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SIMULTANEOUS MEAN-VARIANCE REGRESSION

RICHARD H. SPADY† AND SAMI STOULI§

Abstract. We propose simultaneous mean-variance regression for the linear esti-

mation and approximation of conditional mean functions. In the presence of het-

eroskedasticity of unknown form, our method accounts for varying dispersion in the

regression outcome across the support of conditioning variables by using weights

that are jointly determined with mean regression parameters. Simultaneity gener-

ates outcome predictions that are guaranteed to improve over ordinary least-squares

prediction error, with corresponding parameter standard errors that are automat-

ically valid. Under shape misspecification of the conditional mean and variance

functions, we establish existence and uniqueness of the resulting approximations

and characterize their formal interpretation. We illustrate our method with numer-

ical simulations and two empirical applications to the estimation of the relationship

between economic prosperity in 1500 and today, and demand for gasoline in the

United States.

Keywords: Conditional mean and variance functions, linear regression, simulta-

neous approximation, heteroskedasticity, robust inference, misspecification, influence

function, convexity, ordinary least-squares, dual regression.

1. Introduction

Ordinary least-squares (OLS) is the method of choice for the linear estimation and

approximation of the conditional mean function. However, in the presence of het-

eroskedasticity the standard errors of OLS are inconsistent, and subsequent inference

is therefore unreliable. As a way of achieving valid inference, practitioners instead

often use the heteroskedasticity-corrected standard errors of Eicker (1963, 1967), Hu-

ber (1967) and White (1980a). Although valid asymptotically, numerous limitations

Date: April 5, 2018. We are grateful to Richard Blundell, Joel Horowitz and Matthias Parey for
sharing the data used in the demand for gasoline empirical illustration.
† Nu�eld College, Oxford, and Department of Economics, Johns Hopkins University,
rspady@jhu.edu.
§ Department of Economics, University of Bristol, s.stouli@bristol.ac.uk.

1



of this approach have been highlighted in the literature such as bias and sensitiv-

ity to outliers, incorrect size and low power of robust tests in finite samples (White

and MacKinnon (1985), Chesher and Jewitt (1987), Chesher (1989), Chesher and

Austin (1991)). These findings in turn generated a large number of proposals in order

to reconcile the large-sample validity of the approach and its observed finite-sample

limitations, surveyed in MacKinnon (2013).

The finite-sample limitations of OLS-based inference essentially originate in the fact

that OLS assigns a constant weight to each observation in fitting the best linear pre-

dictor for the regression outcome. Hence the least-squares criterion does not account

for the varying accuracy of the information available about the outcome across the co-

variate space. This yields point estimates and linear approximations that are sensitive

to high-leverage points and outliers, which in turn generate biased estimates of the

residuals second moments used in the calculation of the robust variance-covariance

matrix of OLS parameters. In finite samples, uniform weighting not only compromises

the validity of OLS-based statistical inference in the presence of heteroskedasticity,

but also the reliability of OLS point estimates.

In this paper, we propose simultaneous mean-variance regression (MVR) as an al-

ternative to OLS for the linear estimation and approximation of conditional mean

functions. MVR characterizes the conditional mean and variance functions jointly,

thereby providing a solution to the problems of estimation, approximation and infer-

ence in the presence of heteroskedasticity of unknown form with four main features.

First, it incorporates information from the second conditional moment in the deter-

mination of the first conditional moment parameters. Second, simultaneity generates

outcome predictions which are guaranteed to improve over OLS prediction error under

heteroskedasticity. Third, the resulting approximations have a formal interpretation

under misspecification of the shapes of the conditional mean and variance functions.

Fourth, corresponding standard errors are automatically valid in the presence of het-

eroskedasticity of unknown form, and reduce to those of OLS under homoskedasticity.

The MVR criterion can be interpreted as a penalized weighted least-squares loss

function. The presence and the form of the penalty ensure global convexity of the

objective function, so that MVR conditional mean and variance approximations are

jointly well-defined. This di↵ers from the usual weighted least-squares approach where

a sequential procedure is followed, obtaining the weights first, and then implementing

a weighted regression to determine the parameters of the linear specification. Our
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simultaneous approach allows us to give theoretical guarantees on the relative ap-

proximation properties of MVR and OLS. We use MVR to construct and estimate

a new class of approximations of the conditional mean and variance functions, with

improved robustness and precision in finite samples. We establish the interpretation

of MVR approximations, we derive the asymptotic properties of the corresponding

MVR estimator, and we give tools for robust inference.

This paper generalizes the results of Spady and Stouli (2018) for the primal prob-

lem of the dual regression estimator of linear location-scale models. We provide a

unified theory allowing for a large class of scale functions. This paper is also related

to the interpretation of OLS under misspecification of the shape of the conditional

mean function. OLS gives the minimum mean squared error linear approximation

to the conditional mean function, an important motivation for its use in empirical

work (White (1980b), Chamberlain (1984), Angrist and Krueger (1999), Angrist and

Pischke (2008)). MVR introduces a class of weighted least-squares approximations

accounting for potential variation in the outcome across the support of conditioning

variables. Our approach thus complements the textbook weighted least-squares pro-

posal of Cameron and Trivedi (2005) and Wooldridge (2010, 2012) (see also Romano

and Wolf (2017)) who advocate the reweighting of OLS with generalized least-squares

weights and further correcting the standard errors for heteroskedasticity.

This paper makes three main contributions. First, we establish existence and unique-

ness of MVR solutions under general misspecification, thereby introducing a new

class of location-scale models corresponding to MVR approximations. The results in

Spady and Stouli (2018) did not cover the case of misspecified conditional mean and

variance functions. Second, we show that MVR is a minimum weighted least-squares

linear approximation to the conditional mean function, with weights determined such

that the MVR approximation improves over OLS in the presence of heteroskedasticity

under the MVR loss. For our main specifications of the scale function, we further

show that OLS root mean squared prediction error is an upper bound for the MVR

weighted mean squared prediction error. This property provides a theoretical guaran-

tee motivating the use of MVR over OLS, and is not shared by alternative weighted

least-squares proposals. Third, we derive the asymptotic distribution of our estima-

tor under misspecification and provide robust inference methods. In particular we

propose a test of heteroskedasticity that provides a one-step complement to existing

OLS-based tests (Breusch and Pagan (1978), White (1980a), Koenker (1983)).
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The rest of the paper is organized as follows. Section 2 introduces MVR under

correct specification of conditional mean and variance functions. Section 3 establishes

the main approximation properties of MVR under misspecification. Section 4 gives

asymptotic theory. Section 5 reports the results of two empirical applications to

the relationship between economic prosperity in 1500 and today, and to demand for

gasoline in the United States, and illustrates the finite-sample performance of MVR

with numerical simulations calibrated to the demand analysis example. All proofs of

the main results are given in the Appendix. The online Appendix Spady and Stouli

(2018) contains supplemental material.

2. Simultaneous Mean-Variance Regression

2.1. The Mean-Variance Regression Problem. Given a scalar random variable

Y and a random k ◊ 1 vector X that includes an intercept, i.e. has first compo-

nent 1, denote the mean and standard deviation functions of Y conditional on X by

µ(X) := E[Y | X] and ‡(X) := E[(Y ≠ E[Y | X])

2 | X]

1/2, respectively. We start

with a simplified setting where the conditional mean and variance functions take the

parametric forms

(2.1) µ(X) = X Õ—0, ‡(X)

2
= s(X Õ“0)

2,

for some positive scale function t ‘æ s(t), and where the parameters —0 and “0 belong

to the parameter space � = Rk◊�

“

, with �

“

= {“ œ Rk

: Pr[s(X Õ“) > 0] = 1}. Two
leading examples for the scale function are the linear and exponential specifications

s(t) = t and s(t) = exp(t), with domains (0, Œ) and R, respectively.

The parameter vector ◊0 := (—0, “0)
Õ is uniquely determined as the solution to the

globally convex MVR population problem

(2.2) min

◊œ�
E

S

U1

2

Y
]

[

A
Y ≠ X Õ—

s(X Õ“)

B2

+ 1

Z
^

\ s(X Õ“)

T

V .

When the functions x ‘æ µ(x) and x ‘æ ‡(x)

2 satisfy model (2.1), they are simul-

taneously characterized by problem (2.2). As a consequence, MVR incorporates in-

formation on the dispersion of Y across the support of X in the determination of

the mean parameter —. We show below that problem (2.2) is formally equivalent to

an infeasible sequential least-squares estimator of the conditional mean and variance

functions for model (2.1). Problem (2.2) is a generalization of the dual regression
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primal problem introduced in Spady and Stouli (2018), for which the scale function

is linear. Considering scale functions with domain the real line, such as the exponen-

tial function, allows the transformation of the dual regression primal problem into an

unconstrained convex problem over � = R2◊k.

Inspection of the first-order conditions confirms that ◊0 is indeed a valid solution to

problem (2.2). Denoting the derivative of the scale function by s1(t) := ˆs(t)/ˆt and

letting e (Y, X, ◊) := (Y ≠ X Õ—)/s(X Õ“), the first-order conditions of (2.2) are

E [Xe (Y, X, ◊)] = 0(2.3)

E
Ë
Xs1(X

Õ“){e (Y, X, ◊)

2 ≠ 1}
È

= 0.(2.4)

These conditions are satisfied by ◊0 since model (2.1) is equivalent to the location-scale

model

(2.5) Y = X Õ—0 + s(X Õ“0)Á, E[Á | X] = 0, E[Á2 | X] = 1.

Therefore, the parameter vector ◊0 also satisfies the relations

E [e(Y, X, ◊0) | X] = E [Á | X] = 0

E
Ë
e(Y, X, ◊0)

2 ≠ 1 | X
È

= E
Ë
Á2 ≠ 1 | X

È
= 0,

which imply that E[h(X)e(Y, X, ◊0)] = 0 and E[h(X){e(Y, X, ◊0)
2 ≠ 1}] = 0 hold for

any measurable function x ‘æ h(x), and in particular for h(X) = X and h(X) =

Xs1(X
Õ“).

2.2. Formal Framework. Let X denote the support of X, and for a vector u =

(u1, . . . , u
k

)

Õ œ Rk, let || · || denote the Euclidean norm, i.e. ||u|| = (u2
1 + . . . + u2

k

)

1/2;

we define a compact subset �

c µ � as

�

c

:=

;
◊ œ � : ||◊|| Æ C

◊

and inf

xœX
s(xÕ“) Ø C

s

<
,

for some finite constant C
◊

and some constant C
s

> 0, with interior set denoted

int(�c

). The second and third derivatives of the scale function t ‘æ s(t) are denoted

by s
j

(t) := ˆjs(t)/ˆtj, j = 2, 3. We also denote the MVR objective function in (2.2)

by Q(◊) := E[{e (Y, X, ◊)

2
+ 1}s(X Õ“)/2].

Our first assumption specifies the class of scale functions we consider.
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Assumption 1. For a = 0 or ≠Œ, the scale function s : (a, Œ) æ (0, Œ) is a three

times di↵erentiable strictly increasing convex function that satisfies lim

tæa

s(t) = 0

and lim

tæŒ s(t) = Œ.

Assumption 1 encompasses several types of scale functions such as polynomial speci-

fications s(xÕ“) = (xÕ“)

– with a = 0 and Pr[X Õ“ > 0] = 1, or exponential-polynomial

specifications s(xÕ“) = exp(xÕ“)

– with a = ≠Œ, for some – > 0. For – = 1, we

recover the linear and exponential scale leading cases.

The next assumptions complete our formal framework.

Assumption 2. The conditional variance function x ‘æ ‡(x)

2 is bounded away from

0 uniformly in X .

Assumption 3. We have (i) E[Y 2
] < Œ, E||X||4 < Œ and E[Y 2 ||X||2] < Œ,

and, (ii) for all “ œ �

“

, E[ÎXÎ5 s3(X
Õ“)] < Œ, E[ÎXÎ5 s1(X

Õ“)s2(X
Õ“)] < Œ,

E[Y 2||X||3s3(X
Õ“)] < Œ and E[Y 2||X||3s1(X

Õ“)s2(X
Õ“)] < Œ.

Assumption 4. For all “ œ �

“

, E[XX Õ/s(X Õ“)] is nonsingular.

Assumptions 1-4 are su�cient conditions for global convexity of the MVR criterion

over the parameter space �, and therefore for problem (2.2) to have a unique solution.

Theorem 1. If Assumptions 1-4 hold, and the conditional mean and variance func-

tions of Y given X satisfy model (2.1) a.s. with ◊0 œ int(�c

), then ◊0 is the unique

minimizer of Q(◊) over �.

Theorem 1 applies when the conditional mean and variance functions are well-specified,

and thus provides primitive conditions for identification of ◊0 in the location-scale

model (2.5). Theorem 1 extends the uniqueness result in Spady and Stouli (2018) for

location-scale models with linear scale functions to the class of scale functions defined

in Assumption 1.

Remark 1. In the linear scale case, s1(t) = 1 and s
j

(t) = 0, j = 2, 3, so that Assump-

tion 3 reduces to Assumption 3(i). In the exponential scale case, s
j

(t) = exp(t), j =

1, 2, 3, so that Assumption 3(ii) reduces to the requirement that E[ÎXÎ5
exp(X Õ“)

2
]

and E [Y 2||X||3 exp(X Õ“)

2
] be finite.
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2.3. Simultaneous Mean-Variance Regression Interpretation. Problem (2.2)

is equivalent to an infeasible sequential least-squares estimator of conditional mean

and variance functions. The first-order conditions of (2.2) can also be written as

E

C
X

s(X Õ“)

(Y ≠ X Õ—)

D

= 0(2.6)

E

C

X
s1(X

Õ“)

s(X Õ“)

2

Ó
(Y ≠ X Õ—)

2 ≠ s(X Õ“)

2
ÔD

= 0.(2.7)

Given knowledge of “0, weighted least-squares regression of Y on X with weights

1/s(X Õ“0) has first-order conditions (2.6), with solution —0. Moreover, given knowl-

edge of —0, nonlinear weighted least-squares regression of (Y ≠ X Õ—0)
2 on X with

weights 1/s(X Õ“0)
3 and quadratic link function has first-order conditions (2.7), and

therefore solution “0.

Proposition 1. If Assumptions 1-4 hold, and (i) E[Y 4
] < Œ, E[Y 2s(X Õ“)

2
] < Œ,

E[ÎXÎ2 s(X Õ“)

2
] < Œ and E[s(X Õ“)

4
] < Œ for all “ œ �

“

, and (ii) the conditional

mean and variance functions of Y given X satisfy model (2.1) a.s., then the MVR

population problem (2.2) is equivalent to the infeasible sequential estimator with first

step

(2.8) —0 = arg min

—œ�—

E

C
1

‡(X)

(Y ≠ X Õ—)

2
D

,

and second step

(2.9) “0 = arg min

“œ�“

E

C
1

‡(X)

3

Ó
(Y ≠ X Õ—0)

2 ≠ s(X Õ“)

2
Ô2

D

.

An immediate implication of the Law of Iterated Expectations and Proposition 1 is

that MVR implements simultaneous weighted linear regression of µ(X) on X and

weighted nonlinear regression of ‡(X)

2 on X by solving for — and “ such that the

weighted residuals (µ(X)≠X Õ—)/s(X Õ“) and {‡(X)

2 ≠s(X Õ“)

2}/s(X Õ“)

2 are simulta-

neously orthogonal to X and Xs1(X
Õ“), respectively. Proposition 1 therefore formally

establishes the simultaneous mean and variance regression interpretation of the pop-

ulation problem (2.2).

3. Approximation properties of MVR under misspecification

Under misspecification, OLS provides the minimum mean squared error linear approx-

imation to the conditional mean function. For the proposed MVR criterion, existence
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of an approximating solution and the nature of the approximation are nontrivial when

the shapes of the conditional mean and variance functions are misspecified. In this

section, we first establish existence and uniqueness of a solution to the MVR problem

under misspecification, and then characterize the interpretation of the corresponding

MVR approximations.

3.1. Existence and Uniqueness of an MVR Solution. Assumptions 1-4 are suf-

ficient for characterizing the smoothness properties, shape, and behaviour on the

boundaries of the parameter space of the MVR criterion Q(◊). Under these assump-

tions ◊ ‘æ Q(◊) is continuous and its level sets are compact. Compactness of the level

sets is a su�cient condition for existence of a minimizer in �, and is a consequence of

the explosive behaviour of the objective function at the boundaries of the parameter

space. The MVR objective Q(◊) is a coercive function over the open set �, i.e. it

satisfies

lim

||◊||æŒ
Q(◊) = Œ, lim

◊æˆ�
Q(◊) = Œ,

where ˆ� is the boundary set of �. Thus the MVR criterion is infinity at infinity,

and for any sequence of parameter values in � approaching the boundary set ˆ�, the

value of the objective is also driven towards infinity. Therefore, the level sets of the

objective function have no limit point on their boundary, ruling out existence of a

boundary solution, and continuity of ◊ ‘æ Q(◊) is then su�cient to conclude that it

admits a minimizer. Continuity and coercivity of the objective function are the two

properties that guarantee existence of at least one minimizer in �.1 Assumptions 1-4

are also su�cient for ◊ ‘æ Q(◊) to be strictly convex, and therefore further ensure

that Q(◊) admits at most one minimizer in �.

Theorem 2. If Assumptions 1-4 hold, then there exists a unique solution ◊ú œ � to

the MVR population problem (2.2).

Theorem 2 is the second main result of the paper. It establishes that the MVR

problem (2.2) has a well-defined solution, and an immediate corollary is the existence

and uniqueness of the MVR location-scale representation

Y = X Õ—ú
+ s(X Õ“ú

)e, E[Xe] = 0, E[Xs1(X
Õ“ú

)(e2 ≠ 1)] = 0.

1The boundary set of � may be empty, for instance for the exponential scale specification. In that
case the coercivity property reduces to lim||◊||æŒ Q(◊) = Œ.

8



This result clarifies further how MVR generalizes OLS by establishing the existence

and the form of the MVR location-scale model when no shape restrictions are im-

posed on the conditional mean and variance functions. The OLS location model is a

particular case with the scale function restricted to be a constant function.

Although a unique MVR approximation exists irrespective of the nature of the

misspecification, the interpretation of the MVR approximating functions x ‘æ
(xÕ—ú, s(xÕ“ú

)

2
) depends on which of the conditional moment functions is misspec-

ified. We distinguish two types of shape misspecification:

(1) Mean misspecification: the conditional mean function x ‘æ µ(x) is misspeci-

fied.

(2) Variance misspecification: only the conditional variance function x ‘æ ‡(x)

2

is misspecified.

The case when both the conditional mean and variance functions are misspecified is

a particular case of mean misspecification.

3.2. Interpretation Under Mean Misspecification. The location-scale represen-

tation

(3.1) Y = µ(X) + ‡(X)Á, E[Á | X] = 0, E[Á2 | X] = 1,

provides a general expression for Y in terms of its conditional mean and standard de-

viation functions, and is always valid, as long as first and second conditional moments

exist. Substituting expression (3.1) for Y into the MVR objective function Q(◊) gives

rise to a criterion for the joint approximation of x ‘æ (µ(x), ‡(x)

2
).

The criterion Q(◊) can also be appropriately restricted in order to define the cor-

responding OLS approximations. Letting �

“,LS = {“ œ R : s(“) > 0}, define

�LS = Rk ◊ �

“,LS. Upon setting s(X Õ“) = s(“) in the MVR problem (2.2),

(—LS, “LS) := arg min

(—,“)œ�LS

E

S

U1

2

Y
]

[

A
Y ≠ X Õ—

s(“)

B2

+ 1

Z
^

\ s(“)

T

V

is a particular case of MVR. Since the OLS solution ◊LS := (—LS, “LS, 0

k≠1)
Õ belongs

to the parameter space �, uniqueness of ◊ú implies that the OLS approximation of

the conditional moment functions x ‘æ (µ(x), ‡(x)

2
) cannot improve upon the MVR

approximation, according to the MVR loss.
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Theorem 3. If Assumptions 1-4 hold, then the MVR population problem (2.2) has

the following properties.

(i) Problem (2.2) is equivalent to the infeasible problem

min

◊œ�

1

2

E

S

U

Y
]

[

A
µ(X) ≠ X Õ—

s(X Õ“)

B2

+ 1

Z
^

\ s(X Õ“)

T

V
+

1

2

E

C
‡(X)

2

s(X Õ“)

D

,(3.2)

with first-order conditions

E

C

X

A
µ(X) ≠ X Õ—

s(X Õ“)

BD

= 0(3.3)

E

S

UXs1(X
Õ“)

Y
]

[

A
µ(X) ≠ X Õ—

s(X Õ“)

B2

+

A
‡(X)

2

s(X Õ“)

2 ≠ 1

BZ
^

\

T

V
= 0.(3.4)

(ii) The optimal value of problem (2.2) satisfies Q(◊ú
) Æ Q(◊LS), with equality if and

only if ◊ú
= ◊LS.

Theorem 3(i) shows that under misspecification the function x ‘æ xÕ—ú is an infeasible

MVR approximation of the true conditional mean function penalized by the mean

ratio of the true variance over its standard deviation approximation. An equivalent

formulation is

(3.5) min

◊œ�

1

2

E

C
1

s(X Õ“)

(µ(X) ≠ X Õ—)

2
D

+

1

2

E

CI
‡(X)

2

s(X Õ“)

2 + 1

J

s(X Õ“)

D

,

the penalized weighted least-squares interpretation of the MVR problem (3.2).

The penalty term in (3.5) is a functional of a weighted mean variance ratio of the

true variance over its approximation. The first-order conditions (3.3) and (3.4) shed

additional light on how the weights are determined as well as on the form of the

penalty, by characterizing the optimality properties of MVR approximations. Be-

cause X includes an intercept, when both functions x ‘æ µ(x) and x ‘æ ‡(x)

2 are

misspecified, —ú and “ú are chosen such that the sum of the weighted mean squared

error for the conditional mean and the mean variance ratio error is zero, balancing

the two approximation errors. When the scale function is linear the two types of

approximation error are equalized. For the exponential specification, the two types of

approximation error weighted by exp(X Õ“) are equalized. The MVR solution is thus

determined by minimizing the weighted mean squared error for the conditional mean,

while simultaneously setting the weighted mean variance ratio as close as possible to

one.
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Theorem 3(ii) formalizes the approximation guarantee of MVR. For the linear and ex-

ponential scale function specifications, the improvement of the MVR solution relative

to the OLS solution in MVR loss further guarantees that optimal weights are selected

such that the weighted mean squared MVR prediction error for Y is not larger than

the root mean squared OLS prediction error.

Corollary 1. If the scale function t ‘æ s(t) is specified as s(t) = t or s(t) = exp(t),

then

E

C
1

s(X Õ“ú
)

(Y ≠ X Õ—ú
)

2
D

Æ E
Ë
(Y ≠ X Õ—LS)

2
È 1

2 ,

with equality if and only if ◊ú
= ◊LS.

This upper bound is a key result which provides a theoretical justification for the

favorable finite-sample properties displayed by MVR in the numerical simulations of

Section 5 and the Supplementary Material.

3.3. Interpretation Under Variance Misspecification. If the conditional mean

function is linear, Theorem 2 has important implications for the robustness and opti-

mality properties of MVR solutions. The k orthogonality conditions (3.4) are su�cient

to determine the scale parameter “ú since condition (3.3) is then uniquely satisfied by

— = —0. Thus in the classical particular case of the linear conditional mean model, the

MVR solution for — is fully robust to misspecification of the scale function. Conse-

quently, when the conditional mean function is correctly specified the OLS and MVR

solutions for — coincide. In the special case of linear scale specification, Xs1(X
Õ“)

reduces to X. Because X includes an intercept, the scale parameter “ú is then chosen

such that the MVR conditional variance approximation also satisfies the remarkable

property of zero mean variance ratio error.

Corollary 2. If Assumptions 1-4 hold and µ(X) = X Õ—0 a.s., then —ú
= —0 and “ú

is solely determined by the k orthogonality conditions

E

C

Xs1(X
Õ“)

I
‡(X)

2

s(X Õ“)

2 ≠ 1

JD

= 0.

In particular, for the linear specification s(t) = t, the conditional variance approximat-

ing function x ‘æ (xÕ“ú
)

2 satisfies the optimality property E[{‡(X)

2/(X Õ“ú
)

2}≠1] = 0.
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In the presence of heteroskedasticity, MVR optimality properties under correct mean

specification translate into improved finite-sample properties. In view of its interpre-

tation and since it always admits a well-defined minimizer, the MVR criterion thus

o↵ers a natural generalization of OLS for the estimation of linear models.

3.4. Connection with Gaussian Maximum Likelihood. MVR provides one cri-

terion for the simultaneous approximation of conditional mean and variance functions.

A related criterion is the Kullback-Leibler measure of divergence of the scaled Gauss-

ian density

f
◊

(Y, X) :=

1

(2fi)

1
2 s(X Õ“)

exp

3
≠1

2

e (Y, X, ◊)

2
4

,

from the true conditional density function of Y given X, which is minimized at a

maximum likelihood pseudo-true value. Define for ◊ œ �,

(3.6) L (◊) := ≠E [log f
◊

(Y, X)] =

1

2

log (2fi) + E
5
log s(X Õ“) +

1

2

e (Y, X, ◊)

2
6

,

with first-order conditions

E

C
X

s(X Õ“)

e (Y, X, ◊)

D

= 0(3.7)

E

C

X
s1(X

Õ“)

s(X Õ“)

Ó
e (Y, X, ◊)

2 ≠ 1

ÔD

= 0.(3.8)

In general the MVR solution ◊ú need not satisfy equations (3.7)-(3.8), and therefore

cannot be interpreted as a maximum likelihood pseudo-true value. Compared with

the MVR criterion, an important limitation of criterion (3.6) is its lack of convexity.

The second-order derivative of (3.6) with respect to the first component “1 of “, i.e.

for fixed —, “≠1, is

ˆ2L (◊)

ˆ“2
1

= E

C
1

s(X Õ“)

2

Ó
3e(Y, X, ◊)

2 ≠ 1

ÔD

,

which is strictly negative for all ◊ œ � such that e (Y, X, ◊)

2 Æ 1/3 a.s. The non

convexity of (3.6) in “1 (for any fixed —,“≠1) implies that L (◊) is not jointly convex2,

and that a maximum likelihood pseudo-true value might not exist; even if there

exists one, it need not be unique. In contrast, the MVR solution is well-defined, and

constitutes a convex alternative to maximum likelihood approximation of conditional

mean and variance functions.

2Owen (2007) also noted the lack of joint convexity of the negative Gaussian log-likelihood when the
scale function is specified to a constant, i.e. for the case s(X Õ“) = ‡ œ (0, Œ) in (3.6).
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4. Estimation and Inference

We use the sample analog of the MVR population problem (2.2) for estimation of its

solution ◊ú in finite samples. We establish existence, uniqueness and consistency of

the MVR estimator. We also derive its asymptotic distribution allowing for misspeci-

fication of the shapes of the conditional mean and variance functions, and discuss the

robustness properties of its influence function. Finally, we provide corresponding tools

for robust inference and introduce a one-step MVR-based test for heteroskedasticity.

We assume that we observe a sample of n independent and identically distributed

realizations {(y
i

, x
i

)}n

i=1 of the random vector (Y, X). We denote the n ◊ k matrix

of explanatory variables values by X
n

. We define �

n

= Rk ◊ �

“,n

, with �

“,n

=

{“ œ Rk

: s(xÕ
i

“) > 0, i = 1, . . . , n}, the sample analog of the parameter space �.

For “ œ �

“,n

, we let �

n

(“) = diag(s(xÕ
i

“)), an n ◊ n diagonal matrix with diagonal

elements s(xÕ
1“), . . . , s(xÕ

n

“). We also define the MVR moment functions

m1(yi

, x
i

, ◊) := x
i

e(y
i

, x
i

, ◊), m2(yi

, x
i

, ◊) :=

1

2

x
i

s1(x
Õ
i

“){e(y
i

, x
i

, ◊)

2 ≠ 1},

and the corresponding vector m(y
i

, x
i

, ◊) := (m1(yi

, x
i

, ◊), m2(yi

, x
i

, ◊))

Õ.

4.1. The MVR Estimator. The solution to the finite-sample analog of problem

(2.2) is the MVR estimator

(4.1) ˆ◊ := arg min

◊œ�n

1

n

nÿ

i=1

1

2

Y
]

[

A
y

i

≠ xÕ
i

—

s(xÕ
i

“)

B2

+ 1

Z
^

\ s(xÕ
i

“).

For a = 0 in Assumption 1, the sample objective in (4.1) is minimized subject to the

n inequality constraints s(xÕ
i

“) > 0, i = 1, . . . , n. For a = ≠Œ, the parameter space

simplifies to �

n

= R2◊k and problem (4.1) is unconstrained. In terms of implemen-

tation, this constitutes an attractive feature of the exponential scale specification.

We derive the asymptotic properties of ˆ◊ under the following assumptions stated for

a scale function in the class defined by Assumption 1.

Assumption 5. (i) {(y
i

, x
i

)}n

i=1 are identically and independently distributed, and

(ii) for all “ œ �

“,n

, the matrix X Õ
n

�

≠1
n

(“)X
n

is finite and positive definite.

Assumption 6. We have E[ÎXÎ4
] < Œ, E[Y 2 ÎXÎ2

] < Œ and, for all “ œ �

“

,

E[Y 4 ÎXÎ2 s1(X
Õ“)

2
] < Œ and E[ÎXÎ6 s1(X

Õ“)

2
] < Œ.

13



Assumption 6 is needed for asymptotic normality of estimates of ◊ú. When the scale

function t ‘æ s(t) is specified to be linear, this assumption simplifies to the requirement

that E[Y 4 ÎXÎ2
] and E[ÎXÎ6

] be finite, as in Spady and Stouli (2018).

Letting e = e(Y, X, ◊ú
), the variance-covariance matrix of the MVR estimator ˆ◊ is

G≠1SG≠1/n, where

G :=

S

U G11 G12

G21 G22

T

V
:= E

S

U
XX

Õ

s(XÕ
“

ú)
XX

Õ

s(XÕ
“

ú)s1(X
Õ“ú

)e
XX

Õ

s(XÕ
“

ú)s1(X
Õ“ú

)e XX Õ
Ó

(s1(XÕ
“

ú)e)2

s(XÕ
“

ú) ≠ 1
2s2(X

Õ“ú
)(e2 ≠ 1)

Ô

T

V

and

S :=

S

U S11 S12

S21 S22

T

V
:= E

S

U XX Õe2 1
2XX Õs1(X

Õ“ú
)e(e2 ≠ 1)

1
2XX Õs1(X

Õ“ú
)e(e2 ≠ 1)

1
4XX Õ{s1(X

Õ“ú
)(e2 ≠ 1)}2

T

V .

The exact form of each component of matrices G and S depends on the specification

of the conditional mean and variance functions, and simplifications of the variance-

covariance matrix occur according to the type of misspecification. Under mean mis-

specification, the form of the variance-covariance matrix of the MVR estimator is not

a↵ected by the specification of the conditional variance function.

Define estimates of G and S by ˆG := n≠1 q
n

i=1 ˆm(y
i

, x
i

, ˆ◊)/ˆ◊ and ˆS :=

n≠1 q
n

i=1 m(y
i

, x
i

, ˆ◊)m(y
i

, x
i

, ˆ◊)

Õ, respectively. The next theorem states the asymp-

totic properties of the MVR estimator.

Theorem 4. If Assumptions 1-6 hold, then (i) there exists ˆ◊ in � with probability

approaching one; (ii) ˆ◊ æp ◊ú; and (iii)

(4.2) n1/2
(

ˆ◊ ≠ ◊ú
) æ

d

N (0, G≠1SG≠1
).

If µ(X) = X Õ—ú a.s., then the following simplifications occur

(4.3) G12 = G21 = 0

k◊k

, S12 = S21 =

1

2

E[XX Õs1(X
Õ“ú

)e3
].

If µ(X) = X Õ—ú a.s. and ‡(X)

2
= s(X Õ“ú

)

2 a.s., then the following additional sim-

plifications occur

(4.4)

G22 = E

C
XX Õ

s(X Õ“ú
)

s1(X
Õ“ú

)

D

, S11 = E[XX Õ
], S22 =

1

4

E[XX Õs1(X
Õ“ú

)

2
(e4 ≠ 1)].

Moreover, ˆG≠1
ˆS ˆG≠1 æp G≠1SG≠1.
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Theorem 4 allows the construction of confidence intervals and the implementation of

hypothesis tests for ◊ under each type of model specification using standard errors

constructed from the corresponding variance-covariance matrix. The various forms

of the variance-covariance matrix in Theorem 4 provide a basis for the construction

of a range of specification tests, similarly to the information matrix equality test in

maximum likelihood theory (White (1982), Chesher and Spady (1991)). Inference

using the general asymptotic variance formula in (4.2) will automatically be robust

to all forms of misspecification, and therefore to the presence of heteroskedasticity of

unknown form.

An important implication of Theorem 4 is that the influence function of the MVR

estimator for — is proportional to both moment functions m1 and m2:

IF
—

(y, x, ◊) = ≠(G11 ≠ G12G
≠1
22 G21)

≠1
[m1(y, x, ◊) ≠ G12G

≠1
22 m2(y, x, ◊)].

The quadratic term m2 dominates and an influential observation is defined as having

(y
i

≠ xÕ
i

—)

2 large enough for e(y
i

, x
i

, ◊)

2 to be large. Observations that are influential

for — are observations that are influential relative to the dispersion of Y , accounting

for mean misspecification.

When the conditional mean function is well-specified, the variance-covariance matrix

takes the form

G≠1SG≠1
=

S

U G≠1
11 S11G

≠1
11 G≠1

11 S12G
≠1
22

G≠1
22 S21G

≠1
11 G≠1

22 S22G
≠1
22

T

V .

The influence function of — is thus proportional to m1 only, and the influence function

of “ is proportional to m2 only, since the o↵-diagonal blocks of G are then 0

k◊k

. For the

mean parameter —, an observation (y
i

, x
i

) with large influence will be such that y
i

is

large enough for the standardized residual e(y
i

, x
i

, ◊) to be large. Because ˆ— and “̂ are

determined simultaneously, the influence of outliers on the mean parameter is limited

by the restriction that the sample first and second moments of e(y
i

, x
i

, ◊) must remain

equal to zero and one, respectively. In sharp contrast with OLS, the scale parameter

will simultaneously compensate an increase in Y dispersion so as to keep the variance

of e(y
i

, x
i

, ◊) constant. Therefore, the MVR influence function although unbounded

for a fixed value of “, robustifies OLS through the simultaneous reweighting of the

residuals, downweighting regions in the covariate space where the information on Y

is imprecise, as measured by s(xÕ“), in the calculation of the regression fit.
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In summary, the MVR estimator does not robustify OLS through the bounding of

the influence function (Koenker (2005)), but by incorporating information about the

dispersion of Y across the covariate space in the definition of an influential outlier.

Remark 2. (Linear homoskedastic model.) For the model Y = X Õ—0 + U with

E[U |X] = 0 and Var(U |X) = ‡2
0, the MVR and OLS variance-covariance matrices

coincide asymptotically, and MVR is e�cient. Our numerical simulations in Section

5 and the Supplementary Material illustrate that there is close to no finite-sample

loss in estimating linear homoskedastic models using MVR instead of OLS.

Remark 3. (Generalized least-squares and weighted MVR.) If both the conditional

mean and variance functions are correctly specified, then generalized least-squares

with weights 1/‡2
(x) is an e�cient estimator for —. Letting ˇY := Y/s(X Õ“ú

), ˇX :=

X/s(X Õ“ú
) and š(X Õ“) := s(X Õ“)/s(X Õ“ú

), define the weighted MVR objective

QWMVR
(◊) := E

S

U1

2

Y
]

[

A
ˇY ≠ ˇX Õ—

š(X Õ“)

B2

+ 1

Z
^

\ š(X Õ“)

T

V
= E

C
1

2

Ó
e (Y, X, ◊)

2
+ 1

Ô s(X Õ“)

s(X Õ“ú
)

D

.

If ‡2
(X) = s(X Õ“0)

2, then “ú
= “0 and QWMVR

(◊) has first-order conditions for —

ˆQWMVR
(◊)

ˆ—
= ≠E

C
X

s(X Õ“0)
e (Y, X, ◊)

D

= 0,

which are satisfied by ◊ = ◊0 and coincide with the generalized least-squares (and max-

imum likelihood) first-order conditions for — at a solution. In general, the functional

form of the conditional variance function is unknown, and the MVR and weighted

MVR solutions will di↵er.

Remark 4. (Implementation.) Under our assumptions, the MVR objective is globally

convex in ◊, and therefore in — for any “ œ �

“,n

. This implies that for any “ œ �

“,n

there exists a unique corresponding minimizer ˆ—(“). This observation forms the basis

of our implementation, and letting y = (y1, . . . , y
n

)

Õ, we first obtain “̂ by solving

min

“œRk

1

n

nÿ

i=1

1

2

Y
_]

_[

Q

ay
i

≠ xÕ
i

ˆ—(“)

s(xÕ
i

“)

R

b
2

+ 1

Z
_̂

_\
s(xÕ

i

“), ˆ—(“) := [X Õ
n

œ≠1
n

(“)X
n

]

≠1X Õ
n

œ≠1
n

(“)y,

s.t. s(xÕ
i

“) > 0, i = 1, . . . , n, if s(t) Æ 0 for some t œ R.

Concentrating out — for each “ provides a convenient implementation of the MVR

estimator “̂, with the final estimate for — defined as ˆ— :=

ˆ—(“̂).
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4.2. Inference. Given the MVR estimator ˆ◊ = (

ˆ—, “̂)

Õ, inference is performed based

on the estimated asymptotic variance-covariance matrix ˆV :=

ˆG≠1
ˆS ˆG≠1, which can

be partitioned into 4 blocks

ˆV =

S

U
ˆV11 ˆV12
ˆV21 ˆV22

T

V .

The specific form of ˆV depends on the specification assumptions made on the condi-

tional mean and variance functions. For ˆ—
j

and “̂
j

the jth components of ˆ— and “̂,

respectively, MVR standard errors are obtained as

s.e.( ˆ—
j

) :=

3
1

n

Ë
ˆV11

È

j,j

4 1
2

, s.e.(“̂
j

) :=

3
1

n

Ë
ˆV22

È

j,j

4 1
2

,

with resulting two-sided confidence intervals with nominal level 1 ≠ –,

ˆ—
j

± �

≠1
(1 ≠ –/2) ◊ s.e.( ˆ—

j

), “̂
j

± �

≠1
(1 ≠ –/2) ◊ s.e.(“̂

j

),

where �

≠1
(1 ≠ –/2) denotes the 1 ≠ –/2 quantile of the Gaussian distribution. A

significance test of the null —
j

= 0 and “
j

= 0 can then be performed using the test

statistics ˆ—
j

/s.e.( ˆ—
j

) and “̂
j

/s.e.(“̂
j

).

Simultaneous significance testing or hypothesis tests on linear combination of multiple

parameters can be implemented via a Wald test. For h Æ 2 ◊ k, letting R be an

h ◊ (2 ◊ k) matrix of constants of full rank h and r be an h ◊ 1 vector of constants,

define

H0 : R◊ú ≠ r = 0, H1 : R◊ú ≠ r ”= 0,

the null and alternative hypotheses for a two-sided tests of linear restrictions on the

location-scale model Y = X Õ—ú
+ s(X Õ“ú

)e. It follows from asymptotic normality of
ˆ◊ in (4.2) that the corresponding MVR Wald statistic WMVR satisfies

WMVR := (Rˆ◊ ≠ r)

Õ
[R(

ˆV /n)RÕ
]

≠1
(Rˆ◊ ≠ r) ≥ ‰2

(h),

under the null H0.

The Wald statistic WMVR can be specialized to formulate a one-step robust MVR-

based test for heteroskedasticity. Letting

h = k ≠ 1, R =

Ë
0

k≠1,k+1 I
k≠1

È
, r = 0

k≠1,

the statistic WMVR provides a robust test of the null hypothesis H0 : “ú
2 = . . . = “ú

k

=

0.
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Remark 5. When the conditional mean function is linear, robust MVR inference on
ˆ— uses the closed-form variance formula

‰Var( ˆ—) = n≠1
(X Õ

n

�

≠1
n

(“̂)X
n

)

≠1
(X Õ

n

ˆŒ
e

X
n

)(X Õ
n

�

≠1
n

(“̂)X
n

)

≠1,

where ˆŒ
e

= diag(ê2
i

).

5. Numerical Illustrations

All computational procedures can be implemented in the software R (R Development

Core Team, 2017) using open source software packages for nonlinear optimization

such as Nlopt, and its R interface Nloptr (Ypma et al., 2017).

5.1. Empirical Applications.

5.1.1. Reversal of fortune. We apply our methods to the study of the e↵ect of Eu-

ropean colonialism on today’s relative wealth of former colonies, as in Acemoglu,

Johnson and Robinson (2002). They show that former colonies that were relatively

rich in 1500 are now relatively poor, and provide ample empirical evidence of this

reversal of fortune. In particular, they study the relationship between urbanization

in 1500 and GDP per capita in 1995 (PPP basis), using OLS regression analysis. The

sample size ranges from 17 to 41 former colonies, allowing the illustration of MVR

properties in small samples.

We take the outcome Y to be log GDP per capita in 1995 and in the baseline spec-

ification X includes an intercept and a measure of urbanization in 1500, a proxy for

economic development. We implement MVR with both linear (¸-MVR) and exponen-

tial (e-MVR) scale functions, and we report two types of standard errors: robust to

mean misspecification (MVR1) and to variance misspecification (MVR2), imposing

the simplifications in (4.3). We also report OLS estimates, with naive (OLS) and

heteroskedasticity-robust standard errors (HC3)3.

Table 1 reports our results for urbanization in the baseline specification across 5

di↵erent sets of countries, and for 4 additional specifications4 including continent

3We implement the approximate jackknife estimator of MacKinnon and White (1985) for the robust
variance-covariance matrix, as suggested for small samples by Long and Ervin (2000), for instance.
4We exclude two specifications of Table III in Acemoglu, Johnson and Robinson (2002) for which
not all types of OLS and MVR standard errors are well-defined.
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dummies, and controlling for latitude, colonial origin and religion5. A striking feature

of the results displayed in Table 1 is the robustness to scale specification of MVR point

estimates and standard errors. They are nearly identical across all specifications,

except for Panel (3). Moreover, MVR point estimates are all smaller in magnitude,

suggesting a negative bias of OLS away from zero while standard errors are of similar

magnitude, making it more likely to find a significant relationship with OLS estimates

in this empirical application.

Specifically, we find that MVR provides supporting evidence of a significant statistical

relationship between urbanization in 1500 and GDP per capita in 1995 in the whole

sample, but also dropping North Africa, including continent dummies, and controlling

for latitude and for colonial origin. However, when the Americas are dropped (Panel

(3)), significance of the MVR estimates relies on assuming linearity of the conditional

mean function, and the change in coe�cients is much less pronounced for MVR es-

timates. We also find that the relationship between urbanization in 1500 and GDP

per capita in 1995 is not statistically significant in the three remaining specifications.

When only former colonies from the Americas are considered (Panel (4)), the OLS 7

percent significance level rises to above 13 percent for MVR estimates. Specification

(6) drops observations for neo-Europes (United States, Canada, New Zealand, and

Australia), and MVR estimates are significant at the 7 percent level under the as-

sumption of a linear conditional mean (MVR2), but only at the 12 (¸-MVR) and 10

(e-MVR) percent significance level otherwise (MVR1). When controlling for religion

(Panel (9)), MVR estimates are also not significant with significance levels ranging

from above 9 to 17 percent, against 6 percent for OLS.

MVR results thus provide renewed empirical support for a subset of the specifications,

but overall show that the mean relationship in this empirical application is weaker

and less robust than first suggested by the OLS-based analysis.

5.1.2. Demand for gasoline. To illustrate our methods in a large sample, we consider a

second empirical application to the parametric approximation of demand for gasoline

in the United States. We use the same data set as in Blundell, Horowitz and Parey

(2012), which comes from the 2001 National Household Travel Survey, conducted

between March 2001 and May 20026. Blundell, Horowitz and Parey (2012) perform

5See Acemoglu, Johnson and Robinson (2002) for a detailed description of the data.
6See Blundell, Horowitz and Parey (2012) and ONRL (2004) for a detailed description of the data.
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both parametric and nonparametric estimation of the average demand function, and

provide evidence of nonlinearities. The data set for their main specifications is large,

with a sample of 5254 individual households, and contains household level variables,

including gasoline price and consumption, and demographic characteristics. We use

these features of the data set to compare the approximation properties of MVR and

OLS, to implement our inference methods under misspecification and to calibrate our

numerical simulations.

We consider an MVR location-scale approximation for the demand for gasoline func-

tion

Y = —0 + X1—1 + X2—2 + X Õ
3—3 + s(“0 + X1“1 + X2“2 + X Õ

3“3)e,

where e satisfies the orthogonality conditions E[Xe] = 0 and E[Xs1(X
Õ“)(e2≠1)] = 0,

with X = (1, X1, X2, X Õ
3)

Õ and “ = (“0, “1, “2, “Õ
3)

Õ. We take the outcome Y to be log

gasoline annual consumption in gallons, X1 is log average price in dollars per gallon in

county of residence, and X2 is log income in dollars with each household assigned to

1 of 18 income groups. Following Blundell, Horowitz and Parey (2012), the baseline

specification only includes log price and log income, and further covariates are added

in other specifications. The vector of additional controls X3 includes the log of age of

household respondent, household size, number of drivers and workers in the household,

as well as a dummy for public transport availability, 4 urbanity dummies, 8 population

density dummies and 9 regional dummies.

Table 2 reports estimates and standard errors for the average price and income elastic-

ities obtained by OLS, ¸-MVR and e-MVR across the 5 linear specifications considered

in Blundell, Horowitz and Parey (2012). We find that MVR estimates and standard

errors are robust to scale specification for both price and income elasticities. In the

baseline specification, MVR price elasticities are -0.89 and coincide with the average

price elasticity found by Yatchew and No (2001) and West (2004). For specifications

(1)-(4), MVR price elasticities are slightly smaller than OLS estimates, and the price

elasticity drops sharply in specification (4) which adds indicators for urbanity and

population density. Adding regional dummies (Panel (5)) results in a further reduc-

tion in price elasticities and a loss of significance, although to a much smaller extent

for MVR estimates7. Given the large sample size, it is interesting to note that for all

specifications MVR and OLS standard errors still di↵er, with MVR standard errors

7The p-values for price elasticities increase to 0.185 for OLS and to 0.105 and 0.111 for MVR
estimates.
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Dependent variable is log of annual household gasoline
demand in gallons

Log price coe�cient ˆ—1 Log income coe�cient ˆ—2

OLS ¸-MVR e-MVR OLS ¸-MVR e-MVR

(1) Baseline specification
Point estimate -0.925 -0.892 -0.888 0.289 0.283 0.283
HC3 – MVR1 0.150 0.144 0.144 0.0190 0.0173 0.0172
OLS – MVR2 0.155 0.145 0.145 0.0145 0.0176 0.0174

(2) With demographics
Point estimate -0.879 -0.857 -0.854 0.246 0.244 0.244
HC3 – MVR1 0.143 0.137 0.137 0.0183 0.0169 0.0167
OLS – MVR2 0.149 0.138 0.138 0.0143 0.0170 0.0168

(3) With demographics and public transports
Point estimate -0.830 -0.820 -0.816 0.269 0.268 0.268
HC3 – MVR1 0.143 0.137 0.137 0.0187 0.0172 0.0171
OLS – MVR2 0.148 0.138 0.138 0.0146 0.0172 0.0171

(4) With demographics, public transports and urbanity
Point estimate -0.495 -0.483 -0.478 0.298 0.301 0.301
HC3 – MVR1 0.141 0.135 0.134 0.0190 0.0174 0.0173
OLS – MVR2 0.147 0.135 0.135 0.0147 0.0173 0.0172

(5) With demographics, public transports, urbanity
and regions

Point estimate -0.358 -0.415 -0.408 0.297 0.302 0.302
HC3 – MVR1 0.270 0.256 0.256 0.0199 0.0181 0.0181
OLS – MVR2 0.272 0.257 0.257 0.0153 0.0180 0.0178

Table 2. Demand for gasoline. Naive (OLS) and robust (HC3) stan-
dard errors for OLS estimates, and robust to mean (MVR1) and vari-
ance (MVR2) misspecification standard errors for MVR estimates.

smaller than heteroskedasticity-corrected OLS standard errors, which is a reflection

of the heteroskedasticity detected for all specifications8.

8For each specification we implemented the tests of Breusch and Pagan (1978), White (1980a) and
Koenker (1983)) for heteroskedasticity for OLS and the test introduced in Section 4 for MVR. All
tests reject the null of homoskedasticity for all specifications.
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5.2. Simulations. We implement Monte Carlo simulations in order to assess and

illustrate the finite-sample properties of our estimators. Our models feature a linear

conditional mean function, and we implement OLS and MVR with linear and expo-

nential scale functions. In the Supplementary Material, we provide additional results

for models featuring a nonlinear conditional mean function and report simulation re-

sults from an artificial experiment of MacKinnon (2013). We find that using MVR

approximations does not result in a loss in the quality of approximation of nonlinear

conditional mean functions compared to OLS, and MVR estimation and inference

finite-sample properties compare favorably to both OLS and weighted least-squares.

The explanatory variables included in the simulations are chosen according to speci-

fication (4) in the demand for gasoline example, the preferred linear specification in

Blundell, Horowitz and Parey (2012). We report estimation and inference simulation

results for log price and log income, but include all covariates in the simulations. All

designs are calibrated to specification (4) by Gaussian maximum likelihood.

Design LOC. Our first design is the homoskedastic model

Y = —0 + X1—1 + X2—2 + X Õ
3—3 + ‡Á, Á ≥ N (0, 1).

Design LIN. Our second design is a set of heteroskedastic models with linear-

polynomial scale functions

Y = —0 + X1—1 + X2—2 + X Õ
3—3 + (X Õ“)

–Á, Á ≥ N (0, 1), – œ {0.5, 1, 1.5, 2}.

Design EXP. Our third design is a set of heteroskedastic models with exponential-

polynomial scale functions

Y = —0 + X1—1 + X2—2 + X Õ
3—3 + exp(X Õ“)

–Á, Á ≥ N (0, 1), – œ {0.5, 1, 1.5, 2}.

For all experiments, we set the sample size to n = 500, 1000, and 5254, the sample

size in the empirical application, and 5000 simulations are performed. For n = 5254,

we fix X to the values in the data set, whereas for the smaller sample sizes we draw

X with replacement from the values in the data set and keep them fixed across

replications. The location design LOC serves as a benchmark for comparing the

relative performance of MVR and OLS when OLS is e�cient. For – = 1, ¸-MVR

is correctly specified for the design LIN, and e-MVR is correctly specified for design

EXP. Designs with – = 0.5 feature low heteroskedasticity, whereas – = 2 corresponds

to high heteroskedasticity.
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Design LOC LIN EXP

– 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coe�cient ˆ—1

¸-MVR
n = 500 102.1 100.5 96.0 89.0 80.6 100.6 96.1 89.0 80.3
n = 1000 100.5 98.7 93.6 85.4 75.0 98.8 93.6 85.3 75.2
n = 5254 100.1 98.5 93.4 85.2 74.5 98.5 93.4 84.9 73.8

e-MVR
n = 500 102.1 100.4 95.9 89.1 80.5 100.4 95.8 88.7 79.5
n = 1000 100.5 98.7 93.6 85.9 76.4 98.7 93.5 85.3 74.8
n = 5254 100.1 98.5 93.6 86.0 76.5 98.5 93.4 85.1 74.3

Log income coe�cient ˆ—2

¸-MVR
n = 500 101.6 99.6 93.7 85.1 75.1 99.4 92.8 82.9 71.2
n = 1000 101.4 98.2 89.4 77.0 63.5 97.4 86.0 70.3 53.9
n = 5254 100.3 96.8 88.1 76.2 63.2 96.0 85.2 70.6 55.3

e-MVR
n = 500 101.7 99.8 93.8 84.8 73.9 99.6 92.6 81.9 68.8
n = 1000 101.4 98.3 89.1 75.8 61.1 97.3 84.9 67.4 48.9
n = 5254 100.3 96.7 87.6 74.9 61.0 95.8 84.0 67.7 50.4

Table 3. Ratio (◊100) of MVR root mean squared error for —1 and
—2 over corresponding OLS counterpart.

Table 3 reports a first set of results regarding the accuracy of our estimators. We

report the ratios of root mean squared errors for —1 and —2 of ¸-MVR and e-MVR over

root mean squared errors of OLS, in percentage terms. The results show that MVR

estimators achieve large gains relative to OLS in the presence of heteroskedasticity,

with ratios ranging from 73.8 to 100.6 for ˆ—1 and from 48.9 to 99.8 for ˆ—2. Gains in

estimation precision increase with the degree of heteroskedasticity and sample size.

In the homoskedastic case where OLS is e�cient, there is close to no loss in precision

from using MVR, with ratios ranging from 100.1 to 102.1. OLS and MVR become

equivalent as sample size increases for the homoskedastic case.

Table 4 reports ratios of ¸-MVR and e-MVR average confidence interval lengths across

simulations for —1 and —2 over OLS average confidence interval lengths, in percentage

terms. MVR confidence intervals are based on MVR1 standard errors, and results

for MVR2 are very similar and are reported in the Supplementary Material. In these
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Design LOC LIN EXP

– 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coe�cient ˆ—1

¸-MVR
n = 500 98.8 98.1 96.1 92.8 88.6 98.1 96.1 92.8 88.3
n = 1000 99.2 98.3 95.8 91.6 86.0 98.3 95.8 91.6 85.7
n = 5254 99.8 98.9 96.3 91.9 86.0 98.9 96.3 91.8 85.6

e-MVR
n = 500 98.6 97.9 95.8 92.5 88.1 97.9 95.8 92.3 87.5
n = 1000 99.1 98.3 95.8 92.0 86.9 98.3 95.8 91.6 85.9
n = 5254 99.8 98.9 96.4 92.4 87.2 98.9 96.3 91.9 85.9

Log income coe�cient ˆ—2

¸-MVR
n = 500 98.9 98.2 95.5 91.3 86.3 98.0 95.0 90.1 84.0
n = 1000 99.2 98.0 93.9 87.7 80.1 97.5 92.3 84.1 74.4
n = 5254 99.8 98.3 93.9 87.5 79.9 97.9 92.4 84.3 74.7

e-MVR
n = 500 98.7 97.8 94.9 90.4 84.6 97.7 94.3 88.8 81.6
n = 1000 99.1 97.8 93.5 86.8 78.5 97.3 91.5 82.2 70.8
n = 5254 99.8 98.2 93.6 86.8 78.4 97.8 91.7 82.5 71.4

Table 4. Ratio (◊100) of MVR average confidence interval lengths for
—1 and —2 over corresponding OLS counterpart. Confidence intervals
constructed with standard errors under misspecification of the condi-
tional mean function (MVR1).

simulations MVR yields substantially tighter confidence intervals compared to OLS

in the presence of heteroskedasticity, with confidence interval lengths ratios ranging

from 85.6 to 98.9 for ˆ—1 and from 70.8 to 98.3 for ˆ—2, while not incurring any loss in

precision for the homoskedastic data generating process.

Overall, our numerical simulations confirm MVR robustness to the specification of

the scale function, and both ¸-MVR and e-MVR perform very well in finite samples.

These results and the simulations in the Supplementary Material illustrate the higher

precision, improved finite-sample inference, and favorable approximation properties

of MVR compared to classical least-squares methods.
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Appendix A. Theory for the MVR criterion

A.1. Notation and Definitions. We define

L(X, Y, ◊) :=

1

2

Y
]

[

A
Y ≠ X Õ—

s(X Õ“)

B2

+ 1

Z
^

\ s(X Õ“),

and
ÂL(X, ◊) :=

1

2

I
E[(Y ≠ X Õ—)

2 | X]

s(X Õ“)

+ s(X Õ“)

J

.

so that by iterated expectations the objective function can be expressed as

Q(◊) = E[L(X, Y, ◊)] = E[

ÂL(X, ◊)], ◊ œ �.

We denote the level sets of Q(◊) by B
c

= {◊ œ � : Q(◊) Æ c}, c œ R, with boundary

set ˆB
c

. We also define the compact set B = B
—

◊ B
“

™ «, where B
—

and B
“

are

compact subsets of Rk and �

“

, respectively, and the boundary set of �

ˆ� = Rk ◊ ˆ�

“

, ˆ�

“

=

Ó
“ œ Rk

: Pr[s(X Õ“) = 0] > 0

Ô
.

For any two real numbers a and b, a ‚ b = max(a, b). For two random variables U

and V , U denotes the support of U , defined as the set of values of U such that the

density f
U

(u) of U is bounded away from 0, and U
v

is the conditional support of U

given V = v, v œ V . Throughout, C is a generic constant whose value may change

from place to place.

A.2. Preliminary Results. This section gathers two preliminary results used in

establishing the properties of Q(◊).

Lemma 1. Let V be a random k vector such that E[V V Õ
] exists and is nonsingular.

Then, for every sequence (“
n

) in Rk such that ||“
n

|| æ Œ, there exists vú œ V such

that lim||“n||æŒ |“Õ
n

vú| = Œ a.s.

Proof. Consider a sequence (“
n

) in Rk such that ||“
n

|| æ Œ, and define ”
n

=

“n

||“n|| .

The sequence (”
n

) is bounded, and by application of the Bolzano-Weierstrass theorem

there exists a convergent subsequence ”
nl
, n

l

æ Œ as l æ Œ, with limit ”
o

. More-

over, E[V V Õ
] nonsingular implies that it is positive definite, so that E[(V Õ”

o

)

2
] =

”Õ
o

E[V V Õ
]”

o

> 0. It follows that V Õ”
o

”= 0 on a set of positive probability, and
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there exists a value vú œ V such that ”Õ
o

vú ”= 0 a.s. Therefore, ”
nl

=

“nl
||“nl || satis-

fies ”Õ
nl

vú æ ”Õ
o

vú ”= 0 as l æ Œ, which implies that lim

læŒ |“Õ
nl

vú| æ Œ:

lim

læŒ
|“Õ

nl
vú| = lim

læŒ

---(”Õ
nl

vú
)||“

nl
||

--- =

----(”
Õ
o

vú
) lim

læŒ
||“

nl
||

---- = Œ.

The stated result follows. ⇤

Lemma 2. Suppose that Assumptions 1, 2 and 4 hold. Then the matrix

Œ(◊) = E

S

U
XX

Õ

s(XÕ
“)

XX

Õ

s(XÕ
“)s1(X

Õ“)e(Y, X, ◊)

XX

Õ

s(XÕ
“)s1(X

Õ“)e(Y, X, ◊)

XX

€

s(“·X){s1(X
Õ“)e(Y, X, ◊)}2

T

V ,

defined for all ◊ œ B, is positive definite.

Proof. Positive definiteness of E[XX Õ/s(X Õ“)] for “ œ B
“

under Assumption 4 im-

plies that Œ(◊) is positive definite for all ◊ œ B if and only if the Schur complement

of E[XX Õ/s(X Õ“)] in Œ(◊) is positive definite (Boyd and Vandenberghe (2004), Ap-

pendix A.5.5) for all ◊ œ B, i.e. if and only if

Ã (◊) := E

C
XX Õ

s(X Õ“)

{s1(X
Õ“)e(Y, X, ◊)}2

D

≠ E

C
XX Õ

s(X Õ“)

s1(X
Õ“)e(Y, X, ◊)

D

E

C
XX Õ

s(X Õ“)

D≠1

E

C
XX Õ

s(X Õ“)

s1(X
Õ“)e(Y, X, ◊)

D

satisfies det{Ã (◊)} > 0, for all ◊ œ B.

Letting

�(◊) := E

C
XX Õ

s(X Õ“)

s1(X
Õ“)e(Y, X, ◊)

D

E

C
XX Õ

s(X Õ“)

D≠1

,

for all ◊ œ B, Ã (◊) is equal to

E

S

U
I

Xs1(X
Õ“)e(Y, X, ◊)

s(X Õ“)

1/2 ≠ �(◊)

X

s(X Õ“)

1/2

J I
Xs1(X

Õ“)e(Y, X, ◊)

s(X Õ“)

1/2 ≠ �(◊)

X

s(X Õ“)

1/2

JÕT

V ,

a finite positive semidefinite k ◊ k matrix, and equal to zero if and only if (after

multiplication by s(X Õ“)

1/2 on both sides)

(A.1) Xs1(X
Õ“)e(Y, X, ◊) = �(◊)X

a.s.; this is an application of the Cauchy-Schwarz inequality for matrices stated in

Tripathi (1999). But if (A.1) holds, then, with �

j

denoting the jth row of �,

X
j

Y = (X Õ—)X
j

+ s(X Õ“)�

j

(◊)X, j = 1, . . . , k,
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a.s., which implies that

X2
j

var(Y |X) = 0, j = 1, . . . , k,

a.s. Because X includes an intercept, Assumption 2 implies that these equalities

cannot hold for j = 1. The result follows. ⇤

A.3. Main Properties of Q(◊).

Lemma 3. [Continuity] Suppose that Assumptions 1 and 3 hold. Then ◊ ‘æ Q(◊) is

continuous over B.

Proof. We first show that E[sup

◊œB |L(X, Y, ◊)|] < Œ for all ◊ œ B. By the Triangle

Inequality,

(A.2) 2 |L(X, Y, ◊)| Æ |e(Y, X, ◊)

2s(X Õ“)| + |s(X Õ“)|.

Compactness of B
“

implies that there exists a constant C such that sup

“œB“
1/s(X Õ“) Æ

C < Œ a.s. Thus for ◊ œ B, the bound

(A.3) |e(Y, X, ◊)

2s(X Õ“)| Æ C[2Y 2
+ 2(X Õ—)

2
] Æ 2C[Y 2

+ sup

—œB—

||—||2||X||2],

and sup

—œB—
||—|| < Œ together imply that E[sup

—œB |e(Y, X, ◊)

2s(X Õ“)|] < Œ requires

E[Y 2
] < Œ and E||X||2 < Œ, which hold under Assumption 3(i).

It remains to show that E[sup

“œB“
|s(X Õ“)|] < Œ. For “ œ B

“

, some 0 Æ Ÿ œ (a, Œ)

and some intermediate values “̄, a mean-value expansion about (Ÿ, 0

k≠1)
Õ yields

|s(X Õ“)| = |s(Ÿ) + s1(X
Õ“̄)(X Õ“ ≠ Ÿ)| Æ s(Ÿ) + sup

“œB“

||“|| ||X||s1(X
Õ“̄).

With s(Ÿ), sup

“œB“
||“|| < Œ, E[sup

“œB“
|s(X Õ“)|] < Œ requires E[||X||s1(X

Õ“̄)] < Œ,

which holds under Assumption 3(ii).

Bound (A.2) now implies that E[sup

◊œB |L(X, Y, ◊)|] < Œ, and continuity of Q(◊)

then follows from continuity of ◊ ‘æ L(X, Y, ◊) and dominated convergence. ⇤

Lemma 4. [Continuous Di↵erentiability] If Assumptions 1 and 3 hold, then, for all

◊ œ B, Q(◊) is continuously di↵erentiable and ˆE[L(X, Y, ◊)]/ˆ◊ = E[ˆL(X, Y, ◊)/ˆ◊].

Proof. We first show that E[sup

◊œB ||ˆL(X, Y, ◊)/ˆ◊||] < Œ. Computing

ˆL(X, Y, ◊)/ˆ— = ≠Xe(Y, X, ◊), ˆL(X, Y, ◊)/ˆ“ = ≠1

2

Xs1(X
Õ“){e(Y, X, ◊)

2 ≠ 1}.
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Compactness of B
“

implies that there exists a constant C such that

sup

“œB“
1/s(X Õ“) Æ C < Œ a.s. Thus for ◊ œ B, the bound

||Xe(Y, X, ◊)|| Æ C||X|| |Y ≠ X Õ—| Æ C[|Y | ||X|| + sup

—œB—

||—|| ||X||2],

and sup

—œB—
||—|| < Œ, imply that E[sup

◊œB ||ˆL(X, Y, ◊)/ˆ—||] < Œ requires

E[|Y | ||X||] < Œ and E||X||2 < Œ, which hold under Assumptions 3(i).

We now show that E[sup

◊œB ||ˆL(X, Y, ◊)/ˆ“||] < Œ. Since ≠1 Æ e(Y, X, ◊)

2 ≠ 1 a.s.,

for ◊ œ B,
...Xs1(X

Õ“){e(Y, X, ◊)

2 ≠ 1}
... Æ ||X|| s1(X

Õ“) |e(Y, X, ◊)

2 ≠ 1|

Æ ||X|| s1(X
Õ“) [1 ‚ 2C(Y 2

+ sup

—œB—

||—||2||X||2)].(A.4)

For “ œ B
“

, some 0 Æ Ÿ œ (a, Œ) and some intermediate values “̄, a mean-value

expansion about (Ÿ, 0

k≠1)
Õ yields

(A.5) |s1(X
Õ“)| = |s1(Ÿ) + s2(X

Õ“̄)(X Õ“ ≠ Ÿ)| Æ s1(Ÿ) + sup

“œB“

||“|| ||X||s2(X
Õ“̄).

This bound and (A.4) together imply
...Xs1(X

Õ“){e(Y, X, ◊)

2 ≠ 1}
... Æ ||X|| [s1(Ÿ) + sup

“œB“

||“|| ||X||s2(X
Õ“̄)]

◊[1 ‚ 2C(Y 2
+ sup

—œB—

||—||2||X||2)].(A.6)

Since B is compact and 0 < s1(Ÿ) < Œ, E[sup

◊œB ||Ò
“

L(X, Y, ◊)||] < Œ requires

E||X||3 < Œ, E[Y 2 ||X||] < Œ and, for all “ œ B
“

, E[ÎXÎ4 s2(X
Õ“)] < Œ and

E[Y 2||X||2s2(X
Õ“)] < Œ, which hold under Assumption 3.

We have shown that E[sup

◊œB ||ˆL(X, Y, ◊)/ˆ◊||] < Œ and it now follows by Lemma

3.6 in Newey and Mc Fadden (1994) that Q(◊) is continuously di↵erentiable over B,
and that the order of di↵erentiation and integration can be interchanged. ⇤

Lemma 5. [Convexity] Suppose that Assumptions 1, 3 and 4 hold. Then ◊ ‘æ Q(◊)

is strictly convex over B.

Proof. Q(◊) is di↵erentiable for all ◊ œ B and the order of integration and di↵eren-

tiation can be interchanged by Lemma 4. In order to show that ˆQ(◊)/ˆ◊ is dif-

ferentiable for ◊ œ B, we show that E[sup

◊œB ||ˆ2L(X, Y, ◊)/ˆ◊ˆ◊||] < Œ. Direct

29



calculations yield

ˆ2L(X, Y, ◊)

ˆ◊ˆ◊
=

S

U
XX

Õ

s(XÕ
“)

XX

Õ

s(XÕ
“)s1(X

Õ“)e(Y, X, ◊)

XX

Õ

s(XÕ
“)s1(X

Õ“)e(Y, X, ◊)

XX

Õ

s(XÕ
“){s1(X

Õ“)e(Y, X, ◊)}2

T

V

+

S

U 0

k◊k

0

k◊k

0

k◊k

≠1
2XX Õs2(X

Õ“){e(Y, X, ◊)

2 ≠ 1}

T

V

:= h1(X, Y, ◊) + h2(X, Y, ◊).

We first consider E[sup

◊œB ||ˆ2h1(X, Y, ◊)/ˆ◊ˆ◊||]. Steps similar to

those leading to (A.3) imply that E[sup

◊œB ||ˆ2h1(X, Y, ◊)/ˆ—ˆ—||] <

Œ is satisfied since E||X||2 < Œ and B is compact. Moreover,

E[sup

◊œB ||ˆ2h1(X, Y, ◊)/ˆ—ˆ“||] < Œ and E[sup

◊œB ||ˆ2h1(X, Y, ◊)/ˆ“ˆ—||] < Œ are

implied by E[sup

◊œB ||ˆ2h1(X, Y, ◊)/ˆ“ˆ“||] < Œ.

Steps similar to those leading to (A.6) yield, for ◊ œ B,
.....

XX Õ

s(X Õ“)

{s1(X
Õ“)e(Y, X, ◊)}2

..... Æ C||X||2s1(X
Õ“)

2
[Y 2

+ sup

—œB—

||—||2||X||2].

This bound and expansion (A.5) together imply, for some 0 Æ Ÿ œ (a, Œ) and some

intermediate value “̄,
.....

XX Õ

s(X Õ“)

{s1(X
Õ“)e(Y, X, ◊)}2

..... Æ C||X||2 [s1(Ÿ)

2
+ 2 sup

“œB“

||“|| ||X||s1(X
Õ“̄)s2(X

Õ“̄)]

◊ [Y 2
+ sup

—œB—

||—||2||X||2].

Since B is compact and 0 < s1(Ÿ) < Œ, E[sup

◊œB ||ˆ2h1(X, Y, ◊)/ˆ“ˆ“||] < Œ re-

quires E||X||4 < Œ, E[Y 2 ||X||2] < Œ and, for all “ œ B
“

, E[ÎXÎ5 s1(X
Õ“)s2(X

Õ“)] <

Œ and E [Y 2||X||3s1(X
Õ“)s2(X

Õ“)] < Œ, which hold under Assumption 3.

We now show that E[sup

◊œB ||ˆ2h2(X, Y, ◊)/ˆ◊ˆ◊||] < Œ. It su�ces to show that

E[sup

◊œB ||ˆ2h2(X, Y, ◊)/ˆ“ˆ“||] < Œ. Steps similar to those leading to (A.6), yield,

for ◊ œ B,

...XX Õs2(X
Õ“){e(Y, X, ◊)

2 ≠ 1}
... Æ ||X||2s2(X

Õ“)[1 ‚ 2C(Y 2
+ sup

—œB—

||—||2||X||2)]].
(A.7)

For “ œ B
“

a mean-value expansion about (Ÿ, 0

k≠1)
Õ yields

|s2(X
Õ“)| = |s2(Ÿ) + s3(X

Õ“̄)(X Õ“ ≠ Ÿ)| Æ s2(Ÿ) + sup

“œB“

||“|| ||X||s3(X
Õ“̄)
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This bound and (A.7) together imply
...XX Õs2(X

Õ“){e(Y, X, ◊)

2 ≠ 1}
... Æ ||X||2 [s2(Ÿ) + sup

“œB“

||“|| ||X||s3(X
Õ“̄)]

◊[1 ‚ 2C(Y 2
+ sup

—œB—

||—||2||X||2)].

Since B is compact and 0 Æ s2(Ÿ) < Œ, E[sup

◊œB ||ˆ2h2(X, Y, ◊)/ˆ“ˆ“||] < Œ re-

quires E||X||4 < Œ, E[Y 2 ||X||2] < Œ and, for all “ œ B
“

, E[ÎXÎ5 s3(X
Õ“)] < Œ and

E[Y 2||X||3s3(X
Õ“)] < Œ, which hold under Assumption 3.

We have shown that E[sup

◊œB ||ˆ2L(X, Y, ◊)/ˆ◊ˆ◊||] < Œ and it now follows by

Lemma 3.6 in Newey and Mc Fadden (1994) that ˆQ(◊)/ˆ◊ is continuously di↵er-

entiable over B, and that the order of di↵erentiation and integration can be inter-

changed.

Letting H1(◊) := E[h1(X, Y, ◊)] and H2(◊) := E[h2(X, Y, ◊)], for all ◊ œ B, the

Hessian matrix of Q(◊) is H(◊) := H1(◊) + H2(◊), which is positive semidefinite if

H1(◊) and H2(◊) are positive semidefinite (Horn and Johnson (2012), p.398, 7.1.3.

observation). And if either one of H1(◊) and H2(◊) is positive definite (while the

other is positive semidefinite), then H(◊) is positive definite. All principal minors

of H2(◊) have determinant 0 for all ◊ œ B, and H2(◊) is thus positive semidefinite.

Applying Lemma 2 with Œ(◊) = H1(◊), we have that H1(◊) is positive definite for

all ◊ œ B. We conclude that H(◊) is positive definite for all ◊ œ B, and the result

follows. ⇤

Lemma 6. [Level Sets Compactness] If Assumptions 1, 3 and 4 hold then the level

sets of ◊ ‘æ Q(◊) are compact.

Proof. We show that the level sets B
c

, c œ R, of ◊ ‘æ Q(◊) are closed and bounded.

The result then follows by the Heine-Borel theorem.

Step 1. [B
c

is bounded]. We show that every sequence in B
c

is bounded. Suppose the

contrary. Then there exists an unbounded sequence (◊
n

) in B
c

, and a subsequence

(◊
nl

), n
l

æ Œ as l æ Œ, such that either ||—
nl

|| æ Œ or ||“
nl

|| æ Œ.

Step 1.1. If ||“
nl

|| æ Œ, then E[XX Õ
] nonsingular implies that there exists a value

xú œ X such that |“Õ
nl

xú| æ Œ as l æ Œ, a.s., by Lemma 1, which implies s(“Õ
nl

xú
) æ

0 or Œ by definition of t ‘æ s(t) in Assumption 1.
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Moreover, for xú œ X such that |“Õ
nl

xú| æ Œ as l æ Œ, we have that E[(Y ≠ X Õ—)

2 |
X = xú

] < Œ for all — œ Rk under Assumption 3(i). It follows that for all — œ Rk,

(A.8) lim

læŒ
˜L(xú, —, “

nl
) =

1

2

lim

læŒ

E[(Y ≠ X Õ—)

2 | X = xú
]

s(“Õ
nl

xú
)

+

1

2

lim

læŒ
s(“Õ

nl
xú

) = Œ.

Since ˜L(X, ◊) is positive a.s. for all ◊ œ � and the density f
X

(x) is bounded away from

0 for all x œ X by definition of X , (A.8) implies that E[lim

læŒ ˜L(X, —, “
nl

)] = Œ.

Since E[

˜L(X, ◊)] = Q(◊), Fatou’s lemma then implies that lim

læŒ Q(—, “
nl

) = Œ, for

all — œ Rk. Therefore “ is bounded.

Step 1.2. If ||—
nl

|| æ Œ, then E[XX Õ
] nonsingular implies that there exists a value

xúú œ X such that |—Õ
nl

xúú| æ Œ a.s., by a second application of Lemma 1. Thus

(Y ≠ —Õ
nl

xúú
)

2 æ Œ as l æ Œ a.s.

Moreover, for xúú œ X such that |—Õ
nl

xúú| æ Œ as l æ Œ, we have that E[lim

læŒ(Y ≠
X Õ—

nl
)

2 | X = xúú
] = Œ, and Fatou’s lemma then implies that lim

læŒ E[(Y ≠X Õ—
nl

)

2 |
X = xúú

] = Œ. Also, s(“Õxúú
) is finite and positive for any “ œ �

“

. It follows that

for all “ œ �

“

,

lim

læŒ
˜L(xúú, —

nl
, “) Ø 1

2

lim

læŒ

E[(Y ≠ X Õ—
nl

)

2 | X = xúú
]

s(“Õxúú
)

= Œ.(A.9)

Since ˜L(X, ◊) is positive a.s. for all ◊ œ � and the density f
X

(x) is bounded away from

0 for all x œ X by definition of X , (A.9) implies that E[lim

læŒ ˜L(X, —
nl

, “)] = Œ.

Fatou’s lemma then implies that lim

læŒ E[

˜L(X, —
nl

, “)] = lim

læŒ Q(—
nl

, “) = Œ for

all “ œ �

“

. Therefore — is bounded.

Step 2. [B
c

is closed]. We examine the behaviour of ◊ ‘æ Q(◊) on the boundary set

ˆ� in order to determine whether B
c

is closed. We show that for every sequence in

B
c

converging to a boundary point in ˆ�, ◊ ‘æ Q(◊) is unbounded. Continuity of

◊ ‘æ Q(◊) established in Lemma 3 then implies that B
c

is closed.

Consider a sequence ◊
n

in B
c

such that ◊
n

æ t
o

œ ˆ� as n æ Œ. Then, there

exists xú œ X such that “Õ
n

xú æ 0 as n æ Œ a.s., by definition of ˆ�. Moreover,

E[(Y ≠ X Õ—)

2|X] > 0 a.s. for all — œ Rk under Assumption 2. Thus

(A.10) lim

næŒ
˜L(xú, ◊

n

) =

1

2

lim

næŒ

E[(Y ≠ X Õ—
n

)

2 | X = xú
]

“Õ
n

xú = Œ.

Since ˜L(X, ◊) is positive a.s. for all ◊ œ � and the density f
X

(x) is bounded away

from 0 for all x œ X by definition of X , (A.10) implies that E[lim

næŒ ˜L(X, ◊
n

)] = Œ.
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Fatou’s lemma then implies that lim

næŒ E[

˜L(X, ◊
n

)] = lim

læŒ Q(◊
n

) = Œ. This

yields a contradiction since Q(◊
n

) Æ c for ◊
n

œ B
c

. Moreover, continuity of ◊ ‘æ Q(◊)

implies Q(t
o

) = lim

næŒ Q(◊
n

) Æ c. Therefore, t
o

œ B
c

and B
c

is closed. ⇤

Appendix B. Proofs for Sections 2 and 3

B.1. Proof of Theorem 1. Under Assumptions 1-4, the order of integration and

di↵erentiation for the MVR population problem (2.2) can be interchanged by Lemma

4. Therefore the first-order conditions of problem (2.2) are (2.3)-(2.4), which are

satisfied by ◊0. Uniqueness follows from strict convexity of Q(◊) over compact subsets

of � established in Lemma 5, and compactness of the level sets of the objective

function Q(◊) established in Lemma 6. ⇤

B.2. Proof of Proposition 1. The first-order conditions (2.3)-(2.4) of the MVR

population problem (2.2) can be written as

E

C
X

s(X Õ“)

(Y ≠ X Õ—)

D

= 0(B.1)

E

C

X
s1(X

Õ“)

s(X Õ“)

2

Ó
(Y ≠ X Õ—)

2 ≠ s(X Õ“)

2
ÔD

= 0,(B.2)

with unique solutions —0 and “0, by Theorem 1.

Under the stated assumptions, the first-order conditions of problem (2.8)-(2.9) are

E

C
X

‡(X)

(Y ≠ X Õ—)

D

= 0(B.3)

≠4E

C

X
s(X Õ“)s1(X

Õ“)

‡(X)

3

Ó
(Y ≠ X Õ—0)

2 ≠ s(X Õ“)

2
ÔD

= 0.(B.4)

By assumption the variance of Y conditional on X is correctly specified and ‡(X)

2
=

s(X Õ“0)
2 a.s. Conditions (B.3)-(B.4) are therefore satisfied for (—, “) = (—0, “0), and

are then equivalent to the MVR first-order conditions (B.1)-(B.2) evaluated at the

solution (—, “) = (—0, “0). ⇤

B.3. Proof of Theorem 2. Step 1: Existence. Pick c œ R such that the level set

B
c

= {◊ œ � : Q(◊) Æ c} is nonempty. By Lemma 6, B
c

is compact. Continuity of

◊ ‘æ Q(◊) over compact subsets of � established in Lemma 3 then implies that there

exists at least one minimizer to Q(◊) in B
c

by the Weierstrass extreme value theorem.
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Minimizing Q(◊) over � is equivalent to minimizing Q(◊) over any of its nonempty

level sets, which establishes existence of a minimizer ◊ú œ �.

Step 2: Uniqueness. By Lemma 5, we have that ◊ ‘æ Q(◊) is strictly convex over

compact subsets of �, and thus over B
c

, so that Q(◊) admits at most one minimizer

in B
c

. This establishes uniqueness of a minimizer ◊ú œ �. ⇤

B.4. Proof of Theorem 3. Proof of part (i). For ◊ œ �, define the function

ÂQ(◊) :=

1

2

ˆ Y
]

[

A
µ(x) ≠ xÕ—

s(xÕ“)

B2

+

‡(x)

2

s(xÕ“)

2 + 1

Z
^

\ s(xÕ“)dF
X

(x).

We show that ÂQ(◊) is equal to Q(◊) for all ◊ œ �.

The location-scale representation (3.1) for Y | X implies that, for ◊ œ �,
A

Y ≠ X Õ—

s(X Õ“)

B2

=

A
[µ(X) ≠ X Õ—] + ‡(X)Á

s(X Õ“)

B2

=

A
µ(X) ≠ X Õ—

s(X Õ“)

B2

+ 2

A
µ(X) ≠ X Õ—

s(X Õ“)

B
‡(X)

s(X Õ“)

Á +

‡(X)

2

s(X Õ“)

2 Á2,(B.5)

and the change of variable formula

(B.6) f
Y |X(Y | X) = f

Á|X

A
Y ≠ µ(X)

‡(X)

| X

B A
1

‡(X)

B

,

hold a.s.

The definition of Q(◊) and expressions (B.5)-(B.6) together imply, for ◊ œ �,

Q(◊) =

1

2

ˆ Y
]

[

A
y ≠ xÕ—

s(xÕ“)

B2

+ 1

Z
^

\ s(xÕ“)f
Y |X(y | x)dydF

X

(x)

=

1

2

ˆ Y
]

[

A
y ≠ xÕ—

s(xÕ“)

B2

+ 1

Z
^

\ s(xÕ“)f
Á|X

A
y ≠ µ(x)

‡(x)

| x

B A
1

‡(x)

B

dydF
X

(x)

=

1

2

ˆ Y
]

[

A
µ(x) ≠ xÕ—

s(xÕ“)

B2

+ 2

A
µ(x) ≠ xÕ—

s(xÕ“)

B
‡(x)

s(xÕ“)

e +

‡(x)

2

s(xÕ“)

2 e2
+ 1

Z
^

\

◊s(xÕ“)f
Á|X (e | x) dedF

X

(x)

=

1

2

ˆ Y
]

[

A
µ(x) ≠ xÕ—

s(xÕ“)

B2

+

‡(x)

2

s(xÕ“)

2 + 1

Z
^

\ s(xÕ“)dF
X

(x) =

ÂQ(◊),
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where the final step uses the law of iterated expectations and the mean zero and unit

variance property of Á conditional on X. Since ◊ú is the unique minimizer of Q(◊) in

�, it is also the unique minimizer of ÂQ(◊) in �. ⇤

Proof of part (ii). Since �LS µ �, and ◊ú and ◊LS are the unique minimizers of Q(◊)

over � and �LS, respectively, it follows that Q(◊ú
) Æ Q(◊LS). ⇤

B.5. Proof of Corollary 1. For the linear scale specification s(t) = t, conditions

(2.4) imply E[(X Õ“ú
)e(Y, X, ◊ú

)

2
] = E[X Õ“ú

]. For the exponential scale specifica-

tion s(t) = exp(t), because X includes an intercept, conditions (2.4) imply that

E[exp(X Õ“ú
)e(Y, X, ◊ú

)

2
] = E[exp(X Õ“ú

)]. It follows that for the linear and exponen-

tial scale specifications, E[s(X Õ“ú
)e(Y, X, ◊ú

)

2
] = E[s(X Õ“ú

)], and

Q(◊ú
) =

1

2

E[{e(Y, X, ◊ú
)

2
+ 1}s(X Õ“ú

)] = E[s(X Õ“ú
)].

We have shown that for the linear and exponential scale specifications, Q(◊ú
) =

E[e(Y, X, ◊ú
)

2s(X Õ“ú
)]. For OLS, conditions (2.4) simplify to E[e(Y, X, ◊LS)

2 ≠1] = 0,

which implies that s(“LS) = E[(Y ≠ X Õ—LS)

2
]

1/2, and

Q(◊LS) =

1

2

E[{e(Y, X, ◊LS)

2
+ 1}s(“LS)] = s(“LS).

We have shown that for the constant scale specification Q(◊LS) = E[(Y ≠X Õ—LS)

2
]

1/2.

The result then follows by Theorem 3(ii). ⇤

B.6. Proof of Corollary 2. By assumption µ(X) = X Õ—0 a.s., and by definition ◊ú

satisfies conditions (3.3)-(3.4). Then the first-order conditions (3.3) are satisfied by

—ú
= —0, and “ú must satisfy

(B.7) E

C

Xs1(X
Õ“ú

)

I
‡(X)

2

s(X Õ“ú
)

≠ 1

JD

= 0.

If there exists a pair (—, “) œ � satisfying all 2 ◊ k conditions (3.3)-(3.4) simultane-

ously, then this pair is unique, by strict convexity of ◊ ‘æ Q(◊). It follows from the

existence proof of Theorem 2 that the restriction q(“) := Q(◊)|
—=—0 has a minimizer in

�

“

, i.e. there exists “ú such that (B.7) holds. Since “ ‘æ q(“) is also strictly convex,

q(“) admits a unique minimizer “ú
(—0) in �

“

. Therefore, the pair (—0, “ú
(—0)) is the

unique minimizer of Q(◊) when µ(X) = X Õ—0 a.s. ⇤
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Appendix C. Asymptotic Theory

Lemma 7. Suppose that Assumptions 1, 3 and 5 holds. Then Q
n

(◊) is strictly convex

over B.

Proof. For e
i

= e(y
i

, x
i

, ◊), the Hessian matrix H
n

(◊) of Q
n

(◊),

H
n

(◊) =

1

n

nÿ

i=1

S

U
xix

Õ
i

s(xÕ
i“)

xix
Õ
i

s(xÕ
i“)s1(x

Õ
i

“)e
i

xix
Õ
i

s(xÕ
i“)s1(x

Õ
i

“)e
i

xix
Õ
i

s(xÕ
i“){s1(x

Õ
i

“)e
i

}2

T

V

+

1

n

nÿ

i=1

S

U 0

k◊k

0

k◊k

0

k◊k

≠1
2x

i

xÕ
i

s2(x
Õ
i

“)(e2
i

≠ 1)

T

V
:= H1n

(◊) + H2n

(◊),

defined for ◊ œ B, is positive definite. Steps similar to the proof of Lemma 2 show

that H1n

(◊) is positive definite for all ◊ œ B. Moreover, all principal minors of H2n

(◊)

have determinant 0 for all ◊ œ B, and H2n

(◊) is thus positive semidefinite. Since

H
n

(◊) = H1n

(◊) + H2n

(◊), we conclude that H
n

is positive definite for all ◊ œ B, and
the result follows. ⇤

Proof of Theorem 4(i)-(ii).

Proof. By Theorem 2, ◊ú œ � is the unique minimizer of Q(◊), and the identification

condition (i) in Theorem 2.7 in Newey and Mc Fadden (1994) is thus verified. Since

� is convex and open, existence of ◊ú œ � established in Theorem 2, as well as strict

convexity of Q
n

(◊) established in Lemma 7 imply that their condition (ii) is satisfied.

Finally, since the sample is i.i.d. by Assumption 5, pointwise convergence of Q
n

(◊)

to Q0(◊) follows from Q0(◊) bounded (established in the proof of Lemma 3) and

application of Khinchine’s law of large numbers. Hence, all conditions of Newey and

McFadden’s Theorem 2.7 are satisfied. Therefore, there exists ˆ◊ œ � with probability

approaching one, and ˆ◊ æp ◊ú. ⇤

Proof of Theorem 4(iii).

Proof. The sample MVR solution ˆ◊ can be equivalently formulated as the Method-

of-Moments estimator

ˆ◊ = arg min

◊œ«

C
1

n

nÿ

i=1
m(y

i

, x
i

, ◊)

DÕ C
1

n

nÿ

i=1
m(y

i

, x
i

, ◊)

D

,
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The asymptotic normality result n1/2
(

ˆ◊ ≠ ◊ú
)

dæ N(0, G≠1S(G≠1
)

Õ
) then follows from

this characterization upon verifying the assumptions of Theorem 3.4 in Newey and Mc

Fadden (1994), for instance. Block symmetry of G then implies that V = G≠1SG≠1.

By Theorem 2, ◊ú is in the interior of � so that their Condition (i) is satisfied. The

mapping ◊ ‘æ m(Y, X, ◊) is continuously di↵erentiable, by inspection, so that their

Condition (ii) is satisfied. By definition, ◊ú satisfies E[m(Y, X, ◊ú
)] = 0, hence the

first part of their condition (iii) is satisfied. Moreover, bound (A.4) in the proof

of Lemma 4 shows that E[||m(Y, X, ◊ú
)||2] is finite under Assumption 6, verifying

their Condition (iii). Finally, under our assumptions, from the proof of Lemma

5, E[sup

◊œ� ||ˆm(Y, X, ◊)/ˆ◊||] = E[sup

◊œ� ||ˆ2L(X, Y, ◊)/ˆ◊ˆ◊||] is finite and G =

E[ˆm(Y, X, ◊ú
)/ˆ◊] is nonsingular. Their Conditions (iv) and (v) are satisfied.

If µ(X) = X Õ—ú a.s., then E[(Y ≠ X Õ—ú
)/s(X Õ“ú

) | X] = 0. Therefore, by iterated

expectations, the o↵-diagonal blocks of G and S simplify to (4.3). If µ(X) = X Õ—ú

a.s. and ‡2
(X) = s(X Õ“ú

)

2 a.s., then E[e2 ≠ 1 | X] = 0. Therefore, repeated use of

iterated expectations imply

E

C
XX Õ

s(X Õ“ú
)

{s1(X
Õ“ú

)e}2
D

≠ E
5
1

2

XX Õs2(X
Õ“ú

)(e2 ≠ 1)

6
= E

C
XX Õ

s(X Õ“ú
)

s1(X
Õ“ú

)

2
D

,

which yields G22 in (4.4), and S11 and S22 in (4.4).

Application of Theorem 4.5 in Newey and Mc Fadden (1994) implies that ˆG≠1
ˆS ˆG≠1 æp

G≠1SG≠1. Under Assumption 6, steps similar to the proof of Lemma 4 show that

E[sup

◊œ� ||m(Y, X, ◊)||2] < Œ. Hence, for a neighborhood N of ◊ú, we have that

E[sup

◊œN ||m(Y, X, ◊)||2] < Œ. Moreover, ◊ ‘æ m(Y, X, ◊) is continuous at ◊ú a.s.

The result follows. ⇤
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SUPPLEMENTARY MATERIAL FOR
“SIMULTANEOUS MEAN-VARIANCE REGRESSION”

RICHARD H. SPADY† AND SAMI STOULI§

1. Summary

This supplementary material presents additional simulation results for “Simultaneous

Mean-Variance Regression”. In Section 2, we report the results of simulations based

on a set of experiments proposed by MacKinnon (2013) in order to study further

the finite-sample properties of MVR. The experiments are implemented for small

sample sizes and are designed to make heteroskedasticity-robust inference di�cult.

We compare the finite-sample estimation and inference performance of MVR, OLS

and weighted least squares (WLS). In Section 3, we report additional results for the

numerical experiments in the main text, and study the finite-sample approximation

properties of MVR by implementing simulations calibrated to the demand for gasoline

empirical example with a nonlinear conditional mean function. Overall, all experi-

ments confirm the favorable finite-sample estimation, inference and approximation

properties of MVR.

Date: April 5, 2018.
† Nu�eld College, Oxford, and Department of Economics, Johns Hopkins University,
rspady@jhu.edu.
§ Department of Economics, University of Bristol, s.stouli@bristol.ac.uk.
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2. Numerical Simulations of MacKinnon (2013)

2.1. Design of Experiments. In this Section we investigate the properties of MVR

in small samples and compare its performance with OLS and WLS by implementing

numerical simulations proposed by MacKinnon (2013).

The data generating process is

Y = —0 + X1—1 + X2—2 + X3—3 + X4—4 + ‡Á, Á ≥ N (0, 1)

‡ = z(–) (—0 + X1—1 + X2—2 + X3—3 + X4—4)
–

, – œ {0, 0.5, 1, 1.5, 2},

where all regressors are drawn from the standard lognormal distribution, and z(–) is

chosen such that the expected variance of ‡Á is equal to 1. The log-normal regressors

ensure that many samples will include high-leverage points with a few observations

taking extreme values. This feature of the design distorts the distribution of test

statistics based on heteroskedasticity-robust estimators of OLS standard errors. The

parameter coe�cient values are set to —j = 1 for j = 0, . . . , 3, and —4 = 0. As in

the simulations in the main text, – measures the degree of heteroskedasticity in the

model, with – = 0 corresponding to homoskedasticity, and – = 2 corresponding to

high heteroskedasticity. The numerical simulations are implemented for sample sizes

n = 20, 40, 80, 160, 320, 640 and 1280.

For each – and sample size, we generate 10000 samples, and implement OLS, WLS,

and MVR with linear and exponential scale functions. For WLS we follow the imple-

mentation suggested by Romano and Wolf (2017, cf. equation (3.4), p. 4). Denote

the OLS estimator by ˆ

—LS and let x̃i = (x1i, x2i, x3i, x4i)
Õ. We form the OLS residuals

ûi := yi ≠ x

Õ
i
ˆ

—LS, i = 1, . . . , n, and perform the OLS regression

log(max(”

2
, û

2
i )) = ‹ + fi log(|x̃i|) + ÷i,

where ” = 0.1 as in the implementation of Romano and Wolf (2017), and with esti-

mates (‹̂, fî). The WLS weights are then formed as ŵi := exp(‹̂ + fî

Õ
log(|x̃i|)), and

the WLS estimator is

ˆ

—WLS := [X

Õ
nW

≠1
n X

Õ
n]

≠1
X

Õ
nW

≠1
n y, Wn := diag(ŵi),

where y = (y1, . . . , yn)

Õ, Xn is the n ◊ 5 matrix of explanatory variables values, and

diag(ŵi) denotes the n ◊ n diagonal matrix with diagonal elements ŵ1, . . . , ŵn.
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2.2. Results.

2.2.1. Estimation. Tables 1 and 2 report the ratio of MVR root mean square errors

(RMSE) across simulations over the OLS and WLS RMSEs for the three coe�cient

parameters —1, —2 and —3, each sample size and value of heteroskedasticity parameter

–, in percentage terms. Denoting an estimator ˜

—

(s)
j of —j for the sth simulation, the

RMSE is computed as { 1
S

qS
s=1(

˜

—

(s)
j ≠ —j)

2}1/2, for j = 1, 2, 3 and S = 10000.

Table 1 shows that the performance of both MVR estimators relative to OLS improves

as n and – increase. As expected, for the homoskedastic case – = 0 the performance of

MVR and OLS estimators is very similar, and the ratios converge to 100 from above,

reflecting the e�ciency of the OLS estimator in that case. For all coe�cients the

performance of MVR then becomes markedly superior as n and – increase, with ratios

that reach 28.9 for ¸-MVR and 20.4 for e-MVR. The estimator ¸-MVR dominates e-

MVR slightly for the design with low heteroskedasticity (– = 0.5), and for moderate

heteroskedasticity (– = 1) in small samples (n = 20, 40 and 80). The performance of

the estimator e-MVR then becomes superior as the degree of heteroskedasticity and

sample size increase, showing higher robustness of the exponential scale specification

in more extreme designs in these simulations.

In Table 2, we find that the relative performance of both MVR estimators relative

to WLS also improves as n increases and as – increases from 0.5 to 2. For the

homoskedastic case – = 0, an interesting feature of the simulation results is that

the relative performance of MVR and WLS estimators now converges to 100 from

below. This reflects the fact that for homoskedastic designs MVR weights are better

able to mitigate the cost of reweighting in small samples compared to WLS weights.

For other designs with – ”= 0, the relative performance of both MVR estimators

dominates the performance of WLS with ratios that reach 56.1 for ¸-MVR and 39.7

for e-MVR. Compared to OLS and the results of Table 1, these results show that

in this experiment WLS also improves over OLS, and that MVR yields substantial

additional gains over WLS.
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¸-MVR e-MVR

– 0 0.5 1 1.5 2 0 0.5 1 1.5 2

—1
n = 20 105.2 103.3 97.6 90.2 83.0 106.5 104.8 98.7 90.1 81.3
n = 40 103.8 99.5 89.1 77.1 66.7 103.4 99.4 89.1 76.4 63.5
n = 80 102.1 96.0 81.8 66.5 55.2 101.9 96.3 82.0 65.5 50.5
n = 160 101.7 92.9 74.7 57.3 46.5 101.5 93.3 74.7 55.5 40.0
n = 320 101.0 89.3 67.5 49.1 39.5 100.9 89.5 66.9 46.5 31.7
n = 640 100.9 87.5 62.3 42.6 33.8 100.9 87.8 61.6 39.8 25.5
n = 1280 100.6 84.2 56.4 36.6 28.9 100.5 84.3 55.6 33.6 20.4

—2
n = 20 104.7 103.3 97.4 90.0 82.8 106.3 104.5 98.1 89.4 80.5
n = 40 103.9 99.6 88.8 76.3 65.9 103.7 99.7 89.1 75.8 62.8
n = 80 103.0 95.7 80.9 65.6 54.4 102.6 96.0 81.1 64.4 49.5
n = 160 101.6 92.4 74.1 56.9 46.4 101.2 92.8 74.0 54.8 39.5
n = 320 100.8 89.9 68.2 49.5 39.7 100.7 90.3 68.1 47.2 32.1
n = 640 100.8 87.0 62.0 42.5 33.8 100.7 87.1 61.1 39.4 25.1
n = 1280 100.5 84.7 56.9 36.9 29.1 100.5 84.9 56.2 34.0 20.6

—3
n = 20 104.5 103.1 98.0 91.0 84.0 106.1 104.5 98.8 90.7 82.1
n = 40 103.4 99.0 88.6 76.8 66.6 103.3 99.1 88.9 76.3 63.6
n = 80 101.9 95.3 81.1 66.3 55.3 101.6 95.5 81.2 65.0 50.3
n = 160 101.6 92.5 74.2 56.9 46.5 101.3 92.7 73.9 54.8 39.4
n = 320 100.8 89.5 67.7 49.0 39.7 100.7 89.7 66.9 46.1 31.1
n = 640 100.7 86.5 61.5 42.4 34.7 100.6 86.7 60.9 39.5 25.4
n = 1280 100.7 84.4 56.9 37.2 31.0 100.6 84.5 56.1 34.2 20.8

Table 1. Ratio (◊100) of MVR RMSE for —1, —2 and —3 over corre-
sponding OLS counterpart.
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¸-MVR e-MVR

– 0 0.5 1 1.5 2 0 0.5 1 1.5 2

—1
n = 20 96.6 97.6 98.9 98.7 97.1 97.8 99.1 100.0 98.5 95.1
n = 40 96.0 97.1 97.6 95.5 90.4 95.7 97.0 97.5 94.7 86.1
n = 80 96.9 96.6 95.3 91.2 83.6 96.8 96.9 95.6 89.8 76.5
n = 160 98.5 96.8 93.0 85.6 75.6 98.3 97.2 93.0 82.9 64.9
n = 320 99.0 95.9 90.2 80.4 68.4 98.8 96.2 89.4 76.1 54.9
n = 640 99.7 95.8 87.9 76.0 62.5 99.7 96.0 87.0 71.0 47.0
n = 1280 100.2 94.1 83.3 69.8 56.1 100.1 94.2 82.2 64.0 39.7

—2
n = 20 96.0 97.3 98.8 98.9 97.3 97.4 98.5 99.5 98.3 94.7
n = 40 96.4 97.4 97.5 95.2 90.0 96.2 97.5 97.8 94.6 85.7
n = 80 97.5 97.1 95.8 91.3 83.3 97.1 97.5 96.1 89.6 75.8
n = 160 98.6 96.6 92.7 85.5 75.8 98.3 97.0 92.5 82.3 64.6
n = 320 99.2 96.2 90.2 80.8 69.2 99.0 96.6 89.9 77.1 56.0
n = 640 99.8 94.8 85.7 73.4 60.9 99.7 94.9 84.5 68.0 45.2
n = 1280 100.0 94.3 83.3 69.8 56.2 99.9 94.5 82.3 64.3 39.8

—3
n = 20 95.7 97.3 98.8 98.9 97.5 97.2 98.6 99.5 98.6 95.3
n = 40 96.2 97.4 97.8 95.8 90.6 96.1 97.5 98.1 95.2 86.5
n = 80 97.3 97.3 96.1 91.9 84.0 97.1 97.6 96.2 90.1 76.4
n = 160 98.6 97.3 93.8 86.3 76.2 98.2 97.4 93.5 83.0 64.7
n = 320 98.8 95.8 89.5 79.6 68.9 98.7 95.9 88.5 74.9 54.1
n = 640 99.6 95.0 86.1 74.2 63.2 99.5 95.3 85.2 69.0 46.2
n = 1280 100.2 94.7 84.4 71.6 60.9 100.2 94.8 83.3 65.7 40.9

Table 2. Ratio (◊100) of MVR RMSE for —1, —2 and —3 over corre-
sponding WLS counterpart.
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2.2.2. Inference. In order to study the finite-sample performance of MVR inference

relative to heteroskedasticity-robust OLS and WLS inference, we compare the lengths

of the confidence intervals constructed for the three coe�cient parameters —1, —2 and

—3, and the rejection probabilities of asymptotic t tests of the null hypothesis —4 = 0

based on the standard normal distribution. All OLS and WLS standard errors used

in the construction of confidence intervals and tests statistics are heteroskedasticity-

robust (HC3).

Tables 3-6 report the ratio of average MVR confidence interval lengths across sim-

ulations over the average OLS and WLS confidence interval lengths for —1, —2 and

—3, each sample size and value of heteroskedasticity index –, in percentage terms.

MVR confidence intervals in Tables 3 and 4 are constructed with standard errors

under misspecification of the conditional mean function (MVR1). Tables 5 and 6

report the results for MVR confidence intervals constructed with standard errors as-

suming correct specification of the conditional mean function (MVR2), imposing the

simplifications in (4.3) in the main text.

In Table 3 we find that that the length of MVR confidence intervals is shorter for all

designs compared to OLS confidence intervals, except for – = 0, n = 20 for ¸-MVR.

For each sample size, the ratio of average confidence interval lengths is inversely re-

lated to the degree of heteroskedasticity for both MVR estimators, with the exception

of – = 0, 0.5 for n = 20, 40 for e-MVR. For no or low heteroskedasticity, the ratio

of confidence interval lengths increases with sample size, but for – Ø 1 the relative

performance of MVR then improves markedly with sample size as well. The main

di↵erences between the two MVR estimators occur for n = 20 and for designs with

high heteroskedasticity (– = 1.5, 2), where e-MVR performs especially well, further

illustrating its higher robustness to more extreme designs. In Table 4, we find that

¸-MVR-based inference without assuming linearity of the conditional mean yields

longer confidence intervals than WLS for small sample size (n = 20). In all other

cases, MVR-based inference yields shorter confidence intervals, and for – Ø 1 the

relative performance of MVR confidence intervals improves with sample size.

Table 5 shows that MVR inference assuming a linear conditional mean model yields

much shorter confidence intervals than OLS for all sample sizes, including very small

samples n = 20 and 40 and the homoskedastic case. Compared to the results in Table

3, e-MVR still dominates ¸-MVR but the performance of ¸-MVR is much improved.
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Table 6 shows that MVR confidence intervals are shorter than WLS confidence inter-

vals for all designs when a linear conditional mean model is assumed, and the relative

performance of MVR improves with sample size and the degree of heteroskedasticity,

with ratios that can be as low as 51.0 for ¸-MVR and 50.2 for e-MVR.

Figures 2.1 and 2.2 display rejection probability curves of asymptotic t tests of the

null hypothesis —4 = 0 for each sample size and value of the heteroskedasticity pa-

rameter –. The nominal size of the tests is set to 5%. Figures 2.1(A)-(D) show

that MVR addresses underrejection of the OLS- and WLS-based tests for moder-

ate heteroskedasticity and above. Rejection probabilities curves are much lower for

¸-MVR and WLS than for e-MVR, and ¸-MVR rejection probability curves exhibit

some crossing across sample sizes, just like OLS curves. In particular, the ¸-MVR

rejection probability curve for n = 20 (black curve) is not placed above the other

curves although it is now above the nominal level for all values of –.

The ¸-MVR and WLS rejection probability curves exhibit similar behaviour, with

a more pronounced flattening across – for ¸-MVR curves as n increases. For the

exponential scale case, e-MVR rejection probability curves become close to flat as n

reaches 320, across values of –, with clear convergence from above to nominal size as

n increases. This is a remarkable property, and addresses the key limitation noted by

MacKinnon (2013) about the OLS rejection probability curves, namely, how slowly

they become flatter as n increases. The MVR estimator addresses this limitation,

illustrating its robustness to heteroskedasticity of various degrees.

Figure 2.2 compares rejection probability curves of MVR-based asymptotic t tests con-

structed with standard errors robust to conditional mean misspecification (MVR1)

and assuming linearity of the conditional mean (MVR2). For ¸-MVR, rejection prob-

ability curves obtained with MVR2 standard errors are much more similar to those of

e-MVR, although they display some crossing for larger sample sizes n = 640, 1280 and

high heteroskedasticity (– = 2). This reflects a higher sensitivity of ¸-MVR standard

errors to extreme observations, since for this design the most extreme observations

in each sample gets more extreme as sample size increases, as noted by MacKinnon

(2013). For both MVR estimators, the rejection probability curves obtained with

MVR2 standard errors are slightly flatter than those obtained with MVR1, and indi-

cate higher rejection frequencies for small sample sizes. As expected, the discrepancy

between the two sets of rejection probability curves decreases with sample size.
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¸-MVR e-MVR

– 0 0.5 1 1.5 2 0 0.5 1 1.5 2

—1
n = 20 109.4 99.1 89.2 81.2 76.3 61.4 62.3 60.5 58.2 57.3
n = 40 82.9 76.0 67.1 58.1 51.0 71.1 71.2 66.6 59.5 51.2
n = 80 83.2 78.0 67.2 55.2 46.6 79.1 78.2 69.4 57.1 44.5
n = 160 87.9 81.9 67.2 52.3 43.1 85.5 83.1 69.3 52.8 38.2
n = 320 91.3 83.7 65.2 48.2 39.4 90.3 85.1 66.4 47.2 32.2
n = 640 94.0 84.1 62.1 43.7 35.5 93.8 85.3 62.6 41.9 27.1
n = 1280 96.1 83.8 59.1 39.9 32.1 96.0 84.7 59.3 37.6 23.3

—2
n = 20 110.5 100.1 90.2 81.7 76.1 62.2 63.7 61.9 59.0 58.1
n = 40 82.5 75.8 67.1 58.1 51.3 71.1 71.2 66.9 59.8 51.3
n = 80 83.4 78.1 67.3 55.4 46.7 79.3 78.5 69.6 57.2 44.6
n = 160 87.9 82.2 67.4 52.4 43.3 85.6 83.3 69.5 53.0 38.4
n = 320 91.3 84.0 65.6 48.5 39.6 90.1 85.3 66.8 47.7 32.6
n = 640 94.0 84.2 62.2 43.8 35.6 93.7 85.3 62.8 42.0 27.1
n = 1280 96.1 83.8 58.9 39.8 32.0 96.0 84.7 59.1 37.4 23.1

—3
n = 20 109.7 99.5 89.6 81.8 76.1 62.3 64.2 61.4 58.7 56.9
n = 40 82.7 76.2 67.5 58.5 51.5 71.4 71.6 67.2 60.1 51.8
n = 80 83.2 78.0 67.3 55.4 46.8 79.0 78.3 69.7 57.4 44.8
n = 160 87.7 81.7 67.1 52.3 43.3 85.3 82.8 69.1 52.7 38.2
n = 320 91.5 83.9 65.4 48.3 39.6 90.4 85.3 66.6 47.3 32.3
n = 640 93.9 84.2 62.3 43.9 36.1 93.5 85.4 62.9 42.1 27.3
n = 1280 96.1 83.7 59.0 39.9 32.9 96.0 84.5 59.1 37.5 23.2

Table 3. Ratio (◊100) of MVR average confidence interval lengths
for —1, —2 and —3 over corresponding OLS counterpart. Confidence
intervals constructed with standard errors under misspecification of the
conditional mean function (MVR1).

Overall the simulation results in this Section illustrate the large MVR finite-sample

improvements for estimation and inference in heteroskedastic designs. In particular,

e-MVR displays remarkable robustness properties for the most di�cult designs.
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¸-MVR e-MVR

– 0 0.5 1 1.5 2 0 0.5 1 1.5 2

—1
n = 20 122.9 118.3 117.7 118.5 119.7 69.0 74.4 79.9 85.0 89.9
n = 40 88.0 87.0 87.8 87.7 85.5 75.4 81.5 87.2 89.8 85.8
n = 80 85.4 86.8 88.3 87.0 83.0 81.1 87.1 91.2 90.0 79.3
n = 160 89.2 90.3 89.4 85.8 80.4 86.7 91.7 92.1 86.7 71.3
n = 320 92.0 92.0 88.4 82.8 76.5 91.0 93.5 90.0 81.1 62.6
n = 640 94.3 93.3 87.6 80.7 73.6 94.1 94.6 88.4 77.3 56.1
n = 1280 96.3 93.6 85.7 77.5 70.3 96.1 94.6 86.0 73.1 50.9

—2
n = 20 124.5 119.8 118.8 118.8 118.9 70.1 76.2 81.6 85.7 90.7
n = 40 87.9 87.2 88.0 87.8 85.6 75.8 81.9 87.7 90.2 85.6
n = 80 86.1 87.3 88.3 87.1 83.0 81.9 87.6 91.4 90.0 79.3
n = 160 89.2 90.5 89.2 85.7 80.5 86.8 91.6 92.0 86.5 71.3
n = 320 92.0 92.4 88.9 83.6 77.4 90.8 93.8 90.6 82.2 63.6
n = 640 94.3 93.2 87.1 79.9 73.1 94.0 94.4 87.8 76.5 55.7
n = 1280 96.2 93.3 85.2 77.1 69.8 96.1 94.3 85.4 72.6 50.4

—3
n = 20 124.1 119.2 118.1 118.9 119.0 70.5 76.9 80.8 85.4 89.0
n = 40 87.9 87.2 88.0 87.7 85.6 75.9 82.0 87.7 90.1 86.1
n = 80 85.9 87.4 88.6 87.3 83.2 81.6 87.8 91.8 90.4 79.7
n = 160 89.2 90.5 89.5 86.0 80.8 86.8 91.7 92.2 86.7 71.3
n = 320 92.1 92.1 88.5 83.0 77.2 90.9 93.5 90.2 81.4 63.0
n = 640 94.2 93.3 87.3 80.3 74.2 93.8 94.6 88.2 77.0 56.1
n = 1280 96.2 93.5 85.7 77.9 72.5 96.1 94.4 85.8 73.3 51.0

Table 4. Ratio (◊100) of MVR average confidence interval lengths
for —1, —2 and —3 over corresponding WLS counterpart. Confidence
intervals constructed with standard errors under misspecification of the
conditional mean function (MVR1).
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¸-MVR e-MVR

– 0 0.5 1 1.5 2 0 0.5 1 1.5 2

—1
n = 20 45.5 44.4 42.1 39.0 36.1 44.2 43.6 41.3 38.0 34.3
n = 40 59.3 59.4 55.4 49.1 42.7 60.7 60.0 55.3 48.5 41.0
n = 80 70.4 71.0 63.2 52.4 43.3 72.3 71.0 62.7 51.6 40.5
n = 160 79.2 78.7 65.8 51.2 41.2 80.9 78.4 65.5 50.1 36.6
n = 320 85.9 82.3 64.7 47.7 37.9 87.1 82.1 64.4 46.1 31.6
n = 640 90.7 83.5 62.0 43.4 34.4 91.6 83.6 61.6 41.3 26.9
n = 1280 94.1 83.6 59.1 39.6 31.2 94.6 83.8 58.7 37.4 23.2

—2
n = 20 45.4 44.4 42.0 39.0 36.0 44.7 44.1 41.7 38.3 34.5
n = 40 59.2 59.5 55.6 49.2 42.9 60.8 60.0 55.4 48.7 41.2
n = 80 70.6 71.3 63.4 52.5 43.4 72.6 71.3 62.9 51.7 40.5
n = 160 79.2 78.8 65.9 51.3 41.4 81.0 78.5 65.6 50.3 36.8
n = 320 85.8 82.7 65.1 48.0 38.2 87.1 82.5 64.9 46.5 32.0
n = 640 90.7 83.7 62.1 43.5 34.5 91.6 83.7 61.7 41.4 26.9
n = 1280 94.2 83.5 58.9 39.5 31.1 94.7 83.7 58.5 37.2 23.0

—3
n = 20 45.4 44.5 42.4 39.3 36.2 44.8 44.2 41.9 38.5 34.7
n = 40 59.2 59.6 55.7 49.3 42.9 60.8 60.2 55.6 48.9 41.4
n = 80 70.4 71.2 63.4 52.6 43.5 72.4 71.3 63.0 51.9 40.7
n = 160 79.0 78.5 65.7 51.2 41.3 80.8 78.2 65.3 50.1 36.7
n = 320 85.9 82.6 64.9 47.8 38.1 87.2 82.4 64.6 46.2 31.7
n = 640 90.5 83.7 62.2 43.6 34.9 91.4 83.7 61.9 41.6 27.1
n = 1280 94.1 83.5 59.0 39.6 32.1 94.6 83.6 58.5 37.3 23.1

Table 5. Ratio (◊100) of MVR average confidence interval lengths for
—1, —2 and —3 over corresponding OLS counterpart. Confidence intervals
constructed with standard errors assuming correct specification of the
conditional mean function (MVR2).
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¸-MVR e-MVR

– 0 0.5 1 1.5 2 0 0.5 1 1.5 2

—1
n = 20 51.0 53.0 55.5 57.0 56.5 49.6 52.1 54.5 55.4 53.7
n = 40 62.9 68.0 72.5 74.1 71.6 64.4 68.7 72.3 73.2 68.7
n = 80 72.2 79.1 83.1 82.5 77.1 74.2 79.1 82.5 81.3 72.0
n = 160 80.3 86.8 87.4 84.0 76.8 82.0 86.5 87.0 82.3 68.3
n = 320 86.5 90.5 87.8 82.0 73.7 87.8 90.3 87.3 79.1 61.5
n = 640 91.0 92.6 87.4 80.2 71.2 91.9 92.7 86.9 76.3 55.6
n = 1280 94.2 93.3 85.7 77.0 68.3 94.8 93.5 85.2 72.6 50.7

—2
n = 20 51.2 53.1 55.4 56.7 56.2 50.4 52.7 54.9 55.7 53.9
n = 40 63.1 68.4 72.9 74.4 71.6 64.8 69.0 72.6 73.5 68.8
n = 80 72.9 79.6 83.2 82.5 77.0 74.9 79.6 82.6 81.3 72.0
n = 160 80.3 86.7 87.2 83.9 76.9 82.1 86.4 86.9 82.2 68.4
n = 320 86.4 90.9 88.3 82.8 74.5 87.7 90.7 88.0 80.2 62.5
n = 640 91.0 92.6 86.9 79.4 70.8 91.9 92.6 86.4 75.6 55.2
n = 1280 94.3 93.1 85.2 76.5 67.9 94.8 93.3 84.7 72.1 50.2

—3
n = 20 51.3 53.3 55.8 57.2 56.6 50.6 52.9 55.1 56.0 54.3
n = 40 62.9 68.2 72.7 73.9 71.3 64.6 68.9 72.5 73.3 68.8
n = 80 72.7 79.8 83.5 82.8 77.3 74.8 79.9 83.0 81.7 72.4
n = 160 80.3 86.9 87.6 84.2 77.1 82.2 86.7 87.2 82.5 68.5
n = 320 86.4 90.6 87.9 82.3 74.4 87.8 90.4 87.5 79.5 61.9
n = 640 90.8 92.6 87.2 79.8 71.9 91.7 92.7 86.7 76.0 55.7
n = 1280 94.2 93.2 85.7 77.4 70.7 94.7 93.3 85.0 72.8 50.8

Table 6. Ratio (◊100) of MVR average confidence interval lengths
for —1, —2 and —3 over corresponding WLS counterpart. Confidence in-
tervals constructed with standard errors assuming correct specification
of the conditional mean function (MVR2).
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Figure 2.1. Rejection frequencies for asymptotic t tests: ¸-MVR, e-
MVR, OLS and WLS. Sample sizes: 20 (black), 40 (red), 80 (green),
160 (blue), 320 (cyan), 640 (magenta), 1280 (grey).
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Figure 2.2. Rejection frequencies for asymptotic t tests: ¸-MVR, e-
MVR. MVR1 (left) and MVR2 (right). Sample sizes: 20 (black), 40
(red), 80 (green), 160 (blue), 320 (cyan), 640 (magenta), 1280 (grey).
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3. Numerical Simulations Calibrated to The Demand for Gasoline

Example

3.1. Additional results: confidence intervals for MVR2. Table 7 reports ratios

of ¸-MVR and e-MVR average confidence interval lengths across simulations for —1 and

—2 over OLS average confidence interval lengths, in percentage terms. MVR confidence

intervals are based on MVR2 standard errors, and are slightly more favorable to MVR

compared to the results obtained with MVR1 standard errors reported in Table 4 in

the main text.

In these simulations, with standard errors calculated assuming correct specification of

the conditional mean, MVR also yields substantially tighter confidence intervals com-

pared to OLS in the presence of heteroskedasticity, with confidence interval lengths

ratios ranging from 84.5 to 98.8 for —1 and from 70.4 to 98.2 for —2, while not incurring

any loss in precision for the homoskedastic data generating process.

3.2. Additional simulations: nonlinear conditional mean function. We present

the results of a second set of experiments based on the demand for gasoline empirical

example in which we compare the approximation properties of MVR to those of OLS

under misspecification of the conditional mean function, in root mean square error.

The designs of our simulations in the main text are modified to incorporate a nonlin-

ear relationship between X1 (log price) and Y (log gasoline annual consumption). We

specify the nonlinear relationship in X1 by means of trigonometric basis functions

f(x1, ”1) = ”11x1 + ”12 sin(2fix1) + ”13 cos(2fix1) + ”14 sin(4fix1) + ”15 cos(4fix1).

All designs are calibrated to specification (4) in the main text, by Gaussian maximum

likelihood.

Design LOC. Our first design is the homoskedastic model

Y = —0 + f(X1, —1) + X2—2 + X

Õ
3—3 + ‡Á.

Design LIN. Our second design is a set of heteroskedastic models with linear-

polynomial scale functions

Y = —0+f(X1, —1)+X2—2+X

Õ
3—3+s(“0+f(X1, “1)+X2“2+X

Õ
3“3)

–
Á, – œ {0.5, 1, 1.5, 2}.
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Design LOC LIN EXP

– 0 0.5 1 1.5 2 0.5 1 1.5 2

Log price coe�cient ˆ

—1

¸-MVR
n = 500 96.8 96.1 93.9 90.5 86.0 96.1 94.0 90.5 85.8
n = 1000 98.4 97.6 95.0 90.7 84.7 97.6 95.0 90.6 84.5
n = 5254 99.7 98.8 96.2 91.8 85.8 98.8 96.2 91.7 85.4

e-MVR
n = 500 97.4 96.3 94.2 91.0 86.7 96.3 94.2 90.8 86.1
n = 1000 98.6 97.6 95.2 91.4 86.4 97.6 95.2 91.1 85.4
n = 5254 99.7 98.8 96.3 92.4 87.1 98.8 96.2 91.9 85.8

Log income coe�cient ˆ

—2

¸-MVR
n = 500 96.5 95.8 93.1 88.9 83.7 95.7 92.7 87.8 81.8
n = 1000 98.1 97.1 93.2 87.0 79.5 96.7 91.6 83.6 74.0
n = 5254 99.7 98.2 93.8 87.4 79.8 97.8 92.3 84.2 74.7

e-MVR
n = 500 97.1 95.8 92.9 88.4 82.7 95.6 92.3 86.9 79.9
n = 1000 98.6 97.0 92.7 86.0 77.8 96.5 90.7 81.6 70.4
n = 5254 99.7 98.1 93.5 86.7 78.4 97.7 91.7 82.5 71.4

Table 7. Ratio (◊100) of MVR average confidence interval lengths
for —1 and —2 over corresponding OLS counterpart. Confidence inter-
vals constructed standard errors assuming correct specification of the
conditional mean function (MVR2).

Design EXP. Our third design is a set of heteroskedastic models with exponential-

polynomial scale functions

Y = —0+f(X1, —1)+X2—2+X

Õ
3—3+s(“0+f(X1, “1)+X2“2+X

Õ
3“3)

–
Á, – œ {0.5, 1, 1.5, 2}.

where we let Á ≥ N (0, 1). For all designs we implement our estimators and OLS

for the same sample sizes and X values as in the main text, with the number of

simulations set to 5000.

Table 8 reports results regarding the accuracy of OLS and MVR linear approximations

of the conditional mean function µ(x, —) = —0 + f(x1, —1) + x2—2 + x

Õ
3—3, evaluated at

the n sample values x1i of X1, and at fixed values of the remaining variables.1 For

1The non binary variables X2, X31, . . . X34, are evaluated at their modal values. These variables
are the log of household income, age of household respondent, household size, number of drivers
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Design LOC LIN EXP

– 0 0.5 1 1.5 2 0.5 1 1.5 2

¸-MVR
n = 500 101.2 100.9 100.0 98.5 96.5 100.9 100.0 98.6 96.5
n = 1000 100.7 100.0 97.9 94.6 90.1 100.0 97.9 94.1 88.9
n = 5254 100.1 99.6 97.8 95.0 91.6 99.5 97.5 94.1 89.6

e-MVR
n = 500 100.8 100.6 99.9 98.6 96.8 100.6 99.8 98.3 96.2
n = 1000 100.6 99.9 97.8 94.5 90.2 99.9 97.7 93.8 88.3
n = 5254 100.1 99.6 97.8 95.0 91.6 99.5 97.4 93.9 89.1

Table 8. Ratio (◊100) of average MVR RMSE for µ(x) over corre-
sponding OLS counterpart.

each data generating process we report the ratios of average estimation errors across

simulations of ¸-MVR and e-MVR relative to OLS in percentage terms. Estimation

errors are measured for each simulation by the root mean squared error, and then

averaged across simulations.

These results confirm that in these simulations MVR does not result in finite-sample

loss in the quality of approximation of nonlinear conditional mean functions relative

to OLS, measured in RMSE.
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