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Abstract

One of the main objectives of empirical analysis of experiments and quasi-experiments is to

inform policy decisions that determine the allocation of treatments to individuals with different

observable covariates. We study the properties and implementation of the Empirical Welfare

Maximization (EWM) method, which estimates a treatment assignment policy by maximizing

the sample analog of average social welfare over a class of candidate treatment policies. The

EWM approach is attractive in terms of both statistical performance and practical implemen-

tation in realistic settings of policy design. Common features of these settings include: (i)

feasible treatment assignment rules are constrained exogenously for ethical, legislative, or polit-

ical reasons, (ii) a policy maker wants a simple treatment assignment rule based on one or more

eligibility scores in order to reduce the dimensionality of individual observable characteristics,

and/or (iii) the proportion of individuals who can receive the treatment is a priori limited due

to a budget or a capacity constraint. We show that when the propensity score is known, the

average social welfare attained by EWM rules converges at least at n−1/2 rate to the maximum

obtainable welfare uniformly over a minimally constrained class of data distributions, and this

uniform convergence rate is minimax optimal. We examine how the uniform convergence rate

depends on the richness of the class of candidate decision rules, the distribution of conditional

treatment effects, and the lack of knowledge of the propensity score. We offer easily imple-

mentable algorithms for computing the EWM rule and an application using experimental data

from the National JTPA Study.
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1 Introduction

Treatment effects often vary with observable individual characteristics. An important objective

of empirical analysis of experimental and quasi-experimental data is to determine the individuals

who should be treated based on their observable characteristics. Empirical researchers often use

regression estimates of individual treatment effects to infer the set of individuals who benefit or

do not benefit from the treatment and to suggest who should be targeted for treatment. This

paper advocates the Empirical Welfare Maximization (EWM) method, which offers an alternative

way to choose optimal treatment assignment based on experimental or observational data from

program evaluation studies. We study the frequentist properties of the EWM treatment choice

rule and show its optimality in terms of welfare convergence rate, which measures how quickly

the average welfare attained by practicing the estimated treatment choice rule converges to the

maximal welfare attainable with the knowledge of the true data generating process. We also argue

that the EWM approach is well-suited for policy design problems, since it easily accommodates

many practical policy concerns, including (i) feasible treatment assignment rules being constrained

exogenously for ethical, legislative, or political reasons, (ii) the policy maker facing a budget or

capacity constraint that limits the proportion of individuals who can receive one of the treatments,

or (iii) the policy maker wanting to have a simple treatment assignment rule based on one or more

indices (eligibility scores) to reduce the dimensionality of individual characteristics.

Let the data be a size n random sample of Zi = (Yi, Di, Xi), where Xi ∈ X ⊂Rdx refers to ob-

servable pre-treatment covariates of individual i, Di ∈ {0, 1} is a binary indicator of the individual’s

treatment assignment, and Yi ∈ R is her/his post-treatment observed outcome. The population

from which the sample is drawn is characterized by P , a joint distribution of (Y0,i, Y1,i, Di, Xi),

where Y0,i and Y1,i are potential outcomes that would have been observed if i’s treatment status

were Di = 0 and Di = 1, respectively. We assume unconfoundedness, meaning that in the data

treatments are assigned independently of the potential outcomes (Y0,i, Y1,i) conditionally on observ-

able characteristics Xi. Based on this data, the policy-maker has to choose a conditional treatment

rule that determines whether individuals with covariates X in a target population will be assigned

to treatment 0 or to treatment 1. We restrict our analysis to non-randomized treatment rules.

The set of treatment rules could then be indexed by their decision sets G ⊂ X of covariate values,

which determine the group of individuals {X ∈ G} to whom treatment 1 is assigned. We denote

the collection of candidate treatment rules by G = {G ⊂ X}.
The goal of our analysis is to empirically select a treatment assignment rule that gives the

highest welfare to the target population. We assume that the joint distribution of (Y0,i, Y1,i, Xi) of
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the target population is identical to that of the sampled population.1 We consider the utilitarian

welfare criterion defined by the average of the individual outcomes in the target population. When

treatment rule G is applied to the target population, the social welfare defined by the sum of

individual outcomes in the population is proportional to

W (G) ≡ EP [Y1 · 1 {X ∈ G}+ Y0 · 1 {X /∈ G}] (1.1)

where EP (·) is the expectation with respect to P . Our framework could incorporate a broad

range of social preferences by suitably redefining the outcome variable. Setting Y to be a concave

transformation of one’s measure of wealth leads to an inequality-averse social welfare of Atkinson

(1970). When multiple outcome variables enter into the individual utility (e.g., consumption and

leisure), Y can be set to a known function of these outcomes. The cost of treatment can be

incorporated into the social welfare by redefining the individual potential outcome Yd to be the

outcome minus the cost of treatment d.

Denoting the conditional mean treatment response by md(x) ≡ E[Yd|X = x] and the conditional

average treatment effect by τ(x) ≡ m1(x)−m0(x), we could also express the welfare criterion as

W (G) = EP (m0(X)) + EP [τ(X) · 1 {X ∈ G}] . (1.2)

Assuming unconfoundedness, equivalence of the distributions of (Y0,i, Y1,i, Xi) between the tar-

get and sampled populations, and the overlap condition for the propensity score e(X) = EP [D|X]

in the sampled population, the welfare criterion (1.1) can be written equivalently as

W (G) = EP

[
Y D

e(X)
· 1 {X ∈ G}+

Y (1−D)

1− e(X)
· 1 {X /∈ G}

]
(1.3)

= EP (Y0) + EP

[(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1 {X ∈ G}

]
.

Hence, if the probability distribution of observables (Y,D,X) is fully known to the decision-maker,

an optimal treatment rule from the utilitarian perspective can be written as

G∗ ∈ arg max
G∈G

W (G). (1.4)

Or, equivalently, as a maximizer of the welfare gain relative to EP (Y0):

G∗ ∈ arg max
G∈G

EP [τ(X) · 1 {X ∈ G}] , or (1.5)

G∗ ∈ arg max
G∈G

EP

[(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1 {X ∈ G}

]
. (1.6)

1In Remark 2.2, we consider a setting where the target and the sampled populations have identical conditional

treatment effects, but different marginal distributions of X.
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The main idea of Empirical Welfare Maximization (EWM) is to solve a sample analog of the

population maximization problem (1.4),

ĜEWM ∈ arg max
G∈G

Wn(G), (1.7)

where Wn(G) = En

[
YiDi

e(Xi)
· 1 {Xi ∈ G}+

Yi(1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
and En (·) is the sample average. One notable feature of our framework is that the class of candidate

treatment rules G = {G ⊂ X} is not as rich as the class of all subsets of X , and it may not include

the first-best decision set

G∗FB ≡ {x ∈ X : τ(x) ≥ 0} , (1.8)

which maximizes the population welfare (1.1) if any assignment rule is feasible to implement. Our

framework with a constrained class of feasible assignment rules allows us to incorporate several types

of exogenous constraints that generally restrict the complexity of feasible treatment assignment

rules. For instance, when assigning treatments to individuals in the target population, it may not

be realistic to implement a complex treatment assignment rule due to logistic, legal, ethical, or

political restrictions.

The largest welfare that could be obtained by any treatment rule in class G is

W ∗G ≡ sup
G∈G

W (G), (1.9)

which is the second-best welfare if W ∗G < W (G∗FB). In line with Manski (2004) and the subsequent

literature on statistical treatment rules, we evaluate the performance of estimated treatment rules

Ĝ ∈ G in terms of their average welfare loss (regret) relative to the maximum feasible welfare W ∗G

W ∗G − EPn
[
W (Ĝ)

]
= EPn

[
W ∗G −W (Ĝ)

]
≥ 0, (1.10)

where the expectation EPn is taken over different realizations of the random sample. This criterion

measures the average difference between the best attainable population welfare and the welfare

attained by implementing estimated policy Ĝ. Since we assess the statistical performance of Ĝ by

its welfare value W (Ĝ), we do not require arg maxG∈GW (G) to be unique or Ĝ to converge to a

specific set.

Assuming that the propensity score e(X) is known and bounded away from zero and one, as is

the case in randomized experiments, we derive a non-asymptotic distribution-free upper bound of

EPn
[
W ∗G −W (ĜEWM )

]
as a function of sample size n and a measure of complexity of G. Based

on this bound, we show that the average welfare of the EWM treatment rule converges to W ∗G
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at rate O(n−1/2) uniformly over a minimally constrained class of probability distributions. We

also show that this uniform convergence rate of ĜEWM is optimal in the sense that no estimated

treatment choice rule of any kind can attain a faster uniform convergence rate compared to the

EWM rule, i.e., minimax rate optimality of ĜEWM . For further refinement of this theoretical

result, we analyze how this uniform convergence rate improves if the first-best decision rule G∗FB

is feasible, i.e., G∗FB ∈ G, and if the class of data generating processes is constrained by the margin

assumption, which restricts the distribution of conditional treatment effects in a neighborhood of

zero. We show that ĜEWM remains minimax rate optimal with these additional restrictions.

When the data are from an observational study, the propensity score is usually unknown, so it is

not feasible to implement the EWM rule (1.7). As a feasible version of the EWM rule, we consider

hybrid EWM approaches that plug in estimators of the regression equations or the propensity

score in the sample analogs of (1.5) or (1.6). Specifically, with estimated regression functions

m̂d(x) = Ê(Yd|X = x) = Ê(Y |X = x,D = d), we define the m-hybrid rule as

Ĝm−hybrid ∈ arg max
G∈G

En [τ̂m (Xi) · 1 {Xi ∈ G}] , (1.11)

where τ̂m (Xi) ≡ m̂1 (Xi)− m̂0 (Xi). Similarly, with the estimated propensity score ê(x), we define

an e-hybrid rule as

Ĝe−hybrid ∈ arg max
G∈G

En [τ̂ ei · 1 {Xi ∈ G}] , (1.12)

where τ̂ ei ≡
[
YiDi
ê(Xi)

− Yi(1−Di)
1−ê(Xi)

]
·1 {εn ≤ ê (Xi) ≤ 1− εn} with a converging positive sequence εn → 0

as n → ∞. We investigate the performance of these hybrid approaches in terms of the uniform

convergence rate of the welfare loss and clarify how this rate is affected by the estimation uncertainty

in m̂d(·) and ê(·).
Since the welfare criterion function involves optimization over a class of sets, estimation of the

EWM and hybrid treatment rules could present challenging computational problems when G is

rich, similarly to the maximum score estimation (Manski (1975), Manski and Thompson (1989)).

We argue, however, that exact maximization of EWM criterion is now practically feasible for many

problems in economics using widely-available optimization software and an approach proposed by

Florios and Skouras (2008), which we extend and improve upon.

To illustrate EWM in practice, we compare EWM and plug-in treatment rules computed from

the experimental data of the National Job Training Partnership Act Study analyzed by Bloom

et al. (1997).
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1.1 Related Literature

Our paper contributes to a growing literature on statistical treatment rules in econometrics, in-

cluding Manski (2004), Dehejia (2005), Hirano and Porter (2009), Stoye (2009, 2012), Chamberlain

(2011), Bhattacharya and Dupas (2012), Tetenov (2012), and Kasy (2014). Manski (2004) proposes

to assess the welfare properties of statistical treatment rules by their maximum regret and derives

finite-sample regret bounds for Conditional Empirical Success (CES) rules. CES rules take a finite

partition of the covariate space and, separately for each set in this partition, assign the treatment

that yields the highest sample average outcome. CES rules can be viewed as a type of EWM rules

for which G consists of all unions of the sets in the partition and the empirical welfare criterion

uses the sample propensity score. Manski shows that with the partition fixed, their welfare regret

converges to zero at least at n−1/2 rate. We show that this rate holds for a broader class of EWM

rules and that it cannot be improved uniformly without additional restrictions on P .

Stoye (2009) shows that in the absence of ex-ante restrictions on how outcome distributions

vary with covariates, finite-sample minimax regret is attained by rules that take the finest partition

of the covariate space and operate independently for each covariate value. This important result

implies that with continuous covariates, minimax regret does not converge to zero with sample

size because the first-best treatment rule may be arbitrarily “wiggly” and difficult to approximate

from countable data. Our approach does not give rise to Stoye’s non-convergence result because

we restrict the complexity of G and define regret relative to the maximum attainable welfare in

G instead of the unconstrained first-best welfare. However, we do not derive exact finite-sample

minimax regret rules in the more complex setting of our paper.

Treatment choice has substantial similarities with classification. In a binary classification prob-

lem, the researcher observes a random sample (Yi, Xi), where Yi ∈ {−1,+1} denotes which of two

classes an observation belongs to. A classifier aims to predict the correct classification of future

observations based on observed covariates X. A treatment rule similarly seeks to “classify” in-

dividuals into those who should and should not be treated based on their covariates. Treatment

choice, however, differs from classification in a few significant ways: (1) observed outcomes can be

real-valued rather than binary, (2) we only observe one of the two potential outcomes, and not the

correct classification of individuals in the sample, (3) policy settings often impose constraints on

practicable treatment rules or on the proportion of the population that could be treated.

The earliest works noting the connection between treatment choice and classification are Zadrozny

(2003) and Beygelzimer and Langford (2009). They propose algorithms that transform a sample

from a treatment choice problem into a sample from a standard binary classification problem. Treat-
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ment rules could be then generated using any existing binary classification algorithm. Beygelzimer

and Langford (2009) show that the welfare loss of any treatment rule G with respect to the first-

best (W (G∗FB) −W (G)) is bounded above by a classification regret with respect to the first-best

classifier. It implies that if the regret of the classification algorithm converges to zero, then consis-

tency of W (Ĝ) to W (G∗FB) holds. They do not consider any restrictions on G and do not study the

welfare loss convergence rates. Instead, we consider maximizing Wn(G) over a constrained class of

policies without converting it into a classification problem.

The idea of optimizing the sample analog of a population decision problem is known as the

Empirical Risk Minimization (ERM) Principle in classification (see Vapnik (1998) and references

therein). The similarity between treatment choice and classification allows us to draw on recent

results by Devroye et al. (1996), Tsybakov (2004), Massart and Nédélec (2006), Audibert and

Tsybakov (2007), and Kerkyacharian et al. (2014), among others. We extend these convergence

rate results for ERM classifiers to the treatment choice problem, accommodating the differences

between classification and treatment choice and addressing issues specific to treatment choice.

Establishing uniform convergence rates of the welfare regret of the EWM rule and its minimax rate

optimality constitute the main theoretical contributions of this paper.

The analysis of individualized treatment rules has also received considerable attention in bio-

statistics. Qian and Murphy (2011) propose a plug-in approach using E(Yd|X) estimated by pe-

nalized least squares. They derive welfare convergence rate of n−1/2 or better (with a margin

condition), assuming that E(Yd|X) is well approximated by a sparse representation. Zhao et al.

(2012) propose estimation of the treatment rule using a Support Vector Machine. This approach

substitutes the EWM treatment choice objective function by a convex surrogate. They derive the

welfare convergence rates that depend on the dimension of the covariates, similarly to nonparamet-

ric plug-in rules. These approaches are computationally attractive but cannot be used to choose

from a constrained set of treatment rules or under a capacity constraint. Dud́ık et al. (2011) and

Zhang et al. (2012) consider maximizing a doubly-robust estimate of the welfare over a set of

policies and show by simulation that this approach outperforms the e-hybrid EWM approach in

terms of welfare. Athey and Wager (2017) analytically characterize advantages of the doubly-robust

approach by showing an improved constant term in the welfare regret upper bounds.

Several works in econometrics consider the plug-in approach to treatment choice using estimated

regression equations,

Ĝplug−in = {x : τ̂m(x) ≥ 0} , τ̂m(x) = m̂1(x)− m̂0(x), (1.13)

where m̂d(x) is a parametric or a nonparametric estimator of E(Yd|X = x). Hirano and Porter
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(2009) establish local asymptotic minimax optimality of plug-in rules for parametric and semi-

parametric models of treatment response. Bhattacharya and Dupas (2012) apply nonparametric

plug-in rules with an aggregate budget constraint and derive some of their properties. Armstrong

and Shen (2015) consider statistical inference for the first-best decision rule G∗FB from the per-

spective of inference for conditional moment inequalities. Empirical researchers often assess who

should be treated by stratifying the population on an estimated predictor of Y0, which leads to

biased treatment effect estimates (Abadie et al. (2016)). Kasy (2016) considers estimation of a

partially-ordered welfare ranking over treatment assignment policies with a set-identified welfare

criterion.

To assess treatment effect heterogeneity, estimation and inference for conditional treatment

effects based on parametric or nonparametric regressions are often reported, but the stylized output

of statistical inference (e.g., confidence intervals, p-values) fails to offer the policy maker a direct

guidance on what treatment rule to follow. In contrast, our EWM approach offers the policy maker

a specific treatment assignment rule designed to maximize social welfare.

A treatment assignment rule could also be obtained by specifying a prior distribution for P

and solving for a Bayes decision rule (see Dehejia (2005) and Chamberlain (2011) for Bayesian

approaches to the treatment choice problem). Kasy (2014) proposes a nonparametric Bayesian

approach to policy estimation for a range of public policy applications. In contrast to the Bayesian

approach, the EWM approach utilizes only the empirical distribution of the data and does not

require a prior distribution over the data generating processes.

Elliott and Lieli (2013) and Lieli and White (2010) also proposed maximizing the sample analog

of a utilitarian decision criterion similar to EWM. They consider the problem of forecasting binary

outcomes based on observations of (Yi, Xi), as in Manski and Thompson (1989), where a forecast

leads to a binary decision.

2 Theoretical Properties of EWM

2.1 Setup and Assumptions

Throughout our investigation of theoretical properties of EWM, we maintain the following assump-

tions.

Assumption 2.1.

(UCF) Unconfoundedness: (Y1, Y0) ⊥ D|X.

(BO) Bounded Outcomes: There exists M < ∞ such that the support of outcome variable Y is
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contained in [−M/2,M/2].

(SO) Strict Overlap: There exist κ ∈ (0, 1/2) such that the propensity score satisfies e(x) ∈
[κ, 1− κ] for all x ∈ X .

(VC) VC-class: A class of decision sets G has a finite VC-dimension2 v <∞ and is countable.3

The assumption of unconfoundedness (selection on observables) holds if data are obtained from

an experimental study with a randomized treatment assignment. In observational studies, uncon-

foundedness is a non-testable and often controversial assumption. Our analysis could be applied

to the observational studies in which unconfoundedness is credible. The second assumption (BO)

implies boundedness of the treatment effects, i.e.,

PX(|τ(X)| ≤M) = 1,

where PX is the marginal distribution of X and τ(·) is the conditional treatment effect τ(X) =

E (Y1 − Y0|X). Since the implementation of EWM does not require knowledge of M and unbounded

Y is rare in social science, this assumption is innocuous and imposed only for analytical convenience.

The third assumption (SO) is a standard assumption in the treatment effect literature. It is satisfied

in randomized controlled trials by design, but it may be violated in observational studies if almost all

the individuals are in the same group (treatment or control) for some values of X. We let P(M,κ)

denote the class of distributions of (Y0, Y1, D,X) that satisfy Assumption 2.1 (UCF), (BO), and

(SO).

The fourth assumption (VC) restricts the complexity of the class of candidate treatment rules

G in terms of its VC-dimension. If X has a finite support, then the VC-dimension v of any class G
does not exceed the number of support points. If some of X is continuously distributed, Assumption

2.1 (VC) requires G to be smaller than the Borel σ-algebra of X . The following examples illustrate

several practically relevant classes of the feasible treatment rules satisfying Assumption 2.1 (VC).

2Let xl ≡ {x1, . . . , xl} be a finite set with l ≥ 1 points in X . Given a class of subsets G in X , define N(xl) =

|{xl ∩ G : G ∈ G}| be the number of different subsets of xl picked out by G ∈ G. The VC-diemension v ≥ 1 of G
is defined by the largest l such that supxl N(xl) = 2l holds (Vapnik (1998)). The VC-dimension is commonly used

to measure the complexity of a class of sets in the statistical learning literature (see Vapnik (1998), Dudley (1999,

Chapter 4), and van der Vaart and Wellner (1996) for extensive discussions). Note that the VC-dimension is smaller

by one compared to the VC-index used to measure the complexity of a class of sets in the empirical process theory,

e.g., van der Vaart and Wellner (1996).
3Countability of G is imposed to simplify measurability issues in proving our theoretical results. In Examples

2.1-2.3 below, we formulate G to be uncountable, whereas any practical implementation will only use a countable

subset of G in search of the EWM rule.
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Example 2.1. (Linear Eligibility Score) Suppose that a feasible assignment rule is constrained

to those that assign the treatment according to an eligibility score. By the eligibility score, we

mean a scalar-valued function of the individual’s observed characteristics that determines whether

one receives the treatment based on whether the eligibility score exceeds a certain threshold. The

main objective of data analysis is therefore to construct an eligibility score that yields a welfare-

maximizing treatment rule. Specifically, we assume that the eligibility score is constrained to being

linear in a subvector of x ∈ Rdx, xsub ∈ Rdsub, dsub ≤ dx. The class of decision sets generated by

Linear Eligibility Scores (LES) is defined as

GLES ≡
{{

x ∈ Rdx : β0 + xTsubβsub ≥ 0
}

:
(
β0, β

T
sub

)
∈ Rdsub+1

}
. (2.1)

We accordingly obtain an EWM assignment rule by maximizing

Wn(β) ≡ En
[
YiDi

e(Xi)
· 1
{
β0 +XT

sub,iβsub ≥ 0
}

+
Yi(1−Di)

1− e(Xi)
· 1
{
β0 +XT

sub,iβsub < 0
}]

in β =
(
β0, β

T
sub

)
∈ Rdsub+1. It is well known that the class of half-spaces spanned by

(
β0, β

T
sub

)
∈

Rdsub+1 has the VC-dimension v = dsub + 1, so Assumption 2.1 (VC) holds. In Section E of

Kitagawa and Tetenov (2017b), we discuss how to compute ĜEWM when the class of decision sets

is given by GLES. A plug-in rule based on a parametric linear regression also selects a treatment

rule from GLES, but their welfare does not converge to the maximum welfare W ∗GLES if the regression

equations are misspecified, whereas the welfare of ĜEWM always does (as shown in Theorem 2.1

below).

Example 2.2. (Generalized Eligibility Score) Let fj(·), j = 1, . . . ,m, and g(·) be known functions

of x ∈ Rdx. Consider a class of assignment rules generated by Generalized Eligibility Scores (GES),

GGES ≡
{{

x ∈ Rdx :
∑m

j=1
βjfj(x) ≥ g(x)

}
, (β1, ..., βm) ∈ Rm

}
.

The class of decision sets GGES generalizes the linear eligibility score rules (2.1), as it allows for

eligibility scores that are nonlinear in x, i.e., GGES can accommodate decision sets that partition

the space of covariates by nonlinear boundaries. It can be shown that GGES has the VC-dimension

v = m+ 1 (Theorem 4.2.1 in Dudley (1999)).

Example 2.3. (Intersection Rule of Multiple Eligibility Scores) Consider a situation where there

are L ≥ 2 eligibility scores. Let GGES,l, l = 1, . . . , L, be classes of decision sets such that each

of them is generated by contour sets of the l-th eligibility score. Suppose that a feasible decision

rule is constrained to those that assign the treatment if the individual has all the L eligibility scores
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exceeding thresholds. In this case, the class of decision sets is constructed by the intersections,

G ≡
⋂L
l=1 GGES,l =

{⋂L
l=1Gl : Gl ∈ GGES,l, l = 1, . . . , L

}
. An intersection of a finite number of

VC-classes is a VC-class with a finite VC-dimension (Theorem 4.5.4 in Dudley (1999)); thus,

Assumption 2.1 (VC) holds for this G. We can also consider a class of treatment rules that assigns

a treatment if at least one of the L eligibility scores exceeds a threshold. In this case, instead of

intersections, the class of decision sets is formed by the unions of {GGES,l, l = 1, . . . , L}, which is

also known to have a finite VC-dimension (Theorem 4.5.4 in Dudley (1999))

2.2 Uniform Rate Optimality of EWM

To analyze statistical performance of EWM rules, we focus on a non-asymptotic upper bound

of the worst-case welfare loss supP∈P(M,κ)EPn
[
W ∗G −W (ĜEWM )

]
and examine how it depends

on sample size n and VC-dimension v. This finite sample upper bound allows us to assess the

uniform convergence rate of the welfare and to examine how richness (complexity) of the class

of candidate decision rules affects the worst-case performance of EWM. The main reason that we

focus on the uniform convergence rate rather than a pointwise convergence rate is that the pointwise

convergence rate of the welfare loss can vary depending on a feature of the data distribution and

fails to provide a guaranteed learning rate of an optimal policy when no additional assumption,

other than Assumption 2.1, is available.

For heuristic illustration of the derivation of the uniform convergence rate, consider the following

inequality, which holds for any G̃ ∈ G:

W (G̃)−W (ĜEWM ) = W (G̃)−Wn(ĜEWM ) +Wn(ĜEWM )−W (ĜEWM ) (2.2)

≤ W (G̃)−Wn(G̃) + sup
G∈G

∣∣∣Wn(G̃)−W (G̃)
∣∣∣

( ∵ Wn(ĜEWM ) ≥Wn(G̃) )

≤ 2 sup
G∈G
|Wn(G)−W (G)| .

Since it applies to W (G̃) for all G̃, it also applies to W ∗G = supW (G̃):

W ∗G −W (ĜEWM ) ≤ 2 sup
G∈G
|Wn(G)−W (G)| . (2.3)

Therefore, the expected welfare loss can be bounded uniformly in P by a distribution-free upper

bound of EPn(supG∈G |Wn(G)−W (G)|). SinceWn(G)−W (G) can be seen as the centered empirical

process indexed by G ∈ G, an application of the existing moment inequality for the supremum of

centered empirical processes indexed by a VC-class yields the following distribution-free upper
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bound. A proof, which closely follows the proofs of Theorems 1.16 and 1.17 in Lugosi (2002) in the

classification problem, is given in Section A.2 of Kitagawa and Tetenov (2017b).

Theorem 2.1. Under Assumption 2.1, we have

sup
P∈P(M,κ)

EPn
[
W ∗G −W (ĜEWM )

]
≤ C1

M

κ

√
v

n
,

where C1 is a universal constant defined in Lemma A.4 in Kitagawa and Tetenov (2017b).

This theorem shows that the convergence rate of the worst-case welfare loss for the EWM rule

is no slower than n−1/2. The upper bound is increasing in the VC-dimension of G, implying that, as

the candidate treatment assignment rules become more complex in terms of VC-dimension, ĜEWM

tends to overfit the data in the sense that the distribution of regret W ∗G −W (ĜEWM ) is more and

more dispersed, and, with n fixed, this overfitting results in inflating the average welfare regret.4

The next theorem concerns a universal lower bound of the worst-case average welfare loss. It

shows that no data-based treatment choice rule can have a uniform convergence rate faster than

n−1/2.

Theorem 2.2. Suppose that Assumption 2.1 holds. For any treatment choice rule Ĝ as a function

of (Z1, . . . , Zn), it holds

sup
P∈P(M,κ)

EPn
[
W ∗G −W (Ĝ)

]
≥ 2−1 exp

{
−2
√

2
}
M

√
v

n
for all n ≥ 16v.

We derive this lower bound by bounding below the worst-case welfare regret by the risk of a

parametric Bayes decision problem (i.e., a prior that only supports a parametric subclass P∗ ⊂
P(M, κ)) and maximizing the Bayes risk over P ∈ P∗. A similar proof technique appears in

Devroye and Lugosi (1995) in their regret lower bound analysis of ERM classifiers.

This theorem, combined with Theorem 2.1, implies that ĜEWM is minimax rate optimal over

the class of data generating process P (M,κ), since the rate of the convergence of the upper bound of

supP∈P(M,κ)EPn
[
W ∗G −W (ĜEWM )

]
agrees with the convergence rate of the universal lower bound.

Accordingly, we can conclude that no other data-driven procedure for obtaining a treatment choice

rule can outperform ĜEWM in terms of the uniform convergence rate over P (M,κ). It is worth

noting that the rate lower bound is uniform in P and does not apply pointwise. Theorem 2.3

shows that EWM rules have faster convergence rates for some distributions. It is also possible

4Note that W ∗G weakly increases if a more complex class G is chosen. Our welfare loss criterion is defined for a

specific class G and does not capture the potential gain in the maximal welfare from the choice of a more complex G.
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that EPn
[
W (Ĝ)

]
> W ∗G for some pairs of Ĝ and P , but it can never hold for all distributions in

P(M,κ).5

Remark 2.1. Capacity or budget constraints that restrict the proportion of the target population

that could be assigned to treatment exists in various treatment choice problems. An attractive feature

of the empirical welfare maximization method is the simplicity of incorporating these constraints in

the estimation of a treatment choice rule.

Assume that the proportion of the target population that could receive treatment 1 cannot exceed

K ∈ (0, 1). If the population distribution of covariates PX were known, maximization of the empir-

ical welfare criterion could be simply restricted to sets in class G that satisfy the capacity constraint

GK ≡ {G ∈ G : PX(G) ≤ K}. Being a subset of G, the class of sets GK has the same complexity as

G (or lower), and Theorem 2.1 could be applied simply by replacing G with GK .

When PX is unknown, it is not guaranteed with certainty that estimated treatment rule Ĝ satis-

fies the capacity constraint. To evaluate the welfare in this setting, we assume that if the treatment

rule G violates the capacity constraint, PX(G) > K, then the scarce treatment is randomly allocated

(“rationed”) to a fraction K
PX(G) of the assigned recipients with X ∈ G independently of (X,Y0, Y1).

6

If G does not violate the capacity constraint, then there is no rationing and all recipients with co-

variates X ∈ G receive treatment 1. This allows us to clearly define the capacity-constrained welfare

of the treatment rule indexed by any subset G ⊂ X of the covariate space as

WK(G) ≡ EP

 [Y1 ·min
{

1, K
PX(G)

}
+ Y0 ·

(
1−min

{
1, K

PX(G)

})]
· 1 {X ∈ G}

+Y0 · 1 {X /∈ G}

 .
Then the capacity-constrained welfare gain of the treatment rule G relative to the no-treatment

policy is given by

V K(G) ≡WK(G)−WK(∅) = min

{
1,

K

PX(G)

}
· EP [τ(X)1{X ∈ G}].

Observe that rationing dilutes the effect of treatment rules that violate the capacity constraint and

we take into account this effect on welfare. We hence propose a treatment rule that maximizes the

empirical analog of the capacity-constrained welfare gain V K(G) (and, hence, welfare):

ĜK ≡ arg max
G∈G

V K
n (G), (2.4)

5For example, if Ĝ is a nonparametric plug-in rule and the first-best decision rule G∗FB for distribution P does not

belong to G, then the welfare of Ĝ will exceed W ∗G in sufficiently large samples. However, the uniform lower bound

still applies because there exist other distributions for which EPnW (Ĝ) ≤W ∗G − (n−1/2 bound) for the same sample

size.
6In comparison, nonparametric plug-in treatment rules proposed by Bhattacharya and Dupas (2012) are only

required to satisfy the capacity constraint on average over repeated data samples.
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where

V K
n (G) ≡ min

{
1,

K

PX,n(G)

}
· En

[(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
· 1{Xi ∈ G}

]
,

and PX,n is the empirical probability distribution of (X1, . . . , Xn). Theorem B.1 (Kitagawa and

Tetenov, 2017b) shows that similarly to Theorem 2.1, the expected welfare of ĜK converges to the

maximum at least at n−1/2 rate.

Remark 2.2. Empirical Welfare Maximization method can be adapted to situations where a target

population shares the conditional treatment effect with the sampled population, but differs in the

distribution of covariates X. Let ρ(x) ≡ pTX(x)/pX(x) be the density ratio of the marginal dis-

tributions of X, where pX and pTX are those of the sampled population and the target population.

Assume ρ(x) ≤ ρ̄ <∞ for all x. The welfare gain of treatment rule G on the target population can

be written as

V T (G) ≡
∫
X
τ(x)1{x ∈ G}ρ(x) dPX(x).

Since the first-best treatment rule G∗FB = 1{x : τ(x) ≥ 0} is the same in the sampled and the

target populations, if G∗FB ∈ G, we could directly apply the EWM rule computed for the sampled

population to the target population. In contrast, if the first-best policy is not feasible (G∗FB /∈ G), the

second-best policies for the sampled and the target populations are generally different, and the welfare

of treatment rules proposed in the previous sections does not generally converge to the second-best

in the target population supG∈G V
T (G).

The second-best in the target population could be obtained by reweighting the argument of the

EWM problem by the density ratio ρ(Xi):

ĜTEWM ∈ arg max
G∈G

En

[(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
· ρ(Xi) · 1 {Xi ∈ G}

]
. (2.5)

As an extension of Theorem 2.1, the welfare loss of the reweighted EWM rule in the target population

can be shown to converge to zero at least at n−1/2 rate.

Remark 2.3. The EWM rule (1.7) is invariant to multiplying all outcomes Yi by a positive con-

stant, but is not invariant to adding a constant. If all Yi’s are replaced by Yi+c, the welfare estimate

Wn(G) changes by c · En
[

Di
e(Xi)

· 1 {Xi ∈ G}+ 1−Di
1−e(Xi) · 1 {Xi /∈ G}

]
. This difference converges to

c for every G, but its value varies with G in finite samples. This could pose problems for applied

work because the researcher has some room to change the treatment assignment rule by changing

the coding of the outcome variable. We propose a simple modification of the EWM rule invariant to
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positive affine transformations of outcomes. Denote by Y dm
i ≡ Yi −En [Yi] the outcomes demeaned

by their sample mean; they are invariant to changing Yi’s by a constant. Then the demeaned EWM

rule

ĜdmEWM ∈ arg max
G∈G

W dm
n (G), (2.6)

where W dm
n (G) ≡ En

[
Y dm
i Di

e(Xi)
· 1 {Xi ∈ G}+

Y dm
i (1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
, (2.7)

is invariant to positive affine transformations of Yi.

The rate result of Theorem 2.1 also holds for demeaned EWM rule ĜdmEWM , as we show in Section

B.2 of Kitagawa and Tetenov (2017b).7 In our empirical application we compute the demeaned

EWM treatment rules.

Remark 2.4. In Section B.3 of Kitagawa and Tetenov (2017b) we discuss how the EWM approach

could be applied with more than two treatments. The rate result of Theorem 2.1 holds for multiple

treatments if treatment assignment covariate subsets for each treatment belong to a VC-class.

2.3 Rate Improvement by Margin Assumption

The welfare loss upper bounds obtained in Theorem 2.1 can indeed tighten up and the uniform

convergence rate can improve, as we further constrain the class of data generating processes. In

this section, we investigate (i) what feature of data generating processes can affect the upper bound

on the welfare loss of the EWM rule, and (ii) whether or not the EWM rule remains minimax rate

optimal even under the additional constraints. For this goal, we consider imposing the following

two assumptions.

Assumption 2.2.

(FB) Correct Specification: The first-best treatment rule G∗FB defined in (1.8) belongs to the class

of candidate treatment rules G.

(MA) Margin Assumption: There exist constants 0 < η ≤M and 0 < α <∞ such that

PX(|τ(X)| ≤ t) ≤ (t/η)α , ∀0 ≤ t ≤ η,

where M <∞ is the constant as defined in Assumption 2.1 (BO).

The assumption of correct specification means that the class of feasible policy rules specified

by G contains an unconstrained first-best treatment rule G∗FB. This assumption is plausible if, for

7In our simulations demeaned EWM never performed much worse than standard EWM in terms of welfare.

Demeaned EWM performed much better in cases where E[Y ] was very far from zero.
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instance, the policy maker’s specification of G is based on a credible assumption about the shape

of the contour set {x : τ(x) ≥ 0}. This assumption can be, on the other hand, restrictive if the

specification of G comes from some exogenous constraints for feasible policy rules, as in the case of

Example 2.1.

The second assumption (MA) concerns the way in which the distribution of conditional treat-

ment effect τ(X) behaves in the neighborhood of τ(X) = 0. A similar assumption has been consid-

ered in the literature on classification analysis (Mammen and Tsybakov (1999), Tsybakov (2004),

among others), and we borrow the term “margin assumption” from Tsybakov (2004). Parameters η

and α characterize the size of population with the conditional treatment effect close to the margin

τ(X) = 0. Smaller η and α imply that more individuals can concentrate in a neighborhood of

τ(X) = 0. The next examples illustrate this interpretation of η and α.

Example 2.4. Suppose that X contains a continuously distributed covariate and that the condi-

tional treatment effect τ(X) is continuously distributed. If the probability density function of τ(X)

is bounded from above by pτ <∞, then the margin assumption holds with α = 1 and η = (2pτ )−1.

Example 2.5. Suppose that X is a scalar and follows the uniform distribution on [−1/2, 1/2].

Specify the conditional treatment effect to be τ(X) = (−X)3. In this specification, τ(X) “flats

out” at X = 0, and accordingly, the density function of τ(X) is unbounded in the neighborhood of

τ(X) = 0. This specification leads to PX(|τ(X)| ≤ t) = 2t1/3, so the margin assumption holds with

α = 1/3 and η = 1/8.

Example 2.6. Suppose that the distribution of X is the same as in Example 2.5. Let h > 0 and

specify τ(X) as

τ(X) =

{
X − h for X ≤ 0,

X + h for X > 0.

This τ(X) is discontinuous at X = 0, and the distribution of τ(X) has zero probability around the

margin of τ(X) = 0. It holds

PX(|τ(X)| ≤ t) =

{
0 for t ≤ h,
2(t− h) for h < t ≤ 1

2 + h.

By setting η = h, the margin condition holds for arbitrarily large α. In general, if the distribution

of τ(X) has a gap around the margin of τ(X) = 0, the margin condition holds with arbitrarily large

α.
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From now on, we denote the class of P satisfying Assumptions 2.1 and 2.2 by PFB(M,κ, η, α).8

The next theorem provides the upper bound of the welfare loss of the EWM rule when a class of

data distributions is constrained to PFB (M,κ, η, α).

Theorem 2.3. Under Assumptions 2.1 and 2.2,

sup
P∈PFB(M,κ,η,α)

EPn
[
W (G∗FB)−W (ĜEWM )

]
≤ c

( v
n

) 1+α
2+α

holds for all n, where c is a positive constant that depends only on M , κ, η, and α.

Similarly to Theorem 2.1, the presented welfare loss upper bound is non-asymptotic, and it is

valid for every sample size. Our derivation of this theorem can be seen as an extension of the finite

sample risk bound for the classification error shown in Theorem 2 of Massart and Nédélec (2006).

Our rate upper bound is consistent with the uniform convergence rate of the classification risk of

the empirical risk minimizing classifier shown in Theorem 1 of Tsybakov (2004).9 This coincidence

is somewhat expected, given that the empirical welfare criterion that the EWM rule maximizes

resembles the empirical classification risk in the classification problem.

The next theorem shows that the uniform convergence rate of n−
1+α
2+α obtained in Theorem 2.3

attains the minimax rate lower bound, implying that any treatment choice rule Ĝ based on data

(including ĜEWM ) cannot attain a uniform convergence rate faster than n−
1+α
2+α . This means that

the EWM rule remains rate optimal even when the class of data generating processes is constrained

additionally by Assumption 2.2.10

Theorem 2.4. Suppose Assumptions 2.1 and 2.2 hold. Assume that the VC-dimension of G sat-

isfies v ≥ 2. Then, for any treatment choice rule Ĝ as a function of (Z1, . . . , Zn), it holds

sup
P∈PFB(M,κ,η,α)

EPn
[
W (G∗FB)−W (Ĝ)

]
≥ 2−1 exp

{
−2
√

2
}
M

2(1+α)
2+α η−

α
2+α

(
v − 1

n

) 1+α
2+α

for all n ≥ max
{

(M/η)2 , 42+α
}

(v − 1).

8Note that PFB(M,κ, η, α) depends on the set of feasible treatment rules G via Assumption 2.2 (FB).
9Tsybakov (2004) defines the complexity of the decision sets G in terms of the growth coefficient ρ of the bracketing

number of G. We control complexity of G in terms of the VC-dimension, which corresponds to Tsybakov’s growth

coefficient ρ being arbitrarily close to zero.
10Assumption 2.2 rules out data generating processes with PX(τ(X) = 0) > 0, which can constitute focal null

hypotheses (often PX(τ(X) = 0) = 1) in program evaluation studies. A practical implication of the refined minimax

rate result shown in this section is that the EWM rule remains a recommended choice even when we know ex ante

that there is substantial effect heterogeneity in x and τ(x) 6= 0 for most x.
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The following remarks summarize some analytical insights associated with Theorems 2.1 - 2.4.

Remark 2.5. The convergence rates of the worst-case EWM welfare loss obtained by Theorems

2.1 and 2.3 highlight how margin coefficient α influences the uniform performance of the EWM

rule. Higher α improves the welfare loss convergence rate of EWM, and the convergence rate

approaches n−1 in an extreme case, where the distribution of τ(X) has a gap around τ(X) = 0. As

fewer individuals are around the margin of τ(X) = 0, we can attain the maximal welfare quicker.

Conversely, as α approaches zero (more individuals around the margin), the welfare loss convergence

rate of EWM approaches n−1/2, and it corresponds to the uniform convergence rate of Theorem 2.1.

Remark 2.6. The upper bounds of welfare loss convergence rate shown in Theorems 2.1 and 2.3

are increasing in the VC-dimension of G. Since they are valid at every n, we can allow the VC-

dimension of the candidate treatment rules to grow with the sample size. For instance, if we consider

a sequence of candidate decision sets {Gn : n = 1, 2, . . . }, for which the VC-dimension grows with

the sample size at rate nλ, 0 < λ < 1, Theorems 2.1 and 2.3 imply that the welfare loss uniform

convergence rate of the EWM rule slows down to n−
1−λ
2 for the case without Assumption 2.2 and

to n−(1−λ)
(1+α)
2+α for the case with Assumption 2.2.11 Note that the welfare loss lower bounds shown

in Theorems 2.2 and 2.4 have the VC-dimensions of the same order as in the corresponding upper

bounds, so we can conclude that the EWM rule is also minimax rate optimal even in the situations

where the complexity of G grows with the sample size.

Remark 2.7. Note that the welfare loss lower bounds of Theorems 2.2 and 2.4 are valid for any

estimated treatment choice rule Ĝ irrespective of whether Ĝ is constrained to G or not. Therefore,

the nonparametric plug-in rule Ĝplug−in defined in (1.13) is subject to the same lower bound.12

Remark 2.8. Let PFB (M,κ) be the class of data generating processes that satisfy Assumption 2.1

and Assumption 2.2 (FB). A close inspection of the proofs of Theorems 2.1 and 2.2 given in Section

A.2 of Kitagawa and Tetenov (2017b) shows that the same lower and upper bounds of Theorems 2.1

and 2.2 can be obtained even when P (M,κ) is replaced with PFB (M,κ). In this sense, Assumption

2.2 (MA) plays the main role in improving the welfare loss convergence rate.

11Note that for the case without Assumption 2.2 (FB), the maximal attainable welfare W ∗G increases weakly as

the complexity of G grows. On the other hand, with Assumption 2.2 (FB), the set of data generating processes

PFB(M,κ, η, α) expands as the complexity of G grows.
12Section B.4 of Kitagawa and Tetenov (2017b) discusses the welfare loss uniform convergence rate of the nonpara-

metric plug-in rule.
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2.4 Unknown Propensity Score

We have so far considered situations where the true propensity score is known. This would not be

the case if the data were obtained from an observational study in which the assignment of treatment

is not generally under the control of the experimenter. To cope with the unknown propensity score,

this section considers two hybrids of the EWM approach and the parametric/nonparametric plug-

in approach: the m-hybrid rule defined in (1.11) and the e-hybrid rule defined in (1.12). The

e-hybrid rule employs the trimming rule 1 {εn ≤ ê (Xi) ≤ 1− εn} with a deterministic sequence

{εn : n = 1, 2, . . . }, which we assume to converge to zero faster than some polynomial rate, εn ≤
O (n−a), a > 0.13

The next condition concerns the convergence rate of the average estimation error of the condi-

tional treatment effect estimators.

Condition 2.1.

(m) (m-hybrid case): Let τ̂m(x) = m̂1(x) − m̂0(x) be an estimator for the conditional treatment

effect τ(x) = m1(x)−m0(x). For a class of data generating processes Pm, there exists a sequence

ψn →∞ such that

lim sup
n→∞

sup
P∈Pm

ψnEPn

[
1

n

n∑
i=1

|τ̂m(Xi)− τ(Xi)|

]
<∞ (2.8)

holds.

(e) (e-hybrid case): Let τ̂ ei =
[
YiDi
ê(Xi)

− Yi(1−Di)
1−ê(Xi)

]
· 1 {εn ≤ ê (Xi) ≤ 1− εn} be an estimator for τ i =

YiDi
e(Xi)

− Yi(1−Di)
1−e(Xi) , where ê(·) is an estimated propensity score. For a class of data generating processes

Pe, there exists a sequence φn →∞ such that

lim sup
n→∞

sup
P∈Pe

φnEPn

[
1

n

n∑
i=1

|τ̂ ei − τ i|

]
<∞. (2.9)

In Section C of Kitagawa and Tetenov (2017b), we show that the estimators τ̂m (·) and τ̂ ei con-

structed via local polynomial regressions satisfy this condition for a certain class of data generating

processes. Theorems 2.5 and 2.6 below derive the uniform convergence rate bounds of the hybrid

rules in two different scenarios. In Theorem 2.5, we constrain the class of data generating processes

only by Assumption 2.1 and Condition 2.1, and, importantly, we allow the class of decision rules G
to exclude the first-best rule G∗FB. See Kitagawa and Tetenov (2017b) for proofs of these theorems.

13The trimming sequence εn is introduced only to simplify the derivation of the rate upper bound of the welfare

loss. In practical terms, if the overlap condition is well satisfied in the given data, the trimming is not necessary for

computing the e-hybrid rule.
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Theorem 2.5. Suppose Assumption 2.1 holds.

(m) (m-hybrid case): Given a class of data generating processes Pm, if an estimator for the

conditional treatment effect τ̂m(·) satisfies Condition 2.1 (m), then,

sup
P∈Pm∩P(M,κ)

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ O

(
ψ−1n ∨ n−1/2

)
.

(e) (e-hybrid case): Given a class of data generating processes Pe, if an estimator for the propensity

score ê(·) satisfies Condition 2.1 (e), then,

sup
P∈Pe∩P(M,κ)

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ O

(
φ−1n ∨ n−1/2

)
.

A comparison of Theorem 2.5 with Theorem 2.1 shows that the uniform rate upper bounds for

the hybrid EWM rules are no faster than the welfare loss convergence rate of the EWM with known

propensity score. Note that if some nonparametric estimator is used to estimate τ(·) or e (·), ψn or

φn specified in Condition 2.1 is generally slower than n1/2. Hence, the welfare loss upper bounds

of the hybrid rules are determined by the nonparametric rate ψ−1n or φ−1n . A special case where

the estimation of τ (·) or e (·) does not affect the uniform convergence rate is when τ (·) or e (·) is

assumed to belong to a parametric family and it is estimated parametrically, i.e., ψn or φn is equal

to n1/2.

In the second scenario, we consider the case where G contains the first-best decision rule G∗FB

and the data generating processes are constrained further by the margin assumption (Assumption

2.2) with margin coefficient α ∈ (0, 1].

Theorem 2.6. Suppose Assumptions 2.1 and 2.2 hold with a margin coefficient α ∈ (0, 1]. Assume

that a stronger version of Condition 2.1 holds, where (2.8) and (2.9) are replaced by

lim sup
n→∞

sup
P∈Pm

EPn

[(
ψ̃n max

1≤i≤n
|τ̂m(Xi)− τ(Xi)|

)2
]

< ∞ and (2.10)

lim sup
n→∞

sup
P∈Pe

EPn

[(
φ̃n max

1≤i≤n
|τ̂ ei − τ i|

)2
]

< ∞, (2.11)

for sequences ψ̃n →∞ and φ̃n →∞, respectively. Then, we have

sup
P∈Pm∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝm−hybrid)

]
≤ O

(
ψ̃
−(1+α)
n ∨ n−

1+α
2+α log ψ̃n

)
,

sup
P∈Pe∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝe−hybrid)

]
≤ O

(
φ̃
−(1+α)
n ∨ n−

1+α
2+α log φ̃n

)
.
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Theorem 2.6 shows that even when τ (·) or e(·) have to be estimated, the margin coefficient

α influences the rate upper bound of the welfare loss. A higher α leads to a faster rate of the

welfare loss convergence regardless of whether τ (·) and e(·) are estimated parametrically or non-

parametrically. In the situation where τ (·) or e (·) is estimated parametrically (with a compact

support of X), ψ̃n or φ̃n is equal to n1/2; thus, the uniform welfare loss convergence rate is given

by the second argument in O (·), n−
1+α
2+α log n. On the other hand, when τ (·) or e (·) is estimated

nonparametrically, which of the two terms in O (·) converges slower depends on the dimension of

X and the degree of smoothness of the underlying nonparametric function. For instance, Section C

of Kitagawa and Tetenov (2017b) shows for suitably constructed Pm, local polynomial estimation

for τ(x) can attain ψ̃n = n
1

2+dx/βm (log n)
− 1

2+dx/βm
−2

, where dx is the dimension of X and βm is

the degree of Hölder smoothness of m1(x) and m0(x). Hence, if dx/βm > α, the rate upper bound

of Theorem 2.6 implies that the welfare loss convergence rate of the m-hybrid rule is guaranteed

to be n
− 1+α

2+dx/βm (log n)

(
1

2+dx/βm
+2

)
(1+α)

. See Kitagawa and Tetenov (2017b) for further discussion

and analysis of the hybrid approaches.

Note that Theorems 2.5 and 2.6 concern the upper bound of the convergence rate. We do

not have the universal rate lower bound results for these constrained classes of data generating

processes. We leave the investigation of the sharp rate bound of the hybrid-EWM welfare loss for

future research.

3 Empirical Application

We illustrate the Empirical Welfare Maximization method by applying it to experimental data from

the National Job Training Partnership Act (JTPA) Study. A detailed description of the study and

an assessment of average program effects for five large subgroups of the target population is found

in Bloom et al. (1997). The study randomized whether applicants would be eligible to receive a

mix of training, job-search assistance, and other services provided by the JTPA for a period of 18

months. It collected background information on the applicants prior to random assignment, as well

as administrative and survey data on applicants’ earnings in the 30-month period following the

assignment. We use the sample of 11,204 adults (22 years and older) used in the original evaluation

of the program and in subsequent studies (Bloom et al., 1997, Heckman et al., 1997, Abadie et al.,

2002)14. The probability of being assigned to the treatment was two thirds in this sample.

We use two welfare outcome measures for our illustration. The first is the total individual

14We use the data provided in the Joshua Angrist’s Data Archive at

http://economics.mit.edu/faculty/angrist/data1/data/abangim02
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earnings in the 30 months after program assignment. The second is the 30-month earnings minus

$774 for individuals who were assigned to treatment. This is the average cost of services per

treatment assignment (estimated from Table 5 in Bloom et al. (1997)), which takes into account

varying take-up of program services. The first outcome measure reflects social preferences that put

no weight on the costs of the program incurred by the government. The second outcome measure

weighs participants’ gains and the government’s losses equally.

We consider these outcomes (and costs) from an intention-to-treat perspective. We view the

policy maker’s problem as a choice of the eligibility criteria and not as a choice of the take-up rate

(decided by individuals); hence, we are not interested in the treatment effect on compliers. Since we

have to compare welfare effects of policies that assign different proportions of the population to the

treatment, we report estimates of the average effect per population member E[(Y1−Y0) ·1{X ∈ G}],
which is proportional to the total welfare effect of the treatment rule G.

We consider conditioning treatment assignment on two pre-treatment variables: the individual’s

years of education and earnings in the year prior to the assignment. Both variables may plausibly

affect how much effect the individual gets from the program services. We do not use race, gender,

or age. Though treatment effects may vary with these characteristics, policy makers usually cannot

use them to determine treatment assignment. Education and earnings are generally verifiable

characteristics. This is an important feature for implementing the proposed treatment assignment

because the empirical welfare estimates are not valid for the target population if the individuals

could manipulate their characteristics to obtain the desired treatment.

Table 1 reports the estimated welfare gains W dm
n (G) −W dm

n (∅) of alternative treatment rules

relative to the benchmark of assigning no-one to treatment, as well as the estimated proportion of

individuals assigned to treatment 1 by each rule.15

We consider two candidate classes of treatment rules for EWM.16 The first is the class of

quadrant treatment rules:

GQ ≡
{
{x : s1(education− t1) > 0 & s2(prior earnings− t2) > 0} ,

s1, s2 ∈ {−1, 1}, t1, t2 ∈ R.

}
(3.1)

This class of treatment rules is easily implementable and is often used in practice. To be assigned to

treatment according to such a rule, an individual’s education and pre-program earnings have to be

above (or below) some specific thresholds. The EWM method searches over all possible thresholds

15We report welfare gain estimates using equation (2.7) with demeaned outcome variable (see Remark 2.3). These

estimates are invariant to translation of the outcome variable by a constant.
16Specifically, we implement demeaned EWM described in Remark 2.3 with known constant propensity score

e(Xi) = 2/3. Further details on computing EWM rules are found in Section E of Kitagawa and Tetenov (2017b).
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and directions. Figure 1 demonstrates the quadrant treatment rules selected by the EWM criterion.

The entire shaded area covers individuals who would be assigned to treatment if it were costless.

The dark shaded area shows the EWM treatment rule that takes into account $774 treatment

assignment cost. The size of black dots indicates the number of individuals with different covariate

values.

Second, we consider the class of linear treatment rules:

GLES ≡ {{x : β0 + β1 · education + β2 · prior earnings > 0} , β0, β1, β2 ∈ R} . (3.2)

Figure 2 displays the treatment rules from this class chosen according to the EWM criterion. The

EWM linear treatment rules are identical with and without treatment assignment costs of $774.

If we consider even higher values of treatment costs, the EWM rule eventually shrinks the set of

individuals assigned to treatment.

Linear treatment rules that maximize empirical welfare are markedly different from the plug-in

rule derived from linear regressions, which are shown in Figure 3. Without treatment costs, linear

regression predicts positive treatment effects for the entire range of feasible covariate values. With

a cost of $774, the regression predicts positive net treatment effect for about 96% of individuals.

Noticeably, the direction of the treatment assignment differs between regression plug-in and linear

EWM rules. The regression-based estimate of τ(x) puts a positive coefficient on prior earnings,

whereas the equation characterizing linear EWM rule puts a negative coefficient on them. If the

linear regression is correctly specified, the regression plug-in and EWM rules have identical large

sample limits. If the linear regression equation is misspecified, however, only the linear EWM

treatment rule converges with sample size to the welfare-maximizing limit, and the welfare level

attained by the regression plug-in rule can be suboptimal even in large samples.

Figure 4 shows plug-in treatment rules based on kernel regressions of treatment and control

outcomes on the covariates. The bandwidths were chosen by Silverman’s rule of thumb. The class

of nonparametric plug-in rules is much richer than the quadrant or the linear class of treatment

rules, and it may obtain higher welfare in large samples. It is clear from the figure, however, that

this class of patchy decision rules may be difficult to implement in public policy, where clear and

transparent treatment rules are required.

4 Conclusion

The EWM approach proposed in this paper directly maximizes a sample analog of the welfare cri-

terion of a utilitarian policy maker. This welfare-function-based statistical procedure for treatment
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choice differs fundamentally from parametric and nonparametric plug-in approaches, which do not

integrate statistical inference and the decision problem at hand. We investigated the statistical

performances of the EWM rule in terms of the uniform convergence rate of the welfare loss and

demonstrated that with known propensity scores, the EWM rule attains minimax optimal rates

over various classes of feasible data distributions. The EWM approach offers a useful framework for

the individualized policy assignment problems, as the EWM approach can easily accommodate the

constraints that policy makers commonly face in reality. We also presented methods to compute the

EWM rule for many practically important classes of treatment assignment rules and demonstrated

them using experimental data from the JTPA program.

Several extensions and open questions remain to be answered. First, this paper assumed that

the class of candidate policies G is given exogenously to the policy maker. We did not consider

how to select the class G when the policy maker is free to do so. See Swaminathan and Joachims

(2015) and Mbakop and Tabord-Meehan (2017) for recent developments. Second, while EWM

attains minimax rate-optimality, it is unclear whether the EWM rule has stronger decision-theoretic

optimality properties for the nonparametric class of data generating processes we considered. It

remains to be seen whether EWM obtains the lowest asymptotic maximum regret within the class

of minimax rate-optimal rules, whether it is admissible, and whether it is Bayes-optimal for some

prior over P . It is an open question whether modifications of EWM or other rate-optimal rules

could perform better. Third, we ruled out the case in which the data are subject to selection

on unobservables. With self-selection into the treatment, the welfare criterion could be only set-

identified, and it is not clear how to extend the EWM idea to this case. Fourth, we restricted

our analysis to the utilitarian social welfare criterion, but in some contexts, policy makers have a

non-utilitarian social welfare criterion. See Kitagawa and Tetenov (2017a) for an extension of the

EWM approach to a class of generalized Gini social welfare functions.
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Table 1: Estimated welfare gain of alternative treatment assignment rules that condition on education and pre-program

earnings.

Outcome variable: 30-month post-program earnings, 30-month post-program earnings,

no treatment cost $774 cost for each assigned treatment

Treatment rule: Share of population Est. welfare gain Share of population Est. welfare gain

to be treated per population member to be treated per population member

Treat everyone: 1 $1,157 1 $385

($513, $1,801) (-$259, $1,028)

EWM quadrant rule 0.93 $1,277 0.83 $687

($519, $2,034) (-$71, $1,445)

EWM linear rule 0.90 $1,408 0.90 $712

($592, $2,225) (-$107, $1,532)

Linear regression plug-in rule 1 $1,157 0.96 $466

Nonparametric plug-in rule 0.82 $1,867 0.69 $1,257

Two-sided 95% confidence intervals in parentheses.

See Section D in Kitagawa and Tetenov (2017b) for their construction and asymptotic validity.
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Figure 1: Empirical Welfare-Maximizing treatment rules from the quadrant class conditioning on

years of education and pre-program earnings
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Figure 2: Empirical Welfare-Maximizing treatment rules from the linear class conditioning on years

of education and pre-program earnings
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Figure 3: Parametric plug-in treatment rules based on the linear regressions of treatment outcomes

on years of education and pre-program earnings
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A Lemmas and Proofs

A.1 Notations and Basic Lemmas

Let Zi = (Yi, Di, Xi) ∈ Z. The subgraph of a real-valued function f : Z 7→ R is the set

SG(f) ≡ {(z, t) ∈ Z × R : 0 ≤ t ≤ f(z) or f(z) ≤ t ≤ 0}.

The following lemma establishes a link between the VC-dimension of a class of subsets in the

covariate space X and the VC-dimension of a class of subgraphs of functions on Z =R×{0, 1}×X
(their subgraphs will be in Z × R).

Lemma A.1. Let G be a VC-class of subsets of X with VC-dimension v <∞. Let g and h be two

given functions from Z to R. Then the set of functions from Z to R

F = {fG(z) = g(z) · 1 {x ∈ G}+ h(z)1 {x /∈ G} : G ∈ G}

is a VC-subgraph class of functions with VC-dimension less than or equal to v.

Proof. Let zi = (yi, di, xi). By the assumption, no set of (v + 1) points in X could be shattered

by G. Take an arbitrary set of (v + 1) points in Z × R, A = {(z1, t1), ..., (zv+1, tv+1)}. Denote the

collection of subgraphs of F by SG(F) ≡ {SG(fG), G ∈ G}. We want to show that SG(F) doesn’t

shatter A.

If for some i ∈ {1, . . . , (v + 1)}, (zi, ti) ∈ SG(g) ∩ SG(h) then SG(F) cannot pick out all of

the subsets of A because the i-th point is included in any S ∈ SG(F). Similarly, if for some

i ∈ {1, . . . , (v + 1)}, (zi, ti) ∈ SG(g)c∩SG(h)c, then point i cannot be included in any S ∈ SG(F).

The remaining case is that, for each i, either (zi, ti) ∈ SG(g)∩SG(h)c or (zi, ti) ∈ SG(g)c∩SG(h)

holds. Indicate the former case by δi = 0 and the latter case by δi = 1. The points with δi = 0

could be picked by SG(fG) if and only if xi /∈ G. The points with δi = 1 could be picked if and

only if xi ∈ G. Given that G is a VC-class with VC-dimension v, there exists a subset X0 of

{x1, . . . , xv+1} such that X0 6= ({x1, . . . , xv+1} ∩ G) for any G ∈ G. Then there could be no set

S ∈ SG(F) that picks out the set (possibly empty)

{(zi, ti) : (xi ∈ X0 and δi = 1) or (xi /∈ X0 and δi = 0)}, (A.1)

because this set of points could only be picked out by SG(fG) if ({x1, . . . , xv+1}∩G) = X0. Hence,

F is a VC subgraph class of functions with VC-dimension less than or equal to v.
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In addition to the notations introduced in the main text, the following notations are used

throughout the supplementary material. The empirical probability distribution based on an iid

size n sample of Zi = (Yi, Di, Xi) is denoted by Pn. L2(P ) metric for f is denoted by ‖f‖L2(P ) =[∫
Z f

2dP
]1/2

, and the sup-metric of f is denoted by ‖f‖∞. Positive constants that only depend on

the class of data generating processes, not on the sample size nor the VC-dimension, are denoted

by c1, c2, c3, . . . . The universal constants are denoted by the capital letter C1, C2, C3, . . . .

In what follows, we present lemmas that will be used in the proofs of Theorems 2.1 and 2.3.

Lemmas A.2 and A.3 are classical inequalities whose proofs can be found, for instance, in Lugosi

(2002).

Lemma A.2. Hoeffding’s Lemma: let X be a random variable with EX = 0, a ≤ X ≤ b. Then,

for s > 0,

E
(
esX
)
≤ es2(b−a)2/8.

Lemma A.3. Let λ > 0, n ≥ 2, and let Y1, . . . , Yn be real-valued random variables such that for

all s > 0 and 1 ≤ i ≤ n, E(esYi) ≤ es2λ2/2 holds. Then,

(i) E

(
max
i≤n

Yi

)
≤ λ

√
2 lnn,

(ii) E(max
i≤n
|Yi|) ≤ λ

√
2 ln (2n).

The next two lemmas give maximal inequalities that bound the mean of a supremum of centered

empirical processes indexed by a VC-subgraph class of functions. The first maximal inequality

(Lemma A.4) is standard in the empirical process literature, and it yields our Theorem 2.1 as a

corollary. Though its proof can be found elsewhere (e.g., Dudley (1999), van der Vaart and Wellner

(1996)), we present it here for the sake of completeness and for later reference in the proof of Lemma

A.5. The second maximal inequality (Lemma A.5) concerns the class of functions whose diameter

is constrained by the L2(P )-norm. Lemma A.5 will be used in the proof of Theorem 2.3. A lemma

similar to our Lemma A.5 appears in Massart and Nédélec (2006, Lemma A.3).

Lemma A.4. Let F be a class of uniformly bounded functions, i.e., there exists F̄ <∞ such that

‖f‖∞ ≤ F̄ for all f ∈ F . Assume that F is a VC-subgraph class with VC-dimension v <∞. Then,

there is a universal constant C1 such that

EPn

[
sup
f∈F
|En (f)− EP (f)|

]
≤ C1F̄

√
v

n

holds for all n ≥ 1.
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Proof. Introduce (Z ′1, . . . , Z
′
n), an independent copy of (Z1, . . . , Zn) ∼ Pn. We denote the prob-

ability law of (Z ′1, . . . , Z
′
n) by Pn

′
, its expectation by EPn′ (·), and the sample average with re-

spect to (Z ′1, . . . , Z
′
n) by E′n (·). Define iid Rademacher variables σn ≡ (σ1, . . . , σn) such that

Pr(σ1 = −1) = Pr(σ1 = 1) = 1/2 and they are independent of Z1, Z
′
1, . . . , Zn, Z

′
n. Then,

EPn

[
sup
f∈F
|En (f)− EP (f)|

]
= EPn

[
sup
f∈F

∣∣∣E
Pn
′
[
En (f)− E′n(f)|Z1, . . . , Zn

]∣∣∣]

≤ EPn

[
sup
f∈F

E
Pn
′
[∣∣En (f)− E′n(f)

∣∣ |Z1, . . . , Zn
]]

( ∵ Jensen’s inequality)

≤ E
Pn,Pn

′

[
sup
f∈F

∣∣En (f)− E′n(f)
∣∣]

=
1

n
E
Pn,Pn

′

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Zi)− f(Z ′i)

)∣∣∣∣∣
}

=
1

n
E
Pn,Pn

′
,σn

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

σi
(
f(Zi)− f(Z ′i)

)∣∣∣∣∣
}

( ∵ f(Zi)− f(Z ′i) ∼ σi
(
f(Zi)− f(Z ′i)

)
for all i )

≤ 1

n
E
Pn,Pn

′
,σn

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Z ′i)

∣∣∣∣∣
}

=
2

n
EPn,σn

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣
]

=
2

n
EPn

{
Eσn

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣ |Z1, . . . , Zn

]}
. (A.2)

Fix Z1, . . . , Zn, and define f ≡ (f(Z1), . . . , f(Zn)) = (f1, . . . , fn), which is a vector of length

n collecting the value of f ∈ F evaluated at each of (Z1, . . . , Zn). Let F ≡ {f : f ∈ F} ⊂ Rn,

which is a bounded set in Rn with radius F̄ , since F is the set of uniformly bounded functions with

|f (·)| ≤ F̄ . Introduce the Euclidean norm to F,

ρ(f , f ′) =

(
1

n

n∑
i=1

(
fi − f ′i

)2)1/2

.

Let f (0) = (0, . . . , 0), and f∗ = (f∗1 , . . . , f
∗
n) be a random element in F maximizing |

∑n
i=1 σifi|.

Let B0 =
{
f (0)
}

and construct
{
Bk : k = 1, . . . , K̄

}
a sequence of covers of F, such that Bk ⊂ F

is a minimal cover with radius 2−kF̄ and BK̄ = F. Note that such K̄ < ∞ exists at given n

and (Z1, . . . , Zn). Define also
{
f (k) ∈ Bk : k = 1, . . . , K̄

}
be a random sequence such that f (k) ∈

4



arg minf∈Bk ρ (f , f∗). Since Bk is a cover with radius 2−kF̄ , ρ
(
f (k), f∗

)
≤ 2−kF̄ holds. In addition,

we have

ρ
(
f (k−1), f (k)

)
≤ ρ

(
f (k), f∗

)
+ ρ

(
f (k−1), f∗

)
≤ 3 · 2−kF̄ .

By a telescope sum,

n∑
i=1

σif
∗
i =

n∑
i=1

σif
(0)
i +

K̄∑
k=1

n∑
i=1

σi

(
f

(k)
i − f (k−1)

i

)

=

K̄∑
k=1

n∑
i=1

σi

(
f

(k)
i − f (k−1)

i

)
.

We hence obtain

Eσn

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣ ≤
K̄∑
k=1

Eσn

∣∣∣∣∣
n∑
i=1

σi

(
f

(k)
i − f (k−1)

i

)∣∣∣∣∣
≤

K̄∑
k=1

Eσn max
f∈Bk,g∈Bk−1:ρ(f ,g)≤3·2−kF̄

∣∣∣∣∣
n∑
i=1

σi (fi − gi)

∣∣∣∣∣ . (A.3)

We apply Lemma A.2 to obtain

Eσn
(
es
∑n
i=1 σi(fi−gi)

)
=

n∏
i=1

Eσi

[
esσi(fi−gi)

]
≤

n∏
i=1

es
2(fi−gi)2/2

= exp
(
s2nρ2(f ,g)/2

)
≤ exp

(
s2n

(
3 · 2−kF̄

)2
/2

)
.

An application of Lemma A.3 (ii) with λ = 3
√
n · 2−kF̄ and n = |Bk| |Bk−1| ≤ |Bk|2 then yields

Eσn max
f∈Bk,g∈Bk−1:ρ(f ,g)≤3·2−kF̄

∣∣∣∣∣
n∑
i=1

σi (fi − gi)

∣∣∣∣∣ ≤ 3
√
n · 2−kF̄

√
2 ln 2 |Bk|2

= 3
√
n · 2−kF̄

√
2 ln 2N(2−kF̄ ,F,ρ)2

= 6
√
n · 2−kF̄

√
ln 21/2N(2−kF̄ ,F,ρ),
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where N(r,F,ρ) is the covering number of F with radius r in terms of norm ρ. Accordingly,

Eσn

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣ ≤
K̄∑
k=1

6
√
n · 2−kF̄

√
ln 21/2N(2−kF̄ ,F,ρ)

≤ 12
√
n
∞∑
k=1

2−(k+1)F̄
√

ln 21/2N(2−kF̄ ,F,ρ)

≤ 12
√
n

∫ 1

0
F̄
√

ln 21/2N(εF̄ ,F,ρ)dε, (A.4)

where the last line follows from the fact that N(εF̄ ,F,ρ) is decreasing in ε.

To bound (A.4) from above, we apply a uniform entropy bound for the covering number. In

Theorem 2.6.7 of van der Vaart and Wellner (1996), by setting r = 2 and Q at the empirical

probability measure of (Z1, . . . , Zn), we have,

N(εF̄ ,F, ρ) ≤ K(v + 1) (16e)(v+1)

(
1

ε

)2v

, (A.5)

where K > 0 is a universal constant. Plugging this into (A.4) leads to

Eσ

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣ ≤ 12F̄
√
n

∫ 1

0

√
ln(21/2K) + ln(v + 1) + (v + 1) ln(16e)− 2v ln εdε

≤ 12F̄
√
nv

∫ 1

0

√
ln(21/2K) + ln 2 + 2 ln(16e)− 2 ln εdε

= C ′F̄
√
nv, (A.6)

where C ′ = 12
∫ 1

0

√
ln(21/2K) + ln 2 + 2 ln(16e)− 2 ln εdε < ∞. Combining (A.6) with (A.2) and

setting C1 = 2C ′ lead to the conclusion.

Lemma A.5. Let F be a class of uniformly bounded functions with ‖f‖∞ ≤ F̄ < ∞ for all

f ∈ F . Assume that F is a VC-subgraph class with VC-dimension v < ∞. Assume further that

supf∈F ‖f‖L2(P ) ≤ δ. Then, there exists a positive universal constant C2 such that

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ C2δ

√
v

n

holds for all n ≥ C2
1 F̄

2v/δ2, where C1 is the universal constant defined in Lemma A.4.

Proof. By the same symmetrization argument and the same use of Rademacher variables as in the

proof of Lemma A.4, we have

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ 2

n
EPn

{
Eσn

[
sup
f∈F

n∑
i=1

σif(Zi)|Z1, . . . , Zn

]}
. (A.7)

6



Fix the values of Z1, . . . , Zn, and define f , f (0), F, and norm ρ(f , f ′) as in the proof of Lemma A.4.

Let f∗ be a maximizer of
∑n

i=1 σif(Zi) in F and let δn = supf∈F ρ(f (0), f) ≤ F̄ . Let B0 =
{
f (0)
}

and construct
{
Bk : k = 1, . . . , K̄

}
a sequence of covers of F, such that Bk ⊂ F is a minimal cover

with radius 2−kδn and BK̄ = F. We define
{
f (k) ∈ Bk : k = 1, . . . , K̄

}
to be a random sequence

such that f (k) ∈ arg minf∈Bk ρ (f , f∗). By applying the chaining argument in the proof of Lemma

A.4, Lemma A.3 (i), and the uniform bound of the covering number (A.5), we obtain

Eσ

n∑
i=1

σif
∗
i ≤ 12

√
n

∫ 1

0
δn
√

logN(εδn,F,ρ)dε,

≤ 2−1C1δn
√
nv.

for the universal constant C1 defined in the proof of Lemma A.4. Hence, from (A.7), we have

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ C1

√
v

n
EPn (δn)

= C1

√
v

n
EPn

[sup
f∈F

En
(
f2
)]1/2


≤ C1

√
v

n

[
EPn

(
sup
f∈F

En
(
f2
))]1/2

. (A.8)

Note that En
(
f2
)

is bounded by

En
(
f2
)

= En
(
f2 − EP

(
f2
))

+ EP (f2)

= En

[(
f − ‖f‖L2(P )

)(
f + ‖f‖L2(P )

)]
+ ‖f‖2L2(P )

≤ 2F̄En

[
f − ‖f‖L2(P )

]
+ ‖f‖2L2(P )

≤ 2F̄En [f − EP (f)] + ‖f‖2L2(P )

( ∵ ‖f‖L2(P ) ≥ EP (f) by the Cauchy-Schwartz inequality.)

Combining this inequality with (A.8) yields

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ C1

√
v

n

√√√√2F̄EPn

[
sup
f∈F

(En (f)− EP (f))

]
+ δ2.

Solving this inequality for EPn
[
supf∈F (En (f)− EP (f))

]
leads to

EPn

[
sup
f∈F

(En (f)− EP (f))

]
≤ F̄C2

1

√
v

n

(√
v

n
+

√
v

n
+

δ2

F̄ 2C2
1

)
.
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For v
n ≤

δ2

F̄ 2C2
1
, that is, n ≥ C2

1 F̄
2v

δ2
, the upper bound can be further bounded by (1 +

√
2)C1δ

√
v
n ,

so the conclusion of the lemma follows with C2 = (1 +
√

2)C1.

A.2 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Define

f(Zi;G) =

[
YiDi

e(Xi)
· 1 {Xi ∈ G}+

Yi(1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
,

and the class of functions on Z

F = {f(·;G) : G ∈ G} .

With these notations, we can express inequality (2.3) in the main text as

W ∗G −W (ĜEWM ) ≤ 2 sup
f∈F
|En(f)− EP (f)| . (A.9)

Note that Assumption 2.1 (BO) and (SO) imply that F has uniform envelope F̄ = M/(2κ). Also,

by Assumption 2.1 (VC) and Lemma A.1, F is a VC-subgraph class of functions with VC-dimension

at most v. We apply Lemma A.4 to (A.9) to obtain

EPn
[
W ∗G −W (ĜEWM )

]
≤ C1

M

κ

√
v

n
.

Since this upper bound does not depend on P ∈ P(M,κ), the upper bound is uniform over P(M,κ).

Proof of Theorem 2.2. In obtaining the rate lower bound, we normalize the support of outcomes

to Y1,i, Y0,i ∈
[
−1

2 ,
1
2

]
. That is, we focus on bounding supP∈P(1,κ)EPn

[
W ∗G −W (Gn)

]
. The lower

bound of the original welfare loss supP∈P(M,κ)EPn
[
W ∗G −W (Gn)

]
is obtained by multiplying by

M the lower bound of supP∈P(1,κ)EPn
[
W ∗G −W (Gn)

]
.

We consider a suitable subclass P∗ ⊂ P (1, κ), for which the worst case welfare loss can be

bounded from below by a distribution-free term that converges at rate n−1/2. The construction of

P∗ proceeds as follows. First, let x1, . . . , xv ∈ X be v points that are shattered by G. We constrain

PX (the marginal distribution of X) to being supported only on (x1, . . . , xv). We put the equal

mass 1/v at xi, i ≤ v. Thus-constructed marginal distribution of X is common in P∗. Let the

distribution of treatment indicator D be independent of (Y1, Y0, X), and D follows the Bernoulli

distribution with Pr(D = 1) = 1/2. Let b = (b1, . . . , bv) ∈ {0, 1}v be a bit vector used to index a
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member of P∗, i.e., P∗ consists of a finite number of DGPs. For each j = 1, . . . , v, and depending

on b, construct the following conditional distribution of Y1 given X = xj : if bj = 1,

Y1 =

{
1
2 with prob. 1

2 + γ,

−1
2 with prob. 1

2 − γ,
(A.10)

and, if bj = 0,

Y1 =

{
1
2 with prob. 1

2 − γ,
−1

2 with prob. 1
2 + γ,

(A.11)

where γ ∈
[
0, 1

2

]
is chosen properly in a later step of the proof. As for Y0’s conditional distribution,

we consider the degenerate distribution at Y0 = 0 at every X = xj , j = 1, . . . , v. That is, when

bj = 1, τ(xj) = γ, and when bj = 0, τ(xj) = −γ. For each b ∈ {0, 1}v, Pb ∈ P(1, κ) clearly holds.

We accordingly define a sublass of P(1, κ) by P∗ = {Pb : b ∈ {0, 1}v}.
With knowledge of Pb ∈ P∗, the optimal treatment assignment rule is

G∗b = {xj : bj = 1, j ≤ v} ,

which is feasible G∗b ∈ G by the construction of the support points of X. The maximized social

welfare is

W (G∗b) = v−1γ

 v∑
j=1

bj

 .

Let Ĝ be an arbitrary treatment choice rule depending on sample (Z1, . . . , Zn), and b̂ ∈{0, 1}v be

a binary vector whose j-th element is b̂j = 1
{
xj ∈ Ĝ

}
. Consider π (b) a prior distribution for b

such that b1, . . . , bv are iid and b1 ∼ Ber(1/2). The welfare loss satisfies the following inequalities:

sup
P∈P(1,κ)

EPn
[
W ∗G −W (Ĝ)

]
≥ sup

Pb∈P∗
EPnb

[
W (G∗b)−W (Ĝ)

]
≥

∫
b
EPnb

[
W (G∗b)−W (Ĝ)

]
dπ (b)

= γ

∫
b
EPnb

[
PX

(
G∗b4Ĝ

)]
dπ (b)

= γ

∫
b

∫
Z1,...,Zn

PX

({
b(X) 6= b̂(X)

})
dPnb (Z1, . . . , Zn) dπ (b)

≥ inf
Ĝ
γ

∫
b

∫
Z1,...,Zn

PX

({
b(X) 6= b̂(X)

})
dPnb (Z1, . . . , Zn) dπ (b)

where b(X) and b̂ (X) are elements of b and b̂, respectively, such that b(xj) = bj and b̂(xj) = b̂j .

Note that the infimum over assignment rules Ĝ can be seen as the minimization problem of the
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Bayes risk with the loss function corresponding to the classification error for predicting binary

random variable b(X). Hence, a minimizer of the Bayes risk is attained by the Bayes classifier,

Ĝ∗ =

{
xj : π (bj = 1|Z1, . . . , Zn) ≥ 1

2
, j ≤ v

}
,

where π (bj = 1|Z1, . . . , Zn) is the posterior probability for bj = 1. The minimized Bayes risk is

given by

γ

∫
Z1,...,Zn

EX [min {π (b(X) = 1|Z1, . . . , Zn) , 1− π (b(X) = 1|Z1, . . . , Zn)}] dP̃n

= v−1γ

∫
Z1,...,Zn

v∑
j=1

[min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}] dP̃n, (A.12)

where P̃n is the marginal likelihood of {(Y1,i, Y0,i, Di, Xi) : i = 1, . . . , n} with prior π (b). For each

j = 1, . . . , (v) , let

k+
j = #

{
i : Xi = xj , YiDi =

1

2

}
,

k−j = #

{
i : Xi = xj , YiDi = −1

2

}
.

The posterior for bj = 1 can be written as

π (bj = 1|Z1, . . . , Zn) =


1
2 if # {i : Xi = xj , Di = 1} = 0,

( 1
2

+γ)
k+
j ( 1

2
−γ)

k−
j

( 1
2

+γ)
k+
j ( 1

2
−γ)

k−
j +( 1

2
+γ)

k−
j ( 1

2
−γ)

k+
j

otherwise.

Hence,

min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}

=

min

{(
1
2 + γ

)k+j (1
2 − γ

)k−j , (1
2 + γ

)k−j (1
2 − γ

)k+j }
(

1
2 + γ

)k+j (1
2 − γ

)k−j +
(

1
2 + γ

)k−j (1
2 − γ

)k+j
=

min

{
1,
( 1

2
+γ

1
2
−γ

)k+j −k−j }

1 +
( 1

2
+γ

1
2
−γ

)k+j −k−j
=

1

1 + a|k
+
j −k

−
j |

, where a =
1 + 2γ

1− 2γ
> 1. (A.13)
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Since k+
j − k

−
j =

∑
i:Xi=xj

2YiDi, plugging (A.13) into (A.12) yields

v−1γ
v∑
j=1

EP̃n

 1

1 + a

∣∣∣∑i:Xi=xj
2YiDi

∣∣∣


≥ γ

2v

v∑
j=1

EP̃n

[
1

a

∣∣∣∑i:Xi=xj
2YiDi

∣∣∣
]

≥ γ

2v

v∑
j=1

a
−EP̃n

∣∣∣∑i:Xi=xj
2YiDi

∣∣∣
,

where EP̃n (·) is the expectation with respect to the marginal likelihood of {(Y1,i, Y0,i, Di, Xi) ,

i = 1, . . . , n}. The second line follows by a > 1, and the third line follows by Jensen’s inequality.

Given our prior specification for b, the marginal distribution of Y1,i is Pr(Y1,i = 1/2) = Pr(Y1,i =

−1/2) = 1/2, so

EP̃n

∣∣∣∣∣∣
∑

i:Xi=xj

2YiDi

∣∣∣∣∣∣ = EP̃n

∣∣∣∣∣∣
∑

i=1:Xi=xj ,Di=1

2Y1,i

∣∣∣∣∣∣
=

n∑
k=0

(
n

k

)(
1

2v

)k (
1− 1

2v

)n−k
E

∣∣∣∣B(k,
1

2
)− k

2

∣∣∣∣
holds, where B(k, 1

2) is the binomial random variable with parameters k and 1
2 . By noting

E

∣∣∣∣B(k,
1

2
)− k

2

∣∣∣∣ ≤
√
E

(
B(k,

1

2
)− k

2

)2

( ∵ Cauchy-Schwartz inequality)

=

√
k

4
,

we obtain

EP̃n

∣∣∣∣∣∣
∑

i:Xi=xj

2YiDi

∣∣∣∣∣∣ ≤
n∑
k=0

(
n

k

)(
1

2v

)k (
1− 1

2v

)n−k√k

4

= E

√
B
(
n, 1

2v

)
4

≤
√

n

8v
. ( ∵ Jensen’s inequality).

Hence, the Bayes risk is bounded from below by

γ

2
a−
√

n
8v ≥ γ

2
exp

{
−(a− 1)

√
n

8v

}
( ∵ 1 + x ≤ ex ∀x)

=
γ

2
exp

{
− 4γ

1− 2γ

√
n

8v

}
. (A.14)
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This lower bound of the Bayes risk has the slowest convergence rate when γ is set to be proportional

to n−1/2. Specifically, let γ =
√

v
n . Then, we have

γ

2
exp

{
− 4γ

1− 2γ

√
n

8v

}
=

1

2

√
v

n
exp

{
−
√

2

1− 2γ

}

≥ 1

2

√
v

n
exp

{
−2
√

2
}

, if 1− 2γ ≥ 1

2
.

The condition 1− 2γ ≥ 1
2 is equivalent to n ≥ 16v. Multiplying M to this lower bound completes

the proof.

A.3 Proofs of Theorems 2.3 and 2.4

The next lemma is the concentration inequality of Bousquet (2002).

Lemma A.6. Let F be a countable family of measurable functions, such that supf∈F EP (f2) ≤ δ2

and supf∈F ‖f‖∞ ≤ F̄ for some constants δ and F̄ . Let S = supf∈F (En (f)− EP (f)). Then, for

every positive t,

Pn

S − EPn (S) ≥

√
2
[
δ2 + 4F̄EPn (S)

]
t

n
+

2F̄ t

3n

 ≤ exp (−t) .

In proving Theorem 2.3, it is convenient to work with the normalized welfare difference,

d(G,G′) ≡ κ

M

[
W (G)−W (G′)

]
,

and its sample analogue

dn(G,G′) ≡ κ

M

[
Wn(G)−Wn(G′)

]
. (A.15)

By Assumption 2.1 (BO) and (SO), both d(G,G′) and dn(G,G′) are bounded in [−1, 1], and the

normalized welfare difference relates to the original welfare loss of decision set G as

d(G∗FB, G) =
κ

M
[W (G∗FB)−W (G)] ∈ [0, 1] . (A.16)

Hence, the welfare loss upper bound of ĜEWM can be obtained by multiplying M/κ by the upper

bound of d(G∗FB, ĜEWM ).

Note that d(G∗FB, G) can be bounded from above by PX(G∗FB4G), since

d(G∗FB, G) =
κ

M

∫
G∗FB4G

|τ(X)| dPX

≤ κPX(G∗FB4G)

≤ PX(G∗FB4G). (A.17)
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On the other hand, with Assumption 2.2 (MA) imposed, PX(G∗FB4G) can be bounded from above

by a function of d(G∗FB, G), as the next lemma shows. We borrow this lemma from Tsybakov

(2004).

Lemma A.7. Suppose Assumption 2.2 (MA) holds with margin coefficient α ∈ (0,∞). Then

PX(G∗FB4G) ≤ c1(M,κ, η, α)d(G∗FB, G)
α

1+α

holds for all G ∈ G, where c1(M,κ, η, α) =
(
M
κηα

) α
1+α

(1 + α).

Proof. Let A = {x : |τ(x)| > t } and consider the following inequalities:

W (G∗FB)−W (G) =

∫
G∗FB4G

|τ(x)| dPX

≥
∫
G∗FB4G

|τ(X)| 1 {x ∈ A} dPX

≥ tPX ((G∗FB4G) ∩A)

≥ t [PX (G∗FB4G)− PX(Ac)]

≥ t

[
PX (G∗FB4G)−

(
t

η

)α]
,

where the final line uses the margin condition. The right-hand side is maximized at t = η(1 +

α)−
1
α [PX (G∗FB4G)]

1
α ≤ η, so it holds

W (G∗FB)−W (G) ≥ ηα
(

1

1 + α

) 1+α
α

[PX (G∗FB4G)]
1+α
α .

This, in turn, implies

PX (G∗FB4G) ≤
(
M

κηα

) α
1+α

(1 + α)d(G∗FB, G)
α

1+α .

Proof of Theorem 2.3. Let a =
√
ktεn with k ≥ 1, t ≥ 1, and εn > 0, where t ≥ 1 is arbitrary, k is

a constant that we choose later, and εn is a sequence indexed by sample size n whose proper choice

will be discussed in a later step. The normalized welfare loss can be bounded by

d(G∗FB, ĜEWM ) ≤ d(G∗FB, ĜEWM )− dn
(
G∗FB, ĜEWM

)
,
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as dn

(
G∗FB, ĜEWM

)
≤ 0 by Assumption 2.2 (FB). Define a class of functions induced by G ∈ G.

H ≡ {h(Zi;G) : G ∈ G} ,

h(Zi;G) ≡ κ

M

(
YiDi

e(Xi)
− Yi(1−Di)

1− e(Xi)

)
[1 {Xi ∈ G} − 1 {Xi ∈ G∗FB}] .

By Assumption 2.1 (VC) and Lemma A.1, H is a VC-subgraph-class with VC-dimension at most

v < ∞ with envelope H̄ = 1. Using h(Zi;G), we can write d(G∗FB, G) = −EP (h(Zi;G)). Since

d(G∗FB, G) ≥ 0 for all G ∈ G, it holds −EP (h) ≥ 0 for all h ∈ H.

Since we have

d(G∗FB, ĜEWM )− dn
(
G∗FB, ĜEWM

)
= En

(
h(Zi; ĜEWM )

)
− EP

(
h(Zi; ĜEWM )

)
and dn

(
G∗FB, ĜEWM

)
≤ 0, the normalized welfare loss can be bounded by

d(G∗FB, ĜEWM ) ≤ En

(
h(Zi; ĜEWM )

)
− EP

(
h(Zi; ĜEWM )

)
≤ Va

[
d(G∗FB, ĜEWM ) + a2

]
,

where

Va = sup
h∈H

{
En (h)− EP (h)

−EP (h) + a2

}
= sup

h∈H

{
En

(
h

−EP (h) + a2

)
− EP

(
h

−EP (h) + a2

)}
On event Va <

1
2 , d(G∗FB, ĜEWM ) ≤ a2 holds, so this implies

Pn
(
d(G∗FB, ĜEWM ) ≥ a2

)
≤ Pn

(
Va ≥

1

2

)
. (A.18)

In what follows, our aim is to construct an exponential inequality for Pn
(
Va ≥ 1

2

)
involving only

t, and we make use of such exponential tail bound to bound EPn
(
d(G∗FB, ĜEWM )

)
.

14



To apply the Bousquet’s inequality (Lemma A.6) to Va, note first that,

EP

((
h

−EP (h) + a2

)2
)
≤

PX(G∗FB4G)

(−EP (h) + a2)2

≤ c1
[−EP (h)]

α
1+α

(−EP (h) + a2)2

(∵ by Lemma A.7 and d(G∗FB, G) = −EP (h(Zi;G)))

≤ c1 sup
ε≥0

ε
2α
1+α

(ε2 + a2)2

≤ c1
1

a2
sup
ε≥0

ε
2α
1+α

ε2 + a2

≤ c1
1

a2
sup
ε≥0

(
ε

α
1+α

ε ∨ a

)2

≤ c1
1

a4
a

2α
1+α ,

where c1 is a constant that depends only on (M,κ, η, α) as defined in Lemma A.7. We, on the other

hand, have

sup
h∈H

∣∣∣∣sup
Z

h

−EP (h) + a2

∣∣∣∣ ≤ 1

a2
.

Hence, Lemma A.6 gives, with probability larger than 1− exp(−t),

Va ≤ EPn (Va) +

√√√√2
[
c1a

2α
1+α
−2 + 4EPn(Va)

]
t

na2
+

2t

3na2
. (A.19)

Next, we derive an upper bound of EPn(Va) by applying the maximal inequality of Lemma A.5.

Let r > 1 be arbitrary and consider partitioningH byH0,H1, . . . , whereH0 =
{
h ∈ H : −EP (h) ≤ a2

}
and Hj =

{
h ∈ H : r2(j−1)a2 < −EP (h) ≤ r2ja2

}
, j = 1, 2, . . . . Then,

Va ≤ sup
h∈H0

{
En (h)− EP (h)

−EP (h) + a2

}
+
∑
j≥1

sup
h∈Hj

{
En (h)− EP (h)

−EP (h) + a2

}

≤ 1

a2

 sup
h∈H0

(En (h)− EP (h)) +
∑
j≥1

(1 + r2(j−1))−1 sup
h∈Hj

(En (h)− EP (h))


≤ 1

a2

[
sup−EP (h)≤a2 (En (h)− EP (h))

+
∑

j≥1(1 + r2(j−1))−1 sup−EP (h)≤r2ja2 (En (h)− EP (h))

]
. (A.20)

Since it holds ‖h‖2L2(P ) ≤ PX(G∗FB4G) ≤ c1(M,κ, η, α) [−EP (h)]
α

1+α , where the latter inequality

follows from Lemma A.7, −EP (h) ≤ r2ja2 implies ‖h‖L2(P ) ≤ c
1/2
1 r

α
1+α j

a
α

1+α . Hence, (A.20) can
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be further bounded by

Va ≤
1

a2

 sup
‖h‖L2(P )≤c

1/2
1 a

α
1+α

(En (h)− EP (h))

+
∑

j≥1(1 + r2(j−1))−1 sup
‖h‖L2(P )≤c

1/2
1 r

α
1+α ja

α
1+α

(En (h)− EP (h))

 .

We apply Lemma A.5 to each supremum term, and obtain

EPn(Va) ≤ C2
c
1
2
1

a2

√
v

n
a

α
1+α

∑
j≥0

r
α

1+α
j

1 + r2(j−1)

≤ C2c
1
2
1

√
v

n
a

α
1+α
−2

(
r2

1− r−
2+α
1+α

)

≤ c2

√
v

n
a

α
1+α
−2

for

n ≥ C1v

c1a
2α
1+α

⇐⇒ a ≥
(
C1

c1

) 1+α
2α ( v

n

) 1+α
2α

(A.21)

where C1 and C2 are universal constants defined in Lemmas A.4 and A.5, and c2 = C2c
1
2
1

(
r2

1−r−
2+α
1+α

)
∨

1 is a constant greater than or equal to one and depends only on (M,κ, η, α), as r > 1 is fixed. We

plug in this upper bound into (A.19) to obtain

Va ≤ c2

√
v

n
a

α
1+α
−2 +

√√√√2
[
c1a

2α
1+α
−2 + 4c2

√
v
na

α
1+α
−2
]
t

na2
+

2t

3na2
. (A.22)

Choose εn as the root of c2

√
v
na

α
1+α
−2 = 1, i.e.,

εn =

(
c2

√
v

n

) 1+α
2+α

. (A.23)

Note that the right hand side of (A.22) is decreasing in a, and a ≥ εn by the construction. Hence,

if εn satisfies inequality (A.21), i.e.,

n ≥ c−α2

(
C1

c1

)1+α
2

v,

which can be reduced to an innocuous restriction n ≥ 1 by inflating, if necessary, c1 large enough,

we can substitute εn for a to bound the right hand side of (A.22). In particular, by noting

c2

√
v

n
a

α
1+α
−2 ≤ εn

a
=

1√
kt
≤ 1√

k
and

a
2α
1+α
−2 = a2( α

1+α
−2)a2 ≤

[
ε

α
1+α
−2

n

]2

ε2n = c−2
2 v−1nε2n,
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the right-hand side of (A.22) can be bounded by

Va ≤
1√
k

+

√
2
c1c
−2
2 v−1nε2n + 8

nkε2n
+

2

3nkε2n

=
1√
k

+

√
2c1c

−2
2 v−1

k
+

8

nkε2n
+

2

3nkε2n

≤ 1√
k

+

√
2c1c

−2
2 v−1

k
+

8

k
+

2

3k
for nε2n ≥ 1. (A.24)

Note that condition nε2n ≥ 1 used to derive the last line is valid for all n, since it is equivalent to

n ≥ c−2(1+α)
2 v−(1+α), which holds for all n ≥ 1 since c2 ≥ 1 and v ≥ 1. By choosing k large enough

so that the right-hand side of (A.24) is less than 1
2 , we can conclude

Pr(Va <
1

2
) ≥ 1− exp(−t). (A.25)

Hence, (A.18) yields

Pn
(
d(G∗FB, ĜEWM ) ≥ ktε2n

)
≤ exp (−t)

for all t ≥ 1. From this exponential bound, we obtain

EPn
(
d(G∗FB, ĜEWM )

)
=

∫ ∞
0

Pn
(
d(G∗FB, ĜEWM ) > t′

)
dt′

≤
∫ kε2n

0
Pn
(
d(G∗FB, ĜEWM ) ≥ t′

)
dt′ +

∫ ∞
kε2n

Pn
(
d(G∗FB, ĜEWM ) ≥ t′

)
dt′

≤ kε2n + kε2ne
−1

= (1 + e−1)kc
2(1+α)
2+α

2

( v
n

) 1+α
2+α

.

So, setting c = M
κ (1 + e−1)kc

2(1+α)
2+α

2 leads to the conclusion.

Proof of Theorem 2.4. As in the proof of Theorem 2.2, we work with the normalized outcome

support, Y1,i, Y0,i ∈
[
−1

2 ,
1
2

]
. With the normalized outcome, we can assume without loss of generality

that constant η of the margin assumption satisfies η ≤ 1.

Let α ∈ (0,∞) and η ∈ (0, 1] be given. Similarly to the proof of Theorem 2.2, we consider

constructing a suitable subclass P∗ ⊂ P (1, κ, η, α). Let x1, . . . , xv ∈ X be v points that are

shattered by G, and let γ be a positive number satisfying γ ≤ min
{
η, 1

2

}
, whose proper choice will
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be given later. We fix the marginal distribution of X at the one supported only on (x1, . . . , xv) and

having the probability mass function,

PX(Xi = xj) =
1

v − 1

(
γ

η

)α
, for j = 1, . . . , (v − 1), and

PX(Xi = xv) = 1−
(
γ

η

)α
.

Thus-constructed marginal distribution of X is common in P∗. As in the proof of Theorem 2.2,

we specify D to be independent of (Y1, Y0, X) and follow the Bernoulli distribution with Pr(D =

1) = 1/2. Let b = (b1, . . . , bv−1) ∈ {0, 1}v−1 be a binary vector that uniquely indexes a member

of P∗, and, accordingly, write P∗ =
{
Pb : b ∈ {0, 1}v−1

}
. For each j = 1, . . . , (v − 1), we specify

the conditional distribution of Y1 given X = xj to be (A.10) if bj = 1 and (A.11) if bj = 0.

For j = v, the conditional distribution of Y1 given X = xv is degenerate at Y1 = 1
2 . As for the

conditional distribution of Y0 given X = xj , we consider the degenerate distribution at Y0 = 0 for

j = 1, . . . , (v − 1), and the degenerate distribution at Y0 = −1
2 for X = xv. In this specification of

P∗, it holds

PX(|τ(X)| ≤ t) =


0 for t ∈ [0, γ),(
γ
η

)α
for t ∈ [γ, 1),

1 for t ≥ 1.

,

for every Pb ∈ P∗. Since γ ≤ η, PX(|τ(X)| ≤ t) ≤ (t/η)α holds for all t ∈ [0, η]. Furthermore,

by the construction of the support points, for every Pb ∈ P∗, the first-best decision rule G∗b =

{xj : j < v, bj = 1} ∪ {xv} is contained in G. Hence, P∗ ⊂ PFB (1, κ, η, α) holds.

Let π (b) be a prior distribution for b such that b1, . . . , bv−1 are iid and b1 ∼ Ber(1/2). The

maximized social welfare is

W (G∗b) =
γ

v − 1

(
γ

η

)αv−1∑
j=1

bj

+

[
1−

(
γ

η

)α]
.

Let Ĝ be an arbitrary treatment choice rule as a function of (Z1, . . . , Zn), and b̂ ∈{0, 1}v be a

binary vector whose j-th element is b̂j = 1
{
xj ∈ Ĝ

}
.
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The welfare loss can be bounded from below as follows:

sup
P∈P(1,κ,η,α)

EPn
[
W ∗G −W (Ĝ)

]
≥ sup

Pb∈P∗
EPnb

[
W (G∗b)−W (Ĝ)

]
≥

∫
b
EPnb

[
W (G∗b)−W (Ĝ)

]
dπ (b)

≥
∫
b
EPnb

[
W (G∗b)−W (Ĝ ∪ {xv})

]
dπ (b)

= γ

∫
b
EPnb

[
PX

(
(G∗b4Ĝ) ∩ {x1, . . . , xv−1}

)]
dπ (b)

= γ

∫
b

∫
Z1,...,Zn

PX

({
b(X) 6= b̂(X)

}
∩ {x1, . . . , xv−1}

)
dPnb (Z1, . . . , Zn) dπ (b)

≥ inf
Gn

γ

∫
b

∫
Z1,...,Zn

PX ({b(X) 6= bn(X)}) dPnb (Z1, . . . , Zn) dπ (b) ,

where the third line follows since W (G∗b)−W (Ĝ) ≥W (G∗b)−W (Ĝ ∪ {xv}) holds for every b and

Ĝ and Gn = {xj : bn(xj) = 1} for which the infimum taken in the last line is an estimator for the

decision set that is constrained to deterministically containing {xv}, i.e., bn(xv) = 1.

By the same reasonings as in obtaining (A.12), the lower bound of the welfare loss as viewed as

the Bayes risk can be expressed as

sup
P∈P(1,κ,η,α)

EPn
[
W (G∗)−W (Ĝ)

]
≥ γ

v − 1

(
γ

η

)α ∫
Z1,...,Zn

v−1∑
j=1

[min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}] dP̃n.

Repeating the same bounding arguments as in the proof of Theorem 2.2, a lower bound of the

Bayes risk analogous to (A.14) is obtained by

sup
P∈P(1,κ,η,α)

EPn
[
W (G∗)−W (Ĝ)

]
≥ γ

2

(
γ

η

)α
exp

{
− 4γ

1− 2γ

√
n

8(v − 1)

(
γ

η

)α}
.

The slowest convergence rate of this lower bound can be obtained by tuning γ to be converging at

the rate of n−
1

2+α . In particular, by choosing γ = η
α

2+α
(
v−1
n

) 1
2+α assuming γ ≤ 1

4 , the exponential

term can be bounded from below by exp
{
−2
√

2
}

, so we obtain the following lower bound,

1

2
η−

α
2+α

(
v − 1

n

) 1+α
2+α

exp
{
−2
√

2
}

. (A.26)
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Recall that γ is constrained to γ ≤ min
{
η, 1

4

}
. This implies that the obtained bound is valid for

n ≥
(
max

{
η−1, 4

})2+α
ηα(v − 1),

whose stronger but simpler form is given by

n ≥ max
{
η−2, 42+α

}
(v − 1). (A.27)

The lower bound presented in this theorem follows by denormalizing the outcomes, i.e., multiply

M to (A.26) and substitute η/M for η appearing in (A.26) and (A.27).

A.4 Proof of Theorems 2.5 and 2.6

Proof of Theorem 2.5. Let W τ
n (G) be the sample analogue of the welfare criterion (1.2) in the main

text that one would construct if the true regression equations were known, W τ
n (G) ≡ En(m0(Xi))+

En(τ(Xi) · 1{Xi ∈ G}), and Ŵ τ
n (G) be the empirical welfare with the conditional treatment effect

estimators τ̂m(·) plugged in,

Ŵ τ
n (G) ≡ En [m0 (Xi) + τ̂m (Xi) 1 {Xi ∈ G}] . (A.28)

Since the m-hybrid rule maximizes Ŵ τ
n (·), it holds Ŵ τ

n (Ĝm−hybrid) − Ŵ τ
n (G̃) ≥ 0 for any G̃ ∈ G.

The following inequalities therefore follow:

W (G̃)−W (Ĝm−hybrid) ≤ W τ
n (G̃)− Ŵ τ

n

(
G̃
)
−W τ

n (Ĝm−hybrid) + Ŵ τ
n

(
Ĝm−hybrid

)
(A.29)

+W (G̃)−W (Ĝm−hybrid)−W τ
n (G̃) +W τ

n (Ĝm−hybrid)

=
1

n

n∑
i=1

[τ (Xi)− τ̂m(Xi)]
[
1
{
Xi ∈ G̃

}
− 1

{
Xi ∈ Ĝm−hybrid

}]
+W (G̃)−W τ

n (G̃) +W τ
n (Ĝm−hybrid)−W (Ĝm−hybrid)

≤ 1

n

n∑
i=1

|τ̂m (Xi)− τ(Xi)|+ 2 sup
G∈G
|W τ

n (G)−W (G)| .

This implies that the average welfare loss of the m-hybrid rule can be bounded by

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ EPn

[
1

n

n∑
i=1

|τ̂m(Xi)− τ(Xi)|

]
+2EPn

[
sup
G∈G
|W τ

n (G)−W (G)|
]
.

(A.30)

For the e-hybrid rule, replacing W τ
n (·) and Ŵ τ

n (·) in (A.29) with the empirical welfare Wn(·) defined

in (1.7) and Ŵn(G) ≡ En
[
Yi(1−Di)
1−e(Xi) + τ̂ ei · 1{Xi ∈ G}

]
, respectively, yields a similar upper bound

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ EPn

[
1

n

n∑
i=1

|τ̂ ei − τ i|

]
+ 2EPn

[
sup
G∈G
|Wn(G)−W (G)|

]
, (A.31)
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where τ i = YiDi
e(Xi)

−Yi(1−Di)
1−e(Xi) .Note that the uniform convergence rate of EPn

[
supG∈G |W τ

n (G)−W (G)|
]

is n−1/2, same as that of EPn
[
supG∈G |Wn(G)−W (G)|

]
, since the proof of Theorem 2.1 can be

applied to the following class of functions:

Fτ ≡ {f(Xi;G) = m0(Xi) + τ(Xi) · 1{Xi ∈ G} : G ∈ G} ,

which is the VC-subgraph class with the VC-dimension at most v by Lemma A.1. Combined

with Condition 2.1 (m), (A.30) implies the uniform convergence rate of the m-hybrid rule given

in the current theorem. Similarly, combined with Condition 2.1 (e) and n−1/2-convergence rate of

EPn
[
supG∈G |Wn(G)−W (G)|

]
, (A.31) leads to the uniform convergence rate of φ−1

n ∨ n−1/2 for

the e-hybrid rule.

The next lemma gives a linearized solution of a certain polynomial inequality. We owe this

lemma to Shin Kanaya (2014, personal communication). The technique of applying the mean value

expansion to an implicit function defined as the root of a polynomial equation has been used in the

context of bandwidth choice in Kanaya and Kristensen (2014).

Lemma A.8. Let A ≥ 0, B ≥ 0, and X ≥ 0. For any α ≥ 0, X ≤ AX
α

1+α +B implies

X ≤ A1+α + (1 + α)B.

Proof. When A = B = 0, the conclusion trivially holds. When B > 0, X = AX
α

1+α + B has a

unique root, and we denote it by X∗ = g(A,B). When A > 0 and B = 0, we mean by g(A, 0) the

nonzero root of X = AX
α

1+α . Let f(X,A,B) = X − AX
α

1+α − B. By the form of the inequality,

the original inequality can be equivalently written as X ≤ X∗ = g(A,B), so we aim to verify that

X∗ is bounded from above by A1+α + (1 + α)B. Consider the mean value expansion of g(A,B) in

B at B = 0,

X∗ = g(A, 0) +
∂g

∂B

(
A, B̃

)
×B for some 0 ≤ B̃ ≤ B.
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Note g(A, 0) = A1+α. In addition, by the implicit function theorem, we have, with X̃ = g(A, B̃),

∂g

∂B

(
A, B̃

)
= −

∂f
∂B (X̃, A, B̃)
∂f
∂X (X̃, A, B̃)

=
1

1− α
1+αAX̃

− 1
1+α

=
X̃

X̃
1+α + α

1+α

(
X̃ −AX̃

α
1+α

)
=

X̃
X̃

1+α + α
1+αB̃

≤ 1 + α.

Hence, X∗ ≤ A1+α + (1 + α)B holds.

The next lemma provides an exponential tail probability bound of the supremum of the centered

empirical processes. This lemma follows from Theorem 2.14.9 in van der Vaart and Wellner (1996)

combined with their Theorem 2.6.4.

Lemma A.9. Assume G is a VC-class of subsets in X with VC-dimension v <∞. Let PX,n (·) be

the empirical probability distribution on X constructed upon (X1, . . . , Xn) generated iid from PX (·).
Then,

Pn
(

sup
G∈G
|PX,n(G)− PX(G)| > t

)
≤
(
C4t√

2v

)2v

nv exp
(
−nt2

)
holds for every t > 0, where C4 is a universal constant.

Proof of Theorem 2.6. We first consider the m-hybrid case. Set G̃ = G∗FB in (A.29) and rewrite

(A.29) in terms of the normalized welfare loss for Ĝm−hybrid,

d(G∗FB, Ĝm−hybrid) ≤
κ

M

[
W τ
n (G∗FB)− Ŵ τ

n (G∗FB)−W τ
n (Ĝm−hybrid) + Ŵ τ

n

(
Ĝm−hybrid

)]
+d(G∗FB, Ĝm−hybrid)− dτn

(
G∗FB, Ĝm−hybrid

)
≤ 1

n

n∑
i=1

κ

M
[τ (Xi)− τ̂m(Xi)]

[
1 {Xi ∈ G∗FB} − 1

{
Xi ∈ Ĝm−hybrid

}]
+d(G∗FB, Ĝm−hybrid)− dτn

(
G∗FB, Ĝm−hybrid

)
≤ ρn + d(G∗FB, Ĝm−hybrid)− dτn

(
G∗FB, Ĝm−hybrid

)
(A.32)
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where d(G∗FB, Ĝm−hybrid) is as defined in equation (A.16), dτn

(
G∗FB, Ĝm−hybrid

)
= W τ

n (G∗FB) −
W τ
n (Ĝm−hybrid),

ρn ≡
κ

M
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|PX,n

(
G∗FB4Ĝm−hybrid

)
,

and PX,n is the empirical distribution on X constructed upon (X1, . . . , Xn). Define a class of

functions generated by G ∈ G,

Hτ ≡ {h(Zi;G) : G ∈ G} ,

h(Zi;G) ≡ κ

M
τ(Xi) · [1 {Xi ∈ G} − 1 {Xi ∈ G∗FB}] ,

which is a VC-subgraph class with the VC-dimension at most v with envelope H̄ = 1 by Lemma

A.1. Let a =
√
ktεn be as defined in the proof of Theorem 2.3 and V τ

a ≡ suph∈Hτ
{
En(h)−EP (h)
−EP (h)+a2

}
.

By noting

d(G∗FB, Ĝm−hybrid)− dτn
(
G∗FB, Ĝm−hybrid

)
≤ V τ

a (d(G∗FB, Ĝm−hybrid) + a2),

inequality (A.32) implies

d(G∗FB, Ĝm−hybrid) ≤ ρn + V τ
a (d(G∗FB, Ĝm−hybrid) + a2). (A.33)

Denote event
{
V τ
a < 1

2

}
by Ωt, which is equivalent to event

{
d(G∗FB, Ĝm−hybrid) ≤ 2ρn + kε2nt

}
.

The same line of argument that leads to (A.25) in the proof of Theorem 2.3 leads to, for t ≥ 1,

Pn (Ωt) = Pn
(
d(G∗FB, Ĝm−hybrid) ≤ 2ρn + kε2nt

)
≥ 1− exp (−t) , (A.34)

where εn is given in (A.23). We bound ρn from above by

ρn ≤
κ

M

[
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|PX

(
G∗FB4Ĝm−hybrid

)
+ V0,n max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]
,

where

V0,n = sup
G∈G:

|PX,n(G∗FB4G)− PX (G∗FB4G)| .

Let λ > 0, that will be chosen properly later. Define events

Λ1 =
{
V0,n ≤ n−λ

}
,

Λ2 =
{
PX

(
G∗FB4Ĝm−hybrid

)
≥ n−λ

}
.
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Then, on Λ1∩Λ2, it holds V0,n ≤ PX
(
G∗FB4Ĝm−hybrid

)
. Therefore, on Λ1∩Λ2∩Ωt, d(G∗FB, Ĝm−hybrid)

can be bounded by

d(G∗FB, Ĝm−hybrid) ≤ 4
κ

M
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|PX

(
G∗FB4Ĝm−hybrid

)
+ kε2nt

≤ 4c1
κ

M
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)| d(G∗FB, Ĝm−hybrid)

α
1+α + kε2nt,

where the second line follows from Lemma A.7 with the same definition of c1 given there. By

Lemma A.8 and substituting (A.23) to εn, we obtain, on event Λ1 ∩ Λ2 ∩ Ωt,

d(G∗FB, Ĝm−hybrid) ≤ c6

[
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]1+α

+ c7

( v
n

) 1+α
2+α

t, (A.35)

where constants c6 and c7 depend only on (M,κ, η, α).

Using the upper bound derived in (A.35), we obtain, for t ≥ 1,

EPn
(
d(G∗FB, Ĝm−hybrid)

)
= EPn

(
d(G∗FB, Ĝm−hybrid)1 {Λ1 ∩ Λ2 ∩ Ωt}

)
+ EPn

(
d(G∗FB, Ĝm−hybrid)1 {Λc1 ∪ Λc2 ∪ Ωc

t}
)

≤ c6EPn

([
max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]1+α
)

+ c7

( v
n

) 1+α
2+α

t+ Pn (Λc1)

+EPn
(
d(G∗FB, Ĝm−hybrid)1{Λc2}

)
+ Pn (Ωc

t)

≤ c6ψ̃
−(1+α)
n EPn

([
ψ̃n max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

]1+α
)

︸ ︷︷ ︸
A1,n

+ c7

( v
n

) 1+α
2+α

t︸ ︷︷ ︸
A2,n

+

(
C4√
2v

)2v

n−2v(λ− 1
2) exp

(
−n−2(λ− 1

2)
)

︸ ︷︷ ︸
A3,n

+ n−λ︸︷︷︸
A4,n

+ exp(−t)︸ ︷︷ ︸
A5,n

,

where ψ̃n is a sequence as specified in equation (2.10) in the main text. In these inequalities, the

third line uses (A.35) and d(G∗FB, Ĝm−hybrid) ≤ 1. In the fourth line, A3,n follows from Lemma A.9,

A4,n follows from d(G∗FB, Ĝm−hybrid) ≤ PX

(
G∗FB4Ĝm−hybrid

)
and PX

(
G∗FB4Ĝm−hybrid

)
< n−λ

on Λc2, and A5,n follows from (A.34).

We now discuss convergence rates of Aj,n, j = 1, . . . , 5, individually with suitable choices of t
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and λ. Equation (2.10) assumed in this theorem implies

sup
P∈Pm

EPn

((
ψ̃n max

1≤i≤n
|τ̂m (Xi)− τ(Xi)|

)1+α
)

= sup
P∈Pm

EPn

([(
ψ̃n max1≤i≤n |τ̂m (Xi)− τ(Xi)|

)2
] 1+α

2

)

≤

([
sup
P∈Pm

EPn
(
ψ̃n max1≤i≤n |τ̂m (Xi)− τ(Xi)|

)2
] 1+α

2

)
= O(1),

where the third line follows from Jensen’s inequality since (1 + α)/2 ≤ 1. Hence, A1,n satisfies

sup
P∈Pm

A1,n = O
(
ψ̃
−(1+α)
n

)
. By setting t = (1 +α) logψn, we can make the convergence rate of A5,n

equal to that of A1,n. At the same time, by choosing λ > 1+α
2+α ≥

1
2 , we can make A3,n and A4,n

converge faster than A2,n. Hence, the uniform convergence rate of EPn
(
d(G∗FB, Ĝm−hybrid)

)
over

P ∈ Pm ∩ PFB (M,κ, η, α) is bounded by the convergence rates of the A1,n and A2,n,

O

(
sup
P∈Pm

A1,n ∨ sup
P∈PFB(M,κ,η,α)

A2,n

)
= O

(
ψ̃
−(1+α)
n ∨ n−

1+α
2+α log ψ̃n

)
.

This completes the proof for the m-hybrid case.

A proof for the e-hybrid case follows almost identically to the proof of the m-hybrid case. The

differences are that ρn in inequality (A.32) is given by

ρn =
κ

M
max

1≤i≤n
|τ̂ ei − τ i|PX,n

(
G∗FB4Ĝe−hybrid

)
.

and that inequality (A.33) is replaced by

d(G∗FB, Ĝe−hybrid) ≤ ρn + Va(d(G∗FB, Ĝe−hybrid) + a2), (A.36)

where Va is as defined in the proof of Theorem 2.3. The rest of the proof goes similarly to the proof

of the first claim except that the rate φ̃n given in equation (2.11) replaces ψ̃n in the first claim.

B Extensions

B.1 Empirical Welfare Maximization with a Capacity Constraint

This section shows a proof of the claim given in Remark 2.1 of the main text that says the expected

welfare of ĜK converges to the maximum at least at n−1/2 rate. The result is analogous to Theorem
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2.1, with the additional term corresponding to potential welfare losses due to estimation errors of

PX(G).

Theorem B.1. Under Assumption 2.1,

sup
P∈P(M,κ)

EPn

[
sup
G∈G

WK(G)−WK(ĜK)

]
≤ C1

M

κ

√
v

n
+ C1

M

K

√
v

n
,

where C1 is the universal constant in Lemma A.4.

Proof. Since WK(G)−WK(G′) = V K(G)− V K(G′) for all G,G′,

sup
P∈P(M,κ)

EPn

[
sup
G∈G

WK(G)−WK(ĜK)

]
= sup

P∈P(M,κ)
EPn

[
sup
G∈G

V K(G)− V K(ĜK)

]
, (B.1)

and we focus on bounding the latter expression.

Since ĜK maximizes V K
n (G), V K

n (G̃) ≤ V K
n (ĜK) for any G̃ ∈ G and

V K(G̃) ≤ V K
n (G̃) + sup

G∈G

∣∣V K
n (G)− V K(G)

∣∣
≤ V K

n (ĜK) + sup
G∈G

∣∣V K
n (G)− V K(G)

∣∣
≤ V K(ĜK) + 2 sup

G∈G

∣∣V K
n (G)− V K(G)

∣∣ .
Applying the inequality for all G̃ ∈ G, we obtain

sup
G∈G

V K(G)− V K(ĜK) ≤ 2 sup
G∈G

∣∣V K
n (G)− V K(G)

∣∣ ,
which is also true in expectation over Pn.

The welfare gain estimation error for any treatment rule G could be bounded from above by:

∣∣V K
n (G)− V K(G)

∣∣ =

∣∣∣∣ K

max{K,PX,n(G)}
· Vn(G)− K

max{K,PX(G)}
· V (G)

∣∣∣∣
≤ K

max{K,PX,n(G)}
· |Vn(G)− V (G)|+ V (G) ·

∣∣∣∣ K

max{K,PX,n(G)}
− K

max{K,PX(G)}

∣∣∣∣
≤ |Vn(G)− V (G)|+ M

K
· |PX,n(G)− PX(G)| .

The second line comes from subtracting and adding K
max{K,PX,n(G)}V (G) and then applying the

triangle inequality. The third line uses inequalities K
max{K,PX,n(G)} ≤ 1 and V (G) ≤ M (from

Assumption 2.1 (BO)), and the observation that for any a, b ∈ R and c > 0,∣∣∣∣ c

max{c, a}
− c

max{c, b}

∣∣∣∣ =

∣∣∣∣c(max{c, b} −max{c, a})
max{c, a} ·max{c, b}

∣∣∣∣ ≤ |max{c, b} −max{c, a}|
c

≤ |b− a|
c

.
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Then

sup
P∈P(M,κ)

EPn

[
sup
G∈G

V K(G)− V K(ĜK)

]
≤ 2 sup

P∈P(M,κ)
EPn

[
sup
G∈G

∣∣V K
n (G)− V K(G)

∣∣]
≤ 2 sup

P∈P(M,κ)
EPn

[
sup
G∈G
|Vn(G)− V (G)|

]
+ 2

M

K
sup

P∈P(M,κ)
EPn

[
sup
G∈G
|PX,n(G)− PX(G)|

]
Note that since the class G has VC-dimension v <∞, the classes of functions

fG(Y,D,X) ≡
(
Y D

e(X)
− Y (1−D)

1− e(X)

)
· 1{X ∈ G},

hG(Y,D,X) ≡ 1{X ∈ G} − 1/2,

are VC-subgraph classes with VC-dimension no greater than v by Lemma A.1. These classes of

functions are uniformly bounded by M/(2κ) and 1/2. Since Vn(G) = En(fG), V (G) = EP (fG),

PX,n(G) = En(hG) + 1/2 and PX(G) = EP (hG) + 1/2, we could apply Lemma A.4 and obtain

sup
P∈P(M,κ)

EPn

[
sup
G∈G

V K(G)− V K(ĜK)

]
≤ C1

M

κ

√
v

n
+ C1

M

K

√
v

n
.

The theorem’s result follows from (B.1).

B.2 Demeaned EWM

Define the demeaned population welfare as

W dm(G) ≡W (G)− EP [Y ],

then sup
G∈G

W dm(G) = sup
G∈G

W (G)− EP [Y ] = W ∗G − EP [Y ]. Analogously to (2.2), for any G̃ ∈ G,

W dm(G̃)−W dm(ĜdmEWM ) ≤ 2 sup
G∈G

∣∣∣W dm
n (G)−W dm(G)

∣∣∣ ,
therefore

W ∗G −W (ĜdmEWM ) ≤ 2 sup
G∈G

∣∣∣W dm
n (G)−W dm(G)

∣∣∣ .
Note that since Y dm

i = Yi − En [Yi],

W dm
n (G) = En

[
Y dm
i Di

e(Xi)
· 1 {Xi ∈ G}+

Y dm
i (1−Di)

1− e(Xi)
· 1 {Xi /∈ G}

]
= Wn(G)− En [Yi] · En

[
Di

e(Xi)
· 1 {Xi ∈ G}+

1−Di

1− e(Xi)
· 1 {Xi /∈ G}

]
,
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and since |En(Yi)| ≤M/2,∣∣∣W dm
n (G)−W dm(G)

∣∣∣ ≤ |Wn(G)−W (G)|

+

∣∣∣∣En [Yi] · En
[
Di

e(Xi)
· 1 {Xi ∈ G}+

1−Di

1− e(Xi)
· 1 {Xi /∈ G}

]
− EP [Y ]

∣∣∣∣
≤ |Wn(G)−W (G)|

+ |En(Yi)− EP [Y ]|

+
M

2
·
∣∣∣∣En [ Di

e(Xi)
· 1 {Xi ∈ G}+

1−Di

1− e(Xi)
· 1 {Xi /∈ G}

]
− 1

∣∣∣∣ .
Similarly to the proof of Theorem 2.1, Lemma A.4 applies to all three terms with envelopes M/(2κ),

M/2, and M/(2κ), thus

EPn
[
W ∗G −W (ĜdmEWM )

]
≤ 2EPn

[
sup
G∈G

∣∣∣W dm
n (G)−W dm(G)

∣∣∣] ≤ C1M

(
2

κ
+ 1

)√
v

n
.

B.3 Multiple Treatments

It is feasible to extend the current approach to situations with multiple treatments. Suppose there

are K treatments denoted by D ∈ {1, . . . ,K}. Let ek(x) = P (D = k|X = x), k = 1, . . . ,K, be the

propensity scores in the experimental data, and {Yk : k = 1, . . . ,K} be the potential outcomes for

each treatment. Define a treatment assignment policy by a K-partition of the covariate space X ,

G = (G1, . . . , GK), where G1, · · · , GK ⊂ X are non-intersecting subsets that partition X into K

regions. For each k = 1, . . . ,K, Gk specifies a subpopulation to which treatment D = k is assigned.

Under unconfoundedness, (Y1, . . . , YK) ⊥ D|X, consider the following empirical welfare crite-

rion;

Wn(G) =
1

n

n∑
i=1

K∑
k=1

Yi · 1{Di = k}
ek(Xi)

· 1{Xi ∈ Gk},

which unbiasedly estimates the population welfare attained by policy G,

W (G) =

K∑
k=1

E[Yk · 1{X ∈ Gk}].

Consider setting the space of policies to G = {G : G1 ∈ G, . . . , GK ∈ G,G partitions X}, where G
is a VC-class of subsets in X including ∅ such that K distinct subsets in G can form a partition of

X . For instance, when X = R, a class of connected intervals of the form G = {(x, x′] : −∞ ≤ x ≤
x′ ≤ ∞}∪ ∅ is a VC-class that allows us to pick K-distinct subsets partitioning R. The EWM rule

can be then obtained as ĜEWM ∈ arg maxG∈GW (G).
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Analogous to derivation of inequality (2.3) in the paper, we can bound the welfare loss of the

EWM rule as

sup
G∈G

W (G)−W (ĜEWM ) ≤
K∑
k=1

2 sup
Gk∈G

∣∣∣W k
n (Gk)−W k(Gk)

∣∣∣ ,
where W k

n (Gk) ≡ 1
n

∑n
i=1

Yi·1{Di=k}
ek(Xi)

· 1{Xi ∈ Gk} and W k(Gk) ≡ E[Yk · 1{X ∈ Gk}]. Assuming

bounded outcomes Y ∈ [−M/2,M/2] and strict overlap, in the sense that ek(x) ∈ [κ, 1 − κ] for

all x and k = 1, . . . ,K for some κ > 0, we apply Lemmas A.1 and A.4 to obtain the mean of

supGk∈G
∣∣W k

n (Gk)−W k(Gk)
∣∣ bounded from above by C1M

√
v/n/κ. Hence, the whole welfare loss

can be bounded from above by that of Theorem 2.1 multiplied by the number of treatments K.

Computing ĜEWM presents additional challenges when the EWM framework is extended from

binary to multiple treatment case. We leave an investigation of computational procedures in this

setting for future research.

B.4 Comparison with the Nonparametric Plug-in Rule

The plug-in treatment choice rule (1.13) with parametrically or nonparametrically estimated m1(x)

and m0(x) is intuitive and simple to implement. In situations where flexible treatment assignment

rules are allowed and the dimension of conditioning covariates is small, the nonparametric plug-in

rule would be a competing alternative to the EWM approach. In this section, we review the welfare

loss convergence rate results of the nonparametric plug-in rule and discuss potential advantages and

disadvantages of these two approaches.

We denote the class of data generating processes that satisfy Assumptions 2.1 (UCF), (BO),

(SO), Assumption 2.2 (MA), and Assumption C.1 by Psmooth (M,κ, α, η, βm). Given the smooth-

ness assumption of the regression equations, we consider estimating m1 and m0 by local polynomial

estimators of degree (βm − 1). The convergence rate results of the nonparametric plug-in classifiers

shown in Theorem 3.3 of Audibert and Tsybakov (2007) can be straightforwardly extended to the

treatment choice context, resulting in

sup
P∈Psmooth(M,κ,α,η,βm)

EPn
[
W (G∗FB)−W (Ĝplug−in)

]
≤ O

(
n
− 1+α

2+dx/βm

)
. (B.2)

Furthermore, if αβm ≤ dx, Theorem 3.5 of Audibert and Tsybakov (2007) applied to the current

treatment choice setup shows that the nonparametric plug-in rule attains the rate lower bound i.e.,

for any treatment rule Ĝ,

sup
P∈Psmooth(M,κ,α,η,βm)

EPn
[
W (G∗FB)−W (Ĝ)

]
≥ O

(
n
− 1+α

2+dx/βm

)
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holds.

In practically relevant situations where αβm ≤ dx,1 a naive comparison of the welfare loss

convergence rate of the plug-in rule presented here with that of EWM (Theorems 2.3 and 2.4)

would suggest that in terms of the welfare loss converge rate, the EWM rule would outper-

form the nonparametric plug-in rule. It is, however, important to notice that the classes of

data generating processes over which the uniform rates are ensured differ between the two cases.

Psmooth (M,κ, α, η, βm) is constrained by smooth regression equations and continuously distributed

X, whereas PFB (M,κ, α, η) considered in Theorems 2.3 and 2.4 allows for discontinuous regres-

sion equations and no restriction on the marginal distribution of X’s. Assumption 2.2 (FB)

on PFB (M,κ, α, η) requires that {x : τ(x) ≥ 0} belongs to the pre-specified VC-class G, whereas

Psmooth (M,κ, α, η, βm) is free from such assumption. This non-nested relationship between PFB (M,κ, α, η)

and Psmooth (M,κ, α, η, βm) makes the naive rate comparison between (B.2) and Theorem 2.3 less

meaningful because a data generating process in Psmooth (M,κ, α, η, βm) that yields the slowest

convergence rate for the nonparametric plug-in rule is in fact excluded from PFB (M,κ, α, η). Ac-

cordingly, unless we can assess which one of Psmooth (M,κ, α, η, βm) and PFB (M,κ, α, η) is more

likely to contain the true data generating process, these rate results offer us limited guidance on

the procedure that should be used in a given application.

In practical terms, we consider these two distinct approaches as complementary, and our choice

between them should be based on available assumptions and the dimension of covariates in a given

application. With knowledge of the propensity score, a practical advantage of the EWM rule is

that the welfare loss convergence rate does not directly depend on the dimension of X, so when an

available credible assumption on the level set {x : τ(x) ≥ 0} implies a certain class of decision sets

with a finite VC-dimension, the EWM approach offers a practical solution to get around the curse

of dimensionality of X. A potential drawback of using the EWM rule is the risk of misspecification

of G, i.e., if Assumption 2.2 (FB) is not valid, the EWM rule only attains the second-best welfare,

whereas the nonparametric plug-in rule is guaranteed to yield the first-best welfare in the limit.

Another aspect of comparison is that the performance of the EWM rule is stable regardless of

whether the underlying data generating processes, including the marginal distribution of X and

the regression equations m1(X) and m0(X), are smooth or not. In terms of implementation, the

1In an analogy to the Proposition 3.4 of Audibert and Tsybakov (2007), when the class of data generating

processes is assumed to have αβm > dx, no data generating process in this class can have the conditional treatment

effect τ(x) = 0 in an interior of the support of PX . In the practice of causal inference, we a priori would not restrict

the plausible data generating processes only to these extreme cases; therefore, the class of data generating processes

with αβ > dx would be less relevant in practice.
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EWM approach becomes particularly attractive when the class of candidate decision sets G is given

exogenously, since the user does not have to specify any smoothing parameter in this case. In

contrast, when the user can freely choose G, the welfare performance of the EWM rule can be

sensitive to how to choose G, similarly to that the performance of nonparametric plug-in rule can

be sensitive to the choice of the smoothing parameter.

C Hybrid EWM with Local Polynomial Estimators

This section focuses on the hybrid EWM approaches with local polynomial estimators for τ(x) and

e(x),. We spell out classes of data generating processes Pm and Pe as well as ψn, ψ̃n, φn, and φ̃n

that satisfy Condition 2.1 and the assumption of Theorem 2.6.

C.1 Assumptions, Estimators, and Welfare Convergence Rates

Consider the m-hybrid approach in which the leave-one-out local polynomial estimators are used

to estimate m1(Xi) and m0 (Xi), i.e., m̂1(Xi) and m̂0 (Xi) are constructed by fitting the local

polynomials excluding the i-th observation.2 For any multi-index s = (s1, . . . , sdx) ∈ Ndx and

any (x1, . . . , xdx) ∈ Rdx , we define |s| ≡
∑dx

i=1 si, s! ≡ s1! · · · sdx !, xs ≡ xs11 · · ·x
sdx
dx

, and ‖x‖ ≡(
x2

1 + · · ·+ x2
dx

)1/2
. Let K(·) : Rdx → R be a kernel function and h > 0 be a bandwidth. At each

Xi, i = 1, . . . , n, we define the leave-one-out local polynomial coefficient estimators with degree

l ≥ 0 as

θ̂1(Xi) = arg min
θ

∑
j 6=i,Dj=1

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

θ̂0(Xi) = arg min
θ

∑
j 6=i,Dj=0

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is the vector with elements indexed by the multi-index s, i.e., U

(
Xj−Xi

h

)
≡((

Xj−Xi
h

)s)
0≤|s|≤l

.3 Note that U(0) gives vector (1, 0, . . . , 0)T . Let λn,1(Xi) be the smallest eigen-

value of B1(Xi) ≡
(
nhdx

)−1∑
j 6=i,Dj=1 U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
and λn,0(Xi) be the

2The reason to consider the leave-one-out fitted values is to simplify analytical verification of Condition 2.1. We

believe that the welfare loss convergence rates of the hybrid approaches will not be affected even when the i-th

observation is included in estimating m̂1 (Xi) and m̂0 (Xi).
3We specify the same degree of polynomial and bandwidth for these two local polynomial regressions only to

suppress notational burden.
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smallest eigenvalue of B0(Xi) ≡
(
nhdx

)−1∑
j 6=i,Dj=0 U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
. Accord-

ingly, we construct leave-one-out local polynomial fits for m1(Xi) and m0 (Xi) by

m̂1(Xi) = UT (0)θ̂1(Xi) · 1 {λn,1(Xi) ≥ tn} ,

m̂0 (Xi) = UT (0)θ̂0(Xi) · 1 {λn,0(Xi) ≥ tn} ,

where tn is a positive sequence that slowly converges to zero, such as tn ∝ (log n)−1. These trimming

rules regularize the regressor matrices of the local polynomial regressions and simplify the proof of

the uniform consistency of the local polynomial estimators.

To characterize Pm in Condition 2.1, we impose the following restrictions.

Assumption C.1.

(Smooth-m) Smoothness of the Regressions: The regression equations m1(·) and m0(·) belong to a

Hölder class of functions with degree βm ≥ 1 and constant Lm <∞.4

(PX) Support and Density Restrictions on PX : Let X ⊂ Rdx be the support of PX . Let Leb(·) be

the Lebesgue measure on Rdx . There exist constants c and r0 such that

Leb (X ∩B(x, r)) ≥ cLeb(B(x, r)) ∀0 < r ≤ r0, ∀x ∈ X , (C.1)

and PX has the density function dPX
dx (·) with respect to the Lebesgue measure of Rdx that is bounded

from above and bounded away from zero, 0 < p
X
≤ dPX

dx (x) ≤ p̄X <∞ for all x ∈ X .

(Ker) Bounded Kernel with Compact Support: The kernel function K(·) have support [−1, 1]dx ,∫
Rdx K(u)du = 1, and supuK (u) ≤ Kmax <∞.

Smoothness of the regression equations, Assumption C.1 (Smooth-m), is a standard assumption

in the context of nonparametric regressions. Assumption C.1 (PX) is borrowed from Audibert and

Tsybakov (2007), and it provides regularity conditions on the marginal distribution of X. Inequality

condition (C.1) constrains the shape of the support of X, and it essentially rules out the case where

X has “sharp” spikes, i.e., X ∩B(x, r) has an empty interior or Leb (X ∩B(x, r)) converges to zero

as r → 0 faster than the rate of r2 for some x in the boundary of X .

4Let Ds denote the differential operator Ds ≡ ∂
s1+···+sdx

∂x
s1
1 ···x

sdx
dx

. Let β ≥ 1 be an integer. For any x ∈ Rdx and any

(β − 1) times continuously differentiable function f : Rdx → R, we denote the Taylor expansion polynomial of degree

(β − 1) at point x by fx(x′) ≡
∑
|s|≤β−1

(x′−x)s

s!
Dsf(x). Let L > 0. The Hölder class of functions in Rdx with

degree β and constant 0 < L < ∞ is defined as the set of function f : Rdx → R that are (β − 1) times continuously

differentiable and satisfy, for any x and x′ ∈ Rdx , the inequality |fx(x′)− f(x)| ≤ L ‖x− x′‖β .
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Lemma C.4 below shows that when Pm consists of the data generating processes satisfying

Assumption C.1 (Smooth-m) and (PX), Condition 2.1 (m) holds with ψn = n
1

2+dx/βm , and equa-

tion (2.10) in Theorem 2.6 holds with ψ̃n = n
1

2+dx/βm (log n)
− 1

2+dx/βm
−2

. The following corollary

therefore follows.

Corollary C.1. Let Pm consist of data generating processes that satisfy Assumption C.1 (Smooth-

m) and (PX). Let m̂1(Xi) and m̂0 (Xi) be the leave-one-out local polynomial estimators with degree

l = (βm − 1), whose kernels satisfy Assumption C.1 (Ker).

(i) Suppose Assumption 2.1 holds and a bandwidth satisfies h ∝ n−
1

2βm+dx . Then, it holds

sup
P∈Pm∩P(M,κ)

EPn
[
W ∗G −W (Ĝm−hybrid)

]
≤ O

(
n
− 1

2+dx/βm

)
.

(ii) Suppose Assumptions 2.1 and 2.2 hold with margin coefficient α ∈ (0, 1], and a bandwidth

satisfies h ∝
(

logn
n

) 1
2βm+dx . Then, it holds

sup
P∈Pm∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝm−hybrid)

]
≤ O

(
n
− 1+α

2+dx/βm (log n)

(
1

2+dx/βm
+2
)

(1+α) ∨ n−
1+α
2+α log n

)
.

Next, consider the e-hybrid approach. For each i = 1, . . . , n, define a leave-one-out local poly-

nomial propensity score estimator as

ê (Xi) = UT (0)θ̂e(Xi) · 1 {λn(Xi) ≥ tn} ,

θ̂e(Xi) = arg min
θ

∑
j 6=i

[
Dj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
.

We then construct an estimate of individual treatment effect as

τ̂ i =

[
YiDi

ê(Xi)
− Yi(1−Di)

1− ê(Xi)

]
· 1 {εn ≤ ê(Xi) ≤ 1− εn} , 0 < εn ≤ O

(
n−a

)
, a > 0,

To ensure Condition 2.1 (e), we assume smoothness of the propensity score function e(·).

Assumption C.2. This assumption is the same as Assumption C.1 except that C.1 (Smooth-m)

is replaced by

(Smooth-e) Smoothness of the Propensity Score: The propensity score e(·) belongs to a Hölder class

of functions with degree βe ≥ 1 and constant Le <∞.

33



Again, Lemma C.4 below shows that Pe formed by the data generating processes satisfying As-

sumption C.2, Condition 2.1 (e) holds with φn = n
− 1

2+dx/βe and (2.11) with φ̃n = n
1

2+dx/βe (log n)
− 1

2+dx/βe
−2

.

Corollary C.2. Let Pe consist of data generating processes that satisfy Assumption C.2 (Smooth-

e) and (PX). Let ê(Xi) be the leave-one-out local polynomial estimator with degree l = (βe − 1),

whose kernel satisfy Assumption C.1 (Ker).

(i) Suppose Assumption 2.1 holds and a bandwidth satisfies h ∝ n−
1

2βe+dx . Then, it holds

sup
P∈Pe∩P(M,κ)

EPn
[
W ∗G −W (Ĝe−hybrid)

]
≤ O

(
n
− 1

2+dx/βe

)
.

(ii) Suppose Assumptions 2.1 and 2.2 hold with margin coefficient α ∈ (0, 1], and a bandwidth

satisfies h ∝
(

logn
n

) 1
2βe+dx . Then, it holds

sup
P∈Pe∩PFB(M,κ,α,η)

EPn
[
W (G∗FB)−W (Ĝe−hybrid)

]
≤ O

(
n
− 1+α

2+dx/βe (log n)

(
1

2+dx/βe
+2
)

(1+α) ∨ n−
1+α
2+α log n

)
.

A comparison of Corollaries C.1 and C.2 shows that the rate upper bound of welfare loss

differs between the m-hybrid EWM and the e-hybrid EWM approaches when the degree of Hölder

smoothness of the regression equations βm and that of the propensity score βe are different. For

instance, if the propensity score e (·) is smoother than the regression equations of outcome m1(·) and

m0 (·) in the sense of βe > βm and the degree of local polynomial regressions is chosen accordingly,

then the rate upper bound of the e-hybrid EWM rule converges faster than that of the m-hybrid

EWM rule.

The rest of this section provides formal proofs for validity of Condition 2.1 (m) and (e) for the

local polynomial estimators constructed above, when the class of data generating processes Pm or

Pe is constrained by Assumptions C.1 or C.2. Lemma C.4 shown in Section C.3 proves the main

claim. Appendix C.2 collects the preparatory lemmas to prove Lemma C.4.

C.2 Preparatory Lemmas

Let µ : Rdx → R be a generic notation for a regression equation onto a vector of covariates

X ∈ Rdx . In case of m-hybrid EWM, µ (·) corresponds to either of m1(·) or m0 (·). In case of

e-hybrid EWM, µ (·) corresponds to propensity score e(·). We use n to denote the size of the entire
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sample indexed by i = 1, . . . , n, and denote by Ji ⊂ {1, . . . , n} a subsample used to estimate µ (Xi)

nonparametrically. Since we consider throughout the leave-one-out regression fits of µ (Xi), Ji does

not include i-th observation. In case of m-hybrid EWM, Ji is either the leave-one-out treated sample

{j ∈ {1, . . . , n} : Dj = 1, j 6= i} or the leave-one-out control sample {j ∈ {1, . . . , n} : Dj = 0, j 6= i}
depending on µ (·) corresponds to m1 (·) or m0 (·). Note that, in the m-hybrid case, Ji is random

as it depends on a realization of (D1, . . . , Dn). When the e-hybrid EWM is considered, Ji is non-

stochastic and it is given by Ji = {1, . . . , n} \ {i}. The size of Ji is denoted by nJi , which is equal

to n1 − 1 or n0 − 1 in the m-hybrid case, and is equal to n− 1 in the e-hybrid case. With abuse of

notations, we use Yi, i = 1, . . . , n, to denote dependent variable observations and use ξi to denote

a regression residual, i.e., Yi = µ (Xi) + ξi, E (ξi|Xi) = 0, holds for all i = 1, . . . , n. For e-hybrid

rule, Yi should be read as the treatment status indicator Di ∈ {1, 0}.

We assume that µ (·) belongs to a Hölder class of functions with degree β ≥ 1 and constant

0 < L < ∞. Our generic notation for the leave-one-out local polynomial regression fir for µ(Xi)

with degree l = (β − 1) is

µ̂−i (Xi) = UT (0)θ̂(Xi) · 1 {λ(Xi) ≥ tn} , (C.2)

θ̂−i(Xi) = arg min
θ

∑
j∈Ji

[
Yj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is a regressor vector as defined above, λ(Xi) is a smallest eigenvalue of B−i(Xi) ≡(

nhdx
)−1∑

j∈Ji U
(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
, and tn is a sequence of trimming constant

converging to zero, whose choice is discussed later. The standard least squares calculus shows

θ̂−i (Xi) = B−i (Xi)
−1

 1

nhdx

∑
j∈Ji

U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

) ,

so that µ̂ (Xi) can be written as

µ̂−i (Xi) =

∑
j∈Ji

Yjωj (Xi)

 · 1 {λ(Xi) ≥ tn} , (C.3)

where ωj (Xi) =
1

nhdx
UT (0) [B−i(Xi)]

−1 U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)
.

Lemma C.1. Suppose Assumptions C.1 (PX) and (Ker).
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(i) Conditional on (X1, . . . , Xn) such that λ(Xi) > 0,

max
j 6=i
|ωj(Xi)| ≤ c5

1

nhdxλ(Xi)
,∑

j∈Ji

|ωj(Xi)| ≤
c5

nhdxλ(Xi)

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
,

where c5 is a constant that depends only on β, dx and Kmax.

(ii) For any multi-index s such that |s| ≤ (β − 1),
∑

j∈Ji

(
Xj−Xi

h

)s
ωj(Xi) = 0.

(iii) Let λ̃ (x) be a smallest eigenvalue of B(x) ≡
(
nhdx

)−1∑n
j=1 U

(
Xj−x
h

)
UT
(
Xj−x
h

)
K
(
Xj−x
h

)
there exist positive constants c6 and c7 that depend only on c, r0, p

X
, and K(·) such that

Pn
({
λ̃ (x) ≤ c6

})
≤ 2 [dimU ]2 exp

(
−c7nh

dx
)

holds for all x, PX-almost surely, at every n ≥ 1.

Proof. (i) Since ‖U(0)‖ = 1, it holds

|ωj(Xi)| ≤
1

nhdx

∥∥∥∥[B−i(Xi)]
−1 U

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)∥∥∥∥
≤ Kmax

nhdxλ(Xi)

∥∥∥∥U (Xj −Xi

h

)
1
{

(Xj −Xi) ∈ [−h, h]dx
}∥∥∥∥

≤ Kmax dim (U)1/2

nhdxλ(Xi)

≡ c5

nhdxλ(Xi)
,

for every 1 ≤ j ≤ n. Similarly,∑
j∈Ji

|ωj(Xi)| ≤
Kmax

nhdxλ(Xi)

∑
j∈Ji

∥∥∥∥U (Xj −Xi

h

)∥∥∥∥ 1
{

(Xj −Xi) ∈ [−h, h]dx
}

=
c5

nhdxλ(Xi)

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
.

(ii) This claim follows from the first order condition for θ in the least square minimization

problem in (C.2).

(iii) This lemma is from Equation (6.3, pp. 626) in the proof of Theorem 3.2 in Audibert and

Tsybakov (2007), where suitable choices of constant c6 and c7 are given in Equation (6.2, pp.625)

in Audibert and Tsybakov (2007).

The next lemma provides an exponential tail bound for the local polynomial estimators. The

first statement is borrowed from Theorem 3.2 in Audibert and Tsybakov (2007), and the second

statement is its immediate extension.
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Lemma C.2. (i) Suppose Assumption C.1 (PX) and (Ker) hold, and µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L < ∞. Assume Ji is non-stochastic with

nJi = n − 1 (e-hybrid case). Then, there exist positive constants c8, c9, and c10 that depend only

on β, dx, L, c, r0, p
X

, and p̄X , such that, for any 0 < h < r0/c, any c8h
β < δ, and any n ≥ 2,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
≤ c9 exp

(
−c10nh

dxδ2
)
,

holds for almost all x with respect to PX , where Pn−1 (·) is the distribution of
{

(Yi, Xi)
n−1
i=1

}
.

(ii) Suppose Assumptions 2.1 (SO), C.1 (PX), and (Ker) hold, and µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L < ∞. Assume Ji is stochastic (m-hybrid

case) with Ji = {j 6= i : Dj = d}, d ∈ {1, 0}. There exist positive constants c11, c12, and c13 that

depend only on κ, β, dx, L, c, r0, p
X

, and p̄X , such that for any 0 < h < r0/c, any c11h
β < δ, and

any nJn ≥ 1,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ|nJn
)
≤ c12 exp

(
−c13nJnh

dxδ2
)

holds for almost all x with respect to PX , where Pn−1 (·|nJn) is the conditional distribution of{
(Yi, Xi)

n−1
i=1

}
given

∑n−1
j=1 1 {Dj = d}.

Proof. (i) See Theorem 3.2 in Audibert and Tsybakov (2007).

(ii) Under Assumption 2.1 (SO), the conditional distribution of covariates X given D = d,

d ∈ {1, 0}, has the support X same as the unconditional distribution PX , and has bounded density

on X , since

κ

1− κ
dPX
dx

<
dPX|D=d

dx
<

1− κ
κ

dPX
dx

holds for all x ∈ X . Therefore, when PX satisfies Assumption C.1 (PX), the conditional distribu-

tions PX|D=d, d ∈ {1, 0} also satisfy the support and density conditions analogous to Assumption

C.1 (PX). This implies that, even when we condition on nJn =
∑n−1

j=1 1 {Dj = d} ≥ 1, the exponen-

tial inequality of (i) in the current lemma is applicable with different constant terms.

The next lemma concerns an upper bound of the variance of the supremum of centered empirical

processes indexed by a class of sets.
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Lemma C.3. Let B be a countable class of sets in X , and let {PX,n (B) : B ∈ B} be the empirical

distribution based on iid observations, (X1, . . . , Xn), Xi ∼ PX .

V ar

(
sup
B∈B
{PX,n (B)− PX (B)}

)
≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

4n
.

Proof. In Theorem 11.10 of Boucheron et al. (2013), setting Xi,s at the centered indicator function

1 {Xi ∈ B} − PX (B), and dividing the inequality of Theorem 11.10 of Boucheron et al. (2013) by

n2 lead to

V ar

(
sup
B∈B
{PX,n (B)− PX (B)}

)
≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

n
sup
B∈B
{PX (B) [1− PX (B)]}

≤ 2

n
E

[
sup
B∈B
{PX,n (B)− PX (B)}

]
+

1

4n
.

C.3 Main Lemmas and Proofs of Corollaries C.1 and C.2

The next lemma yields Corollaries C.1 and C.2.

Lemma C.4. Let Pµ be a class of joint distributions of (Y,X) such that µ (·) belongs to a Hölder

class of functions with degree β ≥ 1 and constant 0 < L <∞, and Assumption C.1 (PX) holds. Let

µ̂−i(·) be the leave-one-out local polynomial fit for µ (Xi) defined in (C.2), whose kernel function

satisfies Assumption C.1 (Ker).

(i) Then,

sup
P∈Pµ

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] ≤ O(hβ) +O

(
1√
nhdx

)
(C.4)

holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of the

uniform upper bound is h ∝ n−
1

2β+dx and the resulting uniform convergence rate is

sup
P∈Pµ

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] ≤ O (n− 1

2+dx/β

)
.

(ii) Let tn ∝ (log n)−1. Then,

sup
P∈Pµ

EPn

[(
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣)2
]
≤ O

(
h2β

t2n

)
+O

(
log n

nhdxt2n

)
(C.5)

38



holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of the

uniform upper bound is h ∝
(

logn
n

) 1
2β+dx and the resulting uniform convergence rate is

sup
P∈Pµ

EPn

[(
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣)2
]
≤ O

(
(tn)−2

(
log n

n

) 2
2+dx/β

)
.

Proof. (i) First, consider the non-stochastic Ji case with nJi = (n − 1) (e-hybrid case). Since

observations are iid (hence exchangeable) and the probability law of µ̂−i (·) does not depend on Xi,

it holds

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] = EPn

∣∣µ̂−i(Xi)− µ (Xi)
∣∣ (C.6)

= EPX
[
EPn−1

[∣∣µ̂−n(Xn)− µ (Xn)
∣∣ |Xn

]]
=

∫
X
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] dPX(x)

=

∫
X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
dδ

]
dPX(x),

where EPn−1 [·] is the expectation with respect to the first (n− 1)-observations of (Yi, Xi). By

Lemma C.2 (i), there exist positive constants c8, c9, and c10 that depend only on β, dx, L, c, r0,

p
X

, and p̄X such that, for any 0 < h < r0/c, any c8h
β < δ, and any n ≥ 2,

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
≤ c9 exp

(
−c10nh

dxδ2
)

(C.7)

holds for almost all x with respect to PX . Hence,∫
X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ
)
dδ

]
dPX(x) ≤ c8h

β + c9

∫ ∞
0

exp
(
−c10nh

dxδ2
)
dδ

= c8h
β +

c14√
nhdx

(C.8)

= O(hβ) +O

(
1√
nhdx

)
where c14 = c9(2c10)−1/2

∫∞
0

(
δ′
)−1/2

exp
(
−c10δ

′) dδ′ < ∞. Since the upper bound (C.8) does not

depend upon P ∈ Pµ, this upper bound is uniform over P ∈ Pµ, so the conclusion holds.

Next, consider the stochastic Ji case with nJi =
∑

j 6=i 1 {Dj = d}, where d ∈ {1, 0}. we can

interpret nJi as a binomial random variable with parameters (n− 1) and π, where π = P (Di = 1)

when µ (·) corresponds to m1 (·) and π = P (Di = 0) when µ (·) corresponds to m0 (·). In either

case, κ < π < 1 − κ by Assumption 2.1 (SO). Let n ≥ 1 + 2
π and Ωπ,n ≡

{∣∣∣ nJnn−1 − π
∣∣∣ ≤ 1

2π
}

=
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{
(n−1)π

2 ≤ nJn ≤
3(n−1)π

2

}
. Consider

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ · 1 {Ωπ,n}

]
=

∑
nJn∈Ωπ,n

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]Pn−1 (nJn)

≤ max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]}Pn−1 (Ωπ,n)

≤ max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]} .

Since nJn ≥
(n−1)π

2 ≥ 1 on Ωπ,n, Lemma C.2 (ii) implies

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn] ≤ ∫

X

[∫ ∞
0

Pn−1
(∣∣µ̂−n(x)− µ (x)

∣∣ > δ|nJn
)
dδ

]
dPX(x)

≤ c11h
β +

c15√
nJnh

dx
,

where c11 and c15 are positive constants that depend only on κ, β, dx, L, c, r0, p
X

, and p̄X . Since

nJn ≥
(n−1)π

2 ≥ nπ
4 on Ωπ,n for n ≥ 2, it holds

max
nJn∈Ωπ,n

{
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ |nJn]} ≤ c11h

β +
2c15√
πnhdx

.

Accordingly, combined with the Hoeffding’s inequality Pn−1
(
Ωc
π,n

)
≤ 2 exp

(
−π2

4 n
)
, we obtain

EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] ≤ EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣ · 1 {Ωπ,n}

]
+MPn−1

(
Ωc
π,n

)
≤ c11h

β +
2c15√
πnhdx

+ 2M exp

(
−π

2

4
n

)
.

The third term in the right hand side converges faster than the second term, so we have shown

EPn

[
1

n

n∑
i=1

∣∣µ̂−i(Xi)− µ (Xi)
∣∣] =

∫
X
EPn−1

[∣∣µ̂−n(x)− µ (x)
∣∣] dPX(x)

≤ O(hβ) +O

(
1√
nhdx

)
holds for the stochastic Ji case as well.

(ii) Let Ωλ,n be an event defined by {λ (Xi) ≥ tn, ∀i = 1, . . . , n}. On Ωλ,n, (C.3) implies

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2 ≤

∣∣∣∣∣∣
∑
j∈Ji

Yjωj (Xi)− µ (Xi)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi) +
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

, (C.9)
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where the second line follows from Yj = µ (Xj) + ξj and
∑

j 6=i ωj (Xi) = 0 as implied by Lemma

C.1 (ii). Since µ (·) is assumed to belong to the Hölder class, Lemma C.1 (ii) and Assumption C.1

(Ker) imply∣∣∣∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 =

∣∣∣∑
j∈Ji
‖Xj −Xi‖β ωj (Xi)

∣∣∣2
=
∣∣∣∑

j∈Ji
‖Xj −Xi‖β ωj (Xi) · 1

{
(Xj −Xi) ∈ [−h, h]dx

}∣∣∣2
≤ dβxh2β

∣∣∣∑
j∈Ji
|ωj (Xi)|

∣∣∣2
≤ dβxh2β

(
c5

λ(Xi)

)2( 1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
})2

≤ c16
h2β

t2n

(
1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
})2

,

where c16 = c2
5d
β
x. Under Assumption C.1 (PX) and being conditional on Ωλ,n,

max
1≤i≤n

∣∣∣∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 ≤ c16

h2β

t2n

[
1

hdx
sup
B∈Bh

PX,n(B)

]2

≤ c16
h2β

t2n

[
1

hdx

(
sup
B∈Bh

(PX,n(B)− PX (B)) + sup
B∈Bh

PX (B)

)]2

≤ c16
h2β

t2n

[
1

hdx
sup
B∈Bh

(PX,n(B)− PX (B)) + 2dx · p̄X

]2

≤ c16
h2β

t2n

 2

h2dx

[
sup
B∈Bh

(PX,n(B)− PX (B))

]2

+ 22dx+1 · p̄2
X

 ,

where Bh is the class of hypercubes in Rdx , Bh ≡
{∏dx

k=1
[xk − h, xk + h] : (x1, . . . , xdx) ∈ X

}
, and

the last inequality follows since (a+ b)2 ≤ 2a2 + 2b2. Accordingly,

EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
≤ c17

h2β

t2n
+ 2c16

h2β

t2n

1

h2dx
EPn

{[
supB∈Bh (PX,n(B)− PX (B))

]2}
≤ c17

h2β

t2n
+ 4c16

h2β

t2n

1

h2dx

{
V ar

(
supB∈Bh (PX,n(B)− PX (B))

)
+
[
EPn

(
supB∈Bh (PX,n(B)− PX (B))

)]2
}
,

where c17 = 22dx+1c16p̄
2
X . In order to bound the variance and the squared mean terms in the curly

brackets, we apply Lemma C.3 and Lemma A.5 with F̄ = 1 and δ = p̄X (2h)dx/2. Let vBh <∞ be
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the VC-dimension of Bh that depends only on dx. For all n satisfying nhdx ≥ C1vBh
2dx p̄2X

, we have

V ar

(
sup
B∈Bh

(PX,n(B)− PX (B))

)
≤ 2

n
EPn

(
sup
B∈Bh

(PX,n(B)− PX (B))

)
+

1

4n

≤ 2
dx
2

+1C2p̄X

√
vBhh

dx

n3/2
+

1

4n
and[

EPn

(
sup
B∈Bh

(PX,n(B)− PX (B))

)]2

≤ 2dxC2
2 p̄

2
X

vBhh
dx

n
.

As a result, there exist positive constants c18, and c19 that depend only on β, dx, and p̄X , such that

EPn

max
1≤i≤n

∣∣∣∣∣∣
∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ c17
h2β

t2n
+c18

h2β

t2n (nhdx)
+c19

h2β

t2n (nhdx)
3/2

holds for all n satisfying nhdx ≥ C1vBh
2dx p̄2X

. Since nhdx →∞ by the assumption, focusing on the leading

term yields

lim sup
n→∞

sup
P∈Pµ

EPn

2 max
1≤i≤n

∣∣∣∣∣∣
∑
j∈Ji

(µ (Xj)− µ (Xi))ωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ O(h2β

t2n

)
. (C.10)

In order to bound the second term in the right hand side of (C.9), note first that∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

≤ 1

nhdxλ2(Xi)

∥∥∥∥∥∥ 1√
nhdx

∑
j∈Ji

ξjU

(
Xj −Xi

h

)
K

(
Xj −Xi

h

)∥∥∥∥∥∥
2

≤ K2
max

nhdxt2n
max

1≤k≤dim(U)
η2
ik

holds conditional on Ωλ,n, where ηik, 1 ≤ k ≤ dim (U), is the k-th entry of vector

1√
nhdx

∑
j∈Ji

ξjU

(
Xj −Xi

h

)
1
{

(Xj −Xi) ∈ [−h, h]dx
}

.

Therefore,

EPn

max
1≤i≤n

∣∣∣∣∣∣
∑
j∈Ji

ξjωj (Xi)

∣∣∣∣∣∣
2

· 1 {Ωλ,n}

 ≤ K2
max

nhdxt2n
EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik

]
. (C.11)

Conditional on (X1, . . . , Xn) , ηik has mean zero and every summand in ηik lies in the interval,[
− M√

nhdx
1
{

(Xj −Xi) ∈ [−h, h]dx
}
, M√

nhdx
1
{

(Xj −Xi) ∈ [−h, h]dx
}]

. The Hoeffding’s inequality
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then implies that, for every 1 ≤ i ≤ n and 1 ≤ k ≤ dim (U), it holds

Pn (|ηik| ≥ t|X1, . . . , Xn)

≤ 2 exp

− t2

2M2

nhdx

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}


≤ 2 exp

− t2

2M2

nhdx
max1≤i≤n

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}
 , ∀t > 0.

Therefore,

EPn

exp

 η2
ik

2M2

nhdx
max1≤i≤n

∑
j∈Ji 1

{
(Xj −Xi) ∈ [−h, h]dx

}
 |X1, . . . , Xn



= 1 +

∫ ∞
1

Pn

exp

 η2
ik

2M2

nhdx
max

1≤i≤n

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}
 ≥ t′|X1, . . . , Xn

 dt′

= 1 +

∫ ∞
1

Pn

|ηik| ≥
√√√√2M2

nhdx
max

1≤i≤n

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
}

log t′|X1, . . . , Xn

 dt′

≤ 1 + 2

∫ ∞
1

exp
(
−2 log t′

)
dt′

= 1 + 2

∫ ∞
1

(
t′
)−2

dt′

= 3

for all 1 ≤ i ≤ n and 1 ≤ k ≤ dim (U). We can therefore apply Lemma 1.6 of Tsybakov (2009) to

bound EPn
[
maxi,k η

2
ik|X1, . . . , Xn

]
,

EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik|X1, . . . , Xn

]

≤ 2M2 max
1≤i≤n

 1

nhdx

∑
j∈Ji

1
{

(Xj −Xi) ∈ [−h, h]dx
} log (3 dim (U)n)

≤ 2M2

[
1

hdx
sup
B∈Bh

(PX,n(B)− PX (B)) + 2dx p̄X

]
log (3 dim (U)n) .

By applying Lemma A.5 with F̄ = 1 and δ = p̄X (2h)dx/2, the unconditional expectation of

maxi,k η
2
ik can be bounded as

EPn

[
max

1≤i≤n,1≤k≤dim(U)
η2
ik

]
≤ 2M2

[
C22dx/2p̄X

√
vBh
nhdx

+ 2dx p̄X

]
log (3 dim (U)n) (C.12)
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for all n such that nhdx ≥ C1vBh
2dx p̄2X

. Plugging (C.12) back into (C.11) and focusing on the leading

term give

lim sup
n→∞

sup
P∈Pµ

EPn

[
max

0≤i≤n

∣∣∣∑
j 6=i

ξjωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
≤ O

(
log n

nhdxt2n

)
. (C.13)

Combining (C.9), (C.10), and (C.13), we obtain

EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2]

≤ EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2 · 1 {Ωλ,n}

]
+M2Pn

(
Ωc
λ,n

)
≤ 2EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

(µ (Xj)− µ (Xi))ωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
+2EPn

[
max

1≤i≤n

∣∣∣∑
j 6=i

ξjωj (Xi)
∣∣∣2 · 1 {Ωλ,n}

]
+M2Pn

(
Ωc
λ,n

)
,

= O

(
h2β

t2n

)
+O

(
log n

nhdxt2n

)
+M2Pn

(
Ωc
λ,n

)
,

so the desired conclusion is proven if Pn
(

Ωc
λ,n

)
is shown to converge faster than the O

(
logn
nhdx t2n

)
term.

To find the convergence rate of Pn
(

Ωc
λ,n

)
, consider first the case of non-stochastic Ji. By

applying Lemma C.1 (iii) with the sample size set at (n− 1), we have

Pn ({λ (Xi) ≤ c6, for some 1 ≤ i ≤ n}) = nPn ({λ (Xn) ≤ c6})

= n

∫
Pn (λ(Xn) ≤ c6|Xn) dPX

= n

∫
Pn−1 (λ(x) ≤ c6) dPX(x) (C.14)

≤ 2n [dimU ]2 exp
(
−c7

2
nhdx

)
.

For the case of stochastic Ji, by viewing nJi as a binomial random variable with parameters (n− 1)

and π with κ < π < 1 − κ, and recalling that, when PX satisfies Assumption C.1 (PX), the

conditional distributions PX|D=d, d ∈ {1, 0} also satisfy the support and density conditions stated

in Assumption C.1 (PX), we can apply the exponential inequality shown in Lemma C.1 (iii) to

bound Pn−1 (λ(x) ≤ c6|nJn). Hence, with Ωπ,n ≡
{∣∣∣ nJnn−1 − π

∣∣∣ ≤ 1
2π
}

=
{

(n−1)π
2 ≤ nJn ≤

3(n−1)π
2

}
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used above, we have

Pn−1 (λ(x) ≤ c6) ≤ Pn−1 ({λ(x) ≤ c6} ∩ Ωπ,n) + Pn−1
(
Ωc
π,n

)
≤ max

nJn∈Ωπ,n
Pn−1 (λ(x) ≤ c6|nJn) + Pn−1

(
Ωc
π,n

)
.

≤ 2 [dimU ]2 exp
(
−c7π

4
nhdx

)
+ 2 exp

(
−π

2

4
n

)
,

Plugging this upper bound into (C.14) and focusing on the leading term leads to

Pn ({λ (Xi) ≤ c6, for some 1 ≤ i ≤ n}) ≤ O
(
n exp

(
−c7

π

4
nhdx

))
.

Hence, in either of the non-stochastic or the stochastic Ji case, since tn ≤ c6 holds for all large n

and the obtained upper bounds are uniform over P ∈ Pµ, we conclude

lim sup
n→∞

sup
P∈Pµ

EPn

[
max

1≤i≤n

∣∣µ̂−i(Xi)− µ (Xi)
∣∣2] ≤ O(h2β

t2n

)
+O

(
log n

nhdxt2n

)
+O

(
n exp(−nhdx)

)
.

Since tn = (log n)−1 by assumption, O(n exp
(
−nhdx

)
) converges faster thanO

(
logn
nhdx t2n

)
, the leading

terms are given by the first two terms, O
(
h2β

t2n

)
+O

(
logn
nhdx t2n

)
.

Proof of Corollary C.1. By noting the following inequalities,

EPn

[
1

n

∑n

i=1
|τ̂m(Xi)− τ (Xi)|

]
≤ EPn

[
1

n

∑n

i=1
|m̂1(Xi)−m1 (Xi)|

]
+EPn

[
1

n

∑n

i=1
|m̂0(Xi)−m0 (Xi)|

]
EPn

[
max

1≤i≤n
(τ̂m(Xi)− τ (Xi))

2

]
≤ 2EPn

[
max

1≤i≤n
(m̂1(Xi)−m1 (Xi))

2

]
+2EPn

[
max

1≤i≤n
(m̂0(Xi)−m0 (Xi))

2

]
,

we obtain the current corollary by applying Lemma C.4. The resulting uniform convergence rate

is given by ψn = n
1

2+dx/βm . When the assumption (2.10) in Theorem 2.6 is concerned, the corre-

sponding rate is given by ψ̃n =

[(
logn
n

) 1
2+dx/βm (log n)2

]−1

.

Proof of Corollary C.2. (i) Assume that n is large enough so that εn ≤ κ/2 holds. Given ê (Xi) ∈
[εn, 1− εn], τ̂ ei − τ i can be expressed as

τ̂ ei − τ i =
YiDi

e(Xi)

[
e(Xi)− ê(Xi)

ê(Xi)

]
+
Yi (1−Di)

1− e(Xi)

[
e(Xi)− ê(Xi)

1− ê (Xi)

]
,
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so

|τ̂ ei − τ i| ≤
M

κ
· 1

ê (Xi) (1− ê (Xi))
· |ê(Xi)− e(Xi)|

holds. On the other hand, when ê (Xi) /∈ [εn, 1− εn], τ̂ ei = 0 and |τ i| ≤ M
κ imply |τ̂ ei − τ i| ≤ M

κ .

Hence, the following bounds are valid,

|τ̂ ei − τ i| ≤

 M
κ ·

4
κ(2−κ) · |ê(Xi)− e(Xi)| if ê (Xi) ∈

[
κ
2 , 1−

κ
2

]
,

M
κ ·

1
εn(1−εn) if ê (Xi) /∈

[
κ
2 , 1−

κ
2

]
.

(C.15)

Hence,

EPn

[
1

n

∑n

i=1
|τ̂ ei − τ i|

]
= EPn [|τ̂ en − τn|]

≤ M

κ
· 4

κ (2− κ)
· EPn [|ê(Xn)− e(Xn)|]

+
M

κ
· 1

εn (1− εn)
· Pn

(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
.

By Lemma C.4 (i), supP∈Pe EPn [|ê(Xn)− e(Xn)|] ≤ O(n
− 1

2+dx/βe ), so the conclusion follows if

Pn
(
ê (Xn) /∈

[
κ
2 , 1−

κ
2

])
is shown to converge faster than O(n

− 1
2+dx/βe ). To see this claim is true,

note that

Pn
(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
=

∫
X
Pn−1

(
ê (x) /∈

[κ
2
, 1− κ

2

])
dPX (x)

≤
∫
X
Pn−1

(
|ê (x)− e(x)| ≥ κ

2

)
dPX (x)

≤ c9 exp

(
−c10κ

2

4
nhdx

)
holds for all n satisfying c8h

β < κ/2, where the c8, c9, and c10 are the constants defined in Lemma

B.2 (i). Since εn is assumed to converge at a polynomial rate, 1
εn(1−εn)P

n
(
ê (Xn) /∈

[
κ
2 , 1−

κ
2

])
converges faster than O(n

− 1
2+dx/βe ).

(ii) By (C.15), we have

EPn

[
max

1≤i≤n
|τ̂ ei − τ i|

2

]
≤

(
4M

κ2 (2− κ)

)2

EPn

[
max

1≤i≤n
|ê(Xi)− e(Xi)|2

]
(C.16)

+

(
M

κεn (1− εn)

)2

Pn
(
ê (Xi) /∈

[κ
2
, 1− κ

2

]
for some 1 ≤ i ≤ n

)
.
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By Lemma C.4 (ii), the first term in (C.16) converges at rate O
(
n
− 2

2+dx/β (log n)
2

2+dx/β
+2
)

. To find

the convergence rate of the second term in (C.16), consider

Pn
(
ê (Xi) /∈

[κ
2
, 1− κ

2

]
for some 1 ≤ i ≤ n

)
≤ nPn

(
ê (Xn) /∈

[κ
2
, 1− κ

2

])
≤ c9n exp

(
−c10κ

2

4
nhdx

)
,

where the last line follows from Lemma B.2 (i). Since εn converges at polynomial rate, we conclude

the second term in (C.16) converges faster than the first term.

D Inference for Welfare Gain

In the proposed EWM procedure, the maximized empirical welfare Wn(ĜEWM ) can be seen as an

estimate of W (ĜEWM ), the welfare level attained by implementing the estimated treatment rule.5

In situations where propensity scores are known, this section provides a procedure for construct-

ing asymptotically valid confidence intervals for the population welfare gain of implementing the

estimated rule.

Let Ĝ ∈ G be an estimated treatment rule such as ĜEWM or other data-driven way of selecting G

from the set of candidate policies. Define the welfare gain of implementing the estimated treatment

rule Ĝ ∈ G by

V (Ĝ) ≡W (Ĝ)−W (G0),

where G0 is a benchmark treatment assignment rule with which the estimated treatment rule Ĝ

is compared in terms of the social welfare. For instance, if the estimated treatment rule Ĝ is

compared with the “no treatment” case, G0 is the empty set ∅. Alternatively, if a benchmark

policy is the non-individualized uniform adoption of the treatment, G0 is set at G0 = X , and V (Ĝ)

is interpreted as the welfare gain of implementing individualized treatment assignment instead of

the non-individualized implementation of the treatment.

A construction of one-sided confidence intervals for V (Ĝ) proceeds as follows. Let νn (G) =
√
n (Vn (G)− V (G)), where Vn (G) ≡ Wn(G) −Wn(G0). If there is a random variable ν̄n such

5It is important to note that in finite samples, Wn

(
ĜEWM

)
estimates W (ĜEWM ) with an upward bias. With

fixed n, the size of the bias becomes bigger as G becomes more complex.
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that νn

(
Ĝ
)
≤ ν̄n holds Pn-almost surely, and if ν̄n converges in distribution to a non-degenerate

random variable ν̄, then, with qν̄(1− ᾱ), the (1− ᾱ)-th quantile of ν̄, it holds

Pn
(
νn

(
Ĝ
)
≤ qν̄(1− ᾱ)

)
≥ Pn (ν̄n ≤ qν̄(1− ᾱ))→ Pr (ν̄ ≤ qν̄(1− ᾱ)) = 1− ᾱ, as n→∞.

Hence, if q̂ν̄(1−ᾱ), a consistent estimator of qν̄(1−ᾱ), is available, an asymptotically valid one-sided

confidence interval for V (Ĝ) with coverage probability (1− ᾱ) can be given by[
Vn

(
Ĝ
)
− q̂ν̄(1− ᾱ)√

n
,∞
)
. (D.1)

Two-sided confidence intervals for V (Ĝ) can be constructed similarly by considering a random

variable ν̃n that satisfies |νn(Ĝ)| ≤ ν̃n, Pn-almost surely, and converges to a nondegenerate random

variable ν̃. With q̂ν̃(1−ᾱ) a consistent estimator for the (1−ᾱ)-th quantile of ν̃, two sided confidence

interval for V (Ĝ) can be given by[
Vn

(
Ĝ
)
− q̂ν̃(1− ᾱ)√

n
, Vn

(
Ĝ
)

+
q̂ν̃(1− ᾱ)√

n

]
. (D.2)

In the algorithm summarized below, we specify ν̄n to be ν̄n =
√
n supG∈G (Vn (G)− V (G)) and

ν̃n to be ν̃n =
√
n supG∈G |Vn (G)− V (G)|, and estimate the (1 − ᾱ)-quantiles of their asymptotic

distributions by bootstrapping the centered empirical processes.6

Algorithm D.1. 1. Let Ĝ ∈ G be an estimated treatment assignment rule (e.g., EWM rule),

and Vn (·) = Wn(·)−Wn(G0) be the empirical welfare gain obtained from the original sample.

2. Resample n-observations of Zi = (Yi, Di, Xi) randomly with replacement from the original

sample and construct the bootstrap analogue of the welfare gain, V ∗n (·) = W ∗n(·) −W ∗n(G0),

where W ∗n (·) is the empirical welfare of the bootstrap sample.

3. For one-sided confidence intervals, compute ν̄∗n =
√
n supG∈G (V ∗n (G)− Vn(G)). For two-sided

confidence intervals, compute ν̃∗n =
√
n supG∈G |V ∗n (G)− Vn(G)|.

6The current choices of ν̄n and ν̃n are likely to yield conservative confidence intervals. Keeping the same nominal

coverage probability, it is feasible to tighten up the confidence intervals with more sophisticated choices of ν̄n and

ν̃n, such as ν̄n =
√
n supG∈Ĝ (Vn (G)− V (G)) and ν̃n =

√
n supG∈Ĝ |Vn (G)− V (G)|, where Ĝ is a data-dependent

subclass of G that contains Ĝ with probability approaching one. Such Ĝ can be obtained by applying the technique

of contact set estimation in the context of stochastic dominance testing. See Linton et al. (2010) and Donald and

Hsu (2016), as well as the literature on moment inequalities with moment selection (Andrews and Shi (2013), among

others).
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4. Let ᾱ ∈ (0, 1/2). Repeat step 2 and 3 many times. For one-sided (two-sided) confidence

intervals, obtain q̂ν̄(1 − ᾱ) (q̂ν̃(1 − ᾱ)) by the empirical (1− ᾱ)-th quantile of the bootstrap

realizations of ν̄∗n (ν̃∗n).

Given Assumption 2.1, the uniform central limit theorem for empirical processes assures that

ν̄n and ν̃n converge in distribution to the supremum of mean zero Brownian bridge processes and

the supremum of their absolute values, respectively. Furthermore, by the well-known result on the

asymptotic validity of the bootstrap empirical processes (see, e.g., Section 3.6 of van der Vaart and

Wellner (1996)), the bootstrap critical values q̂ν̄(1 − ᾱ) and q̂ν̃(1 − ᾱ) consistently estimate the

corresponding quantiles of the limiting distributions of ν̄n and ν̃n, respectively. We can therefore

assure that the confidence intervals constructed in (D.1) and (D.2) have the desired asymptotic

coverage probability.

The same inference procedure is valid for the welfare gain estimated with demeaned outcomes

V dm
n (Ĝ) ≡W dm

n (Ĝ)−W dm
n (G0). Resampling in this case is from observations Zdmi =

(
Y dm
i , Di, Xi

)
,

with outcomes Y dm
i = Yi − En[Yi] demeaned by the outcome mean in the original sample.

E Computing EWM Treatment Rules

The Empirical Welfare Maximization rule ĜEWM , as well as hybrid rules Ĝm−hybrid, and Ĝe−hybrid,

share the same structure

Ĝ ∈ arg max
G∈G

∑
1≤i≤n

gi · 1 {Xi ∈ G} , (E.1)

where each gi is a function of the data, i.e., for the EWM rule ĜEWM , gi = 1
n

(
YiDi
e(Xi)

− Yi(1−Di)
1−e(Xi)

)
,

for the e-hybrid rule Ĝe−hybrid, gi = τ̂ ei/n, and for the m-hybrid rule Ĝm−hybrid, gi = τ̂m(Xi)/n.

The objective function in (E.1) is non-convex and discontinuous in G, thus finding Ĝ could be

computationally challenging. In this section, we propose a set of convenient tools that permit

solving this optimization problem and performing inference using widely available software for

practically important classes of sets G defined by linear eligibility scores.7

E.1 Single Linear Index Rules

We start with the problem of computing optimal treatment rules that assign treatments based

on a linear index (linear eligibility score; LES, see Examples 2.1 and 2.2). To reduce notational

7For the empirical illustration we used IBM ILOG CPLEX Optimization Studio, which is available free for academic

use through the IBM Academic Initiative.
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complexity, we include a constant in the covariate vector X throughout the exposition of this

section. An LES rule can be expressed as 1{XTβ ≥ 0}. This type of treatment rule is commonly

used in practice because it offers a simple way to reduce the dimension of observable characteristics.

Furthermore, it is easy to enforce monotonicity of treatment assignment in specific covariates by

imposing sign restrictions on the components of β.

Let GLES be a collection of half-spaces of the covariate space X , which are the upper contour

sets of linear functions:

GLES =
{
Gβ : β ∈ B ⊂Rdx+1

}
,

Gβ =
{
x : xTβ ≥ 0

}
.

Then the optimization problem (E.1) becomes:

max
β∈B

∑
1≤i≤n

gi · 1
{
XT
i β ≥ 0

}
. (E.2)

This problem is similar to the maximum weighted score problem analyzed in Florios and Skouras

(2008). They observe that the maximum score objective function could be rewritten as a Mixed

Integer Linear Programming problem with additional binary parameters (z1, ..., zn) that replace

the indicator functions 1
{
XT
i β ≥ 0

}
. The equality zi = 1

{
XT
i β ≥ 0

}
is imposed by a combination

of linear inequality constraints and the restriction that zi’s are binary. The advantage of a MILP

representation is that it is a standard optimization problem that could be solved by multiple

commercial and open-source solvers. The branch-and-cut algorithms implemented in these solvers

are faster than brute force combinatorial optimization.

We propose replacing (E.2) by its equivalent problem:

max
β∈B,

z1,...,zn∈R

∑
1≤i≤n

gi · zi (E.3)

s.t.
XT
i β

Ci
< zi ≤ 1 +

XT
i β

Ci
for i = 1, . . . , n, (E.4)

zi ∈ {0, 1},

where constants Ci should satisfy Ci > supβ∈B |XT
i β|. Then the inequality constraints (E.4) and

the restriction that zi’s are binary imply that zi = 1 if and only if XT
i β ≥ 0. It follows that the

maximum value of (E.4) for each value of β is the same as the value of (E.2).

The problem (E.3) is a linear optimization problem with linear inequality constraints and integer

constraints on zi’s if the set B is defined by linear inequalities that could be passed to any MILP

solver. Florios and Skouras (2008) impose only one side of the inequality constraint (E.4) for each
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i. For gi > 0, it is sufficient to impose only the upper bound on zi and for gi < 0 only the lower

bound. The other side of the bound is always satisfied by the solution due to the direction of the

objective function.

Our formulation has significant advantages. Despite a larger number of inequalities, it reduces

the computation time in our applications by a factor of 10-40. Furthermore, it is not sufficient to

impose only one side of the inequalities on zi’s for optimization with a capacity constraint considered

further below.

Inference on the welfare gain V (ĜEWM ) of the empirical welfare maximizing policy requires

computing ν̄∗n = supG∈G
√
n (V ∗n (G)− Vn(G)) in each bootstrap sample. Denoting the bootstrap

weights by {w∗i },
∑n

i=1w
∗
i = n, ν̄∗n could be expressed as

ν̄∗n =
√
n sup
G∈G

∑
1≤i≤n

(w∗i − 1)gi · 1
{
XT
i β ≥ 0

}
(E.5)

The optimization problem for ν̄∗n is analogous to the optimization problem for ĜEWM . Furthermore,

solving it does not require the knowledge of ĜEWM , hence all bootstrap computations could be

performed in parallel with the main EWM problem.

E.2 Multiple Linear Index Rules

We extend this method to compute treatment rules based on multiple linear scores. These rules

construct J scores that are linear in covariates (or in their functions) and assign an individual to

treatment if each score exceeds a specific threshold. An example of a multiple index treatment rule

with three indices is when an individual is assigned to a job training program if (25 ≤ age ≤ 35)

AND (wage at the previous job < $15). The results are easily extended to treatment rules that apply

if any of the indices exceeds its threshold, for example, (age ≥ 40) OR (length of unemployment ≥
2 years).

Let the treatment assignment set G be defined as an intersection of upper contour sets of J

linear functions:

G =
{
Gβ1,...,βJ , β

1, ..., βJ ∈ B
}
,

Gβ1,...,βJ =
{
x : xTβ1 ≥ 0, ..., xTβJ ≥ 0

}
.

Then the optimization problem (E.1) becomes

max
β1,...,βJ∈B

∑
1≤i≤n

gi · 1{XT
i β

1 ≥ 0, . . . , XT
i β

J ≥ 0}. (E.6)
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We propose its equivalent formulation as a MILP problem with auxiliary binary variables{
(z1
i , . . . , z

J
i , z
∗
i ), i = 1, . . . , n

}
:

max
β1,...,βJ∈B,
z1i ,...,z

J
i ,z
∗
i ∈R

∑
1≤i≤n

gi · z∗i (E.7)

s.t.
XT
i β

j

Ci
< zji ≤ 1 +

XT
i β

j

Ci
for 1 ≤ i ≤ n, 1 ≤ j ≤ J, (E.8)

1− J +
∑

1≤j≤J
zji ≤ z

∗
i ≤ J−1

∑
1≤j≤J

zji for 1 ≤ i ≤ n, (E.9)

z1
i , . . . , z

J
i , z
∗
i ∈ {0, 1} for 1 ≤ i ≤ n.

Similarly to the single index problem, the inequalities (E.8) and the constraint that zji ’s are binary

imply together that zji = 1{XT
i β

j ≥ 0}. Linear inequalities (E.9) and the binary constraints imply

together that

z∗i = z1
i · ... · zJi = 1{XT

i β
1 ≥ 0} · ... · 1{XT

i β
J ≥ 0}.

The problem for a collection of sets defined by the union of linear inequalities

Gβ1,...,βJ =
{
X : XTβ1 ≥ 0 or . . . or XTβJ ≥ 0

}
could also be written as a MILP problem with the inequality constraint (E.9) replaced by

J−1
∑

1≤j≤J
zji ≤ z

∗
i ≤

∑
1≤j≤J

zji for i = 1, . . . , n. (E.10)

E.3 Optimization with a Capacity Constraint

When there is a capacity constraint K on the proportion of population that could be assigned to

treatment 1, Empirical Welfare Maximization problem (2.4) on a set G of half-spaces becomes

max
β∈B

min

{
1,

Kn∑n
i=1 1{XT

i β ≥ 0}

} ∑
1≤i≤n

gi · 1
{
XT
i β ≥ 0

} . (E.11)

This problem cannot be rewritten as a linear optimization problem in the same way as (E.3) because

the factor min
{

1, Kn∑n
i=1 1{XT

i β≥0}

}
varies with β. This factor could take fewer than n different values

and the maximum of (E.11) could be obtained by solving a sequence of optimization problems each

52



of which holds this factor constant.

For k = bKnc , . . . , n

max
β∈B,

z1,...,zn∈R

min

{
1,
Kn

k

} ∑
1≤i≤n

gi · zi

s.t.
XT
i β

Ci
< zi ≤ 1 +

XT
i β

Ci
for 1 ≤ i ≤ n,

zi ∈ {0, 1},∑
1≤i≤n

zi ≤ k.

The capacity constrained problem with multiple indexes could be solved similarly.
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