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Abstract

This paper studies inference in randomized controlled trials with covariate-adaptive randomization

when there are multiple treatments. More specifically, we study in this setting inference about the average

effect of one or more treatments relative to other treatments or a control. As in Bugni et al. (2017),

covariate-adaptive randomization refers to randomization schemes that first stratify according to baseline

covariates and then assign treatment status so as to achieve “balance” within each stratum. In contrast to

Bugni et al. (2017), however, we allow for the proportion of units being assigned to each of the treatments

to vary across strata. We first study the properties of estimators derived from a “fully saturated” linear

regression, i.e., a linear regression of the outcome on all interactions between indicators for each of the

treatments and indicators for each of the strata. We show that tests based on these estimators using the

usual heteroskedasticity-consistent estimator of the asymptotic variance are invalid in the sense that they

may have limiting rejection probability under the null hypothesis strictly greater than the nominal level;

on the other hand, tests based on these estimators and suitable estimators of the asymptotic variance that

we provide are exact in the sense that they have limiting rejection probability under the null hypothesis

equal to the nominal level. For the special case in which the target proportion of units being assigned

to each of the treatments does not vary across strata, we additionally consider tests based on estimators

derived from a linear regression with “strata fixed effects,” i.e., a linear regression of the outcome on

indicators for each of the treatments and indicators for each of the strata. We show that tests based

on these estimators using the usual heteroskedasticity-consistent estimator of the asymptotic variance

are conservative in the sense that they have limiting rejection probability under the null hypothesis no

greater than and typically strictly less than the nominal level, but tests based on these estimators and

suitable estimators of the asymptotic variance that we provide are exact, thereby generalizing results

in Bugni et al. (2017) for the case of a single treatment to multiple treatments. A simulation study

illustrates the practical relevance of our theoretical results.

KEYWORDS: Covariate-adaptive randomization, multiple treatments, stratified block randomization, Efron’s

biased-coin design, treatment assignment, randomized controlled trial, strata fixed effects, saturated regres-

sion

JEL classification codes: C12, C14



1 Introduction

This paper studies inference in randomized controlled trials with covariate-adaptive randomization when

there are multiple treatments. As in Bugni et al. (2017), covariate-adaptive randomization refers to random-

ization schemes that first stratify according to baseline covariates and then assign treatment status so as to

achieve “balance” within each stratum. Many such methods are used routinely when assigning treatment

status in randomized controlled trials in all parts of the sciences. See, for example, Rosenberger and Lachin

(2016) for a textbook treatment focused on clinical trials and Duflo et al. (2007) and Bruhn and McKenzie

(2008) for reviews focused on development economics. In contrast to Bugni et al. (2017), however, we allow

the target proportion of units being assigned to each of the treatments to vary across strata. A textbook

example of an experiment involving this type of treatment assignment mechanism is the Tennessee class

size reduction experiment, commonly known as Project STAR (Student-Teacher Achievement Ratio); see

Stock and Watson (2003, Ch. 11) and Imbens and Rubin (2015, Ch. 9). In this paper, we take as given the

use of such a treatment assignment mechanism and study its consequences for inference about the average

effect of one or more treatments relative to other treatments or a control. Our main requirement is that

the randomization scheme is such that the fraction of units being assigned to each treatment within each

stratum is suitably well behaved in a sense made precise by our assumptions below as the sample size n

tends to infinity. See, in particular, Assumptions 2.2.(b) and 4.1.(c). Importantly, these requirements are

satisfied by most commonly used treatment assignment mechanisms, including simple random sampling and

stratified block randomization. The latter treatment assignment scheme is especially noteworthy because of

its widespread use recently in development economics. See, for example, Dizon-Ross (2014, footnote 13),

Duflo et al. (2014, footnote 6), Callen et al. (2015, page 24), and Berry et al. (2015, page 6).

We first study the properties of ordinary least squares estimation of a “fully saturated” linear regres-

sion, i.e., a linear regression of the outcome on all interactions between indicators for each of the treat-

ments and indicators for each of the strata. We show that tests based on these estimators using the usual

heteroskedasticity-consistent estimator of the asymptotic variance are invalid in the sense that they may

have limiting rejection probability under the null hypothesis strictly greater than the nominal level. We then

exploit our characterization of the behavior of the ordinary least squares estimator of the coefficients in such

a regression under covariate-adaptive randomization to develop a consistent estimator of the asymptotic

variance. Our main result about the “fully saturated” linear regression therefore shows that tests based on

these estimators and our new estimator of the asymptotic variance are exact in the sense that they have

limiting rejection probability under the null hypothesis equal to the nominal level. In a simulation study, we

find that tests using the usual heteroskedasticity-consistent estimator of the asymptotic variance may have

rejection probability under the null hypothesis dramatically larger than the nominal level. On the other

hand, tests using the new estimator of the asymptotic variance have rejection probability under the null

hypothesis very close to the nominal level.

For the special case in which the target proportion of units being assigned to each of the treatments

does not vary across strata, we additionally consider tests based on ordinary least squares estimation of

a linear regression with “strata fixed effects,” i.e., a linear regression of the outcome on indicators for
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each of the treatments and indicators for each of the strata. Based on simulation evidence and earlier

assertions by Kernan et al. (1999), the use of this test has been recommended by Bruhn and McKenzie

(2008). More recently, Bugni et al. (2017) provided a formal analysis of its properties under covariate-adaptive

randomization and a single treatment. In this paper, we show that tests based on these estimators using the

usual heteroskedasticity-consistent estimator of the asymptotic variance are conservative in the sense that

they have limiting rejection probability under the null hypothesis no greater than, and typically strictly less

than, the nominal level. Once again, we exploit our characterization of the behavior of the ordinary least

squares estimator of the coefficients in such a regression under covariate-adaptive randomization to develop

a consistent estimator of the asymptotic variance. Our main result about the linear regression with “strata

fixed effects” therefore shows that tests based on these estimators and our new estimator of the asymptotic

variance are exact in the sense that they have limiting rejection probability under the null hypothesis equal

to the nominal level. In this way, we generalize the results in Bugni et al. (2017) to the case with multiple

treatments. In a simulation study, we find that tests using the usual heteroskedasticity-consistent estimator

of the asymptotic variance may have rejection probability under the null hypothesis dramatically less than

the nominal level and, as a result, may have very poor power when compared to other tests. On the other

hand, tests using the new estimator of the asymptotic variance have rejection probability under the null

hypothesis very close to the nominal level.

The remainder of the paper is organized as follows. In Section 2, we describe our setup and notation.

In particular, there we describe the assumptions we impose on the treatment assignment mechanism. Our

main results concerning the “fully saturated” linear regression are contained in Section 3. Our main results

concerning the linear regression with “strata fixed effects” are contained in Section 4. In Section 5, we

discuss our results in the special case where there is only a single treatment, which facilitates a comparison

of our results with those in Imbens and Rubin (2015, Chapter 9). Finally, in Section 6 we examine the

finite-sample behavior of all the tests we consider in this paper via a small simulation study. Proofs of all

results are provided in the Appendix.

2 Setup and Notation

Let Yi denote the (observed) outcome of interest for the ith unit, Ai denote the treatment received by the

ith unit, and Zi denote observed, baseline covariates for the ith unit. The list of possible treatments is given

by A = {1, . . . , |A|}, and we say there are multiple treatments when |A| > 1. Without loss of generality we

assume there is a control group, which we denote as treatment zero, and use A0 = {0} ∪ A to denote the

list of treatments that includes the control group. Denote by Yi(a) the potential outcome of the ith unit

under treatment a ∈ A0. As usual, the (observed) outcome and potential outcomes are related to treatment

assignment by the relationship

Yi =
∑
a∈A0

Yi(a)I{Ai = a} = Yi(Ai) . (1)
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Denote by Pn the distribution of the observed data

X(n) = {(Yi, Ai, Zi) : 1 ≤ i ≤ n}

and denote by Qn the distribution of

W (n) = {(Yi(0), Yi(1), . . . , Yi(|A|), Zi) : 1 ≤ i ≤ n} .

Note that Pn is jointly determined by (1), Qn, and the mechanism for determining treatment assignment.

We therefore state our assumptions below in terms of assumptions on Qn and assumptions on the mechanism

for determining treatment status. Indeed, we will not make reference to Pn in the sequel and all operations

are understood to be under Qn and the mechanism for determining treatment status.

Strata are constructed from the observed, baseline covariates Zi using a function S : supp(Zi) → S,

where S is a finite set. For 1 ≤ i ≤ n, let Si = S(Zi) and denote by S(n) the vector of strata (S1, . . . , Sn).

We begin by describing our assumptions on Qn. We assume that W (n) consists of n i.i.d. observations,

i.e., Qn = Qn, where Q is the marginal distribution of (Yi(0), Yi(1), . . . , Yi(|A|), Zi). In order to rule out

trivial strata, we henceforth assume that p(s) = P{Si = s} > 0 for all s ∈ S. We further restrict Q to satisfy

the following mild requirement.

Assumption 2.1. Q satisfies

max
a∈A0

E[|Yi(a)|2] <∞

and

max
(a,s)∈A0×S

Var[Yi(a)|Si = s] > 0 .

We note that the second requirement in Assumption 2.1 is made only to rule out degenerate situations and

is stronger than required for our results.

Next, we describe our assumptions on the mechanism determining treatment assignment. As mentioned

previously, in this paper we focus on covariate-adaptive randomization, i.e., randomization schemes that

first stratify according baseline covariates and then assign treatment status so as to achieve “balance” within

each stratum. In order to describe our assumptions on the treatment assignment mechanism more formally,

we require some further notation. Let A(n) be vector of treatment assignments (A1, . . . , An). For any

(a, s) ∈ A0×S, let πa(s) ∈ (0, 1) be the target proportion of units to assign to treatment a in stratum s, let

na(s) =
∑

1≤i≤n

I{Ai = a, Si = s}

be the number of units assigned to treatment a in stratum s, and let

n(s) =
∑

1≤i≤n

I{Si = s}

be the total number of units in stratum s. Note that
∑
a∈A0

πa(s) = 1 for all s ∈ S. The following
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assumption summarizes our main requirement on the treatment assignment mechanism for the analysis of

the “fully saturated” linear regression.

Assumption 2.2. The treatment assignment mechanism is such that

(a) W (n) ⊥⊥ A(n)|S(n).

(b) na(s)
n(s)

P→ πa(s) as n→∞ for all (a, s) ∈ A× S.

Assumption 2.2.(a) simply requires that the treatment assignment mechanism is a function only of the

vector of strata and an exogenous randomization device. Assumption 2.2.(b) is an additional requirement

that imposes that the (possibly random) fraction of units assigned to treatment a and stratum s approaches

the target proportion πa(s) as the sample size tends to infinity. This requirement is satisfied by a wide variety

of randomization schemes; see Bugni et al. (2017), Rosenberger and Lachin (2016, Sections 3.10 and 3.11),

and Wei et al. (1986, Proposition 2.5). Before proceeding, we briefly discuss two popular randomization

schemes that are easily seen to satisfy Assumption 2.2.

Example 2.1. (Simple Random Sampling) Simple random sampling (SRS), also known as Bernoulli trials,

refers to the case where A(n) consists of n i.i.d. random variables with

P{Ak = a|S(n), A(k−1)} = P{Ak = a} = πa (2)

for 1 ≤ k ≤ n and πa ∈ (0, 1) satisfying
∑
a∈A0

πa = 1. In this case, Assumption 2.2.(a) follows immediately

from (2), while Assumption 2.2.(b) follows from the weak law of large numbers. If (2) is such that the target

probabilities πa vary by strata, then

P{Ak = a|S(n), A(k−1)} = P{Ak = a|Sk = s} = πa(s) ,

which is equivalent to simple random sampling within each stratum.

Example 2.2. (Stratified Block Randomization) An early discussion of stratified block randomization (SBR)

is provided by Zelen (1974) for the case of a single treatment. This randomization scheme is sometimes also

referred to as block randomization or permuted blocks within strata. In order to describe this treatment

assignment mechanism, for s ∈ S, denote by n(s) the number of units in stratum s and let

na(s) = bn(s)πa(s)c

for a ∈ A with n0(s) = n(s) −
∑
a∈A na(s). In this randomization scheme, independently for each each

stratum s, na(s) units are assigned to each treatment a, where all(
n(s)

n0(s), n1(s), . . . , n|A|(s)

)
possible assignments are equally likely. Assumptions 2.2.(a) and 2.2.(b) follow by construction in this case.
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We note that our analysis of the linear regression with “strata fixed effects” requires an assumption that is

mildly stronger than Assumption 2.2 above. It is worth emphasizing that this stronger assumption parallels

the assumption made in Bugni et al. (2017) for the analysis of linear regression with “strata fixed effects” in

the case of a single treatment and is also satisfied by a wide variety of treatment assignment mechanisms,

including Examples 2.1 and 2.2 above. See Assumption 4.1 and the subsequent discussion there for further

details.

Our object of interest is the vector of average treatment effects (ATEs) on the outcome of interest. For

each a ∈ A, we use

θa(Q) ≡ E[Yi(a)− Yi(0)] (3)

to denote the ATE of treatment a relative to the control and

θ(Q) ≡ (θa(Q) : a ∈ A) = (θ1(Q), . . . , θ|A|(Q))′

to denote the |A|-dimensional vector of such ATEs. Our results permit testing a variety of hypotheses on

smooth functions of the vector θ(Q) at level α ∈ (0, 1). In particular, hypotheses on linear functionals can

be written as

H0 : Ψθ(Q) = c versus H1 : Ψθ(Q) 6= c , (4)

where Ψ is a full-rank r × |A|-dimensional matrix and c is a r-dimensional vector. This framework accom-

modates, for example, hypotheses on a particular ATE,

H0 : θa(Q) = c versus H1 : θa(Q) 6= c , (5)

as well as hypotheses comparing treatment effects,

H0 : θa(Q) = θa′(Q) versus H1 : θa(Q) 6= θa′(Q) for any a, a′ ∈ A . (6)

Note that θa(Q) = θa′(Q) if and only if E[Yi(a)] = E[Yi(a
′)]. We note further that it is also possible to use

our results to test smooth non-linear hypotheses on θ(Q) via the Delta method, but, for ease of exposition,

we restrict our attention to linear restrictions as described above in what follows.

Finally, we often transform objects that are indexed by (a, s) ∈ A × S into vectors or matrices, using

the following conventions. For X(a) being a scalar object indexed over a ∈ A, we use (X(a) : a ∈ A) to

denote the |A|-dimensional column vector (X(1), . . . , X(|A|))′. For Xa(s) being a scalar object indexed by

(a, s) ∈ A × S we use (Xa(s) : (a, s) ∈ A × S) to denote the (|A| × |S|)-dimensional column vector where

the order of the indices matter: first we iterate over a and then over s, i.e.,

(Xa(s) : (a, s) ∈ A× S) ≡ (X1(1), . . . , X|A|(1), X1(2), . . . , X|A|(2), . . . )′ .

Remark 2.1. The term “balance” is often used in a different way to describe whether the distributions of

baseline covariates Zi in the treatment and control groups are similar. For example, this might be measured

according to the difference in the means of Zi in the treatment and control groups. Our usage follows the
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usage in Efron (1971) or Hu and Hu (2012), where “balance” refers to the extent to which the of fraction of

treated units within a strata differs from the target proportion πa(s).

3 “Fully Saturated” Linear Regression

In this section, we study the properties of ordinary least squares estimation of a linear regression of the

outcome on all interactions between indicators for each of the treatments and indicators for each of the

strata under covariate-adaptive randomization. We then study the properties of different tests of (4) based on

these estimators. We consider tests using both the usual homoskedasticity-only and heteroskedasticity-robust

estimators of the asymptotic variance. Our results show that neither of these estimators are consistent for the

asymptotic variance, and, as a result, both lead to tests that are asymptotically invalid in the sense that they

may have limiting rejection probability under the null hypothesis strictly greater than the nominal level. In

light of these results, we exploit our characterization of the behavior of the ordinary least squares estimator of

the coefficients in such a regression under covariate-adaptive randomization to develop a consistent estimator

of the asymptotic variance. Furthermore, tests using our new estimator of the asymptotic variance are exact

in the sense that they have limiting rejection probability under the null hypotheses equal to the nominal

level.

In order to define the tests we study, consider estimation of the equation

Yi =
∑
s∈S

δ(s)I{Si = s}+
∑

(a,s)∈A×S

βa(s)I{Ai = a, Si = s}+ ui (7)

by ordinary least squares. For all s ∈ S, denote by δ̂n(s) and β̂n,a(s) the resulting estimators of δ(s) and

βa(s), respectively. The corresponding estimator of the ATE of treatment a is given by

θ̂n,a =
∑
s∈S

n(s)

n
β̂n,a(s) , (8)

and the resulting estimator of θ(Q) is thus given by

θ̂n = (θ̂n,a : a ∈ A) ≡ (θ̂n,1, . . . , θ̂n,|A|)
′ . (9)

Let V̂n be an estimator of the asymptotic covariance matrix of θ̂n. For testing the hypotheses in (4), we

consider tests of the form

φsatn (X(n)) = I{T sat
n (X(n)) > χ2

r,1−α} , (10)

where

T sat
n (X(n)) = n(Ψθ̂n − c)′(ΨV̂nΨ′)−1(Ψθ̂n − c)

and χ2
r,1−α is the 1 − α quantile of a χ2 random variable with r degrees of freedom. In order to study the

properties of this test, we first derive in the following theorem the asymptotic behavior of θ̂n.
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Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. Then,
√
n(θ̂n − θ(Q))

d→ N(0,Vsat) ,

where Vsat = VH + VỸ ,

VH ≡
∑
s∈S

p(s) (E[ma(Zi)−m0(Zi)|Si = s] : a ∈ A) (E[ma(Zi)−m0(Zi)|Si = s] : a ∈ A)
′

(11)

VỸ ≡ diag

(∑
s∈S

p(s)

(
σ2
Ỹ (0)

(s)

π0(s)
+
σ2
Ỹ (a)

(s)

πa(s)

)
: a ∈ A

)
, (12)

and

ma(Zi) ≡ E[Yi(a)|Zi]− E[Yi(a)]

σ2
Ỹ (a)

(s) ≡ Var[Ỹi(a)|Si = s]

Ỹi(a) ≡ Yi(a)− E[Yi(a)|Si = s] .

The following theorem characterizes the limits in probability for the usual homoskedasticity-only and

heteroskedasticity-robust estimators of the asymptotic variance. It shows, in particular, that neither V̂ho

nor V̂hc are consistent for the asymptotic variance of θ̂n, Vsat.

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. Let V̂ho be the homoskedasticity-only estimator of the asymptotic variance defined in (B-33)

and V̂hc be the heteroskedasticity-consistent estimator of the asymptotic variance defined in (B-34). Then,

V̂ho
P→

∑
(a,s)∈A0×S

p(s)πa(s)σ2
Ỹ (a)

(s)

[∑
s∈S

p(s)

π0(s)
ι|A|ι

′
|A| + diag

(∑
s∈S

p(s)

πa(s)
: a ∈ A

)]

and

V̂hc
P→
∑
s∈S

p(s)σ2
Ỹ (0)

(s)

π0(s)
ι|A|ι

′
|A| + diag

(∑
s∈S

p(s)σ2
Ỹ (a)

(s)

πa(s)
: a ∈ A

)
.

where ι|A| is a |A|-dimensional vector of ones.

Remark 3.1. In the special case with a single treatment, i.e. |A| = 1, we show in Section 5 that the limit

in probability of V̂hc could be strictly smaller than Vsat. Therefore, testing (4) using (10) with V̂n = V̂hc

could lead to over-rejection. In our simulation study in Section 6, we find that the rejection probability may

in fact be substantially larger than the nominal level.

Remark 3.2. It is important to note that in the special case where |A| = 1 and π1(s) = 1
2 for all s ∈ S,

both V̂ho and V̂hc are consistent for Vsat. The particular properties of this special case have been already

highlighted by Bugni et al. (2017) in the cases of the two-sample t-test, t-test with strata fixed effects, and

covariate-adaptive permutation tests.
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Even though V̂hc is generally inconsistent for Vsat, the proof of Theorem 3.2 reveals that

diag
(
V̂hc

)
P→ VỸ , (13)

under the same assumptions. We exploit this observation in the following theorem to construct a consistent

estimator of the asymptotic variance. The theorem further establishes that tests using this new estimator of

the asymptotic variance are exact in the sense that they have limiting rejection probability under the null

hypotheses equal to the nominal level.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. Let V̂hc be the heteroskedasticity-consistent estimator of the asymptotic variance defined in

(B-34) and let

V̂H =
∑
s∈S

n(s)

n

(
β̂n,a(s)− θ̂n,a : a ∈ A

)(
β̂n,a(s)− θ̂n,a : a ∈ A

)′
, (14)

where θ̂n,a is as in (8) and β̂n,a(s) is the ordinary least squares estimator of βa(s) in (7). Then,

V̂sat = V̂H + diag
(
V̂hc

)
P→ Vsat = VH + VỸ . (15)

In addition, for the problem of testing (4) at level α ∈ (0, 1), φsatn (X(n)) defined in (10) with V̂n = V̂sat

satisfies

lim
n→∞

E[φsatn (X(n))] = α (16)

for Q additionally satisfying the null hypothesis, i.e., Ψθ(Q) = c.

4 Linear Regression with “Strata Fixed Effects”

In this section, we study the properties of ordinary least squares estimation of a linear regression of the

outcome on indicators for each of the treatments and indicators for each of the strata under covariate-adaptive

randomization. We then study the properties of different tests of (4) based on these estimators. As before,

we consider tests using both the usual homoskedasticity-only and heteroskedasticity-robust estimators of the

asymptotic variance, and our results show that neither of these estimators are consistent for the asymptotic

variance. We therefore exploit, as in the previous section, our characterization of the behavior of the ordinary

least squares estimator of the coefficients in such a regression under covariate-adaptive randomization to

develop a consistent estimator of the asymptotic variance, which leads to tests that are exact in the sense

that they have limiting rejection probability under the null hypotheses equal to the nominal level.

In order to define the tests we study, consider estimation of the equation

Yi =
∑
s∈S

δ∗sI{Si = s}+
∑
a∈A

β∗aI{Ai = a}+ ui (17)

by ordinary least squares. Denote by β̂∗n,a the resulting estimator of β∗a in (17). The corresponding estimator
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of the ATE of treatment a is simply given by β̂∗n,a, and the resulting estimator of θ(Q) is thus given by

θ̂∗n = (β̂∗n,a : a ∈ A) ≡ (β̂∗n,1, . . . , β̂
∗
n,|A|)

′ . (18)

Let V̂∗n be an estimator of the asymptotic variance of θ̂∗n. For testing the hypotheses in (4), we consider tests

of the form

φsfen (X(n)) = I{T sfe
n (X(n)) > χ2

r,1−α} , (19)

where

T sfe
n (X(n)) = n(Ψθ̂∗n − c)′(ΨV̂∗nΨ′)−1(Ψθ̂∗n − c)

and χ2
r,1−α is the 1 − α quantile of a χ2 random variable with r degrees of freedom. In order to study the

properties of this test, we first derive the asymptotic behavior of θ̂∗n. As mentioned earlier, in order to do so,

we impose instead of Assumption 2.2 the following assumption, which mildly strengthens it. We emphasize

again that this stronger assumption parallels the assumption made in Bugni et al. (2017) for the analysis of

linear regression with “strata fixed effects” in the case of a single treatment and is also satisfied by a wide

variety of treatment assignment mechanisms, including Examples 2.1 and 2.2.

Assumption 4.1. The treatment assignment mechanism is such that

(a) W (n) ⊥⊥ A(n)|S(n).

(b) πa(s) = πa ∈ (0, 1) for all (a, s) ∈ A× S.

(c)
{(√

n
(
na(s)
n(s) − πa

)
: (a, s) ∈ A× S

) ∣∣∣S(n)
}

d→ N(0,diag(ΣD(s)/p(s) : s ∈ S)) a.s. where for each s ∈ S
and some τ(s) ∈ [0, 1],

ΣD(s) = τ(s) [diag(πa : a ∈ A)− (πa : a ∈ A)(πa : a ∈ A)′] . (20)

Assumption 4.1.(a) is the same as Assumption 2.2.(a) and requires that the treatment assignment mech-

anism is a function only of the vector of strata and an exogenous randomization device. Assumption 4.1.(b)

requires the target proportion πa(s) to be constant across strata. This restriction is required for consis-

tency of θ̂∗n for θ(Q). Finally, Assumption 4.1.(c) is stronger than Assumption 2.2.(b) and requires that the

(possibly random) fraction of units assigned to treatment a and stratum s is asymptotically normal as the

sample size tends to infinity. In the case of simple random sampling, where each unit is randomly assigned

to each treatment with probability πa, Assumption 4.1.(c) holds with τ(s) = 1 for all s ∈ S. In this sense,

the assumption requires that the treatment assignment mechanism improves “balance” relative to simple

random sampling. At the other extreme, we say that the treatment assignment mechanism achieves “strong

balance” when τ(s) = 0 for all s ∈ S, which leads to ΣD(s) being a null matrix. It is straightforward to show

that stratified block randomization satisfies Assumption 4.1.(c) with τ(s) = 0, i.e., that it achieves “strong

balance.”

The following theorem derives the asymptotic behavior of θ̂∗n:
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Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 4.1. Then,
√
n(θ̂∗n − θ(Q))

d→ N(0,Vsfe) ,

where Vsfe = VH +VỸ +VA, VH is as in (11) with πa(s) = πa for all (a, s) ∈ A×S, VỸ is as in (12), and

VA ≡

(∑
s∈S

p(s)

(
ξa(s)ξa′(s)

ΣD(s)[a,a′]

πaπa′
− ξa(s)ξ0(s)

ΣD(s)[a,0]

πaπ0

−ξa′(s)ξ0(s)
ΣD(s)[a′,0]

πa′π0
+ ξ0(s)ξ0(s)

ΣD(s)[0,0]

π0π0

)
: (a, a′) ∈ A×A

)
(21)

and

ξa(s) ≡ E[ma(Zi)|Si = s]−
∑
a′∈A0

πa′E[ma′(Zi|Si = s)] . (22)

Lemmas C.6 and C.7 in the Appendix derive the limit in probability of the usual homoskedasticity-only

and heteroskedasticity-consistent estimators of the asymptotic variance of θ̂∗n. As in the preceding section,

these results show that neither of these estimators are consistent for the asymptotic variance of θ̂∗n. In the

special case with only one treatment (i.e., |A| = 1), however, the heteroskedasticity-consistent estimator

of the asymptotic variance leads to tests that are asymptotically conservative in the sense that they have

limiting rejection probability under the null hypothesis no greater than the nominal level. See (Bugni et al.,

2017, Theorem 4.3) and Section 5 below for further discussion. In light of these results, the following theorem

constructs a consistent estimator of the asymptotic variance of θ̂∗n. The theorem further establishes that tests

using this new estimator of the asymptotic variance are exact in the sense that they have limiting rejection

probability under the null hypotheses equal to the nominal level. Before proceeding, we note, however, that

the theorem imposes the additional requirement that the randomization scheme achieves “strong balance,”

i.e,. that τ(s) = 0 for all s ∈ S. While it is possible to derive consistent estimators of the asymptotic

variance of θ̂∗n even when this is not the case, it follows from Theorem D.1 in the Appendix that when each

test is used with a consistent estimator for the appropriate asymptotic variance, φsfen (X(n)) is in general

less powerful along a sequence of local alternatives than φsatn (X(n)) except in the case of “strong balance.”

Indeed, it follows immediately from Theorems 3.1 and 4.1 that the asymptotic variance of θ̂∗n coincides with

the asymptotic variance of θ̂n for randomization schemes that achieve “strong balance.” For this reason, we

view the case of randomization schemes that achieve “strong balance” as being the most relevant.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 4.1 with τ(s) = 0 for all s ∈ S. Let V̂hc be the heteroskedasticity-consistent estimator of the

asymptotic variance defined in (B-34) and let V̂H be defined as in (14). Then,

V̂sfe = V̂H + diag
(
V̂hc

)
P→ Vsfe = VH + VỸ . (23)

In addition, for the problem of testing (4) at level α ∈ (0, 1), φsfen (X(n)) defined in (19) with V̂n = V̂sfe

satisfies

lim
n→∞

E[φsfen (X(n))] = α (24)
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for Q additionally satisfying the null hypothesis, i.e., Ψθ(Q) = c.

5 The Case of a Single Treatment

In this section we consider the special case where |A| = 1 to better illustrate the results we derived for the

general case and to compare them to those in Imbens and Rubin (2015). When |A| = 1, θ(Q) is a scalar

parameter and the asymptotic variances in Theorems 3.1 and 4.1 become considerably simpler.

Consider first the the “fully saturated” linear regression. Applying Theorem 3.1 to the case |A| = 1

shows that
√
n(θ̂n − θ(Q)) tends in distribution to a normal random variable with mean zero and variance

equal to

Vsat = ς2H + ς2
Ỹ
,

where

ς2H ≡
∑
s∈S

p(s) (E[m1(Zi)−m0(Zi)|Si = s])
2

(25)

ς2
Ỹ
≡
∑
s∈S

p(s)

(
σ2
Ỹ (0)

(s)

π0(s)
+
σ2
Ỹ (1)

(s)

π1(s)

)
. (26)

In addition, it follows from Theorem 3.2 and (13) that the usual heteroskedasticity-consistent estimator of

the asymptotic variance of θ̂n converges in probability to ς2
Ỹ

. As a result, tests based on θ̂n and this estimator

for the asymptotic variance lead to over-rejection under the null hypothesis whenever ς2H > 0.

Imbens and Rubin (2015, Ch. 9) study the properties of θ̂n when |A| = 1 and the treatment assignment

mechanism is stratified block randomization, which satisfies the hypotheses of Theorem 3.1. In contrast

to our results, Imbens and Rubin (2015, Theorem 9.2, page 207) conclude that
√
n(θ̂n − θ(Q)) tends in

distribution to a normal random variable with mean zero and variance equal to ς2
Ỹ

. In other words, the

results in Imbens and Rubin (2015) coincide with our results when the model is sufficiently homogeneous in

the sense that ς2H = 0. This condition can be alternatively written as

E[Yi(1)− Yi(0)|Si = s] = E[Yi(1)− Yi(0)] for all s ∈ S . (27)

When this condition does not hold, however, our results differ from those in Imbens and Rubin (2015) and

lead to tests that are asymptotically exact under arbitrary heterogeneity. In Section 6 we show further that

tests based on θ̂n and a consistent estimator of ς2
Ỹ

only may over-reject dramatically when ς2H is indeed

positive.

Now consider the linear regression with “strata fixed effects.” Applying Theorem 4.1 to the case |A| = 1

shows that
√
n(θ̂∗n − θ(Q)) tends in distribution to a normal random variable with mean zero and variance

equal to

Vsfe = ς2H + ς2
Ỹ

+ ς2A ,

11



where ς2H is as in (25), ς2
Ỹ

is as in (26), and

ς2A =
(1− 2π1)2

π1(1− π1)

∑
s∈S

τ(s)p(s) (E[m1(Z)|S = s]− E[m0(Z)|S = s])
2
. (28)

For treatment assignment mechanisms that achieve “strong balance,” we have in particular that Vsfe =

ς2H + ς2
Ỹ

. Furthermore, applying Lemmas C.6 and C.7 in the Appendix to the case |A| = 1 and τ(s) = 0

shows that the usual homoskedasticity-only estimator of the asymptotic variance is generally inconsistent

for Vsfe, while the heteroskedasticity-consistent estimator of the variance, V̂∗hc, satisfies

V̂∗hc
P→
[

1

π1(1− π1)
− 3

]
ς2H + ς2

Ỹ
, (29)

which is strictly greater than Vsfe, unless ς2H = 0 or π1 = 1
2 . In other words, when |A| = 1 and τ(s) = 0 for

all s ∈ S, tests of (4) based on θ̂∗n and the usual the heteroskedasticity-consistent estimator of the asymptotic

variance V̂∗hc are asymptotically conservative unless ς2H = 0 or π1 = 1
2 . See Bugni et al. (2017, Theorem 4.3)

for a formal statement of this result.

Imbens and Rubin (2015, Ch. 9) also study the properties of θ̂∗n when |A| = 1 and the treatment

assignment mechanism is stratified block randomization, which satisfies the hypotheses of Theorem 4.1. In

particular, stratified block randomization satisfies Assumption 4.1 with τ(s) = 0 for all s ∈ S, so ς2A = 0.

In contrast to our results, Imbens and Rubin (2015, Theorem 9.1, page 206) conclude that
√
n(θ̂∗n − θ(Q))

tends in distribution to a normal random variable with mean zero and variance that can be expressed in our

notation as [
1

π1(1− π1)
− 3

]
ς2H + ς2

Ỹ
.

This asymptotic variance is strictly greater than Vsfe unless ς2H = 0 or π1 = 1
2 , and it coincides with the

limit in probability of the heteroskedasticity-consistent estimator of the asymptotic variance in (29). As in

the case of the “fully saturated” linear regression, the results in Imbens and Rubin (2015) coincide with

our results when the model is sufficiently homogeneous in the sense that condition (27) holds. When this

condition does not hold, however, our results differ from those in Imbens and Rubin (2015) and lead to

tests that are asymptotically exact under arbitrary heterogeneity. In Section 6 we again show that tests

based on θ̂∗n and the usual heteroskedasticity-consistent estimator of the asymptotic variance may over-reject

dramatically under the null hypothesis.

6 Monte Carlo Simulations

In this section, we examine the finite-sample performance of several tests for the hypotheses in (4), including

those introduced in Sections 3 and 4, with a simulation study. For a ∈ A and 1 ≤ i ≤ n, potential outcomes

are generated in the simulation study according to the equation:

Yi(a) = µa +ma(Zi) + σa(Zi)εa,i . (30)
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where µa, ma(Zi), σa(Zi), and εa,i are defined below. In each specification, n = 500, {(Zi, ε0,i, ε1,i) : 1 ≤ i ≤
n} are i.i.d. with Zi, ε0,i, and ε1,i all being independent of each other, and the functions ma(Zi) have been

re-centered to have zero mean. We focus on the case |A| = 1 with π1(s) = π for all s ∈ S in order to be able

to compare the tests studied in Sections 3 and 4; but also study the case where π1(s) 6= π1(s′) for s 6= s′.

Model 1: Zi ∼ Beta(2, 2) (re-centered and re-scaled to have mean zero and variance one); σ0(Zi) =

σ0 = 1 and σ1(Zi) = σ1; ε0,i ∼ N(0, 1) and ε1,i ∼ N(0, 1); m0(Zi) = m1(Zi) = γZi. In this case,

Yi = µ0 + (µ1 − µ0)Ai + γZi + ηi ,

where

ηi = σ1Aiε1,i + σ0(1−Ai)ε0,i

and E[ηi|Ai, Zi] = 0.

Model 2: As in Model 1, but m0(Zi) = −γ log(Zi + 3)I{Zi ≤ 1
2}.

Model 3: As in Model 2, but σa(Zi) = σa|Zi|.

Model 4: Zi ∼ Unif(−2, 2); ε0,i ∼ 1
3 t3 and ε1,i ∼ 1

3 t3; σa(Zi) = σa|Zi|; and

m0(Zi) =

γZ2
i if Zi ∈ [−1, 1]

γZi otherwise
and m1(Zi) =

γZi if Zi ∈ [−1, 1]

γZ2
i otherwise

.

Treatment status is determined according to one of the following four different covariate-adaptive random-

ization schemes:

SRS: Treatment assignment is generated as in Example 2.1.

SBR: Treatment assignment is generated as in Example 2.2.

In each case, strata are determined by dividing the support of Zi into |S| intervals of equal length and

letting S(Zi) be the function that returns the interval in which Zi lies. In all cases, observed outcomes Yi

are generated according to (1). Finally, for each of the above specifications, we consider different values of

(|S|, π, γ, σ) and consider both (µ0, µ1) = (0, 0) (i.e., under the null hypothesis that θ = µ1 − µ0 = 0) and

(µ0, µ1) = (0, 12 ) (i.e., under the alternative hypothesis with θ = 0.2).

The results of our simulations are presented in Tables 1–4 below. Rejection probabilities are computed

using 104 replications. Columns are labeled in the following way:

SAT: The t-test from the fully saturated regression studied in Section 3. We report results for this

test using the homoskedasticity-only (‘HO’), heteroskedasticity-robust (‘HC’), and the new (‘NEW’)

consistent (as in Theorem 3.3), estimators of the asymptotic variance.
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Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 0.2
SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 5.13 5.30 5.27 5.08 5.14 5.17 81.96 82.11 82.08 82.01 82.06 82.15
SBR 4.74 4.98 4.92 4.71 4.88 4.93 82.25 82.44 82.32 82.21 82.17 82.31

2 SRS 6.65 6.84 4.93 6.31 5.05 5.08 80.18 80.77 75.71 75.91 72.58 72.66
SBR 6.75 4.63 4.60 4.74 3.58 4.63 79.63 79.94 75.14 75.75 71.91 75.77

3 SRS 7.69 7.79 5.17 6.25 4.86 4.89 84.84 84.93 80.87 80.10 76.98 77.06
SBR 7.19 4.59 4.52 4.53 3.34 4.59 85.11 85.16 80.58 81.14 77.75 81.08

4 SRS 20.04 19.22 5.06 10.80 5.12 5.13 92.44 91.93 79.17 76.45 65.00 65.11
SBR 19.92 19.16 5.19 5.92 2.21 5.35 92.91 92.37 79.10 80.19 67.16 78.98

Table 1: Parameter values: |S| = 10, π = 0.3, γ = 1, σ1 = 1.

Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 0.2
SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 8.57 5.06 5.07 8.41 4.85 4.87 66.73 58.45 58.55 67.22 58.37 58.47
SBR 8.51 5.10 5.05 8.42 5.00 5.06 67.57 59.03 58.79 67.43 58.64 58.80

2 SRS 14.35 10.16 5.31 10.85 5.39 5.44 65.42 58.17 45.91 53.33 39.88 39.93
SBR 14.58 9.80 5.06 7.50 3.15 5.10 65.87 58.93 46.96 54.53 39.72 47.68

3 SRS 14.73 10.45 5.25 10.23 5.09 5.10 69.79 63.22 49.71 56.39 43.53 43.64
SBR 15.02 10.55 4.88 6.96 2.89 4.97 71.28 64.39 49.93 57.48 41.88 51.10

4 SRS 31.22 26.06 5.28 12.35 5.39 5.41 73.57 69.41 36.25 42.20 26.50 26.56
SBR 32.00 26.69 5.00 6.56 1.82 5.09 74.30 69.97 36.60 40.38 21.48 36.56

Table 2: Parameter values: |S| = 10, π = 0.3, γ = 2, σ1 =
√

2.

SFE: The t-test with strata fixed effects studied in Section 4. We report results for this test using the

homoskedasticity-only (‘HO’), heteroskedasticity-robust (‘HC’), and the new (‘NEW’) consistent (as

in Theorem 3.3), estimators of the asymptotic variance.

Table 1 displays the results of our baseline specification, where (|S|, π, γ, σ) = (10, 0.3, 1, 1). Table 2

displays the results for (|S|, π, γ, σ) = (10, 0.3, 2, 1), to explore sensitivity to changes in γ. Tables 3 and 4

replace π = 0.3 with π = 0.7, so (|S|, π, γ, σ) = (10, 0.7, 1, 1) and (|S|, π, γ, σ) = (10, 0.7, 2, 1). Finally, Table

5 considers the baseline specification but with π1(s) 6= π1(s′) for s 6= s′, i.e.,

(π1(1), . . . , π1(|S|)) = (0.20, 0.25, 0.30, 0.35, 0.40, 0.60, 0.65, 0.70, 0.75, 0.80) . (31)

We organize our discussion of the results by test:

SAT: As expected in light of Theorems 3.1 and 3.2, the test φsatn (X(n)) in (10) when V̂n is either the

homoskedasticity-only or heteroskedasticity-consistent estimator of the asymptotic variance delivers a

test that may over-reject under the null hypothesis. Indeed, in some cases (Model 4 in Table 2) the

rejection probability under the null hypothesis could be as high as 32% for the homoskedasticity-only

case and 30% for the heteroskedasticity-consistent case. This over-rejection happens both, under simple

random sampling and stratified block randomization. Finally, and consistent with the results in Section

5, whenever Q is such that VH = 0, as it is the case in Model 1, the test with the heteroskedasticity-

consistent estimator of the asymptotic variance is asymptotically exact.
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Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 0.2
SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 5.08 5.29 5.23 4.96 5.01 5.02 81.75 82.12 82.00 81.99 81.97 82.01
SBR 5.02 5.10 5.06 4.95 4.95 5.00 82.76 82.93 82.79 82.65 82.73 82.82

2 SRS 6.72 6.94 4.83 6.26 5.01 5.03 79.85 80.08 75.32 74.87 71.56 71.63
SBR 7.05 7.11 5.08 4.99 3.93 5.05 80.46 80.54 76.61 75.77 72.26 76.04

3 SRS 7.23 7.58 5.03 6.44 5.03 5.05 85.81 85.82 81.28 80.35 77.09 77.12
SBR 7.56 7.70 5.14 5.07 3.92 5.16 87.56 87.62 83.07 82.40 78.71 82.75

4 SRS 18.46 19.91 5.43 10.02 5.20 5.21 92.45 93.12 80.79 76.88 66.84 66.95
SBR 18.25 19.63 5.93 5.21 2.09 5.83 92.98 93.33 82.57 81.27 71.75 82.77

Table 3: Parameter values: |S| = 10, π = 0.7, γ = 1, σ1 = 1.

Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 0.2
SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 2.72 5.55 5.45 2.79 5.35 5.38 58.45 68.64 68.35 59.02 68.51 68.62
SBR 2.66 5.23 5.17 2.64 5.13 5.14 58.79 68.91 68.79 58.79 68.74 68.80

2 SRS 7.18 11.48 5.28 6.22 5.44 5.47 58.35 66.71 51.98 47.35 45.08 45.21
SBR 7.18 11.19 4.99 3.19 2.80 5.02 58.95 66.52 53.69 45.17 43.14 52.74

3 SRS 8.00 12.36 5.13 6.43 5.24 5.29 64.51 71.87 56.25 51.30 47.55 47.61
SBR 7.63 11.88 4.99 3.35 2.83 5.00 65.91 73.20 58.83 50.41 47.03 57.71

4 SRS 24.98 30.67 5.12 10.82 5.61 5.62 69.65 74.39 39.07 39.87 27.80 27.86
SBR 24.81 30.72 6.01 4.49 1.50 5.81 70.74 75.42 41.60 37.57 24.20 41.41

Table 4: Parameter values: |S| = 10, π = 0.7, γ = 2, σ1 =
√

2.

Consistent with Theorem 3.3, the test φsatn (X(n)) in (10) when V̂n is given by the new consistent

estimator of the asymptotic variance in (15) is asymptotically exact across all the specifications we

consider. Indeed, the rejection probability under the null hypothesis is very close to the nominal level

in all models and all tables. The rejection probability under the alternative hypothesis is the highest

under simple random sampling among the tests that are asymptotically exact and do not over-reject

under the null hypothesis. Under stratified block randomization, and given that in this case τ(s) = 0

for all s ∈ S, the rejection probability under the alternative hypothesis is effectively the same as that

of φsfen (X(n)) with the new consistent estimator of the asymptotic variance in (23). These results are in

line with the theoretical results described in Section 4. Finally, Table 5 illustrates that the results for

φsatn (X(n)) with the new consistent estimator of the asymptotic variance are not affected by whether

π1(s) is the same across strata s ∈ S or not.

SFE: As expected from Theorem 4.1 and the subsequent discussion, the test φsfen (X(n)) in (19) when

V̂n is the homoskedasticity-only estimator of the asymptotic variance could lead to over-rejection or

under-rejection, depending on the specification. For example, the rejection probability under the null

hypothesis in Table 2 could be as high as 12.25%, while in Table 4 could be as low as 2.64%. On the

other hand, when V̂n is the heteroskedasticity-consistent estimator of the asymptotic variance, this test

is asymptotically conservative; in line with the results in Bugni et al. (2017) and Section 5. Indeed,

the rejection probability under the null hypothesis is close to 2% in Model 4 under stratified block

randomization for all the specifications we consider. Finally, and consistent with the results in Section

5, whenever Q is such that VH = 0, as it is the case in Model 1, the test with the heteroskedasticity-
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Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 0.2
SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 5.20 5.47 5.47 5.08 5.12 5.15 81.63 82.48 82.48 82.80 82.71 82.75
SBR 5.27 5.39 5.39 5.32 5.42 5.44 83.15 83.48 83.48 83.49 83.43 83.58

2 SRS 6.74 7.18 5.70 9.05 7.13 9.51 79.53 80.14 76.98 87.24 84.66 87.61
SBR 7.18 7.33 5.63 8.92 7.05 9.08 80.57 80.91 77.23 90.72 88.61 90.91

3 SRS 8.89 8.14 6.34 9.49 8.18 8.99 85.19 84.10 81.04 92.03 90.57 91.54
SBR 8.24 7.56 5.53 9.03 7.53 8.37 86.51 85.38 81.77 94.92 93.76 94.42

4 SRS 19.74 18.16 6.41 60.82 45.51 59.43 91.77 90.90 80.14 12.92 5.62 12.42
SBR 19.71 18.14 6.69 67.13 48.22 66.08 91.61 90.77 80.78 4.42 1.12 4.00

Table 5: Parameter values: |S| = 10, π1(s) as in (31), γ = 1, σ1 = 1.

consistent estimator of the asymptotic variance is asymptotically exact.

Consistent with Theorem 4.2, the test φsfen (X(n)) in (19) when V̂n is given by the new consistent

estimator of the asymptotic variance in (23) is asymptotically exact across all the specifications we

consider. The rejection probability under the null hypothesis is very close to the nominal level in all

models and all tables. The rejection probability under the alternative hypothesis is similar to that

of φsatn (X(n)) with V̂n = V̂sat under stratified block randomization, but often below the rejection

probability of that same test under simple random sampling. These results are again in line with the

theoretical results discuss in Section 4. Finally, Table 5 illustrates that φsfen (X(n)) is only a valid test

for the null in (4) when π1(s) = π for all s ∈ S and may otherwise over-reject under the null hypothesis.
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Appendix A Additional Notation

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

σ2
X(s) For a random variable X, σ2

X(s) = Var[X|S = s]

σ2
X For a random variable X, σ2

X = Var[X]

µa For a ∈ A0, E[Yi(a)]

Ỹi(a) For a ∈ A0, Yi(a)− E[Yi(a)|Si]

ma(Zi) For a ∈ A0, E[Yi(a)|Zi]− µa
n(s) Number of individuals in strata s ∈ S

na(s) Number of individuals in treatment a ∈ A0 in strata s ∈ S

ι|A| |A|-dimensional vector of ones

O (|A| × |S|)-dimensional matrix of zeros

I|A| |A|-dimensional identity matrix

Js (|S| × |S|)-dimensional matrix with a 1 on the (s, s)th coordinate and zeros otherwise

Table 6: Useful notation

In addition, we often transform objects that are indexed by (a, s) ∈ A × S into vectors or matrices, using the

following conventions. For X(a) being a scalar object indexed over a ∈ A, we use (X(a) : a ∈ A) to denote the

|A|-dimensional vector (X(1), . . . , X(|A|))′. For Xa(s) being a scalar object indexed by (a, s) ∈ A × S we use

(Xa(s) : (a, s) ∈ A× S) to denote the (|A| × |S|)-dimensional vector where the order of the indices is as follows,

(Xa(s) : (a, s) ∈ A× S) = (X1(1), . . . , X|A|(1), X1(2), . . . , X|A|(2), . . . )′ .

Finally throughout the appendix we use L
(j)
n,a(s) and L(j)

n for j = 1, 2, . . . , to denote scalar objects and matrices/vectors

that may be redefined from theorem to theorem.

Appendix B Proof of Main Theorems

B.1 Proof of Theorem 3.1

Let Cn be the matrix of covariate associated with the regression in (7), i.e., the matrix with ith row given by

Ci = [(I{Si = s} : s ∈ S)′, (I{Ai = a, Si = s} : (a, s) ∈ A× S)′] .

Let Rn be a matrix with |A| rows and (|S|+ |A| × |S|) columns defined as

Rn =

[
O, n(1)

n
I|A|, . . . ,

n (|S|)
n

I|A|

]
, (B-32)
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where O and I|A| are defined in Table 6. Using this notation, we can write

θ̂n = Rn

[
(δ̂n(s) : s ∈ S)

(β̂n,a(s) : (a, s) ∈ A× S)

]

where δ̂n(s) and β̂n,a(s) are the resulting estimators of δ(s) and βa(s) in (7), respectively. Now consider the following

derivation,

√
n(θ̂n − θ(Q)) =

√
n

(
Rn
(

1

n
C′nCn

)−1
1

n
C′nYn − θ(Q)

)

=

(∑
s∈S

n(s)

na(s)

[
1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a)

]
−
∑
s∈S

n(s)

n0(s)

[
1√
n

n∑
i=1

I{Ai = 0, Si = s}Ỹi(0)

]

+
∑
s∈S

√
n

(
n(s)

n
− p(s)

)
E [ma(Z)−m0(Z)|S = s] : a ∈ A

)

=

(∑
s∈S

(
L(1)
n,a(s)− L(1)

n,0(s)
)

: a ∈ A

)
+

(∑
s∈S

L(2)
n,a(s) : a ∈ A

)
+ oP (1)

where for (a, s) ∈ A× S,

L(1)
n,a(s) ≡ 1

πa(s)

[
1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a)

]

L(2)
n,a(s) ≡

√
n

(
n(s)

n
− p(s)

)
E [ma(Z)−m0(Z)|S = s] .

By Lemma C.1 and some additional calculations, it follows that (∑
s∈S

(
L

(1)
n,a(s)− L(1)

n,0(s)
)

: a ∈ A
)(∑

s∈S L
(2)
n,a(s) : a ∈ A

)  d→ N

((
0

0

)
,

(
VỸ 0

0 VH

))
,

where VỸ is as in (12) and VH is as in (11). Importantly, to get VH for the second term we used that∑
s∈S p(s)E [ma(Z)−m0(Z)|S = s] = 0 for all a ∈ A.

B.2 Proof of Theorem 3.2

The homoskedasticity-only estimator of the asymptotic variance for the regression in (7) is

V̂ho =

(
1

n

n∑
i=1

û2
i

)
Rn
(

1

n
C′nCn

)−1

R′n , (B-33)

where {ûi : 1 ≤ i ≤ n} are the least squares residuals. The result then follows immediately from

1

n

n∑
i=1

û2
i
P→

∑
(a,s)∈A0×S

p(s)πa(s)σ2
Ỹ (a)(s) ,

which follows from Lemma C.5, and

Rn
(

1

n
C′nCn

)−1

R′n
P→

[∑
s∈S

p(s)

π0(s)
ι|A|ι

′
|A| + diag

(∑
s∈S

p(s)

πa(s)
: a ∈ A

)]
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which follows from Lemma C.3, (B-32), and some additional calculations.

The heteroskedasticity-consistent estimator of the asymptotic variance for the regression in (7) is

V̂hc = Rn

[(
1

n
C′nCn

)−1(
1

n
C′n diag

(
û2
i : 1 ≤ i ≤ n

)
Cn
)(

1

n
C′nCn

)−1
]
R′n . (B-34)

First note that 1
n
C′n diag

(
û2
i : 1 ≤ i ≤ n

)
Cn equals

[
diag( 1

n

∑n
i=1 û

2
i I{Si = s} : s ∈ S)

∑
s∈S Js ⊗ ( 1

n

∑n
i=1 û

2
i I{Ai = a, Si = s} : a ∈ A)′∑

s∈S Js ⊗ ( 1
n

∑n
i=1 û

2
i I{Ai = a, Si = s} : a ∈ A) diag( 1

n

∑n
i=1 û

2
i I{Ai = a, Si = s} : (a, s) ∈ A× S)

]
,

which follows from Lemma C.3. By Lemma C.4, this matrix converges in probability to diag(
∑
a∈A0

p(s)πa(s)σ2
Ỹ (a)

(s) : s ∈ S)
∑
s∈S Js ⊗ (p(s)πa(s)σ2

Ỹ (a)
(s) : a ∈ A)′∑

s∈S Js ⊗ (p(s)πa(s)σ2
Ỹ (a)

(s) : a ∈ A) diag(p(s)πa(s)σ2
Ỹ (a)

(s) : (a, s) ∈ A× S)

 .

The result follows by combining this with Lemma C.3 and doing some additional calculations.

B.3 Proof of Theorem 3.3

By Theorem 3.2 and the continuous mapping theorem, it follows that

diag
(
V̂hc

)
P→ diag

(∑
s∈S

p(s)σ2
Ỹ (0)

(s)

π0(s)
: a ∈ A

)
+ diag

(∑
s∈S

p(s)σ2
Ỹ (a)

(s)

πa(s)
: a ∈ A

)
.

By Lemma C.3 and for any a ∈ A,(
β̂n,a(s)− θ̂n,a

)
P→ E [ma(Z)−m0(Z)|S = s] ,

which in turn implies that

V̂H =
∑
s∈S

n(s)

n

(
β̂n,a(s)− θ̂n,a : a ∈ A

)(
β̂n,a(s)− θ̂n,a : a ∈ A

)′
P→
∑
s∈S

p(s) (E[ma(Z)−m0(Z)|S = s] : a ∈ A) (E[ma(Z)−m0(Z)|S = s] : a ∈ A)′ ,

where we used n(s)
n

P→ p(s). By the continuous mapping theorem again, we conclude that V̂sat
P→ Vsat. By Theorem

3.1, limn→∞E[φsat
n (X(n))] = α follows immediately whenever Q is such that Ψθ(Q) = c.

B.4 Proof of Theorem 4.1

Let Mn ≡ In − Sn(S′nSn)−1S′n denote the projection on the orthogonal complement of the column space of Sn, where

Sn is the matrix with ith row given by (I{Si = s} : s ∈ S)′. By the Frisch-Waugh-Lovell Theorem,

θ̂∗n = (A′nM′nMnAn)−1(A′nM′nYn) ,
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where Yn = (Yi : 1 ≤ i ≤ n) and An is the matrix with ith row given by (I{Ai = a} : a ∈ A)′. Next, notice that

MnAn =

((
I{Ai = a} −

∑
s∈S

I{Si = s}na(s)

n(s)
: a ∈ A

)′
: 1 ≤ i ≤ n

)

is an n× |A| dimensional matrix, where we have used that S′nSn = diag (n(s) : s ∈ S) and that S′nAn is an (|S|× |A|)
dimensional matrix with (s, a)th element given by na(s). It follows from the above derivation and Assumption 4.1

that the (a, ã) element of ( 1
n
A′nM′nMnAn) satisfies

I{a = ã}
∑
s∈S

na(s)

n
−
∑
s̃∈S

na(s̃)nã(s̃)

n(s̃)n

P→ I{a = ã}πa − πaπã ,

and so by the continuous mapping theorem we get(
1

n
A′nM′nMnAn

)−1
P→ diag

(
1

πa
: a ∈ A

)
+

1

π0
ι|A|ι

′
|A| .

Now consider the matrix ( 1
n
A′nM′nYn). Simple manipulations shows that

1

n
A′nM′nYn =

(∑
s∈S

1

n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a)−
∑
s∈S

∑
ã∈A0

na(s)

n(s)

1

n

n∑
i=1

I{Ai = ã, Si = s}Ỹi(ã)

+
∑
s∈S

na(s)

n(s)

n(s)

n
E[ma(Z)|S = s]−

∑
ã∈A0

∑
s∈S

na(s)

n(s)

nã(s)

n(s)

n(s)

n
E[mã(Z)|S = s] : a ∈ A

)

We conclude that

√
n(θ̂∗n − θ(Q)) =

(
diag

(
1

πa
: a ∈ A

)
+

1

π0
ι|A|ι

′
|A| + oP (1)

)
1√
n
A′nM′nYn .

Next, we derive the limiting distribution of 1√
n
A′nM′nYn. In order to do this, write

1√
n
A′nM′nYn = Ln + oP (1) ,

where

Ln =

(∑
s∈S

1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a)− πa
∑
s∈S

∑
ã∈A0

1√
n

n∑
i=1

I{Ai = ã, Si = s}Ỹi(ã)

+πa
∑
s∈S

√
n

(
n(s)

n
− p(s)

)[
E[ma(Z)|S = s]−

∑
ã∈A0

πãE[mã(Z)|S = s]

]

+
∑
s∈S

√
n

(
na(s)

n(s)
− πa

)
p(s)

[
E[ma(Z)|S = s]−

∑
ã∈A0

πãE[mã(Z)|S = s]

]

−πa
∑
ã∈A0

∑
s∈S

√
n

(
nã(s)

n(s)
− πã

)
p(s)E[mã(Z)|S = s] : a ∈ A

)
.
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Since the right-hand side is OP (1), then Slutzky’s theorem and some simple manipulations shows that

√
n(θ̂∗n − θ(Q)) =

(
diag

(
1

πa
: a ∈ A

)
+

1

π0
ι|A|ι

′
|A|

)
Ln + oP (1)

=

(∑
s∈S

(
L̄(1)
n,a(s)− L̄(1)

n,0(s)
)

: a ∈ A

)
+

(∑
s∈S

L̄(2)
n,a(s) : a ∈ A

)

+

(∑
s∈S

(L̄(3)
n,a(s)− L̄(3)

n,0(s)) : a ∈ A

)
+ oP (1) ,

where for (a, s) ∈ A× S,

L̄(1)
n,a(s) ≡ 1

πa

[
1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a)

]

L̄(2)
n,a(s) ≡

√
n

(
n(s)

n
− p(s)

)
E [ma(Z)−m0(Z)|S = s]

L̄(3)
n,a(s) ≡

√
n

(
na(s)

n(s)
− πa

)
p(s)

πa

[
E[ma(Z)|S = s]−

∑
ã∈A

πãE[mã(Z)|S = s]

]
.

By Lemma C.2 and some additional calculations, it follows that
(∑

s∈S

(
L̄

(1)
n,a(s)− L̄(1)

n,0(s)
)

: a ∈ A
)(∑

s∈S L̄
(2)
n,a(s) : a ∈ A

)(∑
s∈S(L̄

(3)
n,a(s)− L̄(3)

n,0(s)) : a ∈ A
)

 d→ N




0

0

0

 ,


VỸ 0 0

0 VH 0

0 0 VA


 ,

where VỸ is as in (12) with πa(s) = πa for all (a, s) ∈ A0 × S, VH is as in (11), and

VA =

(∑
s∈S

p(s)

(
ξa(s)ξa′(s)

ΣD(s)[a,a′]
πaπa′

− ξa(s)ξ0(s)
ΣD(s)[a,0]
πaπ0

−ξa′(s)ξ0(s)
ΣD(s)[a′,0]
πa′π0

+ ξ0(s)ξ0(s)
ΣD(s)[0,0]
π0π0

)
: (a, a′) ∈ A×A

)
with

ξa(s) ≡ E[ma(Zi)|Si = s]−
∑
a′∈A0

πa′E[ma′(Zi|Si = s)] .

Importantly, to get VH for the second term we used that
∑
s∈S p(s)E [ma(Z)−m0(Z)|S = s] = 0 for all a ∈ A.

Appendix C Auxiliary Results

Lemma C.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Define

L(1)
n ≡

(
1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a) : (a, s) ∈ A0 × S

)
(C-35)

L(2)
n ≡

(√
n

(
n(s)

n
− p(s)

)
: s ∈ S

)
, (C-36)
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and Ln = (L(1)′
n ,L(2)′

n )′. It follows that

Ln
d→ N

((
0

0

)
,

(
Σ1 0

0 Σ2

))
,

where

Σ1 = diag
(
πa(s)p(s)σ2

Ỹ (a)(s) : (a, s) ∈ A0 × S
)

Σ2 = diag (p(s) : s ∈ S)− (p(s) : s ∈ S) (p(s) : s ∈ S)′ .

Proof. To prove our result, we first show that{
L(1)
n ,L(2)

n

}
d
=
{
L∗(1)n ,L(2)

n

}
+ oP (1) ,

for a random vector L∗(1)n satisfying L∗(1)n ⊥⊥ L(2)
n and L∗(1)n

d→ N (0,Σ1). We then combine this result with the fact

that L(2)
n

d→ N (0,Σ2), which follows from W (n) consisting of n i.i.d. observations and the CLT.

Under the assumption that W (n) is i.i.d. and Assumption 2.2.(a), the distribution of L(1)
n is the same as the

distribution of the same quantity where units are ordered first by strata s ∈ S and then ordered by treatment

assignment a ∈ A within strata. In order to exploit this observation, it is useful to introduce some further notation.

Define N(s) ≡
∑n
i=1 I{Si < s}, Na(s) ≡

∑n
i=1 I{Ai < a, Si = s}, F (s) ≡ P{Si < s}, and Fa(s) ≡ P{Ai < a, Si = s}

for all (a, s) ∈ A × S. Furthermore, independently for each (a, s) ∈ A × S and independently of (A(n), S(n)), let

{Ỹ si (a) : 1 ≤ i ≤ n} be i.i.d. with marginal distribution equal to the distribution of Ỹi(a)|Si = s. With this notation,

define

L̃(1)
n ≡

(
1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹ si (a) : (a, s) ∈ A0 × S

)
=

 1√
n

n
N(s)+Na+1(s)

n∑
i=n

N(s)+Na(s)
n

+1

Ỹ si (a) : (a, s) ∈ A0 × S

 .

By construction, {L̃(1)
n |S(n), A(n)} d

= {L(1)
n |S(n), A(n)} and so L̃(1)

n
d
= L(1)

n . Since L(2)
n is only a function of S(n), we

further have that
{
L(1)
n ,L(2)

n

}
d
=
{
L̃(1)
n ,L(2)

n

}
. Next, define

L∗(1)n ≡

 1√
n

bn(F (s)+Fa+1(s))c∑
i=bn(F (s)+Fa(s))c+1

Ỹ si (a) : (a, s) ∈ A0 × S

 .

Note that L∗(1)n ⊥⊥ L(2)
n . Using similar partial sum arguments as those in Bugni et al. (2017, Lemma B.1), it follows

that

L∗(1)n,a (s) =
1√
n

bn(F (s)+Fa+1(s))c∑
i=bn(F (s)+Fa(s))c+1

Ỹ si (a)
d→ N

(
0, πa(s)p(s)σ2

Ỹ (a)(s)
)
,

for all (a, s) ∈ A0 × S, where we used that Fa+1(s)− Fa(s) = πa(s)p(s). By the independence of the components, it

follows that L∗(1)n
d→ N (0,Σ1). We conclude the proof by arguing that

L̃(1)
n,a(s)− L∗(1)n,a (s)

P→ 0 ,
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for all (a, s) ∈ A0 × S, where

L̃(1)
n,a(s) =

1√
n

n
N(s)+Na+1(s)

n∑
i=n

N(s)+Na(s)
n

+1

Ỹ si (a) .

This in turn follows from (
N(s)

n
,
Na(s)

n

)
P→ (F (s), Fa(s))

for all (a, s) ∈ A0 × S and again invoking similar arguments to those in Bugni et al. (2017, Lemma B.1).

Lemma C.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

4.1. Define

L(1)
n ≡

(
1√
n

n∑
i=1

I{Ai = a, Si = s}Ỹi(a) : (a, s) ∈ A0 × S

)
(C-37)

L(2)
n ≡

(√
n

(
n(s)

n
− p(s)

)
: s ∈ S

)
, (C-38)

L(3)
n ≡

(√
n

(
na(s)

n(s)
− πa

)
: (a, s) ∈ A0 × S

)
, (C-39)

and Ln = (L(1)′
n ,L(2)′

n ,L(3)′
n )′. It follows that

Ln
d→ N




0

0

0

 ,


Σ1 0 0

0 Σ2 0

0 0 Σ3


 ,

where

Σ1 = diag
(
πa(s)p(s)σ2

Ỹ (a)(s) : (a, s) ∈ A0 × S
)

Σ2 = diag (p(s) : s ∈ S)− (p(s) : s ∈ S) (p(s) : s ∈ S)′

Σ3 = diag (ΣD(s)/p(s) : s ∈ S) .

Proof. To prove our result, we first show that{
L(1)
n ,L(2)

n ,L(3)
n

}
d
=
{
L∗(1)n ,L(2)

n ,L(3)
n

}
+ oP (1) ,

for a random vector L∗(1)n satisfying L∗(1)n ⊥⊥ (L(2)
n ,L(3)

n ) and L∗(1)n
d→ N (0,Σ1). We then combine this result with

the fact that L(2)
n

d→ N (0,Σ2), which follows from W (n) consisting of n i.i.d. observations and the CLT, and the fact

that conditional on S(n), L(3)
n

d→ N(0,Σ3), which follows from Assumption 4.1. The proof of (C) follows from similar

arguments to those used in the proof of Lemma C.1 and so we omit them here.

Lemma C.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let

C′nCn =

[
diag(n(s) : s ∈ S)

∑
s∈S Js ⊗ (na(s) : a ∈ A)′∑

s∈S Js ⊗ (na(s) : a ∈ A) diag(na(s) : (a, s) ∈ A× S)

]
, (C-40)

and

C′nYn =

 (∑
a∈A0

∑n
i=1 I{Ai = a, Si = s}Ỹi(a) +

∑
a∈A0

na(s) (E[ma(Z)|S = s] + µa) : s ∈ S
)(∑n

i=1 I{Ai = a, Si = s}Ỹi(a) + na(s)(E[ma(Z)|S = s] + µa) : (a, s) ∈ A× S
)  , (C-41)
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where Yn ≡ (Yi : 1 ≤ i ≤ n). It follows that

1

n
C′nCn

P→ ΣC ≡

[
diag(p(s) : s ∈ S)

∑
s∈S Js ⊗ (πa(s)p(s) : a ∈ A)′∑

s∈S Js ⊗ (πa(s)p(s) : a ∈ A) diag(πa(s)p(s) : (a, s) ∈ A× S)

]
,

and

1

n
C′nYn

P→


(
p(s)

∑
a∈A0

πa(s) (E[ma(Z)|S = s] + µa) : s ∈ S
)

(
p(s)πa(s)(E[ma(Z)|S = s] + µa) : (a, s) ∈ A× S

)
 .

In addition,

Σ−1
C =

 diag
(

1
π0(s)p(s)

: s ∈ S
) ∑

s∈S Js ⊗
(

−1
π0(s)p(s)

: a ∈ A
)′

∑
s∈S Js ⊗

(
−1

π0(s)p(s)
: a ∈ A

) ∑
s∈S Js ⊗

(
diag

(
1

πa(s)p(s)
: a ∈ A

)
+ 1

π0(s)p(s)
ι|A|ι

′
|A|

)  .

Proof. The first result follows immediately from Assumption 2.2.(b) and the fact that n(s)
n

P→ p(s) and na(s)
n

=
na(s)
n(s)

n(s)
n

P→ πa(s)p(s) for all (a, s) ∈ A× S. For the second result, consider the following argument,

1

n
C′nYn =

1

n

n∑
i=1

[
(I{Si = s}Yi : s ∈ S)

(I{Ai = a, Si = s}Yi : (a, s) ∈ A× S)

]

=
1

n

n∑
i=1

 (∑
a∈A0

I{Ai = a, Si = s}
[
Ỹi(a) + E [ma(Z)|Si = s] + µa

]
: s ∈ S

)(
I{Ai = a, Si = s}

[
Ỹi(a) + E [ma(Z)|Si = s] + µa

]
: (a, s) ∈ A× S

) 
=

 (
p(s)

∑
a∈A0

πa(s)(E [ma(Z)|S = s] + µa) : s ∈ S
)

(p(s)πa(s)(E [ma(Z)|S = s] + µa) : (a, s) ∈ A× S)

+ oP (1)

where we used 1
n

∑n
i=1 I{Ai = a, Si = s} = na(s)

n

P→ πa(s)p(s), and 1
n

∑n
i=1 I{Ai = a, Si = s}Ỹi(a)

P→ 0 for all

(a, s) ∈ A0×S. Finally, the last result follows from simple manipulations that we omit and this completes the proof.

Lemma C.4. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let Wi = f((Yi(a) : a ∈ A), Si) for some function f(·) satisfy E[|Wi|] <∞. Then, for all a ∈ A0,

1

n

n∑
i=1

WiI{Ai = a} P→
∑
s∈S

p(s)πa(s)E[Wi] . (C-42)

Proof. Fix a ∈ A0. By arguing as in the proof of Lemma C.1, note that

1

n

n∑
i=1

WiI{Ai = a} d
=
∑
s∈S

1

n

na(s)∑
i=1

W s
i ,

where, independently for each s ∈ S and independently of (A(n), S(n)), {W s
i : 1 ≤ i ≤ n} are i.i.d. with marginal

distribution equal to the distribution of Wi|Si = s. In order to establish the desired result, it suffices to show that

1

n

na(s)∑
i=1

W s
i
P→ p(s)πa(s)E[W s

i ] . (C-43)
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From Assumption 2.2.(b), na(s)
n

P→ p(s)πa(s), so (C-43) follows from

1

na(s)

na(s)∑
i=1

W s
i
P→ E[W s

i ] . (C-44)

To establish (C-44), use the almost sure representation theorem to construct ña(s)
n

such that ña(s)
n

d
= na(s)

n
and

ña(s)
n
→ p(s)πa(s) a.s. Using the independence of (A(n), S(n)) and {W s

i : 1 ≤ i ≤ n}, we see that for any ε > 0,

P


∣∣∣∣∣∣ 1

na(s)

na(s)∑
i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣ > ε

 = P


∣∣∣∣∣∣∣

1

nna(s)
n

n
na(s)

n∑
i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε


= P


∣∣∣∣∣∣∣

1

n ña(s)
n

n
ña(s)

n∑
i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε


= E

P

∣∣∣∣∣∣∣

1

n ña(s)
n

n
ña(s)

n∑
i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε
∣∣∣ ña(s)

n




→ 0 ,

where the convergence follows from the dominated convergence theorem and

P


∣∣∣∣∣∣∣

1

n ña(s)
n

n
ña(s)

n∑
i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε
∣∣∣ ña(s)

n

→ 0 a.s. . (C-45)

To see that the convergence (C-45) holds, note that the weak law of large numbers implies that

1

nk

nk∑
i=1

W s
i
P→ E[W s

i ] (C-46)

for any subsequence nk →∞ as k →∞. Since n ña(s)
n
→∞ a.s., (C-45) follows from the independence of ña(s)

n
and

{W s
i : 1 ≤ i ≤ n} and (C-46).

Lemma C.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let ûi = Yi − Ciγ̂n and γ̂n =
(

(δ̂n(s) : s ∈ S)′, (β̂n,a(s) : (a, s) ∈ A× S)′
)′

, where Ci is as in (B.1), be the least

squares residuals associated with the regression in (7). Then,

1

n

n∑
i=1

û2
i
P→

∑
(a,s)∈A0×S

p(s)πa(s)σ2
Ỹ (a)(s)

1

n

n∑
i=1

û2
i I {Ai = a, Si = s} P→ p(s)πa(s)σ2

Ỹ (a)(s)

1

n

n∑
i=1

û2
i I {Si = s} P→

∑
a∈A0

p(s)πa(s)σ2
Ỹ (a)(s)

1

n

n∑
i=1

û2
i I {Ai = a} P→

∑
s∈S

p(s)πa(s)σ2
Ỹ (a)(s) .
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Proof. First note that, by definition of Ỹi(a), we can write.

Yi =
∑

(a,s)∈A0×S

I{Ai = a, Si = s}[Ỹi(a) + E[ma(Z)|S = s] + µa] .

In addition, for γ = ((δ(s) : s ∈ S)′, (βa(s) : (a, s) ∈ A× S)′)
′

Ciγ =
∑
s∈S

I{Si = s} (E [m0(Z)|S = s] + µ0)

+
∑

(a,s)∈A×S

I{Ai = a, Si = s} [E[ma(Z)−m0(Z)|S = s] + θa] .

We can therefore write the error term ui as

ui = Yi − Ciγ =
∑

(a,s)∈A0×S

I{Ai = a, Si = s}Ỹi(a) ,

and its square as

u2
i =

∑
(a,s)∈A0×S

I{Ai = a, Si = s}Ỹ 2
i (a) .

By arguments similar to those in Bugni et al. (2017, Lemma B.8), it is enough to show the results with u2
i in place of

û2
i . Since E[u2

i ] = p(s)πa(s)σ2
Ỹ (a)

(s), the results follow immediately by invoking Lemma C.4 repeatedly. We therefore

omit the arguments here.

Lemma C.6. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

4.1. Let V̂∗ho be the homoskedasticity-only estimator of the asymptotic variance for the regression in (17), defined as

V̂∗ho =

(
1

n

n∑
i=1

û2
i

)
R∗
(

1

n
C∗′nC∗n

)−1

R∗′ , (C-47)

where {ûi : 1 ≤ i ≤ n} are the least squares residuals, C∗n is the matrix with ith row given by

C∗i = [(I{Si = s} : s ∈ S)′, (I{Ai = a} : a ∈ A)′] ,

and R∗ is a matrix with |A| rows and |S| + |A| columns defined as R =
[
O, I|A|

]
, where O and I|A| are defined in

Table 6. Then.

V̂∗ho
P→

 ∑
(a,s)∈A0×S

p(s)πaσ
2
Ỹ (a)(s) +

∑
s∈S

p(s)ς2H(s)

[ 1

π0
ι|A|ι

′
|A| + diag

(
1

πa
: a ∈ A

)]

where

ς2H(s) =
∑
a∈A0

πa (E[ma(Zi)|S = s])2 −

(∑
a∈A0

πaE[ma(Zi)|S = s]

)2

.

Proof. The proof is similar to that of Theorem 3.2 and therefore omitted.

Lemma C.7. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption 4.1.

Let V̂∗he be the heteroskedasticity-consistent estimator of the asymptotic variance for the regression in (17), defined as

V̂∗he = R∗
[(

C∗′nC∗n
n

)−1(C∗′n diag({û2
i }ni=1)C∗n

n

)(
C∗′nC∗n
n

)−1
]
R∗′ , (C-48)
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where {ûi : 1 ≤ i ≤ n} are the ordinary least squares residuals, and C∗n and R∗ are defined as in Lemma C.6. Then.

V̂∗he
P→ V∗1 + V∗2 ,

where

V∗1 = diag

(∑
s∈S

p(s)

πa

[
σ2
Ỹ (a)(s) +

(
E[ma(Z)|S = s]−

∑
ã∈A0

πãE[mã(Z)|S = s]

)2]
: a ∈ A

)

V∗2 = ι|A|ι
′
|A|

∑
s∈S

p(s)

π0

[
σ2
Ỹ (0)(s) +

(
E[m0(Z)|S = s]−

∑
ã∈A0

πãE[mã(Z)|S = s]

)2]
.

Proof. The proof is similar to that of Theorem 3.2 and therefore omitted.

Appendix D Results on Local Power

Let {Q∗n : n ≥ 1} be a sequence of local alternatives to the null hypothesis in (4) that satisfy

√
n(Ψθ(Q∗n)− c)→ λ (D-49)

as n→∞, for λ ∈ Rr, c ∈ Rr, and Ψ being a (r × |A|)-dimensional matrix such that rank(Ψ) = r. Consider a test

of the form

φn(X(n)) = I{Tn(X(n)) > χ2
r,1−α} ,

where

Tn(X(n)) = n(Ψθ̂n − c)′(ΨV̂nΨ′)−1(Ψθ̂n − c) ,

θ̂n is an estimator of θ(Q) satisfying

√
n(θ̂n − θ(Q∗n))

d→ N(0,V) under Q∗n (D-50)

for some asymptotic variance V, V̂n is a matrix intended to Studentize the test statistic that satisfies

V̂n
P→ Vstud under Q∗n (D-51)

for some Vstud, and χ2
r,1−α is the 1−α quantile of a χ2 random variable with r degrees of freedom. The next theorem

summarizes our main result.

Theorem D.1. Let {Q∗n : n ≥ 1} be the sequence of local alternatives satisfying (D-49), θ̂n be an estimator satisfying

(D-50), and V̂n be a random matrix satisfying (D-51). Assume that V and Vstud are positive definite, that Vstud −V
is positive semi-definite, and that rank(Ψ) = r. Then,

lim
n→∞

E[φn(X(n))] = P
{

(ξ + λ̃)′(ΨVΨ′)1/2(ΨVstudΨ′)−1(ΨVΨ′)1/2(ξ + λ̃) > χ2
r,1−α

}
, (D-52)

under Q∗n, where ξ ∼ N(0, Ir) and λ̃ = (ΨVΨ′)−1/2λ. In addition, the following three statements follow under Q∗n.

(a) Under the assumptions above,

lim sup
n→∞

E[φn(X(n))] ≤ P
{

(ξ + λ̃)′(ξ + λ̃) > χ2
r,1−α

}
.
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(b) If V = Vstud, then

lim
n→∞

E[φn(X(n))] = P
{

(ξ + λ̃)′(ξ + λ̃) > χ2
r,1−α

}
≥ α ,

where the inequality is strict if and only if λ 6= 0.

(c) If φ1
n(X(n)) and φ2

n(X(n)) are two tests such that φ1
n(X(n)) is based on an estimator with V1 = V1

stud and φ2
n(X(n))

is based on an estimator with V2 = V2
stud, then

lim
n→∞

E[φ1
n(X(n))] ≥ lim

n→∞
E[φ2

n(X(n))] ,

provided V2 − V1 is positive semi-definite. In addition, the inequality becomes strict if and only if λ 6= 0 and

V2 − V1 is positive definite.

Proof. Notice that

√
n(Ψθ̂n − c) =

√
n(Ψθ̂n −Ψθ(Q∗n)) +

√
n(Ψθ(Q∗n)− c) d→ N(λ,ΨVΨ′) under Q∗n .

By Slutsky’s theorem,

(ΨV̂nΨ′)−1/2√n(Ψθ̂n − c)
d→ N

(
(ΨVstudΨ′)−1/2λ, (ΨVstudΨ′)−1/2(ΨVΨ′)(ΨVstudΨ′)−1/2

)
∼ (ΨVstudΨ′)−1/2(ΨVΨ′)1/2(ξ + λ̃) ,

under Q∗n, with ξ ∼ N(0, Ir) and λ̃ = (ΨVΨ′)−1/2λ. From here we conclude that

Tn(X(n))
d→ (ξ + λ̃)′(ΨVΨ′)1/2(ΨVstudΨ′)−1(ΨVΨ′)1/2(ξ + λ̃) ,

and (D-52) follows.

Part (a). This follows immediately from Lemma D.1.

Part (b). Note that

P{(ξ + λ̃)′(ξ + λ̃) > χ2
r,1−α} = Λ r

2

(√
µ,
√
χ2
r,1−α

)
, (D-53)

where Λm(a, b) is the Marcum-Q-function and µ ≡ λ̃′λ̃ = λ′(ΨVΨ′)−1λ ≥ 0. By the fact that Λm(a, b) is increasing

in a (see Temme (2014, p. 575) and (Sun and Baricz, 2008, Theorem 3.1)), Λ r
2

(
√
µ,
√
χ2
r,1−α) ≥ Λ r

2
(0,
√
χ2
r,1−α) = α,

with strict inequality if and only if µ > 0. Since V is positive definite and Ψ is full rank, ΨVΨ′ is positive definite

and, thus, non-singular. Then, µ > 0 if and only if λ 6= 0. The result follows.

Part (c). We only show the strict inequality, as the weak inequality follows from weakening all the inequalities.

For d = 1, 2, since Vd is positive definite and Ψ is full rank, ΨVdΨ′ is positive definite and, thus, non-singular. Since

V2 − V1 is positive definite and Ψ is full rank, ΨV2Ψ′ − ΨV1Ψ′ is positive definite and so (ΨV2Ψ′)−1 − (ΨV1Ψ′)−1

is negative definite. By this and the fact that λ 6= 0, we conclude that

µ2 − µ1 = λ′(ΨV2Ψ′)−1λ− λ′(ΨV1Ψ′)−1λ = λ′((ΨV2Ψ′)−1 − (ΨV1Ψ′)−1)λ < 0 .

By (D-53) and the fact that Λm(a, b) is increasing in a, the result follows.

Lemma D.1. Suppose that V− Vstud ∈ R|A|×|A| is negative semi-definite, Vstud is non-singular, and rank(Ψ) = r.

Then, (ΨVstudΨ′)−1/2(ΨVΨ′)(ΨVstudΨ′)−1/2 − Ir is negative semi-definite.
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Proof. Since Ψ is full rank and Vstud is non-singular, (ΨVstudΨ′)1/2 is well defined and non-singular. Fix a ∈ Rr×1

arbitrarily. We wish to show that

a′((ΨVstudΨ′)−1/2(ΨVΨ′)(ΨVstudΨ′)−1/2 − Ir)a ≤ 0 . (D-54)

Let b = (ΨVstudΨ′)−1/2a ∈ Rr×1 and note that (D-54) is equivalent to

b′(ΨVstudΨ′)1/2((ΨVstudΨ′)−1/2(ΨVΨ′)(ΨVstudΨ′)−1/2 − Ir)(ΨVstudΨ′)1/2b ≤ 0

which, in turn, is equivalent to (Ψ′b)′(V− Vstud)(Ψ′b) ≤ 0. This last inequality holds because V− Vstud is negative

semi-definite and rank(Ψ) = r.
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