
Jochmans, Koen; Weidner, Martin

Working Paper

Fixed-effect regressions on network data

cemmap working paper, No. CWP26/17

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Jochmans, Koen; Weidner, Martin (2017) : Fixed-effect regressions on
network data, cemmap working paper, No. CWP26/17, Centre for Microdata Methods and
Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2017.2617

This Version is available at:
https://hdl.handle.net/10419/189732

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2017.2617%0A
https://hdl.handle.net/10419/189732
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Supplement for "Fixed-effect 
regressions on network data"

Koen Jochmans
Martin Weidner

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP26/17



FIXED-EFFECT REGRESSIONS ON NETWORK DATA

SUPPLEMENT

Koen Jochmans∗

Sciences Po, Paris
Martin Weidner‡

University College London

May 24, 2017

Contents

S.1 Further Discussion and Illustrations 2
S.1.1 Relation to network-formation models . . . . . . . . . . . . . . . . . . . 2
S.1.2 Additional illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

S.2 Variance bounds for differences 5

S.3 Second-order bound 7

S.4 Estimation of moments 11
S.4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
S.4.2 Bias and variance of ϑ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

S.5 Proofs 17
Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Proof of Theorem 1 and Equation (2.5) . . . . . . . . . . . . . . . . . . . . . . 17
Proof of Theorems 2 and S.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Proof of Theorems 3 and S.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Proof of Theorem S.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Proof of Theorem S.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Proof of Lemma S.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Proof of Theorem S.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Proof of Theorem S.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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S.1 Further Discussion and Illustrations

S.1.1 Relation to network-formation models

The existing literature on the estimation of fixed-effect models for network data typically

assumes a complete graph, that is, that all possible pairs of outcomes are observed; see

Simons and Yao (1999) and Yan and Xu (2013) for results on the Bradley and Terry (1952)

model, Fernández-Val and Weidner (2016) for two-way models for panel data, and Dzemski

(2014), Graham (2017), and Jochmans (2017) for work on network-formation models.

In the network-formation literature, sparsity means that the number of links between

n vertices grows slower than n2. This definition of sparsity is different than ours. Indeed,

while many links may fail to form, the decision whether to link or not is observed for all

n(n− 1)/2 pairs of vertices. In our context, sparsity means to no outcome is observed for

a pair of vertices.

S.1.2 Additional illustrations

Remember that our measure of global connectivity is λ2, the second smallest eigenvalue of

the normalized Laplacian matrix. In the following we provide some concrete examples of

graphs for which λ2 can be explicitly calculated, and we discuss the implications of our first-

order variance bounds in Theorem 3 for those examples. The first example illustrates that

even for λ2 converging to zero asymptotically (the graph becoming less and less strongly

connected in that sense) we may still have the variance of α̂i converging to zero at the rate

1/di.

Example S.1 (Hypercube graph). Consider the N-dimensional hypercube, where each of

n = 2N vertices is involved in N edges; see the left hand side of Figure S.1. This is an

N-regular graph — that is, di = hi = N for all i — with the total number of edges in the

graph equaling 2N−1. Here,

λ2 =
2

N
= O((lnn)−1).
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Figure S.1: three-dimensional hypercube (left) and extended hypercube (right).

Thus, λ2 hi is constant in n. An application of Theorem 3 yields

1 + o(1) ≤ N var(α̂i)

σ2
≤ 3

2
+ o(1).

From this, we obtain the convergence rate result (α̂i−αi) = Op

(
(lnn)−1/2

)
, but the bounds

are not sufficient to determine the leading order asymptotic variance of α̂i. However, using

the refined bound in Theorem S.3 given below in this supplement one obtains

var(α̂i) = σ2/N +O(N−2),

that is, (3.5) holds.

Theorem 3 allows to establish the convergence rate for the hypercube, but the conditions

are too stringent to obtain (3.5). This is so because hi does not increase fast enough to

ensure that λ2 hi →∞. The following example illustrates that despite λ2 → 0 we can still

have λ2 hi →∞.

Example S.2 (Extended Hypercube graph). Start with the N-dimensional hypercube G

from the previous example and add edges between all path-two neighbors in G; see the right

hand side of Figure S.1 for an example. The resulting graph still has n = 2N vertices, but

now has N(N + 1) 2N−1 edges. Here,

di = hi =
N(N + 1)

2
, λ2 =

4

N + 1
,
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Figure S.2: Star graph (left) and Wheel graph (right) for n = 8.

so that λ2 hi →∞ holds, despite λ2 → 0 as n→∞. Theorem 3 therefore implies (3.5) in

this example.

The next example illustrates that the first-order bounds can still be informative in

situations where hi does not converge to infinity.

Example S.3 (Star graph). Consider a Star graph around the central vertex 1, that is, the

graph with n vertices and edges

E = {(1, j) : 2 ≤ j ≤ n};

see the left hand side of Figure S.2. Here, λ2 = 1 for any n while d1 = n− 1, h1 = 1 and

di = 1, hi = n− 1 for i 6= 1. For i = 1 one finds that the bounds in Theorem 3 imply that

var(α̂1) = O(n−1), and so

(α̂1 − α1) = Op

(
n−1/2

)
.

In contrast, for i 6= 1 we find λ2 hi →∞ and thus, although (3.5) holds, these αi cannot be

estimated consistently as di = 1.

The star graph also illustrates that λ2 can be large despite having many vertices with

small degrees. As mentioned in the main text, it is largely due to this property that we

prefer to measure global connectivity by λ2 = λ2(S) and not by the “algebraic connectivity”
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(the second smallest eigenvalue of L), which is studied more extensively in the graph theory

literature.

Our last example shows the effect on the upper bound in Theorem 3 when neighbors

themselves are more strongly connected.

Example S.4 (Wheel graph). The Wheel graph is obtained on combining a Star graph

centered at vertex 1 with a Cycle graph on the remaining n− 1 vertices; see the right hand

side of Figure S.2. Thus, a Wheel graph contains strictly more edges than the underlying

Star graph, although none of these involve the central vertex directly. From Butler (2016),

we have

λ2 = min

{
4

3
, 1− 2

3
cos

(
2π

n

)}
,

which satisfies λ2 ≥ 1 only for n ≤ 4, and converges to 1/3 at an exponential rate. However,

while, as in the Star graph, d1 = n − 1, we now have that hi = 3 for all i 6= 1. Hence,

λ2 h1 > 1 for any finite n and the upper bound in Theorem 3 is strictly smaller than in the

Star graph.

The last two examples also illustrate that adding edges to the graph (to obtain the Wheel

graph from the Star graph) can result in a decrease of our measure of global connectivity λ2.

This is not a problem, however, because what really matters to us is not the exact value

of λ2, but that λ2 is sufficiently different from zero. The Wheel graph with λ2 ≥ 1/3, for

example, clearly describes a very well globally connected graph by that measure.

S.2 Variance bounds for differences

Our focus thus far has been inference on the αi, under the constraint in (2.2),
∑

i αi = 0.

An alternative to normalizing the parameters that may be useful in certain applications is

to focus directly on the differences αi−αj for all i 6= j (Bradley and Terry, 1952). We give

corresponding versions of Theorem 2 and Theorem 3 here.

The resistance distance between vertices i and j in G is

rij :=
(
L†
)
ii

+
(
L†
)
jj
− 2

(
L†
)
ij

(S.1)
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(Klein and Randić, 1993), and is a metric on the set V (Klein, 2002). It is linked to the

commute distance, say cij, which is the expected time it takes for a random walk to travel

from i to j and back again, through the relation

cij = 2mrij ,

see, e.g., von Luxburg, Radl and Hein (2010). For example, vertices in different clusters

of a graph have a large commute distance, relative to vertices in the same cluster of the

graph. The precise connection between the magnitude of these quantities and the precision

of statistical inference is

var(α̂i − α̂j) = σ2 rij =
σ2

2

cij
m
. (S.2)

This is the equivalent of (3.1) for differences.

The counterpart to Theorem 2 is intuitive.

Theorem S.1 (Global bound for differences). Let G be connected. Then

var(α̂i − α̂j) ≤
(

1

di
+

1

dj

)
σ2

λ2
,

for all i 6= j.

Let dij := |[i] ∩ [j]| be the number of vertices that are neighbors of both i and j. Write

hij :=


(

1

dij

∑
k∈[i]∩[j]

1

dk

)−1
for dij 6= 0,

∞ for dij = 0,

for the corresponding harmonic mean of the degrees of the vertices k ∈ [i]∩[j]. For weighted

graphs we need to change the definition of hij for dij 6= 0 to

hij =

(
1

dij

∑
k∈V

(A)ik (A)jk
dk

)−1
,

with dij =
∑

k∈V (A)ik (A)jk. We have the following theorem.

Theorem S.2 (First-order bound for differences). Let G be connected. Then

σ2

(
1

di
+

1

dj
− 2(A)ij

didj

)
≤ var(α̂i−α̂j) ≤ σ2

(
1

di
+

1

dj
− 2(A)ij

didj

)
+
σ2

λ2

(
1

dihi
+

1

djhj
− 2 dij
didjhij

)
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One implication of the theorem is that, when [i] = [j] but i /∈ [j] and i /∈ [j], that is, when

vertices i and j share exactly the same neighbors and are not connected themselves, we

have

var(α̂i − α̂j) = σ2

(
1

di
+

1

dj

)
, (S.3)

as, in that case, both (A)ij and the second term in the upper bound in Theorem S.2 are

zero.

Theorem S.2 is related to work on the amplified commute distance by von Luxburg,

Radl and Hein (2014), which they propose as an alternative to the commute distance in

large graphs. However, their results are restricted to the class of random geometric graphs

and are purely asymptotic in nature. Here, we provide finite-sample bounds for arbitrary

connected graphs, using λ2 as a measure of global connectivity.

S.3 Second-order bound

This section discusses an improvement on the bounds in Theorem 3. Recall that dij =

|[i] ∩ [j]| denotes the number of vertices that are direct neighbors of both vertex i and

vertex j. For j ∈ [i], let dj,i := dj − dij, the number of direct neighbors of j that are not

also direct neighbors of i. The following example illustrates that dj,i can be a more relevant

measure than dj for the dependence of var(α̂i) on the connectedness of a neighbor j of i.

Example S.5. Both for the Star and for the Wheel graph example from above one finds

var(α̂1) =
σ2

n

n− 1

n

by direct calculation. Thus, the additional edges in the Wheel graph between the neighbors

of vertex i = 1 relative to the Star graph do not lower the variance of α̂1. For i 6= 1 we

have di = 1 for the Star graph but di = 3 for the Wheel graph, while for both graphs we

have di,1 = 1.

Let

[i]2 :=
⋃
j∈[i]

[j] \ {i},
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the set of all path-two neighbors of vertex i. Analogous to the definition of the harmonic

mean hi above we let

hi :=

 1

di

∑
j∈[i]

1

dj,i

−1 , hi;2 :=

 1

|[i]2|
∑
j∈[i]2

1

dj

−1 .
In addition, for i ∈ V we define the set

Wi =
{

(j, k, `) ∈ V 3 : k 6= i & (i, j) ∈ E & (j, k) ∈ E & (k, `) ∈ E
}
,

which is the set of all triplets (j, k, `) such that (i, j, k, `, i) is a closed walk in G that reaches

distance two from i (thus ruling out k = i). Notice that we may have j = `, that is, the

closed walk need not be a simple cycle.

Theorem S.3 (Second-order bound). Let G be connected and let hi > 1. Then

σ2

di(1− h−1i )

(
1− 2

n
− 2

n

di
hi

)
≤ var(α̂i) ≤

σ2

di(1− h−1i )

((
1− 2

n
− 2

n

di
hi

)
+

Ci
λ2 hi;2(hi − 1)

)
where Ci := hi hi;2 d

−1
i

∑
(j,k,`)∈Wi

(
dk dj,i d`,i

)−1
.

Including the factor hi hi;2 d
−1
i in the definition of Ci guarantees that Ci is naturally scaled

in many examples; see below.

An asymptotic implication of Theorem S.3 is that

σ2

di(1− h−1i )
+O

(
1

min(di, hi)n

)
≤ var(α̂i) ≤

σ2

di(1− h−1i )
+O

(
1

min(di, hi)n

)
+ o(d−1i h−1i ),

(S.4)

provided λ2hi;2/Ci → ∞ as n → ∞ and hi ≥ 1 + ε for some constant ε > 0 independent

of n. Notice that this does not require that hi → ∞, and the refinement obtained here

relative to the first order asymptotic result (3.5) is in fact particularly important for those

cases where hi and hi are small.

The term Ci requires further discussion. Notice that (j, k, `) ∈ Wi implies j, ` ∈ [i] and

k ∈ [i]2, and for any tensor aijk` we have∑
(j,k,`)∈Wi

aijk` =
∑
k∈[i]2

∑
j∈[i]∩[k]

∑
`∈[i]∩[k]

aijk`. (S.5)
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Applying this to aijk` = 1 and using that
∑

j∈[i]∩[k] = dik we obtain

|Wi| =
∑
k∈[i]2

d2ik.

Thus, the number of elements in Wi depends on the number of path-two neighbors of i

and on the typical number of neighbors that i has in common with one of its path-two

neighbors. The cases of interest in the following are those where the typical value of dik is

small compared to the degree di for k ∈ [i]2, so that the ratio between |Wi| and |[i]2| is not

large. This is true in many interesting examples. Applying (S.5) to Ci gives

Ci = hi hi;2
1

di

∑
k∈[i]2

1

dk

 ∑
j∈[i]∩[k]

1

dj,i

2

=
|[i]2|
di hi

 1

|[i]2|
∑
k∈[i]2

d2ik

(
hi;2
dk

) 1

dik

∑
j∈[i]∩[k]

hi
dj,i

2  .
Using the last result we want to argue that Ci is of order one in cases where dik is not

large for k ∈ [i]2. To do so, first notice that the sums in the last expression for Ci are

all self-normalized (i.e., divided by the number of terms that is summed over). We also

typically have |[i]2|
di hi

= O(1), because

|[i]2|
di
≤ 1

di

∑
j∈[i]

dj,i,

and one expects the arithmetic mean
(

1
di

∑
j∈[i] dj,i

)
to be of the same order as the harmonic

mean hi.

In the following we present concrete examples where dik is relatively small for k ∈ [i]2

and thus Ci is of order one asymptotically.

Example 2 (cont’d). Consider the Erdős and Rényi (1959) random-graph model with

pn = c (lnn)/n. Let c > 1 to guarantee that the graph is connected as n → ∞. In this

model for randomly picked (i, j) ∈ E we have dj,i = di[1 + O(pn)], that is, the difference

between dj,i and di is typically very small. Also, for randomly picked i ∈ V and k ∈ [i]2

9



we have dik = 1 + O(np2n), and therefore |Wi| = |[i]2| [1 + O(np2n)] = n2p2n + O(n3p4n).

We therefore have λ2 → 1, di/(lnn) → c, dj,i/(lnn) → c, hi/(lnn) → c, hi/(lnn) → c,

hi;2/(lnn)→ c and Ci → 1, almost surely, as n→∞. Applying Theorem S.3 thus gives

var(α̂i) =
σ2

di(1− h−1i )
+O

(
d−1i h−1i h−1i;2

)
,

which is simpler than (S.4), because in this example 3-cycles are relatively rare, implying

that hi and hi are typically very close to each other. �

Example 1 (cont’d) (Bipartite graph applied to matched amployer-employee data). In

the worker-firm example the graph G is bipartite, so that two neighboring vertices have no

direct neighbors in common, implying that di,j = di and hi = hi. Let i ∈ V2 be a firm. Then,

j ∈ [i] are workers, and the number of observations dj for workers are typically small in this

application, so that the harmonic mean hi is typically small. Also, j ∈ [i]2 are firms, and

the number of observations dj for firms are often large in this application, so the harmonic

mean hi;2 is often large. Therefore, the second-order bound in Theorem S.3 is particularly

simple in this example (because the distinction between di,j and di is irrelevant), and is also

particularly important (because hi = hi is small, so that the improvement relative to the

first-order bound is very relevant). For simplicity, we consider the case of a simple graph

where dj = 2 for all workers j ∈ V1.1 Then, for i ∈ V2 the bounds in Theorem S.3 become

2σ2

di

(
1− 2

n
− di
n

)
≤ var(α̂i) ≤

2σ2

di

(
1− 2

n
− di
n

)
+

2σ2Ci
λ2 di hi;2

,

where

Ci =
hi;2
2

1

di

∑
j∈[i]2

d2ij
dj
≤ 1

2
max
j∈[i]2

d3ij ,

where for the last inequality we used the definition of hi;2 and |[i]2| ≤ di maxj∈[i]2 dij. For

example, if any two firms are connected by at most two workers, then we have dij ≤ 1 and

1This occurs if we observe wages annually for two years, and we drop workers from the dataset that

do not change firms in those two years, because their observations are not informative for the firm fixed

effects. For all remaining workers we then have exactly dj = 2 log wage observations and the graph is

simple.
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therefore Ci = 1/2. Thus, the leading order asymptotic variance is increased by a factor of

two compared to the first order result in (3.5). �

It is also possible that Theorem S.3 cannot be used to obtain a refinement of the

variance as in (S.4) but that it can justify the first-order rate in (3.5) for cases where

this first-order asymptotic variance of α̂i does not follow from Theorem 3. The following

example illustrates this in the context of the hypercube example from above.

Example S.6. For N ≥ 2 consider the N-dimensional hypercube graph, which has n = 2N

edges, as introduced above. In that case, firstly, we have di = N for all i ∈ V . Secondly,

there are no edges among the vertices in [i], implying that di,j = di = N and hi = hi = N

for all possible i, j ∈ V . Thirdly, we have |[i]2| = N(N−1)/2, and for all i ∈ V and k ∈ [i]2

we have dik = 2 implying that |Wi| = 4 |[i]2| = 2N(N − 1). We thus find Ci = 2(N − 1)/N .

The bounds in Theorem S.3 thus become

σ2

N (1−N−1)

(
1− 4

2N

)
≤ var(α̂i) ≤

σ2

N (1−N−1)

(
1− 4

2N
+

2

λ2 N2

)
.

Because λ2 = 2/N we thus find,

var(α̂i) =
σ2

N
+O(N−2),

as N →∞.

S.4 Estimation of moments

S.4.1 Consistency

Let k ∈ {2, 3, 4, . . .}. The kth moment of the αi equals

θ := n−1
n∑
i=1

αki .

The variance discussed in the main text is obtained on setting k = 2. The plug-in estimator

is

θ̂ := n−1
n∑
i=1

α̂ki .
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The following theorem gives sufficient conditions for consistency.

Theorem S.4 (Consistency of moment estimator). Let G be connected. Let k ∈ {2, 3, 4, . . .}.

Assume that lim supn→∞ n
−1∑n

i=1|αi|k <∞ and that

λ2(
n−1

∑n
i=1

1

d
k/2
i

)2/k
→∞

as n→∞. Then (θ̂ − θ) p→ 0 as n→∞.

For k = 2 the condition in the theorem is simply that λ2h→∞ as n→∞. For k > 2 the

asymptotic requirement on the degrees sequence becomes stronger, because a large variance

of α̂i for a single vertex i can have a stronger effect on the moment plug-in estimator when

k is large. We have

lim
k→∞

λ2(
n−1

∑n
i=1

1

d
k/2
i

)2/k
= λ2 min

i
di

which is completely driven by the least-connected vertex.

S.4.2 Bias and variance of ϑ̂

In the following we discuss the case k = 2, with ϑ = θ and ϑ̂ = θ̂ already introduced in the

main text for this case. We are going to provide additional detail on the bias and variance

of the variance estimator ϑ̂.

Lemma S.5 (Bias and variance of ϑ̂). Let G be connected. Then,

E(ϑ̂− ϑ) = σ2 tr(L†)

n
, var(ϑ̂) = 4σ2 α

′L†α

n2
+ 2σ4 ‖L†‖2

n2
.

With rij the resistance distance as defined in (S.1) the bias expression in the lemma is

proportional to

n tr
(
L†
)

=
1

2

n∑
i=1

n∑
j=1

rij,

which is called the resistance or “Kirchhoff index” of the graph (see e.g. Klein and Randić

1993; Boumal and Cheng 2014).
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Because

σ2 tr(L†)

n
= n−1

n∑
i=1

var(α̂i)

we can apply the bounds on var(α̂i) in Theorem 3 to obtain the bounds on the bias of ϑ̂

given in the following corollary.

Corollary S.6 (Bounds on Bias of ϑ̂). Let G be connected. Then,

σ2

h

(
1− 2

n

)
≤ E(ϑ̂− ϑ) ≤ σ2

h

(
1− 2

n
+

1

λ2H

)
.

Moving on, because α̂i is normally distributed with mean αi we have var (α̂2
i ) =

2[var (α̂i)]
2 + 4α2

i var (α̂i). Using this we find the following simple bound on the variance

var(ϑ̂) = var

(
1

n

n∑
i=1

α̂2
i

)

≤

(
1

n

n∑
i=1

√
var (α̂2

i )

)2

=

(
1

n

n∑
i=1

√
2[var (α̂i)]2 + 4α2

i var (α̂i)

)2

≤

(
1

n

n∑
i=1

√
2 [var (α̂i)]2 +

1

n

n∑
i=1

2αi
√

var (α̂i)

)2

≤

√2
1

n

n∑
i=1

var (α̂i) + 2

(
1

n

n∑
i=1

α2
i

)1/2(
1

n

n∑
i=1

var (α̂i)

)1/2
2

=

(√
2E(ϑ̂− ϑ) + 2ϑ1/2

(
E(ϑ̂− ϑ)

)1/2)2

.

From this bound on var(ϑ̂) together with Corollary S.6 above we find that for asymptotic

sequences where ϑ converges to a constant and λ2H →∞, as n→∞, we have

E(ϑ̂− ϑ) =
σ2

h
+ o(h−1), var(ϑ̂) = O(h−1).

However, this upper bound on var(ϑ̂) of order h−1 is potentially crude.

In the following we provide further bounds on var(ϑ̂). We first introduce some additional

notation. Let v = (v1, . . . , vn)′ be an eigenvector of S corresponding to the eigenvalue λ2

13



and let

κ :=

∑n
i=1 vi αi d

−1/2
i√

(
∑n

i=1 v
2
i )
(∑n

i=1 α
2
i d
−1
i

) .
Note that κ ∈ [−1, 1] is the uncentered correlation coefficient of vi and αi/

√
di. We also

introduce

hα :=

(
n∑
i=1

(α2
i /ϑ)/n

di

)−1
, hsqr :=

(
n∑
i=1

1/n

d2i

)−1/2
.

Theorem S.7 (Bounds on variance of ϑ̂). Let G be connected. Then,

κ2

n

4ϑσ2

λ2 hα
≤ var(ϑ̂) ≤ 1

n

(
4ϑσ2

λ2 hα
+

2σ4

(λ2 hsqr)2

)
.

An implication of these bounds is that, if, as n → ∞, (i) ϑ and κ converge to non-zero

constants; (ii) h, hα, and hsqr grow at the same rate; and (iii) λ2h→∞, then

var(ϑ̂) � (λ2 nh)−1.

It is not difficult to construct data generating processes for G and α satisfying the above

conditions and also λ2 → 0, implying that the convergence rate of var(ϑ̂) is indeed given

by (λ2 nh)−1.

The above conclusion requires that κ converges to a non-zero constant. In situations

where κ is small or converges to zero, the lower bound in Theorem S.7 is uninformative

and the variance may converge faster than (λ2 nh)−1. Such a small correlation may arise

when either vi or αi/
√
di have approximately mean zero and the correlation between vi

and αi/
√
di is small. This will be the case, for example, if G and α are independent. We

therefore now also present an alternative version of the variance bounds. Let

hcub :=

(
n∑
i=1

1/n

d3i

)−1/3
.
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For ` = 0, 1, 2, . . . let

α(`) :=
(
AD−1

)`
α,

ϑ(`) :=
1

n

n∑
i=1

(
α

(`)
i

)2
,

h(`)α :=

(
1∑n

i=1(ϑ
(`)
i )2

n∑
i=1

(ϑ
(`)
i )2d−1i

)−1
,

γ(`) := corr

(
α
(`)
i

di
,
α
(`)
j

dj

∣∣∣∣∣ (i, j) ∈ E
)

=

∑
(i,j)∈E

α
(`)
i

di

α
(`)
j

dj√∑
(i,j)∈E

(
α
(`)
i

di

)2
√∑

(i,j)∈E

(
α
(`)
j

dj

)2
,

where in the last expression for the sample correlation we do not have to subtract any sample

mean terms, because we have
∑

(i,j)∈E d
−1α

(`)
i = 1

2

∑n
i,j=1(A)ijd

−1α
(`)
i = 1

2

∑n
i=1 α

(`)
i = 0. If

α(`) = 0, then the above expression for h
(`)
α and γ(`) are ill-defined, and we therefore set

h
(`)
α = h and γ(`) = 0 in that case. We have ϑ(`) ≥ 0 and γ(`) ∈ [−1, 1].

Theorem S.8 (Bounds on variance of ϑ̂). Let G be connected. Let k ∈ {1, 2, 3, . . .}. Then,

0 ≤ var(ϑ̂)− 4σ2

n

k−1∑
`=0

ϑ(`)1 + γ(`)

h
(`)
α

≤ 4σ2 ϑ(k)

λ2 nh
(k)
α

+
2σ4

n

(
1

hsqr
+

1

λ2h
3/2
cub

)2

.

Comment: For the first term of the variance expression in Lemma S.5 the theorem uses

the bounds

0 ≤ n−1α′L†α−
k−1∑
`=0

ϑ(`)1 + γ(`)

h
(`)
α

≤ ϑ(k)

λ2 h
(k)
α

. (S.6)

If G is not bipartite, then we have ϑ(k)

λ2 h
(k)
α

→ 0 as k →∞, that is, those bounds on n−1α′L†α

provide an exact expansion for k → ∞.2 However, if G is bipartite this is usually not the

2For non-bipartite graphs we can expand the inverse of L = D − A to find α′L†α =

α′D−1
∑∞

`=0

(
AD−1

)`
α, which gives rise to the above expansion of var(ϑ̂) as k → ∞. This expan-

sion is convergent, because ‖AD−1‖2 ≤ 1, −1 is not an eigenvalue of AD−1, and the nondegenerate

eigenvalue 1 of AD−1 has eigenvector ιn, orthogonal to α. We know this, because AD−1 and In−S have

the same spectrum, and the spectrum of S is discussed in Lemma 1.7 of Chung (1997). Part (v) of that
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case. For example, let G be bipartite with vertex components V1 and V2 and set αi = di

for i ∈ V1 and αi = −di for i ∈ V2. We then have α(`) = (−1)`α, ϑ(`) = ϑ, h
(`)
α = hα and

γ(`) = −1, so that the above bounds on n−1α′L†α become completely independent from

the choice of k. Nevertheless, the bounds are valid for bipartite G, and for generic choices

of α are also more informative the larger is k. �

Consider Theorem S.8 with k = 0. Assume that ϑ and 1 + γ converge to non-zero

constants, and h, hα, h
(1)
α hsqr and hcub all grow to infinity at the same rate, and λ2 h→∞,

and λ−12 ϑ(1) → 0, as n→∞. Then we have

var(ϑ̂) =
4ϑσ2 (1 + γ)

nhα
+ o((nhα)−1).

This conclusion requires that ϑ(1) is small, that is, α(1) is close to zero. We have α
(1)
i =∑

j∈[i] d
−1
j αj, which can be expected to be small if di and the typical dj, j ∈ [i], are similarly

large, and if the αj, j ∈ [i], have a mean close to the overall sample mean of zero, and

are not strongly correlated with d−1j . This would, for example, be the case if G and α are

independent, and the degrees of G are not too heterogeneous.

More generally, one can show that ϑ = ϑ(0) ≥ ϑ(1) ≥ ϑ(2) ≥ . . ., but it is not neces-

sarily the case that ϑ(`), for ` ≥ 1, is much smaller than ϑ, so 4σ2

n
ϑ(`) 1+γ(`)

h
(`)
α

may also give

contributions to var(ϑ̂) of order (nh)−1. Theorem S.8 may then still be employed to show

that var(ϑ̂) is of order (nh)−1 by letting k = kn grow to infinity as n→∞, but we will not

discuss this any further here.

To conclude, for generic realizations of G and α we do not expect the correlation γ to

be close to −1, so that the lower bound in Theorem S.8 (for k = 1) shows that var(ϑ̂) is

at least of order (nh)−1, while the upper bound in Theorem S.7 shows that it is at most

of order (λ2 nh)−1. However, if λ2 → 0, then it depends very much on the detailed data

generating process for G and α which of these two rates is the actual convergence rate of

var(ϑ̂), and any rate in between is also possible in general.

lemma states that S has an eigenvalue 2 if and only if G is bipartitie. Thus, for bipartite graphs AD−1

has an eigenvalue −1 and the above expansion for α′L†α is not convergent, unless α is orthogonal to the

corresponding eigenvector.
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S.5 Proofs

PROOF OF LEMMA 1 (EXISTENCE)

The estimator is defined by the constraint minimization problem in (2.4). For convenience

we express the constraint in quadratic form, (a′ιn)2 = 0. By introducing the Lagrange

multiplier λ > 0 we can write

α̂ = arg min
a∈Rn

(y −Ba)′(y −Ba) + λ (a′ιn)
2
.

Solving the corresponding first-order condition we obtain

α̂ = (B′B + λ ιnι
′
n)
−1
B′y.

Here, the matrix B′B + λ ιnι
′
n is invertible, because L = B′B only has a single zero

eigenvalue (because we assume the graph to be connected) with eigenvector ιn, so that

adding λ ιnι
′
n gives a non-degenerate matrix. The matrices B′B and ιnι

′
n commute, and

by properties of the Moore-Penrose inverse we thus have

(B′B + λ ιnι
′
n)
−1

= (B′B)
†

+ λ−1 (ιnι
′
n)
†
.

We furthermore have (ιnι
′
n)† = n−2ιnι

′
n and, because Bιn = 0, the contribution from

(ιnι
′
n)† drops out of the above formula for α̂, and we obtain α̂ = (B′B)†B′y. This

concludes the proof. �

PROOF OF THEOREM 1 AND EQ. (2.5) (SAMPLING DISTRIBUTION)

As y = Bα+ u, Lemma 1 gives

α̂ = α+ (B′B)
†
B′u.

Conditional on B, u ∼ N(0, σ2 In), and so

α̂ ∼ N
(
α, σ2 (B′B)†

)
,

where the variance expression follows from properties of the Moore-Penrose pseudoinverse.

This concludes the proof of the theorem.
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The result in display (2.5) follows from Theorem 1 by standard arguments on the F -

statistic in linear regression models. Here, the degrees-of-freedom correction from m − n

to m− (n− 1) arises, because the projection matrix

Im −B (B′B)
†
B′

has rank m−(n−1). Notice that althoughB has n columns, we have that rankB = (n−1).

This concludes the proof. �

PROOF OF THEOREMS 2 AND S.1 (ZERO-ORDER BOUNDS)

There are no isolated vertices, because G is connected and n > 2. That is, di > 0 for all i,

and so D is invertible. From Theorem 1 and the definition of the normalized Laplacian S

we find

var(α̂) = σ2D−
1
2S†D−

1
2 .

In the following we write M1 ≤M2 for symmetric matrices M1 and M2 to indicate that

M2−M1 is positive semi-definite. We have S† ≤ λ−12 In, because λ2 is the smallest non-zero

eigenvalue of S. Therefore,

var(α̂) ≤ σ2

λ2
D−1.

This result implies that, for any vector v ∈ Rn,

var(v′α̂) = v′var(α̂)v ≤ σ2

λ2
v′D−1v =

σ2

λ2
v′ diag(d−11 , d−12 , . . . , d−1n )v.

The bound in Theorem 2 follows on setting v = ei, the ith unit vector. The corresponding

bound for the differences in Theorem S.1 follows on setting v = ei − ej for i 6= j. This

concludes the proof. �

PROOF OF THEOREMS 3 AND S.2 (FIRST-ORDER BOUNDS)

We first show that, if G is connected, then

0 ≤
[
var(α̂)− σ2

(
D−1 +D−1AD−1 − ιnι

′
nD

−1

n
− D

−1ιnι
′
n

n

)]
≤ σ2

λ2
D−1AD−1AD−1.

(S.7)
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Theorems 3 and S.2 will then follow readily. First note that, because G is connected, we

know that the zero eigenvalue of the Laplacian matrix L has multiplicity one, and the

corresponding eigenvector is given by ι. The Moore-Penrose pseudoinverse of L therefore

satisfies L†L = In − n−1 ιnι
′
n, where the right hand side is the idempotent matrix that

projects orthogonally to ιn. Using that L = D −A and solving this equation for L† gives

L† = D−1 +L†AD−1 − n−1 ιnι′nD−1. (S.8)

The Laplacian is symmetric, and so transposition gives

L† = D−1 +D−1AL† − n−1D−1ιnι′n. (S.9)

Replacing L† on the right-hand side of (S.8) by the expression for L† given by (S.9) yields

L† = D−1 +D−1AD−1 +D−1AL†AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n, (S.10)

where we have also used the fact that D−1Aιn = ιn. Re-arranging this equation allows us

to write

L† −
(
D−1 +D−1AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n

)
= D−1AL†AD−1.

Because L ≥ 0 and by the arguments in the preceding proof we also have the bounds

0 ≤ L† ≤ λ−12 D
−1.

Put together this yields

0 ≤ L† −
(
D−1 +D−1AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n

)
≤ λ−12 D

−1AD−1AD−1,

and multiplication with σ2 gives the bounds stated in (S.7).

To show Theorems 3 and S.2 we calculate, for i 6= j,

e′iD
−1 ei = d−1i ,

e′iD
−1 ej = 0,

e′iD
−1AD−1 ei = 0,

e′iD
−1AD−1 ej = d−1i d−1j (A)ij,

e′iD
−1AD−1AD−1 ei = d−1i h−1i ,

e′iD
−1AD−1AD−1 ej = d−1i d−1j dijh

−1
ij ,

e′i ιnι
′
nD

−1 ei = ι′nD
−1 ei = d−1i ,

e′i ιnι
′
nD

−1 ej = ι′nD
−1 ej = d−1j .

Combining these results with (S.7) gives the bounds on var(α̂i) = e′ivar(α̂)ei and var(α̂i−

α̂j) = (ei − ej)′var(α̂)(ei − ej) stated in the theorems and concludes the proof. �
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PROOF OF THEOREM 4 (COVARIATES)

Define the n× n matrix

C := (B′B)
†
B′X (X ′X)

−1
X ′B.

Let λi(C) denote the ith eigenvalue of C, arranged in ascending order. C is similar to the

positive semi-definite matrix

(X ′X)
−1/2

X ′B (B′B)
†
B′X (X ′X)

−1/2
,

and so λ1(C) ≥ 0. C is also similar to the matrix

B (B′B)
†
B′X (X ′X)

−1
X ′,

which is the product of two projection matrices, whose spectral norm is thus bounded by

one. Hence, λn(C) ≤ 1. In addition, we must have λi(C) 6= 1 for any 1 < i < n because,

otherwise, rank (In −C) < n, which implies that rank(B′MXB) < n − 1, contradicting

our non-collinearity assumption. We therefore have ‖C‖2 < 1. Noting that we equally

have Cιn = 0 and ι′nC = 0, and therefore also (Im −C)−1 ιn = ιn,

(B′MXB)† =
(
B′MXB + n−1ιnι

′
n

)−1 − n−1ιnι′n
=
[
(B′B) (Im −C) + n−1ιnι

′
n

]−1 − n−1ιnι′n
=
[(
B′B + n−1ιnι

′
n

)
(Im −C)

]−1 − n−1ιnι′n
= (Im −C)−1

(
B′B + n−1ιnι

′
n

)−1 − n−1ιnι′n
= (Im −C)−1

[(
B′B + n−1ιnι

′
n

)−1 − n−1ιnι′n]
= (Im −C)−1 (B′B)

†
.

Using again ‖C‖2 < 1 we can expand (Im −C)−1 in powers of C, as

(B′MXB)† =
∞∑
r=0

Cr (B′B)
†
.

Define the p× p matrix

C̃ := (X ′X)
−1/2

X ′B (B′B)
†
B′X (X ′X)

−1/2
.
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Then, the above expansion can be written as

(B′MXB)† = (B′B)
†

+ (B′B)
†
B′X (X ′X)

−1/2

(
∞∑
r=0

C̃ r

)
(X ′X)

−1/2
X ′B (B′B)

†
.

The matrix C̃ is positive definite and satisfies ‖C̃‖2 = 1− ρ. Therefore,

∞∑
r=0

C̃ r ≤
∞∑
r=0

(1− ρ)r Ip = ρ−1 Ip.

We thus have

var (α̃i)− var (α̂i) = σ2 e′i

[
(B′MXB)† − (B′B)

†
]
ei

= σ2 e′i

[
(B′B)

†
B′X (X ′X)

−1/2

(
∞∑
r=0

C̃ r

)
(X ′X)

−1/2
X ′B (B′B)

†

]
ei

≤ σ2

ρ
e′i

[
(B′B)

†
B′X (X ′X)

−1
X ′B (B′B)

†
]
ei.

We have already shown that (B′B)† = L† satisfies

L† = D−1 +L†AD−1 − n−1 ιnι′nD−1.

and

L† = D−1 +D−1AL† − n−1D−1ιnι′n.

Using this we obtain

e′i (B
′B)

†
B′X (X ′X)

−1
X ′B (B′B)

†
ei

= e′iL
†B′X (X ′X)

−1
X ′BL†ei

= e′i
(
D−1 +D−1AL†

)
B′X (X ′X)

−1
X ′B

(
D−1 +L†AD−1

)
ei

≤ T
(1)
i + T

(2)
i + 2

√
T

(1)
i T

(2)
i ,

where

T
(1)
i = e′iD

−1B′X (X ′X)
−1
X ′BD−1ei

T
(2)
i = e′iD

−1AL†B′X (X ′X)
−1
X ′BL†AD−1ei,
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and we used the Cauchy-Schwarz inequality to bound the mixed term. Again, because

similar matrices have the same eigenvalues we have

‖
(
L†
)1/2

B′X (X ′X)
−1
X ′B

(
L†
)1/2‖2 = |C̃|2 = 1− ρ,

and therefore,

T
(2)
i = e′iD

−1A
(
L†
)1/2 [(

L†
)1/2

B′X (X ′X)
−1
X ′B

(
L†
)1/2] (

L†
)1/2

AD−1ei

≤ (1− ρ) e′iD
−1AL†AD−1ei

≤ 1− ρ
λ2

e′iD
−1AD−1AD−1ei

=
1− ρ
λ2 di hi

,

where the last two steps follow from previous proofs. Using the definition of B we find

that the p× n matrix B′X has columns

(X ′B)· i =
n∑
j=1

1{(i, j) ∈ E} (xij − xij)

=
1

2

n∑
j=1

(A)ij (xij − xij)

=
n∑
j=1

(A)ij xij,

and therefore

X ′BD−1ei =
1

di

n∑
j=1

(A)ij xij = xi.

We thus obtain

T
(1)
i = e′iD

−1B′X (X ′X)
−1
X ′BD−1ei =

1

m
x′iΩ

−1xi.

Combining the above results we find

var (α̃i)− var (α̂i) ≤
σ2

ρ

(
T

(1)
i + T

(2)
i + 2

√
T

(1)
i T

(2)
i

)
≤ σ2

ρ

(
1

m
x′iΩ

−1xi +
1− ρ
λ2 di hi

+ 2

√
1

m
x′iΩ

−1xi
1− ρ
λ2 di hi

)
.
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For any a, b ≥ 0 we have a + b + 2
√
ab ≤ 2(a + b). Thus, a slightly cruder but simpler

bound is given by

‖var (α̂∗i )− var (α̂i)‖ ≤
2σ2

ρ

(
x′iΩ

−1xi
m

+
1− ρ
λ2 di hi

)
,

which is the bound given in the theorem. �

PROOF OF THEOREM 5 (GENERALIZED APPROXIMATION)

From the proof of Lemma 1, the least-squares estimator satisfies the first-order condition

Lα̂ = B′y.

Using that y = Bα+ u and that L = D −A this yields D1/2 (α̂−α) = D−1/2B′u+ ε,

where

ε := D−1/2A (α̂−α) .

Note that this is the vector version of the expression for
√
di(α̂i − αi) as given in the

theorem. From α̂ − α = (B′B)†B′u it follows that E(ε) = 0 while from the assumption

that E(uu′) ≤ σ2In we have that

E(εε′) = D−1/2A(B′B)†B′ E (uu′)B(B′B)†AD−1/2 = σ2D−1/2AL†AD−1/2.

As in the preceding proofs, we still have that L† ≤ λ−12 D
−1, and so

E(εε′) ≤ σ2λ−12 D
−1/2AD−1AD−1/2.

From this we find

E(ε2i ) ≤
σ2

λ2 hi
.

Thus, if σ2λ−12 h−1i → 0 as n → ∞, then by Markov’s inequality we have εi →p 0. By the

continuous mapping theorem we therefore have√
di (α̂i − αi)→p

1√
di

∑
j∈[i]

uij.

Moreover, if 1√
di

∑
j∈[i] uij is asymptotically normal, then so is

√
di (α̂i − αi). This concludes

the proof. �
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PROOF OF THEOREM S.3 (SECOND-ORDER BOUND)

Proof of Theorem S.3. We start with the lower bound given in the theorem. Let

Vo := {i} ∪ [i]; then no := |Vo| = 1 + di. Without loss of generality we fix i = 1 and relabel

the elements of V so that Vo = {1, 2, . . . , 1 + di}. Let

Lo :=

 di −ι′di
−ι′di L[i]

 , L[i] := D[i] −A[i],

using obvious notation for the di×di degree and adjacency matrices in the latter definition.

Now, by the inversion formula for partitioned matrices,

L−1◦ =
1

di − ι′diL
−1
[i] ιdi

 1 ι′diL
−1
[i]

L−1[i] ιdi

[
L[i]−d−1

i ιdiι
′
di

di−ι′diL
−1
[i]
ιdi

]−1
 .

Below we show that

0 ≤

var(α̂i)−
σ2
[
1− 2

n

(
1 + ι′diL

−1
[i] ιdi

)]
di − ι′diL

−1
[i] ιdi

 ≤ σ2 ι′diL
−1
[i] (A◦#)D−1# (A◦#)′L−1[i] ιdi

λ2

(
di − ι′diL

−1
[i] ιdi

)2 ,

(S.11)

where L◦ is the upper left n◦ × n◦ block of L, A◦# is the upper right n◦ × n# block of A,

and D# is the lower right n# × n# block of D. To make further progress, note that the

expansion

L−1[i] =
∞∑
q=0

(
D−1[i] A[i]

)q
D−1[i]

is convergent, because we have ‖D−1[i] A[i]‖∞ < 1, where ‖.‖∞ denotes the maximum absolute

row sum matrix norm. We therefore have

ι′diL
−1
[i] ιdi = ι′diD

−1
[i] ιdi + ι′di

∞∑
q=1

(
D−1[i] A[i]

)q
D−1[i] ιdi

≥ ι′diD
−1
[i] ιdi =

∑
j∈[i]

d−1j , (S.12)
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where we used that ι′di
∑∞

q=1

(
D−1[i] A[i]

)q
D−1[i] ιdi ≥ 0, because this is a product and sum of

vector and matrices that all have non-negative entries. Define the n◦× n◦ diagonal matrix

D[i] = diag(dj,i : j ∈ [i]). We have

L[i] −D[i] = diag(A[i]ιdi)−A[i] ≥ 0, (S.13)

because diag(A[i]ιdi)−A[i] can be expressed as a sum of matrices of the form 1 −1

−1 1

 ≥ 0,

embedded into an n◦ × n◦ matrix. We therefore have L−1[i] ≤D
−1
[i] , implying

ι′diL
−1
[i] ιdi ≤ ι

′
di
D−1[i] ιdi =

∑
j∈[i]

d−1j,i . (S.14)

Combining (S.11), (S.12) and (S.14) gives

var(α̂i) ≥
σ2
[
1− 2

n

(
1 +

∑
j∈[i] d

−1
j,i

)]
∑

j∈[i]
(
1− d−1j

) =
σ2

di(1− h−1i )

(
1− 2

n
− 2

n

di
hi

)
,

which is the lower bound stated in the theorem.

To show the upper bound, consider the the graph G̃ := (V, Ẽ), with Ẽ := E \ [i] × [i].

That is, we construct G̃ by deleting all edges between neighbors of i from G. Note that G̃ is

still connected, because all vertices in [i] are connected through i. Let α̃ be the estimator

for α obtained for G̃, in the same way that α̂ was obtained for G. Let L̃ be the Laplacian

matrix of G̃. Analogous to (S.13) we have L̃ ≤ L, and therefore L̃† ≥ L†. The result

(S.11) holds for any connected graph, and so can equally be applied to G̃, we only need to

replace var(α̂i) by var(α̃i) and L by L̃. The matrices A◦# and D−1# are identical for G̃ and

G. However, for G̃ we find D̃[i] = D[i], because the degree of vertex j is given by dj,i, and

we have Ã[i] = 0, because there are no edges that connect elements in [i]. We thus have

L̃[i] = D̃[i] − Ã[i] = D[i]. Therefore,

var(α̂i) ≤ var(α̃i) ≤
σ2
[
1− 2

n

(
1 + ι′diD

−1
[i] ιdi

)]
di − ι′diD

−1
[i] ιdi

+
σ2 ι′diD

−1
[i] (A◦#)D−1# (A◦#)′D−1[i] ιdi

λ2

(
di − ι′diD

−1
[i] ιdi

)2 ,

and evaluating the right-hand side of the last inequality gives the upper bound on var(α̂i)

in the theorem. This concludes the proof. �
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Proof of (S.11). We prove the following more general result. Let G be connected. Choose

V◦ ⊂ V with 0 < |V◦| < n, and let V# = V \ V◦. Let n◦ = |V◦| and n# = n − n◦. Relabel

the elements in V such that V◦ = {1, 2, . . . , n◦}. Let α̂◦ = (α̂1, . . . , α̂n◦)
′, L◦ be the upper

left n◦ × n◦ block of L, A◦# be the upper right n◦ × n# block of A, and D# be the lower

right n# × n# block of D. Then,

0 ≤
[
var(α̂◦)− σ2

(
L−1◦ −

ιn◦ι
′
n◦L

−1
◦ +L−1◦ ιn◦ι

′
n◦

n

)]
≤ σ2

λ2
L−1◦ (A◦#)D−1# (A◦#)′L−1◦

holds.

To show the result, define the n× n matrices

Lb :=

 L◦ 0

0 L#

 , Ab :=

 0 A◦#

(A◦#)′ 0

 ,

with obvious definition of L# such that L = Lb−Ab. Because the graph is connected the

pseudo-inverse L† satisfies L†L = In−n−1ιnι′n. Plugging L = Lb−Ab into this expression

we obtain

L† = L−1b

(
In +AbL

† − n−1 ιnι′n
)
.

Using the transposed of this last equation to replace L† = (L†)′ on the right-hand side of

that same equation we obtain

L† = L−1b +L−1b AbL
−1
b +L−1b AbL

†AbL
−1
b − n

−1L−1b ιnι
′
n − n−1L−1b Abιnι

′
nL
−1
b

= L−1b +L−1b AbL
−1
b +L−1b AbL

†AbL
−1
b − n

−1L−1b ιnι
′
n − n−1 ιnι′nL−1b ,

where in the last step we have used that L−1b Abιn = ιn, which follows from 0 = Lιn =

(Lb −Ab)ιn. Evaluating the last result for the upper left n◦ × n◦ block gives

(L†)◦ = L−1◦ +L−1◦ (A◦#)(L†)#(A◦#)′L−1◦ − n−1L−1◦ ιn◦ι′n◦ − n
−1 ιn◦ι

′
n◦L

−1
◦ ,

with obvious definition of (L†)#. We obtain the result searched for for var(α̂◦) = σ2(L†)◦

by also using 0 ≤ (L†)# ≤ λ−12 D
−1
# . This concludes the proof. �
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PROOF OF THEOREM S.4 (Consistency of Moment Estimates)

Because α̂i − αi ∼ N
(
0, σ2

(
L†
)
ii

)
there exists a constant ck > 0 that only depends on k

such that [
E

(
1

n

n∑
i=1

|α̂i − αi|k
)]2/k

= ck σ
2

(
1

n

n∑
i=1

(
L†
)k/2
ii

)2/k

≤ ck σ
2

(
1

n

n∑
i=1

(
1

λ2 di

)k/2)2/k

=
ck σ

2

λ2

(
1
n

∑n
i=1 d

−k/2
i

)−2/k → 0,

where we have applied Theorem 2 to bound
(
L†
)
ii

= σ−2var(α̂i), and in the last step we

used our assumption λ2

(
n−1

∑n
i=1 d

−k/2
i

)−2/k
→∞. Applying Markov’s inequality we thus

have

1

n

n∑
i=1

|α̂i − αi|k →p 0. (S.15)

By Taylor expanding α̂ki around αi, and then applying Hölder’s inequality we find∣∣∣∣∣ 1n
n∑
i=1

(
α̂ki − αki

)∣∣∣∣∣ =

∣∣∣∣∣
k∑
`=1

(
k

`

)
1

n

n∑
i=1

αk−`i (α̂i − αi)`
∣∣∣∣∣

≤
k∑
`=1

(
k

`

)(
1

n

n∑
i=1

|αi|k
)(k−`)/k(

1

n

n∑
i=1

|α̂i − αi|k
)`/k

→p 0,

where in the last step we used (S.15) and the assumption that 1
n

∑n
i=1 |αi|k is bounded

asymptotically. We have thus shown that 1
n

∑n
i=1 α̂

k
i →p

1
n

∑n
i=1 α

k
i . �

PROOF OF LEMMA S.5 (Bias and Variance of ϑ̂)

Using α̂ = α+L†B′u, E(u) = 0, E(uu′) = σ2Im, and B′B = L, we find for ϑ = n−1α′α

and ϑ̂ = n−1α̂′α̂ that

E(ϑ̂− ϑ) = n−1E(u′BL†L†B′u) = n−1tr[L†B′E(uu′)BL†] = σ2 n−1 tr(L†),

which is the bias result in the lemma. Next, define the mean zero error terms

ε1 = 2n−1α′L†B′u, ε2 = n−1
[
u′BL†L†B′u− E(u′BL†L†B′u)

]
.
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With those definitions we have ϑ̂ = E(ϑ̂) + ε1 + ε2. Because we assume u to be mean zero

and normality distributed we have E(ε1ε2) = 0, and therefore

var(ϑ̂) = Eε21 + Eε22.

We calculate

Eε21 = 4n−2α′L†B′E(uu′)BL†α = 4σ2 n−2α′L†α,

Eε22 = n−2var(u′BL†L†B′u) = 2 σ4 n−2 tr(BL†L†B′BL†L†B′) = 2σ4 n−2 tr(L†L†)︸ ︷︷ ︸
= ‖L†‖2

,

where in the last line we used that for u ∼ N(0, σ2 Im) we have for any symmetric m×m

matrix M that var(u′Mu) = 2σ4tr(M 2). We have thus also shown the variance result in

the lemma. �

PROOF OF THEOREM S.7 (Bounds on Variance of ϑ̂, Version 1)

Consider the spectral decomposition S =
∑n

i=2 λiṽiṽ
′
i, where ṽi are normalized eigenvec-

tors, in particular ṽ2 = v/‖v‖. We then have S† =
∑n

i=2 λ
−1
i ṽiṽ

′
i ≥ λ−12 ṽ2ṽ

′
2 = λ−12

vv′

v′v
.

Using this we find

n−1α′L†α = n−1α′D−1/2S†D−1/2α

≥ n−1α′D−1/2
(

1

λ2

vv′

v′v

)
D−1/2α

=
1

λ2

(v′D−1/2α)2

(v′v)(α′D−1α)︸ ︷︷ ︸
=κ2

α′D−1α

α′α︸ ︷︷ ︸
=h−1

α

α′α

n︸︷︷︸
=ϑ

=
κ2 ϑ

λ2 hα
.

This result together with ‖L†‖2 ≥ 0 and Lemma S.5 gives the lower bound in the theorem.

Regarding the upper bound we have

n−1α′L†α ≤ n−1λ−12 α′D−1α =
1

λ2

α′D−1α

α′α︸ ︷︷ ︸
=h−1

α

α′α

n︸︷︷︸
=ϑ

=
ϑ

λ2 hα
,

where we used L† ≤ λ−12 D
−1. This also implies

∥∥L†∥∥ ≤ λ−12 ‖D−1‖, and therefore

n−1‖L†‖2 ≤ λ−22 n−1
∥∥D−1∥∥2 = λ−22 n−1

n∑
i=1

d−2i = λ−22 h−2sqr,

Together with Lemma S.5 this gives the upper bound in the theorem. �
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PROOF OF THEOREM S.8 (Bounds on Variance of ϑ̂, Version 2)

Using (S.8) and (S.9) as well as L† ≤ λ−12 D
−1 and

∥∥L†∥∥ ≤ λ−12 ‖D−1‖ we find

‖L†‖2 = tr
(
L†L†

)
= tr

[(
D−1 +D−1AL† − n−1D−1ιnι′n

) (
D−1 +L†AD−1 − n−1 ιnι′nD−1

)]
= tr

(
D−2

)
+ tr

(
D−1A

(
L†
)2
AD−1

)
+ 2 tr

(
D−2AL†

)
−ι′nD−2ιn︸ ︷︷ ︸

≤0

≤
∥∥D−1∥∥2 + (λ2)

−2 tr
(
D−1AD−2AD−1

)︸ ︷︷ ︸
≤‖D−2A‖2

+ 2
∥∥L†∥∥︸ ︷︷ ︸
≤‖D

−1‖
λ2

∥∥D−2A∥∥
≤
(∥∥D−1∥∥+ λ−12

∥∥D−2A∥∥)2 .
We have n−1/2 ‖D−2A‖ =

(
n−1

∑n
i,j=1(A)ijd

−4
i

)1/2
=
(
n−1

∑n
i,j=1 d

−3
i

)1/2
= h

−3/2
cub and

n−1/2 ‖D−1‖ = (hsqr)
−1. Combining those results we find

0 ≤ n−1/2‖L†‖ ≤ (hsqr)
−1 + λ−12 h

−3/2
cub . (S.16)

Next, by iterating equation (S.10) k − 1 times, that is, plugging the expression for L†

in (S.10) back into the rhs of (S.10) itself, and using that α′ιn = 0, we obtain

α′L†α = α′

[
D−1

2k−1∑
`=0

(
AD−1

)`
+
(
D−1A

)k
L†
(
AD−1

)k]
α

Using 0 ≤ L† ≤ λ−12 D
−1 and the definition of α(`) we thus find that

0 ≤ α′L†α−
k−1∑
`=0

α(`) ′ (D−1 +D−1AD−1
)
α(`) ≤ λ−12 α

(k) ′D−1α(k)

From this and

α(`) ′D−1α(`)

n
=
α(`) ′D−1α(`)

α(`) ′α(`)︸ ︷︷ ︸
=1/h

(`)
α

α(`) ′α(`)

n︸ ︷︷ ︸
=ϑ(`)

,

α(`) ′D−1AD−1α(`)

n
=
α(`) ′D−1AD−1α(`)

α(`) ′D−1α(`)︸ ︷︷ ︸
= γ(`)

α(`) ′D−1α(`)

α(`) ′α(`)︸ ︷︷ ︸
=1/h

(`)
α

α(`) ′α(`)

n︸ ︷︷ ︸
=ϑ(`)

,

we find that the statement in display (S.6) holds. Combining Lemma S.5 with the bounds

in (S.6) and (S.16) gives the statement of the theorem. �
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