

[^9]: ${ }^{7}$ See Heckman and Vytlacil (2007, Appendix B) for an application to treatment models.

[^10]: ${ }^{8}$ The precise form of these restrictions in terms of C_{1}^{0} and $P\left(Z_{1}, Z_{2}\right)$ is given in the proof of Theorem 4.1.

[^11]: ${ }^{9}$ Since probabilities add up to one, only one of these equalities generates a specification test.

[^12]: ${ }^{10}$ The class of Archimedean copulas include the Clayton, Frank, and Gumbel families among others (see Nelsen, 2006, ch. 4).

[^13]: ${ }^{11}$ This location constant plays the role of k in part 4 of Theorem 4.3

[^14]: ${ }^{12}$ Appendix D compares our results with those of Heckman, Urzua, and Vytlacil (2008) in more detail.

[^15]: *Columbia University and Institute for Fiscal Studies, sl3841@columbia.edu.
 ${ }^{\dagger}$ Columbia University, bsalanie@columbia.edu.

