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An Adaptive Test of Stochastic Monotonicity™

Denis Chetverikov' Daniel Wilhelm? Dongwoo Kim?

Abstract

We propose a new nonparametric test of stochastic monotonicity which adapts
to the unknown smoothness of the conditional distribution of interest, possesses
desirable asymptotic properties, is conceptually easy to implement, and computa-
tionally attractive. In particular, we show that the test asymptotically controls
size at a polynomial rate, is non-conservative, and detects local alternatives that
converge to the null with the fastest possible rate. Our test is based on a data-
driven bandwidth value and the critical value for the test takes this randomness
into account. Monte Carlo simulations indicate that the test performs well in finite
samples. In particular, the simulations show that the test controls size and may be

significantly more powerful than existing alternative procedures.
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1 Introduction

Monotone relationships play a significant role in economic models, and therefore devel-
oping tests of such relationships is an important task for econometric research. In this
paper, we propose a new nonparametric test of the hypothesis that two random variables
satisfy the stochastic monotonicity condition. Such a test is useful in many economic ap-
plications, for example for testing monotone IV assumptions (e.g. Kasy (2014), Hoderlein,
Holzmann, Kasy, and Meister (2016), Chetverikov and Wilhelm (2017), Wilhelm (2017))
and for testing identifying assumptions (e.g. Matzkin (1994), Lewbel and Linton (2007),
Banerjee, Mukherjee, and Mishra (2009))." More generally, stochastic monotonicity plays
an important role in industrial organization (e.g. Ellison and Ellison (2011)), in stochas-
tic dynamic programming (e.g. Stokey and Lucas Jr. (1989), Ericson and Pakes (1995),
Olley and Pakes (1996)), and in finance (e.g. Richardson, Richardson, and Smith (1992),
Boudoukh, Richardson, Smith, and Whitelaw (1999), Patton and Timmermann (2010)),
among many other fields of economics.

Consider two continuous random variables X and Y, both supported on [0, 1]. In this

paper, we are interested in testing the null of stochastic monotonicity,
Hy : Fyx(ylz') > Fyx(y|z") for all y,2', 2" € (0,1) with 2’ < 2", (1)
against the alternative
H, : Fyx(y|z') < Fyx(y|z") for some y,2’, 2" € (0,1) with 2’ < 2", (2)

We propose a new nonparametric test of (1) against (2) that possesses favorable properties
relative to existing approaches. First, to the best of our knowledge it is the first test that
is shown to be adaptive. This means that the test adapts to the unknown smoothness level
of the functions x — Fy|x(y|r) through a data-driven bandwidth choice. For comparison,
the implementation of non-adaptive tests requires the user to specify a bandwidth value,
which is undesirable because the test results may be sensitive to the particular value that
is chosen. Moreover, the non-adaptive test may have low power if the bandwidth value
provided by the user is not appropriate for a particular data-generating process, and, in
addition, if the user performs some search over different bandwidth values to be used in
the non-adaptive test, the resulting procedure may not control size, even in large samples.
Second, we show that our test is asymptotically controlling size and is non-conservative,
i.e. it has limiting rejection probability not larger than the nominal level for all data-

generating processes in the null and equal to the nominal level for some data-generating

LChetverikov and Wilhelm (2017) have already applied our proposed procedure for testing whether

their monotone IV assumption holds in the context of estimating gasoline demand functions.



processes in the null. In fact, we show that the probability of rejecting the null under
the null can exceed the nominal level at most by a polynomial order, which we refer to
as polynomial size control. Third, we show that the test is consistent against all fixed
and against local alternatives that converge to the null with the fastest possible rate.
Our critical values are computed through a simple multiplier bootstrap procedure which
delivers the polynomial size control without employing any higher-order corrections as is
necessary in other existing approaches based on the limit distribution, e.g. Lee, Linton,
and Whang (2009). Fourth, we show in simulations that our test not only controls size,
but can be significantly more powerful than existing alternative approaches. Finally,
our test is very simple to implement and is computationally attractive. It only requires
a nonparametric estimator of the conditional distribution that is computed once on the
whole sample and does not need to be re-computed on the bootstrap samples. Importantly,
our test is robust with respect to the choice of the tuning parameter underlying this
nonparametric estimator, in the sense that varying the tuning parameter only yields
second order changes in the rejection probabilities. We provide an R implementation of
the test at https://github.com/dongwookim1984.

There are several alternative approaches in the literature for testing (1) against (2).
Our test statistic is based on the differences of the conditional cdf for different values of the
conditioning variable X and is therefore most closely related to the one proposed in Lee,
Linton, and Whang (2009). An important difference is that we take the maximum over
the bandwidth value to achieve adaptivity whereas they let the user specify a particular
bandwidth value. In consequence, our critical value is computed in a different fashion,
using a multiplier bootstrap procedure. Delgado and Escanciano (2012) and Seo (2016)
construct a test statistic by comparing the empirical copula of (X, Y") with its least concave
majorant. Lee, Song, and Whang (2013) and Hsu, Liu, and Shi (2016) propose tests of
functional inequalities of which testing the null of stochastic monotonicity is a special
case. Stochastic monotonicity implies the weaker concept of regression monotonicity, i.e.
monotonicity of z — E[Y|X = x|, and some testing approaches for this hypothesis are
similar to those of the former (e.g. Ghosal, Sen, and Vaart (2000), Chetverikov (2012),
and Delgado and Escanciano (2013)). The approach closest to ours is Chetverikov (2012),
but there are several important differences between his and this paper. First, we test a
different, stronger null hypothesis that requires an additional maximum over values of .
Second, our test statistic is different and leads to a test that is substantially easier to
implement because we do not require the nonparametric estimation of his studentization

factor, the conditional variance function.


https://github.com/dongwookim1984

2 The Test

In this section, we introduce our new test of the null of stochastic monotonicity based
on an i.id. sample (X;,Y;) , from the distribution of the pair (X,Y’). Throughout the
paper, we assume that the random variables X and Y are normalized so that they both
have support [0, 1]. Let K: R — R be a kernel function and, for a bandwidth value h > 0,
define K, (z) := h 'K (x/h), * € R. Suppose H, is satisfied. Then, by the law of iterated

expectations,
E|({Y; <y} = HY; < y})sign(X; — X;) Kn(X; — 2) K (X; —2)| <0 (3)
for all z,y € (0,1) and 4,5 = 1,...,n. Denoting
Kijn(z) = sign(X; — X;)Kp(X; — 2)Kp(X; —z), z€eR,
taking the sum of the left-hand side in (3) over ¢,j = 1,...,n, and rearranging give
E [Z HY; <y} > (Kijn(x) — Kji,h(x))] <0,
=1 =1

or, equivalently,
n

S kin(@)1{Y; < )

=1

E <0, (4)

where
n

/{Zi’h(l’) = Z(Kmh(x) — Kji,h(x)) = 22 Kij,h(x); r € R.

j=1
Our test is based on the observation that under Hy, (4) holds for all x € (0,1) and
y € (0,1). To define the test statistic 7', let

Pmax =1, Rmin := 1/n1_5, for some § € (0,2/3],

and
log ( hmax/hmin )

log(1/u)
be a collection of bandwidth values, where the notation [a] denotes the largest integer that

Bn::{hmaxul:lzo,l,z...,[ }}, for some u € (0, 1)

is smaller than or equal to a. Here, B,, forms a geometric grid on the interval [Amyin, Amax]

with the geometric step u. Also, let
X, ={Xy,..., X,}

and

V= {l/n:lzl,...,n—l}.
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We define our test statistic by

- S ki ()1Y; < 9}

= m n 1/2
(z,9,h) EXn X Yn X B, (Zi:l ki,h(x)2>

(5)

The statistic 7" is most closely related to that in Lee, Linton, and Whang (2009). The
main difference is that we take the maximum with respect to the set of bandwidth values
h € B, to let the data choose the best possible bandwidth value and to achieve adaptivity
of the test.

We now discuss the construction of a critical value for the test. Suppose that we
would like to have a test of level (approximately) a € (0,e™!). As demonstrated by
Lee, Linton, and Whang (2009), the derivation of the asymptotic distribution of T' is
complicated even when B, is a singleton. Moreover, when B, is not a singleton, it is
generally unknown whether 7" converges to some non-degenerate asymptotic distribution,
even after an appropriate normalization. We avoid these complications by employing
a multiplier bootstrap critical value. Specifically, let eq,...,e, be an ii.d. sequence
of N(0,1) random variables that are independent of the data and let ﬁy| x(y|x) be an
estimator of Fy|x(y|x). We then define a bootstrap test statistic by

Tb max Z?:l eikipn(z)({Y; <y} — FY|X(y|Xi)>
(2,y,h) EXp X Yn X B > k‘i,h(x)Q)l/z

and the critical value? c(a) as
c¢(a) := (1 — a) conditional quantile of T7° given the data.

We reject Hy if and only if T > ¢(«).

We emphasize how simple and computationally attractive the implementation of this
test is. The test statistic itself is just the maximum of a long vector of sums of observations.
The bootstrap statistic requires the computation of the nonparametric estimator ﬁy| X
evaluated at the grid of values for y and the observed values X; for the conditioning
variable. However, this estimator has to be computed only once on the whole sample and
each bootstrap iteration only introduces new draws of multipliers ey, ..., e, to the sum
of the numerator. We provide an R implementation of the test at https://github.com/
dongwookim1984.

2In the terminology of the moment inequalities literature, c(a) can be considered a “one-step” or
“plug-in” critical value. Using similar ideas as in Chetverikov (2012), we could also consider two-step or
even multi-step (stepdown) critical values. For brevity of the paper, however, we do not consider these
options here.


https://github.com/dongwookim1984
https://github.com/dongwookim1984

Remark 2.1 (Testing First-Order Stochastic Dominance). If X were binary rather than
continuous, the null of stochastic monotonicity would reduce to that of first-order stochas-
tic dominance of Fy|x(-|0) by Fy|x(:[1). Our test could be adapted to this case by remov-
ing k; () from the numerator, removing the denominator, and maximizing only over y.
The test statistic then would be identical to that in Barrett and Donald (2003). U

3 Large Sample Properties of the Test

In this section, we derive asymptotic properties of the test proposed in Section 2. First
we show that the test asymptotically controls size and is non-conservative. We also show
that the probability of rejecting the null under the null can exceed the nominal level « at
most by a polynomial order. Then we demonstrate that the test is consistent against all
fixed and against local alternatives that converge to the null at the fastest possible rate.

We start our analysis in this section by providing the list of required regularity condi-

tions.

Assumption 3.1 (Kernel). The kernel function K: R — R is such that (i) K(z) > 0
for all x € (—1,1), (i) K(z) = 0 for all x ¢ (—1,1), (iii) K is continuous, and (iv)
7 K(x)dx =1.

Here, we assume that the kernel function K has bounded support, is continuous, and
is strictly positive on the support. The last condition excludes higher-order kernels but

allows us to perform search (i.e. take the maximum) over a large set of bandwidth values

B,..

Assumption 3.2 (Joint Distribution of X and Y'). (i) The distribution of X is absolutely
continuous with respect to the Lebesque measure on [0, 1] with the pdf fx satisfying cx <
fx(z) < Cx forallx € (0,1) and some constants 0 < cx < Cx < oo. (ii) The conditional
cdf Fy|x(y|x) is such that c. < Fy|x(e|x) < Fyx(1 —¢€|z) < Cc for all v € (6,1 —€) and
some constants 0 < ¢e < Ce < 1 and 0 < e < 1/2.

This is a weak regularity condition requiring, in particular, the support of the random
variable X to be [0,1] and the density of X to be bounded from above and away from
zero on the support. The second part of this condition requires that for all = that are not
too close to the boundary of the support of X, a non-negligible mass of the conditional

distribution of ¥ given X = z is concentrated on the interval [e,1 — €.

Assumption 3.3 (Estimator of Fyx(y|z)). The estimator ﬁy‘X(y|x) of Fy|x(y|z) sat-

isfies

P (( max ]ﬁy‘x(y]x) — Fyix(ylz)| > C’Fn_CF) < Cpn~°F
z,y

YEX XYn
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for some constants cp, Cr > 0.

This is a mild high-level condition implying uniform consistency of an estimator
ﬁyp((y‘l') of Fyx(ylz) over (z,y) € A, x ), with a polynomial rate of convergence.

In Appendix A, we demonstrate that this assumption holds for the kernel estimator

Yo WY <yl (X, — )
> i K (X — ) ’

Fyx(ylz) == z,y € [0,1], (6)
if we set the bandwidth value b = b, = 1/y/n as long as Assumptions 3.1 and 3.2 are
satisfied and the functions « — Fy|x(y|z) are Lipschitz-continuous. For a more general
treatment providing conditions underlying Assumption 3.3, we refer an interested reader
to Héardle, Janssen, and Serfling (1988).

It is important to notice that our test is robust with respect to the choice of the
bandwidth value b for the nonparametric estimator ﬁy| x(y|z) in (6). In particular, varying
the bandwidth value b will affect the rejection probability of the test only in the second
order. Thus, although it is possible in principle to use a data-driven method for selecting
the bandwidth value b that would yield an estimator F\y| x (y|x) with the fastest possible
rate of convergence, there is no need to do so, and simply letting b = b, = 1/4/n would
give similar results.?

We are now able to state our formal results. The first theorem shows that our test

asymptotically controls size and is not conservative:

Theorem 3.1 (Polynomial Size Control). Let Assumptions 3.1, 3.2, and 3.3 be satisfied.
In addition, assume that o € (0,e™Y). If Hy holds, then

P(T > c¢(a)) <a+Cn™°. (7)
If the functions x — Fyx(y|z) are constant for all y € (0,1), then
P (T > c(a)) —al < Cn™“. (8)

In both (7) and (8), ¢ and C are constants that depend only on cg, Cr,cx,Cx, ce, Ce,u, 6, €,
and the kernel function K.

The result (7) implies that our test asympotically controls size. The result (8) in
turn strengthens this statement by showing that the rejection probability for some data-
generating processes in the null is asympotically equal to the nominal level «, so the test

is not conservative. Furthermore, the probability of rejecting Hy when H, is satisfied

30f course, if the support of X is [c, C] for some constants ¢ < C' rather than [0, 1], an appropriate
bandwidth value would be b = (C — ¢)/y/n.



can exceed the nominal level a only by a term that is polynomially small in n. We
refer to this phenomenon as polynomial size control. As explained in Lee, Linton, and
Whang (2009), when B, is a singleton, convergence of 7' to the limit distribution is
logarithmically slow. For this reason, Lee, Linton, and Whang (2009) used higher-order
corrections derived in Piterbarg (1996) to obtain polynomial size control. Theorem 3.1
shows that the multiplier bootstrap also leads to the polynomial size control, even though
no higher-order corrections are required. To prove Theorem 3.1, we rely on the high-
dimensional CLT and bootstrap results in Chernozhukov, Chetverikov, and Kato (2013,
2017).

The constants ¢ and C' in (7) and (8) depend on the data generating process only via
constants and the kernel function appearing in Assumptions 3.1, 3.2, and 3.3. Therefore,
inequalities (7) and (8) hold uniformly over all data-generating processes satisfying these

assumptions with the same constants. In this sense, our test provides uniform size control.

Remark 3.1 (Weak Condition on the Bandwidth Values). As we set Ay, = 1/n'=? for

some 0 € (0,1), our theorem requires

1
— < (Cpn~ 9
nh — hh (9)

for all h € B, and some constants ¢, C), > 0, which is considerably weaker than the
analogous condition in Lee, Linton, and Whang (2009), who require 1/(nh?) — 0, up to
logarithmic terms. As follows from the proof of the theorem, the multiplier bootstrap
distribution approximates the conditional distribution of the test statistic given X, =
{Xi,...,X,}. Conditional on X,,, the denominator in the definition of 7" is fixed, and does
not require any approximation. Instead, we could try to approximate the denominator of
T by its probability limit. This is done in Ghosal, Sen, and Vaart (2000) using the theory
of Hoeffding projections (in a different setting) but they require the condition 1/nh? — 0,

which is also stronger than our condition (9). 0

Our second result in this section concerns the ability of our test to detect fixed models

in the alternative H,,.

Theorem 3.2 (Consistency). Let Assumptions 3.1, 3.2, and 3.3 be satisfied and assume
that (z,y) — Fy|x(y|x) is continuously differentiable. If H, holds with

9,
a—xFy|X(y*|a:*) >0, for somexz*,y* € (0,1)

then
P(T > c(a)) = 1 as n — oo. (10)



This theorem shows that our test is consistent against any model in H, (with smooth
(z,y) = Fy|x(y|z)), which is typically considered a necessary condition for the test to be
useful. Note, however, that the result (10) only shows that if the sample size n is large
enough, the probability of rejecting the null when the null does not hold will be close to
one. The result does not specify, on the other hand, how large the sample size n has to be
in order for the rejection probability to be close one. We therefore complement the result
in Theorem 3.2 by deriving the rate of consistency of our test against local alternatives.

To this end, we introduce the triangular array {(X;,,Y;,): ¢ =1,...,n},>1, where for
each n > 1, (X;,,Y; )" is an i.i.d. sample from the distribution of the pair (X", Y™),
and the distribution of (X", Y™) can vary with n. Let

Fyixn(ylr) =Pp(Y" <y | X" =2), x,y€l01],
denote the conditional cdf of the distribution of Y given X™.

Assumption 3.4 (Smoothness). Foralln > 1, (x,y) — Fy|x(y|x) is twice continuously
differentiable and

0
%FY\X,TL(?AZE) S OL: fO?" all T,y € [07 1]7
52
8w8yFY‘X’n(y|x) < CL: fO’f’ all T,y € [Oa 1]7
0 Fyn(yl2) — o Frixa(ylen)| < Cules —al?,  for al e 0,1)
or Y|Xn\Y|T2 o Y|Xn\Y|T1)| = CL|Z2 — Z1|, o T1,22,Y y L1

for alln > 1 and some constants 0 < C, < oo and 5 € (0,1).

The first two conditions in this assumption require the sequence of conditional cdfs
Fy|xn(y|x) to have a bounded first derivative with respect to « and cross derivative, where
the bound is independent of n. The third condition requires the derivative of Fyx ,(y|z)
with respect to = to be Holder continuous in x with constant and exponent that are

independent of n.

Theorem 3.3 (Rate of Consistency). Let Assumptions 3.1, 3.2, and 3.3 be satisfied for
all n > 1 with the same constants cr, cp, cx, Cx, ¢, Ce, and €, and the same kernel K,
where we replace (X,Y) in Assumption 3.2 by (X", Y™) and Fy|x in Assumption 3.3 by
Fy|xn. In addition, suppose that Assumption 3.4 holds. If for all n and some sequence
of positive constants (£,)n>1 such that (logn/n)?/8+3) = o(¢,,) and

0
8_xFY|X’n(y*|I*) > l,, for some z*,y* € (0,1),
then

P(T > c(a)) = 1 as n — oo. (11)

9



This theorem shows that our test is consistent against local alternatives for which the
size of the deviation of 0Fy|x ,(y|r)/0x from zero converges to zero at a rate slower than
(logn/n)5/(2+3)  Using the standard arguments, e.g. in Diimbgen and Spokoiny (2001),
it is possible to show that this is the fastest possible rate with which the alternatives can
converge to the null if we hope to be able to detect them (in the minimax sense). We
therefore conclude that our test is consistent against the alternatives that converge to the

null with the fastest possible rate.

Remark 3.2 (Testing First-Order Stochastic Dominance). As indicated in Remark 2.1,
one could modify our test to accommodate the case in which X is binary, leading to a test
of first-order stochastic dominance. The results of this section then imply that our test,
which would be equivalent to that in Barrett and Donald (2003), satisfies polynomial size
control and polynomial rate of consistency. These desirable properties were not shown in
Barrett and Donald (2003). O

4 Simulations

In this section, we describe a simulation experiment which illustrates the finite sample
performance of our test and compare it to other alternatives. The design is based on
Delgado and Escanciano (2012) and the 2014 working paper version of Seo (2016).* We
simulate 1,000 Monte Carlo samples of sizes 100, 200 and 300 from the following four data

generating processes:

N1: Y, =U;

Al: Y, = —-0.1X; + U;

A2: Y, = -01X2+ U,

A3: Y; = 0.2X; — Bexp(—250(X; — 0.5)%) + U;

where 5 = 0.2, X; is uniformly distributed on the unit interval, and U; is drawn from
N(0,0.1%). By construction, X; and U; are independent of each other for all i. In the
model N1, Y; and X; are independent, so the null hypothesis holds. Models A2 and A3
are models in the alternative hypothesis for which the null is violated at every conditioning
value of X;. Model A4, on the other hand, is an alternative that deviates from the null

only locally. The right panel of Figure 1 shows the conditional mean function.

4The only reason why we base our simulations on the 2014 working paper version of Seo (2016) rather
than the 2016 version is that the former contains simulation results for various sample sizes whereas the

latter only reports results for very small ones (n = 70 and n = 120).

10



Model n CWK S-L' S-IL?* S-L*| DE | LLWy5 LLWys LLW;;

N1 100 | 0.051 (0.175) | 0.055 0.048 0.049 | 0.046 | 0.034 0.035 0.036
200 | 0.050 (0.127) | 0.054 0.053 0.053 | 0.052 | 0.031 0.034 0.033
300 | 0.064 (0.129) | 0.062 0.053 0.044 | 0.042 | 0.036 0.039 0.039
Al 100 | 0.412 (0.574) | 0.877 0.828 0.653 | 0.634 | 0.408 0.542 0.612
200 | 0.667 (0.740) | 0.988 0.980 0.911 | 0.880 | 0.749 0.853 0.908
300 | 0.885 (0.860) | 0.999 1.000 0.995 | 0.980 | 0.911 0.964 0.980
A2 100 | 0.418 (0.580) | 0.874 0.806 0.620 | 0.599 | 0.469 0.587 0.651
200 | 0.693 (0.738) | 0.990 0.981 0.938 | 0.906 | 0.805 0.892 0.925
300 | 0.902 (0.843) | 1.000 1.000 0.995 | 0.981 | 0.938 0.972 0.983
A3 100 | 0.339 (0.144) | 0.003 0.030 0.154 | 0.032 | 0.012 0.013 0.022
200 | 0.690 (0.138) | 0.003 0.054 0.304 | 0.157 | 0.014 0.009 0.014
300 | 0.929 (0.143) | 0.004 0.178 0.539 | 0.382 | 0.012 0.009 0.009

Table 1: Rejection probabilities of our test and the tests of Seo (2016), Delgado and
Escanciano (2012), and Lee, Linton, and Whang (2009). The nominal size is 0.05. The
values in the parentheses of CWK are the optimal bandwidths chosen by the test, averaged
over the simulation samples. The results for the other tests besides CWK are taken from

the 2014 working paper version of Seo (2016).

For the implementation of our test, we choose the Epanechnikov kernel for K and
construct the set of bandwidth values B,, using u = 2/3. The number of elements in B,
are 7, 8, and 8, for the three sample sizes n = 100, n = 200, and n = 300, respectively.
To estimate the conditional cdf of Y given X, we use the estimator defined in (6) with

~1/2 The multiplier bootstrap critical values are computed based on 200 bootstrap

b=n
samples with Gaussian multipliers and nominal size of the test is chosen to be 0.05.

Table 1 shows the empirical rejection frequencies of various tests in each of the four
models and each of the three sample sizes. “CWK” refers to our new test. The values in
parentheses are the optimal bandwidths that our test chooses (i.e. the bandwidth value
at which our test statistic achieves the maximum), averaged over the simulation samples.
“S-LY7) “S-L?”) and “S-L*” refer to the L'-) L?-, and L>-versions of Seo (2016)’s test,
“DE” to Delgado and Escanciano (2012)’s test, and “LLW; 5", “LLWy¢", and “LLW; 7"
to the test of Lee, Linton, and Whang (2009) using the bandwidth values 0.5, 0.6, and
0.7, respectively.

Like all other tests ours also controls size well across all dgps and sample sizes, al-
though LLW appears somewhat conservative. Under the alternative models A1-A3, the

performance of the tests differs. Under A1l and A2, all tests generally perform well in
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the sense that their rejection frequencies are around 0.4 for the small sample size and are
closer to one as the sample size increases. Seo (2016)’s test clearly dominates all other
tests at small sample sizes with significantly higher rejection frequencies, especially the
L', L2- versions of the test. Under the alternative A3, the relative behavior of the tests
is very different. The rejection frequencies of our test are very similar to those for the
other alternatives of about 0.3, 0.7, and 0.9 as the sample size increases, but all other tests
perform significantly worse, struggling to detect the local deviation from the null. Most
of the rejection frequencies of the other tests are close to zero. Only DE and S-L*° start
rejecting at the larger sample sizes, but their rejection frequencies still remain far below
those of our test. To understand why our test performs similarly well for global as well
as local alternatives, it is helpful to consider the bandwidths that our test automatically
chooses. They are relatively large for alternatives Al and A2 (around 0.6 to 0.9), but
substantially smaller for A3 (around 0.1). The small bandwidth in model A3 is the reason
for why our test is able to detect the local deviation. On the other hand, tests such as
LLW employ a fixed, user-chosen bandwidth which leads to power against some (Al and
A2), but not against other (A3) alternatives.

To further investigate the power properties of our test, we generate 1,000 MC samples
of size n = 100 from variations of A3 in which we vary . The right panel of Figure 1
shows how increasing [ increases the size of the local deviation from the null. All other
aspects of the dgp A3 remain the same as above. The left panel of Figure 1 shows the
empirical rejection frequencies of our test compared to LLW with a variety of different
bandwidths as a function 8. As the size of the local deviation from the null increases all
tests reject more frequently. However, the power of the LLW test varies substantially as
we vary the bandwidth from 0.1 to 0.6, with the power being largest for the bandwidth of
0.2, but it is significantly less powerful than ours for all bandwidth values and all values
of 3.

In conclusion, our test controls size and is able to adapt well to the smoothness of the
conditional cdf of Y| X, which allows it to perform similarly well against all alternatives,

while the other tests considered here perform well against some, but not all alternatives.
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Figure 1: The power curves under various degrees of local deviation from the null.
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A Verification of Assumption 3.3

In this section, we verify Assumption 3.3. For concreteness, we work with kernel estimators
but the same assumption can be verified for other nonparametric estimators as well. For
the same kernel function K: R — R as that used in Sections 2 and 3 and a bandwidth
value b > 0, define Ky(z) := b~'K(x/b), z € R. The kernel estimator of Fy|x(y|z) is then
given by
> i Y <y} G (X — o)
> i 16 (Xi — @) ’
Also, as in Section 2, define X, := {Xy,..., X,,} and Y, := {{/n: 1 = 1,...,n — 1}

To verify Assumption 3.3, we will impose Assumptions 3.1 and 3.2 and assume that the

x,y € [0, 1].

ﬁnx(y\w) =

functions & — Fy|x(y|z) are Lipschitz-continuous. The latter condition is very mild, and
some form of it is typically imposed in the literature on nonparametric estimation. The
following lemma shows that the kernel estimator F\y| x (y|z) satisfies Assumption 3.3 under

the aforementioned conditions as long as the bandwidth b does not go to zero too quickly.

Lemma A.1 (Verification of Assumption 3.3). Let Assumptions 3.1 and 3.2 be satisfied
and assume that

|FY|X(?J‘$2) - FY|X(?J‘$1)| < C’L|$2 - Il\y for all x1, 29,y € [07 1}

for some constant Cp, > 0. Also, assume that the bandwidth value b is such that logn < nb.
Then there exists a constant C' > 0 depending only on cx, Cx, Cr, and the kernel function
K such that
~ logn 1
p max  |Fyx(y|z) — Fyix(ylz)| > C | b+ < -,
(zy nb n

YEXn X Vn

which implies that Assumption 3.3 holds if b = b,, is set so that b < Cn~¢ and logn/(nb) <

Cn=¢ for some constants ¢,C' > 0. In particular, we can set b ="b, = 1/y/n.

Proof. By Assumption 3.1, K is a continuous function with support [—1,41], and so there
exists a constant Cx > 0 such that K (x) < Ck for all x € R. Therefore, using the change

of variables formula, we obtain that for all z € [0, 1],

too N2 +1 2
E[Ky(X — 2)? = 512/ K (S - "“") Fx(s)ds = % 3 K()2fx(x + th)dt < %

—00

by Assumptions 3.1 and 3.2. Hence, by Bernstein’s inequality,

'

% Z Ky(X; — ) — B[Ky(X — z)]

—t2/2
> t) < 2exp (E[Kb(X — 1‘)2]/72, + CKt/<nb>>
—nbt? /2 ) ‘

20xC% + Ckt

< Qexp(
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Thus, given that logn < nb, there exists a constant C; depending only on C'x and Ck

such that
P (

Further, observe that for all z,y € [0, 1],

nb 2n3

%ZKI)(XZ - ZE) - E[Kb(X - ZL‘)]

o logn) < L

almost surely, and so by the same argument,

n

- > WY < y}Ey(X; — x) — B[L{Y < y}Ky(X — x)]

1
P (
i=1

Next, for all z,y € [0, 1],

logn 1
< —.
> G nb ) — 2n3

[BILLY < y}Eo(X = 2)] - Frix(yl)BIK(X — o))
= |BIFy1x (51 X) (X — 2)] = Fyix (y[0) B[, (X — )]
< [BlFx (01X) = Frix (i) Ko(X - 2)]| < CLBBIK(X — 2)] < 2C1CxCich

by the Lipschitz property of the function z — Fy|x(y|x).
Now, given that |X,, X V,| = n(n — 1) < n?, combining the presented inequalities and
using the union bound shows that for all (z,y) € A, X Yy,
Fyx (y|2)E[Ky(X — 2)] + Ny
E[Ky(X —2)] + D, ’

ﬁy\x(y’@ =

where N, , and D, , are random variables such that

1 1
P( max [Ny, V|Dyyl > Cs <b+ ogn)) < -,
(IIT,y)EXann ’ ’ nb n

where Cy > 0 is a constant depending only C'x, Cp, and the kernel function K. Thus,

given that E[K,(X — z)] > ¢ for all x € &}, and some constant ¢ > 0 depending only on

cx and the kernel function K, the asserted claim follows. Q.E.D.

B Preliminary Lemmas

In this section, ¢ and C' are understood as sufficiently small and large constants, respec-
tively, whose values may change at each appearance. The constants ¢ and C' can be chosen

to depend only on c¢p, Cr, cx, Cx, c., Ce, u, d, €, and the kernel function K. Also, denote

27‘1:1 ki,h@)QFY\X(y’Xi)(l - FY|X(Z/\XZ‘)) > 1 }
Doy kin(x)? ~ log’n

S, = {(:E,y,h) e X, x YV, xB,:
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and let 8¢ be the complement of S, relative to X, x Y, x B,,. Moreover, for all v € (0, 1),
let co(y) be the (1 — v) conditional quantile of

T . Yoy eikip(z)({Y; <y} — F\Y|X(y|Xi>)
0 = max ~ 73
(@y:h)ESn (D iz Kin(2)?)

given the data and let ¢ () be the (1 — ) conditional quantile of

b ._ Yoy eikin(x)(1{Y; <y} — Fyix(y|X3))
)= max . 7
(@:9,h)ESn (2iz1 Kin(2)?)

given the data. Below we state and prove several lemmas that are useful for the proof of
Theorem 3.1.

Lemma B.1. Under Assumptions 3.1 and 3.2,

-_ -_ |\/_kzh< >| - <B, = (Cnlfé)l/Q
1<i<n (x,h)€Xp X B (Zl lklh< ) ) /

—C

with probability at least 1 — Cn

Proof of Lemma B.1. The claim follows from the proof of Theorem 4.2 in Chetverikov
(2012), which can be seen by noting that in the notation of Chetverikov (2012),

|kzh( >|
An = max max o (O Fan(x)?)1/?

if we set k=0 and 0? =1 for all i = 1,...,n there. Also, in the proof of Theorem 4.2 in
Chetverikov (2012), all statements “with probability 1 — o(1)” can be replaced by “with
probability at least 1 — C'n=¢". Q.E.D.

Lemma B.2. Under Assumptions 3.1 and 3.2,

| 2o Kin(2) ({Y: <y} — Fyix (9| X5)))| C
max ~ e <
(z,y,h) €SS (o0 kin(z)?) Vlogn

with probability at least 1 — Cn~°.

Proof of Lemma B.2. Note that for any (z,y,h) € S¢,

ZE[ in(2)?({Y; <y} — Fyix (y|Xi))? X,

> i kun(w)?
_ L kin(@) Frpx (g1 X) (1~ Frix (91 X0) _ 1
>y K ()? log®n
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by the definition of the set S¢. Thus, given that
[H{Y: <y} = Fyx(y[Xi)] <2

foralli=1,...,n and y € ), almost surely, applying Bernstein’s inequality conditional

on X, and using Lemma B.1 and the union bound shows that for any ¢ > 0,
P ( max > t)
(z,y,h) €SS,

< 2exp (Clogn -
since log |S¢| < C'logn. Substituting t = C//Iogn and B,, = (Cn'~?)'/2 in this inequality
gives the asserted claim. Q.E.D.

| > kin(2)(H{Y; <y} — Fyix(y|Xy))|

(X0 kin(2)?)'?
—t2/2

log™2n 4 2B,t/\/n

) +Cn~¢

Lemma B.3. Under Assumptions 3.1, 3.2, and 3.3,

S kin(x)2({Y: <y} — ﬁY|X(y|Xi))2 C
max T S
(z,y,h)ESE Yoy kin(x)? log“n

with probability at least 1 — Cn™¢.

Proof of Lemma B.3. Note that

Do kin(2)?({Y; <y} — F\Y\X(y|Xi))2

max : = 12
(z,y,h)ESE Zi:l k@h(ﬂ?)Q ( )
25" ko (2)2(HY; <yl — F X;))?
o e 2T RO S ) Fx0lX0) )
(x,y,h)GSg Zi:l k%h(l')
25 ke (2)2( P X)) - F X;))?
o e 25 P 01%) = Frix(v1X,) ”
(zfy’h)es'rcz Zi:l kiah ($)2

and the term in (14) is bounded from above by

2  max I xr) — F )P < Cn=¢
oA [Fyix (ylz) — Fyix (ylz)]” <
with probability at least 1 — Cn™¢ by Assumption 3.3. To bound the term in (13), note
that for each (x,y,h) € 8¢,

S kin(2)?(1{Y; <y} — Fyix(y]|X3))?
g S Fanla)? %)
B [2?1 kin(2)? Py x (y| Xi) (1 — Fyx (y| X3))
> e Kin(2)?
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by the definition of the set S¢, and so by the second part of Lemma D.1, applied conditional

on A,
. [ Yo kin(2)?({Y; <y} — Fyix(y|X0))? 1
max n 2 ‘ Xn
(2y.h)eSg >y kin()
k; 2] 1 B?1 C
<C 5— -+ max  max M <C — + n 081 < —
log”n  1<i<n (z,n)€XnxBn » ;1 kyp(x)? log”n n log™n

with probability at least 1 — C'n~¢, where the second and the third inequalities in the
second line holds by Lemma B.1 and the definition of B, respectively. Hence, applying
the first part of Lemma D.1 with s =1 and t = C'n™¢ conditional on &}, shows that

Yo kin(2)?({Y; <y} — Fyix(y|X;))? C
max 7 <
(z,y,h)ESS Yo kin(2)? log“n

with probability at least 1 — C'n™¢. Combining presented inequalities gives the asserted
claim. Q.E.D.

Lemma B.4. Under Assumptions 3.1, 3.2, and 3.5, for all a € (0,e71),
cla) > ¢ and co(a) < e(a) < co(a—1/n)
with probability at least 1 — Cn~°.

Proof of Lemma B.4. By Assumption 3.2 and the choice of the sets X, V,, and B,

with probability at least 1 — Cn~¢, there exists (z,y,h) € X, x Y, x B, such that
e<T—h<ZT+h<l—cande<y<1—e¢ in which case

b S ekin (@) (1Y < 7} - Frix(§1X0))
= O Fn@)?)12 ’

and conditional on the data, the random variable on the right-hand side of this inequality

is zero-mean Gaussian with variance
S Ea(@)2 (Y < g} — By (71X0)?
Z?:1 ki,E@)Q
> min (Brx(lX)? A (1= Frix(lX)?) = ¢

i e<X;<1l—e

with probability at least 1 —Cn™¢ by Assumptions 3.1, 3.2, and 3.3. This implies the first
asserted claim: ¢(«) > ¢ with probability at least 1 — Cn~°.
To prove the second asserted claim, note that co(a) < c(«) almost surely because

TY < T® almost surely. Therefore, it remains to show that c(a) < co(a — Cn~°) with
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probability at least 1 — Cn~¢. To do so, observe that for each (z,y,h) € S¢, conditional
on the data, the random variable

S ek (@) (1Y; < v} — Fyix(ylX3))
(S Fin(w))”?
is zero-mean Gaussian with variance
S k()2 (1Y <y} — Fyix(y|Xi))? . ¢
> it kin(x)? ~ log*n
with probability at least 1 — Cn~¢ uniformly over (z,y,h) € S; by Lemma B.3. Hence,

by Borell’s inequality,

P( o Thaka@O{Y <y} - BxlX) 1
(

iy h)ess (Z?:l ki,h($)2)1/2 = \/@ | (XmY;)?:l >1-— ﬁ

(15)
with probability at least 1 — Cn=¢. Now, on the event A, that c(a) > ¢ > ¢/y/logn and
(15) holds, we have

" ek Y, <y} — R X;
P max Zz:l € ,h(x) (n{ = y} Y|X(y| )) < C(Oé) ‘ (X“ Yvi)?:l
(z,y,h)ESn (> iy Fip(x)2)1/2
" ek Y, <y} - F X,
< P s lel e ,h(l’)(n{ =~ y} Y|X(y| )) < C(Ct) ’ (X“ }/2)?21
(z,y,h)EXp X Vn X By, (Zz‘:l ki,h(x)2>1/2
Yor g eikip(x)({Y; <y} — ﬁY|X(y|Xi))
P = : > Xia }/z n—
+ ((x,g,lh%)eisg (o kin(2)2)1/? c(a) | ( )izt
" ekin(n)(1{Y; <y} — F X;
<l—a+P max 2iz1© h(x)(n{ =y} vix (Y1 X) > < | (X3, Vi),
(z,y,h)ESS (Zi:l k@h(l')Z)l/Z \/logn

<l—-a+1/n,

which implies that co(a — 1/n) > ¢(a). Thus, since P(A,) > 1 — Cn~¢ by the dis-
cussion above, the second asserted claim follows. This completes the proof of the theo-
rem. Q.E.D.

Lemma B.5. Under Assumption 3.3, for any v € (Cn=¢1—Cn™°),
Co(y +Cn~°) < co(y) <@y —Cn™)
with probability at least 1 — Cn=°.

Proof of Lemma B.5. To prove the asserted claim, note that

TP — TP < max > i Cikin(T) (Fy x (9| X5) 1_2FY|X(y|Xi))
(@) €S (S kin(2)?)"
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and that conditional on the data, for each (z,y,h) € S,, the random variable under the

modulus on the right-hand side of this inequality is zero-mean Gaussian with variance

Yo ki,h(ff)Q(ﬁY x| Xs) = Fyix(y|X;))? ~ e
S R S i, P le) ~ ()l < O

with probability at least 1 — Cn~° in which case we have by Borell’s inequality that

T —c n 1
P<|T(§7 — Tyl < Cn |(Xz‘,Yz'>i=1) > 1= n
Therefore, for all v € (1/n,1 —1/n),
Co(v+1/n) = Cn™* < coy) <@y —1/n) + Cn”* (16)

with probability at least 1 — C'n~°. In addition, by Lemma D.2,
co(y—1/n) +Cn~ ¢ < ¢y —Cn™°)

and
co(y+1/n) —Cn=¢ > é(y+ Cn™c)

for all v € (Cn=¢ 1 — Cn~°). Combining these inequalities with (16) gives the asserted
claim. Q.E.D.

C Proofs for Section 2

Proof of Theorem 3.1. In this proof, c and C are understood as sufficiently small and large
constants, respectively, whose values may change at each appearance. The constants ¢ and
C can be chosen to depend only on cp, Cr, cx, Cx, c., Cc, u, 9, €, and the kernel function K.
Also, recall the definitions of the set S,, and the critical values ¢y(y) and ¢y () appearing
in the beginning of Appendix B.

To prove the theorem, suppose that Hy holds. Then

P(T > ¢(a)) =P ( max 2ic D)LY < y} > c(a))

1k h(
(2,y,h)EXn XV X B, (Z:-L:l ki,h(iﬂ)Q)l/Q
P < e Yoy kin(@)(1{Y; <y} — Fyix(y|X3))
(

= 1

- :c,y,h)eX?X)/ann (O Kip(x)2)4/2 > C(Oé)) (17)
S k(@) (1{Y: <y} — Fyix(y] X)) .

< )

= <(z?h%§sn (7 kin(2)2)1/2 > (@) ) +Cn
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by Lemmas B.2 and B.4. Next,

Yoy kin(2)(1{Y; <y} — Fyix (X))
p (( > c(a))

max o

z,y,h)ESn (Zizl k;l.yh(x)2)l/2
<P (( > izt kin(2)(H{Y; <y} — Fyix (¥ X))

max o

z,y,h)ESn >, ki (x)2)/2
<P (( S k() (14Y: < y} = Frix(y1X0)

> co(a)) +Cn~¢

max

2,9.h)ES (Dies Fin(2)?)1/2

by Lemmas B.4 and B.5. Thus, P(T" > ¢(«)) is bounded from above by

p ( max Z?:l ki,h(x)(l{yi <y} - FY|X(y|Xi))
(z,y,h)ESH (E:’Lzl ki,h(,ﬁlﬁ)Q)l/Q

Also, if all functions  — Fy|x(y|x) are constant, then (17) holds with equality instead

> o+ C’nc)) +Cn™¢

> cola+ Cn_c)) +Cn™°.

of inequality, and so by similar arguments, P(7 > ¢(«)) is bounded from below by

p (s, Tl 1) o)
(

max

x,y,h)ESn (Z?:l ki7h(x)2)1/2

Therefore, to prove the theorem, it remains to show that for all v € (0, 1),

‘P < i Yo kin(2)(1{Y; <y} — Fyix(y|1X5))
(25,h)€Sn (> ims ki (2)?)1/?

To do so, let Z = (Zz y1)(z,y.n)es, be a zero-mean Gaussian random vector such that

> ¢o(a — C’n_c)) —Cn™".

> 50(7)> - 7‘ <Conc. (18)

E[le,yhhl Z»’C27y2,h2]
_E |:Z?1 Kiny (21)kiny (22) ({Y: < yn} — Fyix (1] X)) ({Y: < g} — FY|X(y2|Xi))]
(i Koy (21)2 D00 Ky (2) )12
for all (x1,y1,h1) and (22,2, ho) in S,. Also, for v € (0,1), let c§(y) be the (1 — )
quantile of max, y nes, Za,y,n- Further, note that by Lemma B.1 and the definition of the
set S, we have with probability at least 1 — Cn~¢ that for all (x,y, h) € S,,

in(2)?({Y; <y} — Fyix (y|X3))?
ZE { > i kun(w)?

(19)

) 2 o
log”n

- - ki (2)?(1{Y; <y} — FY\X<y’Xi))3|
Vi) F [ s ki) | X”] =80

. ()Y <y} — Fyix(y|X;))* 2
ZE { 5, hun(@)?)? | X"] < 165n,

o (S Bt ) ]
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These inequalities imply that it follows from Proposition 4.1 in Chernozhukov, Chetverikov,
and Kato (2017) applied conditional on A&, that with probability 1 — Cn~¢ for all
v € (Cn=¢1—-Cn™°),

co(y +Cn™) < 5 (7) < &y — Cn™°). (20)

Also, it follows from Proposition 2.1 in Chernozhukov, Chetverikov, and Kato (2017)
applied conditional on X, that for all v € (0, 1),

'P < 2zt kin(@)({Y; <y} — Fyix (9l Xa)) ¢
(

max > ¢
z,y,h)ESn (22;1 kz‘,h(iﬂ)Q)l/Q ’

Combining (20) and (21) in turn gives (18) and completes the proof of the theorem (note

) - 7’ <cne (1)

that a direct application of Propositions 2.1 and 4.1 in Chernozhukov, Chetverikov, and
Kato (2017) would require that the left-hand of (19) is bounded by c instead of 1/log®n

but this does not lead to a problem because we apply these propositions with

log (ki () (1{Y: <y} — Fyix (y[Xi)))
(D Kin(2)?)1/?2

instead of
kin(2)(H{Y; <y} — Fyix (y|Xi))
(O imy Fin(2)?)/?
and use the fact that B, logn/y/n < Cn~°). Q.E.D.

Proof of Theorem 3.2. In this proof, C' is a constant that depends on u and ¢ only but
its value can change at each appearance.

To prove the asserted claim, note that since (z,y) — Fy|x(y|z) is continuously differ-
entiable and there exist 2* € (0,1) and y* € (0, 1) such that

a * *
%FY\X(?/ z*) >0,
it follows that there exists ¢* € ), such that
a —k| ok
= Fyix(g'la”) > 0.
For this 4*,
r ok Yy, < "ok HY; < g
T = max i Fin(@)1{ 1_/2y} > max iz Fin(2)1{ T/zy } =: Tj-.
oo (S k(o)) T s (I ko(e)?)

Further, conditional on the data, the random variables

>y eikin (@) ({Y; <y} — ﬁY|X<y|Xi))
(S0 ki (2)2)?
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are zero-mean Gaussian with variance bounded from above by

S (k@) (1% < )~ Frx(w1X0))’
> iz kin(2)?
< max max (1{1/; <y} -— F\Y‘X(y]Xi)> <C

YEYn 1<i<n

uniformly over (z,y, h) € X, XY, x B, with probability at least 1 —Crn~°" by Assumption
3.3. Therefore, with the same probability, c¢(a) < C(logn)/? since c(a) is the (1 — )
conditional quantile of 7% given the data, T° = max(,y nex, xyux5, 1 (2, y, h), and p :=
| X, X Y, x B, the number of elements of the set &,, x Y, x B, satisfies logp < C'logn.
Thus, the growth rate of the critical value ¢(«) satisfies the same upper bound, with a
possibly different constant C', as if we were testing monotonicity of only one regression
function, z — E[1{Y < y*}|X = z], and using the bootstrap test statistic
Té’* = (Lh{g;a(z(wn T (z, 7", h)

to simulate the critical value. Hence, the asserted claim follows from the same arguments
as those given in the proof of Theorems 3.2 and 4.2 in Chetverikov (2012), which show
that

P <Tg* < CVlogn) —0asn— o0

for any constant C' > 0. This completes the proof of the theorem. Q.E.D.

Proof of Theorem 3.5. Note that (logn/n)% 23 = o(¢,) implies that nf,, — oo as n —

0o. Hence, given that

52
’ < Cp, forall z,yel0,1],

axayFY\X,n(mx)

and that there exist z*,y* € (0,1) such that

0
—Fyixa(y'|z") > 4,
oz YIX. (y*|z") >

it follows that there exists * € ), such that

0 ~
— I g |x* = 2.
Oz YlX,n(y |z*) > ly ln/

Like in the proof of Theorem 3.2, for this ¢*, we have

n . < g*
max iz (@)UY < 7'}
(z,h)EX X Bn (Zn ki,h(x>2) /

i=1
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and, in addition, we have that c¢(a) < C(logn)'/? with probability at least 1 — Cpn=°F,
where C' is a constant that depends only on 6 and u. Therefore, since Zn satisfies
(logn/n)?/@8+3) = o(f,), the asserted claim now follows from the same arguments as
those given in the proof of Theorems 3.4 and 4.2 in Chetverikov (2012). Here, we note
that our choice of Ay, = 1/n'~% with § € (0,2/3] ensures that the collection of band-
width values B,, contains at least one bandwidth value of order (logn/n)Y?#+3  which is
required in the arguments of Chetverikov (2012). Q.E.D.

D Technical Lemmas

Lemma D.1. Let Xq,..., X, be independent random vectors in RP with p > 2 such that
Xij >0 foralli=1,...,nand j=1,...,p. Define

M := max max Xj;.
1<i<n 1<j<p

Then for any s > 1 and t > 0,

1<5<p < 1<5<p

p (max X;; > 2E[ max ZX”} +t> < K\E[M?]/t". (22)
=1

where Ky 1s a constant depending only on s. In addition,

E [112;%7 > Xz]] < K, (gjﬂ%}E [21 Xij| +E[M] 10%?) ) (23)

where Ky 18 a universal constant.

Proof. See Lemma E.4 in Chernozhukov, Chetverikov, and Kato (2017) and Lemma 9 in
Chernozhukov, Chetverikov, and Kato (2015) for the proof of (22) and (23), respectively.
Q.ED.

Lemma D.2. Let Z = (Z,...,2Z,) be a zero-mean Gaussian random vector in RP with
0]2 = E[Zf] >0 forall j =1,...,p. Denote ¢ := mini<j<,0;. Then for all e > 0 and

r = (z1,...,2,) € RP, we have

(v21ogp +2), (24)

P(Z<z+4+¢)—-P(Z<2)<

IQI”\

where © +€ = (x1 +¢€,...,1,+€).

Proof. See Lemma A.1 in Chernozhukov, Chetverikov, and Kato (2017). Q.E.D.
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