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Abstract

This paper studies inference in randomized controlled trials with covariate-adaptive randomization
when there are multiple treatments. More specifically, we study in this setting inference about the average
effect of one or more treatments relative to other treatments or a control. As in Bugni et al. (2017),
covariate-adaptive randomization refers to randomization schemes that first stratify according to baseline
covariates and then assign treatment status so as to achieve “balance” within each stratum. In contrast to
Bugni et al. (2017), however, we allow for the proportion of units being assigned to each of the treatments
to vary across strata. We first study the properties of estimators derived from a “fully saturated” linear
regression, i.e., a linear regression of the outcome on all interactions between indicators for each of the
treatments and indicators for each of the strata. We show that tests based on these estimators using the
usual heteroskedasticity-consistent estimator of the asymptotic variance are invalid in the sense that they
may have limiting rejection probability under the null hypothesis strictly greater than the nominal level;
on the other hand, tests based on these estimators and suitable estimators of the asymptotic variance that
we provide are exact in the sense that they have limiting rejection probability under the null hypothesis
equal to the nominal level. For the special case in which the target proportion of units being assigned
to each of the treatments does not vary across strata, we additionally consider tests based on estimators
derived from a linear regression with “strata fixed effects,” i.e., a linear regression of the outcome on
indicators for each of the treatments and indicators for each of the strata. We show that tests based
on these estimators using the usual heteroskedasticity-consistent estimator of the asymptotic variance
are conservative in the sense that they have limiting rejection probability under the null hypothesis no
greater than and typically strictly less than the nominal level, but tests based on these estimators and
suitable estimators of the asymptotic variance that we provide are exact, thereby generalizing results
in Bugni et al. (2017) for the case of a single treatment to multiple treatments. A simulation study

illustrates the practical relevance of our theoretical results.

KEYWORDS: Covariate-adaptive randomization, multiple treatments, stratified block randomization, Efron’s
biased-coin design, treatment assignment, randomized controlled trial, strata fixed effects, saturated regres-

sion
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1 Introduction

This paper studies inference in randomized controlled trials with covariate-adaptive randomization when
there are multiple treatments. As in Bugni et al. (2017), covariate-adaptive randomization refers to random-
ization schemes that first stratify according to baseline covariates and then assign treatment status so as to
achieve “balance” within each stratum. Many such methods are used routinely when assigning treatment
status in randomized controlled trials in all parts of the sciences. See, for example, Rosenberger and Lachin
(2016) for a textbook treatment focused on clinical trials and Duflo et al. (2007) and Bruhn and McKenzie
(2008) for reviews focused on development economics. In contrast to Bugni et al. (2017), however, we allow
the target proportion of units being assigned to each of the treatments to vary across strata. A textbook
example of an experiment involving this type of treatment assignment mechanism is the Tennessee class
size reduction experiment, commonly known as Project STAR (Student-Teacher Achievement Ratio); see
Stock and Watson (2003, Ch. 11) and Imbens and Rubin (2015, Ch. 9). In this paper, we take as given the
use of such a treatment assignment mechanism and study its consequences for inference about the average
effect of one or more treatments relative to other treatments or a control. Our main requirement is that
the randomization scheme is such that the fraction of units being assigned to each treatment within each
stratum is suitably well behaved in a sense made precise by our assumptions below as the sample size n
tends to infinity. See, in particular, Assumptions 2.2.(b) and 4.1.(c). Importantly, these requirements are
satisfied by most commonly used treatment assignment mechanisms, including simple random sampling and
stratified block randomization. The latter treatment assignment scheme is especially noteworthy because of
its widespread use recently in development economics. See, for example, Dizon-Ross (2014, footnote 13),
Duflo et al. (2014, footnote 6), Callen et al. (2015, page 24), and Berry et al. (2015, page 6).

We first study the properties of ordinary least squares estimation of a “fully saturated” linear regres-
sion, i.e., a linear regression of the outcome on all interactions between indicators for each of the treat-
ments and indicators for each of the strata. We show that tests based on these estimators using the usual
heteroskedasticity-consistent estimator of the asymptotic variance are invalid in the sense that they may
have limiting rejection probability under the null hypothesis strictly greater than the nominal level. We then
exploit our characterization of the behavior of the ordinary least squares estimator of the coefficients in such
a regression under covariate-adaptive randomization to develop a consistent estimator of the asymptotic
variance. Our main result about the “fully saturated” linear regression therefore shows that tests based on
these estimators and our new estimator of the asymptotic variance are exact in the sense that they have
limiting rejection probability under the null hypothesis equal to the nominal level. In a simulation study, we
find that tests using the usual heteroskedasticity-consistent estimator of the asymptotic variance may have
rejection probability under the null hypothesis dramatically larger than the nominal level. On the other
hand, tests using the new estimator of the asymptotic variance have rejection probability under the null

hypothesis very close to the nominal level.

For the special case in which the target proportion of units being assigned to each of the treatments
does not vary across strata, we additionally consider tests based on ordinary least squares estimation of

a linear regression with “strata fixed effects,” i.e., a linear regression of the outcome on indicators for



each of the treatments and indicators for each of the strata. Based on simulation evidence and earlier
assertions by Kernan et al. (1999), the use of this test has been recommended by Bruhn and McKenzie
(2008). More recently, Bugni et al. (2017) provided a formal analysis of its properties under covariate-adaptive
randomization and a single treatment. In this paper, we show that tests based on these estimators using the
usual heteroskedasticity-consistent estimator of the asymptotic variance are conservative in the sense that
they have limiting rejection probability under the null hypothesis no greater than, and typically strictly less
than, the nominal level. Once again, we exploit our characterization of the behavior of the ordinary least
squares estimator of the coefficients in such a regression under covariate-adaptive randomization to develop
a consistent estimator of the asymptotic variance. Our main result about the linear regression with “strata
fixed effects” therefore shows that tests based on these estimators and our new estimator of the asymptotic
variance are exact in the sense that they have limiting rejection probability under the null hypothesis equal
to the nominal level. In this way, we generalize the results in Bugni et al. (2017) to the case with multiple
treatments. In a simulation study, we find that tests using the usual heteroskedasticity-consistent estimator
of the asymptotic variance may have rejection probability under the null hypothesis dramatically less than
the nominal level and, as a result, may have very poor power when compared to other tests. On the other
hand, tests using the new estimator of the asymptotic variance have rejection probability under the null

hypothesis very close to the nominal level.

The remainder of the paper is organized as follows. In Section 2, we describe our setup and notation.
In particular, there we describe the assumptions we impose on the treatment assignment mechanism. Our
main results concerning the “fully saturated” linear regression are contained in Section 3. Our main results
concerning the linear regression with “strata fixed effects” are contained in Section 4. In Section 5, we
discuss our results in the special case where there is only a single treatment, which facilitates a comparison
of our results with those in Imbens and Rubin (2015, Chapter 9). Finally, in Section 6 we examine the
finite-sample behavior of all the tests we consider in this paper via a small simulation study. Proofs of all

results are provided in the Appendix.

2 Setup and Notation

Let Y; denote the (observed) outcome of interest for the ith unit, A; denote the treatment received by the
ith unit, and Z; denote observed, baseline covariates for the ¢th unit. The list of possible treatments is given
by A={1,...,|A|}, and we say there are multiple treatments when |A| > 1. Without loss of generality we
assume there is a control group, which we denote as treatment zero, and use Ay = {0} U A to denote the
list of treatments that includes the control group. Denote by Y;(a) the potential outcome of the ith unit
under treatment a € Ag. As usual, the (observed) outcome and potential outcomes are related to treatment

assignment by the relationship

Yo=Y Yi(@I{4; = a} = Yi(4) . (1)

a€Ag



Denote by P, the distribution of the observed data
XM = {(Y;, A, Z;) : 1 < i < n}
and denote by @,, the distribution of
W = {(Yi(0),Yi(1),.... Yi(l]), Zi) : 1 < i < n}

Note that P, is jointly determined by (1), @, and the mechanism for determining treatment assignment.
We therefore state our assumptions below in terms of assumptions on @,, and assumptions on the mechanism
for determining treatment status. Indeed, we will not make reference to P,, in the sequel and all operations

are understood to be under @,, and the mechanism for determining treatment status.

Strata are constructed from the observed, baseline covariates Z; using a function S : supp(Z;) — S,

where S is a finite set. For 1 < i < n, let S; = S(Z;) and denote by S the vector of strata (S1,...,5n)-

We begin by describing our assumptions on @Q,,. We assume that W™ consists of n i.i.d. observations,
ie, @, = Q", where @ is the marginal distribution of (Y;(0),Y;(1),...,Y;(JA|), Z;). In order to rule out
trivial strata, we henceforth assume that p(s) = P{S; = s} > 0 for all s € S. We further restrict Q to satisfy

the following mild requirement.

Assumption 2.1. @ satisfies

max E[[Yi(a) ] < o0

and
max Var[Y;(a)|S; =s] > 0.
(a,s)€AgxS
We note that the second requirement in Assumption 2.1 is made only to rule out degenerate situations and

is stronger than required for our results.

Next, we describe our assumptions on the mechanism determining treatment assignment. As mentioned
previously, in this paper we focus on covariate-adaptive randomization, i.e., randomization schemes that
first stratify according baseline covariates and then assign treatment status so as to achieve “balance” within
each stratum. In order to describe our assumptions on the treatment assignment mechanism more formally,
we require some further notation. Let A be vector of treatment assignments (A,...,A,). For any

(a,s) € Ag x S, let mo(s) € (0,1) be the target proportion of units to assign to treatment a in stratum s, let

ng(s) = Z I{A; =a,S; = s}

1<i<n

be the number of units assigned to treatment a in stratum s, and let

n(s) = Z I{S; = s}

1<i<n

be the total number of units in stratum s. Note that >, 4 m.(s) = 1 for all s € S. The following



assumption summarizes our main requirement on the treatment assignment mechanism for the analysis of

the “fully saturated” linear regression.

Assumption 2.2. The treatment assignment mechanism is such that

(a) W 1L A8,

(b) T;“((SS)) £ 7a(s) as n — oo for all (a,s) € A x S.

Assumption 2.2.(a) simply requires that the treatment assignment mechanism is a function only of the
vector of strata and an exogenous randomization device. Assumption 2.2.(b) is an additional requirement
that imposes that the (possibly random) fraction of units assigned to treatment a and stratum s approaches
the target proportion 7,(s) as the sample size tends to infinity. This requirement is satisfied by a wide variety
of randomization schemes; see Bugni et al. (2017), Rosenberger and Lachin (2016, Sections 3.10 and 3.11),
and Wei et al. (1986, Proposition 2.5). Before proceeding, we briefly discuss two popular randomization

schemes that are easily seen to satisfy Assumption 2.2.

Example 2.1. (Simple Random Sampling) Simple random sampling (SRS), also known as Bernoulli trials,

refers to the case where A consists of n i.i.d. random variables with
P{A = a|S™, A* D} = P{Ay =a} =, (2)

for 1 <k <mnandm, € (0,1) satisfying » . 4, 7o = 1. In this case, Assumption 2.2.(a) follows immediately
from (2), while Assumption 2.2.(b) follows from the weak law of large numbers. If (2) is such that the target

probabilities 7, vary by strata, then
P{A, = a|S™ AF=DY = P{A;, = a|Sy, = s} = 7m4(s) ,

which is equivalent to simple random sampling within each stratum. B

Example 2.2. (Stratified Block Randomization) An early discussion of stratified block randomization (SBR)
is provided by Zelen (1974) for the case of a single treatment. This randomization scheme is sometimes also
referred to as block randomization or permuted blocks within strata. In order to describe this treatment

assignment mechanism, for s € S, denote by n(s) the number of units in stratum s and let

na(s) = [n(s)ma(s)]

for a € A with ng(s) = n(s) — > ,c4na(s). In this randomization scheme, independently for each each

stratum s, n,(s) units are assigned to each treatment a, where all

(”0(8)» n1(:)(,s~)~ A (3)>

possible assignments are equally likely. Assumptions 2.2.(a) and 2.2.(b) follow by construction in this case.



We note that our analysis of the linear regression with “strata fixed effects” requires an assumption that is
mildly stronger than Assumption 2.2 above. It is worth emphasizing that this stronger assumption parallels
the assumption made in Bugni et al. (2017) for the analysis of linear regression with “strata fixed effects” in
the case of a single treatment and is also satisfied by a wide variety of treatment assignment mechanisms,
including Examples 2.1 and 2.2 above. See Assumption 4.1 and the subsequent discussion there for further

details.

Our object of interest is the vector of average treatment effects (ATEs) on the outcome of interest. For
each a € A, we use
0.(Q) = E[Yi(a) = Yi(0)] 3)

to denote the ATE of treatment a relative to the control and

0(Q) = (6a(Q) : a € A) = (61(Q), ..., 6.4 (Q))’

to denote the |A|-dimensional vector of such ATEs. Our results permit testing a variety of hypotheses on
smooth functions of the vector 6(Q) at level « € (0,1). In particular, hypotheses on linear functionals can

be written as
Hy : 9(Q) = ¢ versus Hy : ¥O(Q) # ¢, (4)

where U is a full-rank r x |A|-dimensional matrix and ¢ is a r-dimensional vector. This framework accom-

modates, for example, hypotheses on a particular ATE,
Hp : 0,(Q) = c versus Hy : 0,(Q) # ¢, (5)

as well as hypotheses comparing treatment effects,
Hy : 0,(Q) =0, (Q) versus Hy : 0,(Q) # 0. (Q) for any a,a’ € A . (6)

Note that 0,(Q) = 0, (Q) if and only if E[Y;(a)] = E[Y;(a’)]. We note further that it is also possible to use
our results to test smooth non-linear hypotheses on 6(Q) via the Delta method, but, for ease of exposition,

we restrict our attention to linear restrictions as described above in what follows.

Finally, we often transform objects that are indexed by (a,s) € A x S into vectors or matrices, using
the following conventions. For X (a) being a scalar object indexed over a € A, we use (X(a) : a € A) to
denote the |A|-dimensional column vector (X(1),...,X(|A]))". For X,(s) being a scalar object indexed by
(a,8) € Ax S we use (X,(s) : (a,s) € AxS) to denote the (|A| x |S])-dimensional column vector where

the order of the indices matter: first we iterate over a and then over s, i.e.,
(Xa(s) : (a,5) € Ax 8) = (X1(1),-.., Xy (1), X2(2), .., X g (2),..) -

Remark 2.1. The term “balance” is often used in a different way to describe whether the distributions of
baseline covariates Z; in the treatment and control groups are similar. For example, this might be measured

according to the difference in the means of Z; in the treatment and control groups. Our usage follows the



usage in Efron (1971) or Hu and Hu (2012), where “balance” refers to the extent to which the of fraction of

treated units within a strata differs from the target proportion m,(s). W

3 “Fully Saturated” Linear Regression

In this section, we study the properties of ordinary least squares estimation of a linear regression of the
outcome on all interactions between indicators for each of the treatments and indicators for each of the
strata under covariate-adaptive randomization. We then study the properties of different tests of (4) based on
these estimators. We consider tests using both the usual homoskedasticity-only and heteroskedasticity-robust
estimators of the asymptotic variance. Our results show that neither of these estimators are consistent for the
asymptotic variance, and, as a result, both lead to tests that are asymptotically invalid in the sense that they
may have limiting rejection probability under the null hypothesis strictly greater than the nominal level. In
light of these results, we exploit our characterization of the behavior of the ordinary least squares estimator of
the coefficients in such a regression under covariate-adaptive randomization to develop a consistent estimator
of the asymptotic variance. Furthermore, tests using our new estimator of the asymptotic variance are exact
in the sense that they have limiting rejection probability under the null hypotheses equal to the nominal

level.
In order to define the tests we study, consider estimation of the equation

Y= () {Si=s}+ Y Bals)[{Ai=0a,8 =s}+u (7)

sES (a,s)EAXS

by ordinary least squares. For all s € S, denote by 9, (s) and f3,..(s) the resulting estimators of (s) and
Ba(s), respectively. The corresponding estimator of the ATE of treatment «a is given by

én,a = Z ?Bn,a(s) ; (8)

seS

and the resulting estimator of 6(Q) is thus given by

0, = (en,a rac A) = (671,17 . 'aén,|A|)l . (9)

Let V,, be an estimator of the asymptotic covariance matrix of 0,,. For testing the hypotheses in (4), we
consider tests of the form
G (X)) = HT (X ™) > X0 _at (10)

where

T5(X ™)) = (06, — ) (PV, ')~ (¥h,, — )

and X%,pa is the 1 — o quantile of a x? random variable with r degrees of freedom. In order to study the

properties of this test, we first derive in the following theorem the asymptotic behavior of 0,.



Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 2.2. Then,

V(b —0(Q) % N (0, Viay)

where Vgoy = Vg + Vg,

Vir = 30 0(5) (Blma(Z;) = mo(Z))|Si = 5] - a € A) (Elma(Z) —mo(Z)|S; = 5] sa€ A (11)

seS

Vy = diag (Z p(s) <U{/(O)(8) + U?(a)(8)> ta € A) , (12)

2P\ () )

and

The following theorem characterizes the limits in probability for the usual homoskedasticity-only and
heteroskedasticity-robust estimators of the asymptotic variance. It shows, in particular, that neither Vho

nor Vy. are consistent for the asymptotic variance of 6,,, Vgus.

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 2.2. Let Vyo be the homoskedasticity-only estimator of the asymptotic variance defined in (B-33)

and Ve be the heteroskedasticity-consistent estimator of the asymptotic variance defined in (B-34). Then,

Vho ER Z p(s)ﬂa(s)aé(a)(s) [Z :()((SS))LMLiA + diag < f((ss)) ta € A)]
seS ses ¢

(a,s)EAGXS

and
7% 0 () p(s)o% . (5)
th—>z )E L|AL’A|+diag<ZY(a):a€A>.
seS seS

where 1| 4] is a | Al-dimensional vector of ones.

Remark 3.1. In the special case with a single treatment, i.e. | A| = 1, we show in Section 5 that the limit
in probability of Vi could be strictly smaller than V.. Therefore, testing (4) using (10) with V,, = Vie
could lead to over-rejection. In our simulation study in Section 6, we find that the rejection probability may

in fact be substantially larger than the nominal level.

Remark 3.2. It is important to note that in the special case where [A| =1 and m(s) = 1 for all s € S,
both Vo and Vi are consistent for Vgu. The particular properties of this special case have been already
highlighted by Bugni et al. (2017) in the cases of the two-sample t-test, t-test with strata fixed effects, and

covariate-adaptive permutation tests. W



Even though th is generally inconsistent for Vg,¢, the proof of Theorem 3.2 reveals that
. o P
diag (th) Ev, , (13)

under the same assumptions. We exploit this observation in the following theorem to construct a consistent
estimator of the asymptotic variance. The theorem further establishes that tests using this new estimator of
the asymptotic variance are exact in the sense that they have limiting rejection probability under the null

hypotheses equal to the nominal level.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 2.2. Let Vie be the heteroskedasticity-consistent estimator of the asymptotic variance defined in
(B-34) and let

: n(s) (5 o : A :

Vi =y "2 (Bra() = a0 € A) (Bra(s) = Onazac A) (14)

seS

where 6, 4 is as in (8) and B,W(s) is the ordinary least squares estimator of B4(s) in (7). Then,
- - . - P
Veae = Vg + diag (th) B Vet =V +Vy . (15)

In addition, for the problem of testing (4) at level o € (0,1), ¢ (X ™) defined in (10) with V,, = Vg
satisfies
lim_ E[g3 (X)) = a (16)

n—roo

for Q additionally satisfying the null hypothesis, i.e., ¥O(Q) = c.

4 Linear Regression with “Strata Fixed Effects”

In this section, we study the properties of ordinary least squares estimation of a linear regression of the
outcome on indicators for each of the treatments and indicators for each of the strata under covariate-adaptive
randomization. We then study the properties of different tests of (4) based on these estimators. As before,
we consider tests using both the usual homoskedasticity-only and heteroskedasticity-robust estimators of the
asymptotic variance, and our results show that neither of these estimators are consistent for the asymptotic
variance. We therefore exploit, as in the previous section, our characterization of the behavior of the ordinary
least squares estimator of the coefficients in such a regression under covariate-adaptive randomization to
develop a consistent estimator of the asymptotic variance, which leads to tests that are exact in the sense

that they have limiting rejection probability under the null hypotheses equal to the nominal level.

In order to define the tests we study, consider estimation of the equation

Y= 61I{S;=s}+ Y Bil{A; =a}+u (17)

SES acA

by ordinary least squares. Denote by B;a the resulting estimator of 5 in (17). The corresponding estimator



*

of the ATE of treatment a is simply given by Bn’a, and the resulting estimator of #(Q) is thus given by

O = (Bra:ac A)=(Br B a) - (18)

Let V! be an estimator of the asymptotic variance of 6. For testing the hypotheses in (4), we consider tests
of the form
Sne(XM) = HTF(XM) > 210} (19)

where

T3 (X ™) = n(Wh% — o) (TVE W) "1 (0o — ¢)

n

and X%,pa is the 1 — o quantile of a x? random variable with r degrees of freedom. In order to study the
properties of this test, we first derive the asymptotic behavior of é:‘L As mentioned earlier, in order to do so,
we impose instead of Assumption 2.2 the following assumption, which mildly strengthens it. We emphasize
again that this stronger assumption parallels the assumption made in Bugni et al. (2017) for the analysis of
linear regression with “strata fixed effects” in the case of a single treatment and is also satisfied by a wide

variety of treatment assignment mechanisms, including Examples 2.1 and 2.2.

Assumption 4.1. The treatment assignment mechanism is such that

(a) W 1L A5,

(b) ma(s) =m, € (0,1) for all (a,s) € Ax S.

(c) {(\/ﬁ (7:((:)) — 7Ta) : (a,8) € A x S) ‘S(")} 4 N(0,diag(Sp(s)/p(s) : s € S)) a.s. where for each s € S

and some 7(s) € [0, 1],

Yp(s) =7(s)[diag(me :a € A) — (g :a € A)(mg :a € A)] . (20)

Assumption 4.1.(a) is the same as Assumption 2.2.(a) and requires that the treatment assignment mech-
anism is a function only of the vector of strata and an exogenous randomization device. Assumption 4.1.(b)
requires the target proportion m,(s) to be constant across strata. This restriction is required for consis-
tency of 9; for 6(Q). Finally, Assumption 4.1.(c) is stronger than Assumption 2.2.(b) and requires that the
(possibly random) fraction of units assigned to treatment a and stratum s is asymptotically normal as the
sample size tends to infinity. In the case of simple random sampling, where each unit is randomly assigned
to each treatment with probability 7., Assumption 4.1.(c) holds with 7(s) = 1 for all s € S§. In this sense,
the assumption requires that the treatment assignment mechanism improves “balance” relative to simple
random sampling. At the other extreme, we say that the treatment assignment mechanism achieves “strong
balance” when 7(s) = 0 for all s € S, which leads to X p(s) being a null matrix. It is straightforward to show
that stratified block randomization satisfies Assumption 4.1.(c) with 7(s) = 0, i.e., that it achieves “strong

balance.”

The following theorem derives the asymptotic behavior of é;



Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 4.1. Then,
Va(8;, - 8(Q) % N0, Vare)

where Ve = Vg + V5 + V4, Vi is as in (11) with w,(s) = 7, for all (a,s) € Ax S, Vy is as in (12), and

Va= (Zp<s> (a2 1 o) =2

TaTq! T T
seS alla a0

60 (969 2D 0)6u() 2N ) o) € A x A (21)
and
€al(s) = E[ma(Z:)|Si = 8] = > 7w Elma(Zi]S; = 5)] . (22)
a’€Ap

Lemmas C.6 and C.7 in the Appendix derive the limit in probability of the usual homoskedasticity-only
and heteroskedasticity-consistent estimators of the asymptotic variance of é:‘l As in the preceding section,
these results show that neither of these estimators are consistent for the asymptotic variance of é;‘l In the
special case with only one treatment (i.e., |A| = 1), however, the heteroskedasticity-consistent estimator
of the asymptotic variance leads to tests that are asymptotically conservative in the sense that they have
limiting rejection probability under the null hypothesis no greater than the nominal level. See (Bugni et al.,
2017, Theorem 4.3) and Section 5 below for further discussion. In light of these results, the following theorem
constructs a consistent estimator of the asymptotic variance of é; The theorem further establishes that tests
using this new estimator of the asymptotic variance are exact in the sense that they have limiting rejection
probability under the null hypotheses equal to the nominal level. Before proceeding, we note, however, that
the theorem imposes the additional requirement that the randomization scheme achieves “strong balance,”
ie, that 7(s) = 0 for all s € S. While it is possible to derive consistent estimators of the asymptotic
variance of é; even when this is not the case, it follows from Theorem D.1 in the Appendix that when each
test is used with a consistent estimator for the appropriate asymptotic variance, ¢ (X (")) is in general
less powerful along a sequence of local alternatives than ¢5*(X (”)) except in the case of “strong balance.”
Indeed, it follows immediately from Theorems 3.1 and 4.1 that the asymptotic variance of é,”; coincides with
the asymptotic variance of 0,, for randomization schemes that achieve “strong balance.” For this reason, we

view the case of randomization schemes that achieve “strong balance” as being the most relevant.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 4.1 with 7(s) = 0 for all s € S. Let Vie be the heteroskedasticity-consistent estimator of the
asymptotic variance defined in (B-34) and let Vi be defined as in (14). Then,

ste = VH + diag (“A/hc) £> Vste =V +Vy . (23)
In addition, for the problem of testing (4) at level a € (0,1), ¢5(X ™)) defined in (19) with ¥, = Vg

satisfies

lim E[¢fe(X™)] = a (24)

n—oo
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for Q additionally satisfying the null hypothesis, i.e., ¥O(Q) = c.

5 The Case of a Single Treatment

In this section we consider the special case where |A| = 1 to better illustrate the results we derived for the
general case and to compare them to those in Imbens and Rubin (2015). When |A| = 1, 0(Q) is a scalar

parameter and the asymptotic variances in Theorems 3.1 and 4.1 become considerably simpler.

Consider first the the “fully saturated” linear regression. Applying Theorem 3.1 to the case |A| = 1
shows that \/n(f, — 0(Q)) tends in distribution to a normal random variable with mean zero and variance
equal to

2 2
Vsat = S+ Sy

where

st = > p(s) (Elmi(Z:) — mo(Z:)|S; = s])° (25)
seS
o2 (s) o%  (s)
2 _ s Y (0) Y (1) )
v = ;p( ) ( mo(s) * m1(s) > (26)

In addition, it follows from Theorem 3.2 and (13) that the usual heteroskedasticity-consistent estimator of
the asymptotic variance of 0, converges in probability to §)2~,. As a result, tests based on 0,, and this estimator

for the asymptotic variance lead to over-rejection under the null hypothesis whenever ¢% > 0.

Tmbens and Rubin (2015, Ch. 9) study the properties of 0,, when |A| =1 and the treatment assignment
mechanism is stratified block randomization, which satisfies the hypotheses of Theorem 3.1. In contrast
to our results, Imbens and Rubin (2015, Theorem 9.2, page 207) conclude that v/n(f, — 0(Q)) tends in
distribution to a normal random variable with mean zero and variance equal to gé. In other words, the
results in Imbens and Rubin (2015) coincide with our results when the model is sufficiently homogeneous in

the sense that <7 = 0. This condition can be alternatively written as
EVi(1) = Yi(0)]Si = 5] = B[Yi(1) - Yi(0)] foralls€S. (27)

When this condition does not hold, however, our results differ from those in Imbens and Rubin (2015) and
lead to tests that are asymptotically exact under arbitrary heterogeneity. In Section 6 we show further that
tests based on 6, and a consistent estimator of g% only may over-reject dramatically when ¢% is indeed

positive.

Now consider the linear regression with “strata fixed effects.” Applying Theorem 4.1 to the case |A| =1
shows that /(6% — 0(Q)) tends in distribution to a normal random variable with mean zero and variance
equal to

2 2 2
ste:§H+gi}+§A,

11



where ¢% is as in (25), §}2~, is as in (26), and

(1 — 27‘(’1)2 2
G = ————= > 7(s)p(s) (E[m1(2)|S = 5] — E[mo(2)|S = s])* . (28)
ﬂ—l(l - 7T1) seS
For treatment assignment mechanisms that achieve “strong balance,” we have in particular that Vg =
SH + g%. Furthermore, applying Lemmas C.6 and C.7 in the Appendix to the case |A| = 1 and 7(s) = 0
shows that the usual homoskedasticity-only estimator of the asymptotic variance is generally inconsistent
for Vg, while the heteroskedasticity-consistent estimator of the variance, Vi“w, satisfies
¥ 5 #73 ¢& +¢2 (29)
hc 7_‘_1(1 _ 7T1) H v
which is strictly greater than Vg, unless ¢ = 0 or m; = 3. In other words, when |A| =1 and 7(s) = 0 for
all s € S, tests of (4) based on éfl and the usual the heteroskedasticity-consistent estimator of the asymptotic
variance V7 are asymptotically conservative unless ¢% = 0 or m = 1. See Bugni et al. (2017, Theorem 4.3)

for a formal statement of this result.

Imbens and Rubin (2015, Ch. 9) also study the properties of 6% when |A| = 1 and the treatment
assignment mechanism is stratified block randomization, which satisfies the hypotheses of Theorem 4.1. In
particular, stratified block randomization satisfies Assumption 4.1 with 7(s) = 0 for all s € S, so ¢4 = 0.
In contrast to our results, Imbens and Rubin (2015, Theorem 9.1, page 206) conclude that /n (0% — 6(Q))
tends in distribution to a normal random variable with mean zero and variance that can be expressed in our

notation as
1
———— 3|+
Lﬁ(l—ﬂl) ] ey

This asymptotic variance is strictly greater than Vg, unless ¢ = 0 or m = 2

5, and it coincides with the
limit in probability of the heteroskedasticity-consistent estimator of the asymptotic variance in (29). As in
the case of the “fully saturated” linear regression, the results in Imbens and Rubin (2015) coincide with
our results when the model is sufficiently homogeneous in the sense that condition (27) holds. When this
condition does not hold, however, our results differ from those in Imbens and Rubin (2015) and lead to
tests that are asymptotically exact under arbitrary heterogeneity. In Section 6 we again show that tests
based on é;‘; and the usual heteroskedasticity-consistent estimator of the asymptotic variance may over-reject

dramatically under the null hypothesis.

6 Monte Carlo Simulations

In this section, we examine the finite-sample performance of several tests for the hypotheses in (4), including
those introduced in Sections 3 and 4, with a simulation study. For a € A and 1 < i < n, potential outcomes

are generated in the simulation study according to the equation:

Yz(a) = fba + ma(Zi) + O'a(Zi)€a,i . (30)

12



where g, ma(Z;), 04(Z;), and €,,; are defined below. In each specification, n = 500, {(Z;, €0,i,€14) : 1 <i <
n} are 1.i.d. with Z;, € ;, and €1 ; all being independent of each other, and the functions m,(Z;) have been
re-centered to have zero mean. We focus on the case |A| = 1 with 71(s) = 7 for all s € S in order to be able

to compare the tests studied in Sections 3 and 4; but also study the case where m1(s) # m1(s’) for s # s'.

Model 1: Z; ~ Beta(2,2) (re-centered and re-scaled to have mean zero and variance one); 0g(Z;) =
oo =1and 01(Z;) = 01; €0i ~ N(0,1) and €1 ; ~ N(0,1); mo(Z;) = m1(Z;) = vZ;. In this case,

Y = po + (k1 — po)Ai +vZi + 15
where
n; = o14i€1; +0o(l — A4;)€o
and E[n;|A;, Z;] = 0.
Model 2: As in Model 1, but mo(Z;) = —vlog(Z; + 3)I{Z; < i}.
Model 3: As in Model 2, but 0,(Z;) = 04|Z;].

Model 4: Z1 ~ Umf(72,2), €0, ™~ %tg and €1, ™~ %tg; (Ta(Zi) = O’a|Zi|; and

vZ2 if Z; € [-1,1] ~Z; it Z; e [-1,1]
mo(Z;) = and my(Z;) = .
~Z;  otherwise vZ?  otherwise

Treatment status is determined according to one of the following four different covariate-adaptive random-

ization schemes:

SRS: Treatment assignment is generated as in Example 2.1.

SBR.: Treatment assignment is generated as in Example 2.2.

In each case, strata are determined by dividing the support of Z; into |S| intervals of equal length and
letting S(Z;) be the function that returns the interval in which Z; lies. In all cases, observed outcomes Y;
are generated according to (1). Finally, for each of the above specifications, we consider different values of
(|S],m,v,0) and consider both (g, 1) = (0,0) (i.e., under the null hypothesis that § = pu; — po = 0) and
(10, 1) = (0, 3) (i-e., under the alternative hypothesis with 6 = 0.2).

The results of our simulations are presented in Tables 1-4 below. Rejection probabilities are computed

using 10* replications. Columns are labeled in the following way:

SAT: The t-test from the fully saturated regression studied in Section 3. We report results for this
test using the homoskedasticity-only (‘HO’), heteroskedasticity-robust (‘HC’), and the new (‘NEW’)

consistent (as in Theorem 3.3), estimators of the asymptotic variance.

13



Rejection rate under null - § = 0

Rejection rate under alternative - § = 0.2

SAT SFE SAT SFE
M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW
1 SRS 5.13 5.30 5.27 5.08 5.14 5.17 81.96 82.11 82.08 82.01 82.06 82.15
SBR 4.74 4.98 4.92 4.71 4.88 4.93 82.25 82.44 82.32 82.21 82.17 82.31
2 SRS 6.65 6.84 4.93 6.31 5.05 5.08 80.18 80.77 75.71 75.91 72.58 72.66
SBR 6.75 4.63 4.60 4.74  3.58 4.63 79.63 79.94 75.14 75.75 7191 75.77
3 SRS 7.69 7.79 5.17 6.25  4.86 4.89 84.84 84.93 80.87 80.10 76.98 77.06
SBR 7.19 4.59 4.52 4.53 3.34 4.59 85.11 85.16  80.58 81.14 77.75 81.08
4 SRS 20.04 19.22 5.06 10.80 5.12 5.13 92.44 91.93 79.17 76.45 65.00 65.11
SBR | 19.92 19.16 5.19 5.92 2.21 5.35 92.91 92.37 79.10 80.19 67.16 78.98
Table 1: Parameter values: |S| =10, 7 =0.3,y=1, 01 = 1.
Rejection rate under null - 8 = 0 Rejection rate under alternative - 6 = 0.2
SAT SFE SAT SFE
M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW
1 SRS 8.57 5.06 5.07 8.41 4.85 4.87 66.73 58.45 58.55 67.22 58.37 58.47
SBR 8.51 5.10 5.05 8.42 5.00 5.06 67.57 59.03 58.79 67.43 58.64 58.80
2 SRS 14.35 10.16 5.31 10.85 5.39 5.44 65.42 58.17 45.91 53.33 39.88 39.93
SBR | 14.58 9.80 5.06 7.50  3.15 5.10 65.87 58.93  46.96 54.53 39.72  47.68
3 SRS 14.73 10.45 5.25 10.23  5.09 5.10 69.79 63.22 49.71 56.39 43.53 43.64
SBR | 15.02 10.55 4.88 6.96 2.89 4.97 71.28 64.39 49.93 57.48 41.88 51.10
4 SRS 31.22  26.06 5.28 12.35 5.39 5.41 73.57 69.41 36.25 42.20 26.50 26.56
SBR | 32.00 26.69 5.00 6.56 1.82 5.09 74.30  69.97 36.60 40.38 21.48 36.56

SFE: The t-test with strata fixed effects studied in Section 4. We report results for this test using the
homoskedasticity-only (‘HO’), heteroskedasticity-robust (‘HC’), and the new (‘NEW’) consistent (as

Table 2: Parameter values

in Theorem 3.3), estimators of the asymptotic variance.

Table 1 displays the results of our baseline specification, where (|S|,7,v,0) = (10,0.3,1,1). Table 2
displays the results for (|S|,m,v,0) = (10,0.3,2,1), to explore sensitivity to changes in . Tables 3 and 4
replace 7 = 0.3 with 7 = 0.7, so (|S|,7,~,0) = (10,0.7,1,1) and (|S|,7,7,0) = (10,0.7,2,1). Finally, Table

5 considers the baseline specification but with m1(s) # m1(s’) for s # ¢/, i.e.,

28] =10, 1 =0.3, vy =2, 01 = V2.

(m1(1),...,m(S])) = (0.20,0.25,0.30,0.35,0.40, 0.60, 0.65, 0.70, 0.75,0.80) .

We organize our discussion of the results by test:

SAT: As expected in light of Theorems 3.1 and 3.2, the test ¢5¢(X (™) in (10) when V,, is either the
homoskedasticity-only or heteroskedasticity-consistent estimator of the asymptotic variance delivers a
test that may over-reject under the null hypothesis. Indeed, in some cases (Model 4 in Table 2) the
rejection probability under the null hypothesis could be as high as 32% for the homoskedasticity-only
case and 30% for the heteroskedasticity-consistent case. This over-rejection happens both, under simple
random sampling and stratified block randomization. Finally, and consistent with the results in Section

5, whenever @ is such that Vg = 0, as it is the case in Model 1, the test with the heteroskedasticity-

consistent estimator of the asymptotic variance is asymptotically exact.
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Rejection rate under null - § = 0 Rejection rate under alternative - § = 0.2

SAT SFE SAT SFE
M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW
1 SRS 5.08 5.29 5.23 496 5.01 5.02 81.75 82.12 82.00 81.99 81.97 82.01
SBR | 5.02 5.10 5.06 495 495 5.00 82.76 82.93 82.79 82.65 82.73 82.82
2 SRS 6.72 6.94 4.83 6.26 5.01 5.03 79.85 80.08  75.32 74.87 71.56 71.63
SBR | 7.05 7.11 5.08 499 393 5.05 80.46 80.54 76.61 75.77 7226  76.04
3 SRS 7.23 7.58 5.03 6.44 5.03 5.05 85.81 85.82 81.28 80.35 77.09 77.12
SBR | 7.56 7.70 5.14 507 392 5.16 87.56 87.62 83.07 82.40 78.71 82.75
4 SRS | 1846 1991 543 10.02 520 5.21 92.45 93.12 80.79 76.88 66.84 66.95
SBR | 1825 19.63 5.93 521 2.09 5.83 92.98 93.33 82.57 81.27 71.75 82.77

Table 3: Parameter values: |S| =10, 7 =0.7,y =1, 01 = 1.

Rejection rate under null - § = 0 Rejection rate under alternative - 6 = 0.2
SAT SFE SAT SFE
M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW
1 SRS 2.72 5.55 5.45 279 535 5.38 58.45 68.64 68.35 59.02 68.51 68.62
SBR | 2.66 5.23 5.17 264 513 5.14 58.79  68.91 68.79 58.79  68.74  68.80
2 SRS 7.18 1148  5.28 6.22 544 547 58.35 66.71 51.98 47.35 45.08 45.21
SBR | 7.18 11.19 4.99 3.19 280 5.02 58.95 66.52  53.69 45.17  43.14  52.74
3 SRS 8.00 1236  5.13 6.43 524 529 64.51 71.87 56.25 51.30 47.55 47.61
SBR | 7.63 11.88 4.99 3.35 283  5.00 65.91 73.20 58.83 50.41 47.03 57.71
4 SRS | 2498 30.67 5.12 10.82  5.61  5.62 69.65 74.39  39.07 39.87 27.80 27.86
SBR | 24.81 30.72 6.01 449 150 5.81 70.74 75.42  41.60 37.57 2420 41.41

Table 4: Parameter values: |S| =10, 7 = 0.7, vy = 2, 01 = V2.

Consistent with Theorem 3.3, the test ¢3*(X (™) in (10) when V,, is given by the new consistent
estimator of the asymptotic variance in (15) is asymptotically exact across all the specifications we
consider. Indeed, the rejection probability under the null hypothesis is very close to the nominal level
in all models and all tables. The rejection probability under the alternative hypothesis is the highest
under simple random sampling among the tests that are asymptotically exact and do not over-reject
under the null hypothesis. Under stratified block randomization, and given that in this case 7(s) =0
for all s € S, the rejection probability under the alternative hypothesis is effectively the same as that
of ¢%f(X (™)) with the new consistent estimator of the asymptotic variance in (23). These results are in
line with the theoretical results described in Section 4. Finally, Table 5 illustrates that the results for
el 0.¢ (")) with the new consistent estimator of the asymptotic variance are not affected by whether
m1(s) is the same across strata s € S or not.

SFE: As expected from Theorem 4.1 and the subsequent discussion, the test ¢*f(X (™) in (19) when
V,, is the homoskedasticity-only estimator of the asymptotic variance could lead to over-rejection or
under-rejection, depending on the specification. For example, the rejection probability under the null
hypothesis in Table 2 could be as high as 12.25%, while in Table 4 could be as low as 2.64%. On the
other hand, when ﬁ/n is the heteroskedasticity-consistent estimator of the asymptotic variance, this test
is asymptotically conservative; in line with the results in Bugni et al. (2017) and Section 5. Indeed,
the rejection probability under the null hypothesis is close to 2% in Model 4 under stratified block
randomization for all the specifications we consider. Finally, and consistent with the results in Section

5, whenever @ is such that Vg = 0, as it is the case in Model 1, the test with the heteroskedasticity-
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Rejection rate under null - § = 0 Rejection rate under alternative - § = 0.2

SAT SFE SAT SFE
CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW
SRS 5.20 5.47 5.47 5.08 5.12 5.15 81.63 82.48 82.48 82.80 82.71 82.75
SBR | 5.27 5.39 5.39 5.32 5.42 5.44 83.15 83.48 83.48 83.49 83.43 83.58
SRS 6.74 7.18 5.70 9.05 7.13 9.51 79.53 80.14 76.98 87.24 84.66 87.61
SBR | 7.18 7.33 5.63 8.92 7.05 9.08 80.57 80.91 77.23 90.72 88.61 90.91
SRS 8.89 8.14 6.34 9.49 8.18 8.99 85.19 84.10 81.04 92.03 90.57 91.54
SBR | 8.24 7.56 5.53 9.03 7.53 8.37 86.51 85.38 81.77 94.92  93.76  94.42
SRS | 19.74 18.16 6.41 60.82 45.51 59.43 91.77 90.90 80.14 12,92 5.62 1242
SBR | 19.71 18.14  6.69 67.13 48.22 66.08 91.61 90.77  80.78 4.42 1.12 4.00

Table 5: Parameter values: |S| =10, m1(s) asin (31),y =1, o1 = 1.

consistent estimator of the asymptotic variance is asymptotically exact.

Consistent with Theorem 4.2, the test ¢*(X () in (19) when V,, is given by the new consistent
estimator of the asymptotic variance in (23) is asymptotically exact across all the specifications we
consider. The rejection probability under the null hypothesis is very close to the nominal level in all
models and all tables. The rejection probability under the alternative hypothesis is similar to that
of ¢¥4(X (™) with V¥, = Vga under stratified block randomization, but often below the rejection
probability of that same test under simple random sampling. These results are again in line with the
theoretical results discuss in Section 4. Finally, Table 5 illustrates that ¢3%(X (™) is only a valid test

for the null in (4) when 7 (s) = 7 for all s € S and may otherwise over-reject under the null hypothesis.
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Appendix A Additional Notation

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

0%(s) For a random variable X, 0% (s) = Var[X|S = 5]
0% For a random variable X, 0% = Var[X]
te Forae Ay, E[Y;(a)]
For a € Ay, Yi(a) — E[Yi(a)|S;]
For a € Ay, E[Yi(a)|Zi] — pa
Number of individuals in strata s € S
Number of individuals in treatment a € Ay in strata s € S
t4) |Al-dimensional vector of ones
O (]A] x |S])-dimensional matrix of zeros
I4 |Al-dimensional identity matrix

Js  (|S| x |S|)-dimensional matrix with a 1 on the (s, s)th coordinate and zeros otherwise

Table 6: Useful notation

In addition, we often transform objects that are indexed by (a,s) € A X S into vectors or matrices, using the
following conventions. For X (a) being a scalar object indexed over a € A, we use (X(a) : a € A) to denote the
| A]-dimensional vector (X(1),...,X(JA4]))’. For X,(s) being a scalar object indexed by (a,s) € A X S we use
(Xa(s) : (a,s) € Ax S) to denote the (|A] x |S|)-dimensional vector where the order of the indices is as follows,

(Xu(s) : (a,s) € Ax S) = (Xl(l),...,X‘_A‘(l),Xl(Q),...,X‘A‘(Q),...)/ .

Finally throughout the appendix we use Lgf)a(s) and ]lej) for j =1,2,..., to denote scalar objects and matrices/vectors

that may be redefined from theorem to theorem.

Appendix B Proof of Main Theorems

B.1 Proof of Theorem 3.1
Let C,, be the matrix of covariate associated with the regression in (7), i.e., the matrix with ith row given by
Ci=[(I{Si=s}:5€8),(I{A; =a,S; =s}:(a,8) € AxS)].

Let R,, be a matrix with |A| rows and (|S| + |A| X |S]) columns defined as

n(|S])

R, = |0,"Yy, ... 25D
n n

T4, (B-32)
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where O and I 4, are defined in Table 6. Using this notation, we can write

(bn(s):s€S)
(Bna(s) : (a,5) € AxS)

0, =R,

where §,,(s) and f,.4(s) are the resulting estimators of §(s) and 8,(s) in (7), respectively. Now consider the following

derivation,

_ (Z n(s) [1 [{A; = a, S = 5}¥i(a)
SES

()
2 (o)

n
sES 0

[\/177 }n: I{A; = 0,5; = s}7:(0)

+3 Va ("(5) —p(s)) E[ma(Z) —mo(Z)|S=3s]:ac A>

sES n
= (Z (LSL(S) — LS%(S)) ta € A) + (Z Lfl(s) ta € A) +op(1)
seS seS

where for (a,s) € A x S,

—_

n-

ngl,Zz(S) = Wals |:\/» ZI{A«; =a,8; = s}Y;(a)

L(s) = vn (”(8) - p(s)) E[ma(Z) — mo(2)|S = 5] .

By Lemma C.1 and some additional calculations, it follows that

Sees (Eh(9) = LIY(s)) ra € A) iN((o) (V? 0 ))
Ses Lia(s) ra € A) o)\ o va))’

where Vy is as in (12) and Vg is as in (11). Importantly, to get Vg for the second term we used that
Y sesP(8)E[ma(Z) —mo(Z)|S =s] =0 for all a € A.

B.2 Proof of Theorem 3.2

The homoskedasticity-only estimator of the asymptotic variance for the regression in (7) is
1 n 1 -1
Vio = <n leﬂ) Rn (EC:LCQ R, , (B-33)
=
where {4, : 1 < i < n} are the least squares residuals. The result then follows immediately from
1 .2 P 2
- Us — Z p(s)wa(s)ay(a>(s) )
=1 (a,s)€EAQXS
which follows from Lemma C.5, and

1, -t ;1 P S ’ . S
R, (E(C"C”) R, & [Z %HAILIA\ + diag (; :a((s)) = A)]

SES
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which follows from Lemma C.3, (B-32), and some additional calculations.

The heteroskedasticity-consistent estimator of the asymptotic variance for the regression in (7) is

—1 -1
Ve = Rn (%cc;cn) (%c; diag (47 : 1 <4 <n) <cn> (%(C;(Cn> R, . (B-34)
First note that (C’ dlag( 1< < n) C, equals
diag(%zy LUiI{Si=s}:5€S8) SeesJs @ (2300 i {Ai=a,5 =s}:ac A)
Yeesds @ (230w I{Ai =a,Si =s}:ac A) diag(z >, 47 I{Ai =a,S; = s}:(a,s) € AxS)

which follows from Lemma C.3. By Lemma C.4, this matrix converges in probability to

diag( e 4 P()Ta(8)0% 1) (8) 8 €8) s Tu ® (p(s)ma(s)0% ) (5) s a € AY
T csJe ® (p()7a(8)0% o) (8) 1 a € A)  ding(p(s)ma(8)0% ) (5) : (a,8) € A X S)

The result follows by combining this with Lemma C.3 and doing some additional calculations.

B.3 Proof of Theorem 3.3

By Theorem 3.2 and the continuous mapping theorem, it follows that
. P(8)0% ) (5) P(8)0% () (5)
diag(th>gdiag Z¢:GGA + diag Z¢:a€¢4 .
= mls) = Tals)
By Lemma C.3 and for any a € A,

(Brals) = 0ua) 5 Ema(2) = mo(2)|S = o],

which in turn implies that

Yy = Z @ (Bna(s) — énya ta € A) (ﬁn,a(s) - én,a ta € -A)/

sES
53" p(s) (Blma(Z) — mo(2)|S = 5] - a € A) (E[ma(Z) — mo(Z)|S = 5] - a € A
seES
where we used 222 % p(s). By the continuous mapping theorem again, we conclude that Vsat 5 Vsat. By Theorem

3.1, limp— oo E[d);at(X(" )] = a follows immediately whenever @ is such that ¥0(Q) = c.

B.4 Proof of Theorem 4.1

Let M,, = I, — Sn(S,,S,,) 'S}, denote the projection on the orthogonal complement of the column space of S,,, where

S» is the matrix with ith row given by (I{S; = s} : s € S)’. By the Frisch-Waugh-Lovell Theorem,

05 = (ALM, M, A,) " (ALM,Y,) ,
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where Y, = (V; : 1 < i < n) and A, is the matrix with ith row given by (I{4; = a} : a € A)". Next, notice that

nq(s) )

nA, = i = — i = : 1< <

M, A ((I{A a} =Y I{S; = s} () aeA> lln>
s€S

is an n x |A| dimensional matrix, where we have used that S;,S, = diag (n(s) : s € S) and that S, A,, is an (|S| x |A|)

dimensional matrix with (s,a)th element given by nq(s). It follows from the above derivation and Assumption 4.1

that the (a,a) element of (LA}, M;,M,A,) satisfies

IH{a=a} Z naTES) - na(5)na(5) K Ha=a}wq — mama ,
s€S ses

and so by the continuous mapping theorem we get
1 o 1 1
(fA'nM;MnAn) = diag (— ta € A) + a4 -
n Ta ™o

Now consider the matrix (%A%M;Yn) Simple manipulations shows that

%A;M;Yn: (Z ZI{A —a,Si=siVi@)-Y Y = ”“ ZI{A =a,S; = s}Vi(a)

SES i=1 seS acAgy
+Z’I’La(5)n(5) ‘S_S Zzna & (S)E[ma(Z)‘SIS]ICLEA
seS TL(S) acAg seS n

We conclude that
V(0 —0(Q)) = ( diag 1. cA|+ ibwm +op(1) LA;M;YH
Ta 0 Vn

Next, we derive the limiting distribution of %A;M;Yn. In order to do this, write

1 ! ! T
—_A'M.,Y, =T 1,
Jn +or(l)

where

3

L.= (Z\FZJ{A = a,S; = s}Vi(a) —waz Zf; > {Ai=a,5: = s}Yi(a)

sES i=1

i v (M) [E[maws - Y maBma(2)S = s]]

seS acAgy
v (”“(5) - wa) p(s) | Blma(Z)IS = 5] = 3 maBlma(Z)|S = 5]
seS TL(S) acAg

e 3 S v ()

acAg seS
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Since the right-hand side is Op (1), then Slutzky’s theorem and some simple manipulations shows that
N* . 1 1 =
V(0 —0(Q)) = (dlag <7T ta € A) + —L|A|L|A|) L,
- (S (e - Ew) aea) s ( B0 o< 4)
seS
+ (Z(LSBL(s) ~L(s) sa e A) +or(1),
where for (a,s) € A xS,

L0 (s) = — [1 H{A; = a, 8, = s}¥i(a)

L(s) = v ("(‘9;

n
LE(s)=/n <na(s) - wa) p(s) E[m, Z maE[ma(Z)|S = s
n(s) Ta acA
By Lemma C.2 and some additional calculations, it follows that
Sies (L) = L (9)) sa € A) 0 Ve 0 0
Ses LiZh(s) ra € A) AN[] o f.] o va o0 :

o
o
=)
<
>

Zses(ifﬁl(s) - f/sg)(s)) ta € _A)

where Vg is as in (12) with m.(s) = 7, for all (a,s) € Ao x S, Vg is as in (11), and

Va= <Z p(s) ({a(s)ga, (22w o e B0

TaTq! Ta T
seS allag at0

_ga,(s)&)(s)m +§0(S)§0(5)M)  (a,a') € A x A)

T TO o070
with
€a(s) = E[ma(Z:)|Si = 5] — > marElma (Zi]Si = s)] .

a’€Agp

Importantly, to get Vg for the second term we used that 7 s p(s)E [ma(Z) — mo(Z)|S = s] =0 for all a € A.

Appendix C Auxiliary Results

Lemma C.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption
2.2. Define

LY = <\/16 iJ{Ai =a,S; =s}Yi(a): (a,s) € Ao x 5) (C-35)
L® = (ﬁ (@ —p(s)) 15 € 8) , (C-36)

21



and L, = (LYY, L"), It follows that

where

%) = diag (ﬁa(s)p(s)af;(a)(s) (a,s) € Ag x s)

Yy = diag (p(s) : s €S) — (p(s) : s €S) (p(s) : 5 € S) .

Proof. To prove our result, we first show that
{2} 2 {LOL} +or)

for a random vector ]L:Lu) satisfying ]szm A ]LE?) and ]Lffl) i N (0,%1). We then combine this result with the fact
that L AN (0,%5), which follows from W™ consisting of n i.i.d. observations and the CLT.

Under the assumption that W™ s iid. and Assumption 2.2.(a), the distribution of ILS) is the same as the
distribution of the same quantity where units are ordered first by strata s € S and then ordered by treatment
assignment a € A within strata. In order to exploit this observation, it is useful to introduce some further notation.
Define N(s) = >, I{Si < s}, Na(s) = >0 | I{A: < a,S; = s}, F(s) = P{S; < s}, and Fu(s) = P{A: < a,S; = s}
for all (a,s) € A x S. Furthermore, independently for each (a,s) € A x S and independently of (14(")75("))7 let
{Y#(a) : 1 < i < n} be i.i.d. with marginal distribution equal to the distribution of ¥;(a)|S; = s. With this notation,
define

N+ Na g ()

LY = <\/152n:l{Ai—a,Si—s}f/f(a):(a7s)6.Ao><S> | L Zn: Y (a): (a,s) € Ao X S

n
\/‘ i N(s)tLNa(S) 41

By construction, {H:S”S("),A(")} 4 {]Lﬁll)|S(")7A(")} and so LYY £ LY. Since L is only a function of S, we
further have that {]L%U,JLE?)} 4 {]1;1),11453)}. Next, define

1 n(F(s)+Fag1(s))]

L= | = V(a) : (a,5) € Ao x S

i=|n(F(s)+Fa(s))]+1

Note that ]szm A ]Lg). Using similar partial sum arguments as those in Bugni et al. (2017, Lemma B.1), it follows

that
ln(F(s)+Fat1(s))]

N 1 o, d
Ly (s) = NG Z Yi(a) > N (O7 wa(s)p(s)af—,(a)(s)) ,
i=[n(F(s)+Fa(s))]+1

for all (a,s) € Ao x S, where we used that F,y1(s) — Fu(s) = ma(s)p(s). By the independence of the components, it
follows that L") % N (0,%1). We conclude the proof by arguing that

L (s) - LiD(s) S o,
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for all (a,s) € Ag X S, where

o NN (2

e =— Y ).
vn i N+ Na ()

This in turn follows from

n n

<&S)N“7(S)) 5 (F(s), Fa(s))

for all (a,s) € Ao X S and again invoking similar arguments to those in Bugni et al. (2017, Lemma B.1). B

Lemma C.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

4.1, Define
LY = (;ﬁ 32 = 05 = 1) 0.9 € Ao 3) (37
L = (var (" p) sses) (c-38)
L® = (\/ﬁ (’;(7(5)) - Tra) (a,5) € Ao x s) , (C-39)

0 100 0
L., % N o, o = o ;
0 0 X

where

3, = diag (Wa(s)p(s)afy(a)(s) : (a,8) € Ag X S)
Yo =diag (p(s) : s €8S) — (p(s) : s €S) (p(s) : s € S)’
Y3 =diag (Xp(s)/p(s):s€S) .

Proof. To prove our result, we first show that
(L9 L2LP} £ {0 L 1P} +or(1)

for a random vector L") satisfying L") 1 (L, L) and Ly % N (0,%;). We then combine this result with
the fact that L' AN (0, X2), which follows from W consisting of n i.i.d. observations and the CLT, and the fact
that conditional on S("), ]L;S) —d> N(0,X3), which follows from Assumption 4.1. The proof of (C) follows from similar

arguments to those used in the proof of Lemma C.1 and so we omit them here. B

Lemma C.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let
cC, - diag(n(s) : s € S) YoeesJs ® (na(s) :a € A) (C-40)
D sesds ® (na(s) ra € A)  diag(na(s) : (a,5) € Ax S)
and
s | (Taeas ST = 0.8, = 5170) + S, male) (Blma(2)is =) ) 5 €8) |

(S 1A = a, S = s}¥i(a) + na(s) (Blma(2)|S = 5] + 1a) s (a,5) € Ax S)
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where Y, = (Y; : 1 <1i < n). It follows that

diag(p(s) : s € S) Y ecsJs @ (ma(s)p(s) : a € A)

lec, Bso= [
n 2565 Js ® (ma(8)p(s) :a € A)  diag(ma(s)p(s) : (a,s) € A% S)

and
Lo n | (PO Zacay () (Elma(2)]S = 5] + pa) 1 s € S)
~CLY, =
n (P(s)ma () (Blma(2)S = 8] + p1a) : (a,5) € A X S)
In addition,
diag(W:sES) Zsesﬂs(@(m:aeA)

ot =
j : —1 . j : . 1 . 1
SES Js ® (ro(s)p(s) rac A) SES Js ® (dlag (Tra(s)p(s) ra e A) + o (s)p(s) L|A|L1A|)

Proof. The first result follows immediately from Assumption 2.2.(b) and the fact that % EiY p(s) and "“T(s) =

ne(s) n(s) B o (s)p(s) for all (a,s) € A x S. For the second result, consider the following argument,

n(s) n

l(CLLYn:ln (I{Si =s}Yi:s€S8) ]
n n—= | (I{4i=a,S; =s}Y;:(a,s) € AXS)
1| (Taea HA = 0,80 = 5} [Ti@) + Bma(2)]0 = 5]+ o] 1 s €8)
n < (I{A,- —a,8; = s} [Yi(a) + E[ma(2)|S; = 3] +ua] :(a,s) € A x s)

B [ (P(5) Sacny mals) (E[ma(2)|S = 8] + pa) s € S)

+op(1)
(P(5)7a(5)(E [ma(2)|S = 5] + pa) : (a,5) € AXS) ]

where we used 3" I{A; = a,5; = s} = ”“T@) £ Ta(s)p(s), and L >0 I{A; = a,8; = 5}Yi(a) 50 for all
(a,s) € Ao x S. Finally, the last result follows from simple manipulations that we omit and this completes the proof.

Lemma C.4. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let W; = f((Yi(a) : a € A),S;) for some function f(-) satisfy E[|W;|] < co. Then, for all a € Ao,

% SOWil{A; = a} B S p(s)ma(s) E[Wi] (C-42)
i=1 SES

Proof. Fix a € Ap. By arguing as in the proof of Lemma C.1, note that

nq(s)

1 — d 1 s

sES =1

where, independently for each s € S and independently of (A(">,S(">), {W;? :1 < i < n} are i.i.d. with marginal
distribution equal to the distribution of W;|S; = s. In order to establish the desired result, it suffices to show that

S

Na (S)
Z Wi 5 p(s)ma(s)E[W;] . (C-43)
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From Assumption 2.2.(b), "el®) R p(s)ma(s), so (C-43) follows from

n

na(s)

1 s
nq($) Wi

i=1

B Ewy). (C-44)

To establish (C-44), use the almost sure representation theorem to construct ﬁ“T(é) such that ﬁ"f) 4 "“TES) and

ﬁ“T(S) — p(s)ma(s) a.s. Using the independence of (A™ S™) and {W; : 1 <i < n}, we see that for any € > 0,

na(s)

nq(s) nels)
1 . . - ) ) s
P na(s);WZ—E[Wﬂ >ep =P T ; Wi — E[W?]| > e
pRals)
1 =~ s .
=P{|-me 2 Wi BV >e
n n =1
fiq (s)
1 - s s na(s)
=E|P . ; Wi — E[W{]| > e

where the convergence follows from the dominated convergence theorem and

nﬁa(s)

1 = S S ’Fl’a(s)
O] Z; Wi — E[W7] >e|— — 0 a.s. . (C-45)

To see that the convergence (C-45) holds, note that the weak law of large numbers implies that

nE
1 Sowr S EW) (C-46)
Nk =1

fa(s)

for any subsequence ny — oo as k — oo. Since n
{W;?:1<i<n}and (C-46). &

— 00 a.s., (C-45) follows from the independence of ﬁ"T(S) and

Lemma C.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption
~ ~ !
2.2. Let 4; =Y; — CiAn and 4n = ((5n(s) 15 €8),(Bn,als): (a,8) € Ax S)') , where C; is as in (B.1), be the least

squares residuals associated with the regression in (7). Then,
P, 2
- Uy — Z p(s)wa(s)ay(a)(s)
=1 (a,s)EAgXS

LS @A = a8 = 5} B p()mals)od o) ()

=1

%Za?z{si =5} 5 37 p(5)ma()0% 4y (5)

a€Agp
1 — R P
- W {A; =a} = Zp(s)wa(s)af;(@(s) .
i=1 seS
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Proof. First note that, by definition of fﬁ-(a)7 we can write.

YVi= > HAi=a,5 = s}Yi(a) + E[ma(2)|S = 5] + pia] -

(a,s)€EAgxS

In addition, for v = ((6(s) : s € S)’, (Ba(s) : (a,8) € Ax S)")

Coy = S I{S: = s} (Bmo(2)|S = 5] + o)

sES

+ Y. HAi=a,8 =s}E[ma(Z) = mo(2)|S = 5] +0a] .

(a,s)EAXS

We can therefore write the error term wu; as

W=V Co= Y A —aSi— Vi)

(a,s)EAQXS

and its square as

ui = Z I{A; = a,S; = s}Y{(a) .

(a,s)€AgxS
By arguments similar to those in Bugni et al. (2017, Lemma B.8), it is enough to show the results with «? in place of
a2. Since E[u?] = p(s)ma (s)o%,(a) (s), the results follow immediately by invoking Lemma C.4 repeatedly. We therefore

omit the arguments here. B

Lemma C.6. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

4.1. Let Vﬁo be the homoskedasticity-only estimator of the asymptotic variance for the regression in (17), defined as
o= (L3 ) (loye) R (C-47)
ho n s 7 n n “-n )

where {G; : 1 < i < n} are the least squares residuals, C;, is the matriz with ith row given by
Ci=[I{Si=s}:5€8),(I{Ai=a}:ac A,

and R* is a matriz with |A| rows and |S| + |A| columns defined as R = [0,14/], where O and 1| 4| are defined in
Table 6. Then.

- p 1 (1
Vho — Z p(s )7Ta0'Y (@ (8) + Zp(s sm(s LT—OLMMA‘ + diag (ﬂ_—a ta € A)}
(a,s)€EAgXS sES

where

()= 3 ma (Blma(2)IS = s])° (Zwa ma(Z |S—s1> .

ac€Aqg a€Ag
Proof. The proof is similar to that of Theorem 3.2 and therefore omitted. B

Lemma C.7. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption /.1.

Let Vf,e be the heteroskedasticity-consistent estimator of the asymptotic variance for the regression in (17), defined as
CrCL\ " [ CY diag({a2},)Cs /CrCE\
n n n
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Vie =R" R" (C-48)




where {G; : 1 < i < n} are the ordinary least squares residuals, and C;, and R* are defined as in Lemma C.6. Then.
o P * *
Vie > VI + V3,

where

Vi = diag (Z p;j) [a§~,<a)(s) + <E[ma(Z)|S =)= 3" mElma(2)|s = s}> } fac A)

sES

V; = L\A\LT.A\ Z p(is |:0’?~,(0>(s) + <E[m0(Z)|S = S} — ﬂ'aE[ma(ZNS = S}) :|

acAgp

Proof. The proof is similar to that of Theorem 3.2 and therefore omitted. B

Appendix D Results on Local Power

Let {Q;, : n > 1} be a sequence of local alternatives to the null hypothesis in (4) that satisfy
VAWO(@QL) — &) = A (D-49)

asn — oo, for A € R", c € R", and V¥ being a (r X |A|)-dimensional matrix such that rank(¥) = r. Consider a test
of the form

b (X™) = {T(X™) > x21_a}

where
T (X ™) = n(¥0,, — ) (¥V,¥") (Wb, —c) ,

0., is an estimator of 6(Q) satisfying
Vb, — 0(Q%)) % N(0,V) under Q% (D-50)
for some asymptotic variance V, V.. is a matrix intended to Studentize the test statistic that satisfies
Vo 5 Vitua under Q7 (D-51)

for some Vgtua, and xil_& is the 1 — a quantile of a x? random variable with r degrees of freedom. The next theorem

summarizes our main result.

Theorem D.1. Let {Q}, : n > 1} be the sequence of local alternatives satisfying (D-49), 0, be an estimator satisfying
(D-50), and V,, be a random matriz satisfying (D-51). Assume that V and Vswa are positive definite, that Vsgua — V

is positive semi-definite, and that rank(V) = r. Then,

lim Elpn(X™)) =P {(5 + X)) (OVE) 2 (WVea @) HOVE) 2 (€ 4 X) > xf,l_a} , (D-52)
under Q;,, where & ~ N(0,1.) and A= (UVE) Y2\, In addition, the following three statements follow under Q.
(a) Under the assumptions above,

limsupE[d)n(X(”))] <P {(f + X (E+N) > Xi,l—a} .

n—>00
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(b) If V.= Vgua, then
lim Elgn (X)) = P{E+ N (€+X) > 21 a} 2 a,

n—r00

where the inequality is strict if and only if X # 0.
(c) If oL (X ™) and ¢2 (X ™) are two tests such that ¢L (X ™) is based on an estimator with V' = VL, 4 and ¢2(X™)

is based on an estimator with V? = V2 4, then

lim Elg, (X™)] > lim Bl (X™)]

n—o0o

provided V2 — V1 is positive semi-definite. In addition, the inequality becomes strict if and only if X # 0 and
V2 —V? is positive definite.

Proof. Notice that
V(W0 — ¢) = vVr(Uh, — VO(QL)) + vVr(Vo(QL) — ¢) 5 N(\, UVY') under Q.
By Slutsky’s theorem,

W0, 02 n(Wh, — ) S N ((\I/Vstud\IJ’)’lﬂ)\, (\Wswd\y’)*”(\IJV\I/’)(\I/szde/)*l/Q)

~ (WVstua W) T2 (V)2 (64 )
under Q}, with &€ ~ N(0,1,) and A = (UV¥')~Y/2\. From here we conclude that
Tu(X™) 5 (€4 N (IVE)2(WVoua )~ (V)2 (€ + )

and (D-52) follows.
Part (a). This follows immediately from Lemma D.1.

Part (b). Note that
PLE+V €+ > 2ot = Ay (VECuia) (D-53)
where A, (a,b) is the Marcum-Q-function and = A'A = X (WV¥') "1\ > 0. By the fact that A, (a,b) is increasing
in a (see Temme (2014, p. 575) and (Sun and Baricz, 2008, Theorem 3.1)), Az (/£ 4 /X1 a) > Az (0, /X1 a) =,
with strict inequality if and only if x4 > 0. Since V is positive definite and ¥ is full rank, ¥VU' is positive definite
and, thus, non-singular. Then, p > 0 if and only if A £ 0. The result follows.

Part (c). We only show the strict inequality, as the weak inequality follows from weakening all the inequalities.
For d = 1,2, since V¥ is positive definite and ¥ is full rank, ¥V?¥’ is positive definite and, thus, non-singular. Since
V? — V! is positive definite and ¥ is full rank, ¥V*¥’' — UV’ is positive definite and so (TV2¥/ )~ — (TY1 @)1
is negative definite. By this and the fact that A # 0, we conclude that

P =t =N (V)TN = N (VIS T = N (V)T - eV A <0 .
By (D-53) and the fact that Ay, (a,b) is increasing in a, the result follows. B

Lemma D.1. Suppose that V — Vgua € RIAIXIAL 4o negative semi-definite, Vsiua s non-singular, and rank(¥) = r.
Then, (\I/VSmd\I/’)flm(\I/V\I/’)(\I/VSmd\I/')fl/2 — 1. is negative semi-definite.
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Proof. Since V¥ is full rank and Vgua is non-singular, (\I/VSmd\I/’)l/2 is well defined and non-singular. Fix a € R™*!

arbitrarily. We wish to show that
a (WVepa®) 2 (OVE) (UV g ®) 2 = 1,)a <0 . (D-54)
Let b = (\I/Vsmd\ll')fl/za € R™*! and note that (D-54) is equivalent to
Y (UVaa®) 2 (UVe0a ') "2 (OVE) (UVe0a¥) 2 — L) (UViua )2 < 0

which, in turn, is equivalent to (¥'0)'(V — Vstua)(¥'b) < 0. This last inequality holds because V — Vguq is negative
semi-definite and rank(¥) = r. B
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