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Abstract

This paper studies the properties of the wild bootstrap-based test proposed in

Cameron et al. (2008) in settings with clustered data. Cameron et al. (2008) pro-

vide simulations that suggest this test works well even in settings with as few as five

clusters, but existing theoretical analyses of its properties all rely on an asymptotic

framework in which the number of clusters is “large.” In contrast to these analyses,

we employ an asymptotic framework in which the number of clusters is “small,”

but the number of observations per cluster is “large.” In this framework, we pro-

vide conditions under which the limiting rejection probability of an un-Studentized

version of the test does not exceed the nominal level. Importantly, these conditions

require, among other things, certain homogeneity restrictions on the distribution of

covariates. We further establish that the limiting rejection probability of a Studen-

tized version of the test does not exceed the nominal level by more than an amount

that decreases exponentially with the number of clusters. We study the relevance

of our theoretical results for finite samples via a simulation study.
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1 Introduction

It is common in the empirical analysis of clustered data to be agnostic about the de-

pendence structure within a cluster (Wooldridge, 2003; Bertrand et al., 2004). The

robustness afforded by such agnosticism, however, may unfortunately result in many

commonly used inferential methods behaving poorly in applications where the number

of clusters is “small” (Donald and Lang, 2007). In response to this concern, Cameron

et al. (2008) introduced a procedure based on the wild bootstrap of Liu (1988) and found

in simulations that it led to tests that behaved remarkably well even in settings with

as few as five clusters. This procedure is sometimes referred to as the “cluster” wild

bootstrap, but we henceforth refer to it more compactly as the wild bootstrap. Due at

least in part to these simulations, the wild bootstrap has emerged as arguably the most

popular method for conducting inference in settings with few clusters. Recent examples

of its use as either the leading inferential method or as a robustness check for conclusions

drawn under other procedures include Acemoglu et al. (2011), Giuliano and Spilimbergo

(2014), Kosfeld and Rustagi (2015), and Meng et al. (2015). The number of clusters in

these empirical applications ranges from as few as five to as many as nineteen.

The use of the wild bootstrap in applications with such a small number of clusters

contrasts sharply with existing analyses of its theoretical properties, which, to the best

of our knowledge, all employ an asymptotic framework where the number of clusters

tends to infinity. See, for example, Carter et al. (2017), Djogbenou et al. (2017), and

MacKinnon et al. (2017). In this paper, we address this discrepancy by studying its

properties in an asymptotic framework in which the number of clusters is fixed, but

the number of observations per cluster tends to infinity. In this way, our asymptotic

framework captures a setting in which the number of clusters is “small,” but the number

of observations per cluster is “large.”

Our formal results concern the use of the wild bootstrap to test hypotheses about a

linear combination of the coefficients in a linear regression model with clustered data. For

this testing problem, we first provide conditions under which using the wild bootstrap

with an un-Studentized test statistic leads to a test that has limiting rejection probability

under the null hypothesis no greater than the nominal level. Our results require, among

other things, certain homogeneity restrictions on the distribution of covariates. These

homogeneity conditions are satisfied in particular if the distribution of covariates is

the same across clusters, but, as explained in Section 2.1, are also satisfied in other

circumstances. Importantly, when the regressors consist of cluster-level fixed effects

and a single, scalar covariate, these conditions are immediately satisfied for hypotheses

about the coefficient on the single, scalar covariate. In this way, our results help explain

the remarkable behavior of the wild bootstrap in some simulation studies that feature a

single, scalar covariate as well as the poor behavior of the wild bootstrap in simulation
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studies that violate our homogeneity requirements; see, for example, Ibragimov and

Müller (2016) and Section 4 below.

Establishing the properties of a wild bootstrap-based test in an asymptotic frame-

work in which the number of clusters is fixed requires fundamentally different arguments

than those employed when the number of clusters diverges to infinity. Importantly, when

the number of clusters is fixed, the wild bootstrap distribution is no longer a consistent

estimator for the asymptotic distribution of the test statistic and hence “standard” argu-

ments do not apply. Our analysis instead relies on a resemblance of the wild bootstrap-

based test to a randomization test based on the group of sign changes with some key

differences that, as explained in Section 3, prevent the use of existing results on the

large-sample properties of randomization tests, including those in Canay et al. (2017).

Despite these differences, we are able to show under our assumptions that the limiting

rejection probability of the wild bootstrap-based test equals that of a suitable level-α

randomization test.

We emphasize, however, that the asymptotic equivalence described above is delicate

in that it relies crucially on the specific implementation of the wild bootstrap recom-

mended by Cameron et al. (2008), which uses Rademacher weights and the restricted

least squares estimator. Furthermore, it does not extend to the case where we Studentize

the test statistic in the usual way. In that setting, our analysis only establishes that the

test that employs a Studentized test statistic has limiting rejection probability under

the null hypothesis that does not exceed the nominal level by more than a quantity that

decreases exponentially with the number of clusters. In particular, when the number of

clusters is eight (or more), this quantity is no greater than approximately 0.008.

This paper is part of a growing literature studying inference in settings where the

number of clusters is “small,” but the number of observations per cluster is “large.”

Ibragimov and Müller (2010) and Canay et al. (2017), for instance, develop procedures

based on the cluster-level estimators of the coefficients. Importantly, these approaches

do not require the homogeneity assumption on the distribution of covariates described

above. Canay et al. (2017) is related to our theoretical analysis in that it also exploits a

connection with randomization tests, but, as mentioned previously, the results in Canay

et al. (2017) are not applicable to our setting. Bester et al. (2011) derives the asymptotic

distribution of the full-sample estimator of the coefficients under assumptions similar to

our own. Finally, there is a large literature studying the properties of variations of the

wild bootstrap, including, in addition to some of the aforementioned references, Webb

(2013) and MacKinnon and Webb (2014).

The remainder of the paper is organized as follows. In Section 2, we formally intro-

duce the test we propose to study and the assumptions that will underlie our analysis.

Our main results are contained in Section 3. In Section 4, we examine the relevance

of our asymptotic analysis for finite samples via a simulation study. Section 5 briefly
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concludes. The proofs of all results can be found in the Appendix.

2 Setup

We index clusters by j ∈ J ≡ {1, . . . , q} and units in the jth cluster by i ∈ In,j ≡
{1, . . . , nj}. The observed data consists of an outcome of interest, Yi,j , and two random

vectors, Wi,j ∈ Rdw and Zi,j ∈ Rdz , that are related through the equation

Yi,j = W ′i,jγ + Z ′i,jβ + εi,j , (1)

where γ ∈ Rdw and β ∈ Rdz are unknown parameters and our requirements on εi,j are

explained below in Section 2.1. Our goal is to test

H0 : c′β = λ vs. H1 : c′β 6= λ , (2)

for given values of c ∈ Rdz and λ ∈ R, at level α ∈ (0, 1). In this testing problem,

γ is a nuisance parameter, such as the coefficient on a constant or the coefficients on

cluster-level fixed effects. An important special case of this framework is a test of the

null hypothesis that a particular component of β equals a given value. While we do

not develop it further in this paper, our results extend straightforwardly to testing null

hypotheses concerning multiple linear combinations of β simultaneously.

In order to test (2), we first consider tests that reject for large values of the statistic

Tn ≡ |
√
n(c′β̂n − λ)| , (3)

where γ̂n and β̂n are the ordinary least squares estimator of γ and β in (1). We also

consider tests that reject for large values of a Studentized version of Tn, but postpone

a more detailed description of such tests to Section 3.2. For a critical value with which

to compare Tn, we employ a version of the one proposed by Cameron et al. (2008).

Specifically, we obtain a critical value through the following construction:

Step 1: Compute γ̂rn and β̂rn, the restricted least squares estimators of γ and

β in (1) obtained under the constraint that c′β = λ. Note that c′β̂rn = λ by

construction.

Step 2: Let G = {−1, 1}q and for any g = (g1, . . . , gq) ∈ G define

Y ∗i,j(g) ≡W ′i,j γ̂rn + Z ′i,j β̂
r
n + gj ε̂

r
i,j , (4)

where ε̂ri,j = Yi,j −W ′i,j γ̂rn − Z ′i,j β̂rn. For each g = (g1, . . . , gq) ∈ G then compute

γ̂∗n(g) and β̂∗n(g), the ordinary least squares estimators of γ and β in (1) obtained

using Y ∗i,j(g) in place of Yi,j .
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Step 3: Compute the 1− α quantile of {|c′
√
n(β̂∗n(g)− β̂rn)|}g∈G, denoted by

ĉn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I{|c′
√
n(β̂∗n(g)− β̂rn)| ≤ u} ≥ 1− α

 , (5)

where I{A} equals one whenever the event A is true and equals zero otherwise.

In what follows, we study the test φn of (2) that rejects whenever Tn exceeds the

critical value ĉn(1− α), i.e.,

φn ≡ I{Tn > ĉn(1− α)} . (6)

It is worth noting that the critical value ĉn(1−α) defined in (5) may also be written as

inf{u ∈ R : P{|c′
√
n(β̂∗n(ω)− β̂rn)| ≤ u|X(n)} ≥ 1− α} ,

where X(n) denotes the full sample of observed data and ω ∼ Unif(G) independently of

X(n). This way of writing ĉn(1 − α) coincides with the existing literature on the wild

bootstrap that sets the cluster weights ω = (ω1, . . . , ωq) to be i.i.d. Rademacher random

variables – i.e., ωj equals ±1 with equal probability. Furthermore, it suggests a natural

way of approximating ĉn(1 − α) using simulation, which may be helpful when |G| is

large.

2.1 Assumptions

We next introduce the assumptions that will underlie our analysis of the properties of

the test φn defined in (6) as well as its Studentized counterpart. In order to state these

assumptions formally, we require some additional notation. In particular, it is useful to

introduce a dw × dz-dimensional matrix Π̂n satisfying the orthogonality conditions∑
j∈J

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j = 0 . (7)

Our assumptions will guarantee that, with probability tending to one, Π̂n is the unique

dw×dz matrix satisfying (7). Thus, Π̂n corresponds to the coefficients of a least squares

projection of Zi,j on Wi,j . The “residuals” from this projection,

Z̃i,j ≡ Zi,j − Π̂′nWi,j , (8)
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will play an important role in our analysis as well. Finally, for every j ∈ J , let Π̂c
n,j be

a dw × dz-dimensional matrix satisfying the orthogonality conditions∑
i∈In,j

(Zi,j − (Π̂c
n,j)
′Wi,j)W

′
i,j = 0 . (9)

Because the restrictions in (9) involve only data from cluster j, there may be multiple

matrices Π̂c
n,j satisfying (9) even asymptotically. Non-uniqueness occurs, for instance,

when Wi,j includes cluster-level fixed effects. For our purposes, however, we only require

that for each j ∈ J the quantities (Π̂c
n,j)
′Wi,j with i ∈ In,j are uniquely defined, which

is satisfied by construction.

Using this notation, we may now introduce our assumptions. Before doing so, we

note that all limits are understood to be as n → ∞ and it is assumed that nj → ∞ as

n→∞. Importantly, the number of clusters, q, is fixed in our asymptotic framework.

Assumption 2.1. The following statements hold:

(i) The quantity

1√
n

∑
j∈J

∑
i∈In,j

(
Wi,jεi,j

Zi,jεi,j

)

converges in distribution.

(ii) The quantity

1

n

∑
j∈J

∑
i∈In,j

(
Wi,jW

′
i,j Wi,jZ

′
i,j

Zi,jW
′
i,j Zi,jZ

′
i,j

)

converges in probability to a positive-definite matrix.

Assumption 2.1 imposes sufficient conditions to ensure that the ordinary least squares

estimators of γ and β in (1) are well behaved. It further implies that the least squares

estimators of γ and β in (1) subject to the restriction that c′β = γ are well behaved

under the null hypothesis in (2). Assumption 2.1 in addition guarantees Π̂n converges

in probability to a well-defined limit. The requirements of Assumption 2.1 are satis-

fied, for example, whenever the within-cluster dependence is sufficiently weak to permit

application of suitable laws of large numbers and central limit theorems.

Whereas Assumption 2.1 governs the asymptotic properties of the restricted and

unrestricted least squares estimators, our next assumption imposes additional conditions

that are employed in our analysis of the wild bootstrap.

Assumption 2.2. The following statements hold:

(i) There exists a collection of independent random variables {Zj}j∈J , where Zj ∈ Rdz
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and Zj ∼ N(0,Σj) with Σj positive definite for all j ∈ J , such that 1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 d→ {Zj : j ∈ J} .

(ii) For each j ∈ J , nj/n→ ξj > 0.

(iii) For each j ∈ J ,
1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j

P→ ajΩZ̃ ,

where aj > 0 and ΩZ̃ is positive definite.

(iv) For each j ∈ J ,
1

nj

∑
i∈In,j

‖W ′i,j(Π̂n − Π̂c
n,j)‖2

P→ 0 .

The distributional convergence in Assumption 2.2(i) is satisfied, for example, when-

ever the within-cluster dependence is sufficiently weak to permit application of a suitable

central limit theorem and the data are independent across clusters or, as explained in

Bester et al. (2011), the “boundaries” of the clusters are “small.” The additional require-

ment that Zj have full rank covariance matrices requires that Zi,j can not be expressed

as a linear combination of Wi,j within each cluster. Assumption 2.2(ii) governs the rela-

tive sizes of the clusters. It permits clusters to have different sizes, but not dramatically

so. Assumptions 2.2(iii)-(iv) are the main “homogeneity” assumptions required for our

analysis of the wild bootstrap. These two assumptions are satisfied, for example, when-

ever the distributions of (W ′i,j , Z
′
i,j)
′ are the same across clusters, but may also hold when

that is not the case. For example, if Zi,j is a scalar, then Assumption 2.2(iii) reduces

to the weak requirement that the average of Z̃2
i,j within each cluster converges in prob-

ability to a non-zero constant. Similarly, if Wi,j includes only cluster-level fixed effects,

then Assumption 2.2(iv) is trivially satisfied; see Example 2.1. In contrast, Assumption

2.2 is violated by the simulation design in Ibragimov and Müller (2016), in which the

size of the wild bootstrap-based test exceeds its nominal level. Finally, we note that

under additional conditions it is possible to test Assumptions 2.2(iii)-(iv) directly.

We conclude with two examples that illustrate the content of our assumptions.

Example 2.1. (Cluster-Level Fixed Effects) In certain applications, adding additional

regressors Wi,j can aid in verifying Assumptions 2.2(iii)-(iv). In order to gain an appre-

ciation for this possibility, suppose that

Yi,j = γ + Z ′i,jβ + εi,j

with γ ∈ R, E[εi,j ] = 0 and E[Zi,jεi,j ] = 0. If the researcher specifies that Wi,j is simply

a constant, then Assumption 2.2(iv) demands that the cluster-level sample means of
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Zi,j all tend in probability to the same constant, while Assumption 2.2(iii) implies

the cluster-level sample covariance matrices of Zi,j all tend in probability to the same,

positive-definite matrix up to scale. On the other hand, if the researcher specifies that

Wi,j includes only cluster-level fixed effects, then Assumption 2.2(iv) is immediately

satisfied, while Assumption 2.2(iii) is again satisfied whenever the cluster-level sample

covariance matrices of Zi,j all tend in probability to the same, positive-definite matrix

up to scale.

Example 2.2. (Differences-in-Differences) Consider a differences-in-differences appli-

cation in which, for simplicity, we assume there are only two time periods. Treatment is

assigned in the second time period, and for each individual i in group j we let Yi,j denote

an outcome of interest, Ti,j ∈ {1, 2} be the time period at which Yi,j was observed, and

Zi,j ∈ {0, 1} indicate treatment status. In the canonical differences-in-differences model

(Angrist and Pischke, 2008), these variables are assumed to be related by

Yi,j = I{Ti,j = 2}δ +
∑
j̃∈J

I{j̃ = j}ζj̃ + Zi,jβ + εi,j ,

which we may accomodate in our framework by letting Wi,j be cluster-level fixed effects

and I{Ti,j = 2}. Typically, the groups are such that treatment status is common among

all i ∈ In,j with Ti,j = 2. This structure implies that J can be partitioned into sets J(0)

and J(1) such that Zi,j = I{Ti,j = 2, j ∈ J(1)}. In order to examine the content of

Assumptions 2.2(iii)-(iv) in this setting, define

λ ≡
∑

j∈J(1) nj(1)pj∑
j∈J nj(1)pj

, (10)

where nj(t) ≡
∑

i∈In,j
I{Ti,j = t} and pj ≡ nj(2)/nj . By direct calculation, it is then

possible to verify that (Π̂c
n)′Wi,j = Zi,j , while

Π̂′nWi,j =


−pjλ if Ti,j = 1 and j ∈ J(0)

(1− λ)pjλ if Ti,j = 1 and j ∈ J(1)

(1− pj)λ if Ti,j = 2 and j ∈ J(0)

λ+ (1− λ)pj if Ti,j = 2 and j ∈ J(1)

, (11)

which implies Assumption 2.2(iv) is violated. On the other hand, these derivations also

imply that it may be possible to satisfy Assumption 2.2(iii) by clustering more coarsely.

In particular, if we instead group elements of J into larger clusters {Sk}k∈K (K < q)

such that ∑
j∈J(1)∩Sk

nj(1)pj∑
j∈Sk

nj(1)pj

converges to λ, then Assumption 2.2(iv) is satisfied. In this way, Assumption 2.2(iv)

thereby requires the clusters to be “balanced” in the proportion of treated units.
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3 Asymptotic Properties

In this section, we first analyze the properties of the test φn defined in (6) under As-

sumptions 2.1 and 2.2. We then proceed to analyze the properties of a Studentized

version of this test under the same assumptions.

3.1 Main Result

The following theorem establishes that the test φn has limiting rejection probability

under the null hypothesis that does not exceed the nominal level α. It further establishes

a lower bound on the limiting rejection probability of the test under the null hypothesis.

Theorem 3.1. If Assumptions 2.1 and 2.2 hold and c′β = λ, then

α− 1

2q−1
≤ lim inf

n→∞
P{Tn > ĉn(1− α)} ≤ lim sup

n→∞
P{Tn > ĉn(1− α)} ≤ α .

To gain some intuition into the conclusion of Theorem 3.1, it is important to note

that the wild bootstrap does not re-sample the regressors. As a result, differences in Tn

and its bootstrap counterpart are exclusively due to differences in the “scores.” Formally,

Tn = Fn(sn) for some function Fn : Rq → R and

sn ≡

 1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 (12)

denoting the cluster “scores,” while, for any g ∈ G, |
√
nc′(β̂∗n(g)− β̂rn)| = Fn(gŝn) where

ŝn ≡

 1√
n

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J

 (13)

denotes the cluster “bootstrap scores” and the notation ga is shorthand for (g1a1, . . . , gqaq)

for any a ∈ Rq. This observation implies that the test φn defined in (6) rejects if and

only if ∑
g∈G

I{Fn(sn) > Fn(gŝn)} > d|G|(1− α)e , (14)

where, for any x ∈ R, dxe represents the smallest integer larger than x. The character-

ization of φn in (14) reveals a resemblance to a randomization test, but also highlights

an important difference: the action g is applied to a different statistic (i.e., ŝn) than

the one defining the full-sample test statistic (i.e., sn). This distinction prevents the

application of results in Canay et al. (2017). In fact, sn and ŝn do not even tend in

distribution to the same limit.
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In the proof of Theorem 3.1 in the Appendix, we show under Assumptions 2.1 and 2.2

that the limiting rejection probability of φn equals that of a level-α randomization test,

from which the conclusion of the theorem follows immediately. Despite the resemblance

described above, relating the limiting rejection probability of φn to that of a level-α

randomization test is delicate. In fact, the conclusion of Theorem 3.1 is not robust

to variants of φn that construct “bootstrap” outcomes Y ∗i,j(g) in other ways, such as

the weighting schemes in Mammen (1993) and Webb (2013). We explore this in our

simulation study in Section 4. The conclusion of Theorem 3.1 is also not robust to

the use of the ordinary least squares estimators of γ and β instead of the restricted

estimators γ̂rn and β̂rn. Notably, the use of the restricted estimators is encouraged by

Davidson and MacKinnon (1999) and Cameron et al. (2008).

Remark 3.1. The proof of Theorem 3.1 differs considerably from the existing literature

on the properties of φn in asymptotic frameworks where the number of clusters is “large.”

In particular, those analyses all proceed by first deriving the limit in distribution of Tn

and then establishing that ĉn(1 − α) tends in probability to the appropriate quantile

of this limiting distribution. In our asymptotic framework, in contrast, the bootstrap

distribution is not a consistent estimator for the limiting distribution of Tn and ĉn(1−α)

need not even settle down.

Remark 3.2. The conclusion of Theorem 3.1 can be extended to linear models with

endogeneity. In particular, one may consider the test obtained by replacing the ordinary

least squares estimator and the least squares estimator restricted to satisfy c′β = λ with

instrumental variable counterparts. Under assumptions that parallel Assumptions 2.1

and 2.2, it is possible to show using arguments similar to those in the proof of Theorem

3.1 that the conclusion of Theorem 3.1 holds for the test obtained in this way.

Remark 3.3. For testing certain null hypotheses, it is possible to provide conditions

under which wild bootstrap-based tests are valid in finite samples. In particular, suppose

that Wi,j is empty and the goal is to test a null hypothesis that specifies all values of β.

For such a problem, ε̂ri,j = εi,j and as a result the wild bootstrap-based test is numerically

equivalent to a randomization test. Using this observation, it is then straightforward to

provide conditions under which a wild bootstrap-based test of such null hypotheses is

level α in finite samples. For example, sufficient conditions are that {(εi,j , Zi,j) : i ∈ In,j}
be independent across clusters and

{εi,j : i ∈ In,j}|{Zi,j : i ∈ In,j}
d
= {−εi,j : i ∈ In,j}|{Zi,j : i ∈ In,j}

for all j ∈ J . Davidson and Flachaire (2008) present related results under independence

between εi,j and Zi.j . In contrast, because we are focused on tests of (2), which only

specify the value of a linear combination of the coefficients in (1), wild bootstrap-based

tests are not guaranteed finite-sample validity even under such strong conditions.
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3.2 Studentization

We now analyze the limiting rejection probability under the null hypothesis of a Stu-

dentized version of φn. Before proceeding, we require some additional notation in order

to define formally the variance estimators that we employ. To this end, let

Ω̂Z̃,n ≡
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jZ̃
′
i,j , (15)

where Z̃i,j is defined as in (8). For γ̂n and β̂n the ordinary least squares estimators of γ

and β in (1) and ε̂i,j ≡ Yi,j −W ′i,j γ̂n − Z ′i,j β̂n, define

V̂n ≡
1

n

∑
j∈J

∑
i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,j ε̂i,j ε̂k,j .

Using this notation, we define our Studentized test statistic to be Tn/σ̂n, where

σ̂2n ≡ c′Ω̂−1Z̃,n
V̂nΩ̂−1

Z̃,n
c . (16)

Next, for any g ∈ G ≡ {−1, 1}q, recall that (γ̂∗n(g)′, β̂∗n(g)′)′ denotes the uncon-

strained ordinary least squares estimator of (γ′, β′)′ obtained from regressing Y ∗i,j(g) (as

defined in (4)) on Wi,j and Zi,j . We therefore define the dz × dz covariance matrix

V̂ ∗n (g) ≡ 1

n

∑
j∈J

∑
i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,j ε̂
∗
i,j(g)ε̂∗k,j(g) ,

with ε̂∗i,j(g) = Y ∗i,j(g)−W ′i,j γ̂∗n(g)−Z ′i,j β̂∗n(g), as the wild bootstrap-analogue to V̂n, and

σ̂∗n(g)2 ≡ c′Ω̂−1
Z̃,n

V̂ ∗n (g)Ω̂−1
Z̃,n

c (17)

to be the wild bootstrap-analogue to σ̂2n. Notice that since the regressors are not re-

sampled when implementing the wild bootstrap, the matrix Ω̂Z̃,n is employed in com-

puting both σ̂n and σ̂∗n(g). Finally, we set as our critical value

ĉsn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I

{
|
√
n
c′(β̂∗n(g)− β̂rn)

σ̂∗n(g)
| ≤ u

}
≥ 1− α

 . (18)

As in Section 2, we can employ simulation to approximate ĉsn(1 − α) by generating

q-dimensional vectors of i.i.d. Rademacher random variables independently of the data.

Using this notation, the Studentized version of φn that we consider is the test φsn of

11



(2) that rejects whenever Tn/σ̂n exceeds the critical value ĉsn(1− α), i.e.,

φsn ≡ I{Tn/σ̂n > ĉsn(1− α)} . (19)

The following theorem studies the limiting rejection probability of this test under the

null hypothesis.

Theorem 3.2. If Assumptions 2.1 and 2.2 hold and c′β = λ, then

α− 1

2q−1
≤ lim inf

n→∞
P

{
Tn
σ̂n

> ĉsn(1− α)

}
≤ lim sup

n→∞
P

{
Tn
σ̂n

> ĉsn(1− α)

}
≤ α+

1

2q−1
.

Theorem 3.2 indicates that Studentizing the test-statistic Tn may lead to the limiting

rejection proability of the test exceeding its nominal level, but by an amount no greater

than 21−q, where q denotes the number of clusters. As explained further in Remark 3.4

below, the reason for this possible over-rejection is that Studentizing Tn results in a test

whose limiting rejection probability no longer equals that of a level-α randomization

test. Its limiting rejection probability, however, can still be bounded by that of a mod-

ified randomization test that rejects the null hypothesis whenever the p-value is weakly

smaller than α instead of strictly smaller than α. This modified randomization test has

rejection probability under the null hypothesis bounded above by α+ 21−q, from which

the conclusion of the theorem follows. This implies, for example, that in applications

with eight or more clusters, the amount by which the limiting rejection probabilty under

the null hypothesis exceeds the nominal level will be no greater than 0.008. Of course,

these results also imply that it is possible to “size correct” the test simply by replacing

α with α− 21−q.

Remark 3.4. Recall from the discussion in Section 3 that φn may be written as in (14).

In a similar way, φsn defined in (19) can be shown to reject if and only if∑
g∈G

I{F s
n(tn) > F s

n(gt̂n)} > d|G|(1− α)e , (20)

for a function F s
n and suitable statistics tn and t̂n. In contrast to the situation with φn,

however, it is possible that F s
n(tn) > F s

n(gt̂n) when g = ±(1, . . . , 1) ∈ G. As a result,

a test that rejects if and only if (20) occurs may differ even asymptotically from a test

that follows the same decision rule but employs F s
n(gtn) in place of F s

n(gt̂n). This subtle

distinction underlies the differences in the conclusions of Theorems 3.1 and 3.2.

12



4 Simulation Study

In this section, we illustrate the results in Section 3 with a simulation study. In all cases,

data is generated as

Yi,j = γ + Z ′i,jβ + σ(Zi,j)(ηj + εi,j) , (21)

for i = 1, . . . , n and j = 1, . . . , q, where ηj , Zi,j , σ(Zi,j) and εi,j are specified as follows.

Model 1: We set γ = 1; dz = 1; Zi,j = Aj + ζi,j where Aj ⊥⊥ ζi,j , Aj ∼ N(0, 1),

ζi,j ∼ N(0, 1); σ(Zi,j) = Z2
i,j ; and ηj ⊥⊥ εi,j with ηj ∼ N(0, 1) and εi,j ∼ N(0, 1).

Model 2: As in Model 1, but we set Zi,j =
√
j(Aj + ζi,j).

Model 3: As in Model 1, but dz = 3; β = (β1, 1, 1); Zi,j = Aj + ζi,j with

Aj ∼ N(0, I3) and ζi,j ∼ N(0,Σj), where I3 is a 3 × 3 identity matrix and Σj ,

j = 1, . . . , q, is randomly generated following Marsaglia and Olkin (1984).

Model 4: As in Model 1, but dz = 2, Zi,j ∼ N(µ1,Σ1) for j > q/2 and Zi,j ∼
N(µ2,Σ2) for j ≤ q/2, where µ1 = (−4,−2), µ2 = (2, 4), Σ1 = I2,

Σ2 =

[
10 0.8

0.8 1

]
,

σ(Zi,j) = (Z1,i,j + Z2,i,j)
2, and β = (β1, 2).

For each of the above specifications, we test the null hypothesis H0 : β1 = 1 against

the unrestricted alternative at level α = 10%. We further consider different values of

(n, q) with n ∈ {50, 300} and q ∈ {4, 5, 6, 8} as well as both β1 = 1 (i.e., under the null

hypothesis) and β1 = 0 (i.e., under the alternative hypothesis).

The results of our simulations are presented in Tables 1–4 below. Rejection proba-

bilities are computed using 5000 replications. Rows are labeled in the following way:

un-Stud: Corresponds to the un-Studentized test studied in Theorem 3.1.

Stud: Corresponds to the Studentized test studied in Theorem 3.2.

ET-uS: Corresponds to the equi-tail analog of the un-Studentized test. This test

rejects when the un-Studentized test statistic Tn =
√
n(c′β̂n − λ) is either below

ĉn(α/2) or above ĉn(1− α/2), where ĉn(1− α) is defined in (5).

ET-S: Corresponds to the equi-tail analog of the Studentized test. This test

rejects when the Studentized test statistic Tn/σ̂n is either below ĉsn(α/2) or above

ĉsn(1− α/2), where σ̂n and ĉsn(1− α) are defined in (16) and (18) respectively.
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Rade - with Fixed effects Rade - without Fixed effects Mammen - with Fixed effects
q q q

Test 4 5 6 8 4 5 6 8 4 5 6 8
un-Stud 6.48 9.90 9.34 9.42 9.24 14.48 13.80 12.48 15.40 14.42 13.06 12.16

Model 1 Stud 7.36 10.42 9.54 9.76 7.74 10.80 10.04 9.86 6.10 6.26 5.16 4.58
n = 50 ET-uS 1.48 7.40 9.64 9.26 1.50 11.42 14.00 12.16 2.32 3.14 3.30 4.74

ET-S 4.24 8.64 9.90 9.52 3.08 8.34 10.32 9.46 24.98 25.72 24.32 22.04
un-Stud 9.02 5.96 9.70 9.98 10.58 15.84 15.60 15.42 14.26 13.62 13.78 13.72

Model 2 Stud 9.44 7.74 9.72 10.08 8.18 10.38 10.06 11.04 5.56 5.92 4.60 4.10
n = 50 ET-uS 6.68 1.58 9.88 9.72 1.34 12.44 15.68 15.00 1.16 1.54 2.22 3.58

ET-S 7.60 4.02 10.34 9.88 2.48 8.30 10.24 10.80 26.86 25.42 25.26 25.40
un-Stud 7.24 9.72 9.46 10.16 10.54 15.48 14.32 14.24 15.58 14.78 13.48 12.88

Model 1 Stud 8.42 10.22 9.64 10.16 8.62 11.24 10.42 10.86 6.62 6.88 5.30 4.58
n = 300 ET-uS 2.10 7.14 9.66 9.84 1.10 12.00 14.42 13.82 1.82 2.66 3.62 4.70

ET-S 4.18 8.12 10.12 9.92 2.80 8.78 10.74 10.56 26.06 25.08 24.38 24.14
un-Stud 6.96 9.68 9.74 10.12 12.30 17.74 16.20 15.26 15.50 14.86 14.08 13.34

Model 2 Stud 8.26 10.16 9.86 10.16 8.88 10.96 10.28 10.66 6.64 6.18 4.80 4.34
n = 300 ET-uS 2.00 7.26 10.00 9.96 1.30 13.60 16.24 14.74 0.98 1.80 2.36 3.40

ET-S 4.36 8.16 10.42 9.88 3.02 8.00 10.44 10.40 27.14 26.80 26.66 25.42

Table 1: Rejection probability under the null hypothesis β1 = 1 with α = 10%.

Each of the tests may be implemented with or without fixed effects (see Example 2.1),

and with Rademacher weights or alternative weighting schemes as in Mammen (1993).

Tables 1 and 2 display the results for Models 1 and 2 under the null and alterna-

tive hypotheses respectively. These two models satisfy Assumptions 2.2(iii)–(iv) when

the regression includes cluster-level fixed effects but not when only a constant term is

included; see Example 2.1. Table 3 displays the results for Models 3 and 4 under the

null hypothesis. These two models violate Assumptions 2.2(iii)–(iv) and are included to

explore sensitivity to violations of these conditions. Finally, Table 4 displays results for

Model 1 with α = 12.5% to study the possible over-rejection under the null hypothesis

of the Studentized test, as described in Theorem 3.2.

We organize our discussion of the results by test.

un-Stud: As expected in light of Theorem 3.1 and Example 2.1, Table 1 shows

the un-Studentized test has rejection probability under the null hypothesis very

close to the nominal level when the regression includes cluster-level fixed effects

and the number of clusters is larger than four. When q = 4, however, the test is

conservative in the sense that the rejection probability under the null hypothesis

may be strictly below its nominal level. In fact, when α = 5% (not reported),

the test rarely rejects when q = 4 and is somewhat conservative for q = 5. Ta-

ble 1 also illustrates the importance of including cluster-level fixed effects in the

regression: when the test does not employ cluster-level fixed effects, the rejection

probability often exceeds the nominal level. In addition, Table 1 shows that the

Rademacher weights play an important role in our results, and may not extended
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Rade - with Fixed effects Rade - without Fixed effects Mammen - with Fixed effects
q q q

Test 4 5 6 8 4 5 6 8 4 5 6 8
un-Stud 19.80 33.14 39.34 42.28 20.42 34.94 39.54 40.74 35.46 37.86 40.84 42.50

Model 1 Stud 22.44 33.72 39.22 42.40 20.76 31.84 34.94 35.90 18.08 18.68 20.78 28.88
n = 50 ET-uS 5.64 28.80 39.70 41.62 4.60 30.32 39.90 40.16 10.14 15.84 22.06 29.26

ET-S 11.08 30.10 39.76 41.72 9.58 28.40 35.66 35.44 51.16 51.94 54.50 55.76
un-Stud 13.34 20.28 20.04 18.88 15.56 25.16 23.38 21.58 22.68 22.28 20.94 20.34

Model 2 Stud 16.00 20.66 19.66 18.40 13.94 19.24 17.86 16.68 12.42 11.74 10.12 10.50
n = 50 ET-uS 3.88 17.56 20.32 18.58 3.00 21.68 23.50 21.08 3.02 4.58 5.74 6.88

ET-S 8.86 18.50 20.08 18.18 6.26 16.50 18.24 16.34 37.70 36.42 35.40 33.26
un-Stud 22.22 39.20 42.46 48.32 21.80 39.72 40.84 44.80 38.30 42.10 43.38 48.08

Model 1 Stud 25.26 40.04 42.64 48.26 22.68 36.18 37.02 39.58 19.90 22.30 22.08 34.52
n = 300 ET-uS 6.12 33.78 42.88 47.80 4.70 34.16 41.14 44.20 11.80 20.16 25.78 35.68

ET-S 11.98 35.82 43.26 47.90 10.70 31.94 37.62 39.20 54.10 55.86 56.40 59.96
un-Stud 15.60 23.98 24.72 20.86 17.46 27.72 26.92 22.88 24.58 23.98 24.52 21.08

Model 2 Stud 17.90 24.24 24.72 20.64 15.70 21.30 20.72 17.80 14.40 13.10 13.16 12.90
n = 300 ET-uS 4.88 20.44 25.06 20.40 3.22 23.60 27.16 22.28 3.66 5.52 7.38 8.06

ET-S 9.36 21.50 25.24 20.30 6.78 18.46 21.00 17.46 42.04 39.88 39.32 34.92

Table 2: Rejection probability under the alternative hypothesis β1 = 0 with α = 10%.

to other weighting schemes such as those proposed by Mammen (1993). Indeed,

the rejection probability under the null hypothesis exceeds the nominal level for all

values of q and n when we use these alternative weights; see the last four columns

in Tables 1 and 2. We therefore do not consider these alternative weights in Tables

3 and 4.

Models 3 and 4 are heterogeneous, in the sense that Assumption 2.2(iii) is always

violated and Assumption 2.2(iv) is violated if cluster-level fixed effects are not

included. Table 3 shows that the rejection probability of the un-Studentized test

under the null hypothesis exceeds the nominal level in nearly all specifications,

including those employing cluster-level fixed effects. These results highlight the

importance of Assumptions 2.2(iii)–(iv) for our results and for the reliability of the

wild bootstrap when the number of clusters is small. Our findings are consistent

with our theoretical results in Section 3 and simulations in Ibragimov and Müller

(2016), who find that the wild bootstrap may have rejection probability under

the null hypothesis greater than the nominal level whenever the dimension of the

regressors is larger than two.

Stud: The Studentized test studied in Theorem 3.2 has rejection probability under

the null hypothesis very close to the nominal level in Table 1 across the different

specifications. Remarkably, this test seems to be less sensitive to whether clus-

ter level fixed effects are included in the regression or not. Nonetheless, when

cluster-level fixed effects are included the rejection probability under the null hy-

pothesis is closer to the nominal level of α = 10%. In the heterogeneous models
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Rade - with Fixed effects Rade - without Fixed effects
q q

Test 4 5 6 8 4 5 6 8
un-Stud 11.58 13.90 13.32 13.24 26.68 37.16 32.38 26.12

Model 3 Stud 11.14 12.74 11.94 11.44 19.98 18.62 14.54 12.66
n = 50 ET-uS 5.62 10.82 12.78 12.92 8.66 31.40 33.18 25.62

ET-S 7.06 10.24 11.34 11.38 13.52 16.08 15.10 12.46
un-Stud 12.96 17.70 16.30 12.96 12.44 22.64 18.00 14.22

Model 4 Stud 13.00 16.34 14.62 10.88 15.24 22.68 17.22 12.84
n = 50 ET-uS 5.52 14.68 16.56 12.72 3.60 19.08 18.20 14.02

ET-S 7.62 14.30 15.10 10.76 9.60 20.70 17.66 12.74
un-Stud 12.26 15.10 13.52 12.66 30.10 39.08 33.26 26.06

Model 3 Stud 12.32 13.52 11.40 10.96 22.00 19.38 15.44 12.96
n = 300 ETuNS 5.88 12.20 14.14 12.38 14.20 32.34 16.14 12.74

ET-S 8.20 11.86 11.94 10.74 17.80 16.70 13.00 11.98
un-Stud 13.54 17.18 15.94 12.84 14.72 24.38 17.56 13.78

Model 4 Stud 13.40 15.78 14.94 11.72 17.12 25.10 17.66 12.58
n = 300 ET-uS 5.60 13.98 16.36 12.68 4.32 19.66 17.80 13.60

ET-S 7.88 13.38 15.46 11.56 10.42 22.16 18.14 12.36

Table 3: Rejection probability under the null hypothesis β1 = 1 with α = 10%.

Rade - with Fixed effects Rade - without Fixed effects
q q

Test 4 5 6 8 4 5 6 8
Model 1 - n = 50 Stud 14.76 14.26 12.96 11.26 16.60 15.28 13.80 12.42
Model 1 - n = 300 Stud 14.56 13.54 13.10 11.76 16.30 14.34 13.94 12.10

Table 4: Rejection probability under the null hypothesis β1 = 1 with α = 12.5%.

of Table 3, however, the rejection probability of the Studentized test under the

null hypothesis exceeds the nominal level in many of the specifications, especially

when q < 8. Here, the inclusion of cluster-level fixed effects attenuates the amount

of over-rejection. Finally, Table 2 shows that the rejection probability under the

alternative hypothesis is similar to that of the un-Studentized test, except when

q = 4 where the Studentized test exhibits higher power.

Theorem 3.2 establishes that the asymptotic size of the Studentized test does not

exceed its nominal level by more than 21−q. Table 4 examines this conclusion

by considering Studentized tests with nominal level α = 12.5%. Our simulation

results shows that the rejection probability under the null hypothesis indeed ex-

ceeds the nominal level, but by an amount that is in fact smaller than 21−q. This

conclusion suggests that the upper bound in Theorem 3.2 can be conservative.

ET-uS/ET-S: The equi-tailed versions of the un-Studentized and Studentized

tests behave similar to their symmetric counterparts when q is not too small.

When q ≥ 6, the rejection probability under the null and alternative hypotheses

are very close to those of the un-Studentized and Studentized tests; see Tables

1-3. When q < 6, however, the equi-tailed versions of these tests have rejection
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probability under the null hypothesis below those of un-Stud and Stud. These

differences in turn translate into lower power under the alternative hypothesis; see

Table 2.

5 Concluding remarks

This paper has studied the properties of the wild bootstrap-based test proposed in

Cameron et al. (2008) for use in settings with clustered data. In contrast to previous

analyses of this test, we employ an asymptotic framework in which the number of clusters

is “small,” but the number of observations per cluster is “large,” which coincides with

the types of settings in which it is frequently being used. Our analysis highlights the

importance of certain homogeneity assumptions on the distribution of covariates in

ensuring that the test behaves well under the null hypothesis when there are few clusters.

The practical relevance of these conditions in finite samples is confirmed via a small

simulation study. It follows that when these conditions are implausible and there are few

clusters, researchers may wish to consider methods that do not impose such restrictions,

such as Ibragimov and Müller (2010) and Canay et al. (2017).
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A Proof of Theorems

Proof of Theorem 3.1: We first introduce notation that will help streamline our argument.

Let S ≡ Rdz×dz ×
⊗

j∈J Rdz and write any s ∈ S as s = (s1, {s2,j : j ∈ J}) where s1 ∈ Rdz×dz

is a (real) dz × dz matrix, and s2,j ∈ Rdz for all j ∈ J . Further let T : S→ R satisfy

T (s) ≡ |c′(s1)−1(
∑
j∈J

s2,j)| (A-1)

for any s ∈ S such that s1 is invertible, and let T (s) = 0 whenever s1 is not invertible. We also

identify any (g1, . . . , gq) = g ∈ G = {−1, 1}q with an action on s ∈ S given by gs = (s1, {gjs2,j :

j ∈ J}). For any s ∈ S and G′ ⊆ G, denote the ordered values of {T (gs) : g ∈ G′} by

T (1)(s|G′) ≤ · · · ≤ T (|G′|)(s|G′).

Next, let (γ̂′n, β̂
′
n)′ be the least squares estimators of (γ′, β′)′ in (1) and recall that ε̂ri,j ≡

(Yi,j − W ′i,j γ̂
r
n − Z ′i,j β̂

r
n), where (γ̂r′n , β̂

r′
n )′ are the constrained least squares estimators of the

same parameters restricted to satisfy c′β̂r
n = λ. By the Frisch-Waugh-Lovell theorem, β̂n can be

obtained by regressing Yi,j on Z̃i,j , where Z̃i,j is the residual from the projection of Zi,j on Wi,j

defined in (8). Using this notation we can define the statistics Sn, S
∗
n ∈ S to be given by

Sn ≡
(

Ω̂Z̃,n, {
1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J}
)

(A-2)

S∗n ≡
(

Ω̂Z̃,n, {
1√
n

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J}

)
, (A-3)

where

Ω̂Z̃,n ≡
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jZ̃
′
i,j . (A-4)

Next, let En denote the event En ≡ I{Ω̂Z̃,n is invertible}, and note that whenever En = 1

and c′β = λ, the Frisch-Waugh-Lovell theorem implies that

|
√
n(c′β̂n − λ)| = |

√
nc′(β̂n − β)| = |c′Ω̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,jεi,j | = T (Sn). (A-5)

Moreover, by identical arguments it also follows that for any action g ∈ G we similarly have

|
√
nc′(β̂∗n(g)− β̂r

n)| = |c′Ω̂−1
Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j | = T (gS∗n) (A-6)

whenever En = 1. Therefore, for any x ∈ R letting dxe denote the smallest integer larger than

x and k∗ ≡ d|G|(1− α)e, we obtain from (A-5) and (A-6) that

I{Tn > ĉn(1− α); En = 1} = I{T (Sn) > T (k∗)(S∗n|G); En = 1}. (A-7)

In addition, it follows from Assumptions 2.2(ii)-(iii) that Ω̂Z̃,n
P→ āΩZ̃ , where ā ≡

∑
j∈J ξjaj > 0
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and ΩZ̃ is a dz × dz invertible matrix. Hence, we may conclude that

lim inf
n→∞

P{En = 1} = 1. (A-8)

Further let ι ∈ G correspond to the identity action, e.g. ι ≡ (1, . . . , 1) ∈ Rq, and similarly define

−ι ≡ (−1, . . . ,−1) ∈ Rq. Then note that since T (−ιS∗n) = T (ιS∗n), we can conclude from (A-3)

and ε̂ri,j = (Yi,j −W ′i,j γ̂rn − Z ′i,j β̂r
n) that whenever En = 1 we obtain

T (−ιS∗n) = T (ιS∗n) =
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j(Yi,j −W ′i,j γ̂rn − Z ′i,j β̂r
n)
∣∣∣

=
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j(Yi,j − Z̃ ′i,j β̂r
n)
∣∣∣ = |
√
nc′(β̂n − β̂r

n)| = T (Sn), (A-9)

where the third equality follows from
∑

j∈J
∑

i∈In,j
Z̃i,jW

′
i,j = 0 due to Z̃i,j ≡ (Zi,j − Π̂′nWi,j)

and the definition of Π̂n (see (7)). In turn, the fourth equality in (A-9) follows from (A-4)

and the Frisch-Waugh-Lovell theorem as in (A-5), while the final result in (A-9) is implied by

c′β̂r
n = λ and (A-5). In particular, (A-9) implies that if k∗ ≡ d|G|(1 − α)e > |G| − 2, then

I{T (Sn) > T (k∗)(S∗n|G);En = 1} = 0, which establishes the upper bound in Theorem 3.1 due

to (A-7) and (A-8). We therefore assume that k∗ ≡ d|G|(1− α)e ≤ |G| − 2, in which case

lim sup
n→∞

E[φn] = lim sup
n→∞

P{T (Sn) > T (k∗)(S∗n|G); En = 1}

= lim sup
n→∞

P{T (Sn) > T (k∗)(S∗n|G \ {±ι}); En = 1}

≤ lim sup
n→∞

P{T (Sn) ≥ T (k∗)(S∗n|G \ {±ι}); En = 1}, (A-10)

where the first equality follows from (A-7) and (A-8), the second equality is implied by (A-9)

and k∗ ≤ |G| − 2, and the final inequality follows by set inclusion.

To examine the right hand side of (A-10), we first note that Assumptions 2.2(i)-(ii) and the

continuous mapping theorem imply that{√nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J
}

L→ {
√
ξjZj : j ∈ J}. (A-11)

Since ξj > 0 for all j ∈ J by Assumption 2.1(ii), and the variables {Zj : j ∈ J} have full

rank covariance matrices by Assumption 2.1(i), it follows that {
√
ξjZj : j ∈ J} have full rank

covariance matrices as well. Combining (A-11) together with the definition of Sn in (A-2) and

the previously shown result Ω̂Z̃,n
P→ āΩZ̃ then allows us to establish

Sn
L→ S ≡

(
āΩZ̃ , {

√
ξjZj : j ∈ J}

)
. (A-12)

We further note that whenever En = 1, the definition of Sn and S∗n in (A-2) and (A-3),

19



together with the triangle inequality, yield for every g ∈ G an upper bound of the form

|T (gSn)− T (gS∗n)| ≤ |c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ
′
i,j

√
n(β − β̂r

n)|

+ |c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
′
i,j

√
n(γ − γ̂rn)|. (A-13)

In what follows, we aim to employ (A-13) to establish that T (gSn) = T (gS∗n) + oP (1). To this

end, note that whenever c′β = λ it follows from Assumption 2.1 and Amemiya (1985, Eq. (1.4.5))

that
√
n(β̂r

n − β) and
√
n(γ̂rn − γ) are bounded in probability. Thus, Lemma A.2 implies that

lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
′
i,j

√
n(γ − γ̂rn)| > ε; En = 1} = 0 (A-14)

for any ε > 0. Moreover, Lemma A.2 and Assumptions 2.2(ii)-(iii) establish for any ε > 0 that

lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ
′
i,j

√
n(β − β̂r

n)| > ε; En = 1}

= lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β − β̂r

n)| > ε; En = 1}

= lim sup
n→∞

P{|c′Ω−1
Z̃

∑
j∈J

ξjgjaj
ā

ΩZ̃

√
n(β − β̂r

n)| > ε; En = 1}, (A-15)

where recall ā ≡
∑

j∈J ξjaj . Hence, if c′β = λ, then (A-15) and c′β̂r
n = λ yield for any ε > 0

lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ
′
i,j

√
n(β − β̂r

n)| > ε; En = 1}

= lim sup
n→∞

P{|
∑
j∈J

ξjgjaj
ā

√
n(c′β − c′β̂r

n)| > ε;En = 1} = 0. (A-16)

Since we had defined T (s) = 0 for any s = (s1, {s2,j : j ∈ J}) whenever s1 is not invertible, it

follows that T (gS∗n) = T (gSn) whenever En = 0. Therefore, results (A-13), (A-14), and (A-16)

imply T (gS∗n) = T (gSn) + oP (1) for any g ∈ G. We thus obtain from result (A-12) that

(T (Sn), {T (gS∗n) : g ∈ G}) L→ (T (S), {T (gS) : g ∈ G}) (A-17)

due to the continuous mapping theorem. Moreover, since En
P→ 1 by result (A-8), it follows that

(T (Sn), En, {T (gS∗n) : g ∈ G}) converge jointly as well. Hence, Portmanteau’s theorem, see e.g.

Theorem 1.3.4(iii) in van der Vaart and Wellner (1996), implies

lim sup
n→∞

P{T (Sn) ≥ T (k∗)(S∗n|G \ {±ι}); En = 1}

≤ P{T (S) ≥ T (k∗)(gS|G \ {±ι})} = P{T (S) > T (k∗)(gS|G \ {±ι})}, (A-18)

where in the equality we exploited that P{T (S) = T (gS)} = 0 for all g ∈ G \ {±ι} since the

covariance matrix of Zj is full rank for all j ∈ J and ΩZ̃ is nonsingular by Assumption 2.2(iii).

Finally, noting that T (ιS) = T (−ιS) = T (S), we can conclude T (S) > T (k∗)(gS|G \ {±ι}) if
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and only if T (S) > T (k∗)(gS|G), which together with (A-10) and (A-18) yields

lim sup
n→∞

E[φn] ≤ P{T (S) > T (k∗)(gS|G \ {±ι})} = P{T (S) > T (k∗)(gS|G)} ≤ α, (A-19)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization

tests, see e.g. Theorem 15.2.1 in Lehmann and Romano (2005). This completes the proof of the

upper bound in the statement of the Theorem.

For the lower bound, first note that k∗ ≡ d|G|(1− α)e > |G| − 2 implies that α− 1
2q−1 ≤ 0,

in which case the result trivially follows. Assume k∗ ≡ d|G|(1− α)e ≤ |G| − 2 and note that

lim sup
n→∞

E[φn] ≥ lim inf
n→∞

P{T (Sn) > T (k∗+1)(S∗n|G); En = 1}

≥ P{T (S) > T (k∗+1)(gS|G)}

≥ P{T (S) > T (k∗+2)(gS|G)}+ τP{T (S) = T (k∗+2)(gS|G)}

= α− 1

2q−1
, (A-20)

where the first inequality follows from result (A-7) and T (k∗+1)(gS|G) ≥ T (k∗)(gS|G), the

second inequality follows from Portmanteau’s theorem, see e.g. Theorem 1.3.4(iii) in van der

Vaart and Wellner (1996), the third inequality holds for any τ ∈ [0, 1] due to T (k∗+2)(gS|G) ≥
T (k∗+1)(gS|G), and the last equality follows from noticing that k∗+2 = d|G|((1−α)+2/|G|)e =

d|G|(1− α′)e with α′ = α− 1
2q−1 and the properties of randomization tests (see, e.g., Lehmann

and Romano, 2005, Theorem 15.2.1) together with setting τ equal to

τ =
|G|α′ −M+(S)

M0(S)
,

where

M+(S) = |{1 ≤ j ≤ |G| : T (j)(gS|G) > T (k∗+2)(gS|G)}|

M0(S) = |{1 ≤ j ≤ |G| : T (j)(gS|G) = T (k∗+2)(gS|G)}|.

Thus, the lower bound holds and the claim of the Theorem follows.

Proof of Theorem 3.2: The proof follows similar arguments as those employed in establishing

Theorem 3.1, and thus we keep exposition more concise. We again start by introducing notation

that will streamline our arguments. Let S ≡ Rdz×dz ×
⊗

j∈J Rdz and write an element s ∈ S
by s = (s1, {s2,j : j ∈ J}) where s1 ∈ Rdz×dz is a (real) dz × dz matrix, and s2,j ∈ Rdz for any

j ∈ J . Further define the functions T : S→ R and W : S→ R to be pointwise given by

T (s) ≡ |c′(s1)−1(
∑
j∈J

s2,j)− λ| (A-21)

W (s) ≡
(
c′(s1)−1

∑
j∈J

(
s2,j −

ξjaj
ā

∑
j̃∈J

s2,j̃

)(
s2,j −

ξjaj
ā

∑
j̃∈J

s2,j̃

)′
(s1)−1c

)1/2
, (A-22)

for any s ∈ S such that s1 is invertible, and set T (s) = 0 and W (s) = 1 whenever s1 is not

invertible. We further identify any (g1, . . . , gq) = g ∈ G = {−1, 1}q with an action on s ∈ S
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defined by gs = (s1, {gjs2,j : j ∈ J}). Finally, we set An ∈ R and Sn ∈ S to equal

An ≡ I{Ω̂Z̃,n is invertible, σ̂n > 0, and σ̂∗n(g) > 0 for all g ∈ G} (A-23)

Sn ≡
(

Ω̂Z̃,n, {
1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J}
)

(A-24)

where recall Ω̂Z̃,n was defined in (15) and Z̃i,j was defined in (8).

First, note that by Assumptions 2.2(i)-(ii) and the continuous mapping theorem we obtain

{√nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J
}

L→ {
√
ξjZj : j ∈ J}. (A-25)

Since ξj > 0 for all j ∈ J by Assumption 2.2(ii), and the variables {Zj : j ∈ J} have full

rank covariance matrices by Assumption 2.2(i), it follows that {
√
ξjZj : j ∈ J} have full rank

covariance matrices as well. Combining (A-25) together with the definition of Sn in (A-24),

Assumption 2.2(ii)-(iii), and the continuous mapping theorem then allows us to establish

Sn
L→ S ≡

(
āΩZ̃ , {

√
ξjZj : j ∈ J}

)
, (A-26)

where ā ≡
∑

j∈J ξjaj > 0. Since ΩZ̃ is invertible by Assumption 2.2(iii) and ā > 0, it follows

that Ω̂Z̃,n is invertible with probability tending to one. Hence, we can conclude that

σ̂n = W (Sn) + oP (1) σ̂∗n(g) = W (gSn) + oP (1) (A-27)

due to the definition of W : S→ R in (A-22) and Lemma A.1. Moreover, Ω̂Z̃,n being invertible

with probability tending to one additionally allows us to conclude that

lim inf
n→∞

P{An = 1} = lim inf
n→∞

P{σ̂n > 0 and σ̂∗n(g) > 0 for all g ∈ G}

≥ P{W (gS) > 0 for all g ∈ G} = 1, (A-28)

where the inequality in (A-28) holds by (A-26), (A-27), the continuous mapping theorem, and

Portmanteau’s Theorem; see, e.g., Theorem 1.3.4(ii) in van der Vaart and Wellner (1996). In

turn, the final equality in (A-28) follows from {
√
ξjZj : j ∈ J} being independent and continu-

ously distributed with covariance matrices that are full rank.

Next, recall that ε̂ri,j = (Yi,j −W ′i,j γ̂rn − Z ′i,j β̂r
n) and note that whenever An = 1 we obtain

√
nc′(β̂∗n(g)− β̂r

n) = c′Ω̂−1
Z̃,n

1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

= c′Ω̂−1
Z̃,n

1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j(εi,j −W ′i,j(γ̂rn − γ)− Z ′i,j(β̂r
n − β)). (A-29)

Further note that c′β = λ, Assumption 2.1, and Amemiya (1985, Eq. (1.4.5)) together imply

that
√
n(β̂r

n − β) and
√
n(γ̂rn − γ) are bounded in probability. Therefore, Lemma A.2 implies

lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

gj
n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂rn − γ)| > ε; An = 1} = 0 (A-30)
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for any ε > 0. Similarly, since
√
n(β̂r

n − β) is bounded in probability and ΩZ̃ is invertible by

Assumption 2.2(iii), Lemma A.2 together with Assumptions 2.2(ii)-(iii) imply for any ε > 0

lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj
gj
∑

i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂r

n − β)| > ε; An = 1}

= lim sup
n→∞

P{|c′Ω̂−1
Z̃,n

∑
j∈J

nj
n

1

nj
gj
∑

i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂r

n − β)| > ε; An = 1}

= lim sup
n→∞

P{|c′Ω−1
Z̃

∑
j∈J

ξjajgj
ā

∑
i∈In,j

ΩZ̃

√
n(β̂r

n − β)| > ε; An = 1}. (A-31)

It follows from results (A-27)-(A-31) together with T (Sn) = Tn whenever Ω̂Z̃,n is invertible, that

((|
√
n(c′β̂n − λ)|, σ̂n), {(|c′

√
n(β̂∗n(g)− β̂r

n)|, σ̂∗n(g)) : g ∈ G})

= ((T (Sn),W (Sn)), {(T (gSn),W (gSn)) : g ∈ G}) + oP (1). (A-32)

To conclude, we define a function t : S → R to be given by t(s) = T (s)/W (s). Then note

that, for any g ∈ G, gS assigns probability one to the continuity points of t : S → R since ΩZ̃

is invertible and P{W (gS) > 0 for all g ∈ G} = 1 as argued in (A-28). In what follows, for any

s ∈ S it will prove helpful to employ the ordered values of {t(gs) : g ∈ G}, which we denote by

t(1)(s|G) ≤ . . . ≤ t(|G|)(s|G). (A-33)

Next, we observe that result (A-28) and a set inclusion inequality allow us to conclude that

lim sup
n→∞

P
{Tn
σ̂n

> ĉsn(1− α)
}
≤ lim sup

n→∞
P
{Tn
σ̂n
≥ ĉsn(1− α); An = 1

}
≤ P

t(S) ≥ inf{u ∈ R :
1

|G|
∑
g∈G

I{t(gS) ≤ u} ≥ 1− α}

 , (A-34)

where the final inequality follows by results (A-26), (A-32), and the continuous mapping and

Portmanteau theorems; see, e.g., Theorem 1.3.4(iii) in van der Vaart and Wellner (1996). There-

fore, setting k∗ ≡ d|G|(1− α)e, we can then obtain from result (A-34) that

lim sup
n→∞

P
{Tn
σ̂n

> ĉsn(1− α)
}

≤ P{t(S) > t(k
∗)(S)}+ P{t(S) = t(k

∗)(S)} ≤ α+ P{t(S) = t(k
∗)(S)}, (A-35)

where in the final inequality we exploited that gS
d
= S for all g ∈ G and the basic properties

of randomization tests; see, e.g., Theorem 15.2.1 in Lehmann and Romano (2005). Moreover,

applying Theorem 15.2.2 in Lehmann and Romano (2005) yields

P{t(S) = t(k
∗)(S)}

= E[P{t(S) = tk
∗
(S)|S ∈ {gS}g∈G}] = E[

1

|G|
∑
g∈G

I{t(gS) = t(k
∗)(S)}]. (A-36)
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For any g = (g1, . . . , gq) ∈ G then let −g = (−g1, . . . ,−gq) ∈ G and note that t(gS) = t(−gS)

with probability one. However, if g̃, g ∈ G are such that g̃ /∈ {g,−g}, then

P{t(gS) = t(g̃S)} = 0 (A-37)

since, by Assumption 2.2, S = (āΩZ̃ , {
√
ξjZj : j ∈ J}) is such that ΩZ̃ is invertible, ξj > 0 for

all j ∈ J , and {Zj : j ∈ J} are independent with full rank covariance matrices. Hence,

1

|G|
∑
g∈G

I{t(gS) = t(k
∗)(S)} =

1

|G|
× 2 =

1

2q−1
(A-38)

with probability one, and where in the final equality we exploited that |G| = 2q. The claim of

the upper bound in the Theorem therefore follows from results (A-35) and (A-38). Finally, the

lower bound follows from similar arguments to those in (A-20) and so we omit them here.

Lemma A.1. Let Assumptions 2.1 and 2.2 hold, Ω̂−
Z̃,n

denote the pseudo inverse of Ω̂Z̃,n, and

set ā ≡
∑

j∈J ξjaj and Un,j ≡ 1√
n

∑
i∈In,j

Z̃i,jεi,j. If c′β = λ, then for any (g1, . . . , gq) = g ∈ G

σ̂2
n = c′Ω̂−

Z̃,n

∑
j∈J

(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)′
Ω̂−

Z̃,n
c+ oP (1)

(σ̂∗n(g))2 = c′Ω̂−
Z̃,n

∑
j∈J

(
gjUn,j −

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃

)(
gjUn,j −

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃

)′
Ω̂−

Z̃,n
c+ oP (1).

Proof: Recall that (β̂′n, γ̂
′
n)′ denotes the least squares estimator of (β′, γ′)′ in (1) and denote the

corresponding residuals by ε̂i,j ≡ (Yi,j −Z ′i,j β̂n−W ′i,j γ̂n). Since
√
n(β̂n−β) and

√
n(γ̂n−γ) are

bounded in probability by Assumption 2.1, we can conclude from Lemma A.2 and the definition

of Un,j that

1√
n

∑
i∈In,j

Z̃i,j ε̂i,j =
1√
n

∑
i∈In,j

Z̃i,jεi,j −
1

n

∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂n − β)− 1

n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂n − γ)

= Un,j −
1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂n − β) + oP (1). (A-39)

Next, note that Ω̂Z̃,n is invertible with probability tending to one by Assumption 2.2(iii). Since

Ω̂−
Z̃,n

= Ω̂−1
Z̃,n

when Ω̂Z̃,n is invertible, we obtain from Assumptions 2.2(ii)-(iii) that

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂n − β)

=
nj
n

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,jΩ̂

−
Z̃,n

1√
n

∑
j̃∈J

∑
k∈In,j̃

Z̃k,j̃εk,j̃ + oP (1) =
ξjaj
ā

∑
j̃∈J

Un,j̃ + oP (1). (A-40)
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Therefore, (A-39), (A-40), and the continuous mapping theorem yield

V̂n =
∑
j∈J

( 1√
n

∑
i∈In,j

Z̃i,j ε̂i,j

)( 1√
n

∑
k∈In,j

Z̃ ′k,j ε̂k,j

)
=
∑
j∈J

(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)′
+ oP (1). (A-41)

The first part of the lemma thus follows by the definition of σ̂2
n in (16).

For the second claim of the lemma, note that when c′β = λ, it follows from Assumption

2.1 and Amemiya (1985, Eq. (1.4.5)) that
√
n(β̂r

n − β) and
√
n(γ̂rn − γ) are bounded in proba-

bility. Together with Assumption 2.1 such result in turn also implies that
√
n(β̂∗n(g)− β̂r

n) and
√
n(γ̂∗n(g) − γ̂rn) are bounded in probability for all g ∈ G. Next, recall that the residuals from

the bootstrap regression in (4) equal ε̂∗i,j(g) = gj ε̂
r
i,j −Z ′i,j(β̂∗n(g)− β̂r

n)−W ′i,j(γ̂∗n(g)− γ̂rn) for all

(g1, . . . , gq) = g ∈ G. Therefore, we are able to conclude for any g ∈ G and j ∈ J that

1√
n

∑
i∈In,j

Z̃i,j ε̂
∗
i,j(g)

=
1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j −

1

n

∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂∗n(g)− β̂r

n)− 1

n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂∗n(g)− γ̂rn)

=
1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j −

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂∗n(g)− β̂r

n) + oP (1), (A-42)

where in the final equality we employed Lemma A.2. Next, recall ε̂ri,j ≡ εi,j − Z ′i,j(β̂r
n − β) −

W ′i,j(γ̂
r
n − γ) and note

c′Ω̂−
Z̃,n

1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j = c′Ω̂−

Z̃,n

1

n

∑
i∈In,j

Z̃i,jgj(εi,j − Z ′i,j
√
n(β̂r

n − β)−W ′i,j
√
n(γ̂rn − γ))

= c′Ω̂−
Z̃,n

gjUn,j − c′Ω̂−Z̃,n

1

n

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β̂r

n − β) + oP (1), (A-43)

where the second equality follows from Lemma A.2 and Ω̂−
Z̃,n

,
√
n(β̂r

n−β), and
√
n(γ̂rn−γ) being

bounded in probability. Moreover, Assumptions 2.2(ii)-(iii) imply

c′Ω̂−
Z̃,n

1

n

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β̂r

n − β) = c′Ω−1
Z̃

gjξjaj
ā

ΩZ̃

√
n(β̂r

n − β) + oP (1) = oP (1), (A-44)

where the final result follows from c′β̂r = λ by construction and c′β = λ by hypothesis. Next, we

note that since Ω̂−
Z̃,n

= Ω̂−1
Z̃,n

whenever Ω̂Z̃,n is invertible, and Ω̂Z̃,n is invertible with probability
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tending to one by Assumption 2.2(iii), we can conclude that

c′Ω̂−
Z̃,n

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂∗n(g)− β̂r

n)

= c′Ω̂−
Z̃,n

nj
n

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,jΩ̂

−
Z̃,n

∑
j̃∈J

1√
n

∑
k∈In,j̃

Z̃k,jgj̃ ε̂
r
k,j̃

+ oP (1)

= c′Ω̂−
Z̃,n

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃ + oP (1), (A-45)

where in the final equality we applied (A-43), (A-44), and ā ≡
∑

j∈J ξjaj . The second part of

the lemma then follows from the definition of (σ̂∗n(g))2 in (17) and results (A-42)-(A-45).

Lemma A.2. Let Assumptions 2.1(ii) and 2.2(iv) hold. It follows that for any j ∈ J we have

1

nj

∑
i∈In,j

Z̃i,jW
′
i,j = oP (1) and

1

nj

∑
i∈In,j

Z̃i,jZ
′
i,j =

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j + oP (1) .

Proof: Let ‖ ·‖F denote the Frobenius matrix norm, which recall equals ‖M‖2F ≡ trace{M ′M}
for any matrix M . By the definition of Z̃i,j in (8),

∑
i∈In,j

(Zi,j − (Π̂c
n,j)
′Wi,j)W

′
i,j = 0 by

definition of Π̂c
n,j (see (9)), and the triangle inequality applied to ‖ · ‖F , we then obtain

‖ 1

nj

∑
i∈In,j

Z̃i,jW
′
i,j‖F = ‖ 1

nj

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j‖F

= ‖ 1

nj

∑
i∈In,j

(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F ≤

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F . (A-46)

Moreover, applying a second triangle inequality and the properties of the trace we get

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F =

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,j‖ × ‖W ′i,jWi,j‖

≤ { 1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,j‖2}1/2 × {

1

nj

∑
i∈In,j

‖Wi,j‖2}1/2 = oP (1), (A-47)

where the inequality follows from the Cauchy-Schwarz inequality, and the final result by As-

sumption 2.1(ii) and 2.2(iv). Since Π̂n is bounded in probability by Assumption 2.1(ii) and

1

nj

∑
i∈In,j

Z̃i,jZ
′
i,j =

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j +

1

nj

∑
i∈In,j

Z̃i,jW
′
i,jΠ̂n (A-48)

by (8), the second part of the lemma follows.
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