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Abstract 
 

The multinomial logit model with random coefficients is widely used in applied research.  This paper is 
concerned with estimating a random coefficients logit model in which the distribution of each coefficient 
is characterized by finitely many parameters.  Some of these parameters may be zero or close to zero in a 
sense that is defined.  We call these parameters small.  The paper gives conditions under which with 
probability approaching 1 as the sample size approaches infinity, penalized maximum likelihood 
estimation (PMLE) with the adaptive LASSO (AL) penalty function distinguishes correctly between large 
and small parameters in a random-coefficients logit model.  If one or more parameters are small, then 
PMLE with the AL penalty function reduces the asymptotic mean-square estimation error of any 
continuously differentiable function of the model’s parameters, such as a market share, the value of travel 
time, or an elasticity.  The paper describes a method for computing the PMLE of a random-coefficients 
logit model.  It also presents the results of Monte Carlo experiments that illustrate the numerical 
performance of the PMLE.  Finally, it presents the results of PMLE estimation of a random-coefficients 
logit model of choice among brands of butter and margarine in the British groceries market. 
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USING PENALIZED LIKELIHOOD TO SELECT PARAMETERS IN A RANDOM 

COEFFICIENTS A MULTINOMIAL LOGIT MODEL 
 

1.  INTRODUCTION 

 The multinomial logit model with random coefficients is widely used in demand modeling, 

empirical industrial organization, marketing, and transport economics.  See, for example, Train (2009); 

Keane and Wasi (2013); and Ackerberg, Benkard, Berry, and Pakes (2007).  Random coefficients enable 

taste or utility function parameters to vary among individuals in ways that are not explained by the 

variables available in the data.  Random coefficients also enable the model to approximate any discrete-

choice model arbitrarily well (McFadden and Train 2000).  This paper is concerned with estimating a 

random coefficients model in which the distribution of each coefficient is characterized by finitely many 

parameters, for example the mean and variance.  Some of these parameters may be zero or close to zero in 

a sense that will be defined.  The paper describes a penalized likelihood method for selecting and 

estimating the non-zero parameters.  

 In applied research, the objects of interest in a discrete-choice model, such as market shares, the 

value of travel time, and elasticities, are smooth functions of the parameters.  Some parameters, such as 

the mean coefficient of a price, may also be objects of interest.  The mean square estimation errors of 

objects of interest can be reduced by identifying and dropping from the model parameters whose values 

are close but not necessarily equal to zero.  We call these parameters “small.”  Thus, for example, if the 

mean and variance of the coefficient of a certain variable are both small, then the mean-square estimation 

errors of market shares and other objects of interest can be reduced by dropping that variable from the 

model.  Parameters that are not small are called “large.”  In applications, it is not known a priori which 

parameters are large and small.  This paper gives conditions under which penalized maximum likelihood 

estimation (PMLE) with the adaptive LASSO (AL) penalty function distinguishes correctly between large 

and small parameters asymptotically, thereby reducing the asymptotic mean-square estimation errors of 

large parameters and other objects of interest in applied research.  We also show that the PMLE estimates 

of large parameters are 1/2n− -consistent and asymptotically normally distributed, where n  is the size of 

the estimation sample.  The estimates of the large parameters have the same asymptotic normal 

distribution that they would have if it were known a priori which parameters are large and small, the 

small parameters were set equal to zero, and the large parameters were estimated by maximum likelihood.  

This property is called oracle efficiency.  We illustrate the numerical performance of our PMLE method 

with the results of Monte Carlo experiments and an empirical application to choice among brands of 

butter and margarine in the British groceries market.  
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 Penalization can also have computational advantages.  Penalized estimation with a suitable 

penalty function can yield parameter estimates that are true zeroes, often within a few iterations of the 

numerical algorithm.  This is especially important in high-dimensional random coefficients models.  

Estimation of these models requires high-dimensional numerical integration.  Dropping variance 

parameters that are zero or close to zero and treating the associated coefficients as fixed reduces the 

dimension of the integral as well as the dimension of the parameter vector, thereby increasing the speed of 

computation and the numerical accuracy with which the non-zero parameters are estimated.  Kittel and 

Metaxoglu (2014) explore the numerical accuracy and consequences of numerical inaccuracy in 

estimation of random coefficients logit models. 

 This paper makes the following main contributions. 

1. It shows that with probability approaching 1 as n →∞ , PMLE with the AL penalty function 

distinguishes correctly between large and small parameters in a random-coefficients logit 

model.  The estimates of the large parameters are oracle efficient. 

2. It shows that if one or more parameters are small, then PMLE with the AL penalty function 

reduces the asymptotic mean-square estimation error of any continuously differentiable 

function of the model’s parameters, including predicted market shares and elasticities.   

3. It describes a method for computing the PMLE of a random-coefficients logit model with the 

AL penalty function. 

4. It presents the results of Monte Carlo experiments that illustrate the numerical performance of 

the PMLE of a random-coefficients logit model with the AL penalty function. 

5. It presents the results of PMLE estimation of a random-coefficients logit model of choice 

among brands of butter and margarine in the British groceries market. 

Contributions 1 and 2 above extend results of Fan and Li (2001), Zou (2006), and Horowitz and 

Huang (2013) as well as the very large literature on penalized estimation of high-dimensional models.  

Fan, Lv, and Qi (2011), Horowitz (2015), and Bülmann and van de Geer (2011) review and provide 

references to that literature.  Contribution 3 provides a new method to carry out PMLE computation that 

avoids the need for maximizing a non-smooth objective function and permits the use of recent advances 

in algorithms for solving constrained optimization problems. 

The remainder of this paper is organized as follows.  Section 2 describes the random-coefficients logit 

model that we consider, PMLE with the AL penalty function, asymptotic properties of the parameter 

estimates, and asymptotic properties of smooth functions of the PMLE parameter estimates. Section 3 

describes our method for computing the PMLE parameter estimates.  Section 4 presents the results of the 

Monte Carlo experiments.  Section 5 presents the application to choice among brands of butter and 
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margarine, and Section 6 presents conclusions.  Section 7 presents the proofs of this paper’s theoretical 

results.   

2. THE MODEL AND ADAPTIVE LASSO ESTIMATION 

Section 2.1 describes the random-coefficients logit model and the penalized maximum likelihood 

estimation procedure that we use.  Section 2.2 presents asymptotic distributional properties of the PMLE 

parameter estimates and functions of the estimates. 

2.1 The Model and Estimation Procedure 

Let each of n  individuals choose among J  exhaustive and mutually exclusive alternatives.  Let 
KX ∈  denote the vector of the model’s observed covariates, and let ijX  denote the value of X  for 

individual i  and alternative j  ( 1,..., )j J= .  The indirect utility of alternative j  to individual i  

( 1,..., )i n=  is 

 ( )ij i ij ijU Xβ ε ν′ ′= + + , 

where ijν  is a random variable with the Type I extreme value distribution, ijν  and i jν ′ ′  are independent of 

one another if i i′≠  or j j′≠ , β  is a 1K ×  vector of constant coefficients, and iε  is a 1K ×  vector of 

unobserved random variables that have means of 0 and are independently and identically distributed 

among individuals.  In this paper, we assume that ~ ( , )i Nε Σ0  for each 1,...,i n= , where 0  is a K -

vector of zeroes and Σ  is a positive-semidefinite K K×  matrix.  However, the paper’s theoretical results 

hold with other distributions.  Let ( ; , )φ ξ Σ0  denote the probability density function of the ( , )N Σ0  

distribution evaluated at the point ξ .  Then the probability that individual i  chooses alternative j  is  

(2.1) 1

1

exp[( ) ]
( , ; ,..., ) ( ;0, )

exp[( ) ]

ij
ij i iJ J

ik
k

X
X X d

X

β ε
p β φ ε ε

β ε
=

 
 ′ ′+ Σ = Σ 
 ′ ′+  

∫
∑

.  

Let CC′Σ =  denote the Cholesky factorization of Σ , ~ (0 , )K K K KN Iε × × , and Kφ  denote the 

(0 , )K K K KN I× ×  probability density function.  The standard Cholesky factorization applies to full rank 

matrices.  However, when ( )rank r KΣ = < , there is a unique Cholesky factorization with K r−  zeroes 

along the diagonal of C .  Therefore (2.1) can be written as 
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(2.2) 1

1

exp[( ) ]
( , ; ,..., ) ( )

exp[( ) ]

ij
ij i iJ KJ

ik
k

C X
C X X d

C X

β ε
p β φ ε ε

β ε
=

 
 ′ ′ ′+ =  
 ′ ′ ′+  

∫
∑



 



. 

The integral in (2.2) reduces to an r dimensional integral when r K<  . 

 Define the choice indicator  

1 if individual  chooses alternative 
0 otherwiseij

i j
d 

= 


 

Let { , : 1,..., ; 1,..., }ij ijd X i n j J= =  be the observed choice indicators and covariates of an independent 

random sample of n  individuals.  Define ( , )vec Cθ β=  and dim( )L θ= . The log-likelihood function for 

estimating θ  is 

 1
1 1

log ( ) log ( ; ,..., )
n J

ij ij i iJ
i j

L d X Xθ p θ
= =

=∑∑ .  

Define the maximum likelihood estimator 

 arg max log ( )L
θ

θ θ= .  

The penalized log-likelihood function that we treat here is 

(2.3) 1
1 1 1

log ( ) log ( ; ,..., ) | |
n J L

P ij ij i iJ n
i j

L d X X wθ p θ l θ
= = =

= −∑∑ ∑  



, 

where 0nl >  is a constant whose value may depend on n  and the w


’s are non-negative weights.  

Penalized maximum likelihood estimation with the adaptive LASSO penalty function consists of the 

following two steps. 

 Step 1:  Let θ  be a 1/2n− -consistent estimator of 0θ , possibly but not necessarily θ .  Depending 

on how θ  is obtained, some of its components may be zero.  Define weights 

 
1/ | |  if 0

0 if 0.
w

θ θ

θ

 ≠= 
=

 





 





  

 Step 2:  Let *θ  be a 1L×  vector whose   component is zero if 0θ =


  and whose remaining 

components are unspecified,  Let *
1( , ,..., )ij i iJX Xp θ  be the probability that individual i  chooses 

alternative j  when the parameter value is *θ .  The second-step penalized log-likelihood function is 

(2.4) * * *
1

1 1 1
log ( ) log ( ; ,..., ) | |

n J L

P ij ij i iJ n
i j

L d X X wθ p θ l θ
= = =

= −∑∑ ∑  



 . 
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The second-step parameter estimator is 

 
*

*ˆ arg max log ( )PL
θ

θ θ= , 

where maximization is over the non-zero components of *θ .  Thus, θ̂  is obtained by setting any 

parameters estimated to be 0 in the first stage equal to 0 in the ijp ’s and penalty function, and 

maximizing the penalized log-likelihood function (2.4) over the remaining parameters.  Asymptotic 

distributional properties of θ̂  and functions of θ̂  are described in Section 2.2. 

 2.2  Asymptotic Properties θ̂  

 This section describes asymptotic distributional properties of the second-step PMLE estimator θ̂  

and smooth functions of θ̂ .  Let 0θ  denote the true but unknown value of θ .  Make the high-level 

assumption 

Assumption 1:  (i) 0θ  is uniquely identified and (ii) 1/2
0( ) (0, )dn Nθ θ− → Ω  as n →∞ , where 

Ω  is non-singular and equal to the inverse of the (non-singular) information matrix.   

Amemiya (1985) among many others gives primitive conditions under which assumption 1 holds.   

Let 0kθ  denote the k ’th component of 0θ .  Any parameter 0kθ  may be larger or smaller than 

the random sampling errors of the unpenalized MLE, which are 1/2( )pO n− .  We represent this 

mathematically by allowing the components of 0θ  to depend on n .  Call 0kθ  small if 1/2
0| | 0kn θ →  as 

n →∞ .  Call 0kθ  large if 0| | 0kθ > .1    

Assumption 2:  All components of 0θ  are either large or small. 

Assumption 2 precludes the possibility that some components of 0θ  are proportional to 1/2n−  

asymptotically.  Leeb and Pötscher (2005, 2006) explain why this is necessary.  Let sA  denote the set of 

small parameters and 0A  denote the set of large parameters.  Under assumption 2, 0A  is the complement 

of sA .  Let k̂θ  denote the k  component of θ̂ .   

 Assumption 3:  As n →∞ , nl →∞  and 1/2 0nn l− → . 

 Define 
0 0 0 0{ : }A k k Aθ θ θ= ∈ , 0 0{ : }

sA k k sAθ θ θ= ∈ , 0
ˆ ˆ{ : }

sA k k sAθ θ θ= ∈ , and 

0 0 0
ˆ ˆ{ : }A k k Aθ θ θ= ∈ .  Let 

0Aθ  be the unpenalized MLE of 
0Aθ when 0

sAθ =  in model (2.1).   

                                                      
1  0θ  does not depend on n  in the sampled population.  Allowing some components of 0θ  to depend on n  is a 
mathematical device that keeps these components smaller than random sampling error asymptotically as n →∞   
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 Assumption 4:  As n →∞ , 
0 0

1/2 ( ) (0, )d
A An Nθ θ− → Ω  for some covariance matrix Ω .   

Primitive conditions for assumption 4 are the same as those for assumption 1. 

For any function ( )g θ , let ˆ[ ( )]AMSE g θ  and [ ( )]AMSE g θ , respectively, denote the asymptotic 

mean-square errors of ˆ( )g θ  and ( )g θ  as estimators of 0( )g θ .  The following theorem gives the main 

theoretical results of this paper. 

 Theorem 2.1:  Let assumptions 1-4 hold.  As n →∞   

(i) 0
ˆ( 0  such that ) 1k k sP k Aθ θ= ∀ ∈ →   

(ii) 
0 0

1/2 ˆ( ) (0, )d
A An Nθ θ− → Ω  

(iii) Let ( )g θ  be a continuously differentiable function of Kθ ∈ .  If sA  is non-empty, then 

ˆ[ ( )] [ ( )]AMSE g AMSE gθ θ< . 

Parts (i) and (ii) of Theorem 2.1 state that PMLE estimation with the AL penalty function distinguishes 

correctly between large and small parameters with probability approaching 1 as n →∞ .  Part (ii) states 

that the PMLE estimates of the large parameters are oracle efficient.  That is, they have the same 

asymptotic normal distribution that they would have if it were known which parameters in model (2.1) are 

large and small, the small parameters were set equal to zero, and the large parameters were estimated by 

maximum likelihood.  Part(iii) states that if one or more parameters are small, then PMLE with the AL 

penalty function reduces the asymptotic mean-square estimation error of any continuously differentiable 

function of the model’s parameters. 

3.  COMPUTATION 

 Maximizing log ( )PL θ  presents several computational problems.  There may be more than one 

local maximum of log ( )PL θ , the penalty function in log ( )PL θ  is not differentiable at all values of θ , 

and log ( )PL θ  includes high-dimensional integrals that must be evaluated numerically.  We deal with the 

first of these problems by maximizing log ( )PL θ  repeatedly using a different initial value of θ  each time.   

We deal with the second by reformulating the optimization problem to one of maximizing a 

differentiable objective function subject to linear constraints.  To do this, write θ θ θ+ −= − , where θ +  

and θ −  are 1L×  vectors whose components are non-negative.  Then maximizing log ( )PL θ  in (2.3) is 

equivalent to solving the problem  

(3.1) 1
, , 1 1 1

maximize : log ( ; ,..., ) ( )
n J L

ij ij i iJ n
i j

d X X w
θ θ θ

p θ l θ θ
+ −

+ −

= = =

− +∑∑ ∑   
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subject to 

 
, 0,

θ θ θ

θ θ

+ −

+ −

= −

≥
  

where the last inequality holds component by component.  This formulation avoids the need to maximize 

a non-smooth objective function and permits exploitation of advances in methods for solution of 

constrained optimization problems. 

 There is a large econometric literature on numerical methods for evaluating high-dimensional 

integrals.  See, for example, McFadden (1989); McFadden and Ruud (1994); Geweke, Keane, and Runkle 

(1994); Hajivassiliou, McFadaden, and Ruud (1996); Geweke and Keane (2001), and Train (2009).  

Available methods include Gaussian integration procedures, pseudo Monte Carlo procedures, quasi 

Monte Carlo procedures, and Markov chain Monte Carlo (MCMC) methods.  More recently, Heiss and 

Winschel (2008), Skrainka and Judd (2011), and Knittel and Metaxoglou (2014) have suggested that 

sparse grid integration methods produce accurate approximations at low cost.  To focus on the 

performance of the PMLE method, we have used a simple pseudo Monte Carlo integration method based 

on either 500 or 1500 draws from a normal random number generator. 

 We computed the solution to problem (3.1) by using a sequential quadratic programming 

algorithm for constrained optimization from the NAG Fortran Library (The Numerical Algorithms Group, 

Oxford U.K., www.nag.com).  The algorithm is based on NPOPT, which is part of the SNOPT package 

described by Gill, Murray, and Saunders (2005).   

4.  MONTE CARLO EXPERIMENTS 

 This section reports the results of a Monte Carlo investigation of the numerical performance of 

the PMLE method.  We used two designs.  One is based on a small, hypothetical model.  The other is 

based on data from the U.K. market for butter and margarine.   

 4.1  Design 1:  A Hypothetical Model   

 This design consists of a model with 5J =  alternatives in the choice set and 20K =  covariates.  

The random coefficients are independent of one another, so their covariance matrix is diagonal.  The 

means and variances of the coefficients are as follows: 

k   Mean ( )kβ   Variance ( )kVar ε   

1 2k≤ ≤   1 1 

3 5k≤ ≤   1 0 

6 20k≤ ≤   0 0 
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Thus, there are two non-zero random coefficients, three non-zero coefficients that are not random, and 15 

non-random coefficients whose values are zero.  The covariates are independently distributed as (0,1)N . 

The sample size is 1000n = .  

 We carried out PMLE estimation with 300 simulated datasets and chose the penalty parameter nl  

to minimize the Bayes Information Criterion (BIC) using the computational procedure described in the 

next paragraph.  Wang, Li, and Tsai (2007) and Wang, Li, and Leng (2009) have derived properties of the 

BIC for estimating the penalty parameter in penalized estimation of a linear model.  The theoretical 

properties of the BIC for PMLE have not been studied.  We used a pseudo Monte Carlo numerical 

integration procedure with antithetic variates with 500 draws from a 10-dimensional random number 

generator.  We assumed that only 10 covariates, including the first 5, have potentially non-zero variances.  

Therefore, 30 parameters were estimated.   

We chose nl  by solving (2.3) for the two steps of the adaptive LASSO procedure using each 

point in a rectangular grid of nl  values.  There were 5 grid points for step one of the adaptive LASSO 

procedure, 10 points for step 2, and 50 points in total.  The values of the step 1 points ranged from 410−  

to 310− .  The values of the step 2 points ranged from 410−  to 210− .  The logarithms of the values in each 

dimension of the grid were equally spaced.  We report results for the grid point of nl  values that 

minimizes the BIC in step 2. 

 The results of the experiment are shown in Table 1.  The average number of non-zero parameters 

in the model estimated by PMLE is 9.667, compared to 30 potentially non-zero parameters in the full 

model.  With probability 1, unconstrained maximum likelihood estimation cannot yield estimates of zero, 

so unconstrained maximum likelihood estimation gives 30 non-zero parameter estimates.  The mean-

square errors (MSE’s) of the PMLE estimates of the means of the non-zero slope coefficients (the non-

zero kβ ’s) are less than half the MSE’s of unconstrained maximum likelihood estimates.  The MSE’s of 

the PMLE estimates of the standard deviations are 90% of the MSE’s of the unconstrained maximum 

likelihood estimates.  In summary, PMLE selects a smaller model and gives estimates of important 

parameters with much smaller mean-square errors than does unconstrained maximum likelihood 

estimation. 

 4.2  Design 2:  Butter and Margarine 

 This design is based on data about the UK market for butter and margarine.  The data were 

obtained by the research company Kantar and used by Griffith, Nesheim, and O’Connell (2015).  The 

data contain information on 10,102 households that shopped at supermarkets in the U.K.  The data 
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include demographic characteristics of each household (e.g., household size, age, employment status, and 

average weekly grocery expenditure), product characteristics (e.g., brand, package size, and saturated fat 

content), and consumer purchase choices.  On each shopping trip, each consumer chose either not to buy 

any product or to buy one of 47 products available in the market.  Thus, the number of options in each 

consumer’s choice set is 48J = . 

 The Kantar data contain 50K =  covariates, including product fixed effects.  Thus, the choice 

model of equation (2.2) contains 99 parameters.  There are 49 mean parameters (the components of β  in 

(2.2)) and 50 variance parameters.  The mean parameter for the outside option of no purchase is 

normalized to be zero.  In the Monte Carlo experiment, we set the parameters equal to the penalized 

maximum likelihood estimates obtained from a random sample of 5000 observations from the Kantar 

data.  The resulting model (the “true model”) has 37 non-zero mean parameters and four non-zero random 

coefficient variance parameters.  The remaining 58 parameters of the true model are zero.  We used this 

model to simulate the product choices of 5000 hypothetical households.  We used the simulated choice 

data to estimate the choice model’s 99 parameters using unpenalized maximum likelihood (MLE), 

penalized maximum likelihood (PMLE), and the oracle MLE (maximum likelihood estimation of only the 

41 non-zero parameters of the true model and the remaining parameters set equal to zero).  We used 1500 

antithetic variate draws from a multivariate normal random number generator to compute the numerical 

integral. 

 Table 2 summarizes results of 145 Monte Carlo replications of the foregoing simulation 

procedure.  The number of replications was limited by the long computing time required for each 

replication.  Columns 3-5 show the MSEs of the estimates of the non-zero parameters of the true model 

using each estimation method.  The parameter 1β  is the mean price coefficient in the model.  In all cases, 

the MSE of the PMLE is much smaller than that of the unpenalized MLE and close to the MSE of the 

oracle MLE.  For example, the MSE of the PMLE of 1β  is 0.084 compared to 1.50 for the unpenalized 

MLE and 0.071 for the oracle MLE.  The median number of non-zero parameters in the selected model is 

37, and 80 percent of the replications select a model with 34-40 non-zero slope parameters.  The slope of 

the price variable is non-zero in all replications. 

 We also computed the own-price elasticities of the 47 products (excluding no-purchase option) in 

each Monte Carlo replication.  The MSE’s of 37 of the 47 elasticity estimates obtained by PMLE were 

less than the MSE’s of the corresponding elasticity estimates obtained by MLE.  The median ratio of the 

MSEs of the MLE and PMLE elasticity estimates is 2.786.  That is the median value of (MSE of MLE 

estimates)/(MSE of PMLE estimates) is 2.786.  The median ratio of the MSEs of the PMLE and oracle 

MLE elasticity estimates is 1.021.  Thus, the PMLE elasticity estimates, like the PMLE parameter 
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estimates, are more accurate than the estimates obtained from unpenalized MLE and close to the oracle 

estimates. 

 To illustrate the performance of PMLE in policy analysis, we used the PMLE, unpenalized MLE, 

and oracle estimates to evaluate effects of a 20% value added tax (VAT) on butter and margarine.  

Currently, food purchases in the UK are exempt from the VAT.  The VAT increases the prices of butter 

and margarine, which reduces demand for these products, consumer welfare, and revenues from the sale 

of butter and margarine.  We computed four resulting economic effects.  The first is the reduction in 

consumer welfare as measured by the compensating income variation for the VAT.  The second is the 

reduction in revenues to sellers of butter and margarine.  The third is tax revenues resulting from the 

VAT.  The fourth is the changes in the market shares of the products.  We assumed that the pre-tax prices 

of butter, margarine, and any substitute products remain unchanged. 

 We now describe how we computed the foregoing effects.  Let notax
jX  denote the values of the 

explanatory variables for product j  in model (2.2) before the VAT and tax
jX  denote the values of the 

same variables after the prices of butter and margarine have been increased by 20%.  Let jp  denote the 

before-VAT price of product j , τ  denote the tax rate, and (1 )tax
j jp pτ= +  denote the price after the 

VAT has been imposed.  Denote the mean and random component of the coefficient of price in (2.2) by 

1β  and 1 11Cε , respectively.  The consumer compensating variation for the tax increase is (Small and 

Rosen 1981) 

 

47 47
5000

0 0

1 1 111

log exp( ) log exp( )
( , ) ( )

notax tax
ij ijj j

i

C X C X
CV C d

C

β ε β ε
β φ ε ε

β ε
= =

=

   ′ ′ ′ ′+ − +      =
+

∑ ∑
∑ ∫

 

 



. 

The change in revenues is  

 
47 5000

1 1
[ ( , ; ) ( , ; )]tax notax

j ij j ij j
j i

R p X Xp β p β
= =

∆ = Σ − Σ∑∑ . 

The change in the market share of product j  is 

 
5000

1
[ ( , ; ) ( , ; )]tax notax

j ij j ij j
i

S X Xp β p β
=

∆ = Σ − Σ∑ . 

R∆  is the change the revenues of sellers after remitting tax revenues of taxRτ  to the government and, 

therefore, does not include the factor 1 τ+ .  The sums are over the 47 products and 5000 individuals in 

the experiment.   

 Table 3 shows the MSEs of the estimated effects of the VAT.  The table shows the median MSEs 

of the estimated changes in market shares, not the MSEs of the estimated changes in the shares of 
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individual products.  The MSEs of the unpenalized MLE and PMLE estimates of the compensating 

variation are similar.  The MSEs of the PMLE estimates of the change in revenues to sellers (in pounds 

per trip per individual) and tax revenues are smaller than the MSEs of the unpenalized MLE estimates and 

closer to the oracle estimates.  The median MSE of the PMLE estimates of the changes in market shares is 

smaller than the median MSE of the unpenalized MLSE estimates and close to the median MSE of the 

oracle estimate. 

5.  EMPIRICAL APPLICATION 

 This section summarizes the results of applying the PMLE and unpenalized MLE methods to the 

full Kantar data set that is described in the first paragraph of Section 4.2.  We compare the own price 

elasticities obtained with the two methods and the results of the tax experiment described in Section 4.2.  

As is explained in the second paragraph of Section 4.2, the model has 99 parameters, including 49 means 

of the random slope coefficients and 50 standard deviations.  All of the unpenalized parameter estimates 

are non-zero, and the empirical Hessian matrix has full rank.  Only 34 of the penalized estimates are non-

zero, including 30 slope coefficients and 4 standard deviation parameters.   

 Table 4 shows summary statistics for own price elasticities.  The PMLE elasticity estimates are 

smaller in magnitude on average and less dispersed than the unpenalized MLE estimates.  Figure 1 shows 

a plot of the PMLE elasticity estimates against the unpenalized MLE estimates along with the regression 

line obtained by using ordinary least squares (OLS) to estimate the model 

(5.1) PMLE Estimate MLE Estimate ; ( ) 0a b U E U= + + = . 

The relation between the two sets of estimates appears to be scatter around a straight line.  The slope of 

the line is 0.4397b = . 

 Table 5 shows summary statistics for changes in market shares and product revenues in (in units 

of pounds per shopping trip per individual) the tax experiment.  The mean change in market share is zero 

because the sum of the shares must equal one.  The PMLE estimates of the changes in market shares and 

revenues are less dispersed than the unpenalized MSE estimates.  Figure 2 shows a plot of the PMLE 

estimates of changes in market shares against the unpenalized MLE estimates along with the regression 

line obtained by applying OLS to (5.1).  The slope of the line is 1.368b = .  Figure 3 shows a similar plot 

for changes in revenues.  The slope of the line is 1.723.  The PMLE and unpenalized MLE estimates of 

the compensating variation for the tax increase are 0.3405 and 0.3452 pounds per shopping trip, 

respectively.  The PMLE and MLE estimates of tax revenue, respectively, are 0.3234 and 0.3301 pounds 

per shopping trip.  The two methods give similar estimates of the compensating variation and tax 

revenues. 
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6.  CONCLUSIONS 

This paper has been concerned with estimating a random coefficients logit model in which the 

distribution of each coefficient is characterized by finitely many parameters.  Some of these parameters 

may be zero or close to zero.  We call such parameters “small.”  The paper has given conditions under 

which with probability approaching one as the sample size approaches infinity, penalized maximum 

likelihood estimation (PMLE) with the adaptive LASSO (AL) penalty function distinguishes correctly 

between large and small parameters in a random-coefficients logit model.  The estimates of the large 

parameters are oracle efficient.  If one or more parameters are small, then PMLE with the AL penalty 

function reduces the asymptotic mean-square estimation error of any continuously differentiable function 

of the model’s parameters, such as a predicted market share.  The paper has described a method for 

computing the PMLE of a random-coefficients logit model.  It has presented the results of Monte Carlo 

experiments that illustrate the numerical performance of the PMLE.  The paper has also presented the 

results of PMLE estimation of a random-coefficients logit model of choice among brands of butter and 

margarine in a British grocery chain.   

The Monte Carlo results show that PMLE estimates have lower mean-square errors than 

unpenalized MLE estimates with sample sizes similar to those used in marketing and empirical industrial 

organization.  PMLE estimation is tractable computationally, and the PMLE method can be modified 

easily for use in generalized method of moments estimation.  

7.  PROOF OF THEOREM 2.1 

 Parts (i) and (ii):  Let fullI  denote the information matrix of model (2.2).  Let 
0

ˆ
Aθ  and ˆ

sAθ  denote 

the subvectors of θ̂  corresponding to 
0Aθ  and 

sAθ .  Define the vector 0u  by 

 1/2
0

ˆ n uθ θ −= + . 

Let 
0Aθ  be the first 0L  components of 0θ  and 

sAθ  be the remaining 0L L−  components.  Order the 

components of u  similarly.  Define 
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Write the penalty term above as 

0

0

1/2 1 1/2 1/2
0 0

1 1
| | (| | | |) | |

L L

n
L

n n n u w ul θ θ θ− − −
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Zou (2006, Theorem 2) shows that if 0 0θ ≠


, then 

 1 1/2 1/2
0 0 0| | (| | | |) sgn( )pn n u uθ θ θ θ− −+ − →

     

 , 

where sgn( )v  for any scalar v  equals 1 , 1− , or 0  according to whether v  is positive, negative, or zero.  

Therefore, the terms of the penalty function corresponding to components of 
0Aθ  converge in probability 

to 0.  Zou (2006) also shows that the terms in the penalty function corresponding to 
sAθ  diverge to ∞ .  If 

the components of u  corresponding to 
sAθ  are non-zero, nD  is dominated by the penalty term, which 

increases without bound as n →∞ .  If the components of u  corresponding to 
sAθ  are zero, nD  is 

dominated asymptotically by 
0 0

1/2
0log ( ,0) log ( ,0)P A AL n u Lθ θ−+ − , where 0u  denotes the components of 

u  corresponding to components of 
0Aθ  and to argument 0 corresponds to 

sAθ .  Therefore, standard 

results for maximum likelihood estimates yield parts (i) and (ii).  Q.E.D. 

 Part (iii): Let 0Ω  and Ω , respectively, be the covariance matrices of the asymptotic normal 

distributions of 
0

1/2 ˆ( )An θ θ−  and 1/2
0( )n θ θ− .  It follows from 1/2( )

sA o nθ −=  and an application of the 

delta method that 

 0 0
0

( ) ( )ˆ[ ( )] g gAMSE g θ θθ
θ θ

∂ ∂
= Ω

′∂ ∂
  

and 

 0 0( ) ( )ˆ[ ( )] g gAMSE g θ θθ
θ θ

∂ ∂
= Ω

′∂ ∂
. 
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Therefore, it suffices to show that 0Ω−Ω  is positive definite.  Partition fullI  as  

 11 12

12 22
full

I I
I

I I
 

=  ′ 
, 

where 11I  is the submatrix of fullI  corresponding to 
0Aθ , 22I  is the submatrix of components of fullI  

corresponding to components of 
sAθ , and 12I  is the submatrix corresponding to the covariance of the 

estimators of 
0Aθ  and 

sAθ .  Then 

 1 1 1 1 1 1 1
11 11 12 22 12 11 12 12 11 11 0[( ) ]fullI I I I I I I I I I I− − − − − − −′ ′Ω = = + − > = Ω .  

Q.E.D. 
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Table 1:  Results of Monte Carlo Experiments with Design 1a 

 
Parameter MSE of PMLE 

Estimate 
MSE of 

Unpenalized 
MLE Estimate 

1β   0.016 0.038 

2β   0.016 0.038 

3β   0.011 0.036 

4β   0.011 0.035 

4β   0.010 0.035 

1σ   1.722 1.926 

2σ   1.733 1.926 
   

Average number 
of non-zero 

parameters in the 
model selected by 

PMLE 

9.667  

Average value of 
l  in step 2 

0.002  

 
 

a. Based on 300 Monte Carlo replications.  1σ  and 2σ , respectively, are the standard deviations of 

1ε  and 2ε .  The correct model is the model specified in design 1 with the parameter values 
specified in that design.  The model selected by PMLE contains the correct model if the PMLE 
estimates of the non-zero parameters of the correct model are not zero.  
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Table 2:  Results of Monte Carlo Experiments with Design 2b 

 
Parameter Definition of variable MSE of PMLE 

Estimate 
MSE of 

Unpenalized 
MLE Estimate 

MSE of Oracle 
MLE 

1β   Price 0.08405 1.499 0.07094 

2β   Index of monthly 
advertising expenditure 

0.002260 0.05067 0.003586 

3β   Square of index of 
monthly advertising 

expenditure 

0.0006978 0.1094 0.00224 

4β   Dummy variable equal 
to 1 for 500 gram pack 

and 0 otherwise 

0.7336 28.75 0.4579 

5β   Dummy variable equal 
to 1 for 1000 gram pack 

and 0 otherwise 

4.314 48.92 3.111 

6β  Grams of saturated fat 
per pack 

0.001699 0.02799 0.001329 

7β  Dummy variable equal 
to 1 if household size is 

2 and makes no purchase 
and 0 otherwise 

0.008787 1.576 0.06006 

8β  Dummy variable equal 
to 1 if household size is 

3 and makes no purchase 
and 0 otherwise 

0.1536 2.234 0.03704 

9β  Dummy variable equal 
to 1 if household size is 

4 and makes no purchase 
and 0 otherwise 

0.1535 0.9506 0.04824 

10β  Brand-specific constant 0.1350 1.241 0.07290 

11β  Brand-specific constant 0.3942 30.92 0.4635 

12β  Brand-specific constant 0.8753 79.88 0.6541 

13β  Brand-specific constant 2.527 130.4 1.554 

14β  Brand-specific constant 2.140 34.59 1.517 

15β  Brand-specific constant 0.7431 68.58 0.5094 

16β  Brand-specific constant 0.7388 13.89 0.3363 

17β  Brand-specific constant 0.2193 39.52 0.2519 

18β  Brand-specific constant 1.006 64.28 0.7423 

19β  Brand-specific constant 2.480 42.31 0.3746 

20β  Brand-specific constant 3.004 73.37 0.7231 

21β  Brand-specific constant 3.652 188.3 2.263 

22β  Brand-specific constant 2.966 79.01 1.533 

23β  Brand-specific constant 7.3899 122.5 3.946 
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Table 2, continued 
 

24β  Brand-specific constant 2.275 79.96 1.202 

25β  Brand-specific constant 0.8110 37.31 0.4154 

26β  Brand-specific constant 1.452 143.9 0.8864 

27β  Brand-specific constant 0.1767 53.87 0.1712 

28β  Brand-specific constant 0.1901 34.61 0.2385 

29β  Brand-specific constant 0.5416 20.20 0.5505 

30β  Brand-specific constant 0.2073 48.99 0.2453 

31β  Brand-specific constant 0.3410 58.10 0.3325 

32β  Brand-specific constant 1.184 70.28 0.6190 

33β  Brand-specific constant 0.1670 112.8 0.1521 

34β  Brand-specific constant 1.176 100.1 0.7542 

35β  Brand-specific constant 0.9511 151.8 0.6271 

36β  Brand-specific constant 1.331 132.0 0.8442 

37β  Brand-specific constant 0.2824 120.0 0.1681 

1σ   Standard deviation of 
coefficient of price 

0.1537 1.258 0.1311 

6σ   Standard deviation of 
coefficient of saturated 

fat per pack 

0.06436 1.968 0.005400 

23σ  Standard deviation of 
coefficient of a brand-

specific constant 

8.997 48.18 4.494 

38σ  Standard deviation of 
utility of no-purchase 

option for households of 
at least 5 persons 

17.23 33.13 12.34 

Average number 
of non-zero 

parameters in the 
model selected by 

PMLE 

 36.90   

Average value of 
l  in step 2 

 0.002611   

 
 
Based on 145 Monte Carlo replications.   
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Table 3:  Mean Square Errors of Estimated Effects of the VAT in Monte Carlo Design 2 
 

Effect MSE Using MLE MSE Using PMLE MSE Using Oracle 
Model 

Compensating 
Variation 

0.0147 0.0151 0.00980 

Change in Revenues to 
Sellers  

0.0281 0.00793 0.00595 

Tax Revenues 0.0186 0.0171 0.0110 
Median MSE of 
Changes Market Share 

74.71 10−×  71.88 10−×  71.68 10−×  

 
 
 

 
TABLE 4:  SUMMARY STATISTICS FOR OWN PRICE ELASTICITIES 

 
Method Mean Elasticity Standard Deviation 

of Elasticity 
Maximum Minimum 

MLE -2.811 0.9816 -1.320 -4.611 
PMLE -2.450 0.6412 -0.851 -4.091 

 
 
 

TABLE 5:  SUMMARY STATISTICS FOR CHANGES IN MARKET SHARES AND 
PRODUCT REVENUE 

 
Method Standard Deviation 

of Change in Share 
( 310−× ) 

Mean Change in 
Revenue 310−×  

Standard Deviation 
of Change in 
Revenue 310−×   

MLE 4.896 -3.543 4.529 
PMLE 3.541 -4.100 5.847 
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Figure 1:  PMLE and unpenalized MLE estimates of own price elasticities 
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Figure 2:  PMLE and unpenalized MLE estimates of changes in market shares 
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Figure 3:  PMLE and unpenalized MLE estimates of changes in revenue per trip per individual 
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