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CONFIDENCE BANDS FOR COEFFICIENTS IN HIGH

DIMENSIONAL LINEAR MODELS WITH

ERROR-IN-VARIABLES

By Alexandre Belloni, Victor Chernozhukov

and Abhishek Kaul

We study high-dimensional linear models with error-in-variables.
Such models are motivated by various applications in econometrics, fi-
nance and genetics. These models are challenging because of the need
to account for measurement errors to avoid non-vanishing biases in
addition to handle the high dimensionality of the parameters. A re-
cent growing literature has proposed various estimators that achieve
good rates of convergence. Our main contribution complements this
literature with the construction of simultaneous confidence regions
for the parameters of interest in such high-dimensional linear models
with error-in-variables.

These confidence regions are based on the construction of mo-
ment conditions that have an additional orthogonality property with
respect to nuisance parameters. We provide a construction that re-
quires us to estimate an auxiliary high-dimensional linear model with
error-in-variables for each component of interest. We use a multiplier
bootstrap to compute critical values for simultaneous confidence in-
tervals for a target subset of the components. We show its validity
despite of possible (moderate) model selection mistakes, and allowing
the number of target coefficients to be larger than the sample size.

We apply and discuss the implications of our results to two ex-
amples and conduct Monte Carlo simulations to illustrate the perfor-
mance of the proposed procedure for each variable whose coefficient
is the target of inference.

1. Introduction. High-dimensional data sets are now commonplace in
a range of fields such as econometrics, finance and genomics. This has mo-
tivated the development of a large literature on the estimation of the cor-
responding parameters of the models of such data. A key feature of the
literature is that these models have a large number of parameters which
can be comparable or even exceed the available sample size. Under sparsity
assumptions of the high-dimensional parameter vector, penalized methods
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have been used and proved to be effective in a variety of settings, see, e.g.,
[20, 10, 24].

In this work we consider high-dimensional linear models with error-in-
variables. Such models are challenging because of the need to account for
measurement errors to avoid non-vanishing biases. This has been critical
even in the low dimensional setting [21] and [40]. More recently several
authors have considered the high-dimensional linear models with error-in-
variables including [32], [33], [44], [41], [42], [11], [12], [1], [5], [27], [43] and
[28]. These papers propose and analyse different estimators. The main results
are rates of convergence in different norms. Under various conditions and
suitable choice of penalty parameters, these estimators attain ℓq-rates of
convergence of the form

(1.1) ‖β̂ − β0‖q ≤ C(1 + ‖β0‖)s1/q
√

log p

n

which are minimax optimal, see [1]. The rate in (1.1) highlights the impact
of the error-in-variables via the ℓ2-norm of β0, which is not present in the
case where covariates are observed without error, and that consistency can
be achieved in high-dimensional settings even if p≫ n. However, these esti-
mators are not asymptotically normal and not suitable for the construction
of confidence regions with asymptotically correct coverage without imposing
stringent assumptions that allow perfect model selection.

Our main contribution is the construction of confidence regions for the
parameters of interest in such high-dimensional linear models with error-in-
variables. This complements prior work that derived rates of convergence
for these models established in the references above. Thus our work is moti-
vated by applications where confidence intervals and/or hypothesis testing
is desired instead of prediction accuracy. This is the case in very many
applications in economics, public health, and genetics. Nonetheless, a di-
rect consequence of the honest confidence intervals is a new estimator that
achieves the minimax ℓ∞-rate under weaker design conditions.

Some definitive theoretical findings on the construction of confidence re-
gions for parameters in high-dimensional models have emerged in recent
years. In a high dimensional context, [50],[3, 4], [45], and [26] provide uni-
formly valid inference methods for high-dimensional linear models, while
non-linear models have been considered in [45], [7], [6], among others. The
results in these references are uniformly valid inference over a large set of
data generating processes despite of model selection mistakes. Indeed they
do not attempt to achieve the oracle property that relies on separation from
zero conditions which leads to the lack of uniform validity, see [31, 30]. In
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many of these works the uniform validity of these estimators relies on the
use of orthogonal moment functions that can be traced back to Neymann
[39, 38] and has been extensively used in semi-parametric inference theory,
e.g. [9], [19],[36], [37], among others. Such orthogonal moment functions re-
duce the impact of the estimation of nuisance parameters on the estimation
of the parameters of interest. In particular, under suitable conditions this al-
lows for

√
n-consistent estimates that are asymptotically normal despite the

use of non-regular estimators for the nuisance parameters that unavoidably
arise due to the high-dimensionality.

Here we build upon recent results of estimators for high-dimensional lin-
ear models with error-in-variables to construct orthogonal moment functions
that will allow us to construct (simultaneous) confidence intervals for these
parameters. It follows that the error-in-variables also impacts the construc-
tion of the orthogonal moment functions (which can be seen as a de-biasing
step) and need to be accounted for. We establish a linear representation for
the estimation error. This allow us to show the

√
n-consistency and asymp-

totic normality for each individual estimate which directly leads to the con-
struction of confidence intervals that are uniformly valid over a large class of
data generating processes. Moreover, simultaneous confidence intervals can
be constructed based on critical values from a multiplier bootstrap procedure
whose validity is derived building upon recent results on high-dimensional
central limit theorems and bootstrap theorems established in [13], [15], [16],
[17], and [18]. We establish its validity under conditions that allows for si-
multaneous confidence intervals over a larger number of components than
the available sample size.

We also fully characterize the impact of using an estimate Γ̂ of the vari-
ance of the error-in-variables Γ which is important in many applications.
Although we can see Γ as an additional nuisance parameter, one cannot
achieve the orthogonal property with respect to Γ. It turns out that the
impact of using an estimator Γ̂ is non-negligible. We further show how to
adjust the multiplier bootstrap when the estimator Γ̂ itself admits a lin-
ear representation which again leads to uniformly valid confidence regions.
This approach seems to be new and of independent interest in other high-
dimensional problems.

We apply and discuss the implications of our results to two examples.
We provide simple sufficient conditions for the validity of the results. The
first application is the estimation of the inverse covariance matrices in high-
dimensions with error-in-variables. Such problem, without error-in-variables,
has been motivated in a variety of applications including social network
analysis, climate data analysis, and finance. Recent work that provides es-
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timators with rates of convergence include [34, 49]. Recently, based on de-
biasing ideas, [25] proposed a methodology for statistical inference for low-
dimensional parameters of sparse precision matrices in a high-dimensional
settings when there is no error-in-measurements. In the case with error-in-
variables, [33] provides an estimator with rates of convergence.

The second application consists of missing data at random which has
motivated a lot of the literature in error-in-variables models even in the low
dimensional case. In the high-dimensional case, estimators for this case with
good ℓq-rates of convergence have been proposed in [42], [33], [1] and [28].
As shown in Section 4, this is an application where the estimator of the
variance of the error-in-variables admits a linear representation. This allows
us to adjust the bootstrap procedure and construct regions that account for
using the estimator Γ̂ in place of Γ. Our results complement such findings
by providing new estimates and associated confidence bands for potentially
a high-dimensional vector of parameters.

The rest of this paper is organized as follows. Section 2 describes the model
under consideration and describes the proposed methodology to construct
(simultaneous) confidence regions for the parameters of high-dimensional
linear models with error-in-variables. In Section 3 we provide assumptions
and our main theoretical results including the uniform validity of the confi-
dence regions. We present examples that illustrate our results in Section 4
and simulations in Section 5. All proofs are relegated to the appendix.

2. Model and Method for Confidence Regions. We consider i.i.d.
observations from a regression model with observation error in the design:

(2.1) yi = xTi β0 + ξi, zi = xi + wi, i = 1, . . . , n

where we observe the response variable yi and the p-dimensional vector zi,
but we do not observe the covariates xi. The vector wi and the scalar ξi are
unobserved zero-mean random vectors. The vector β0 ∈ R

p is a vector of
unknown parameters to be estimated where the dimension p can be much
larger than the sample size n, and β0 is sparse with s non-zero components,
i.e. ‖β0‖0 = s. The measurement error w satisfies E[xjwk] = 0 and its
covariance matrix,

(2.2) Γ = cov(w) = diag(E[w2
1 ], . . . ,E[w

2
p]),

is known. (We will analyze the case of unknown Γ in Section 3.1.)
In what follows we define a pseudo-likelihood function

ℓ(y, z, β) = −1

2
βT (zzT − Γ)β + yzTβ.
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Given the zero-mean conditions associated with model (2.1-2.2), direct cal-
culations show that the vector of parameters β0 solves the following moment
condition

(2.3) E[∂βℓ(y, z, β)] = E[z(y − zTβ) + Γβ] = 0

where the term Γβ0 corrects the bias that arises from using the (noisy)
covariates z instead of the unobserved x.

Next we propose an estimator which is asymptotically normal and a
bootstrap method to compute confidence regions for the parameters β0. To
achieve that we will use a score function ψj tailored for each β0j with the
form

ψj(y, z, βj , η
j) = ∂βjℓ(y, z, β) − (µj)T∂β−j

ℓ(y, z, β) = (ej − µj)T∂βℓ(y, z, β)

where ej is the jth coordinate vector,1 µj is a p-dimensional vector with a
zero in the jth component, whose “true value” will be specified below, and
ηj = (β−j , µj) collects all the nuisance parameters for ψj. Note that for any
choice of ηj = (β0,−j , µj) we have by (2.3) that

E[ψj(y, z, β0j , η
j)] = 0.

We will choose the true value of µj, denoted by µj0, so that the function ψj
also satisfies the following Neyman-type orthogonality condition:

(2.4) ∂ηj E[ψj(y, z, β0j , η
j)]
∣∣
ηj=ηj0

= 0,

with respect to the nuisance parameter vector:

ηj0 = (β0,−j , µ
j
0).

Condition (2.4) makes the procedure first-order insensitive to the estima-
tion error of the nuisance parameters ηj0. Importantly, we will construct one
such score function for each component j ∈ S ⊆ {1, . . . , p} we would like
to estimate and perform inference on. We will show that this creat enough
adaptivity that will lead to regular and asymptotically normal estimators
despite of (moderate) model selection mistakes and the presence of high-
dimensional nuisance parameters. 2

1ejj = 1 and ejk = 0 if k 6= j.
2It is straightforward to verify that (2.3) does not satisfy the orthogonality condition

(2.4) unless covariates were orthogonal to each other.
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Letting J = ∂β E[∂βT ℓ(y, z, β)]
∣∣
β=β0

= E[zzT ] − Γ = E[xxT ], it follows

that the desired orthogonality property (2.4) is achieved if µj0 solves the
system of equations

Jj,−j − µJ−j,−j = 0.

In the estimation of β0j , we will preliminary (possibly non-regular) esti-

mators η̂j = (β̂−j ; µ̂j) of the nuisance parameters in ηj0 = (β0,−j ;µ
j
0). Thus,

using η̂j , the score function ψj used to estimate β0j is given by

(2.5)

θ 7→ ψj(yi, zi, θ, η̂
j)

= zij(yi − zijθ − zTi β̂−j) + Γjjθ

−(µ̂j)T {zi,−j(yi − zijθ − zTi,−jβ̂−j) + Γ−j,−jβ̂−j}
= (ej − µ̂j)T {zi(yi − zijθ − zTi,−jβ̂−j) + Γ(θej + β̂−j)},

with true value of θ given by β0j .

In order to estimate the nuisance parameter ηj0 = (β0,−j , µ
j
0), we note that

β0 can be estimated via the methods recently proposed in the literature for
high-dimensional linear models with error-in-measurements. Moreover, the
vector of parameters µj0 is such that

(2.6) xij = xTi,−jµ
j
0 + νji , zi = xi + wi, E[xi,−jν

j
i ] = 0, i = 1, . . . , n

where only (zi)
n
i=1 are observed. Thus the nuisance parameter µj0 is also char-

acterized by a high-dimensional linear model with error-in-variables similar
to (2.1). 3 Therefore, the estimation of the nuisance parameters requires
the estimation of high-dimensional linear regression models with errors in
measurements. Under various conditions, different estimators have been pro-
posed in the literature and shown to have good rates of convergence in the
ℓ1 and ℓ2-norms, see [11, 12, 33, 41, 42, 1]. We will provide conditions under
which these rates of convergence suffice to establish asymptotic normality
and

√
n-consistency of β̌j when combined with the orthogonality (2.4). Our

results will therefore apply to many of these estimators that are computed
via regularization (typically ℓ1-penalty).

Algorithm 1 summarizes the proposed estimator.

3Indeed the corresponding model (2.1) would have the response variable ỹ = zj and
noise ξ̃ = wj + νj . Here we exploit that Γ is diagonal, so that the same moment condition
still works since Γj,−j = 0,

E[z−j{zj − (µj
0)

T z−j}] = E[{x−j + w−j}{wj + νj − (µj
0)

Tw−j}] = Γj,−j − (µj
0)

TΓ−j,−j .
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Algorithm 1 (Estimation based on Orthogonal Score Functions).
Step 1. Compute an estimator β̂ of β0 in (2.1) via regularization.
For each j ∈ S ⊂ {1, . . . , p}:
Step 2. Compute an estimator µ̂j of µj0 in (2.6) via regularization.

Step 3. Construct ψj as defined in (2.5) with η̂j = (β̂−j ; µ̂j). Compute β̌j as
β̌j ∈ argminθ∈R

∣∣ 1
n

∑n
i=1 ψj(yi, zi, θ, η̂

j)
∣∣ , that is,

β̌j :=
Σ̂−1
j

n

n∑

i=1

(zij − zTi,−j µ̂
j)(yi − zTi,−jβ̂−j)− (µ̂j)TΓ−j,−jβ̂−j

where Σ̂j :=
{

1
n

∑n
i=1(zij − zTi,−jµ̂

j)zij − Γjj

}
.

Due to the orthogonality condition (2.4), under mild conditions confidence
intervals can be constructed based on the normal approximation, namely

(2.7)
√
nσ−1

j (β̌j − β0j) N(0, 1)

where σ2j = Σ−2
j E[ψ2

j (y, z, β0j , η
j
0)], for Σj := ∂βjE[ψj(y, z, βj , η

j
0)]
∣∣∣
βj=β0j

=

E[(zj − zT−jµ
j
0)zj − Γjj]. To perform inference we also need an estimate σj ,

which can be obtained by the plug-in rule 4

(2.8) σ̂2j = Σ̂−2
j

1

n

n∑

i=1

ψ2
j (yi, zi, β̂j , η̂

j).

Next we construct simultaneous confidence bands for a subset S ⊆ {1, . . . , p},
which cardinality |S| ≥ 2 is potentially larger than n. That is, for a given
α ∈ (0, 1), we choose a critical value c∗α,S such that with probability con-
verging to 1− α we have

(2.9) β̌j − c∗α,S
σ̂j√
n
≤ β0j ≤ β̌j + c∗α,S

σ̂j√
n

for all j ∈ S.

Critical values for simultaneous confidence regions can be constructed
based on the multiplier bootstrap following the approach in [13, 15, 16, 17,
18]. Letting ψ̂j(yi, zi) := −σ̂−1

j Σ̂−1
j ψ(yi, zi, β̌j , µ̂

j), define the vector Ĝ as

(2.10) Ĝj :=
1√
n

n∑

i=1

giψ̂j(yi, zi), j = 1, . . . , p,

4An alternative estimator would use β̌j instead of β̂j .
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where (gi)
n
i=1 are independent standard normal random variables indepen-

dent from (yi, zi)
n
i=1. We compute the critical value c∗α,S for a subset S ⊆

{1, . . . , p} as the (1− α)-quantile of the conditional distribution of

max
j∈S

|Ĝj |

given the data (yi, zi)
n
i=1. Theoretical results will allow the cardinality of S

to grow with the sample size potentially exceeding it but requiring log7 |S| =
o(n) among other technical conditions.

3. Main Results. In this section we formally state our assumptions
and main theoretical results for the validity of the confidence regions based
on (2.7) and (2.9). The first assumption regarding the data generating pro-
cess is as follows.5

Condition A. (i) The vectors {(yi, zi, xi, wi, ξi), i = 1, . . . , n} are i.i.d. ob-
servations obeying (2.1). (ii) The vector xi is drawn from a subgaussian
distribution with parameter σ2x ≤ C and its covariance matrix Ω has eigen-
values between positive constants c and C independent of n. (iii) The ele-
ments of the random noise vector ξ are independent zero-mean subgaussian
random variables with variance parameter σ2ξ ≤ C. (iv) The noise vector wi
is a zero-mean subgaussian random vector with variance parameter σ2w ≤ C
satisfying E[xjwk] = 0 for all 1 ≤ j < k ≤ p. (v) The covariance matrix of
w is diagonal and known, i.e. Γ = cov(w) = diag(E[w2

1 ], . . . ,E[w
2
p]).

Conditions A(i)-(iii) are standard in high-dimensional linear regression
models. In particular they guarantee that the (unobserved) design matrix
1
n

∑n
i=1 xix

T
i has well behaved ℓq-sensitivity and restricted eigenvalues. These

quantities are useful to establish convergence in the ℓq-norms for penalized
estimators as shown in [23, 22] and it has been used in [1] for the error in
measurements model (2.1). It is related and weakens conditions associated
with the restricted eigenvalue condition [8]. Condition A(iv)-(v) provides a
way to identify the unknown parameter β0 despite of the error in measure-
ments. In the literature several different conditions are used. The case of
unknown Γ is considered in Section 3.1 where an estimator Γ̂ is available.

In particular, under Condition A and suitable choice of parameters, dif-
ferent estimators β̂ in the literature achieve optimal rates of convergence

5Recall that for γ > 0, the random variable η is said to be γ-subgaussian if, for all t ∈ R,
E[exp(tη)] ≤ exp(γ2t2/2). Similarly, a random vector ζ ∈ R

p is said to be γ-subgaussian
if the inner products (ζ, v) are γ-subgaussian for any v ∈ R

p with ‖v‖ = 1.
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in ℓ1 and ℓ2-norms with probability approaching 1 as the sample size in-
creases. (The same holds for estimators µ̂j of µj0.) We will be agnostic about
the choice of such preliminary estimators, and only require from these es-
timators that they deliver good performance guarantees. In what follows
0 ≤ ∆n → 0 is a fixed sequence and C is a fixed constant.

Condition B. Let S ⊆ {1, . . . , p}, |S| ≥ 2, and s = sn ≥ 1. We have
‖β0‖0 ≤ s and maxj∈S ‖µj0‖0 ≤ s. With probability 1−∆n we have that the

estimators β̂ and (µ̂j)j∈S satisfy for q ∈ {1, 2}

(i) ‖β̂ − β0‖q ≤ C(1 + ‖β0‖)s1/q
√

log p

n
, and ‖β̂‖0 ≤ Cs;

(ii) ‖µ̂j −µj0‖q ≤ C(1+ ‖µj0‖)s1/q
√

log p

n
, and ‖µ̂j‖0 ≤ Cs for all j ∈ S

Condition B assumes that the vectors β0 and µj0 are sparse. The ℓ2-rate
combined with the sparsity bound immediately imply an ℓ1-rate of conver-
gence. We note that several estimators were shown to satisfy the required
ℓ1 and ℓ2-rate of convergence. However, sparsity guarantees have not been
common in the literature. Nonetheless, these rates of convergence and the
sparsity condition in β0 can be used to show that hard thresholding these
estimators yields the desired sparsity requirements and preserves the rates
of convergence, see [2] for a detailed analysis. We note that this will cover
the estimators proposed in [33, 1] as well as post-selection refitted versions
of these estimators.

Next we state conditions on the growth of various parameters that char-
acterize the model. In what follows δn → 0 is a fixed sequence.

Condition C.We have that ‖β0‖∞ ≤ C and

(1 + ‖β0‖)(1 + max
j∈S

‖µj0‖)s log(np) ≤ δn
√
n.

The growth restriction of s, p and n are comparable to the requirements to
construct confidence intervals for high-dimensional linear regression models
without errors-in-variables. We note that a consequence of Condition A(ii) is
that maxj≤p ‖µj0‖ ≤ C which could be used to simplify Condition C above.

The current statement of Condition C highlights how the norm of µj0 would
impact the requirements if Condition A(ii) is relaxed.

The result below is one of our main results. It establishes a linear represen-
tation for the estimators despite of the high-dimensional nuisance parame-
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ters and model selection mistakes. We note that the sequence δn → 0 defined
in Condition C controls the approximation error of the linear representation.

Theorem 1 (Uniform Linear Representation). Under Conditions A, B
and C, uniformly over j ∈ S we have

√
nσ−1

j (β̌j − β0j) =
1√
n

n∑

i=1

ψ̄j(yi, zi) +OP(σ
−1
j Σ−1

j δn),

where ψ̄j(y, z) = −σ−1
j Σ−1

j ψj(y, z, β0j , η
j
0) satisfies E[ψ̄2

j (y, z)] = 1.

Theorem 1 holds uniformly over the class of data generating processes that
satisfy Conditions A, B and C. In particular, it allows for possible (mod-
erate) variable selection mistakes that occur for variables with coefficients
close to zero. Theorem 1 can be used to establish useful estimation results.
In particular, the following ℓ∞-rate of convergence without additional as-
sumptions on the design matrix.

Corollary 1 (ℓ∞-rate of Convergence). Under Conditions A, B and
C with S = {1, . . . , p}, and (1 + ‖β0‖) log(np) log1/2 n ≤ δn

√
n, Algorithm 1

yields an estimator β̌ such that with probability 1− ε− o(1)

‖β̌ − β0‖∞ ≤ C(1 + ‖β0‖)
√

log(Cp/ε)

n

for some constant C independent of n.

Corollary 1 establishes a ℓ∞-norm rate of convergence for β̌ that matches
the associated minimax lower bound for the ℓ∞-rate of convergence estab-
lished in Theorem 3 of [1]. We note that this is achieved under much weaker
design conditions than in [1] which required κ∞(s, 3) ≥ c (implied by vanish-
ing mutual coherence, i.e. near zero correlation across unobserved covariates
x).

Another consequence of Theorem 1 is the construction of confidence in-
tervals for each component as

√
nσ−1

j (β̌j − β0j)  N(0, 1). Importantly, it
holds uniformly over data generating processes with arbitrary small coeffi-
cients. Indeed, the orthogonality condition mitigates the impact of model
selection mistakes which are unavoidable for those components.

Corollary 2 (Componentwise Confidence Intervals). Let Mn be the
set of data generating processes that satisfies Conditions A, B and C for a
fixed n. We have that

lim
n→∞

sup
M∈Mn

max
j≤p

∣∣PM
(√
n|β̌j − β0j | ≤ Φ−1(1− α/2)σj

)
− (1− α)

∣∣ = 0
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Further, the result also holds when σj is replaced by σ̂j as defined in (2.8).

Next we turn to simultaneous confidence bands over S ⊆ {1, . . . , p} com-
ponents of β0. We allow for the cardinality of S to also grow with the sample
size (and potentially S = {1, . . . , p}). We use central limit theorems for high-
dimensional vectors, see [18] and the references therein. The following result
provides sufficient conditions under which the multiplier bootstrap proce-
dure based on (2.10) yields (honest) simultaneous confidence bands that are
asymptotically valid.

Theorem 2. Let Mn be the set of data generating processes that satisfies
Conditions A, B and C for a fixed n. Furthermore, suppose that:
(i) δn log

3/2(|S|)(1 + ‖β0‖)(1 + maxj∈S ‖µj0‖) = o(1), and

(ii) maxj∈S{σ−1
j Σ−1

j (1 + ‖β0‖)(1 + ‖µj0‖)}4 log7 |S| = o(n).
For the critical value cα,S computed via the multiplier bootstrap procedure,
we have that

lim
n→∞

sup
M∈Mn

∣∣∣∣PM

(
β̌j −

c∗α,S σ̂j√
n

≤ β0j ≤ β̌j +
c∗α,S σ̂j√

n
,∀j ∈ S

)
− (1− α)

∣∣∣∣ = 0

Theorem 2 establishes the asymptotic validity of the confidence regions.
The results are uniformly valid across models that satisfy the stated condi-
tions. In particular, we allow for (sequence of) models where model selection
mistakes are unavoidable.

3.1. Estimated Covariance of Error-in-measurement. In this section we
discuss the case in which the covariance matrix Γ is diagonal but unknown. In
this case we follow the literature that assumes the availability of an estimator
Γ̂. The following condition summarizes the properties of such estimator.
Recall that we denote by ∆n a (fixed) sequence of positive constants going
to zero.

Condition D. With probability 1 − ∆n the estimator Γ̂ is a diagonal
matrix and satisfies ‖Γ̂− Γ‖∞ ≤ C

√
log(np)/n.

Condition D is standard and it is satisfied in a variety of applications, e.g.
[41]. This condition will suffice for us to derive a new linear representation
that accounts for the use of an estimate of Γ. Thus the proposed algorithm
uses Γ̂ instead of Γ in Algorithm 1. The previously stated Condition B
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should be understood as holding for Γ̂ in place of Γ (the results in the cited
literature do allow such replacement).

Algorithm 2 (Estimation based on estimated Γ).
Step 1. Compute an estimator β̂ of β0 in (2.1) via regularization.
For each j ∈ S ⊂ {1, . . . , p}:
Step 2. Compute an estimator µ̂j of µj0 in (2.6) via regularization.
Step 3. For Σ̂j :=

1
n

∑n
i=1(zij − zTi,−jµ̂

j)zij − Γ̂jj, compute β̌j as

β̌j :=
Σ̂−1
j

n

n∑

i=1

(zij − zTi,−j µ̂
j)(yi − zTi,−jβ̂−j)− (µ̂j)T Γ̂−j,−jβ̂−j

Next we state our main results of this section.

Theorem 3. Suppose that Conditions A, B, C, and D hold. Then, uni-
formly over j ∈ S, the estimator based on Algorithm 2 satisfies

√
nσ−1

j (β̌j − β0j) =
1√
n

n∑

i=1

ψ̄j(yi, zi) +OP(σ
−1
j Σ−1

j δn)

+σ−1
j Σ−1

j (ej − µj0)
T√n(Γ̂− Γ)β0

where ψ̄j(yi, zi) = −σ−1
j Σ−1

j ψj(yi, zi, β0, µ
j
0).

Theorem 3 explicitly characterize the bias arising due to using the esti-
mator Γ̂ in place of the covariance matrix Γ. This result also highlights the
fact we do not have an orthogonality condition for the (nuisance) parameter
Γ as we have for µj0 and β0,−j . If Γ̂ is estimated using an auxilliary (large)
sample of sufficiently large size, then it is possible that

√
n(Γ̂−Γ) vanishes in

probability. Otherwise, the estimation error in Γ̂ could affect the estimation
of β′0js. Next we state a regularity condition on Γ̂ that is satisfied in some

applications, where the estimator Γ̂ is approximately linear itself.

Condition E. Γ̂ admits a linear approximation, namely uniformly over
j ≤ p we have

√
n(Γ̂jj − Γjj) =

1√
n

n∑

i=1

ϕj(zi) +OP(δn)

for the sequence δn → 0 defined in Condition C, where Eϕj(z) = 0.
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For applications in which Condition E also holds (see Section 4.2 below),
we can rewrite the estimation error as a sum of zero mean terms (up to
a negligible term). The following corollary of Theorem 3 summarizes this
observation.

Corollary 3. Suppose that Conditions A, B, C, D and E hold. Then,
uniformly over j ∈ S, the estimator based on Algorithm 2 satisfies
(3.1)

√
nσ−1

j (β̌j − β0j) =
1√
n

n∑

i=1

{ψ̄j(yi, zi)− σ−1
j Σ−1

j (ej − µj0)
Tϕ(zi)β0}

+OP(σ
−1
j Σ−1

j δn)

The representation (3.1) can be used to prove the validity of a multi-
plier bootstrap procedure to construct valid critical values for simultaneous
confidence intervals when only an estimate Γ̂ is available.

4. Examples. In this section we apply our results to specific context
that generates error-in-measurements (2.1).

4.1. Graphical Model Inverse Covariance Estimation. In this example we
consider the estimation of a Gaussian graphical model in a high-dimensional
setting, following [34, 49, 25]. It is well known that the conditional indepen-
dence structure is determined by the precision matrix (inverse of the covari-
ance matrix). In particular, conditional independence between components
(j, k) is characterized by a zero in the corresponding entry of the precision
matrix. Another convenient way to characterize conditional independence
between (j, k) components is through a zero in the kth entry of the vector
θj in the linear model

xj = xT−jθ
j
0 + εj ,

where εj is a vector of i.i.d. Gaussian random variables E[εjx−j] = 0 for
each j = 1, . . . , p. In this case, estimators with good ℓ2-rates of convergence
for the columns of the inverse of the covariance matrix have been obtained
in the literature, [34, 49]. Recently, [25] obtained confidence intervals for the
precision matrix using de-biasing ideas related to [45] using the graphical
Lasso.

In the case with error-in-variables, Section 3.3 of [33] explicitly works out
this case when w is Gaussian showing how it can be embedded within model
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(2.1). Furthermore, under very mild sparsity conditions, they derived rates
of convergence for an estimator that combined all the estimates and projects
(via ℓ1-minimization) into the space of symmetric matrices.

We complement the rate results with inference results, namely construc-
tion of the simultaneous confidence bands of the regression coefficients char-
acterizing the Gaussian graphical model with measurement error. Specifi-
cally, we don’t fully observe the x variables but instead z = x + w where
w is subgaussian but possibly non-Gaussian. In particular, with known Γ,
based on Theorem 1 and 2, our results directly give simultaneous confidence
intervals for all coefficients of (θj0, j = 1, . . . , p). These simultaneous confi-
dence intervals is useful in identifying pairs that are candidates for being
conditionally independent (the confidence interval for the corresponding re-
gression coefficient covers zero) and pairs which we are at least 1−α confident
that are not conditionally independent.

4.2. Missing Values at Random. In this example we are interested on
the model (2.1) where the additive error-in-measurements represents missing
data and p increasing. We follow the framework discussed in [42].

We observe (yi, z̃i, ηi, i = 1, . . . , n) where

z̃ij = xijbij, with bij i.i.d. Bernoulli with parameter 1− π.

The case with bij = 0 it indicates that we are missing the observation xij .
We cast this into our setting by writing

zij = xij + wij , where zij =
z̃ij

1− π
and wij = xij

bij − (1− π)

1− π
.

In this case we have Γjj = E[w2
ij] = E[x2ij]

π
1−π = E[z̃2j ]

π
(1−π)2 and the esti-

mator Γ̂jj is given by

Γ̂jj =
1

n

n∑

i=1

z̃2ij
π̂

(1− π̂)2

where π̂ = 1
np

∑n
i=1

∑p
j=1 1{bij = 0} is a consistent estimate of π. In fact

since π̂ = π +OP((np)
−1/2). It follows that uniformly over j = 1, . . . , p

√
n(Γ̂jj − Γjj) = 1√

n

∑n
i=1

{
z̃2ij

π
(1−π)2 − E[z̃2ij ]

π
(1−π2)

}

+ 1√
n

∑n
i=1 z̃

2
ij

{
π̂

(1−π̂)2 − π
(1−π)2

}

= 1√
n

∑n
i=1 ϕj(z̃ij) +OP

(
p−1/2 maxj≤p

1
n

∑n
i=1 z̃

2
ij

)
.

It follows that under mild conditions maxj≤p
1
n

∑n
i=1 z̃

2
ij ≤ C with probabil-

ity 1− o(1).
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Furthermore note that using the estimate

ϕ̂j(z̃i) = {z̃2ij − ( 1n
∑n

i=1 z̃
2
ij)}

π̂

(1 − π̂)2

of the score function ϕj(z̃i) has negligible impact in the multiplier bootstrap
procedure. Indeed, we have

max
j≤p

∣∣∣∣∣
1√
n

n∑

i=1

gi{ϕ̂j(z̃i)− ϕj(z̃i)}
∣∣∣∣∣

= max
j≤p

∣∣∣∣∣
1√
n

n∑

i=1

gi{( 1n
∑n

i=1 z̃
2
ij)− E[z̃2ij ]}

π̂

(1− π̂)2

+maxj≤p
1√
n

∑n
i=1 gi{z̃2ij − E[z̃2ij ]}

{
π̂

(1−π̂)2 − π
(1−π)2

}∣∣∣

≤ max
j≤p

|( 1n
∑n

i=1 z̃
2
ij)− E[z̃2ij ]|

∣∣∣∣∣
1√
n

n∑

i=1

gi

∣∣∣∣∣
π̂

(1− π̂)2

+
∣∣∣ 1√

n

∑n
i=1 gi{z̃2ij − E[z̃2ij ]}

∣∣∣
∣∣∣ π̂
(1−π̂)2 − π

(1−π)2
∣∣∣

= OP(maxj≤p { 1
n

∑n
i=1 z̃

4
ij}1/2)

√
log(pn)
n {1 + 1/

√
p}

Therefore, the estimator Γ̂ satisfies Condition D and E and we are in
position to apply Theorem 3 and Corollary 3 provided the other regularity
conditions hold.

5. Numerical Simulations. In this section we illustrate the finite
sample performance of the inference methodology. We begin with the es-
timators as described in Algorithm 1 and the pointwise confidence region
based on (2.7). Then we proceed to investigate the performance of simulta-
neous confidence regions based on (2.9) and (2.10). Data are simulated from
the a high-dimensional linear regression model with error in measurements
as described in (2.1). The random variables ξi, xi, and wi are independent
and ξi ∼ N(0, σ2ξ ), wi ∼ N(0, σ2wIp×p), xi ∼ N(0,Ω) where Ip×p is an iden-

tity matrix and Ω is a p× p matrix with components Ωij = 0.5|i−j|. We set
σξ = 1, and consider three possible choices of σw = 0.25, 0.5, 1. For simplic-
ity, we assume σw is known. All results are based on 500 replications each
with a sample size n = 350.

We implement the estimation Steps 1 and 2 of Algorithm (1) by the conic
estimator described in [1]. The tuning parameters of this estimator are set
to τ = µ =

√
log(p/.05)/n in the notation described in [1]. The inference

results with the proposed algorithm are referred to as ‘EIV-inference’ in the
following. To illustrate the effect of measurement error, we also implement
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Algorithm 1 disregarding measurement error, i.e., estimation Steps 1 & 2
are implement via ordinary lasso with the observed variables z, y, and Step
3 is implemented assuming σw = 0. These results will be referred to as
‘Naive inference’ in the sequel. All computations are performed in R. High
dimensional optimizations are carried out by the package Rmosek. One di-
mensional optimization of Step 3 of Algorithm 1 is implemented by the built
in ‘optimize‘ function. All estimates are truncated at 10−7.

We examine the two main inference results of this paper. First, inference
of a single dimensional target parameter. For this purpose, the first compo-
nent β01 of the parameter vector β0 is assumed to be the target over which
inference is to be performed. The nuisance part of this vector is set to satisfy
‖β0,−1‖0 = 5 and all non zero components of this nuisance vector are set to
β0j = 1, for j ∈ {6, 7, 8, 9, 10}. We test three cases of the target parameter,
H0 : β01 = 0, β01 = 0.5 and β01 = 1. We compute the type 1 error: relative
frequency of the number of times H0 is rejected when H0 is true and the
bias in the estimate. The results are reported in Table 1, Table 2 and Table
3.

From the tables. we see that the proposed estimator based on Algorithm
1 (‘EIV-inference’) provides control on the type 1 error of the test at the sig-
nificance level of 0.05 at all considered settings. In comparison, disregarding
measurement error leads to a severely inflated type 1 error (except for the
last design). We also observe the classical effect of disregarding measurement
error in the refitted estimates, i.e., estimates are biased towards zero. This
is illustrated by a negative bias in the case of ‘Naive-inference.’

H0 : β01 = 1 σw = 1 σw = 0.5 σw = 0.25

Method p Size Bias Size Bias Size Bias

EIV-inference

300 0.052 0.0023 0.066 0.0096 0.058 0.0015
400 0.06 0.0134 0.058 0.0129 0.054 0.0022
500 0.068 0.0004 0.034 0.0004 0.040 0.0067

Naive-inference

300 1 -0.5377 0.992 -0.3650 0.834 -0.2257
400 1 -0.5349 0.996 -0.3638 0.846 -0.2253
500 1 -0.5439 0.996 -0.3695 0.836 -0.2216

Table 1

Simulation results for H0 : β1 = 1. For each method we report the type I error
(Size) of the corresponding test and average bias (Bias) in the refitted estimates of

the target parameter.

Next we illustrate the construction of simultaneous confidence regions
for a multi-dimensional parameter vector. Here we test the hypothesis H0 :
β0k = 0, k ∈ {1, . . . , 10}. The parameter vector is set to satisfy ‖β0‖0 = 5
with the non zero components set to β0j = 1 for j ∈ {16, 17, 18, 19, 20}. In
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H0 : β01 = 0.5 σw = 1 σw = 0.5 σw = 0.25

Method p Size Bias Size Bias Size Bias

EIV-inference

300 0.048 -0.0048 0.064 -0.0008 0.058 0.0021
400 0.038 0.0105 0.07 -0.0006 0.046 -0.0043
500 0.036 -0.0061 0.082 -0.0025 0.060 0.0000

Naive-inference

300 0.932 -0.2751 0.666 -0.1840 0.312 -0.1087
400 0.942 -0.2698 0.696 -0.1837 0.358 -0.1147
500 0.972 -0.2804 0.684 -0.1863 0.338 -0.1121

Table 2

Simulation results for H0 : β1 = 0.5. For each method we report the type I error
(Size) of the corresponding test and average bias (Bias) in the refitted estimates of

the target parameter.

H0 : β01 = 0 σw = 1 σw = 0.5 σw = 0.25

Method p Size Bias Size Bias Size Bias

EIV-inference

300 0.042 0.0178 0.054 0.0046 0.054 0.0058
400 0.040 0.0138 0.046 0.0211 0.066 0.0202
500 0.052 -0.0047 0.054 -0.0003 0.046 0.0029

Naive-inference

300 0.060 0.0123 0.050 0.0044 0.050 0.0041
400 0.060 0.0055 0.048 0.0136 0.068 0.0151
500 0.066 0.0004 0.054 0.0006 0.050 0.0026

Table 3

Simulation results for H0 : β1 = 0. For each method we report the type I error
(Size) of the corresponding test and average bias (Bias) in the refitted estimates of

the target parameter.

Table 4 we report the family wise error rate (FWER), relative frequency
of the number of times H0 is rejected when H0 is true. Lastly, for the case
of inference over multiple target parameters, ‘EIV-inference’ provides the
desired control on the FWER.

n = 350 σw = 1 σw = 0.5

p FWER FWER

300 0.058 0.040
400 0.046 0.058

Table 4

Simulation results of ‘EIV-inference’ for H0 : β0k = 0, k ∈ {1, . . . , 10}. For each
method we report the family wise error rate (FWER).

We conclude that the numerical results support our theoretical findings.

APPENDIX A: PROOFS OF SECTION 3

Proof of Theorem 1. The linear representation result follows from
Theorem 3 with Γ̂ = Γ so that ‖Γ− Γ̂‖∞ = 0.
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Proof of Corollary 1. For notational convenience we use En[·] =
1
n

∑n
i=1[·]i. By Theorem 1 we have for all 1 ≤ j ≤ p

√
nσ−1

j (β̌j − β0j) =
1√
n

n∑

i=1

ψ̄j(yi, zi) +OP(δn).

Since δn → 0 given in Condition C, with probability 1− o(1) we have

‖β̌ − β0‖∞
maxj≤p σj

≤ Cmax
j≤p

1

n

n∑

i=1

ψ̄j(yi, zi) +O(δ1/2n /
√
n)

Since E[ψ̄j(y, z)] = 0 and E[ψ̄2
j (y, z)] = 1, defining the event

Ey,z = {max
j≤p

En[ψ̄
2
j (y, z)]

1/2 ≤ 2}

we have by symmetrization (Lemma 2.3.7 of [47]), provided t ≥ 4/
√
n,

P
(
maxj≤p En[ψ̄j(y, z)] > t

)
≤ 4P

(
maxj≤p En[rψ̄j(y, z)] > t/4

)

≤ 4E[P
(
maxj≤p En[rψ̄j(y, z)] > t/4 | Ey,z

)
]

+4P
(
Ecy,z

)

where (ri)
n
i=1 are i.i.d. Rademacher random variables independent of the

data. Since E[En[r
2ψ̄2

j (y, z) | (yi, zi)ni=1] = En[ψ̄
2
j (y, z)], and conditionally on

Ey,z

E[maxj≤p
∣∣En[rψ̄j(y, z)]

∣∣ | (yi, zi)ni=1] ≤ C
√

log 2p
n maxj≤p En[ψ̄2

j (y, z)]
1/2

≤ 2C
√

log 2p
n

by Corollary 2.2.8 in [46]. Therefore, for t/4 := C
√

log 2p
n + 2

√
2 log(1/ε)

n we

have that

P
(
maxj≤p En[ψ̄j(y, z)] > t

)
≤ 4P

(
maxj≤p En[rψ̄j(y, z)] > t/4

)

≤ 4ε+ 4P
(
Ecy,z

)

= 4ε+ o(1)

where the last line follows from Step 2 below. Therefore, with probability
1− o(1)

(A.1) max
1≤j≤p

∣∣∣∣∣
1

n

n∑

i=1

ψ̄j(yi, zi)

∣∣∣∣∣ ≤ C

√
log(pn)

n
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The result follows by bounding maxj≤p σj from above. Indeed we have
maxj≤p σj ≤ C(1 + ‖β0‖) since σ2j = Σ−2

j E[ψ2
j (y, z)] where Σj is bounded

away from zero by E[xxT ] having eigenvalues bounded away from zero by
Condition A, and E[ψ2

j (y, z)] ≤ C(1 + ‖β0‖)2 since ‖Γ‖op is bounded and

maxj≤p ‖µj0‖ ≤ C ′. Indeed we have

E[x2j ] ≥ E[(xj − xT−jµ
j
0)

2] = (ej − µj0)
TE[xxT ](ej − µj0)

≥ ‖µj0‖2mineig(E[xxT ])

since the support of ej and µj0 is disjoint by construction. Therefore,

(A.2) ‖µj0‖ ≤ {E[x2j ]/mineig(E[xxT ])}1/2 ≤ C ′.

Step 2. Since E[ψ̄2
j (y, z)] = 1 we have

P (Ey,z) = P (maxj≤p En[ψ̄2
j (y, z)] ≤ 4)

≤ P (maxj≤p |En[ψ̄2
j (y, z)] − E[ψ̄2(y, z)]| ≥ 3)

≤ E[maxj≤p |En[ψ̄2
j (y, z)]− E[ψ̄2(y, z)]|]

≤ CM2 log p
n +C

√
log p
n M

1/2
2

where we used Markov’s inequality and Lemma 6 with Xij = ψ̄j(yi, zi) and
k = 2. In this case, by Lemma 8 we have

M2 = E[maxi≤n,j≤p σ
−2
j Σ−2

j |(ξi − wTi β0)(e
j − µj0)

T zi + Γjjβ0j)|2]
≤ C(1 + ‖β0‖)2 log(n)maxj∈S σ

−2
j Σ−2

j (1 + ‖µj0‖)2 log(pn)
+Cmaxj∈S σ

−2
j Σ−2

j |Γjjβ0j |2
≤ C ′(1 + ‖β0‖)2 log(n)maxj∈S σ

−2
j Σ−2

j (1 + ‖µj0‖)2 log(pn)

where we used that maxj∈S σ
−2
j Σ−2

j |Γjjβ0j |2 ≤ C‖β0‖2 under Condition A.

Thus, provided that (1 + ‖β0‖) log(pn) log1/2 n ≤ δn
√
n where δn → 0, we

have P (Ey,z) = o(1).

Proof of Corollary 2. The result follows directly from the linear
representation of Theorem 1 combined with an application of the Lyapunov
central limit theorem since ψ̄j(yi, zi), i = 1, . . . , n, are independent random
variables with E[ψ̄j(y, z)] = 0 and E[ψ̄2

j (y, z)] = 1. To verify the last condi-
tion, note that for any m ≥ 2, we have

(A.3)

E[|ψ̄j(y, z)|m] ≤ C̃m{E[|zjξ|m] + E[|zjwTβ0|m] + ‖Γ‖m∞‖β0‖m
+E[|zT−jµ

j
0ξ|m] + E[|zT−jµ

j
0w

Tβ0|m]
+‖µj0‖m‖β0‖m‖Γ‖m∞}
≤ (1 + C)mC̃mC2m

2m (1 + ‖β0‖)m(1 + ‖µj0‖)m
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since ‖Γ‖∞ ≤ C by Condition A, and by Lemma 8(1) since z, w, and ξ
are subgaussian random variables, where C2m = C ′√2m for some universal
C ′. Therefore, by applying Lemma 9 with k = 3, Bm = (1 + C)C̃C2

2m and
γ = (1+‖β0‖)(1+‖µj0‖), we have E[|ψ̄j(y, z)|3] ≤ B1+δ

2(1+δ)/δ(1+‖β0‖)1+δ(1+
‖µj0‖)1+δ for any δ ∈ (0, 2] where B1+δ

2(1+δ)/δ = {(1 + C)C̃C2
4(1+δ)/δ}(1+δ) ≤

C ′′(1/δ)(1+δ) . Thus we have by Condition C that

1
n3/2

∑n
i=1 E[|ψ̄j(y, z)|3] ≤ B1+δ

2(1+δ)/δ
(1+‖β0‖)1+δ(1+‖µj0‖)1+δ

√
n

= o

(
(1+‖β0‖)δ(1+‖µj0‖)δ

δ(1+δ) log(pn)

)

It suffices to show that the argument in the little-o term is bounded for a suit-
able choice of δ → 0. Condition C also implies that ‖β0‖ ≤ C

√
n and (A.2)

implies ‖µj0‖ ≤ C. Therefore it suffices to show that for some δ → 0 we have
nδ/2 ≤ C and δ(1+δ) log(pn) ≥ c. Indeed, setting δ = 1/ log n we have nδ/2 =
e1/2 and δ(1+δ) log(pn) ≥ {log1+1/ logn n}−1 log n = 1/{log n}1/ logn ≥ e−1

for n ≥ ee.

Next we show that the distribution of the maximum estimation error
is close to the distribution of the maximum of the entries of (a sequence
of) Gaussian vectors. Let (Gj)j∈S denote a tight zero-mean Gaussian vec-
tor whose dimension could grow with n. Its covariance matrix is given by
(E[ψ̄j(y, z)ψ̄k(y, z)])j,k, j, k ∈ S. We have the following lemma.

Lemma 1. Suppose that Conditions A, B and C hold, S ⊆ {1, . . . , p},
|S| ≥ 2, and

(i) maxj∈S{σ−1
j Σ−1

j (1 + ‖β0‖)(1 + ‖µj0‖)}4 log7(|S|) = o(n), and

(ii) maxj∈S σ
−1
j Σ−1

j

√
log |S|δn = o(1)

where δn is as defined in Condition C. Then we have that

sup
t∈R

∣∣∣∣P
(
max
j∈S

|
√
nσ−1

j (β̌0j − β0j)| ≤ t

)
− P

(
max
j∈S

|Gj | ≤ t

)∣∣∣∣ = o(1)

Proof of Lemma 1. Define the following random variables

Z = maxj∈S |
√
nσ−1

j (β̌j − β0j)|,
Z̄ = maxj∈S

∣∣∣ 1√
n

∑n
i=1 ψ̄j(yi, zi)

∣∣∣ , and

Z̃ = maxj∈S |Gj |
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where (Gj)j∈S is a zero mean Gaussian vector with covariance matrix given
by Cjk = E[ψ̄j(y, z)ψ̄k(y, z)] for k, j ∈ S.

By the triangle inequality we have

|Z − Z̃| ≤ |Z − Z̄|+ |Z̄ − Z̃|
≤ maxj∈S

∣∣∣
√
nσ−1

j (β̌j − β0j)− 1√
n

∑n
i=1 ψ̄j(yi, zi)

∣∣∣+ |Z̄ − Z̃|
= OP(δnmaxj∈S σ

−1
j Σ−1

j ) + |Z̄ − Z̃|

where the last step follows from Theorem 1.
Next to bound |Z̄ − Z̃| we will apply Theorem 3.1 in [18] specialized to

the i.i.d. setting. Let Xij = ψ̄j(yi, zi), E[Xij ] = 0, Yi ∼ N(0,E[XiX
′
i]), so

that Z̄ = maxj∈S |n−1/2
∑n

i=1Xij | and Z̃ = maxj∈S |n−1/2
∑n

i=1 Yij|. Define

Ln = maxj∈S E[|X1j |3]
Mn,X(δ) = E[maxj∈S |X1j |31{maxj∈S |X1j | > δ

√
n/ log |S|}], and

Mn,Y (δ) = E[maxj∈S |Y1j |31{maxj∈S |Y1j | > δ
√
n/ log |S|}]

By Theorem 3.1 in [18], we have that for every Borel set A ⊆ R such that

P (maxj∈S n−1/2
∑n

i=1Xij ∈ A) ≤ P (maxj∈S n−1/2
∑n

i=1 Yij ∈ ACδ)

+C ′ log2 |S|
δ3

√
n
{Ln +Mn,X(δ) +Mn,Y (δ)}

where ACδ = {t ∈ R : dist(t, A) ≤ Cδ} is an Cδ-enlargement of A, and
|S| ≥ 2. We proceed to bound Ln, Mn,X(δ) and Mn,Y (δ). For notational

convenience define mj = σ−1
j Σ−1

j (1 + ‖β0‖)(1 + ‖µj0‖) and denote mS :=
maxj∈Smj.

Note that ψ̄j(y1, z1) = σ−1
j Σ−1

j ψj(y1, z1) where ψj(y1, z1) is the product of

subgaussian random variables with parameters C ′(1+‖β0‖) and C ′(1+µj0‖).
By (A.3), for k ≥ 3 we have

E[|ψ̄j(y1, z1)|k]1/k ≤ Ckσ−1
j Σ−1

j (1 + ‖β0‖)(1 + ‖µj‖) ≤ Ckmj.

Since E[ψ̄2
j (y1, z1)] = 1, by Lemma 9 (with k = 3, δ = 1), we have

Ln = max
j∈S

E[|X1j |3] = max
j∈S

E[|ψ̄j(y1, z1)|3] ≤ C ′m2
S .

To bound Mn,X(δ) we have that

Mn,X(δ) = E[maxj∈S |X1j |31{maxj∈S |X1j | > δ
√
n/ log |S|}]

≤ E[maxj∈S |X1j |6]1/2{P (maxj∈S |X1j | > δ
√
n/ log |S|)}1/2

≤ C{mS log |S|}3{P (maxj∈S |X1j | > δ
√
n/ log |S|)}1/2

≤ C{mS log |S|}3{2|S| exp(−c{δ
√
n/ log |S|}/mS)}1/2

≤ C
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where the first inequality follows by Cauchy–Schwartz, the second by Lemma
9, the third by Lemma 10, and the last step holds provided that δ ≥
2mS

c n
−1/2 log2(2|S|) log({mS log |S|}3).

Next recall that maxj∈S E[Y 2
1j ] = 1 and we have

Mn,Y (δ) = E[maxj∈S |Y1j |31{maxj∈S |Y1j | > δ
√
n/ log |S|}]

≤ {E[maxj∈S |Yij|6]}1/2{E[1{max
j∈S

|Y1j | > δ
√
n

log |S|}]1/2

≤ C log3/2(|S|C ′){2|S| exp(− δ2n
2 log2 |S|)}

1/2

≤ C

where the last step holds provided that δ > 8n−1/2 log(|S|){log1/2(|S|) +
log1/2(log3/2(|S|C ′))}.

Next note that if δ ≥ L
1/3
n log2/3(|S|)
γ1/3n1/6 we have log2 |S|/{δ3n1/2} ≤ γ/Ln ≤ γ

since Ln ≥ 1. Recall that maxj∈Smj ≤ n for n sufficiently large. Therefore,

by setting δ := L
1/3
n log2/3(|S|)
γ1/3n1/6 + 8mS

1∧c
log2(2|S|)
n1/2 log({mS log |S|}3), we have

P (|Z̄ − Z̃| > Cδ) ≤ C ′γ.

By Strassen’s Theorem, there exists a version of Z̃ such that

∣∣∣Z̄ − Z̃
∣∣∣ = OP

(
m

2/3
S log2/3(|S|)

n1/6
+mS

log2(2|S|)
n1/2

log(mS log |S|)
)

The result then follows from Lemma 2.4 in [16] so that supt∈R |P (Z ≤ t)−
P (Z̃ ≤ t)| = o(1) by noting that E[Z̃] ≤ C

√
log |S| since E[G2

j ] = 1, provided
that

√
log |S|

(
δn max

j∈S
σ−1
j Σ−1

j +
m

2/3
S log2/3 |S|

n1/6
+
mS log2(|S|) log(mS log |S|)

n1/2

)
= o(1),

which holds under condition (i), namely m4
S log

7(|S|) = o(n), and condition
(ii) on δn. Indeed, the first term is controlled by (ii), the second term by (i),
and for the third term note that mS log

5/2(|S|) log(mS log |S|) = o(n1/2) is
equivalent to

m2
S log

5(|S|) log2(mS log |S|) = o(n)

which is implied by (i).

Proof of Theorem 2. We divide the proof in steps. Step 1 is the main
argument which invokes the other steps for auxiliary calculations. Let c∗α
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denote the (1 − α)-conditional quantile of Z̃∗ = maxj∈S |Ĝj | given the data

(yi, zi)
n
i=1 and c0α denote the (1−α)-conditional quantile of Z̃ = maxj∈S |Gj |

where G is the Gaussian random vector defined in Lemma 1. For some ϑn →
0, we have that

P

(
max
j≤S

|
√
nσ̂−1

j (β̌0j − β0j)| ≤ c∗α

)

= P

(
|√nσ−1

j (β̌0j − β0j)| ≤ (σ̂j/σj)c
∗
α,∀j ∈ S

)

≤(a) P

(
maxj∈S |

√
nσ−1

j (β̌0j − β0j)| ≤ (1 + εn)c
∗
α

)
+ o(1)

≤(b) P

(
maxj∈S |

√
nσ−1

j (β̌0j − β0j)| ≤ c0α−ϑn

)
+ o(1)

≤(c) P
(
maxj∈S |Gj | ≤ c0α−ϑn

)
+ o(1)

= 1− α+ ϑn + o(1)

where (a) follows from |σ̂j/σj| ≤ (1+εn) with probability 1−o(1) by Step 2
below, (b) follows from c∗α(1+εn) ≤ c0α−ϑn with probability 1−o(1) by Step
3 below, (c) follows by Lemma 1, and the last step by definition of c0α−ϑn .

The other inequality follows similarly.

Step 2. In this step we prove the claim:
For some εn = O(δn log

1/2(n|S|)(1 + ‖β0‖)(1 + maxj∈S ‖µj0‖)) we have

(A.4) P

(
max
j∈S

|σj/σ̂j | ∨ |σ̂j/σj | ≤ 1 + εn

)
≥ 1− o(1)

Let ψ̃j(y, z) = ψj(y, z, β̌0j , η̂
j) and ψj(y, z) = ψj(y, z, β0j , η

j
0), so that σ̂j =

Σ̂−1
j {Ên[ψ̃2

j (y, z)]}1/2 and σj = Σ−1
j {E[ψ2

j (y, z)]}1/2. Thus, we have that

(A.5)

|σ̂j − σj | ≤ Σ̂−1
j |En[ψ̃2

j (y, z)]
1/2 − En[ψ

2
j (y, z)]

1/2|
+Σ̂−1

j |En[ψ2
j (y, z)]

1/2 − E[ψ2
j (y, z)]

1/2|
+|Σ̂−1

j − Σ−1
j |E[ψ2(y, z)]1/2

≤ Σ̂−1
j En[{ψ̃j(y, z)− ψj(y, z)}2]1/2

+Σ̂−1
j

|En[ψ2
j (y,z)]−E[ψ2

j (y,z)]|
En[ψ2

j (y,z)]
1/2+E[ψ2

j (y,z)]
1/2 +

|Σj−Σ̂j |
Σ̂jΣj

E[ψ2
j (y, z)]

1/2

≤ Σ̂−1
j En[{ψ̃j(y, z)− ψj(y, z)}2]1/2

+Σ̂−1
j σjΣj

|En[ψ2
j (y,z)]−E[ψ2

j (y,z)]|
E[ψ2

j (y,z)]
+ Σ̂−1

j |Σj − Σ̂j|σj

To bound the first term in the RHS of (A.5), using the notation ψ̃j(y, z) =

ψj(y, z, β̌0j , η̂
j) and ψj(y, z) = ψj(y, z, β0j , η

j
0), and the triangle inequality
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we have

(A.6)

En[{ψ̃j(y, z)− ψj(y, z)}2]1/2
≤ En[{zT−j(µ̂j − µj0)}2{y − zTβ0}2]1/2
+En[{zT (β̂ − β0)}2{zj − zT−jµ

j
0}2]1/2

+En[{zT−j(µ̂j − µj0)}2{zT (β̂ − β0)}2]1/2
+|(ej − µj0)

TΓ(β̂ − β0)|+ |(µ̂j − µj0)
TΓβ0|

+|(µ̂j − µj0)
TΓ(β̂ − β0)|

≤ Cmaxj∈S(1 + ‖β0‖)(1 + ‖µj0‖)
√

s log(pn)
n log1/2(|S|n)

= O(δn/
√
s)

where we used that maxi≤n,j∈S |yi − zTi β0| ≤ C(1 + ‖β0‖) log1/2(n), and
maxi≤n,j∈S |zij−zTi,−jµ

j
0| ≤ Cmaxj∈S(1+‖µj0‖) log1/2(n|S|) with probability

1− o(1) by setting C large enough constant since yi and zi are subgaussian
random vectors, from the rates of convergence and sparsity assumptions
in Condition B combined with Lemma 7 (which establishes that Cs-sparse
eigenvalues are bounded above by a constant), ‖Γ‖op = ‖Γ‖∞ ≤ C, and the
last line follows from the requirement of δn in Condition C.

To bound the second term in the RHS of (A.5), we will apply Lemma 6
with Xij := ψj(yi, zi)/E[ψ

2
j (y, z)]

1/2, j ∈ S, p = |S| (assumed |S| ≥ 2 for

convenience) and k = 2. Noting that E[ψ2
j (y, z)]

1/2 = σjΣj, we have

E

[
maxj∈S

|En[ψ2
j (y,z)]−E[ψ2

j (y,z)]|
E[ψ2

j (y,z)]

]
.

√
log |S|
n M

1/2
k

.
log1/2(|S|) log(pn)√

n
max
j∈S

(σjΣj)
−1(1 + ‖β0‖)(1 + ‖µj0‖)

. δn
s log1/2(|S|)maxj∈S(σjΣj)−1

where we used that Mk . maxj∈S σ
−2
j Σ−2

j (1+‖β0‖)2(1+‖µj0‖)2 log2(pn) by
the subgaussian assumption in Condition A and Lemma 8, and Condition
C. Thus by Lemma 11 with t = log n, q = 6, and |F| = |S|, and using that
σjΣj is bounded away from zero, we have that with probability 1− o(1)

max
j∈S

|En[ψ2
j (y,z)]−E[ψ2

j (y,z)]|
E[ψ2

j (y,z)]
≤ C δn

s log1/2(|S|)maxj∈S(σjΣj)−1

+Cn−1/2{1 + n−1/2(1 + ‖β0‖)(1 + maxj∈S ‖µj0‖) log(|S|n)} log1/2 n
+Cn−1(1 + ‖β0‖)(1 + maxj∈S ‖µj0‖) log2(n|S|)
. δn log

1/2(|S|) + Cn−1/2 log(n|S|)

under n−1/2(1 + ‖β0‖)(1 + maxj∈S ‖µj0‖) log(|S|n) = o(1) implied by Con-
dition C. Note further that δn ≥ n−1/2 log(pn) so the last term is negligible
compared with the first.
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To bound the last term in the RHS of (A.5), we have with probability
1− o(1)

maxj∈S |Σ̂j − Σj|σj
≤ maxj∈S |En[zjzT−j ](µ̂j − µj0)|σj
+maxj∈S |En[(zj − zT−jµ

j
0)zj ]− E[(zj − zT−jµ

j
0)zj ]|σj

≤ maxj∈S{En[z2j ]}1/2{En[{zT−j(µ̂j − µj0)}2]}1/2σj
+maxj∈S |En[(zj − zT−jµ

j
0)zj ]− E[(zj − zT−jµ

j
0)zj ]|σj

. max
j∈S

σj(1 + ‖µj0‖)
√

s log(pn)
n +max

j∈S
σj(1 + ‖µj0‖)

√
log(|S|n)

n

. δn/
√
s log(pn)

where the first step follows from the triangle inequality, the second step
from Cauchy-Schwarz inequality, the third from the rates of convergence and
sparsity assumptions in Condition B (and noting that sparse eigenvalues of
order Cs of En[zz

T ] are bounded above with probability 1− o(1) by Lemma
7), maxj∈S{En[z2j ]}1/2 ≤ C with probability 1 − o(1), and Lemma 4. The
last step follows from Condition C and σj ≤ C(1 + ‖β0‖).

Finally, note that Σj is bounded away from zero and from above so that
Σ̂j is also bounded from below uniformly in j ∈ S and n with probability
1− o(1).

Combining these relations we have

εn ≤ Cδn log
1/2(|S|)(1 + ‖β0‖)(1 + max

j∈S
‖µj0‖).

Step 3. In this step we show that there is a sequence ϑn → 0 such that

P (c∗α(1 + εn) > c0α−ϑn) = o(1)

where εn is defined in Step 2.
Recall that Ĝj = 1√

n

∑n
i=1 giψ̂j(yi, zi) and define

Z̃∗ = max
j∈S

|Ĝj |, Z̄∗ = max
j∈S

∣∣∣∣∣
1√
n

n∑

i=1

giψ̄j(yi, zi)

∣∣∣∣∣ , and Z̃ = max
j∈S

|Gj |

where (Gj)j∈S is a zero mean Gaussian vector with covariance matrix given

by Cjk = E[ψ̄j(y, z)ψ̄k(y, z)], and Z̃
∗ is associated with the multiplier boot-

strap as defined in (2.10).
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We have that

(A.7)
|Z̃∗ − Z̃| ≤

∣∣∣Z̃∗ − Z̄∗
∣∣∣+
∣∣∣Z̄∗ − Z̃

∣∣∣
≤ max

j∈S

∣∣∣ 1√
n

∑n
i=1 gi{ψ̂j(yi, zi)− ψ̄j(yi, zi)}

∣∣∣+
∣∣∣Z̄∗ − Z̃

∣∣∣

To control the first term of the RHS in (A.7) note that conditional on
(yi, zi)

n
i=1,

1√
n

∑n
i=1 gi{ψ̂j(yi, zi) − ψ̄j(yi, zi)} is a zero-mean Gaussian ran-

dom variable with variance En[{ψ̂j(y, z)−ψ̄j(y, z)}2]. By Step 2’s claim (A.4)
and (A.6), with probability 1− o(1) we have uniformly over j ∈ S

En[{ψ̂j(y, z)− ψ̄j(y, z)}2]1/2 ≤ |σ̂−1
j Σ̂−1

j − σ−1
j Σ−1

j |En[ψ2
j (y, z, β̌j , η̂

j)]1/2

+σ−1
j Σ−1

j En[{ψ̃j(y, z) − ψj(y, z)}2]1/2
. εn

since σ̂j, σj, Σj, Σ̂j and En[ψ̂
2
j (y, z)]

1/2 are bounded away from zero with
probability 1− o(1). Therefore we have with probability 1− o(1) that

E
[
maxj∈S

∣∣∣ 1√
n

∑n
i=1 gi{ψ̂j(yi, zi)− ψ̄j(yi, zi)}

∣∣∣ | (yi, zi)ni=1

]

. εn
√

log 2|S| =: In

by Corollary 2.2.8 in [46].
Next we proceed to the second term of the RHS in (A.7). We will ap-

ply Theorem 3.2 in [18] and a conditional version of Strassen’s theorem
due to [35]. Let Z̄∗ = maxj∈S |Xj | and Z̃ = maxj∈S |Yj| where Xj =
1√
n

∑n
i=1 giψ̄j(yi, zi), j ∈ S, and Y ∼ N(0,E[ψ̄S(y1, y1)ψ̄

T
S (y1, z1)]) ∈ R

|S|.

By construction we have E[Xj ] = E[Yj] = 0 and E[X2
j ] = E[Y 2

j ] = 1 for all

j ∈ S. For a given threshold ∆̄ = ∆̄n > 0, consider the event En = {∆ ≤ ∆̄}
where

∆ = max
j,k∈S

|En[ψ̄j(y, z)ψ̄k(y, z)] − E[ψ̄j(y1, z1)ψ̄k(y1, z1)]|.

Conditionally on En, Theorem 3.2 in [18] established that for every δ > 0
and every Borel subset A ⊂ R

P (max
j∈S

Xj ∈ A | (yi, zi)ni=1) ≤ P (max
j∈S

Yj ∈ Aδ) + Cδ−1
√

∆̄ log(|S|)

for a universal constant C > 0 where Aδ = {t ∈ R : dist(t, A) ≤ δ}. In turn,
by a conditional version of Strassen’s theorem, Theorem 4 in [35] (see also
Lemma 4.2 in [18]), there is a version of Z̃ such that

(A.8) P (|Z̄∗ − Z̃| > δ) ≤ P (Ecn) + Cδ−1
√

∆̄ log(|S|).
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The result will follow from a suitable choice of ∆̄ → 0 and δ → 0. Let
mS := maxj∈S σ

−1
j Σ−1

j (1 + ‖β0‖)(1 + ‖µj0‖). By symmetrization arguments
(Lemma 2.3.6 in [47]), for i.i.d. Rademacher random variables (ri)

n
i=1, we

have

E[∆] ≤ CE[Er[En[rψ̄j(y, z)ψ̄k(y, z)]]

≤(1) C
√
n−1 log(|S|2)E[maxj,k∈S En[ψ̄2

j (y, z)ψ̄
2
k(y, z)]

1/2]

≤(2) C
√
n−1 log(|S|2){E[maxi≤n,j∈S |ψ̄j(yi, zi)|4]n−1 log |S|}1/2

+C
√
n−1 log(|S|2){maxj∈S E[ψ̄4

j (y, z)]}1/2
≤(3) Cn

−1 log(|S|)m2
S log

2(n|S|)
+C
√
n−1 log(|S|2)m3/2

S

≤(4) C
′√n−1 log(|S|)m3/2

S

where (2) follows by Cauchy-Schwarz inequality and Lemma 6 (part 2), (3)
by Lemma 8 and Lemma 9 (with k = 4 and δ = 1), and (4) holds by the
assumed condition that n−1m4

S log
7(|S|) = o(1).

For γ ∈ (0, 1), we can set ∆̄ = γ−1
√
n−1 log(|S|)m3/2

S , we have P (Ecn) =

O(γ) and by setting δ = γ−1{∆̄ log |S|}1/2 we have by (A.8) that

|Z̄∗ − Z̃| = OP

(
n−1/4 log3/4(|S|)m3/4

S

)
=: IIn

where IIn → 0 under n−1m4
S log

7(|S|) = o(1).

Define rn := ℓn(In + IIn) → 0 for some ℓn → ∞, and ℘n = P (|Z̃∗ − Z̃| >
rn)

1/2 = o(1). Letting Un := P (|Z̃∗ − Z̃| > rn | (yi, zi)ni=1) note that

P (Un > ℘n) = E[1{Un > ℘n}]
≤ E[Un]/℘n
= ℘n

so that P (|Z̃∗ − Z̃| > rn | (yi, zi)ni=1) ≤ ℘n with probability at least 1− ℘n.
Then, by definition of the quantile function we have that

(1 + εn)c
∗
α ≤ (1 + εn)(c

0
α−℘n

+ rn)

= c0α−ϑn − {c0α−ϑn − c0α−℘n
}+ c0α−℘n

εn + (1 + εn)rn

≤ c0α−ϑn − c(ϑn−℘n)

E[Z̃]
+ c0α−℘n

εn + (1 + εn)rn

≤ c0α−ϑn

where the third step we used Corollary 2.1 in [14], and we set ϑn → 0
so that E[Z̃]{c0α−℘n

εn + rn(1 + εn)} = o(ϑn − ℘n). This is possible since

E[Z̃] ≤ C
√

1 + log |S|, c0α−℘n
≤ C

√
1 + log(|S|/{α − ℘n}), so that

εn log |S| ≤ Cδn log
3/2(|S|)(1 + ‖β0‖)(1 + max

j∈S
‖µj0‖) = o(1)
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under the assumed condition (i) in the statement of the theorem, and

rn
√

log |S| = ℓn(In + IIn)

= ℓnO(εn
√

log |S|+ n−1/4m
3/4
S log3/4 |S|)

= ℓno(1) + ℓnO(n−1/4m
3/4
S log3/4 |S|) = o(1)

by choosing ℓn → ∞ slowly enough and n−1/4m
3/4
S log3/4 |S| = o(1) by

condition (ii) in the statement of the theorem.

Proof of Theorem 3. For η̂j = [β̂; µ̂j ] we can rewrite ψj as

ψj(y, z, θ, η̂
j) = (zj − zT−j µ̂

j)(y − zjθ − zT−jβ̂−j) + Γ̂jjθ − (µ̂j)T Γ̂−j,−jβ̂−j

Then, we can achieve 0 = 1
n

∑n
i=1 ψj(yi, zi, θ, η̂

j) by setting θ = β̌j defined
as

(A.9) β̌j :=
Σ̂−1
j

n

n∑

i=1

(zij − zTi,−jµ̂
j)(yi − zTi β̂−j)− (µ̂j)T Γ̂−j,−jβ̂−j

where Σ̂j :=
{

1
n

∑n
i=1(zij − zTi,−jµ̂

j)zj − Γ̂jj

}
. Next we rearrange the ex-

pression (A.9). We will use the notation En[·] = 1
n

∑n
i=1[·i]. It follows that

β̌j = Σ̂−1
j En[(zj − zT−jµ̂

j)(y − zT−jβ̂−j)− (µ̂j)T Γ̂−j,−jβ̂−j ]

= Σ̂−1
j {En[(zj − zT−j µ̂

j)zj]β0j − Γ̂jjβ0j
+En[(zj − zT−j µ̂

j)(y − zjβ0j − zT−jβ̂−j) + Γ̂jjβ0j − (µ̂j)T Γ̂−j,−j β̂−j]}
= β0j
+Σ̂−1

j En[(zj − zT−jµ̂
j)(y − zjβ0j − zT−jβ̂−j) + Γ̂jjβ0j − (µ̂j)T Γ̂−j,−j β̂−j]

In turn we can rewrite

En[(zj − zT−j µ̂
j)(y − zjβ0j − zT−jβ̂−j) + Γ̂jjβ0j − (µ̂j)T Γ̂−j,−jβ̂−j ]

= En[(zj − zT−jµ
j
0)(y − zjβ0j − zT−jβ0,−j) + Γjjβ0j − (µj0)

TΓ−j,−jβ0,−j ]

+(Γ̂jj − Γjj)β0j − (µj0)
T (Γ̂−j,−j − Γ−j,−j)β0,−j
+T1 + T2 + T3 + T4 + T5

where

T1 = En[(zj − zT−jµ
j
0)z

T
−j + (µj0)

TΓ−j,−j](β0,−j − β̂−j)

T2 = (µj0)
T (Γ̂−j,−j − Γ−j,−j)(β0,−j − β̂−j)

T3 = (µj0 − µ̂j)TEn[z−j(y − zTβ0) + Γ−j,−jβ0,−j ]
T4 = (µj0 − µ̂j)TEn[z−jzT − Γ̂−j,−j](β0,−j − β̂−j)
T5 = (µj0 − µ̂j)T (Γ̂−j,−j − Γ−j,−j)β0,−j
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By Step 2 below the quantities Tk, k = 1, . . . , 5 satisfy with probability
1− o(1)

|T1 + T2 + T3 + T4 + T5| ≤ C(1 + max
j∈S

‖µj0‖)(1 + ‖β0‖)s log(pn)/n.

Under Condition C, we have that (1+maxj∈S ‖µj0‖)(1+‖β0‖)s log(pn) ≤
δn
√
n, so that we obtain the following linear representation for the estimator

uniformly over j ∈ S

(A.10)

√
nΣ̂j(β̌j − β0j) = 1√

n

∑n
i=1 ψj(yi, zi) +

√
n(Γ̂jj − Γjj)β0j

−(µj0)
T√n(Γ̂−j,−j − Γ−j,−j)β0,−j +OP(δn)

where ψj(yi, zi) = (zj − zT−jµ
j
0)(y − zTβ0) + (ej − µj0)

TΓβ0 is a zero mean
random variable. Note that this is equivalent to

√
nΣ̂j(β̌j − β0j) =

1√
n

n∑

i=1

(zij − zTi,−jµ
j
0)(yi − zTi β0) + (ej − µj

0)
T Γ̂β0 +OP(δn)

The result follows provided we show

max
j∈S

∣∣∣
√
n(Σ̂j − Σj)(β̌j − β0j)

∣∣∣ = OP(δn)

It follows that with probability 1− o(1), uniformly over j ∈ S
(A.11)

|Σ̂j − Σj| ≤ |En[zT−j{µ̂
j
0 − µj0}zj ]|+ |Γ̂jj − Γjj|

+|En[(zj − zT−jµ
j
0)zj ]− E[(zj − zT−jµ

j
0)zj ]|

≤(1) |En[(zT−j{µ̂
j
0 − µj0})2]1/2En[z2j ]1/2 + ‖Γ̂− Γ‖∞

+|En[(zj − zT−jµ
j
0)zj ]− E[x2j + Γjj]|

≤(2) |En[(zT−j{µ̂
j
0 − µj0})2]1/2En[z2j ]1/2 + C

√
log(pn)/n

≤(3) C(1 + maxj∈S ‖µj0‖)
√
s log(pn)/n

≤(4) Cδn/{(1 + ‖β0‖)
√
s log(pn)}

where (1) follows by Cauchy–Schwarz, (2) follows by Condition D, Lemma 4
with log(pn) ≤ δnn implied by Condition A, (3) Condition B and bounded
Cs-sparse eigenvalues of the matrix En[zz

T ] with probability 1 − o(1), and
(4) by Condition C.
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Next note that by (A.10), we have

√
n‖β̌S − β0S‖∞ ≤ maxj∈S Σ̂

−1
j σjΣjmaxj∈S

∣∣∣ 1√
n

∑n
i=1 ψ̄j(yi, zi)

∣∣∣
+maxj∈S Σ̂

−1
j

√
n‖Γ̂− Γ‖∞‖β0‖∞

+maxj∈S Σ̂
−1
j

√
n‖µj0‖ ‖Γ̂− Γ‖op‖β0‖

+maxj∈S Σ̂
−1
j OP(δn)

≤ maxj∈S Σ̂
−1
j σjΣjmaxj∈S

∣∣∣ 1√
n

∑n
i=1 ψ̄j(yi, zi)

∣∣∣
+C(maxj∈S Σ̂

−1
j ){

√
log(pn)(1 + ‖β0‖) +OP(δn)}

since ‖Γ̂ − Γ‖op = ‖Γ̂ − Γ‖∞ ≤ C
√

log(pn)/n by Condition D. Note that
by inspection of the proof of Corollary 1, relation (A.1), we have that with
probability 1− o(1)

max
j∈S

∣∣∣∣∣
1√
n

n∑

i=1

ψ̄j(yi, zi)

∣∣∣∣∣ ≤ C
√
log(pn).

Combining these relations we have with probability 1− o(1) that

maxj∈S
∣∣∣
√
n(Σ̂j − Σj)(β̌j − β0j)

∣∣∣

≤ Cδn(1+‖β0‖)−1√
s log(pn)

{
max
j∈S

σjΣj

Σ̂j

√
log(pn) +

√
log(pn)(1 + ‖β0‖) +OP(δn)

}

= OP(δn)

as needed.
Step 2. (Auxiliary Calculations for Tk, k = 1, . . . , 5.) We note that the

bounds will hold over uniformly over j ∈ S. We start with T5. It follows
that with probability 1− o(1) that

|T5| = |(µj0 − µ̂j)T (Γ̂−j,−j − Γ−j,−j)β0,−j |
≤ ‖µj0 − µ̂j‖ ‖Γ̂−j,−j − Γ−j,−j‖op ‖β0‖
≤ C(1 + ‖µj0‖)‖β0‖

√
s log(p)/n‖Γ̂−j,−j − Γ−j,−j‖∞

by the ℓ2-rate of convergence of µ̂
j assumed on Condition B, and the matrices

Γ̂ and Γ are diagonal by Condition D.
The bound of T4 note that under Condition A, the matrix En[z−jzT −

Γ̂−j,−j] has sparse eigenvalues of order 2(C + 1)s bounded from above with
probability 1 − o(1). Indeed by Lemma 7 with t := log n + 2 log

( p
2C+1

)
, a

the relation s2 log2(pn) ≤ δnn implied by Condition C, and ‖Γ̂‖op ≤ C.

Furthermore, by Condition B we have ‖β0‖0 ≤ s and ‖µj0‖0 ≤ s and with
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probability 1− o(1) we have ‖β̂‖0 ≤ Cs and ‖µ̂j‖0 ≤ Cs. Therefore we with
probability 1− o(1) that

|T4| = |(µj0 − µ̂j)TEn[z−jzT − Γ̂−j,−j](β0,−j − β̂−j)|
≤ ‖µj0 − µ̂j‖ sup‖δ‖0≤2(C+1)s,‖δ‖=1 δ

T
En[zz

T − Γ̂]δ ‖β0,−j − β̂−j‖
≤ C(1 + ‖µj0‖)(1 + ‖β0‖)s log(pn)/n

where the last bound holds by Condition B to bound the ℓ2-rates ‖µj0 − µ̂j‖
and ‖β0,−j − β̂−j‖.

In order to control T3 note that, under Condition A, with probability
1− ε− o(1)

‖En[z(y − zTβ0) + Γβ0]‖∞ ≤ C(1 + ‖β0‖)
√

log(p/ε)/n

so that with probability 1− ε− o(1) we have

|T3| = |(µj0 − µ̂j)TEn[z−j(y − zTβ0) + Γ−j,−jβ0,−j ]|
≤ ‖µj0 − µ̂j‖1‖En[z−j(y − zTβ0) + Γ−j,−jβ0,−j]‖∞
≤ C(1 + ‖µj0‖)(1 + ‖β0‖)s log(p/ε)/n

where we used Condition B to bound the ℓ1-rate of convergence of µ̂j.
The bound on T2 follows from

|T2| = |(µj0)T (Γ̂−j,−j − Γ−j,−j)(β0,−j − β̂−j)|
≤ ‖µj0‖‖Γ̂−j,−j − Γ−j,−j‖op‖β0,−j − β̂−j‖
= ‖µj0‖‖Γ̂−j,−j − Γ−j,−j‖∞‖β0,−j − β̂−j‖
≤ ‖µj0‖(1 + ‖β0‖)

√
s log(p)/n‖Γ̂−j,−j − Γ−j,−j‖∞

where we used that the matrices Γ̂ and Γ are diagonal and Condition B.
To control T1 we have

|T1| = |En[(zj − zT−jµ
j
0)z

T
−j + (µj0)

TΓ−j,−j](β0,−j − β̂−j)|
≤ {‖En[wjzT−j ]‖∞ + ‖En[(xj − (µj0)

Tx−j)xT−j ]‖∞
+‖En[(xj − xT−jµ

j
0)w

T
−j]‖∞ + ‖En[(µj0)Tw−jxT−j]‖∞

+‖(µj0)TEn[w−jwT−j − Γ−j,−j]‖∞}‖β0,−j − β̂−j‖1

We proceed to bound the five terms in the curly bracket. For the first term,
under Condition A, by Lemma 2 we have with probability 1− ε− o(1)

‖En[wjzT−j ]‖∞ ≤ ‖En[wjxT−j ]‖∞ + ‖En[wjwT−j ]‖∞
≤ ‖ 1

nX
TW‖∞ + ‖ 1

n(W
TW − diag(W TW ))‖∞

≤ C

√
log(p2/ε)

n
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To bound the second term we use that E[(xj − xT−jµ
j
0)x

T
−j ] = 0. Thus by

Lemma 5 with θj = ej − µj0 we have

‖En[(xj − xT−jµ
j
0)x

T
−j]‖∞ = maxj≤p,k 6=j |En[(xj − xT−jµ

j
0)xk]|

≤ C
√
log(p2/ε)/n

with probability 1− ε under log(pn) ≤ δn
√
n for ε = n−1.

The third term can be controlled by a variant of Lemma 2 (applied with
xj − xT−jµ

j
0 instead of xj , since ‖µj0‖ ≤ C and E[{xj − xT−jµ

j
0}2] ≤ E[x2j ]),

namely with probability 1− ε

‖En[(xj − xT−jµ
j
0)w

T
−j ]‖∞ ≤ ‖ 1

nW
T (Xj −X−jµ

j
0)‖∞

≤ max1≤j≤p ‖ 1
n(Xj −X−jµ

j
0)
TW‖∞

≤ C

√
log(p3/ε)

n

under Conditions A and C. We will take ε = n−1.
Regarding the fourth term we have that by Lemma 3, with probability

1− ε

‖En[(µj0)Tw−jxT−j]‖∞ ≤ max1≤j,k≤p |En[(µj0)Tw−jxk]|
≤ Cmaxj∈S ‖µj0‖σw

√
log(2p2/ε)/n

under Conditions A and C. We will take ε = n−1.
Finally, the last term satisfies with probability 1− 2ε

‖(µj0)TEn[w−jwT−j − Γ−j,−j]‖∞ ≤ ‖(µj0)TEn[w−jwT−j −Diag(w−jwT−j)]‖∞
+‖(µj0)TEn[Diag(w−jwT−j)− Γ−j,−j]‖∞
≤ Cmaxj≤p ‖µj0‖ {δ′′(ε/p) + δ(ε)}

where in the last step we used Lemma 3 and Lemma 2. We will take ε =
n−1.
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Supplementary Material for “Confidence Bands for

Coefficients in High Dimensional Linear Models with

Error-in-variables”

AUXILIARY LEMMAS

The following technical lemmas are modifications of results in [1] and
[42] to allow random design and are stated here for completeness. In what
follows, for a square matrix A, we denote by Diag{A} the matrix with the
same dimensions as A, the same diagonal elements, and all off-diagonal
elements equal to zero.

Lemma 2. Let 0 < ε < 1, p ≥ 2, and assume Condition A holds. Then,
with probability at least 1− ε (for each event),

∥∥ 1
nX

TW
∥∥
∞ ≤ δ(ε, p),

∥∥ 1
nX

T ξ
∥∥
∞ ≤ δ(ε, p),

∥∥ 1
nW

T ξ
∥∥
∞ ≤ δ(ε, p),

∥∥ 1
n(W

TW −Diag{W TW})
∥∥
∞ ≤ δ(ε, p),

∥∥ 1
nDiag{W TW} − Γ

∥∥
∞ ≤ δ(ε, p),

∥∥ 1
nDiag{XTX} − E[ 1nDiag{XTX}]

∥∥
∞ ≤ δ(ε, p)

for

δ(ε, p) = max

(
γ0

√
2 log(2p2/ε)

n
,
2 log(2p2/ε)

t0n

)
,

where γ0, t0 are positive constants depending only on σξ, σw, σx.

Lemma 3. Let 0 < ε < 1, θ∗ ∈ R
p, p ≥ 2, and assume that Condition A

holds. Then, with probability at least 1− ε,

∥∥ 1
nX

TWθ∗
∥∥
∞ ≤ δ′(ε, p)‖θ∗‖2,

where δ′(ε, p) = max

(
γ1

√
2 log(2p2/ε)

n , 2 log(2p2/ε)
t1n

)
, where γ1, t1 are positive

constants depending only on σw, σx. In addition, with probability at least
1− ε,

∥∥ 1
n(W

TW −Diag{W TW})θ∗
∥∥
∞ ≤ δ′′(ε, p)‖θ∗‖2,

where δ′′(ε, p) = max

(
γ2

√
2 log(2p/ε)

n , 2 log(2p/ε)
t2n

)
, and γ2, t2 are positive

constants depending only on σw.
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Lemma 4. Let 0 < ε < 1, θ∗ ∈ R
p, S ⊂ {1, . . . , p}, |S| ≥ 2, and assume

that Condition A holds. Then, with probability at least 1− ε,

max
j∈S

∣∣∣∣∣
1

n

n∑

i=1

(zij − zTi,−jµ
j
0)zij − E[(zij − zTi,−jµ

j
0)zij ]

∣∣∣∣∣ ≤ 4δ(ε, |S|){1+max
j∈S

‖µj0‖}

for

δ(ε, |S|) = max

(
γ3

√
2 log(2|S|2/ε)

n
,
2 log(2|S|2/ε)

t3n

)
,

where γ3, t3 are positive constants depending only on σw, σx.

Proof. Note that (zij − zTi,−jµ
j
0)zij = x2ij +w2

ij + 2xijwij − xijx
T
i,−jµ

j
0 −

wT−jµ
j
0xj −wjx

T
−jµ

j
0 −wT−jµ

j
0wj so that E[(zij − zTi,−jµ

j
0)zij ] = E[x2ij +w2

ij −
xijx

T
i,−jµ

j
0. Then using Lemma 2 we have that

max
j∈S

∣∣∣∣∣
1

n

n∑

i=1

(zij − zTi,−jµ
j
0)zij − E[(zij − zTi,−jµ

j
0)zij ]

∣∣∣∣∣ ≤
7∑

k=1

rk

where

r1 := maxj∈S | 1n
∑n

i=1 x
2
ij − E[x2ij ]| r2 := maxj∈S | 1n

∑n
i=1w

2
ij − E[w2

ij ]|
r3 := 2maxj∈S | 1n

∑n
i=1 wijxij| r4 := maxj∈S | 1n

∑n
i=1wijw

T
i,−jµ

j
0|

r5 := maxj∈S | 1n
∑n

i=1 xijw
T
i,−jµ

j
0| r6 := maxj∈S | 1n

∑n
i=1wijx

T
i,−jµ

j
0|

r7 := maxj∈S | 1n
∑n

i=1 xijx
T
i,−jµ

j
0 − E[xijx

T
i,−jµ

j
0]|

By Lemma 2 with S (instead of all p components) we have that with prob-
ability 1− 3ε

r1 ≤ δ(ε, |S|), r2 ≤ δ(ε, |S|), and r3 ≤ 2δ(ε, |S|).

Similarly, by Lemma 3 we have with probability 1− 4ε (noting that each j
component is zero mean)

r4 ≤ δ(ε, |S|)maxj∈S ‖µj0‖, r5 ≤ δ(ε, |S|)maxj∈S ‖µj0‖,
r6 ≤ δ(ε, |S|)maxj∈S ‖µj0‖, r7 ≤ δ(ε, |S|)maxj∈S ‖µj0‖.

Combining these bounds yields the result.

Lemma 5. Under Condition A, let 0 < ε < 1, S ⊂ {1, . . . , p}, |S| ≥ 2,
and θj ∈ R

p, such that E[xT θjx−j] = 0. Then, with probability at least 1−ε,

max
j∈S

∥∥∥∥∥
1

n

n∑

i=1

xTi θ
jxi,−j

∥∥∥∥∥
∞

≤ δ(ε, p|S|)max
j∈S

‖θj‖
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for

δ(ε, p|S|) = max

(
γ4

√
2 log(2p|S|/ε)

n
,
2 log(2p|S|/ε)

t4n

)
,

where γ4, t4 are positive constants depending only on σx.

Proof. For each j ∈ S and k ∈ [p]\{j} we proceed to bound |En[xT θjxk]
and then apply the union bound. By Condition A we have that xT θj is sub-
gaussian with variance parameter bounded by σ2x‖θj‖2 and xik is subgaussian
with variance parameter σ2x. Therefore we have that (xTi θ

jxik)
n
i=1 are inde-

pendent zero mean subexponential random variable with parameter ‖θj‖σ2x.
By Proposition 5.16 in [48] we have

P

(∣∣∣∣∣

n∑

i=1

xTi θ
jxik

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−cmin(t2/{n‖θj‖2σ4x}, t/{‖θj‖σ2x}))

So that setting t = max
{√

n log(2|S|p/ε), log(2|S|p/ε)
}
maxj∈S ‖θj‖σ2x(1+

1/c) and applying the union bound yields the result.

The following technical lemma is a concentration bound, see [1] for a
proof.

Lemma 6. Let Xi, i = 1, . . . , n, be independent random vectors in R
p,

p ≥ 3. Define m̄k := maxj≤p
1
n

∑n
i=1 E[|Xij |k] and Mk ≥ E[max

i≤n
‖Xi‖k∞].

Then

E

[
max
j≤p

1

n

∣∣∣∣∣

n∑

i=1

|Xij |k − E[|Xij |k]
∣∣∣∣∣

]
≤ 2C2 log p

n
Mk + 2C

√
log p

n
M

1/2
k m̄

1/2
k

E

[
max
j≤p

1

n

n∑

i=1

|Xij |k
]
≤ CMkn

−1 log p+ Cm̄k

for some universal constant C.

The following is a direct consequence of Theorem 2 (and Remark 1) in
[29] and the union bound.

Lemma 7. Let (Xi), i = 1, . . . , n, be i.i.d. subgaussian random vectors
such that Xi ∈ R

p. For S ⊆ {1, . . . , p} let ΣS = E[XSX
T
S ] and r(S) =
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Tr(ΣS)/‖ΣS‖op. Then, there is a universal constant C such that with prob-
ability 1− e−t

(p
k

)

sup
|S|≤k,‖θ‖=1

∣∣ 1
n

∑n
i=1(θ

T
SXi)

2 − θTSΣθS
∣∣

≤ Cmax|S|≤k

{√
r(S)
n ∨ r(S)

n ∨
√

t
n ∨ t

n

}
sup

|S|≤k,‖θ‖=1

√
θTSΣθS

Next we collect well-known results of subgaussian random variables that
are stated here for convenience.

Lemma 8 (Technical Lemma for Subgaussian Random Variables). (1)
If X is a centered subgaussian random variable with parameter γ, it follows
that for any k > 0

E[|X|k] ≤ k2k/2Γ(k/2)γk

and for k ≥ 1 we have {E[|X|k]}1/k ≤ Cγ
√
k for some universal constant

C. (2) If Xj , j = 1, . . . , N , is a collection of centered subgaussian variables
with parameter γ, then for k ≥ 1 we have

E

[
max
j≤N

|Xj |k
]
≤ γk3k logk/2(NCk)

for some constant Ck that depends only on k.

Proof. The first two results are standard characterizations of subgaus-
sian random variables. For completeness we show part (2). Recall that ifXj is
γ-subgaussian then E[exp(|Xj |2/{3γ2})] ≤ 2 and E[|X|k] ≤ k2k/2γkΓ(k/2)
for all j ≤ N . For t ≥ 0, define ψ(t) = max{Ak, exp(t2/k)} + t − Ak for
Ak = exp(12k − 1) so that ψ is convex, ψ(0) = 0, non-negative, and strictly

increasing. In particular, ψ(t) ≤ exp(t2/k) + t. Therefore we have

ψ(E[maxj≤N |Xj |k/{3γ}k]) ≤ E[ψ(maxj≤N |Xj |k/{3γ}k)]
= E[maxj≤N ψ(|Xj |k/{3γ}k)]
≤ N maxj≤N E[ψ(|Xj |k/{3γ}k)]
≤ N maxj≤N E[exp(|Xj |2/{3γ}2)]
+N maxj≤N E[|Xj |k/{3γ}k]
≤ N{2 + k2k/2Γ(k/2)/3k} =: NBk

Thus we have E[maxj≤N |Xj |k/{3γ}k ] ≤ ψ−1(NBk). To bound the inverse
function note that

NBk = ψ(ψ−1(NBk)) = max{Ak, exp({ψ−1(NBk)}2/k)}+ ψ−1(NBk)−Ak
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so that NBk + Ak ≥ max{Ak, exp({ψ−1(NBk)}2/k)} since ψ−1(NBk) ≥ 0.
This implies that ψ−1(NBk) ≤ logk/2(NBk + Ak). Thus the result holds
with Ck = 1 +Bk +Ak.

Lemma 9. Suppose that X is a random variable such that E[X2] = 1
and {E[|X|m]}1/m ≤ Bmγ for m ≥ 2. Then, for any k ≥ 3 and δ ∈ (0, 2] we
have E[|X|k] ≤ γk−2+δBk−2+δ

2(k−2+δ)/δ .

Proof. By applying Holder’s inequality

E[|X|k] = E[|X|2−δ |X|k−2+δ ] ≤ {E[|X|2]}(2−δ)/2 {E[|X|2(k−2+δ)/δ ]}δ/2

where 2(k−2+δ)/δ ≥ 2. The result follows since by assumption E[|X|2] = 1
and

{E[|X|2(k−2+δ)/δ ]}δ/2 ≤ {B2(k−2+δ)/δ
2(k−2+δ)/δγ

2(k−2+δ)/δ}δ/2 = Bk−2+δ
2(k−2+δ)/δγ

k−2+δ.

Lemma 10. Let mj := σ−1
j Σ−1

j (1 + ‖β0‖)(1 + ‖µj0‖). Under Condition
A, for any t > 0 we have

P (max
j∈S

|ψ̄j(y1, z1)| > t) ≤ 2|S| exp(−tcw,ξ,x/max
j∈S

mj)

where cw,ξ,x depends only on the subgaussian parameters of w, ξ, and x.
Moreover, for any k ≥ 1 we have

E[|ψ̄j(y1, z1)|k]1/k ≤ kCw,ξ,xσ
−1
j Σ−1

j {1 + ‖µj0‖}{1 + ‖β0‖} and

E[max
j∈S

|ψ̄j(y1, z1)|k]1/k ≤ Ck log(4|S|)max
j∈S

σ−1
j Σ−1

j {1 + ‖µj0‖}{1 + ‖β0‖}.

Proof. Note that E[ψ̄j(y1, z1)] = 0 and E[ψ̄2
j (y1, z1)] = 1. Moreover, for

each k ≥ 1 we have

E[|ψ̄j(y1, z1)|k]1/k ≤ σ−1
j Σ−1

j E[|(ej − µj0)
T z1|2k]1/2kE[|ξ1 − wT1 β0|2k]1/2k

+|(ej − µj0)
TΓβ0|

≤ σ−1
j Σ−1

j {1 + ‖µj0‖}{1 + ‖β0‖}Cw,ξ,xk

since E[|(ej − µj0)
T z1|2k]1/2k ≤ Cz

√
2k(1 + ‖µj0‖) and E[|ξ1 −wT1 β0|2k]1/2k ≤

Cξ,w
√
2k(1+‖β0‖) by the subgaussian assumption and Lemma 8. Here Cw,ξ,x

depends only on the subgaussian parameters of w, ξ, and x. Therefore,
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‖ψ̄j(y1, z1)‖ψ1 ≤ σ−1
j Σ−1

j {1+ ‖µj0‖}{1+ ‖β0‖}Cw,ξ,x = mjCw,ξ,x. In turn we
have that for some universal constant c > 0

P (|ψ̄j(y1, z1)| > t) ≤ 2 exp(−ct/mjCw,ξ,x)

and the result follows from the union bound and setting cw,ξ,x = c/Cw,ξ,x.
Next note that for ψ(t) = max{Ak, exp(t1/k)}+t−Ak where Ak = exp(k−

1), we have ψ(0) = 0, ψ non-negative, convex, strictly increasing and ψ(t) ≤
exp(t1/k)+t. Moreover letM be such that E[exp(|ψ̄j(y1, z1)|/M)] ≤ 2 where

M ≥ 3kCw,ξ,xσ
−1
j Σ−1

j (1 + ‖µj0)(1 + ‖β0‖). Then

ψ(E[maxj∈S |ψ̄j(y1, z1)|k/Mk]) ≤ E[maxj∈S ψ(|ψ̄j(y1, z1)|k/Mk)]
≤ |S|maxj∈S E[ψ(|ψ̄j(y1, z1)|k/Mk)]
≤ |S|maxj∈S E[exp(|ψ̄j(y1, z1)|/M)]
+|S|maxj∈S E[|ψ̄j(y1, z1)|k/Mk]
≤ 4|S|

where the last relation follows by definition of M . Thus

E[max
j∈S

|ψ̄j(y1, z1)|k] ≤Mkψ−1(|S|Bk).

To bound the inverse function we have By definition we have |S|Bk +Ak ≥
max{Ak, exp(|ψ−1(|S|Bk)|1/k)} which implies

ψ−1(|S|Bk) ≤ logk(4|S| +Ak).

Let (Wi)
n
i=1 be a sequence of independent copies of a random element W

taking values in a measurable space (W,AW ) according to a probability law
P . Let F be a set of suitably measurable functions f : W → R, equipped
with a measurable envelope F : W → R. Let Gn(f) = n−1/2

∑n
i=1 f(Wi) −

E[f(Wi)].

Lemma 11 (Maximal Inequality adapted from [16]). Suppose that F ≥
supf∈F |f | is a measurable envelope for the finite class F with ‖F‖P,q < ∞
for some q ≥ 2. Let M = maxi≤n F (Wi) and σ

2 > 0 be any positive constant
such that supf∈|F| ‖f‖2P,2 ≤ σ2 ≤ ‖F‖2P,2. Then

EP [max
f∈F

|Gn(f)|] ≤ K

(√
σ2 log

( |F|‖F‖P,2
σ

)
+

‖M‖P,2√
n

log

(
|F|‖F‖P,2

σ

))
,
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where K is an absolute constant. Moreover, for every t ≥ 1, with probability
> 1− t−q/2,

max
f∈F

|Gn(f)| ≤ (1 + α)EP [max
f∈F

|Gn(f)|]

+K(q)
[
(σ + n−1/2‖M‖P,q)

√
t+ α−1n−1/2‖M‖P,2t

]
, ∀α > 0,

where K(q) > 0 is a constant depending only on q.
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