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Abstract

We propose a new nonparametric test of stochastic monotonicity which adapts

to the unknown smoothness of the conditional distribution of interest, possesses

desirable asymptotic properties, is conceptually easy to implement, and computa-

tionally attractive. In particular, we show that the test asymptotically controls

size at a polynomial rate, is non-conservative, and detects local alternatives that

converge to the null with the fastest possible rate. Our test is based on a data-

driven bandwidth value and the critical value for the test takes this randomness

into account. Monte Carlo simulations indicate that the test performs well in finite

samples. In particular, the simulations show that the test controls size and may be

significantly more powerful than existing alternative procedures.
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1 Introduction

Monotone relationships play a significant role in economic models, and therefore devel-

oping tests of such relationships is an important task for econometric research. In this

paper, we propose a new nonparametric test of the hypothesis that two random variables

satisfy the stochastic monotonicity condition. Such a test is useful in many economic ap-

plications, for example for testing monotone IV assumptions (e.g. Kasy (2014), Hoderlein,

Holzmann, Kasy, and Meister (2016), Chetverikov and Wilhelm (2017), Wilhelm (2017))

and for testing identifying assumptions (e.g. Matzkin (1994), Lewbel and Linton (2007),

Banerjee, Mukherjee, and Mishra (2009)).1 More generally, stochastic monotonicity plays

an important role in industrial organization (e.g. Ellison and Ellison (2011)), in stochas-

tic dynamic programming (e.g. Stokey and Lucas Jr. (1989), Ericson and Pakes (1995),

Olley and Pakes (1996)), and in finance (e.g. Richardson, Richardson, and Smith (1992),

Boudoukh, Richardson, Smith, and Whitelaw (1999), Patton and Timmermann (2010)),

among many other fields of economics.

Consider two continuous random variables X and Y , both supported on [0, 1]. In this

paper, we are interested in testing the null of stochastic monotonicity,

H0 : FY |X(y|x′) ≥ FY |X(y|x′′) for all y, x′, x′′ ∈ (0, 1) with x′ ≤ x′′, (1)

against the alternative

Ha : FY |X(y|x′) < FY |X(y|x′′) for some y, x′, x′′ ∈ (0, 1) with x′ ≤ x′′. (2)

We propose a new nonparametric test of (1) against (2) that possesses favorable properties

relative to existing approaches. First, to the best of our knowledge it is the first test that

is shown to be adaptive. This means that the test adapts to the unknown smoothness level

of the functions x 7→ FY |X(y|x) through a data-driven bandwidth choice. For comparison,

the implementation of non-adaptive tests requires the user to specify a bandwidth value,

which is undesirable because the test results may be sensitive to the particular value that

is chosen. Moreover, the non-adaptive test may have low power if the bandwidth value

provided by the user is not appropriate for a particular data-generating process, and, in

addition, if the user performs some search over different bandwidth values to be used in

the non-adaptive test, the resulting procedure may not control size, even in large samples.

Second, we show that our test is asymptotically controlling size and is non-conservative,

i.e. it has limiting rejection probability not larger than the nominal level for all data-

generating processes in the null and equal to the nominal level for some data-generating

1Chetverikov and Wilhelm (2017) have already applied our proposed procedure for testing whether

their monotone IV assumption holds in the context of estimating gasoline demand functions.
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processes in the null. In fact, we show that the probability of rejecting the null under

the null can exceed the nominal level at most by a polynomial order, which we refer to

as polynomial size control. Third, we show that the test is consistent against all fixed

and against local alternatives that converge to the null with the fastest possible rate.

Our critical values are computed through a simple multiplier bootstrap procedure which

delivers the polynomial size control without employing any higher-order corrections as is

necessary in other existing approaches based on the limit distribution, e.g. Lee, Linton,

and Whang (2009). Fourth, we show in simulations that our test not only controls size,

but can be significantly more powerful than existing alternative approaches. Finally,

our test is very simple to implement and is computationally attractive. It only requires

a nonparametric estimator of the conditional distribution that is computed once on the

whole sample and does not need to be re-computed on the bootstrap samples. Importantly,

our test is robust with respect to the choice of the tuning parameter underlying this

nonparametric estimator, in the sense that varying the tuning parameter only yields

second order changes in the rejection probabilities. We provide an R implementation of

the test at https://github.com/dongwookim1984.

There are several alternative approaches in the literature for testing (1) against (2).

Our test statistic is based on the differences of the conditional cdf for different values of the

conditioning variable X and is therefore most closely related to the one proposed in Lee,

Linton, and Whang (2009). An important difference is that we take the maximum over

the bandwidth value to achieve adaptivity whereas they let the user specify a particular

bandwidth value. In consequence, our critical value is computed in a different fashion,

using a multiplier bootstrap procedure. Delgado and Escanciano (2012) and Seo (2016)

construct a test statistic by comparing the empirical copula of (X, Y ) with its least concave

majorant. Lee, Song, and Whang (2013) and Hsu, Liu, and Shi (2016) propose tests of

functional inequalities of which testing the null of stochastic monotonicity is a special

case. Stochastic monotonicity implies the weaker concept of regression monotonicity, i.e.

monotonicity of x 7→ E[Y |X = x], and some testing approaches for this hypothesis are

similar to those of the former (e.g. Ghosal, Sen, and Vaart (2000), Chetverikov (2012),

and Delgado and Escanciano (2013)). The approach closest to ours is Chetverikov (2012),

but there are several important differences between his and this paper. First, we test a

different, stronger null hypothesis that requires an additional maximum over values of y.

Second, our test statistic is different and leads to a test that is substantially easier to

implement because we do not require the nonparametric estimation of his studentization

factor, the conditional variance function.
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2 The Test

In this section, we introduce our new test of the null of stochastic monotonicity based

on an i.i.d. sample (Xi, Yi)
n
i=1 from the distribution of the pair (X, Y ). Throughout the

paper, we assume that the random variables X and Y are normalized so that they both

have support [0, 1]. Let K : R→ R be a kernel function and, for a bandwidth value h > 0,

define Kh(x) := h−1K(x/h), x ∈ R. Suppose H0 is satisfied. Then, by the law of iterated

expectations,

E
[
(1{Yi ≤ y} − 1{Yj ≤ y})sign(Xi −Xj)Kh(Xi − x)Kh(Xj − x)

]
≤ 0 (3)

for all x, y ∈ (0, 1) and i, j = 1, . . . , n. Denoting

Kij,h(x) := sign(Xi −Xj)Kh(Xi − x)Kh(Xj − x), x ∈ R,

taking the sum of the left-hand side in (3) over i, j = 1, . . . , n, and rearranging give

E

[
n∑
i=1

1{Yi ≤ y}
n∑
j=1

(Kij,h(x)−Kji,h(x))

]
≤ 0,

or, equivalently,

E

[
n∑
i=1

ki,h(x)1{Yi ≤ y}

]
≤ 0, (4)

where

ki,h(x) :=
n∑
j=1

(Kij,h(x)−Kji,h(x)) = 2
n∑
j=1

Kij,h(x), x ∈ R.

Our test is based on the observation that under H0, (4) holds for all x ∈ (0, 1) and

y ∈ (0, 1). To define the test statistic T , let

hmax := 1, hmin := 1/n1−δ, for some δ ∈ (0, 2/3],

and

Bn :=

{
hmaxu

l : l = 0, 1, 2, . . . ,

[
log(hmax/hmin)

log(1/u)

]}
, for some u ∈ (0, 1)

be a collection of bandwidth values, where the notation [a] denotes the largest integer that

is smaller than or equal to a. Here, Bn forms a geometric grid on the interval [hmin, hmax]

with the geometric step u. Also, let

Xn := {X1, . . . , Xn}

and

Yn :=
{
l/n : l = 1, . . . , n− 1

}
.
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We define our test statistic by

T := max
(x,y,h)∈Xn×Yn×Bn

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

. (5)

The statistic T is most closely related to that in Lee, Linton, and Whang (2009). The

main difference is that we take the maximum with respect to the set of bandwidth values

h ∈ Bn to let the data choose the best possible bandwidth value and to achieve adaptivity

of the test.

We now discuss the construction of a critical value for the test. Suppose that we

would like to have a test of level (approximately) α ∈ (0, e−1). As demonstrated by

Lee, Linton, and Whang (2009), the derivation of the asymptotic distribution of T is

complicated even when Bn is a singleton. Moreover, when Bn is not a singleton, it is

generally unknown whether T converges to some non-degenerate asymptotic distribution,

even after an appropriate normalization. We avoid these complications by employing

a multiplier bootstrap critical value. Specifically, let e1, . . . , en be an i.i.d. sequence

of N(0, 1) random variables that are independent of the data and let F̂Y |X(y|x) be an

estimator of FY |X(y|x). We then define a bootstrap test statistic by

T b := max
(x,y,h)∈Xn×Yn×Bn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

and the critical value2 c(α) as

c(α) := (1− α) conditional quantile of T b given the data.

We reject H0 if and only if T > c(α).

We emphasize how simple and computationally attractive the implementation of this

test is. The test statistic itself is just the maximum of a long vector of sums of observations.

The bootstrap statistic requires the computation of the nonparametric estimator F̂Y |X

evaluated at the grid of values for y and the observed values Xi for the conditioning

variable. However, this estimator has to be computed only once on the whole sample and

each bootstrap iteration only introduces new draws of multipliers e1, . . . , en to the sum

of the numerator. We provide an R implementation of the test at https://github.com/

dongwookim1984.

2In the terminology of the moment inequalities literature, c(α) can be considered a “one-step” or

“plug-in” critical value. Using similar ideas as in Chetverikov (2012), we could also consider two-step or

even multi-step (stepdown) critical values. For brevity of the paper, however, we do not consider these

options here.
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Remark 2.1 (Testing First-Order Stochastic Dominance). If X were binary rather than

continuous, the null of stochastic monotonicity would reduce to that of first-order stochas-

tic dominance of FY |X(·|0) by FY |X(·|1). Our test could be adapted to this case by remov-

ing ki,h(x) from the numerator, removing the denominator, and maximizing only over y.

The test statistic then would be identical to that in Barrett and Donald (2003). �

3 Large Sample Properties of the Test

In this section, we derive asymptotic properties of the test proposed in Section 2. First

we show that the test asymptotically controls size and is non-conservative. We also show

that the probability of rejecting the null under the null can exceed the nominal level α at

most by a polynomial order. Then we demonstrate that the test is consistent against all

fixed and against local alternatives that converge to the null at the fastest possible rate.

We start our analysis in this section by providing the list of required regularity condi-

tions.

Assumption 3.1 (Kernel). The kernel function K : R → R is such that (i) K(x) > 0

for all x ∈ (−1, 1), (ii) K(x) = 0 for all x /∈ (−1, 1), (iii) K is continuous, and (iv)∫∞
−∞K(x)dx = 1.

Here, we assume that the kernel function K has bounded support, is continuous, and

is strictly positive on the support. The last condition excludes higher-order kernels but

allows us to perform search (i.e. take the maximum) over a large set of bandwidth values

Bn.

Assumption 3.2 (Joint Distribution of X and Y ). (i) The distribution of X is absolutely

continuous with respect to the Lebesgue measure on [0, 1] with the pdf fX satisfying cX ≤
fX(x) ≤ CX for all x ∈ (0, 1) and some constants 0 < cX < CX <∞. (ii) The conditional

cdf FY |X(y|x) is such that cε ≤ FY |X(ε|x) ≤ FY |X(1− ε|x) ≤ Cε for all x ∈ (ε, 1− ε) and

some constants 0 < cε < Cε < 1 and 0 < ε < 1/2.

This is a weak regularity condition requiring, in particular, the support of the random

variable X to be [0, 1] and the density of X to be bounded from above and away from

zero on the support. The second part of this condition requires that for all x that are not

too close to the boundary of the support of X, a non-negligible mass of the conditional

distribution of Y given X = x is concentrated on the interval [ε, 1− ε].

Assumption 3.3 (Estimator of FY |X(y|x)). The estimator F̂Y |X(y|x) of FY |X(y|x) sat-

isfies

P

(
max

(x,y)∈Xn×Yn
|F̂Y |X(y|x)− FY |X(y|x)| > CFn

−cF
)
≤ CFn

−cF
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for some constants cF , CF > 0.

This is a mild high-level condition implying uniform consistency of an estimator

F̂Y |X(y|x) of FY |X(y|x) over (x, y) ∈ Xn × Yn with a polynomial rate of convergence.

In Appendix A, we demonstrate that this assumption holds for the kernel estimator

F̂Y |X(y|x) :=

∑n
i=1 1{Yi ≤ y}Kb(Xi − x)∑n

i=1Kb(Xi − x)
, x, y ∈ [0, 1], (6)

if we set the bandwidth value b = bn = 1/
√
n as long as Assumptions 3.1 and 3.2 are

satisfied and the functions x 7→ FY |X(y|x) are Lipschitz-continuous. For a more general

treatment providing conditions underlying Assumption 3.3, we refer an interested reader

to Härdle, Janssen, and Serfling (1988).

It is important to notice that our test is robust with respect to the choice of the

bandwidth value b for the nonparametric estimator F̂Y |X(y|x) in (6). In particular, varying

the bandwidth value b will affect the rejection probability of the test only in the second

order. Thus, although it is possible in principle to use a data-driven method for selecting

the bandwidth value b that would yield an estimator F̂Y |X(y|x) with the fastest possible

rate of convergence, there is no need to do so, and simply letting b = bn = 1/
√
n would

give similar results.3

We are now able to state our formal results. The first theorem shows that our test

asymptotically controls size and is not conservative:

Theorem 3.1 (Polynomial Size Control). Let Assumptions 3.1, 3.2, and 3.3 be satisfied.

In addition, assume that α ∈ (0, e−1). If H0 holds, then

P (T > c(α)) ≤ α + Cn−c. (7)

If the functions x 7→ FY |X(y|x) are constant for all y ∈ (0, 1), then

|P (T > c(α))− α| ≤ Cn−c. (8)

In both (7) and (8), c and C are constants that depend only on cF , CF , cX , CX , cε, Cε, u, δ, ε,

and the kernel function K.

The result (7) implies that our test asympotically controls size. The result (8) in

turn strengthens this statement by showing that the rejection probability for some data-

generating processes in the null is asympotically equal to the nominal level α, so the test

is not conservative. Furthermore, the probability of rejecting H0 when H0 is satisfied

3Of course, if the support of X is [c, C] for some constants c < C rather than [0, 1], an appropriate

bandwidth value would be b = (C − c)/
√
n.
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can exceed the nominal level α only by a term that is polynomially small in n. We

refer to this phenomenon as polynomial size control. As explained in Lee, Linton, and

Whang (2009), when Bn is a singleton, convergence of T to the limit distribution is

logarithmically slow. For this reason, Lee, Linton, and Whang (2009) used higher-order

corrections derived in Piterbarg (1996) to obtain polynomial size control. Theorem 3.1

shows that the multiplier bootstrap also leads to the polynomial size control, even though

no higher-order corrections are required. To prove Theorem 3.1, we rely on the high-

dimensional CLT and bootstrap results in Chernozhukov, Chetverikov, and Kato (2013,

2017).

The constants c and C in (7) and (8) depend on the data generating process only via

constants and the kernel function appearing in Assumptions 3.1, 3.2, and 3.3. Therefore,

inequalities (7) and (8) hold uniformly over all data-generating processes satisfying these

assumptions with the same constants. In this sense, our test provides uniform size control.

Remark 3.1 (Weak Condition on the Bandwidth Values). As we set hmin = 1/n1−δ for

some δ ∈ (0, 1), our theorem requires

1

nh
≤ Chn

−ch (9)

for all h ∈ Bn and some constants ch, Ch > 0, which is considerably weaker than the

analogous condition in Lee, Linton, and Whang (2009), who require 1/(nh3) → 0, up to

logarithmic terms. As follows from the proof of the theorem, the multiplier bootstrap

distribution approximates the conditional distribution of the test statistic given Xn =

{X1, . . . , Xn}. Conditional on Xn, the denominator in the definition of T is fixed, and does

not require any approximation. Instead, we could try to approximate the denominator of

T by its probability limit. This is done in Ghosal, Sen, and Vaart (2000) using the theory

of Hoeffding projections (in a different setting) but they require the condition 1/nh2 → 0,

which is also stronger than our condition (9). �

Our second result in this section concerns the ability of our test to detect fixed models

in the alternative Ha.

Theorem 3.2 (Consistency). Let Assumptions 3.1, 3.2, and 3.3 be satisfied and assume

that (x, y) 7→ FY |X(y|x) is continuously differentiable. If Ha holds with

∂

∂x
FY |X(y∗|x∗) > 0, for some x∗, y∗ ∈ (0, 1)

then

P (T > c(α))→ 1 as n→∞. (10)
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This theorem shows that our test is consistent against any model in Ha (with smooth

(x, y) 7→ FY |X(y|x)), which is typically considered a necessary condition for the test to be

useful. Note, however, that the result (10) only shows that if the sample size n is large

enough, the probability of rejecting the null when the null does not hold will be close to

one. The result does not specify, on the other hand, how large the sample size n has to be

in order for the rejection probability to be close one. We therefore complement the result

in Theorem 3.2 by deriving the rate of consistency of our test against local alternatives.

To this end, we introduce the triangular array {(Xi,n, Yi,n) : i = 1, . . . , n}n≥1, where for

each n ≥ 1, (Xi,n, Yi,n)ni=1 is an i.i.d. sample from the distribution of the pair (Xn, Y n),

and the distribution of (Xn, Y n) can vary with n. Let

FY |X,n(y|x) := Pn(Y n ≤ y | Xn = x), x, y ∈ [0, 1],

denote the conditional cdf of the distribution of Y n given Xn.

Assumption 3.4 (Smoothness). For all n ≥ 1, (x, y) 7→ FY |X,n(y|x) is twice continuously

differentiable and∣∣∣∣ ∂∂xFY |X,n(y|x)

∣∣∣∣ ≤ CL, for all x, y ∈ [0, 1],∣∣∣∣ ∂2

∂x∂y
FY |X,n(y|x)

∣∣∣∣ ≤ CL, for all x, y ∈ [0, 1],∣∣∣∣ ∂∂xFY |X,n(y|x2)− ∂

∂x
FY |X,n(y|x1)

∣∣∣∣ ≤ CL|x2 − x1|β, for all x1, x2, y ∈ [0, 1],

for all n ≥ 1 and some constants 0 < CL <∞ and β ∈ (0, 1).

The first two conditions in this assumption require the sequence of conditional cdfs

FY |X,n(y|x) to have a bounded first derivative with respect to x and cross derivative, where

the bound is independent of n. The third condition requires the derivative of FY |X,n(y|x)

with respect to x to be Hölder continuous in x with constant and exponent that are

independent of n.

Theorem 3.3 (Rate of Consistency). Let Assumptions 3.1, 3.2, and 3.3 be satisfied for

all n ≥ 1 with the same constants cF , cF , cX , CX , cε, Cε, and ε, and the same kernel K,

where we replace (X, Y ) in Assumption 3.2 by (Xn, Y n) and FY |X in Assumption 3.3 by

FY |X,n. In addition, suppose that Assumption 3.4 holds. If for all n and some sequence

of positive constants (`n)n≥1 such that (log n/n)β/(2β+3) = o(`n) and

∂

∂x
FY |X,n(y∗|x∗) > `n, for some x∗, y∗ ∈ (0, 1),

then

P (T > c(α))→ 1 as n→∞. (11)

9



This theorem shows that our test is consistent against local alternatives for which the

size of the deviation of ∂FY |X,n(y|x)/∂x from zero converges to zero at a rate slower than

(log n/n)β/(2β+3). Using the standard arguments, e.g. in Dümbgen and Spokoiny (2001),

it is possible to show that this is the fastest possible rate with which the alternatives can

converge to the null if we hope to be able to detect them (in the minimax sense). We

therefore conclude that our test is consistent against the alternatives that converge to the

null with the fastest possible rate.

Remark 3.2 (Testing First-Order Stochastic Dominance). As indicated in Remark 2.1,

one could modify our test to accommodate the case in which X is binary, leading to a test

of first-order stochastic dominance. The results of this section then imply that our test,

which would be equivalent to that in Barrett and Donald (2003), satisfies polynomial size

control and polynomial rate of consistency. These desirable properties were not shown in

Barrett and Donald (2003). �

4 Simulations

In this section, we describe a simulation experiment which illustrates the finite sample

performance of our test and compare it to other alternatives. The design is based on

Delgado and Escanciano (2012) and the 2014 working paper version of Seo (2016).4 We

simulate 1,000 Monte Carlo samples of sizes 100, 200 and 300 from the following four data

generating processes:

N1: Yi = Ui

A1: Yi = −0.1Xi + Ui

A2: Yi = −0.1X2
i + Ui

A3: Yi = 0.2Xi − β exp(−250(Xi − 0.5)2) + Ui

where β = 0.2, Xi is uniformly distributed on the unit interval, and Ui is drawn from

N(0, 0.12). By construction, Xi and Ui are independent of each other for all i. In the

model N1, Yi and Xi are independent, so the null hypothesis holds. Models A2 and A3

are models in the alternative hypothesis for which the null is violated at every conditioning

value of Xi. Model A4, on the other hand, is an alternative that deviates from the null

only locally. The right panel of Figure 1 shows the conditional mean function.

4The only reason why we base our simulations on the 2014 working paper version of Seo (2016) rather

than the 2016 version is that the former contains simulation results for various sample sizes whereas the

latter only reports results for very small ones (n = 70 and n = 120).
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Model n CWK S-L1 S-L2 S-L∞ DE LLW0.5 LLW0.6 LLW0.7

N1 100 0.051 (0.175) 0.055 0.048 0.049 0.046 0.034 0.035 0.036

200 0.050 (0.127) 0.054 0.053 0.053 0.052 0.031 0.034 0.033

300 0.064 (0.129) 0.062 0.053 0.044 0.042 0.036 0.039 0.039

A1 100 0.412 (0.574) 0.877 0.828 0.653 0.634 0.408 0.542 0.612

200 0.667 (0.740) 0.988 0.980 0.911 0.880 0.749 0.853 0.908

300 0.885 (0.860) 0.999 1.000 0.995 0.980 0.911 0.964 0.980

A2 100 0.418 (0.580) 0.874 0.806 0.620 0.599 0.469 0.587 0.651

200 0.693 (0.738) 0.990 0.981 0.938 0.906 0.805 0.892 0.925

300 0.902 (0.843) 1.000 1.000 0.995 0.981 0.938 0.972 0.983

A3 100 0.339 (0.144) 0.003 0.030 0.154 0.032 0.012 0.013 0.022

200 0.690 (0.138) 0.003 0.054 0.304 0.157 0.014 0.009 0.014

300 0.929 (0.143) 0.004 0.178 0.539 0.382 0.012 0.009 0.009

Table 1: Rejection probabilities of our test and the tests of Seo (2016), Delgado and

Escanciano (2012), and Lee, Linton, and Whang (2009). The nominal size is 0.05. The

values in the parentheses of CWK are the optimal bandwidths chosen by the test, averaged

over the simulation samples. The results for the other tests besides CWK are taken from

the 2014 working paper version of Seo (2016).

For the implementation of our test, we choose the Epanechnikov kernel for K and

construct the set of bandwidth values Bn using u = 2/3. The number of elements in Bn
are 7, 8, and 8, for the three sample sizes n = 100, n = 200, and n = 300, respectively.

To estimate the conditional cdf of Y given X, we use the estimator defined in (6) with

b = n−1/2. The multiplier bootstrap critical values are computed based on 200 bootstrap

samples with Gaussian multipliers and nominal size of the test is chosen to be 0.05.

Table 1 shows the empirical rejection frequencies of various tests in each of the four

models and each of the three sample sizes. “CWK” refers to our new test. The values in

parentheses are the optimal bandwidths that our test chooses (i.e. the bandwidth value

at which our test statistic achieves the maximum), averaged over the simulation samples.

“S-L1”, “S-L2”, and “S-L∞” refer to the L1-, L2-, and L∞-versions of Seo (2016)’s test,

“DE” to Delgado and Escanciano (2012)’s test, and “LLW0.5”, “LLW0.6”, and “LLW0.7”

to the test of Lee, Linton, and Whang (2009) using the bandwidth values 0.5, 0.6, and

0.7, respectively.

Like all other tests ours also controls size well across all dgps and sample sizes, al-

though LLW appears somewhat conservative. Under the alternative models A1–A3, the

performance of the tests differs. Under A1 and A2, all tests generally perform well in

11



the sense that their rejection frequencies are around 0.4 for the small sample size and are

closer to one as the sample size increases. Seo (2016)’s test clearly dominates all other

tests at small sample sizes with significantly higher rejection frequencies, especially the

L1-, L2- versions of the test. Under the alternative A3, the relative behavior of the tests

is very different. The rejection frequencies of our test are very similar to those for the

other alternatives of about 0.3, 0.7, and 0.9 as the sample size increases, but all other tests

perform significantly worse, struggling to detect the local deviation from the null. Most

of the rejection frequencies of the other tests are close to zero. Only DE and S-L∞ start

rejecting at the larger sample sizes, but their rejection frequencies still remain far below

those of our test. To understand why our test performs similarly well for global as well

as local alternatives, it is helpful to consider the bandwidths that our test automatically

chooses. They are relatively large for alternatives A1 and A2 (around 0.6 to 0.9), but

substantially smaller for A3 (around 0.1). The small bandwidth in model A3 is the reason

for why our test is able to detect the local deviation. On the other hand, tests such as

LLW employ a fixed, user-chosen bandwidth which leads to power against some (A1 and

A2), but not against other (A3) alternatives.

To further investigate the power properties of our test, we generate 1,000 MC samples

of size n = 100 from variations of A3 in which we vary β. The right panel of Figure 1

shows how increasing β increases the size of the local deviation from the null. All other

aspects of the dgp A3 remain the same as above. The left panel of Figure 1 shows the

empirical rejection frequencies of our test compared to LLW with a variety of different

bandwidths as a function β. As the size of the local deviation from the null increases all

tests reject more frequently. However, the power of the LLW test varies substantially as

we vary the bandwidth from 0.1 to 0.6, with the power being largest for the bandwidth of

0.2, but it is significantly less powerful than ours for all bandwidth values and all values

of β.

In conclusion, our test controls size and is able to adapt well to the smoothness of the

conditional cdf of Y |X, which allows it to perform similarly well against all alternatives,

while the other tests considered here perform well against some, but not all alternatives.

12
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Figure 1: The power curves under various degrees of local deviation from the null.
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A Verification of Assumption 3.3

In this section, we verify Assumption 3.3. For concreteness, we work with kernel estimators

but the same assumption can be verified for other nonparametric estimators as well. For

the same kernel function K : R → R as that used in Sections 2 and 3 and a bandwidth

value b > 0, define Kb(x) := b−1K(x/b), x ∈ R. The kernel estimator of FY |X(y|x) is then

given by

F̂Y |X(y|x) :=

∑n
i=1 1{Yi ≤ y}Kb(Xi − x)∑n

i=1Kb(Xi − x)
, x, y ∈ [0, 1].

Also, as in Section 2, define Xn := {X1, . . . , Xn} and Yn := {l/n : l = 1, . . . , n − 1}.
To verify Assumption 3.3, we will impose Assumptions 3.1 and 3.2 and assume that the

functions x 7→ FY |X(y|x) are Lipschitz-continuous. The latter condition is very mild, and

some form of it is typically imposed in the literature on nonparametric estimation. The

following lemma shows that the kernel estimator F̂Y |X(y|x) satisfies Assumption 3.3 under

the aforementioned conditions as long as the bandwidth b does not go to zero too quickly.

Lemma A.1 (Verification of Assumption 3.3). Let Assumptions 3.1 and 3.2 be satisfied

and assume that

|FY |X(y|x2)− FY |X(y|x1)| ≤ CL|x2 − x1|, for all x1, x2, y ∈ [0, 1]

for some constant CL > 0. Also, assume that the bandwidth value b is such that log n ≤ nb.

Then there exists a constant C > 0 depending only on cX , CX , CL, and the kernel function

K such that

P

(
max

(x,y)∈Xn×Yn
|F̂Y |X(y|x)− FY |X(y|x)| > C

(
b+

√
log n

nb

))
≤ 1

n
,

which implies that Assumption 3.3 holds if b = bn is set so that b ≤ Cn−c and log n/(nb) ≤
Cn−c for some constants c, C > 0. In particular, we can set b = bn = 1/

√
n.

Proof. By Assumption 3.1, K is a continuous function with support [−1,+1], and so there

exists a constant CK > 0 such that K(x) ≤ CK for all x ∈ R. Therefore, using the change

of variables formula, we obtain that for all x ∈ [0, 1],

E[Kb(X − x)2] =
1

b2

∫ +∞

−∞
K

(
s− x
b

)2

fX(s)ds =
1

b

∫ +1

−1

K(t)2fX(x+ tb)dt ≤ 2CXC
2
K

b

by Assumptions 3.1 and 3.2. Hence, by Bernstein’s inequality,

P

(∣∣∣∣∣ 1n
n∑
i=1

Kb(Xi − x)− E[Kb(X − x)]

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2/2

E[Kb(X − x)2]/n+ CKt/(nb)

)
≤ 2 exp

(
−nbt2/2

2CXC2
K + CKt

)
.
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Thus, given that log n ≤ nb, there exists a constant C1 depending only on CX and CK

such that

P

(∣∣∣∣∣ 1n
n∑
i=1

Kb(Xi − x)− E[Kb(X − x)]

∣∣∣∣∣ > C1

√
log n

nb

)
≤ 1

2n3
.

Further, observe that for all x, y ∈ [0, 1],

1{Y ≤ y}Kb(X − x) ≤ Kb(X − x) ≤ CK/b

almost surely, and so by the same argument,

P

(∣∣∣∣∣ 1n
n∑
i=1

1{Yi ≤ y}Kb(Xi − x)− E[1{Y ≤ y}Kb(X − x)]

∣∣∣∣∣ > C1

√
log n

nb

)
≤ 1

2n3
.

Next, for all x, y ∈ [0, 1],∣∣∣E[1{Y ≤ y}Kb(X − x)]− FY |X(y|x)E[Kb(X − x)]
∣∣∣

=
∣∣∣E[FY |X(y|X)Kb(X − x)]− FY |X(y|x)E[Kb(X − x)]

∣∣∣
≤
∣∣∣E[(FY |X(y|X)− FY |X(y|x))Kb(X − x)]

∣∣∣ ≤ CLbE[Kb(X − x)] ≤ 2CLCXCKb

by the Lipschitz property of the function x 7→ FY |X(y|x).

Now, given that |Xn ×Yn| = n(n− 1) ≤ n2, combining the presented inequalities and

using the union bound shows that for all (x, y) ∈ Xn × Yn,

F̂Y |X(y|x) =
FY |X(y|x)E[Kb(X − x)] +Nx,y

E[Kb(X − x)] +Dx,y

,

where Nx,y and Dx,y are random variables such that

P

(
max

(x,y)∈Xn×Yn
|Nx,y| ∨ |Dx,y| > C2

(
b+

√
log n

nb

))
≤ 1

n
,

where C2 > 0 is a constant depending only CX , CL, and the kernel function K. Thus,

given that E[Kb(X − x)] ≥ c for all x ∈ Xn and some constant c > 0 depending only on

cX and the kernel function K, the asserted claim follows. Q.E.D.

B Preliminary Lemmas

In this section, c and C are understood as sufficiently small and large constants, respec-

tively, whose values may change at each appearance. The constants c and C can be chosen

to depend only on cF , CF , cX , CX , cε, Cε, u, δ, ε, and the kernel function K. Also, denote

Sn :=

{
(x, y, h) ∈ Xn × Yn × Bn :

∑n
i=1 ki,h(x)2FY |X(y|Xi)(1− FY |X(y|Xi))∑n

i=1 ki,h(x)2
≥ 1

log2 n

}
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and let Scn be the complement of Sn relative to Xn×Yn×Bn. Moreover, for all γ ∈ (0, 1),

let c0(γ) be the (1− γ) conditional quantile of

T b0 := max
(x,y,h)∈Sn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

given the data and let c̄0(γ) be the (1− γ) conditional quantile of

T̄ b0 := max
(x,y,h)∈Sn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

given the data. Below we state and prove several lemmas that are useful for the proof of

Theorem 3.1.

Lemma B.1. Under Assumptions 3.1 and 3.2,

max
1≤i≤n

max
(x,h)∈Xn×Bn

|
√
nki,h(x)|

(
∑n

l=1 kl,h(x)2)1/2
≤ Bn := (Cn1−δ)1/2

with probability at least 1− Cn−c.

Proof of Lemma B.1. The claim follows from the proof of Theorem 4.2 in Chetverikov

(2012), which can be seen by noting that in the notation of Chetverikov (2012),

An = max
1≤i≤n

max
(x,h)∈Xn×Bn

|ki,h(x)|
(
∑n

l=1 kl,h(x)2)1/2

if we set k = 0 and σ2
i = 1 for all i = 1, . . . , n there. Also, in the proof of Theorem 4.2 in

Chetverikov (2012), all statements “with probability 1− o(1)” can be replaced by “with

probability at least 1− Cn−c”. Q.E.D.

Lemma B.2. Under Assumptions 3.1 and 3.2,

max
(x,y,h)∈Scn

|
∑n

i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))|
(
∑n

i=1 ki,h(x)2)
1/2

≤ C√
log n

with probability at least 1− Cn−c.

Proof of Lemma B.2. Note that for any (x, y, h) ∈ Scn,

n∑
i=1

E

[
ki,h(x)2(1{Yi ≤ y} − FY |X(y|Xi))

2∑n
l=1 kl,h(x)2

| Xn
]

=

∑n
i=1 ki,h(x)2FY |X(y|Xi)(1− FY |X(y|Xi))∑n

l=1 kl,h(x)2
<

1

log2 n
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by the definition of the set Scn. Thus, given that

|1{Yi ≤ y} − FY |X(y|Xi)| ≤ 2

for all i = 1, . . . , n and y ∈ Yn almost surely, applying Bernstein’s inequality conditional

on Xn and using Lemma B.1 and the union bound shows that for any t > 0,

P

(
max

(x,y,h)∈Scn

∣∣∣∣∣ |
∑n

i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))|
(
∑n

i=1 ki,h(x)2)
1/2

∣∣∣∣∣ > t

)

≤ 2 exp

(
C log n− −t2/2

log−2 n+ 2Bnt/
√
n

)
+ Cn−c

since log |Scn| ≤ C log n. Substituting t = C/
√

log n and Bn = (Cn1−δ)1/2 in this inequality

gives the asserted claim. Q.E.D.

Lemma B.3. Under Assumptions 3.1, 3.2, and 3.3,

max
(x,y,h)∈Scn

∑n
i=1 ki,h(x)2(1{Yi ≤ y} − F̂Y |X(y|Xi))

2∑n
i=1 ki,h(x)2

≤ C

log2 n

with probability at least 1− Cn−c.

Proof of Lemma B.3. Note that

max
(x,y,h)∈Scn

∑n
i=1 ki,h(x)2(1{Yi ≤ y} − F̂Y |X(y|Xi))

2∑n
i=1 ki,h(x)2

(12)

≤ max
(x,y,h)∈Scn

2
∑n

i=1 ki,h(x)2(1{Yi ≤ y} − FY |X(y|Xi))
2∑n

i=1 ki,h(x)2
(13)

+ max
(x,y,h)∈Scn

2
∑n

i=1 ki,h(x)2(F̂Y |X(y|Xi)− FY |X(y|Xi))
2∑n

i=1 ki,h(x)2
(14)

and the term in (14) is bounded from above by

2 max
(x,y)∈Xn×Yn

|F̂Y |X(y|x)− FY |X(y|x)|2 ≤ Cn−c

with probability at least 1 − Cn−c by Assumption 3.3. To bound the term in (13), note

that for each (x, y, h) ∈ Scn,

E

[∑n
i=1 ki,h(x)2(1{Yi ≤ y} − FY |X(y|Xi))

2∑n
i=1 ki,h(x)2

| Xn
]

E

[∑n
i=1 ki,h(x)2FY |X(y|Xi)(1− FY |X(y|Xi))∑n

i=1 ki,h(x)2
| Xn

]
<

1

log2 n
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by the definition of the set Scn, and so by the second part of Lemma D.1, applied conditional

on Xn,

E

[
max

(x,y,h)∈Scn

∑n
i=1 ki,h(x)2(1{Yi ≤ y} − FY |X(y|Xi))

2∑n
i=1 ki,h(x)2

| Xn
]

≤ C

(
1

log2 n
+ max

1≤i≤n
max

(x,h)∈Xn×Bn

ki,h(x)2 log n∑n
l=1 kl,h(x)2

)
≤ C

(
1

log2 n
+
B2
n log n

n

)
≤ C

log2 n

with probability at least 1 − Cn−c, where the second and the third inequalities in the

second line holds by Lemma B.1 and the definition of Bn, respectively. Hence, applying

the first part of Lemma D.1 with s = 1 and t = Cn−c conditional on Xn shows that

max
(x,y,h)∈Scn

∑n
i=1 ki,h(x)2(1{Yi ≤ y} − FY |X(y|Xi))

2∑n
i=1 ki,h(x)2

≤ C

log2 n

with probability at least 1 − Cn−c. Combining presented inequalities gives the asserted

claim. Q.E.D.

Lemma B.4. Under Assumptions 3.1, 3.2, and 3.3, for all α ∈ (0, e−1),

c(α) ≥ c and c0(α) ≤ c(α) ≤ c0(α− 1/n)

with probability at least 1− Cn−c.

Proof of Lemma B.4. By Assumption 3.2 and the choice of the sets Xn, Yn, and Bn,

with probability at least 1 − Cn−c, there exists (x̄, ȳ, h̄) ∈ Xn × Yn × Bn such that

ε < x̄− h̄ < x̄+ h̄ < 1− ε and ε < ȳ < 1− ε, in which case

T b ≥
∑n

i=1 eiki,h̄(x̄)(1{Yi ≤ ȳ} − F̂Y |X(ȳ|Xi))

(
∑n

i=1 ki,h̄(x̄)2)1/2
,

and conditional on the data, the random variable on the right-hand side of this inequality

is zero-mean Gaussian with variance∑n
i=1 ki,h̄(x̄)2(1{Yi ≤ ȳ} − F̂Y |X(ȳ|Xi))

2∑n
i=1 ki,h̄(x̄)2

≥ min
i : ε<Xi<1−ε

(
F̂Y |X(ȳ|Xi)

2 ∧ (1− F̂Y |X(ȳ|Xi))
2
)
≥ c

with probability at least 1−Cn−c by Assumptions 3.1, 3.2, and 3.3. This implies the first

asserted claim: c(α) ≥ c with probability at least 1− Cn−c.
To prove the second asserted claim, note that c0(α) ≤ c(α) almost surely because

T b0 ≤ T b almost surely. Therefore, it remains to show that c(α) ≤ c0(α − Cn−c) with

18



probability at least 1− Cn−c. To do so, observe that for each (x, y, h) ∈ Scn, conditional

on the data, the random variable∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

is zero-mean Gaussian with variance∑n
i=1 ki,h(x)2(1{Yi ≤ y} − F̂Y |X(y|Xi))

2∑n
i=1 ki,h(x)2

≤ C

log2 n

with probability at least 1 − Cn−c uniformly over (x, y, h) ∈ Scn by Lemma B.3. Hence,

by Borell’s inequality,

P

(
max

(x,y,h)∈Scn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
≤ C√

log n
| (Xi, Yi)

n
i=1

)
≥ 1− 1

n

(15)

with probability at least 1− Cn−c. Now, on the event An that c(α) ≥ c ≥ c/
√

log n and

(15) holds, we have

P

(
max

(x,y,h)∈Sn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
≤ c(α) | (Xi, Yi)

n
i=1

)

≤ P

(
max

(x,y,h)∈Xn×Yn×Bn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
≤ c(α) | (Xi, Yi)

n
i=1

)

+ P

(
max

(x,y,h)∈Scn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c(α) | (Xi, Yi)

n
i=1

)

≤ 1− α + P

(
max

(x,y,h)∈Scn

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
>

c√
log n

| (Xi, Yi)
n
i=1

)
≤ 1− α + 1/n,

which implies that c0(α − 1/n) ≥ c(α). Thus, since P(An) ≥ 1 − Cn−c by the dis-

cussion above, the second asserted claim follows. This completes the proof of the theo-

rem. Q.E.D.

Lemma B.5. Under Assumption 3.3, for any γ ∈ (Cn−c, 1− Cn−c),

c̄0(γ + Cn−c) ≤ c0(γ) ≤ c̄0(γ − Cn−c)

with probability at least 1− Cn−c.

Proof of Lemma B.5. To prove the asserted claim, note that

|T b0 − T̄ b0 | ≤ max
(x,y,h)∈Sn

∣∣∣∣∣
∑n

i=1 eiki,h(x)(F̂Y |X(y|Xi)− FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

∣∣∣∣∣
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and that conditional on the data, for each (x, y, h) ∈ Sn, the random variable under the

modulus on the right-hand side of this inequality is zero-mean Gaussian with variance∑n
i=1 ki,h(x)2(F̂Y |X(y|Xi)− FY |X(y|Xi))

2∑n
i=1 ki,h(x)2

≤ max
(x,y)∈Xn×Yn

|F̂Y |X(y|x)− FY |X(y|x)|2 ≤ Cn−c

with probability at least 1− Cn−c, in which case we have by Borell’s inequality that

P
(
|T b0 − T̄ b0 | ≤ Cn−c|(Xi, Yi)

n
i=1

)
≥ 1− 1

n
.

Therefore, for all γ ∈ (1/n, 1− 1/n),

c̄0(γ + 1/n)− Cn−c ≤ c0(γ) ≤ c̄0(γ − 1/n) + Cn−c (16)

with probability at least 1− Cn−c. In addition, by Lemma D.2,

c̄0(γ − 1/n) + Cn−c ≤ c̄0(γ − Cn−c)

and

c̄0(γ + 1/n)− Cn−c ≥ c̄0(γ + Cn−c)

for all γ ∈ (Cn−c, 1 − Cn−c). Combining these inequalities with (16) gives the asserted

claim. Q.E.D.

C Proofs for Section 2

Proof of Theorem 3.1. In this proof, c and C are understood as sufficiently small and large

constants, respectively, whose values may change at each appearance. The constants c and

C can be chosen to depend only on cF , CF , cX , CX , cε, Cε, u, δ, ε, and the kernel function K.

Also, recall the definitions of the set Sn and the critical values c0(γ) and c̄0(γ) appearing

in the beginning of Appendix B.

To prove the theorem, suppose that H0 holds. Then

P(T > c(α)) = P

(
max

(x,y,h)∈Xn×Yn×Bn

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)1/2
> c(α)

)
≤ P

(
max

(x,y,h)∈Xn×Yn×Bn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c(α)

)
(17)

≤ P

(
max

(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c(α)

)
+ Cn−c
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by Lemmas B.2 and B.4. Next,

P

(
max

(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c(α)

)
≤ P

(
max

(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c0(α)

)
+ Cn−c

≤ P

(
max

(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c̄0(α + Cn−c)

)
+ Cn−c

by Lemmas B.4 and B.5. Thus, P(T > c(α)) is bounded from above by

P

(
max

(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c̄0(α + Cn−c)

)
+ Cn−c.

Also, if all functions x 7→ FY |X(y|x) are constant, then (17) holds with equality instead

of inequality, and so by similar arguments, P(T > c(α)) is bounded from below by

P

(
max

(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c̄0(α− Cn−c)

)
− Cn−c.

Therefore, to prove the theorem, it remains to show that for all γ ∈ (0, 1),∣∣∣∣P( max
(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> c̄0(γ)

)
− γ
∣∣∣∣ ≤ Cn−c. (18)

To do so, let Z = (Zx,y,h)(x,y,h)∈Sn be a zero-mean Gaussian random vector such that

E[Zx1,y1,h1Zx2,y2,h2 ]

= E

[∑n
i=1 ki,h1(x1)ki,h2(x2)(1{Yi ≤ y1} − FY |X(y1|Xi))(1{Yi ≤ y2} − FY |X(y2|Xi))

(
∑n

i=1 ki,h1(x1)2
∑n

i=1 ki,h2(x2)2)1/2

]
for all (x1, y1, h1) and (x2, y2, h2) in Sn. Also, for γ ∈ (0, 1), let cG0 (γ) be the (1 − γ)

quantile of max(x,y,h)∈Sn Zx,y,h. Further, note that by Lemma B.1 and the definition of the

set Sn, we have with probability at least 1− Cn−c that for all (x, y, h) ∈ Sn,

n∑
i=1

E

[
ki,h(x)2(1{Yi ≤ y} − FY |X(y|Xi))

2∑n
l=1 kl,h(x)2

| Xn
]
≥ 1

log2 n
, (19)

√
n

n∑
i=1

E

[
|ki,h(x)3(1{Yi ≤ y} − FY |X(y|Xi))

3|
(
∑n

l=1 kl,h(x)2)3/2
| Xn

]
≤ 8Bn,

n

n∑
i=1

E

[
ki,h(x)4(1{Yi ≤ y} − FY |X(y|Xi))

4

(
∑n

l=1 kl,h(x)2)2
| Xn

]
≤ 16B2

n,

max
1≤i≤n

E

[
exp

(√
n|ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))|

(
∑n

l=1 kl,h(x)2)1/2

/
(3Bn)

)
| Xn

]
≤ 2.
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These inequalities imply that it follows from Proposition 4.1 in Chernozhukov, Chetverikov,

and Kato (2017) applied conditional on Xn that with probability 1 − Cn−c, for all

γ ∈ (Cn−c, 1− Cn−c),

c̄0(γ + Cn−c) ≤ cG0 (γ) ≤ c̄0(γ − Cn−c). (20)

Also, it follows from Proposition 2.1 in Chernozhukov, Chetverikov, and Kato (2017)

applied conditional on Xn that for all γ ∈ (0, 1),∣∣∣∣P( max
(x,y,h)∈Sn

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2
> cG0 (γ)

)
− γ
∣∣∣∣ ≤ Cn−c. (21)

Combining (20) and (21) in turn gives (18) and completes the proof of the theorem (note

that a direct application of Propositions 2.1 and 4.1 in Chernozhukov, Chetverikov, and

Kato (2017) would require that the left-hand of (19) is bounded by c instead of 1/ log2 n

but this does not lead to a problem because we apply these propositions with

log n(ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi)))

(
∑n

i=1 ki,h(x)2)1/2

instead of
ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)1/2

and use the fact that Bn log n/
√
n ≤ Cn−c). Q.E.D.

Proof of Theorem 3.2. In this proof, C is a constant that depends on u and δ only but

its value can change at each appearance.

To prove the asserted claim, note that since (x, y) 7→ FY |X(y|x) is continuously differ-

entiable and there exist x∗ ∈ (0, 1) and y∗ ∈ (0, 1) such that

∂

∂x
FY |X(y∗|x∗) > 0,

it follows that there exists ȳ∗ ∈ Yn such that

∂

∂x
FY |X(ȳ∗|x∗) > 0.

For this ȳ∗,

T = max
(x,y,h)∈Xn×Yn×Bn

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

≥ max
(x,h)∈Xn×Bn

∑n
i=1 ki,h(x)1{Yi ≤ ȳ∗}
(
∑n

i=1 ki,h(x)2)
1/2

=: Tȳ∗ .

Further, conditional on the data, the random variables

T b(x, y, h) :=

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

, (x, y, h) ∈ Xn × Yn × Bn,
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are zero-mean Gaussian with variance bounded from above by∑n
i=1

(
ki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

)2∑n
i=1 ki,h(x)2

≤ max
y∈Yn

max
1≤i≤n

(
1{Yi ≤ y} − F̂Y |X(y|Xi)

)2

≤ C

uniformly over (x, y, h) ∈ Xn×Yn×Bn with probability at least 1−CFn−cF by Assumption

3.3. Therefore, with the same probability, c(α) ≤ C(log n)1/2 since c(α) is the (1 − α)

conditional quantile of T b given the data, T b = max(x,y,h)∈Xn×Yn×Bn T
b(x, y, h), and p :=

|Xn×Yn×Bn|, the number of elements of the set Xn×Yn×Bn, satisfies log p ≤ C log n.

Thus, the growth rate of the critical value c(α) satisfies the same upper bound, with a

possibly different constant C, as if we were testing monotonicity of only one regression

function, x 7→ E[1{Y ≤ ȳ∗}|X = x], and using the bootstrap test statistic

T bȳ∗ = max
(x,h)∈Xn×Bn

T b(x, ȳ∗, h)

to simulate the critical value. Hence, the asserted claim follows from the same arguments

as those given in the proof of Theorems 3.2 and 4.2 in Chetverikov (2012), which show

that

P
(
Tȳ∗ ≤ C

√
log n

)
→ 0 as n→∞

for any constant C > 0. This completes the proof of the theorem. Q.E.D.

Proof of Theorem 3.3. Note that (log n/n)β/(2β+3) = o(`n) implies that n`n →∞ as n→
∞. Hence, given that∣∣∣∣ ∂2

∂x∂y
FY |X,n(y|x)

∣∣∣∣ ≤ CL, for all x, y ∈ [0, 1],

and that there exist x∗, y∗ ∈ (0, 1) such that

∂

∂x
FY |X,n(y∗|x∗) > `n,

it follows that there exists ȳ∗ ∈ Yn such that

∂

∂x
FY |X,n(ȳ∗|x∗) > ˜̀n := `n/2.

Like in the proof of Theorem 3.2, for this ȳ∗, we have

T ≥ Tȳ∗ := max
(x,h)∈Xn×Bn

∑n
i=1 ki,h(x)1{Yi ≤ ȳ∗}
(
∑n

i=1 ki,h(x)2)
1/2

,
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and, in addition, we have that c(α) ≤ C(log n)1/2 with probability at least 1 − CFn−cF ,

where C is a constant that depends only on δ and u. Therefore, since ˜̀n satisfies

(log n/n)β/(2β+3) = o(˜̀n), the asserted claim now follows from the same arguments as

those given in the proof of Theorems 3.4 and 4.2 in Chetverikov (2012). Here, we note

that our choice of hmin = 1/n1−δ with δ ∈ (0, 2/3] ensures that the collection of band-

width values Bn contains at least one bandwidth value of order (log n/n)1/(2β+3), which is

required in the arguments of Chetverikov (2012). Q.E.D.

D Technical Lemmas

Lemma D.1. Let X1, . . . , Xn be independent random vectors in Rp with p ≥ 2 such that

Xij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , p. Define

M := max
1≤i≤n

max
1≤j≤p

Xij.

Then for any s ≥ 1 and t > 0,

P

(
max
1≤j≤p

n∑
i=1

Xij ≥ 2E
[

max
1≤j≤p

n∑
i=1

Xij

]
+ t

)
≤ K1E[M s]/ts. (22)

where K1 is a constant depending only on s. In addition,

E

[
max
1≤j≤p

n∑
i=1

Xij

]
≤ K2

(
max
1≤j≤p

E

[
n∑
i=1

Xij

]
+ E[M ] log p

)
, (23)

where K2 is a universal constant.

Proof. See Lemma E.4 in Chernozhukov, Chetverikov, and Kato (2017) and Lemma 9 in

Chernozhukov, Chetverikov, and Kato (2015) for the proof of (22) and (23), respectively.

Q.E.D.

Lemma D.2. Let Z = (Z1, . . . , Zp)
′ be a zero-mean Gaussian random vector in Rp with

σ2
j := E[Z2

j ] > 0 for all j = 1, . . . , p. Denote σ := min1≤j≤p σj. Then for all ε > 0 and

x = (x1, . . . , xp)
′ ∈ Rp, we have

P(Z ≤ x+ ε)− P(Z ≤ x) ≤ ε

σ
(
√

2 log p+ 2), (24)

where x+ ε = (x1 + ε, . . . , xp + ε)′.

Proof. See Lemma A.1 in Chernozhukov, Chetverikov, and Kato (2017). Q.E.D.
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