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Abstract. The impact of measurement error in explanatory variables

on quantile regression functions is investigated using a small variance approxi-

mation. The approximation shows how the error contaminated and error free

quantile regression functions are related. A key factor is the distribution of the

error free explanatory variable. Exact calculations probe the accuracy of the

approximation. The order of the approximation error is unchanged if the den-

sity of the error free explanatory variable is replaced by the density of the error

contaminated explanatory variable which is easily estimated. It is then possible

to use the approximation to investigate the sensitivity of estimates to varying

amounts of measurement error.

Keywords: measurement error, parameter approximations, quantile regres-

sion.
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1. Introduction

Since the seminal paper of Koenker and Bassett (1978) there has been substantial

development of estimation methods and algorithms for quantile regression functions

(QRF), and gains in understanding of the properties of QRF estimators. With in-

creasing interest in econometrics in variation in response amongst individuals, and

with the way in which the distribution of responses is affected by covariates, the
∗Department of Economics, University College London, Gower Street, London WC1E 6BT, UK.

Tel +442076795857. Email andrew.chesher@ucl.ac.uk

1



Understanding the Effect of Measurement Error on Quantile Regressions 2

use of quantile regression estimation procedures has become widespread in applied

econometric work.

Despite many advances in QRF estimation and inference methods, and the many

applications of quantile regression methods, some of the econometric issues given

substantial attention in the study of mean regressions have received little attention

in the context of quantile regressions. One of these is measurement error in explana-

tory varaibles, a pervasive feature of econometric data, and likely a feature in many

applications.

Covariate measurement error causes many and subtle changes to conditional dis-

tributions, potentially attenuating mean regression functions, increasing dispersion,

introducing heteroskedasticity in homoskedastic error free models and modifying the

form of heteroskedasticity when it is present in an error free model. There are signif-

icant effects on quantile regression functions.

This paper develops results that improve understanding of these effects. It does

this by developing approximations to QRFs in which covariate values are contami-

nated by measurement error. These are Taylor series expansions around a point at

which measurement error is absent. The approximations reveal the first order effect

of covariate measurement error on QRFs and lead to a procedure for investigating

the magnitude of this effect when there are neither instrumental variables nor re-

peated measurements. The probability distribution of measurement errors does not

feature in the approximation, only its variance. The major first order influence of

measurement error on QRFs is found to be the shape of the distribution of error free

covariates and the way this interacts with the shape of the error free QRF.

There has been little attention paid to measurement error in the context of quan-

tile regression. Measurement error oriented texts such as Fuller (1987) and Carroll,

Ruppert, Stefanski and Crainiceanu (2006) have no discussion of quantile regression.

Koenker’s Econometric Society Monograph on quantile regression, Koenker (2005),

has no discussion of covariate measurement error.
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This paper considers error free QRFs for a response Y , conditioned on X, and

error contaminated QRFs for Y , conditioned on Z = X + V where V is distributed

independently of X, and of Y given X. Data on Y and the error contaminated Z

provide information about the way in which the conditional quantiles of Y given Z

vary with Z. Nonparametric quantile regression methods can give detailed informa-

tion about this variation. But this bears only indirectly on the way in which quantiles

of Y conditional on error free X vary with X. In most applications this is what is

of interest because economic theory will be informative about relationships between

error free variates, and policy interventions, whose impact on the distribution of Y

is of interest, will alter values of error free covariates.

The first part of the paper gives results that improve understanding of the rela-

tionship between error contaminated and error free QRFs. This helps interpret the

results of QRF estimation when measurement error is believed to be present. It helps

explain differences in estimated QRFs using data sets with different amounts of mea-

surement error. In cases where a functional form of an error free QRF is imposed it

is informative about the misspecification that is committed when error contaminated

data is used.

The focus of the second part of the paper is on problems in which error free QRFs

are parametrically specified. The possibility of using information on the relationship

between error free and error contaminated QRFs to retrieve information about the

values of parameters of error free QRFs is investigated. In some circumstances this

is not possible because the error free QRF cannot be identified from knowledge of

the form of error free QRFs because measurement error induces no change in that

form. The model in which Y , X and V are jointly normally distributed is a leading

example. Here measurement error changes the separation and slope of QRFs but

they remain linear. But in many other cases identification is possible, as pointed out

in Reiersøl (1950).

The analysis of Reiersøl (1950) is extended in Schennach and Hu (2013), SH13.
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SH13 considers additive error models for an outcome with parallel QRFs and shows

that outside a small class of models for dependence of an outcome on an error free

covariate the error free QRF can be identified. The approximations developed here

apply to a wider class of models which does not require an additive error. The class

includes the SH13 model. The approximations of this paper could be used to decide

whether estimation via SH13 is worthwhile if an additive error model were being

cosidered, and generally to gain understanding of the potential effect of measurement

error in the context of a specific analysis of data.

The procedure we propose provides a form of sensitivity analysis. It provides a

partial answer to the following questions.

Were the error free QRF to be of a hypothesised form and covariate mea-

surement error to be present, what are the likely values of the parameters

of the error free QRFs? How does our view of this change as the amount

of measurement error allowed for increases? Are some parameters sub-

stantially affected by measurement error relative to others?

An exact answer to these questions requires a case by case analysis. The exact

impact of measurement error on mean regressions can be derived in explicit form

only in a few special cases1. Outside these cases, and in almost all interesting cases

for QRFs, the exact impact of covariate measurement error can only be obtained by

numerical calculation. Such calculations do not give insight into the generic effects

of covariate measurement error and they do not provide a link between the effects

of measurement error and easily grasped features of the error free QRF and the

distributions of covariates and measurement error.

This paper provides a partial resolution of this problem by providing an approxi-

mation to an error contaminated QRF expressed in terms of functionals of the error

free QRF and the density of either the error free or the error contaminated covari-

1A leading example is the model in which Y (with arbitrary distribution) has polynomial regression
on error free X and additive independent measurement error is normally distributed, see Chesher
(1998a).
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ates. The approximation is developed using small parameter (variance) approxima-

tion methods and extends the results of Chesher (1991) to QRFs.

Section 2 gives the approximation to error contaminated QRFs. Details of the

derivation are given in an appendix. The insights into the generic effects of measure-

ment error on QRFs provided by the approximation are discussed in Section 3 where

some leading special cases are examined.

Section 4 reports an investigation into the accuracy of the approximation in a rich

class of models with a single error contaminated covariate. An error free covariate (X)

and independently distributed measurement error (V ) are given exponential power

distributions2. The conditional distribution of the response given X (independent

of V ) is also specified as a member of the exponential power family with location

parameter depending upon X and with scale and shape parameters independent of

X. The exact error free (conditional on X) and error contaminated (conditional on

Z = X + V ) QRFs are calculated and the approximation developed in Section 2 is

calculated. For quite large amounts of measurement error the approximations are

acceptably accurate.

Sections 5 considers one possible use of the approximation. It investigates the

use of the approximate QRF to extract information about the error free QRF from

error contaminated data. The results of Section 2 show that the approximate error

contaminated QRF is determined by the error free QRF and derivatives of it, whose

form is known once the error free QRF is specified, and by a functional of the density

of the error contaminated covariate. This density can be estimated using realizations

of the error contaminated covariate. Therefore, given a parametric form for the error

free QRF, a parametric approximate error contaminated QRF can be specified and

estimated. When identification permits, estimates of parameters of the error free

QRF can be retrieved.

The performance of this procedure is investigated in Monte Carlo experiments. In

2A random variable with an exponential power distribution has density function proportional to
exp(−λ|w − µ|

2
1+b ). Normal (b = 0) and Laplace (b = 1) distributions are leading special cases.
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practice one would likely want to use this procedure to perform a sensitivity analysis.

Thus one can ask: given a specified form for an error free QRF, how are my views

about its parameters changed as I consider the possibility of there being more or less

measurement error. An alternative procedure suitable when there is no parametric

specification of the error free QRF is proposed. Section 6 concludes.

This Section concludes with a brief outline of the few available results on QRF

estimation with covariate measurement error.

Brown (1982), studying robust estimation in errors-in-variables models, proposes

a modified LAD estimator which can be regarded as an estimator of the slope of the

median regression function with scalar error contaminated covariate, but rejects the

estimator as unsatisfactory. He and Liang (2000) propose a consistent estimator of

the slope of linear error free QRFs based on minimising the sum across observations

of the “check”functions

ρτ (r) = r × (τ − 1[r<0])

applied to orthogonal residuals, r. They assume that the joint distribution of the re-

sponse error and the covariate measurement error is spherically symmetric. Hu and

Schennach (2008) and Schennach (2008) develop identification and estimation results

using instrumental variables or repeated measurements. Wei and Carroll (2009) pro-

pose an estimation procedure for linear quantile regression models in situations in

which one can estimate the distribution of the error free covariate conditional on its

error contaminated version. Montes-Rojas (2011) applies the misspecification analy-

sis of Angrist, Chernozhukov and Fernandez-Val (2006) to obtain a formula for the

probability limit of the QRF estimator in a linear model with parallel QRFs when

there is a measurement error contaminated covariate. Schennach and Hu (2013),

considering an additive error model with parallel QRFs, give conditions on the func-

tional form of an error free QRF under which it can be identified from knowledge of

the distribution of the outcome variable and the error contaminated covariate. Shang

(2012) and Shang, Vanlwaarden and Bettebenner (2014) apply the SIMEX method
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of Carroll and Stefanski (1994) to correct estimates of the distribution of current

student test scores conditional on past scores. Galvao and Song (2017) develop an

estimator of the coeffi cients in an error free linear quantile regression function when

repeated error contaminated measurements of the scalar error free explanatory vari-

able are available. Hausman, Luo and Palmer (2014) consider the impact on QRF

estimation of measurement error in the response variable.

2. The approximate effect of measurement error

2.1. Error free and error contaminated QRFs. Consider a scalar response

Y , continuously distributed given k element vector X, and let FY |X(y|x) be the

conditional distribution function of Y given X = x, as follows.

FY |X(y|x) = P [Y ≤ y|X = x]

Let Z = X+V where V = ΨU , U andX are independently distributed and E[U ] = 0,

V ar[U ] = I. The matrix Ψ is lower triangular and ΨΨ′ = Σ so that V ar[V ] = Σ =

[σij ].

The conditional τ -QRFs, QX(τ , x), in which conditioning is on error free X,

and QZ(τ , z), in which conditioning is on error contaminated Z, are defined by the

following implicit equations.

FY |X(QX(τ , x)|x) = τ

FY |Z(QZ(τ , z)|z) = τ

2.2. Approximate error contaminated QRFs. We seek an approximation to

the error contaminated τ -QRF, QZ(τ , z). This is a functional of the conditional

distribution function of Y given X and the marginal distribution functions of U and
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X and depends upon τ and Σ, a relationship we express as follows.

QZ(τ , ·) = F(FY |X , FX , FU ; τ ,Σ) (1)

Note that the error free QRF is got by setting Σ = 0.

QX(τ , ·) = F(FY |X , FX , FU ; τ , 0)

The approximation to the error contaminated QRF is given in equation (6) below,

to which those not interested in the method of derivation can proceed directly.

The approximation is obtained by considering a first order Taylor series type

approximation to QZ(τ , ·) defined in (1) around Σ = 0. This takes the following

form3

QZ(τ , ·) = QX(τ , ·) +
∑
i,j

σij
∂

∂σij
QZ(τ , ·)|Σ=0 + o(Σ) (2)

where σij is the (i, j) element of the measurement error variance matrix Σ. The

leading term is just the τ -QRF of Y given error free X.

The following approximation to the conditional distribution function FY |Z(y|z)

derived in Chesher (1991) is used. Here conditioning is on error contaminated Z.

FY |Z(y|z) = F̃Y |Z(y|z) + o(Σ) (3)

where

F̃Y |Z(y|z) = FY |X(y|z) +
∑
i,j

σij

(
F iY |X(y|z)gjX(z) +

1

2
F ijY |X(y|z)

)
. (4)

Here superscripts i, j indicate differentiation with respect to the ith and jth condi-

3Here and later unless indicated
∑

i,j indicates double summation over i and j both from 1 to k.
A term described as o(Σ) has the property that

lim
ω→0

o(Σ)

ω
= 0

where ω = trace(Σ).
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tioning arguments, for example

F ijY |X(y|z) =
∂2

∂xi∂xj
FY |X(y|x)

∣∣∣∣
x=z

.

The function gX(·), which plays a key role in what follows, is the log probability

density function of X,

gX(z) ≡ log fX(z)

with derivatives as follows.

gjX(z) ≡ ∂

∂xj
gX(x)

∣∣∣∣
x=z

For the approximation to have an error of the stated order we require the absolute

third own and cross moments of U to be finite, the existence of bounded third own

and cross derivatives of FY |X(y|x) with respect to x, and that X has a continuous

distribution with twice differentiable density function and support on <k. The ap-

proximation (4) to the distribution function does not require Y to be continuously

distributed4 given X.

For the moment let QZ be shorthand for QZ(τ , z). Since FY |Z(QZ |z) = τ we

have, from (3),

F̃Y |Z(QZ |z) = τ + o(Σ),

that is:

FY |X(QZ |z) +
∑
i,j

σij

(
F iY |X(QZ |z)gjX(z) +

1

2
F ijY |X(QZ |z)

)
= τ + o(Σ).

Considering variation in QZ and Σ and taking differentials gives

F YY |X(QZ |z)dQZ +
∑
i,j

dσij

(
F iY |X(QZ |z)gjX(z) +

1

2
F ijY |X(QZ |z)

)
+O(Σ) = o(Σ),

4 In its application to QRFs we do assume a continuous distribution for Y with strictly increasing
distrbution function,
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where the superscript “Y ”denotes differentiation with respect to the response vari-

able, that is:

F YY |X(QZ |z) ≡
∂

∂y
FY |X(y|z)

∣∣∣∣
y=QZ

= fY |X(QZ |z)

which is the conditional density of Y at the τ -quantile under consideration. Setting

Σ = 0, yields the required derivatives,

∂QZ
∂σij

∣∣∣∣
Σ=0

= −
F iY |X(QZ |z)gjX(z) + 1

2F
ij
Y |X(QZ |z)

F YY |X(QZ |z)

and, plugging in to (4) there is the following approximation.

QZ(τ , z) = QX(τ , z)−
∑
i,j

σij
F iY |X(QZ |z)gjX(z) + 1

2F
ij
Y |X(QZ |z)

F YY |X(QZ |z)
+ o(Σ) (5)

The approximation is more easily interpreted, when expressed in terms of the

error free QRF and its derivatives

QτX(τ , z) =
∂

∂τ
QX(τ , x)

∣∣∣∣
x=z

QiX(τ , z) =
∂

∂xi
QX(τ , x)

∣∣∣∣
x=z

and so forth, as follows. Details of the derivation of this expression are given in

Appendix 1.

QZ(τ , z) = QX(τ , z) +
∑
i,j

σij

(
QiX(τ , z)gjX(z) +

1

2
QijX(τ , z)

)
−1

2

1

QτX(τ , z)

∑
i,j

σij

(
QτiX(τ , z)QjX(τ , z) +QτjX (τ , z)QiX(τ , z)

)
+

1

2

QττX (τ , z)

QτX(τ , z)2

∑
i,j

σijQ
i
X(τ , z)QjX(τ , z) + o(Σ) (6)

2.3. Discussion. Section 3 provides interpretation of the terms in this approxi-

mation and considers some leading special cases. First it is worth noting that there
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are elements of generality that may not be obvious at first sight.

Non-additive measurement error. The approximation has been developed

for the case of additive measurement error, but we have allowed the error free QRF

to be nonlinear, so some other interesting cases can be easily obtained by considering

transformations of the covariates. For example5 consider a scalar covariate X and let

Z = λ−1(λ(X) + λ(V ))

where λ(·) is a strictly monotonic function. Additive and multiplicative measurement

error arise when λ(·) is respectively the identity function and the logarithmic function.

The approximation (6) for additive measurement error applies when the error free

QRF is expressed as a function of λ(X). Then gX(·) must be regarded as the log

density of λ(X). The result is easily “unbundled”to give an approximation in terms

of an error free QRF written as a function of X and the log density of X. Of course

the resulting approximation will involve the function λ(·) and its derivatives6.

Error free covariates. We have proceeded as if all elements of X are error

contaminated, but in many leading cases of interest we may expect measurement error

to be a serious issue for only one covariate. For example in considering household

demand we may be confident in the accuracy of measures of household composition

but suspect measurement error in household income. The approximation (6) is easily

applied to such cases by setting elements of Σ to zero. Note that in this case, with

XF and XC denoting respectively error free and error contaminated covariates, the

log density derivative gjX(z) that appears in (6) becomes the derivative of the log

conditional density of XC given XF with respect to elements of XC .

5 I am grateful to Christian Schluter for suggesting this generalised additive formulation.
6This is essentially the approach taken in Chesher and Schluter (2002) and in Chesher, Dumangane

and Smith (2002) in studing the impact of measurement error on respectively inequality measures
(e.g., the Gini coeffi cient) and duration analysis. In both cases multiplicative measurement error is
the leading case of interest.
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Alternative forms of the approximation. The log density derivatives gjX(z)

that appear in (6) can be replaced by derivatives of the log density of Z, gjZ(z),

without increasing the order of the approximation error. This is proved in Appendix

2. This substitution has two benefits. First, in models with normal measurement

error it can result in increased accuracy7. Second, unlike gjX(z), the function gjZ(z)

can be estimated - using realizations of error contaminated Z. With an estimate of

gjZ(z) and knowledge of the form of the error free QRF one then has information

about all aspects of the dependence on z of the approximate error contaminated

QRF, a point that is crucial to our proposed sensitivity analysis procedure.

3. Interpretation and special cases

First it is interesting to compare the quantile regression approximation (6) with the

approximate mean regression function given in Chesher (1991). For error free and

error contaminated mean regression functions respectively RX(x) ≡ EY |X [Y |X = x]

and RZ(z) ≡ EY |Z [Y |Z = z], with error contaminated Z = X+V , this approximation

is as follows.

RZ(z) = RX(z) +
∑
i,j

σij

(
RiX(z)gjX(z) +

1

2
RijX(z)

)
+ o(Σ) (7)

This has the same form as the first line of (6)8.

The second and third lines in (6) capture (approximately) the variance and dis-

tributional shape distortions produced by measurement error. Most of the message

contained in these approximations can be uncovered by considering the case in which

there is just one covariate, which is the case considered now.

7When error free mean regressions are linear a substitution of this sort renders the approximation
to mean regressions exact, Chesher (1998a).

8 It also has the same form as (4) because the conditional distribution function FY |X(y|x) is
a regression function, namely the regression of 1[Y≤y] on X. For the mean regression function
approximation to have a remainder term that is o(Σ) the third order derivatives of the error free
regression function are required to be bounded.
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3.1. Attenuation and curvature damping. Let superscript “x”denote differ-

entiation with respect to the single covariate and write the scalar measurement error

variance as σ2. When there is one covariate (6) simplifies as follows.

QZ(τ , z) = QX(τ , z) + σ2QxX(τ , z)gxX(z) +
σ2

2
QxxX (τ , z)

−σ2Q
τx
X (τ , z)QxX(τ , z)

QτX(τ , z)

+
σ2

2

QττX (τ , z)QxX(τ , z)2

QτX(τ , z)2
+ o(σ2) (8)

The leading term is just the error free QRF with argument z. The next two terms

completing the first line of (8) do not involve derivatives with respect to τ . These are

QRF analogues of the only O(Σ) terms in the mean regression approximation (7).

The term gxX(z) is zero at every mode of the density of X. To the left (right) of

each mode gxX(z) is positive (negative). Consider x and τ where the error free QRF

has a positive derivative. There the effect of the term σ2QxX(τ , z)gxX(z) is to raise

the error contaminated QRF relative to the error free QRF to the left of each mode

of the density of X and to lower it to the right of each mode. This tends to “flatten”

the QRF and is an expression of the attenuating effect of measurement error. There

is the same attenuation effect where the error free QRF has a negative derivative.

The effect is clear to see when the error free QRF is linear and is illustrated

for mean regression in Chesher (1991). Then QxX(τ , z) is constant and the term

σ2

2 Q
xx
X (τ , z) vanishes. When gxX(z) is linear, which occurs when X is normally dis-

tributed, the approximate error contaminated QRF is linear, but otherwise the term

gxX(z) introduces nonlinearity. The nonlinearity induced by measurement error can

be seen in Figures 1, 2 and 3 which show exact error free and error contaminated

QRFs and approximations to the latter for a set up described in Section 4.2.

The opposite effect occurs at each antimode of the density of X. Near antimodes

the error contaminated QRF is ampliated. The result is that when the distribution

of X is multimodal the error contaminated QRF tends to move sinuously relative to
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the error free QRF.

The final term in the first line of (8) is present only when the error free QRF

is nonlinear. It is positive where that QRF is strictly concave, tending to reduce

the degree of concavity, and positive where the error free QRF is convex, tending to

decrease the degree of convexity. The effect of this term is to dampen the curvature

of the error contaminated QRF relative to the error free QRF.

The terms in the second and third lines of (8) are more complex and more easily

understood in special cases. We first consider them in problems in which error free

QRFs are parallel.

3.2. Parallel conditional quantiles. Consider parallel error free QRFs

QX(τ , x) = a(τ) + b(x)

which arise when Y is a location shift of a random variable W , the latter distributed

independently of X, that is

Y = b(X) +W.

With QW (τ) = a(τ) denoting the τ -quantile of W ,

QX(τ , x) = QW (τ) + b(x).

In this case QτxX (τ , z) = 0 which removes the term in the second line of (8).

In this case, applying (8), the error contaminated quantile is approximately

QZ(τ , z) = a(τ) + b(z) + σ2bx(z)gxX(z) +
σ2

2
bxx(z) +

σ2

2

aττ (τ)bx(z)2

aτ (τ)2
+ o(σ2) (9)

where superscripts “x”and “τ”denote differentiation with respect to x and τ respec-

tively. The following points are of interest9.

9Where statements are made about some manifestation of measurement error being present or
absent it should be taken to mean to the order of approximation considered in this analysis.
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1. Even though the error free quantiles are parallel, the error contaminated quan-

tiles are not in general parallel, because in the final term of (9) there are func-

tions of z and τ which interact.

2. However if the error free quantile functions are linear the final term in (9)

is a function of τ alone and measurement error does not destroy the parallel

quantile property, though it may render quantile functions non-linear through

the impact of the term σ2bx(z)gxX(z) in (9).

3. Regarding a(τ) as the quantile function of the random variable W , we have

aττ (τ)

aτ (τ)2
=

QττW (τ)

QτW (τ)2
= − ∂

∂w
log fW (w)

∣∣∣∣
w=QW (τ)

= −gwW (QW (τ))

where (A1.3) and (A1.5) of Appendix 1 have been used to obtain the final

expression and fW (w) is the density function of W .

(a) This term, and so the final term in (9), is zero at each mode (and antimode)

of the density of W .

(b) When the density of W is unimodal, this final term in (9) is negative for

small τ and positive for large τ , and captures the impact of measurement

error in increasing the dispersion of the conditional distribution of Y .

(c) This dispersion increasing effect is larger for values of z at which bx(z) is

large in magnitude and zero when bx(z) is zero. In the nonlinear quantile

function case the variations with z in the sensitivity of b(z) to z induce

heteroskedasticity.

In summary, parallel nonlinear quantile regressions contaminated by measurement

error become non-parallel, the effect being greater at covariate values at which error

free QRFs are more nonlinear. The discussion of Section 2.3 implies that this effect

will also be present in linear error free QRF problems when measurement error is not

additive.
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Error contaminated QRFs tend to be more widely separated then error free QRFs.

This expansion effect is larger when the slope of the error free QRF is large in mag-

nitude. It is larger for τ -QRFs for which τ corresponds to a quantile on a sharply

increasing or decreasing part of the conditional density, in many cases this will be

away from the mode of this distribution but in the main body of the distribution.

3.3. Non-parallel conditional quantiles. With non-parallel quantiles there is

heteroskedasticity and/or conditional shape variation in the error free model and

these are altered by the introduction of measurement error. This effect is captured

in the term in (8) involving QτxX (τ , z) which is nonzero only at points where quantile

functions are non-parallel. Consider the simple case in which

QX(τ , z) = a(τ)c(x) + b(x)

which arises when

Y = b(X) + c(X)W

and W is independent of X with τ -quantile QW (τ) = a(τ). The error free τ -quantile

is (c(x) ≥ 0 is assumed)

QX(τ , x) = c(x)QW (τ) + b(x).

The relevant term in (8) is

QτxX (τ , z)QxX(τ , z)

QτX(τ , z)
=
cx(z)

c(z)
(QW (τ)cx(z) + bx(z)) .

This term further modifies the τ -free part of the QRF adding the term cx(z)bx(z)/c(z)

and modifies the form of the covariate dependence of shape and dispersion.

4. Accuracy of the approximation
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This section examines the accuracy of the approximation to error contaminated

QRFs. Some of the results are obtained using numerical methods to calculate the

exact error contaminated QRF, but first consider the fully Gaussian model in which

the error contaminated QRF can be obtained in closed form. Here we find that the

approximation is exact so far as capturing the dependence of the QRF on covariates

is concerned.

4.1. Analytic results for a Gaussian model. Let (Y,X, V ) be jointly normally

distributed with Y given X = x and V = v distributed N(x′β, η2) and with

 X

V

 ∼ N

 µX

0

 ,
 ΣXX 0

0 Σ


 .

The joint distribution of (Y,Z) is

 Y

Z

 ∼ N

 µ′Xβ

µX

 ,
 η2 + β′ΣXXβ β′ΣXX

ΣXXβ ΣXX + Σ




and the conditional distribution of Y given Z = z is N(µY |Z(z), σ2
Y |Z) where

µY |Z(z) ≡ β′
(
I − ΣXX(ΣXX + Σ)−1

)
µX + β′ΣXX(ΣXX + Σ)−1z

σ2
Y |Z ≡ η

2 + β′ΣXX

(
Σ−1
XX − (ΣXX + Σ)−1

)
ΣXXβ.

Let QN (τ) be the τ -quantile of a N(0, 1) variate. It follows that the exact error

free and error contaminated QRFs of Y are linear functions of respectively x and z,

as follows.

QX(τ , x) = x′β + ηQN (τ)

QZ(τ , z) = β′
(
I − ΣXX(ΣXX + Σ)−1

)
µX+β′ΣXX(ΣXX+Σ)−1z+a(β,ΣXX ,Σ, η)QN (τ)

(10)
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where

a(β,ΣXX ,Σ, η) = σY |Z =
(
η2 + β′ΣXX

(
Σ−1
XX − (ΣXX + Σ)−1

)
ΣXXβ

)1/2
.

Consider the approximation (6) and the expression obtained if gjZ(z) in place of

gjX(z) is employed, as suggested in Section 2.3. It is now shown that the coeffi cients

on z in the approximate QRF calculated this way are identical to the coeffi cients on

z in the exact QRF using error contaminated Z.

Since Z ∼ N(µX ,ΣXX + Σ) the log density of Z is

gZ(z) = A− 1

2
((z − µX)′

(
ΣXX + Σ)−1 (z − µX)

)
where A does not depend on z. The z derivative of the log density is −(ΣXX +

Σ)−1 (z − µX). Plugging gjZ(z) in place of gjX(z) into (6), gives the following approx-

imation to the error contaminated QRF.10

Q̃Z(τ , z) = β′
(
I − ΣXX(ΣXX + Σ)−1

)
µX + β′ΣXX(ΣXX + Σ)−1z + ã(β,Σ)QN (τ)

(11)

ã(β,Σ, η) = η +
β′Σβ

2η

The first two terms in the approximation Q̃Z(τ , z) given in (11) are identical to

the first two terms in the exact expression for the error contaminated QRF, QZ(τ , z),

given in (10) so the regression coeffi cients of this approximate QRF are the same as

those of the exact QRF. Approximation error arises only in the intercept, and only

because of error in ã as an approximation to a.

It follows that when distributions of unobservables are not far from Gaussian

the approximation employed here can be quite accurate even when the measurement

error variance is large.

10The term Qij
X(τ , z) on the first line of (6) and the term on the second line of (6) are zero. On

the third line the summation is β′Σβ and the multiplier of this term is simply QN (τ)/(2η). The
remaining terms in the first line deliver the first two terms in (11) and the term ηQN (τ) and hence
the term η in ã(β,Σ, η).
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4.2. Numerical calculations for exponential power distributions. It is dif-

ficult to find other cases in which exact error contaminated QRFs can be obtained in

closed form so the accuracy of the approximation is now examined using numerical

methods. Attention is confined to models with a single covariate.

A particular structure is defined and exact QRFs are calculated conditioning on

an error free covariate and conditioning on an error contaminated covariate. Approx-

imate QRFs conditioning on the error contaminated covariate are calculated and

the exact error free and error contaminated and approximate error contaminated

QRF are compared. The calculations are done using numerical integration proce-

dures. These are not Monte Carlo experiments, rather exact calculations (within the

bounds of computational accuracy) to show the difference between the error conta-

minated QRF and error free QRF and the quality of the approximation to the latter

proposed here.

In the structures studied, Y is determined by a location shift model in which

Y = β0 + β1X + σWW (12)

Z = X + σU (13)

with Z an error contaminated measure of X. Unobserved mean zero W and V ≡ σU

and X are mutually independently distributed with exponential power (EP) distrib-

utions11 with shape parameters bw, bv and bx.

A random variable S with mean µ and variance λ2 and an exponential power

distribution with shape parameter b ∈ (−1, 1) has the following probability density

function.

fS(s) = A exp

(
−B

∣∣∣∣s− µλ
∣∣∣∣ 2
1+b

)

The constants A and B are defined in Appendix 3. Setting b equal to 0 and 1 gives

respectively normal and Laplace distributions. As b → −1 the density approaches

11Box and Tiao (1973) give properties of EP distributions.
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the uniform density function on (µ−
√

3λ, µ+
√

3λ).

Let Qb(τ) denote the τ -quantile12 of a zero mean unit variance EP variate with

shape parameter b. Then the error free QRF of Y is

QX(τ , x) = β0 + β1X + σWQbw(τ). (14)

To obtain the exact error contaminated QRF the conditional distribution function

of Y given Z is calculated by numerical integration13 and the value of the QRF at

values of z is obtained using a Newton type method14.

Figures 1, 2 and 3 show error free (dotted), exact error contaminated (solid) and

approximate error contaminated (dashed) τ -QRFs when β0 = 0, β1 = 1, σW = 1,

σXX = 3, and σ2 = 1. At these settings R2 in the error free mean regression is

0.75, the signal to noise ratio for the error contaminated covariate is 0.75, and for

mean regression the attenuation of the error contaminated regression is 25%, that is

E[Y |Z = z] = 0.75z compared with E[Y |X = x] = x.

The graphs show τ -QRFs for τ ∈ {0.5, 0.75, 0.9}. Figures 1, 2 and 3 are distin-

guished by the choice of shape parameter in the EP distribution forW , with bw equal

to 0.5, 0 and −0.5 respectively. The variance of the error contaminated covariate is

4 and the graphs show QRFs for z ∈ [−4, 4], that is ±2 standard deviations around

the mean.

In each 3 × 3 array of graphs the shape parameter of the EP distribution of X

varies across rows with bx equal to −0.5 in the top row, then 0 and 0.5. The shape

parameter of the EP distribution of measurement error, V , varies across columns

with bv equal to −0.5 in the left column, then 0 and 0.5. Thus the centre pane on

each page shows QRFs when both X and V are normally distributed.

First consider the exact error contaminated QRFs (solid lines). Attenuation

(around 25%) is evident in every case. The exact error contaminated QRFs are non-

12An easily computed expression for the EP τ -qauntiles is given in Appendix 3.
13The R procedure integrate is used , R Core Team (2016).
14The R procedure uniroot is used, R Core Team (2016).
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linear except when X and V are both normally distributed although the nonlinearity

is very weak when the error free covariate is normal (centre rows).

Varying the shape of the distribution of W (compare graph arrays) and V (com-

pare columns) has little effect on the error contaminated QRFs. Varying the shape

of the distribution of the error free covariate X (compare rows) has a substantial

effect. When this distribution is peaked (bottom rows) attenuation is most marked

at values of Z near the centre of the distribution of X. When it is platykurtic (top

rows) attenuation is most marked for values of z in the tail area of the distribution

of X.

The shapes of the error contaminated QRFs vary little as τ is altered. The

additional noise introduced by measurement error moves the QRFs away from the

median QRF.

Now consider the approximate error contaminated QRFs (dashed lines). These

are calculated using (9) with gjZ(z) in place of gjX(z) because it is in this form that the

approximation is used in the sensitivity analysis described in Section 2.3. In every case

the approximation accurately captures the attenuation and nonlinearity in the error

contaminated QRF. The location of the error contaminated QRF is very accurately

captured by the approximate median regressions (τ = 0.5). The approximate QRFs

for τ > 0.5 tend to be located a little above the exact QRFs for τ > 0.5 and below

for τ < 0.5. The quality of the approximations varies only a little as the three EP

shape parameters are altered.

In summary, with linear error free QRFs, in the cases studied, error contaminated

QRFs are significantly nonlinear unless the error free covariate is normally distrib-

uted. The main QRF deforming impact of measurement error is driven by the shape

of the distribution of the error free covariate. When the variance of measurement

error is not too large, this shape is reflected in the shape of the distribution of the er-

ror contaminated covariate which is the driving force in the approximation (9). As a

result the approximation captures the nonlinearity in the error contaminated QRFs
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well, although there is some error in locating the vertical location of the extreme

QRFs. In the “bias correction”procedure and sensitivity analysis developed in Sec-

tion 5 this location error has little impact because data on Y is used to “calibrate”

the locations of the QRFs.

5. Bias correction and sensitivity analysis

Small variance approximations like that developed here can be used to gauge the

sensitivity of estimators to varying amounts of measurement error. Examples are

provided in Chesher and Santos Silva (2002), Chesher and Schluter (2002) and Bat-

tistin and Chesher (2014). In this Section we examine the potential of small variance

approximations in this regard in the context of QRF estimation.

Suppose a parametric form of a QRF is specified - here a simple case is considered

in which error free QRFs are linear and parallel so that Y is generated by the loca-

tion shift model (12), but the method is more generally applicable. An alternative

approach suitable when there is a nonparametric specification is proposed later in

this Section. The τ -QRF of Y given X considered now is

QX(τ , x) = β0 + β1x+ σWQW (τ)

where QW (τ) is the τ -quantile of W .

The results in Section 3.2 give the following expression for the approximate error

contaminated τ -QRF.

Q̃Z(τ , z) = β∗0 + β1

(
z + σ2gzZ(z)

)
(15)

β∗0 = β0 + σWQW (τ)− σ2

2σW
β2

1g
w
W (QW (τ))

The function gzZ(z) is the z-derivative of the log density of the error contaminated

covariate, a function that can be estimated with the data available. It is used here

taking up the suggestion in Section 2.3 where it is noted that substituting this function
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for gxX(z) does not alter the order of the approximation error and allows realizations

of Z to be used to estimate the approximate error contaminated QRF.

If the variance of measurement error were known then the error contaminated

QRF could be estimated using z + σ2ĝzZ(z) as the right hand side variable regarding

its estimated coeffi cient as an estimator of the slope of the error free QRF, β1. If the

approximation is accurate then we expect the inconsistency of this estimator to be

small. The argument in Chesher and Santos Silva (2002) suggests that the difference

between the pseudo-true value of this estimate and the error free QRF coeffi cient,

β1, will be of order o(σ
2).

In the absence of knowledge of σ2 a sensitivity analysis could be conducted, fixing

σ2 at a sequence of values in some plausible range, estimating the parameters of (15)

at each chosen value of σ2.

The method proposed involves two step estimation with a nonparametric plug-

in estimator used at the first stage but that plug-in estimate is determined entirely

by realizations of the error contaminated covariate. The principle of conditionality

suggests that we should make inference conditional on covariate’s realised values. Fol-

lowing that principle, the impact of variation in the plug in estimate on the sampling

variance of the QRF estimator is carried into the conditional (on the realised values

of Z) standard errors through the realised values of Z and ĝzZ(z).

In order to examine the performance of a procedure of this sort the results of

some Monte Carlo experiments are now reported. The error free QRF is linear with

β0 = 0, β1 = 1, σW = 1 and the distributions of W , X and V are exponential power

distributions with mean zero and shape parameters bw, bx, bv ∈ {−0.5, 0,+0.5}, a

total of 27 cases in all. The variances of W and V were set to one and the variance

of X was set to 3. At these settings the R2 in an error free mean regression is 0.75

and the attenuation of the error contaminated mean regression is 25%, that is the

OLS estimator of β1 using error contaminated Z has probability limit equal to 0.75.

In each experiment a sample size of 400 was used and there were 2000 replications.
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Results of two types are shown. In the first the exact function gzZ(z) is used in

constructing the new right hand side variables. In the second an estimate the function

using an exponential series estimator is employed.

5.1. Log density derivative gxZ(z) known. There are three tables of results,

each showing means and standard deviations of estimates across the 2000 Monte

Carlo replications15. The first, second and third sets of 9 rows show results for τ

equal to respectively 0.5 (median regression), 0.75 and 0.90.

Table 1 shows results for the QRF estimator ignoring measurement error. The

attenuation effect of measurement error is plain to see. In all cases the mean of the

estimates of β1 is very close to 0.75. The standard deviation of the estimates increases

as τ increases as one would expect from the sampling theory of QRF estimators.

There is little variation in the average value of the QRF estimator across values of

the EP distribution shape parameters and across τ -QRFs.

Table 2 shows results for the QRF estimator with σ2 “known”. The improvement

is substantial. The mean of the estimates of β1 is very close to 1 (the error free QRF

value), deviating at most by 3.6%. The accuracy of estimation is slightly impaired -

the standard deviations of the measurement error “corrected”estimates are around

25% higher than the standard deviations of the naive estimator which ignores mea-

surement error. There is a small amount of variation as the EP distribution shape

parameters are altered. In the case in which the measurement error distribution is

platykurtic the slope estimates are slightly downward biased at τ = 0.5 and slightly

upward biased at τ = 0.9. There is the opposite effect when the measurement error

distribution is leptokurtic with slight upward bias at τ = 0.5 and slight downward

bias at τ = 0.9. These biases are, in all cases, very small.

Table 3 shows results when σ2 is “estimated”. When X is normally distributed

there is extreme multicollinearity between z and gzZ(z) and results are not shown for

this case. When measurement error is also normally distributed gzZ(z) ∝ z and σ2

15The sampling distributions seem close to symmetric, with means very close to medians, the latter
thus not reported.
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cannot be identified from the approximate QRF, or indeed at all.

Estimating σ2 brings significant degradation in performance and now we find

that one of the EP distribution shape parameters has a substantial influence, the

shape parameter for the distribution of measurement error. The results vary only a

little as the other shape parameters and τ are altered. With normal measurement

error (γV = 0) the average of the “corrected” slope estimates is still very close to

1, deviating at most by 2.9%. With γV = −0.5, in which case the measurement

error distribution is distinctly platykurtic, the “corrected estimates”are around 15%

downward biased (compared with 25% for the naive estimator). With γV = +0.5

(leptokurtic) there is around 8% upward bias.

When σ2 is estimated there is degradation in accuracy, standard deviations of

the slope estimates increasing roughly fourfold. This is an effect that can be driven

down by using larger samples. Of course in situations when gzZ(z) is highly nonlinear

this problem will be eased, but note that for real benefit to arise, this should be

a nonlinearity arising from the distribution of error free X - if it arises from the

distribution of V then the residual bias is likely to be large.

5.2. Log density derivative gxZ(z) unknown. There are two sets of tables, laid

out as described in the previous section. Table 4 gives results with σ2 known and

Table 5 gives results with σ2 unknown.

The estimated log density derivative gzZ(z) ≡ ∂
∂z log fZ(z) is derived from the

exponential series density estimator of Barron and Sheu (1993). The data are mapped

by affi ne transformation onto the unit interval16 and the unknown density of z is

specified as

fZ(z) ∝ f0
Z(z) exp

 m∑
j=1

θjhj(z)

 (16)

where f0
Z(z) = 1 is the uniform kernel density on [0, 1] and the hj(·) is the jth order

16The minimum and maximum of the realised values of Z are associated with respectively 0.1 and
0.9 to avoid end effects.
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Legendre polynomial. The required log density derivative is simply

gzZ(z) =
m∑
j=1

θjh
′
j(z) (17)

where h′j(·) is the first derivative of the jth order Legendre polynomial.

The parameters θ are estimated by maximising a likelihood function in which

(16) specifies the likelihood contributions up to a constant of integration found by

numerical methods17. We choose m = 8 to produce the results given here. In a

truly nonparametric estimation one would regard m as a smoothing parameter and

determine a data driven appropriate value, for example by cross validation. In these

Monte Carlo experiments m was fixed at a value which allowed the essential features

of the density of Z to be captured while avoiding excessive roughness in the estimate.

First consider the case in which σ2 is known and compare Tables 2 and 4. It

is clear that estimating gzZ(·) has little effect on the bias of the measurement error

corrected slope estimator, but it does slightly reduce the accuracy of the estimator,

standard deviations across Monte Carlo replications rising by around 20%.

When σ2 is estimated (compare Tables 3 and 5) the standard deviations of the

slope estimates rise by two to four fold compared with the case when σ2 is known

and gzZ(·) is estimated, and by around 15% compared with the case in which σ2 is

estimated and gzZ(·) is known.

There is a significant increase in bias which is downward in all the cases considered.

Since ĝzZ(z) is gzZ(z) contaminated with measurement error, this could itself be a

measurement error effect. Much smaller bias is found using smaller values of the

smoothing parameter18, m, but then the variance of the measurement error corrected

estimator is much larger. If an attempt at estimating the measurement error variance

is to be made, then, to avoid attenuation it seems to be important not to undersmooth

17Further details of the implementation of this procedure can be found in Chesher (1998b). The
Monte Carlo experiments were conducted using R (R Core Team (2016)). In the density estimation,
maximum likelihood estimation was done using the nlm procedure in R. QRFs were estimated using
the procedure rq in the R contributed package quantreg (Koenker (2013)).
18For example the bias is reduced by around 50% on choosing m = 4.
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when estimating gzZ(z), and to have a large sample to hand.

5.3. Discussion. In the simple cases considered, estimation of approximate mea-

surement error contaminated QRFs brings about a substantial reduction in bias but

with an increase in variance that is small if the variance of measurement error is

known, but sizeable otherwise. The proposed procedures are likely to work well in

real problems only in large samples. But in many cases in microeconometric work

in which QRF estimation would be contemplated large samples will be available, so

perhaps this is not a great drawback.

Of more concern are the diffi culties that would likely be encountered were more

flexible forms of the error free QRF to be entertained. Once the error free QRF is

specified as flexible and nonlinear there is the likelihood of collinearity between the

derivatives of the error free QRF that appear in (6) and gzZ(z). Another diffi culty

in nonlinear models is that if there are values of X at which the QRF is highly

nonlinear then we can expect the approximation to have a large remainder term

because it depends on the magnitude of the third derivatives of the error free QRF.

There is a further issue to consider. In practice QRFs are sometimes estimated

in order to investigate heteroskedasticity. Dependence on X in the error free QRF

that depends upon τ is manifested in the error contaminated QRF differently from

dependence that is τ independent - see Section 3.3. To use the procedure developed

here one must be specific about the interaction between X and τ in determining the

error free QRF. In practice arriving at such a specification might be diffi cult and the

resulting additional functions of z that arise may be highly collinear.

In the cases studied here there is a single covariate. Results in Chesher (1998b) for

mean regression suggest that we can expect similarly good performance in multiple

covariate problems as long as only one covariate is measured with error and the

conditional density of the error contaminated covariates given the error free covariates

depends on the latter through a single index.

An alternative procedure not investigated here, comes on using (5) to obtain an
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approximation for the error free QRF as follows

QX(τ , z) = QZ(τ , z) +
∑
i,j

σij
F iY |Z(QZ(τ , z)|z)gjZ(z) + 1

2F
ij
Y |Z(QZ(τ , z)|z)

F YY |Z(QZ(τ , z)|z)
+ o(Σ)

(18)

where the approximation

∑
i,j

σij

(
F iY |X(QZ(τ , z)|z)gjX(z) + 1

2F
ij
Y |X(QZ(τ , z)|z)

F YY |X(QZ(τ , z)|z)

− −
F iY |Z(QZ(τ , z)|z)gjZ(z) + 1

2F
ij
Y |Z(QZ(τ , z)|z)

F YY |Z(QZ(τ , z)|z)

)
= o(Σ)

proved as in Appendix 2, has been used. Taking this approach one investigates

sensitivity to measurement error by calculating the right hand side of (18) using

nonparametric estimators of quantile and density functions and of derivatives of dis-

tribution functions at a variety of conjectured values for Σ. This is similar to the

method employed to produce measurement error corrected poverty indices in Chesher

and Schluter (2002)

6. Concluding remarks

Covariate measurement error causes fundamental changes in conditional quantile re-

gression functions, altering their shape, orientation and location. This paper has

provided information about the generic effects of measurement error by developing a

small measurement error variance approximation to measurement error contaminated

τ -QRFs. The approximation depends upon the error free QRF and its derivatives up

to order two, the variance of measurement error, and the density of the error conta-

minated covariates. It does not depend upon, and to use it one needs no knowledge

of, the specific form of the density of measurement error.

Exact calculations suggest that the approximation can be accurate when the

amount of measurement error is small to moderate, as long as the error free QRF is

not too nonlinear and the measurement error distribution is not too far from normal.
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A number of uses of the approximation have been proposed.

1. It allows one to gauge the likely effects of measurement error on a particular

form for an error free QRF that is proposed for use in analysis of data. With

realizations of the error contaminated covariate one can estimate the terms

in the approximation that depend on the density of this variate and, with a

particular form for the error free QRF to hand, one can derive the remaining

terms.

2. With knowledge of, or an estimate of, the variance of measurement error, it can

be used to produce a measurement error corrected estimate of the parameters

of the error free QRF.

3. It can be used to examine the sensitivity of QRF estimates to alternative as-

sumed amounts of measurement error by estimating the approximate error con-

taminated QRF for a range of values of the measurement error variance.

Appendix 1: Expressing approximate QRFs as functionals of error

free QRFs

I use an abbreviated notation and consider conditional quantiles defined by the

following equation

F (Q|x) = τ (A1.1)

where Q denotes Q(τ , x) a dependence we make explicit in places where otherwise

there might be confusion.

Considering variations in x, τ and Q subject to (A1.1) there is

F Y (Q|x)dQ+
∑
i

F i(Q|x)dxi = dτ (A1.2)
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where

F Y (Q|x) ≡ ∂

∂y
F (y|x)

∣∣∣∣
y=Q

F i(Q|x) ≡ ∂

∂xi
F (y|x)

∣∣∣∣
y=Q

.

Shortly second partial derivatives appear, F Y Y , F Y i and F ij , defined similarly. Equa-

tion (A1.2) leads directly to the following expressions for the first partial derivatives

of the conditional quantile function.

Qτ (τ , x) =
1

F Y (Q|x)
(A1.3)

Qi(τ , x) = − F i(Q|x)

F Y (Q|x)
(A1.4)

The second order partial derivatives of the quantile function follow on differenti-

ating (A1.3) and (A1.4).

Qττ (τ , x) = −F
Y Y (Q|x)

F Y (Q|x)2
Qτ (τ , x) = −F

Y Y (Q|x)

F Y (Q|x)3
(A1.5)

Qτi(τ , x) = − 1

F Y (Q|x)2

(
F Y i(Q|x) + F Y Y (Q|x)Qi(τ , x)

)
= − F

Y i(Q|x)

F Y (Q|x)2
+
F Y Y (Q|x)F i(Q|x)

F Y (Q|x)3
(A1.6)

Qij(τ , x) = − 1

F Y (Q|x)

(
F Y i(Q|x)Qj(τ , x) + F ij(Q|x)

)
+
F i(Q|x)

F Y (Q|x)2

(
F Y Y (Q|x)Qj(τ , x) + F Y j(Q|x)

)
= −F

ij(Q|x)

F Y (Q|x)
+
F Y i(Q|x)F j(Q|x)

F Y (Q|x)2
+
F Y j(Q|x)F i(Q|x)

F Y (Q|x)2

−F
Y Y (Q|x)F i(Q|x)F j(Q|x)

F Y (Q|x)3
(A1.7)
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In the main text we noted that

∂QZ
∂σij

∣∣∣∣
Σ=0

= −
F iY |X(QZ |z)gjX(z)

F YY |X(QZ |z)
− 1

2

F ijY |X(QZ |z)
F YY |X(QZ |z)

(A1.8)

which we now wish to express in terms of the conditional QRF and its derivatives.

The leading term is given directly by (A1.4) with suitable expansion of notation.

Now note that, from (A1.6),

F Y i(Q|x)F j(Q|x)

F Y (Q|x)2
=
Qτi(τ , x)Qj(τ , x)

Qτ (τ , x)
− Qττ (τ , x)Qi(τ , x)Qj(τ , x)

Qτ (τ , x)2
.

and from (A1.7), exploiting (A1.3) and (A1.4)

F ij(Q|x)

F Y (Q|x)
= −Qij(τ , x)+

Qτi(τ , x)Qj(τ , x)

Qτ (τ , x)
+
Qτj(τ , x)Qi(τ , x)

Qτ (τ , x)
−Q

ττ (τ , x)Qi(τ , x)Qj(τ , x)

Qτ (τ , x)2

Substituting this final expression in (A1.8) gives equation (6) in the main text.

Appendix 2: The effect on the approximation of using the log density

of Z rather than X.

Chesher (1991) shows that the densities of Z and X satisfy

fZ(z) = fX(z) +
∑
s,t

σstf
st
X (z) + o(Σ).

The log densities therefore satisfy

gZ(z) = gX(z) +
∑
s,t

σst
fstX (z)

fX(z)
+ o(Σ)
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and their derivatives satisfy

gjZ(z) = gjX(z) +
∑
s,t

σst

(
fstjX (z)

fX(z)
− fstX (z)f jX(z)

fX(z)2

)
+ o(Σ).

It follows immediately that

∑
i,j

σijQ
i
X(τ , z)gjX(z)−

∑
i,j

σijQ
i
X(τ , z)gjZ(z) = o(Σ)

and then directly that the order of the approximation error in (6) is not increased on

substituting gjZ(z) for gjX(z).

Appendix 3: Exponential Power Distributions: quantiles and random

number generation

Let S have an exponential power distribution with mean µ and variance λ2 and

shape parameter b ∈ (−1, 1). The probability density function of S is as follows.

fS(s) = A exp

(
−B

∣∣∣∣s− µλ
∣∣∣∣ 2
1+b

)

A = 1
λ

(
Γ( 32 (1+b))

(1+b)Γ( 12 (1+b))
3/2

)1/2

B =

(
Γ( 32 (1+b))
Γ( 12 (1+b))

) 1
1+b

Let G have a Gamma distribution with mean and variance δ. The density function

of G is

fG(g) = Γ(δ)−1gδ−1 exp(−g), g ∈ [0,∞]

Quantiles. Fast routines for calculating Gamma quantiles are easy to find. They

can be used to calculate EP quantiles, as follows.

Let QG(τ ; δ) be the τ -quantile of G. Let QS(τ ;µ, λ, b) be the τ -quantile of expo-
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nential power distributed S. Quantiles of S are related to quantiles of G as follows.

QS(τ ;µ, λ, b) = µ+λ sign(τ−0.5)

B−1QG(1− 2 min(τ , 1− τ)λ1/2

(1 + b)
1
2Γ
(

1
2 (1 + b)

) 3
4

,
1

2
(1 + b))

 1+b
2

Pseudo-random number generation. The EP quantile formula leads directly

to fast pseudo-random number generation because, if K has a uniform distribution

on [0, 1], then QS(K;µ, λ, b) has an EP distribution with mean µ, variance λ2 and

shape parameter b.
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Table 1: Means and standard deviations of QRF slope estimates ignoring measure-
ment error

bv = −0.5 bv = 0.0 bv = +0.5

τ bw bx mean s.d. mean s.d. mean s.d.

-0.5 .738 .029 .755 .031 .772 .033
-0.5 0.0 .734 .031 .750 .033 .769 .034

+0.5 .728 .034 .744 .035 .761 .038
-0.5 .736 .030 .755 .031 .774 .032

0.50 0.0 0.0 .732 .031 0.750 .033 .771 .034
+0.5 .725 .034 .743 .035 .763 .035
-0.5 .736 .028 .756 .029 .778 .032

+0.5 0.0 .730 .030 .750 .032 .772 .033
+0.5 .723 .033 .743 .034 .764 .037

-0.5 .746 .034 .753 .034 .764 .036
-0.5 0.0 .742 .034 .750 .036 .761 .037

+0.5 .739 .038 .747 .038 .757 .040
-0.5 .746 .033 .752 .034 .763 .036

0.75 0.0 0.0 .743 .034 .750 .036 .761 .037
+0.5 .740 .036 .745 .038 .756 .039
-0.5 .747 .032 .753 .034 .763 .036

+0.5 0.0 .743 .034 .750 .035 .760 .037
+0.5 .739 .036 .746 .038 .756 .039

-0.5 .765 .042 .748 .044 .736 .044
-0.5 0.0 .766 .043 .750 .044 .740 .046

+0.5 .769 .045 .754 .047 .743 .048
-0.5 .766 .043 .747 .043 .735 .047

0.90 0.0 0.0 .768 .044 .750 .044 .738 .047
+0.5 .770 .045 .752 .045 .744 .048
-0.5 .770 .045 .746 .044 .733 .046

+0.5 0.0 .771 .044 .750 .045 .737 .047
+0.5 .773 .046 .754 .046 .742 .048
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Table 2: Means and standard deviations of measurement error corrected QRF slope
estimates with σ2 known and gxZ(·) known

bv = −0.5 bv = 0.0 bv = +0.5

τ bw bx mean s.d. mean s.d. mean s.d.

-0.5 0.989 .040 1.011 .040 1.028 .042
-0.5 0.0 0.978 .042 1.000 .044 1.026 .046

+0.5 0.972 .043 0.996 .046 1.021 .050
-0.5 0.986 .041 1.010 .040 1.031 .041

0.50 0.0 0.0 0.976 .041 1.000 .043 1.028 .045
+0.5 0.970 .044 0.995 .046 1.024 .047
-0.5 0.987 .039 1.013 .038 1.036 .041

+0.5 0.0 0.974 .040 1.000 .043 1.030 .044
+0.5 0.966 .042 0.995 .044 1.025 .048

-0.5 0.994 .045 1.007 .044 1.018 .046
-0.5 0.0 0.989 .046 1.000 .047 1.015 .050

+0.5 0.988 .049 0.998 .050 1.011 .053
-0.5 0.992 .044 1.005 .044 1.018 .046

0.75 0.0 0.0 0.990 .046 1.000 .048 1.014 .049
+0.5 0.988 .047 0.996 .049 1.013 .052
-0.5 0.993 .044 1.005 .044 1.018 .046

+0.5 0.0 0.991 .046 1.000 .047 1.014 .049
+0.5 0.989 .047 0.997 .049 1.012 .052

-0.5 1.004 .056 0.994 .058 0.984 .058
-0.5 0.0 1.020 .058 1.000 .059 0.986 .062

+0.5 1.029 .058 1.005 .062 0.984 .064
-0.5 1.005 .056 0.990 .057 0.982 .059

0.90 0.0 0.0 1.023 .059 1.000 .059 0.984 .062
+0.5 1.032 .059 1.003 .059 0.986 .063
-0.5 1.007 .059 0.988 .059 0.978 .059

+0.5 0.0 1.026 .059 1.001 .059 0.981 .062
+0.5 1.036 .059 1.004 .059 0.984 .065
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Table 3: Means and standard deviations of measurement error corrected QRF slope
estimates with σ2 unknown and gxZ(·) known

bv = −0.5 bv = 0.0 bv = +0.5

τ bw bx mean s.d. mean s.d. mean s.d.

-0.5 0.870 0.107 1.024 .127 1.087 .130
-0.5 0.0 - - - - - -

+0.5 1.117 .168 1.017 .161 0.910 .149
-0.5 0.867 .106 1.023 .122 1.095 .129

0.50 0.0 0.0 - - - - - -
+0.5 1.123 .160 1.018 .161 0.909 .152
-0.5 0.874 .105 1.029 .120 1.101 .128

+0.5 0.0 - - - - - -
+0.5 1.122 .164 1.020 .158 0.908 .152

-0.5 0.892 .121 1.013 .137 1.074 .142
-0.5 0.0 - - - - - —

+0.5 1.106 .180 1.008 .180 0.899 .161
-0.5 0.888 .119 1.017 .133 1.078 .146

0.75 0.0 0.0 - - - - - -
+0.5 1.098 .170 1.004 .175 0.903 .161
-0.5 0.890 .116 1.013 .136 1.073 .144

+0.5 0.0 - - - - - -
+0.5 1.102 .178 1.011 .170 0.903 .162

-0.5 0.933 .152 0.988 .181 1.015 .188
-0.5 0.0 - - - - - -

+0.5 1.077 .218 0.988 .216 0.880 .194
-0.5 0.931 .158 0.993 .169 1.020 .192

0.90 0.0 0.0 - - - - - -
+0.5 1.066 .227 0.980 .221 0.886 .194
-0.5 0.934 .158 0.981 .182 1.013 .196

+0.5 0.0 - - - - - -
+0.5 1.064 .227 0.987 .217 0.887 .201



Understanding the Effect of Measurement Error on Quantile Regressions40

Table 4: Means and standard deviations of measurement error corrected QRF slope
estimates with σ2 known and gxZ(·) estimated

bv = −0.5 bv = 0.0 bv = +0.5

τ bw bx mean s.d. mean s.d. mean s.d.

-0.5 0.979 .048 1.002 .049 1.024 .052
-0.5 0.0 0.972 .047 0.994 .050 1.021 .052

+0.5 0.968 .047 0.991 .051 1.017 .056
-0.5 0.977 .049 1.003 .049 1.027 .051

0.50 0.0 0.0 0.969 .046 0.994 .049 1.024 .052
+0.5 0.965 .048 0.991 .051 1.020 .052
-0.5 0.978 .048 1.005 .047 1.032 .051

+0.5 0.0 0.968 .047 0.993 .049 1.024 .052
+0.5 0.963 .046 0.992 .049 1.021 .055

-0.5 0.986 .053 0.999 .053 1.015 .055
-0.5 0.0 0.984 .051 0.993 .053 1.012 .056

+0.5 0.986 .052 0.994 .054 1.008 .060
-0.5 0.984 .052 0.999 .052 1.016 .055

0.75 0.0 0.0 0.985 .051 0.993 .053 1.011 .057
+0.5 0.986 .051 0.994 .053 1.009 .057
-0.5 0.986 .052 0.997 .052 1.015 .054

+0.5 0.0 0.986 .051 0.994 .054 1.010 .057
+0.5 0.985 .051 0.994 .053 1.008 .057

-0.5 0.999 .063 0.987 .064 0.979 .067
-0.5 0.0 1.015 .064 0.994 .064 0.983 .067

+0.5 1.027 .063 1.003 .065 0.983 .068
-0.5 0.999 .064 0.985 .064 0.977 .068

0.90 0.0 0.0 1.019 .063 0.992 .064 0.980 .068
+0.5 1.029 .061 1.002 .064 0.984 .067
-0.5 1.003 .064 0.983 .063 0.975 .067

+0.5 0.0 1.021 .064 0.997 .066 0.977 .069
+0.5 1.032 .063 1.002 .063 0.982 .069
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Table 5: Means and standard deviations of measurement error corrected QRF slope
estimates with σ2 unknown and gxZ(·) estimated

bv = −0.5 bv = 0.0 bv = +0.5

τ bw bx mean s.d. mean s.d. mean s.d.

-0.5 0.820 .102 0.903 .136 0.972 .169
-0.5 0.0 - - - - - -

+0.5 0.944 .182 0.907 .170 0.863 .148
-0.5 0.818 .101 0.906 .137 0.974 .173

0.50 0.0 0.0 - - - - - -
+0.5 0.947 .181 0.904 .153 0.865 .156
-0.5 0.817 .097 0.908 .128 0.976 .188

+0.5 0.0 - - - - - -
+0.5 0.950 .172 0.906 .150 0.862 .147

-0.5 0.835 .118 0.900 .152 0.958 .183
-0.5 0.0 - - - - - —

+0.5 0.940 .187 0.902 .180 0.845 .162
-0.5 0.830 .116 0.903 .151 0.955 .187

0.75 0.0 0.0 - - - - - -
+0.5 0.939 .187 0.888 .175 0.853 .180
-0.5 0.830 .117 0.896 .136 0.949 .196

+0.5 0.0 - - - - - -
+0.5 0.941 .178 0.896 .165 0.845 .168

-0.5 0.856 .163 0.884 .173 0.906 .220
-0.5 0.0 - - - - - -

+0.5 0.939 .214 0.888 .212 0.824 .199
-0.5 0.859 .158 0.883 .193 0.902 .222

0.90 0.0 0.0 - - - - - -
+0.5 0.933 .218 0.878 .219 0.829 .214
-0.5 0.857 .155 0.878 .173 0.898 .235

+0.5 0.0 - - - - - -
+0.5 0.933 .214 0.883 .203 0.823 .206
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Figure 1: Exact and approximate τ -QRFs: τ ∈ {0.5, 0.75, 0.9}, bw = +0.5
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Figure 2: Exact and approximate τ -QRFs: τ ∈ {0.5, 0.75, 0.9}, bw = 0.0
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Figure 3: Exact and approximate QRFs: τ ∈ {0.5, 0.75, 0.9}, bw = −0.5
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