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Abstract

It is almost self-evident that social interactions can determine economic behavior and
outcomes. Yet, information on social ties does not exist in most publicly available and widely
used datasets. We present methods to recover information on the entire structure of social
networks from observational panel data that contains no information on social ties between
individuals. In the context of a canonical social interactions model, we provide sufficient
conditions under which the social interactions matrix, endogenous and exogenous social effect
parameters are all globally identified. We describe how high-dimensional estimation techniques
can be used to estimate the model based on the Adaptive Elastic Net GMM method. We
showcase our method in Monte Carlo simulations using two stylized and two real world network
structures. Finally, we employ our method to study tax competition across US states. We
find the identified network structure of tax competition differs markedly from the common
assumption of tax competition between geographically neighboring states. We analyze the
identified social interactions matrix to provide novel insights into the long-standing debate on
the relative roles of factor mobility and yardstick competition in driving tax setting behavior
across states. Most broadly, our method shows how the analysis of social interactions can be
usefully extended to economic realms where no network data exists.
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1 Introduction

In many economic environments, behavior and outcomes are shaped by social interactions between
agents.1 In microeconomic analysis of individual behavior, social interactions have been key to
understanding outcomes as diverse as educational outcomes, the demand for financial assets, and
technology adoption in low-income settings.2 In macroeconomics, the structures of production
and credit networks are important channels through which real and financial shocks propagate, or
through which firms learn.3 In political economy and public economics, ties between jurisdictions
are key to understanding tax setting behavior.4

Underpinning all these bodies of research is some measurement of the underlying social ties
between agents/nodes, be they individuals, firms or jurisdictions. However, information on social
ties does not exist in most publicly available and widely used datasets. To overcome this limitation,
the first generation of social interaction studies postulated ties based on some common observable.
Classic examples include using geographic proximity as the basis on which social interactions oc-
cur, or appealing to the concept of homophily and assuming agents similar on observables socially
interact with each other. A more recent wave of research has elicited data on social networks, pre-
dominantly in contexts of individual or household behavior. It is however increasingly recognized
that both postulated and elicited networks remain imperfect solutions to the fundamental problem
of missing data on social ties, because of econometric concerns that arise through either method,
or simply because of the cost of collecting social networks data.5

Two consequences of the difficulty in collecting network data are that: (i) classes of problems
in which social interactions play a critical role remain understudied, because social networks data
is missing or too costly to collect; (ii) there is no way to validate social interactions analysis in
contexts where ties are postulated. In this paper, we tackle this challenge by deriving sufficient
conditions under which global identification of the entire structure of social networks is obtained,

1Jackson et al. (2017) overview theoretical and empirical advances in the social networks literature. de Paula
(2017) overviews advances in econometrics on identifying social interactions and related computational issues.

2Sacerdote (2001) present evidence of the impact of randomly assigned college peers on each others’ GPA scores
and other student outcomes; Bursztyn et al. (2014) show how financial asset purchases are causally influenced
by peers through social learning and social utility; Conley and Udry (2010) show how social learning about a
new technology takes place among farmers in Ghana as farmers adjust input usage to align with those of their
information neighbors who were surprisingly successful in the previous period.

3Acemoglu et al. (2012) show how the propagation of microeconomic shocks through input-output linkages can
lead to macroeconomic fluctuations. Chaney (2014) presents evidence on the dynamics of French firms’ exports,
highlighting how existing contacts are used to search for new trading partners.

4It has long been argued these cross-jurisdiction interactions could be driven by factor mobility (Tiebout, 1956)
or by political yardstick competition (Shleifer, 1985; Besley and Case, 1994).

5As detailed in de Paula (2017), elicited networks are often self-reported, that can introduce error for the outcome
of interest. Network data can be censored if only a limited number of links can feasibly be reported. Incomplete
survey coverage of nodes in a network may lead to biased aggregate network statistics. Chandrasekhar and Lewis
(2016) show that even when nodes are randomly sampled from a network, partial sampling leads to non-classical
measurement error, and biased estimation. Collecting social network data is also a time and resource intensive
process. In response to these concerns, a nascent strand of literature explores cost-effective alternatives to full
elicitation to recover aggregate network statistics (Breza et al., 2017).
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using only observational panel data that itself contains no information on network ties. In short,
our method allows the study of social interactions without data on actual social networks, and the
validation of structures of social interaction where social ties have hitherto only been postulated.

We do so in an entirely standard setting in which a researcher is assumed to have panel data
on individuals i = 1, ...N for instances t = 1, ..., T . An instance refers to a specific observation
for i and need not correspond to a time period (for example if i refers to a firm, t could refer to
market t). The outcome of interest for individual i in instance t is denoted yit and is generated
according to a canonical structural model of social interactions:6

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + αi + αt + εit (1)

Outcome yit depends on the outcome of other individuals to whom i is socially tied, yjt, and
possibly the characteristics of those individuals, xjt. W0,ij measures whether and how the outcome
and characteristics of j causally impact the outcome for i. As outcomes for all individuals obey
equations analogous to (1), the system of equations can be written in matrix notation where the
entire structure of social interactions is captured by the adjacency matrix, denoted W0. Our
approach allows for unobserved heterogeneity across individuals αi and common shocks to all
individuals αt. This framework encompasses the classic linear-in-means specification of Manski
(1993). In his terminology, ρ0 and γ0 capture endogenous and exogenous social effects, and αt

captures correlated effects. The distinction between endogenous and exogenous peer effects is
critical, as only the former generates social multiplier effects.

Manski’s seminal contribution set out the reflection problem of separately identifying endoge-
nous social effects from exogenous and correlated effects in linear models.7 However, it has been
largely overlooked that Manski (1993) also set out another challenge, on the identification of the
social network in the first place:

“I have presumed that researchers know how individuals form reference groups and that indi-

viduals correctly perceive the mean outcomes experienced by their supposed reference groups.

There is substantial reason to question these assumptions (...) If researchers do not know how

individuals form reference groups and perceive reference-group outcomes, then it is reasonable

to ask whether observed behavior can be used to infer these unknowns (...) The conclusion to

be drawn is that informed specification of reference groups is a necessary prelude to analysis

of social effects.” (Manski (1993), p. 536)

This is the problem we tackle and so expand the scope of identification beyond ρ0, β0 and
6Blume et al. (2015) present micro-foundations based on non-cooperative games of incomplete information for

individual choice problems, that result in this estimating equation for a class of social interaction models.
7Manski (1993) highlights the difficulties (and potential restrictions) for identifying ρ0, β0 and γ0 when all

individuals interact with each other, and when this is observed by the researcher. In (1), this corresponds to
W0,ij = N−1 if i 6= j and W0,ii = 0.
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γ0. Our point of departure from much of the literature is to therefore presume W0 is entirely
unknown to the researcher. We derive sufficient conditions under which all the entries in W0, and
the endogenous and exogenous social effect parameters, ρ0 and γ0, are globally identified. Our
identification strategy is fundamentally different from those employed elsewhere in this nascent
literature. However it delivers sufficient conditions that are mild, and closely related to existing
results on the identification of social effects parameters when W0 is known (Bramoullé et al., 2009;
De Giorgi et al., 2010; Blume et al., 2015).8

The formulation of our problem involves the estimation of a high-dimensional parameter vector
including all the entries of the social interactions matrix W0. We thus use the Adaptive Elastic
Net GMM method (Caner and Zhang, 2014) to estimate the model (though other methods can
also be employed).

By identifying the social interactions matrix W0, our method allows the recovery of aggregate
network characteristics such as the degree distribution, patterns of homophily, reciprocity, and
clustering. Moreover, we also recover node-level statistics such as the strength of social interactions
between nodes, and the centrality of nodes (as measured by their Katz-Bonacich or eigenvector
centrality for example). As Jackson et al. (2017) and de Paula (2017) discuss, this is useful because
such aggregate and node-level statistics often map back to underlying models of social interaction.9

We showcase our method using Monte Carlo simulations and a real world application. The
simulations are based both on stylized random network structures as well as real world networks. In
each case, we take a fixed network structure W0, and simulate panel data as if the data generating
process were given by (1). We then apply our method on the simulated panel data to recover
estimates of all elements in W0, and the endogenous and exogenous social effect parameters (ρ0,
γ0). The stylized networks we consider are a random network, and a political party network in
which two groups of nodes each cluster around a central node. The real world networks we consider
are the high-school friendship network in Coleman (1964) from a small high school in Illinois, and
one of the village networks elicited in Banerjee et al. (2013) from rural Karnataka, India. These
networks vary in size, complexity, and their aggregate and node-level features.

Despite this heterogeneity across scenarios, we find our method to perform well in all four
8If the known W0 differs from the linear-in-means example, ρ0, β0 and γ0 can be identified (Bramoullé et al.,

2009; De Giorgi et al., 2010). Intuitively, identification in those cases relies on peers-of-peers that are not necessarily
connected to individual i and can be used to leverage variation from exclusion restrictions in (1), or if there are
groups of different sizes within which all individuals interact among each other (Lee, 2007). Bramoullé et al. (2009)
show these conditions are met if I,W0 and W 2

0 are linearly independent, which is shown to hold generically by
Blume et al. (2015). Alternative identification approaches when W0 is known focus on higher moments (variances
and covariances across individuals) of outcomes (de Paula, 2017), and rely on additional restrictions on the higher
moments of εit. Finally, we note that (1) is a spatial autoregressive model. In that literature, W0 is also typically
assumed known. Anselin (2010) discusses this literature and reviews recent progress.

9For example, aggregate statistics help identify conditions under which a process of contagion leads to a persistent
level of infection, or the extent to which polarized views are likely to coexist in society. Node-level statistics often
relate to modelling the influences of a given agent on the behavior of others. More precisely, the various measures
of centrality all capture aspects important for intermediation, for games of complements (Ballester et al., 2006),
learning and diffusion, the identification of key players, or the possibility to trade favors.
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simulations. In a reasonable dimension of panel data T and with varying node numbers across
simulations (N), we find the true network structure W0 is well recovered. For each simulated
network, the proportion of correctly identified true links is over 85% even for low T = 25. The
proportion of true non-links (zeroes in W0) captured correctly as zeros is over 90% even when
T = 25. Both proportions rapidly increase with T . A fortiori, we are able to estimate aggregate
and node-level statistics of each network, demonstrating the accurate recovery of key players in
networks for example. Furthermore, biases in the estimation of endogenous and exogenous effects
parameters (ρ̂, γ̂) fall quickly with T and are close to zero for large sample sizes.

The final part of our analysis applies our method to study a real world social interactions
problem: tax competition between US states. The literatures in political economy and public
economics have long recognized the behavior of state governors might be influenced by decisions
made in ‘neighboring’ states. The typical empirical approach has been to postulate the relevant
neighbors as being geographically contiguous states. Our approach allows us to infer the set of
economic neighbors determining social interactions in tax setting behavior from panel data on
outcomes and covariates alone. In this application, the panel data dimensions cover mainland US
states, N = 48, for years 1962-2015, T = 53.

We find the identified network structure of tax competition to differ markedly from the common
assumption of competition between geographic neighbors. While geography is a robust determinant
of tax competition, the identified economic network shows social interactions are far more spatially
dispersed. The identified network has fewer edges than the geography-based network, and this is
reflected in the far lower clustering coefficient in the identified network than in the geographic
network (.026 versus .194). With the recovered social interactions matrix we establish, beyond
geography, what covariates correlate to the existence of ties between states and the strength of
those ties. We identify non-adjacent states that influence tax setting and, more broadly, we
establish that some states – such as Delaware, a well known low-tax state – are especially focal in
driving tax setting in other jurisdictions. Finally, we conduct simulations to assess the equilibrium
propagation of tax setting shocks. We compare the general equilibrium effects obtained using our
identified network to what would have been obtained assuming the postulated geographic network
of interactions. We show significant differences between the two scenarios, both for the equilibrium
level of state taxes, and the dispersion of taxes across states.

We use all these results to shed new light on the two main hypotheses for social interactions in
tax setting across jurisdictions: factor mobility and yardstick competition.10

We contribute to a nascent literature on the identification of social interactions models when
W0 is not entirely known to the researcher. Closely related to our work, Blume et al. (2015)
investigate the case when W0 is partially observed. Specifically, Blume et al. (2015, Theorem 6)
shows that if two individuals are known to not be directly connected, the parameters of interest in
a model related to (1) can be identified. An alternative approach is taken in Blume et al. (2011,

10See Tiebout (1956), Shleifer (1985) and Besley and Case (1994).
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Theorem 7): they suggest a parameterization of W0 according to a pre-specified distance between
nodes. We do not impose such restrictions, but note that partial observability of W0 (as in Blume
et al., 2015) or placing additional structure on W0 (as in Blume et al. (2011)) is complementary
to our approach as it reduces the number of parameters in W0 to be retrieved.

Rose (2015) also presents related identification results for a linear model much like (1). As-
suming sparsity of the neighborhood structure, Rose (2015) offers identification conditions under
rank restrictions on sub-matrices of the reduced form coefficient matrix from a regression of out-
comes (yit) on covariates (xit). Intuitively, given two observationally equivalent systems, sparsity
guarantees the existence of pairs that are not connected in either. Since observationally equivalent
systems are linked via the reduced-form coefficient matrix, this pair allows one to identify certain
parameters in the model. Having identified those parameters, Rose (2015) shows that one can pro-
ceed to identify other aspects of the structure (see also Gautier and Rose (2016)). This is related
to the ideas in Blume et al. (2015, Theorem 6) who show identification results can be leveraged
if individuals are known not to be connected. Our analysis shows identification does not require
sparsity, and relies on plausible and intuitive conditions, whereas the auxiliary rank conditions
necessary in Rose (2015) may be computationally complex to verify.

Another paper related to our work is Breza et al. (2017). Motivated by the concern that social
network data is costly to collect, Breza et al. (2017) propose an alternative approach: to collect
aggregated relational data instead (i.e. responses to questions of the form, ‘How many of your
social network have trait k?’) They estimate a specific statistical link-formation model using the
aggregate data to obtain Bayesian estimates for the probability distribution of the network and
related statistics. We instead develop results on the identification of connection structures directly
relevant to outcomes, and our results do not rely on a particular probabilistic link-formation
model. However, aggregate relational data on outcome-relevant connections, or more generally,
partial information on networks, may provide further restrictions to facilitate identification and
estimation in our setup.

Our conclusions discuss how our approach can be modified, and assumptions weakened, to
integrate in partial knowledge ofW0. We also discuss a broader agenda that considers the formation
of social ties, and the next steps required to simultaneously identify models of network formation
and the structure of social interactions.

The paper is organized as follows. Section 2 presents the sufficient conditions under which
the social interactions matrix, endogenous and exogenous social effects are globally identified.
Section 3 describes the high-dimensional estimation techniques we use for estimation, based on
the Adaptive Elastic Net GMM method. Section 4 presents simulation results from stylized and
real-world social networks. Section 5 presents the application of our methods to tax competition
between US states. Section 6 concludes. The Appendix provides proofs, and further details related
to estimation and the simulations.
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2 Identification

2.1 Setup

Consider a researcher with access to panel data covering i = 1, . . . , N individuals repeatedly
observed over t = 1, . . . , T instances. The aim is to use this panel data to identify a social
interactions model, with no data on actual social ties being available. For expositional ease, we
begin by considering identification in a slightly simpler version of the canonical model described
in (1), where we adopt the subscript “0” to denote parameters generating the data, and non-
subscripted parameters are generic values in the parameter space:

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + εit. (2)

Hence for now, we drop individual-specific (αi) and time-constant fixed effects (αt), and assume
xit is a one-dimensional regressor for individual i and instance t. Later in this Section we extend
the analysis to include individual-specific and time-constant fixed effects. We also later allow for
multidimensional covariates xk,it, k = 1, . . . , K. In the terminology of Manski (1993), ρ0 and γ0

capture endogenous and exogenous social effects.
As outcomes for all individuals i = 1, . . . , N obey equations analogous to (2), the system of

equations can be more compactly written in matrix notation as

yt = ρ0W0yt + β0xt + γ0W0xt + εt. (3)

The vector of outcomes yt = (y1t, . . . , yNT )′ assembles the individual outcomes in instance t, and
the vector xt does the same with individual characteristics. Therefore, yt, xt and εt have dimension
N × 1, the social interactions matrix W0 is N ×N , and ρ0, β0, and γ0 are scalar parameters. We
do not make any distributional assumptions on εt beyond E(εt|xt) = 0. We assume the network
structure is predetermined and fixed. We treat it as a parameter to be identified and estimated.11

A regression of outcomes on covariates corresponds, then, to the reduced form for (3),

yt = Π0xt + νt, (4)

with Π0 = (I − ρ0W0)−1(β0I + γ0W0) and νt ≡ (I − ρ0W0)−1εt.
We wish to establish identification of the structural parameters of the model, including the

social interactions matrix W0, from the coefficients matrix Π0. Without data on the network W0,
11A related set of papers instead focusses on the distribution of networks generating the pattern in data and aims

to estimate aggregate network effects. Souza (2014) offers several identification and estimation results in this spirit.
In particular, he infers the network distribution within a certain class of statistical network formation models from
outcome data from many groups, such as classrooms, in few time periods. We instead concentrate on estimating
the set of links for one group followed over t = 1, . . . , T instances.
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we treat it as an additional parameter, in this otherwise standard model relating outcomes and
covariates. Our identification strategy relies on how changes in covariates xit reverberate through
the system and impact yit, as well as outcomes for other individuals in the group. These are
summarized by the entries of the coefficient matrix Π0, which, in turn, encode information about
W0 and (ρ0, β0, γ0).

We first set out five assumptions underpinning our main identification results. These Assump-
tions (A1-A5) deliver an identified set of up to two points. Three of these are entirely standard
in the social interactions. A fourth is a normalization required to separately identify (ρ0, γ0) from
W0, and the fifth is closely related to known results on the identification of (ρ0, γ0) when W0 is
known (Bramoullé et al., 2009).

Our first assumption explicitly states that no individual affects himself and is a standard
condition in social interaction models:

(A1) (W0)ii = 0, i = 1, . . . , N .

With Assumption (A1), we can omit elements on the diagonal ofW0 from the parameter space.
We thus can denote a generic parameter vector as θ = (W12, . . . ,WN,N−1, ρ, γ, β)′ ∈ Rm, where
m = N (N − 1) + 3, and Wij is the (i, j)-th element of W . Reduced-form parameters can be tied
back to the structural model (3) by letting Π : Rm → RN2 define the relation between structural
and reduced-form parameters:

Π(θ) = (I − ρW )−1 (βI + γW ) , (5)

where θ ∈ Rm, and Π0 ≡ Π(θ0).
As εt (and, consequently, νt) is mean-independent from xt, E[εt|xt] = 0, the matrix Π0 can

be consistently estimated as the linear projection of yt on xt.12 We do not impose additional
distributional assumptions on the disturbance term, except for conditions that allow us to identify
the reduced-form parameters in (4).

We limit social interactions to a manageable level. This is closely related to the concept of
stationarity in network models. Assumption (A2) controls the propagation of shocks and guaran-
tees that they die as they reverberate through the network, which provides adequate stability in
the system. It implies the maximum eigenvalue norm of ρ0W0 is less than one. It also ensures
(I − ρ0W0) is a non-singular matrix, and so the variance of yt exists, the transformation Π(θ0) is
well-defined, and the Neumann expansion (I − ρ0W0)−1 =

∑∞
j=0(ρ0W0)j is appropriate.

(A2)
∑N

j=1 |(W0)ij| ≤ 1 for every i = 1, . . . , N and |ρ0| < 1.

12If xt is endogenous, i.e. E[εt|xt] 6= 0, a vector of valid and relevant instrumental variables zt may still be used to
identify Π0. In either case, identification of Π0 requires variation of the regressor across individuals i and through
instances t. In other words, either E[xtx

′
t] (if exogeneity holds) or E[xtz

′
t] (otherwise) being full-rank.
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We next assume that network effects do not cancel out, another standard assumption.

(A3) β0ρ0 + γ0 6= 0.

The need for this assumption can be shown by expanding the expression for Π(θ0), which is possible
by (A2):

Π(θ0) = β0I + (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 . (6)

If Assumption (A3) were violated, β0ρ0 + γ0 = 0 and Π0 = β0I so the endogenous and exogenous
effects balance each other out, and network effects are altogether eliminated in the reduced form.

Identification of the social effects parameters (ρ0, γ0) requires that at least one row of W0 adds
to a fixed and known number. Otherwise, ρ0 and γ0 cannot be separately identified from W0.
Clearly, no such condition would be required if W0 was observed.

(A4) There is an i such that
∑

j=1,...,N(W0)ij = 1.

LettingWy ≡ ρ0W0 andWx ≡ γ0W0 denote the matrices that summarize the influence of peers’
outcomes (the endogenous social effects) and characteristics on one’s outcome (the exogenous social
effects), respectively, the assumption above can be seen as a normalization. In this case, ρ0 and γ0

represent the row-sum for individual i in Wy and Wx, respectively. In line with the literature, we
maintain that the same W0 governs the structure of both endogenous (Wy) and exogenous (Wx)
effects. We later discuss relaxing this assumption when more than one regressor is used.

Our final assumption provides for a specific kind of network asymmetry. We require that if the
diagonal of W 2

0 is not constant, identification is achieved for the parameters of the model.

(A5) There exists l, k such that (W 2
0 )ll 6= (W 2

0 )kk, i.e. the diagonal of W 2
0 is not proportional to

ι, where ι is the N × 1 vector of ones.

In unweighted networks, the diagonal of the social interactions matrix captures the number of
reciprocated links for each individual or, in the case of undirected networks, the popularity of those
individuals. Assumption (A5) hence intuitively suggests differential popularity across individuals
in the social network.

This assumption is related to the network asymmetry condition proposed elsewhere, such as in
Bramoullé et al. (2009). They show that when W0 is known, the structural model (2) is identified
if I, W0, and W 2

0 are linearly independent. Given the remaining assumptions, this condition is
satisfied if (A5) is satisfied, but the converse is not true: one can construct examples in which I,
W0, and W 2

0 are linearly independent when W 2
0 has a constant diagonal, so that Π0 does not pin

down θ0. The strengthening of this hypothesis is the formal price to pay for the social interactions
matrix W0 being unknown to the researcher.13

13To see the strength of the assumption of Bramoullé et al. (2009) when W0 is known, choose constants c1, c2,
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2.2 Main Identification Results

Under the relatively mild assumptions above, we can begin to identify interesting parameters
related to the network. These will be useful for the main identification theorems. Let λ0j denote
an eigenvalue of W0 with corresponding eigenvector v0,j for j = 1, . . . , N . Assumptions (A2) and
(A3) allow us to identify the eigenvectors of W0 directly from the reduced form. As |ρ0| < 1:

Π0v0,j = β0v0,j + (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 v0,j

=

[
β0 + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0 λk0,j

]
v0,j

=
β0 + γ0λ0,j

1− ρ0λ0,j

v0,j. (7)

The infinite sum converges as |ρ0λ0,j| < 1 by (A2). The equation above implies that v0,j is also
an eigenvector of Π0 with associated eigenvalue λΠ,j =

β0+γ0λ0,j
1−ρ0λ0,j . The fact that eigenvectors of

Π0 are also eigenvectors of W0 has a useful implication: eigencentralities may be identified from
the reduced form, even when W0 is not identified. As detailed in de Paula (2017) and Jackson
et al. (2017), such eigencentralities often play an important role in empirical work as they allow a
mapping back to underlying models of social interaction.14

Now let Θ ≡ {θ ∈ Rm : Assumptions (A1)-(A5) are satisfied} be the structural parameter
space of interest. Our first theorem establishes local identification of the mapping. A parameter
point θ0 is locally identifiable if there exists a neighborhood of θ0 containing no other θ which is
observationally equivalent. Using classical results in Rothenberg (1971), we show our assumptions
are sufficient to ensure that the Jacobian of Π relative to θ is non-singular, which, in turn, suffices
to establish local identification.

and c3 such that c1I+c2W0+c3W
2
0 = 0. Focusing on diagonal elements of this condition, we see that if the diagonal

of W 2
0 is not proportional to the diagonal of I, then c1 = c3 = 0 because diag(W0) = 0. It follows that c2 = 0 if at

least one (off-diagonal) element of W0 is non-zero. However, the converse is not true, so that if Assumptions A1-A5
do not hold, one can construct examples where Π0 does not pin down θ0. Take, for instance, N = 5 with θ0 and θ
where β = β0 = 1, ρ = 1.5, ρ0 = 0.5, γ = −2.5, γ0 = 0.5,

W0 =


0 0.5 0 0 0.5

0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5

0.5 0 0 0.5 0

 and W =


0 0 0.5 0.5 0
0 0 0 0.5 0.5

0.5 0 0 0 0.5
0.5 0.5 0 0 0
0 0.5 0.5 0 0

 .
Both W and W0 violate (A5) ((W 2)kk = (W 2

0 )kk = 0.5 for any k), and ρ violates (A2). Nonetheless, I,W0

and W 2
0 are linearly independent and, likewise, so are I,W , and W 2. In this case, both parameter sets produce

Π = (I − ρ0W0)−1(β0I + γ0W0) = (I − ρW )−1(βI + γW ). This arises even as W and W0 represent very different
network structures: any pair connected under W is not connected under W0 and vice-versa.

14To identify the eigencentralities, we identify the eigenvector that corresponds to the dominant eigenvalue. IfW0

is non-negative and irreducible, this is the (unique) eigenvector with strictly positive entries, by the Perron-Frobenius
Theorem for non-negative matrices (see Horn and Johnson (2013), p.534).
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Theorem 1. Assume (A1)-(A5). θ0 ∈ Θ is locally identifiable.

An immediate consequence of local identification is that the set {θ ∈ Θ : Π(θ) = Π(θ0)} is
discrete (i.e. its elements are isolated points). The following corollary establishes that Π is a
proper function, i.e. the inverse image Π−1(K) of any compact set K ⊂ RN2 is also compact
(Krantz and Parks (2013), p. 124). Since it is discrete, the identified set must be finite.

Corollary 1. Assume (A1)-(A5). Then Π(·) is a proper mapping. Moreover, the set {θ : Π(θ) =

Π(θ0)} is finite.

Under additional assumptions, the identified set is at most a singleton in each of the partitioning
sets Θ− ≡ Θ ∩ {ρβ + γ < 0} and Θ+ ≡ Θ ∩ {ρβ + γ > 0}.15 Since Θ = Θ− ∪ Θ+, if the sign
of ρ0β0 + γ0 is unknown, the identified set contains, at most, two elements. In the theorem that
follows, we show global identification only for θ ∈ Θ+, since arguments are mirrored for θ ∈ Θ−.

Theorem 2. Assume (A1)-(A5), then for every θ ∈ Θ+ we have Π(θ) = Π(θ0) ⇒ θ = θ0. That
is, θ0 is globally identified with respect to the set Θ+.

Similar arguments apply if Theorem 2 instead were to be restricted to θ ∈ Θ−. The proof of the
corollary below is immediate and therefore omitted.

Corollary 2. Assume (A1)-(A5). If ρ0β0 + γ0 > 0, then the identified set contains at most one
element, and similarly if ρ0β0 + γ0 < 0. Hence, if the sign of ρ0β0 + γ0 is unknown, the identified
set contains, at most, two elements.

We now turn our attention to the problem of identifying the sign of ρ0β0 + γ0 from the obser-
vation of Π0. This would then allow us to establish global identification using Theorem 2. It is
apparent from (6) that if ρ0 > 0 and (W0)ij ≥ 0, for all i, j = {1, . . . , N} the off-diagonal elements
of Π0 identify the sign of ρ0β0 + γ0.

Corollary 3. Assume (A1)-(A5). If ρ0 > 0 and (W0)ij ≥ 0, the model is globally identified.

Empirical applications often suggest endogenous social interactions are positive (so that ρ0 > 0),
in which case global identification is fully established by Corollary 3. On the other hand, if ρ0 < 0

(which would be the case if outcomes of interest were strategic substitutes, for example), ρk0 in
(6) alternates signs with k, and the off-diagonal elements no longer carry the sign of ρ0β0 + γ0.
Nonetheless, if W0 is non-negative and irreducible (i.e., permutable into a block-triangular matrix
or, equivalently, a strongly connected social network), the model is also identifiable without further
restrictions on ρ0:

15The global inversion results we use are related to, but different from, those used by Komunjer (2012), Lee
and Lewbel (2013) and Chiappori et al. (2015). Those authors use variations on a classical inversion result of
Hadamard. In contrast, we employ results on the cardinality of the pre-image of a function, relying on less stringent
assumptions. Specifically, while the classical Hadamard result requires that the image of the function be simply-
connected (Theorem 6.2.8 of Krantz and Parks, 2013), the results we rely on do not.
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Corollary 4. Assume (A1)-(A5), (W0)ij ≥ 0 and W0 is irreducible. If W0 has at least two real
eigenvalues or |ρ0| <

√
2/2, then the model is globally identified.

Corollary 4 holds if there are at least two real eigenvalues, or if ρ0 is appropriately bounded.
Since W0 is non-negative, it has at least one real eigenvalue, by the Perron-Frobenius Theorem. If
W0 is symmetric, for example, its eigenvalues are all real, and Corollary 4 holds. It also holds if
(W0)ij ≤ 0, as we can re-write the model as ρW0 = −ρ|W0| where |W0|, is the matrix whose entries
are the absolute values of the entries in W0. In any case, the bound on |ρ0| is sufficient and holds
in most (if not all) empirical estimates we are aware of obtained from either elicited or postulated
networks, including in the empirical application on tax competition considered in Section 5.

2.3 Extensions

2.3.1 Individual Fixed Effects

We observe outcomes for i = 1, . . . , N individuals repeatedly through t = 1, . . . , T instances.
If t corresponds to time, it is natural to think of there being unobserved heterogeneity across
individuals needing to be accounted for when estimating Π0. The structural model (2) is then,

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + αi + εit, (8)

which can be written in matrix form as,

yt = ρ0W0yt + xtβ0 +W0xtγ0 + α∗ + εt, (9)

where α∗ is the vector of fixed effects. Individual-specific and time-constant fixed effects can be
eliminated using the standard subtraction of individual time averages. Defining ȳt = T−1

∑T
t=1 yt,

x̄t = T−1
∑T

t=1 xt and ε̄t = T−1
∑T

t=1 εt,

yt − ȳt = ρ0W0 (yt − ȳt) + (xt − x̄t) β0 +W0 (xt − x̄t) γ0 + εt − ε̄t, (10)

if W0 is does not change with time. Identification from the reduced form follows from previous
theorems, since Π0 is unchanged when regressing yt − ȳt on xt − x̄t.

2.3.2 Common Shocks

We now include unobserved variables common to all individuals in the network. These correlated
effects αt capture the intuition that some unobservable might change outcomes of all individuals in
the same instance t, confounding the identification of social interactions. We have not placed any
distributional assumption on the covariance matrix of the disturbance term. Hence, our analysis
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readily incorporates correlated effects that are orthogonal to xt. When this is not the case, one
possibility is to model the corrected effects αt explicitly. The model then becomes,

yt = ρ0W0yt + xtβ0 + γ0W0xt + αtι+ εt, (11)

where αt is a scalar capturing shocks in the network common to all individuals. Let Π01 =

(I − ρ0W0)−1 and Π02 = (β0I + γ0W0) such that Π0 = Π01Π02. The reduced-form model is,

yt = Π0xt + αtΠ01ι+ vt. (12)

We propose a transformation to eliminate the correlated effects: exclude the individual-invariant
αt, subtracting the mean of the variables at a given period (global differencing). For this purpose,
define H = 1

n
ιι′. We next note that in empirical and theoretical work it is customary to strengthen

Assumption (A4) and require that all rows ofW0 sum to one (see for example Blume et al. (2015)).
This strengthened assumption is usually referred to as row-sum normalization, and is stated below:

(A4’) For all i = 1, ...N we have that
∑

j=1,...,N(W0)ij = 1.

This can be written compactly as W0ι = ι. Under row-sum normalization we then have that,

(I −H) yt = (I −H) (I − ρ0W0)−1 (β0I + γ0W0)xt + (I −H) (I − ρ0W0)−1 εt

= (I −H) Π0xt + (I −H) vt, (13)

because (I −H) (I − ρ0W0)−1 αtι = 0 if Assumption (A4’) holds. It then follows that Π̃0 =

(I −H)Π0 is identified. The next proposition shows that, under row-sum normalization of W0, Π0

is identified from Π̃0 (and, as a consequence, the previous results immediately apply).

Proposition 1. Under row-sum normalization of W0, Π0 is identified from Π̃0.

Under row-sum normalization of W0, a common group-level shock affects individuals homo-
geneously since (I − ρ0W0)−1αtι = αt(I + ρ0W0 + ρ2

0W
2
0 + · · · )ι = αt

1−ρ0 ι, which is a vector with
no variation across entries. Consequently, global differencing eliminates correlated effects and
(I −H) (I − ρ0W0)−1 αtι = (I − ρ0W0)−1 αt (I −H) ι = 0. In the absence of row-sum normaliza-
tion, global differencing does not ensure that correlated effects are eliminated. To see this, note
that (I − ρ0W0)−1 is no longer row-sum normalized and, crucially, αt(I − ρ0W0)−1ι is not a vector
with constant entries.

The next proposition makes this point formally, that the stronger Assumption (A4’) is necessary
to eliminate group-level shocks, by showing it is not possible to construct a data transformation
that eliminates group effects in the absence of row-sum normalization.
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Proposition 2. Define rW0 = (I − ρ0W0)−1ι. If in space Θ = {θ ∈ Rm : Assumptions (A1)-(A5)
are satisfied} there are N matrices W (1)

0 , . . . ,W
(N)
0 such that [r

W
(1)
0
· · · r

W
(N)
0

] has rank N , then

the only transformation such that (I − H̃)(I − ρ0W0)−1ι = 0 is H̃ = I.

2.3.3 Testing Row-sum Normalization

As row-sum normalization (A4’) enables common shocks to be accounted for in the social interac-
tions model, it is useful to be able to test for row-sum normalization. This is possible as,

Π0ι = β0ι+ (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 ι

=

[
β0 + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0

]
ι

=
β0 + γ0

1− ρ0

ι. (14)

The last equality follows from the observation that, under row-normalization of W0, W k
0 ι = W0ι =

ι, k > 0. This implies Π0 has constant row-sums, which suggests row-sum normalization is testable.
In the Appendix we derive the relevant Wald test statistic to do so.

2.3.4 Multivariate Covariates

The analysis naturally expands for multivariate xt of dimension n× k. In this case, the reduced-
form model (4) is,

yt =
K∑
k=1

Π0,kxk,t + νt, (15)

where Π0,k = (I − ρ0W0)−1 (β0,k + γ0,kW0), xk,t refers to the k-th column of xt, and β0,k and γ0,k

select the k-th element of K-dimensional β0 and γ0, respectively. The previous identification
results then apply sequentially to each Π0,k, k = 1, . . . , K. In fact, we only then need to maintain
Wx = γ0W0 for one covariate. It is therefore possible to allow the structure of endogenous and
exogenous social effects to differ for K − 1 of the covariates. With K covariates, equation (3) is,

yt = ρ0W0yt +
K∑
k=1

β0,kxt +
K∑
k=1

γ0,kW0,kxk,t + εt. (16)

Let W0,k = W0 be the case for k = 1. Then, having identified ρ0 and W0 from Π1,0,

(I − ρ0W0)Π0,k = β0,kI + γ0,kW0,k, (17)
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for k = 2, . . . , K. The parameter β0,k then corresponds to the diagonal elements of (I − ρ0W0)Π0,k

and the off-diagonal entries correspond to the off-diagonal elements of γ0,kW0,k. If Assumption
(A4) holds for every k = 1, . . . , K, we can identify γ0,k and thus W0,k for every k = 1, . . . , K.16

3 Estimation

The parameter vector to be estimated is high-dimensional: θ = (W12, . . . ,WN,N−1, ρ, γ, β)′ ∈ Rm,
where m = N (N − 1) + 3 and Wij is the (i, j)-th element of the N ×N social interactions matrix
W0. OLS estimation requires m � T : that there are many more time periods than parameters.
This requirement is unlikely to be met in most economic applications. Instead, to estimate a large
number of parameters with limited data, we need to utilize high-dimensional estimation methods.
Such estimation techniques are the focus of a rapidly growing literature (Fan et al., 2011).

Sparsity is a key assumption underlying all high-dimensional techniques, i.e. a large number
of true model parameters are zero, although their location is unknown – and impose some penal-
ization. In the context of social interactions, W0 is sparse if Ñ , the number of non-zero elements
of W0, is such that Ñ � T . The exact location of the non-zeros is unknown and it may be that
N > T . Sparsity thus corresponds to assuming that individuals influence or are influenced by a
small number of others, relative to the overall size of the network. As such, sparsity is typically
not a binding constraint in social networks analysis.

There are for example, multiple sparse structures in stylized networks: (i) a star: all individuals
receive spillovers from the same individual; (ii) lattice: each individual is a source of spillover only
to one other individual; (iii) interactions in pairs or triads or small groups, such as those described
by De Giorgi et al. (2010); and (iv) small world networks (Watts, 1999). Prominent real world
networks used in economic analysis are also sparse. For example, in individual-level elicited data
from AddHealth on teenage friendships (defined as reciprocated nominations), the density of links
is around 2% of all feasible links. In firm-level data, the density of production networks in the US
is less than 1% of all feasible links (Atalay et al., 2011).

Our preferred method estimates the interaction matrix in the reduced form while penalizing
and imposing sparsity on the structural object W0.17 To accomplish this, we make use of the
Adaptive Elastic Net GMM, developed by Caner and Zhang (2014). This is a two-step estimator.

16Blume et al. (2015) also study the case in which the social structure mediating endogenous and exogenous social
effects might differ. When Wx is known and there is partial knowledge of the endogenous social interaction matrix
W0, they show that the parameters of the model can be identified (their Theorem 6). Analogously, when there are
enough unconnected nodes in each of the social interaction matrices represented by Wx and W0, and the identity
of those nodes is known, identification is also (generically) possible (their Theorem 7).

17We choose to impose sparsity and penalization in the structural-form matrix W0 because this is a weaker
requirement than imposing sparsity and penalization in the reduced-form matrix Π0. In Appendix B.1, we show
that [Π0]ij = 0 if, and only if, there are no paths between i and j in W0, and so the pair is not connected. So
sparsity in Π0 is understood as W0 being “sparsely connected”, which is a stronger assumption than sparsity in W0.
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The first step is the solution to,

θ̃(p) = (1 + p2/T ) · arg min
θ∈Rp

gNT (θ)′MTgNT (θ) + p1

N∑
i,j=1
i 6=j

|Wi,j|+ p2

N∑
i,j=1
i 6=j

|Wi,j|2

 , (18)

where θ = (W1,2, . . . ,WN,N−1 ρ, γ, β)′ with dimension m = N(N − 1) + 3, and p1 and p2 are
the penalization terms. The term gNT (θ)′MTgNT (θ) is a GMM objective function with moment
conditions based on the orthogonality between the disturbance term and the covariates: gNT (θ) =∑T

t=1 [x1tet(θ)
′ · · · xNT et(θ)′]′, et(θ) = yt−(I − ρW )−1 (βI + γW )xt.18 There are q ≡ N2 moment

conditions since xit is orthogonal to ejt, for each i, j = 1, . . . , N . Hence the GMM weight matrix
MT is of dimension N2 ×N2, symmetric, and positive definite.19

The fact that the penalization terms p1 and p2 are greater than zero is what makes (18)
different from a standard GMM problem. The first term, p1

∑N
i,j=1,i 6=j |Wi,j|, penalizes the sum of

the absolute values of Wij, i.e. the sum of the strength of links, for all node-pairs. The second
penalization term, p2

∑N
i,j=1,i 6=j |Wi,j|2, penalizes for the sum of the square of the parameters. This

term has been shown to provide better model-selection properties, especially when explanatory
variables are correlated (Zou and Zhang, 2009).

Depending on the choice of p1, some Wi,j’s will be estimated as exact zeros. A larger share
of parameters will be estimated as zeros if p1 increases. The penalization also shrinks non-zero
estimates towards zero. A second (adaptive) step provides large improvements by re-weighting the
penalization by the inverse of the first-step estimates:20

θ̂(p) = (1 + p2/T ) · arg min
θ∈Rp


gNT (θ)′MTgNT (θ) + p∗1

∑
{i,j:W̃ij 6=0,
i,j=1,...,N,

i 6=j}

|Wi,j|
|W̃i,j|−γ

+ p2

∑
{i,j:W̃ij 6=0,
i,j=1,...,N,

i 6=j}

|Wi,j|2


,

(19)
where W̃i,j is the (i, j)-th element of the first-step estimate of W , and we follow Caner and Zhang
(2014) to set γ = 2.5. Elements W̃i,j estimated as zeros in the first stage are kept as zero in the
second stage, because W̃i,j = 0 implies the effective penalization is infinite. We write p = (p1, p

∗
1, p2)

as the final set of penalization parameters. Conditional on p, the final estimate is θ̂(p).
As in Caner and Zhang (2014, p. 35), the penalization parameters p are chosen by the BIC

18For expositional ease, we describe estimation in the context of the reduced form model (4), thereby abstaining
from individual fixed or correlated effects.

19For simplicity, we use MT = IN2×N2 . Note that if xt is endogenous, one can also exploit moment conditions
with respect to available instrumental variables.

20This modification is similar to the Adaptive step in the Adaptive Lasso of Zou (2006).
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criterion. This balances model fit with the number of parameters included in the model.21

In Appendix B.2 we provide further implementation details for the procedure, including the
choice of initial conditions. Of course, other estimation methods are available and our identification
results do not hinge on any particular estimator. Our aim is to demonstrate the practical feasibility
of using the Adaptive Elastic Net estimator, rather than claim it is the optimal estimator.22 Indeed,
in Appendix B.3 we show how OLS can also be used to estimate θ if T is sufficiently large. This
makes precise the benefits of penalized estimation for any given T and highlights that sparsity is
not required for our identification results. OLS estimates also form the basis for the Wald test
statistic used to test Assumption (A4’) on row-sum normalization.

4 Simulations

4.1 Set-Up

We now apply our method and demonstrate the properties of the Adaptive Elastic Net GMM
estimator, using Monte Carlo simulations under different true network structures. The simulations
are based on two stylized random network structures, and two real world networks. These four
networks are chosen as they vary in their size (N), complexity, and their aggregate and node-level
features. All four networks are also sparse. The two stylized networks considered are:

(i) Erdos-Renyi network: we randomly pick exactly one element in each row of W0 and set that
element to 1. This is a random graph with in-degree equal to 1 for every individual (Erdos
and Renyi, 1960). Such a network could be observed in practice if connections are formed
independently of one another.

(ii) Political party network: there are two parties, each with a party leader. The leader directly
affects the behavior of half the party members. We assume that one party has twice the
number of members as the other. More specifically, we assume individuals i = 1, . . . , N

3
are

affiliated to Party A and are led by individual 1; individuals i = N
3

+ 1, . . . , N are affiliated
to Party B and are led by individual N

3
+1. This difference in party size allows us to evaluate

our ability to recover and identify central leaders, even in the smaller party. To test the
21More specifically, the choice of p, which we denote as p̂, is the one that minimizes

BIC(p) = log

[
gNT

(
θ̂(p)

)′
MT gNT

(
θ̂(p)

)]
+A

(
θ̂(p)

)
· logNT

NT

where A
(
θ̂(p)

)
counts the number of non-zero coefficients among {W1,2, . . . ,WN,N−1}.

22For example, Manresa (2016) also relies on a Lasso-related methodology but restricts ρ0 to be zero and so
ignores endogenous social effects.If instrumental variables are available, Lam and Souza (2016) propose estimating
(1) directly using the Adaptive Lasso and exploiting sparsity of the estimated W0. Gautier and Rose (2016) extend
the (identification-robust) Self-Tuning Instrumental Variable estimator in Gautier and Tsybakov (2014).
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procedure further, we add one random link per row to represent ties that are not determined
by links to the Party leader. We simulate this network for various choices of N . If N is not
a multiple of three, we round N

3
to the nearest integer.

The two real world networks we consider were elicited by researchers in very different scenarios.

(iii) Coleman’s (1964) high school friendship network survey: in 1957/8, students in a small high
school in Illinois were asked to name, “fellows that they go around with most often.” A link
was considered if the student nominated a peer in either survey wave. The full network
has N = 73 nodes, of which 70 are non-isolated and so have at least one link to another
student. On average, students named just over five friendship peers (hence the sparsity of
the network). Furthermore, the in-degree distribution shows that most individuals received
a small number of links, while a small number received many peer nominations.

(iv) Banerjee et al.’s (2013) village network survey: these authors conducted a census of house-
holds in 75 villages in rural Karnataka, India, and survey questions include several about
relationships with other households in the village. We use social ties based on family rela-
tions, and focus on village 10 that is comprised of N = 77 households and so similar in size
to network (iii). In this village there are 65 non-isolated households, with at least one family
link to another household in the same village.

For the stylized networks (i) and (ii), we first assess the performance of the estimator for a
fixed network size, N = 30. In the Appendix we show how performance varies with alternative
network sizes. We simulate the real-world networks (iii) and (iv) using non-isolated nodes in each
(so N = 70 and 65 respectively). We exclude isolated nodes because they do not conform with
row-sum normalization (as also assumed in Bramoullé et al., 2009).

Our method identifies entries in W0 and so naturally recovers links of varying strength. It has
long been recognized that link strength might both play an important role in social interactions,
the seminal example being the distinct roles of strong and weak ties in job search (Granovetter,
1973). Data limitations often force researchers to postulate some ties to be weaker than others
(say, based on frequency of interaction or joint characteristics of the linked individuals). This
is in sharp contrast to our approach, that identifies the continuous strength of ties, W0,ij, where
W0,ij > 0 is interpreted as node (state) j influencing outcomes in node (state) i.

To establish the performance of the estimator in capturing variation in link strength, we proceed
as follows for each network. First, for each node we randomly assign one of their links to have
value W0,ij = .7. As the underlying data generating process is assumed to allow for common time
effects (αt), we then set the weight on all other links from the node to be equal and such that
row-sum normalization (A4’) is complied with (hence the sum of values across all links equals
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one).23 As we consider larger networks, we typically expect them to have more non-zero entries
in each row of W0, but row-sum normalization means that each weaker link will be of lower value.
This works against the detection of weaker links using estimation methods involving penalization,
because they impose small parameter estimates shrink to zero.24 Finally, to aid exposition, we set
a threshold value for link strength to distinguish ‘strong’ and ‘weak’ links. A strong link is defined
as one for which W0,ij > .3 and a weak link then has W0,ij ≤ .3.

Summary statistics for each network are presented in Panel A of Table 1. Following Jackson
et al. (2017), we consider the following network-wide statistics: number of edges, number of strong
and weak edges, number of reciprocated edges, clustering coefficient, number of components, and
the size of the maximal component. In addition, we report the standard deviation calculated
across elements of the diagonal of W 2

0 . If this is zero, then the diagonal of W 2
0 is either zero or

proportional to the vector of ones, and Assumption A5 would not be satisfied. We can see that
for each case this statistic is well above zero.

Following Jackson et al. (2017), we also consider the following node-level statistics: in- and
out-degree distribution (mean and standard deviation), and the three most central individuals.
Overall, we see that the four networks differ markedly in their complexity, as well as their size.
The networks vary in the relative importance of strong and weak ties: the Erdos-Renyi network
only has strong ties, the political party network has twice as many strong as weak ties. For the
real world networks, the mean out-degree distributions are higher so the majority of ties are weak,
with the high school network having around 80% of its edges being weak ties.

Panel data for each of the four simulations is generated as,

yt = (I − ρ0W0)−1(xtβ +W0xtγ + αtι+ α∗ + εt), (20)

where αt is a (scalar) time effect and α∗ is a N × 1 vector of fixed effects, drawn respectively
from N(1, 1) and N(ι, IN×N) distributions. We consider T = {25, 50, 75, 100, 125, 150}. The true
parameters are set to ρ0 = .3, β0 = .4 and γ0 = .5 (thus satisfying Assumption A3). The
exogenous variable (xt) and error term (εt) are simulated as standard Gaussian, both generated
from N(0N , IN×N) distributions. As described later, we conduct a series of robustness checks to
evaluate the sensitivity of the simulations to alternative parameters choices.

For each combination of parameters, we conduct 1, 000 simulation runs. On the initial 50

runs, we choose penalization parameters p that minimize the BIC criteria on a grid. This is a
computationally intensive procedure, since it requires running the optimization procedure described

23For example, if in a given row of W0 there are two links, one will be randomly selected to be set to .7, and the
other set to .3. If there are three links one is set to .7 and the other two set to each have weight .15 to maintain
row-sum normalization, and so on. For the Erdos-Renyi network, there are thus only strong ties as each node has
only one link to another node.

24Caner and Zhang (2014) state that “local to zero coefficients should be larger than N−
1
2 to be differentiated

from zero.”
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in Section 3 as many times as the number of points in the grid for p.25 To reduce the computational
burden, we do so only in the initial 50 simulation runs and consider these simulation runs as a
calibration of p. For the remaining 950 iterations, the penalization parameter p is set fixed at the
median p computed over the calibration runs. This only worsens the performance of the estimator,
since a sub-optimal p is chosen for the majority of the iterations.

4.2 Results

We evaluate the performance of the procedure for varying panel lengths T = {25, 50, 75, 100, 125, 150},
using the following metrics. First, we examine the proportion of true zero entries in W0 esti-
mated as zeros, and the proportion of true non-zero entries estimated as non-zeros. A global
perspective of the proximity between the true and estimated network can be inferred from their
average absolute distance between elements. This is the mean absolute deviation of Ŵ and Π̂

relative to their true values, defined as MAD(Ŵ ) = 1
N(N−1)

∑
i,j,i6=j |Ŵij −Wij,0| and MAD(Π̂) =

1
N(N−1)

∑
i,j,i6=j |Π̂ij −Πij,0|. The closer these metrics are to zero, more of the elements in the true

matrix are correctly estimated. Finally, we evaluate the performance of the procedure using av-
eraged estimates of the endogenous and exogenous social effect parameters, ρ̂ and γ̂. In keeping
with the estimation strategy in our empirical application, we report “post-Elastic Net” estimates
obtained after having estimated the social interactions matrix by the Elastic Net GMM procedure.
We use peers-of-peers’ covariates from the estimated matrix as instrumental variables.

Figure 1 shows the simulation results. Each Panel presents a particular metric as we vary T ,
for the simulated networks. For example, Panel A shows that for each network, the proportion of
zero entries in W0 correctly estimated as zeros is above 90% even when exploiting a small number
of time periods (T = 25). The proportion approaches 100% as T grows. Conversely, Panel B
shows the proportion of non-zeros entries estimated as non-zeros is also high for small T , being at
least 85% across networks, even for T = 25, and this increases as T grows. As discussed above, the
Adaptive Elastic Net estimator is better in recovering true zero entries because it is a well-known
feature that shrinkage estimators tend to shrink small parameters to zero.

Panels C and D show that for each simulated network, the mean absolute deviation between
estimated and true networks for Ŵ and Π̂ falls quickly with T and is close zero for large sample
sizes. Finally, Panels E and F show that biases in the endogenous and exogenous social effects
parameters, ρ̂ and γ̂, also fall quickly in T (we do not report the bias in β̂ since it is very close to
zero for every T ). The fact that biases are not zero is as expected, being analogous to well-known
results for autoregressive time series models.

Figure 2 provides a visual representation of the simulated and actual networks under T = 100

time periods. The network size is set to N = 30 in the two stylized networks, and as described
25In our simulations, we set the penalization grid to p1 = [0, .025, .05, .10], p∗1 = [0, .025, .05, .10] and p2 =

[0, .025, .05, .10], resulting in 43 = 64 points per run.
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above, N = 70 for the high school network, and N = 65 for the village household network. In
comparing the simulated and true network, Figure 2 distinguishes between three types of edges:
kept edges, added edges and removed edges. Kept edges are depicted in blue: these links are
estimated as non-zero in at least 5% of the iterations and are also non-zero in the true network.
Added edges are depicted in green: these links are estimated as non-zero in at least 5% of the
iterations but the edge is zero in the true network. Removed edges are depicted in red: these
links are estimated as zero in at least 5% of the iterations but are non-zero in the true network.
Figure 2 further distinguishes between strong and weak links: strong links are shown in solid edges
(W0,ij > .3), and weak links are shown as dashed edges.

Consider first Panel A of Figure 2, comparing the simulated and true Erdos-Renyi network.
We find that all zero and all non-zero links are correctly estimated. Hence all links are recovered
and no edges are added to the true network (all edges are in blue). For the political party network,
Panel B shows that all strong edges are correctly estimated (it also highlights the party leader
nodes). However, around half the weak edges are recovered (blue dashed edges) with the others
being missed (red dashed edges). As discussed above, this is not surprising given that shrinkage
estimators force small non-zero parameters to zero. Hence, larger T is needed to achieve similar
performance as in the other simulated networks in terms of detecting weak links. Again, we never
estimate any added edges (no edges are green).

The larger real-world networks are the most complex to recover. Panel C shows that in the
high school network, although strong edges are all recovered, around half the weak edges are
missing (red dashed edges) and there are a relatively small number of added edges (green edges):
these amount to 87 edges, or approximately 1.9% of the 4, 534 zero entries in the true high-school
network. A similar pattern of results is seen in the village network in Panel D: strong edges are
all recovered, and here the majority of weak edges are also recovered. A relatively small share of
overall edges are added or missed.

Panel B of Table 1 allows us to compare the network- and node-level statistics calculated from
the recovered social interactions matrix Ŵ to those in Panel A from the true interactions matrix
W0. As Figure 2 showed, the random Erdos-Renyi network is perfectly recovered. For the political
party network, the number of recovered edges is slightly lower than the true network (38 vs. 45).
This is driven by weak edges: while all the strong edges are recovered (30 out of 30), not all the
weak ones are (8 vs. 15). On node-level statistics, the mean of the in- and out-degree distributions
are slightly lower in the recovered network, the clustering coefficient is exactly recovered, and all
three nodes with the highest out-degree are correctly captured (nodes 1, 11 and 28). The party
leaders are individuals 1 and 11, so these focal individuals are both correctly recovered.

Performance in the two real world networks is also encouraging. In the high school network, all
strong edges are correctly recovered, as are the majority of weak edges. However, as already noted
in Figure 2, because weak edges are not well estimated in the high school network, the average in-
and out- degrees are smaller in the recovered network relative to the true network. We recover two
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out of the three individuals with the highest out-degree (nodes 21 and 69). Finally, in the village
network, all strong edges are recovered, the majority of weak edges are recovered, the clustering
coefficients are similar across recovered and true networks (.134 vs. .141) and we recover two out
of the three households with the highest out-degree (nodes 16, 35, and 57).

4.3 Robustness

Appendix Table A1 presents results for the recovered stylized networks under varying network
sizes, N = {15, 30, 50}. Differences between the true and estimated networks are fairly constant
as N increases: even for small N = 15 a large proportion of zeros and non-zeros are correctly
estimated. In all cases, biases in ρ̂ and γ̂ decrease with larger T . Appendix Table A2 conducts
robustness checks on the sensitivity of the estimates to parameters choices. We consider true
parameters ρ0 = {.1, .3, .7, .9}, γ0 = {.3, .7}, β0 = {.0, .8}. We also introduce a common shock in
the disturbance variance-covariance matrix by varying q in,

εt ∼ N

0,


1 q · · · q

q 1 · · · q
...

... . . . ...
q q · · · 1




where we consider q = {.3, .5, .8, 1}. We find the procedure to be robust to the true values of
ρ0, β0, γ0, and q. For β0 = 0, performance is slightly worse. This is expected as the exogenous
variation from xt no longer affects yt directly.

Finally, to show the gains from using the Adaptive Elastic Net GMM estimator, Appendix
Table A3 shows simulation results using Adaptive Lasso estimates of the interaction matrix Π0,
so estimating and penalizing the reduced-form. The Adaptive Lasso estimator performs relatively
worse: the mean absolute deviation between Ŵ and W0 is often two to three times larger than the
corresponding Adaptive Elastic Net estimates. Appendix Table A4 shows the performance of the
procedure based on OLS estimates of Π0. Given OLS requires m � T , we use a time dimension
ten times larger, T = {500, 1000, 1500}, and still find a deterioration in performance compared to
the Adaptive Elastic Net GMM estimator.

Taken together, the simulation results suggest the Adaptive Elastic Net GMM estimator is
preferred over Adaptive Lasso and OLS estimators. This procedure does well in recovering true
network structures, and a fortiori, network- and node-level statistics. It does so in networks that
vary in size and complexity, and as the underlying social interactions model varies in the strength
of endogenous and exogenous social effects, and strength of correlated shocks.
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5 Application: Tax Competition Between US States

We apply our methods to a long-standing issue in public economics on tax setting behavior by
governors of US states (Wilson, 1999). Since the seminal empirical studies in tax competition
between jurisdictions (Case et al., 1989; Case et al., 1993), it has been well-recognized that the
definition of competing ‘neighbors’ is the key empirical challenge, and theory cannot completely
resolve the issue. Two primary mechanisms have been argued to drive the structure of interactions
across jurisdictions in tax setting behavior: factor mobility and yardstick competition.

On factor mobility, Tiebout (1956) first argued that labor and capital can move in response
to differential tax rates across jurisdictions. Indeed, a body of evidence finds that tax bases are
mobile in response to tax differentials.26 Factor mobility leads naturally to the postulated social
interactions matrix being: (i) geographic neighbors given labor mobility; and (ii) jurisdictions with
similar economic or demographic characteristics, given capital mobility (Case et al. (1989)).

A second mechanism for social interactions in tax setting occurs through political economy
channels. In particular, yardstick competition between jurisdictions is driven by voters making
comparisons between states to learn about their own politician’s quality.27 Besley and Case (1995)
formalize the idea by developing a model of tax-setting in which voters use taxes set by governors
in neighboring states to infer the quality of their own governor. This generates informational
externalities across jurisdictions, forcing incumbents into a form of yardstick competition, where
their tax setting behavior is determined by what other incumbents are doing. Yardstick competition
leads naturally to the postulated interactions matrix being ‘political neighbors’: other states that
voters make comparisons to.

This application showcases the practical use of our approach to recover social interactions in a
setting in which the number of nodes and time periods is relatively low: the data covers mainland
US states, N = 48, for years 1962-2015, T = 53. In this application, we can contrast the identified
interactions matrix W0 with a natural null hypothesis that states are only influenced by their
geographic neighbors, Wgeo. This is a common postulated structure for interactions in much of the
empirical literature on tax competition. Moreover, with the recovered social interactions matrix we
can establish, beyond geography, what predicts the existence and strength of ties between states.
Finally, relative to the postulated geographic network of interactions, we conduct simulations using
our economic neighbors network to assess: (i) the equilibrium propagation of tax setting shocks
from any given state to all mainland US states; (ii) the general equilibrium impacts of such tax
setting shocks on the average level and inequality in tax rates, as well as other statistics for tax
rates based on the network of social interactions. Taken together, this body of evidence allows us
to provide novel insights related to the role of factor mobility and yardstick competition in driving
tax setting behavior across US states.

26See Hines (1996), Devereux and Griffith (1998), and Kleven et al. (2013, 2014).
27See Shleifer (1985) and Besley and Case (1995).
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5.1 Data and Empirical Specification

We denote state tax liabilities for state i in year t as τit, covering state taxes collected from real
per capita income, sales and corporate taxes. We measure this using a series constructed from
data published annually in the Statistical Abstract of the United States. Our constructed series
covers mainland US states (N = 48) for years 1962-2015, (T = 53). Our analysis therefore extends
the sample used by Besley and Case (1995), that runs from 1962-1988 (T = 26).28 The outcome
considered, ∆τit, is the change in tax liabilities between years t and (t− 2) because it might take a
governor more than a year to implement his tax program. Their modeling framework then implies
a standard social interactions specification for the tax setting behavior of state governors:

∆τit = ρ
N∑
j=1

W0,ij∆τjt + γ

N∑
j=1

W0,ijxjt + βxit + αi + αt + εit. (21)

This allows for tax setting behavior to be determined by (i) endogenous social effects arising
through neighbors’ tax changes (

∑N
j=1W0,ij∆τjt); (ii) exogenous social effects arising through the

economic/demographic characteristics of neighbors (
∑N

j=1W0,ijxjt); (iii) state i’s characteristics
(xit), that include income per capita, the unemployment rate, and the proportion of young and
elderly. All specifications include state fixed effects and time effects (αi, αt) to allow for time-
invariant unobserved heterogeneity across states in tax changes, and for common (macroeconomic)
shocks to all states. Appendix Table A5 presents descriptive statistics for the original Besley and
Case (1995) sample, and for our extended sample.

Our approach identifies the structure of social interactions among ‘economic neighbors’, that we
denote Ŵecon. At various points, it will be useful to compare the recovered structure of economic
neighbors to the often postulated structure based on geographic neighbors, that we denote Wgeo,
as shown in Figure 3A for mainland US states. Moreover, much of the earlier literature focuses
on endogenous social effects and ignores exogenous social effects by setting γ = 0. Our method
allows us to relax this constraint and thus estimate the full typology of social effects described by
Manski (1993). This is important because only endogenous social effects lead to social multipliers.
In the context of tax competition, such multipliers are crucial to identify as they can lead to a
race-to-the-bottom or sub-optimal level of public goods provision.29

To facilitate comparison with the earlier literature, after estimating the neighborhood matrix,
we address the potential endogeneity of neighbors’ tax changes (∆τjt) by instrumenting for them,
and thus recover consistent estimates of the endogenous social effect parameter, ρ. Following Besley

28Besley and Case (1995) test their political agency model using a two equation set-up: (i) on gubernatorial
re-election probabilities; and (ii) on tax setting. Our application focuses on the latter because this represents a
social interaction problem. They use two tax series: (i) TAXSIM data (from the NBER) which runs from 1977-88;
and (ii) state tax liabilities series constructed from data published annually in the Statistical Abstract of the US
that runs from 1962-1988. All their results are robust to either series. We extend the second series.

29See Brennan and Buchanan (1980), Wilson (1986) and Oates and Schwab (1988).
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and Case (1995), we instrument for ∆τjt using neighbors’ lagged change in income per capita, and
neighbors’ lagged change in unemployment rate. These instruments are essentially in the spirit of
using exogenous social effects to instrument for neighbor’s tax changes. However, given that our
method allows us to estimate exogenous social effects (γ 6= 0), these instruments will generally be
weaker when estimating the full specification in (21). We thus also follow Bramoullé et al. (2009)
and De Giorgi et al. (2010), and instrument neighbors’ tax changes with neighbor-of-neighbor
characteristics.

5.2 Preliminary Findings

Table 2 presents our preliminary findings and comparison to Besley and Case (1995). Column 1
shows OLS estimates of (21) where the postulated social interactions matrix is based on geographic
neighbors, exogenous social effects are ignored so γ = 0 and the panel includes all 48 mainland
states but runs only from 1962-1988 as in Besley and Case (1995). Social interactions influence
gubernatorial tax setting behavior: ρ̂OLS = .375. Column 2 shows this to be robust to instrument-
ing neighbors’ tax changes using the instrument set proposed by Besley and Case (1995). ρ̂2SLS is
more than double the magnitude of ρ̂OLS suggesting tax setting behaviors across jurisdictions are
strategic complements, and OLS estimates are heavily downward-biased.

Columns 3 and 4 replicate both specifications over the longer sample period we construct
for each state’s tax liability. The evidence confirms Besley and Case’s (1995) finding on social
interactions to be robust in a longer sample period. We again note that ρ̂2SLS is more than double
the magnitude of ρ̂OLS. The result in Column 4 implies that for every dollar increase in the average
tax rates among geographic neighbors, a state increases its own taxes by 61 cents. This is similar
to the headline estimate of Besley and Case (1995).30

5.3 Endogenous and Exogenous Social Interactions (ρ and γ)

Given this solid foundation in our extended panel data set, we proceed to apply our methods to
establish whether there is evidence of endogenous and exogenous social interactions in tax setting
behavior. We first focus on the estimated endogenous and exogenous social interaction parameters,
and in the next subsection we detail the identified social interactions matrix, Ŵecon.

Column 1 of Table 3 shows the initial estimates obtained from the Adaptive Elastic Net
procedure where γ = 0. Columns 2 and 3 show the resulting OLS and 2SLS estimates for ρ:
ρ̂2SLS = .641 > ρ̂OLS = .378 > 0.31 Columns 4 to 6 estimate the full model in (21), allowing for
both endogenous and exogenous social effects. Columns 5 and 6 show the OLS and 2SLS estimates

30Nor is the magnitude very different from earlier work examining fiscal expenditure spillovers. For example,
Case et al. (1989) find that US state government levels of per-capita expenditures are significantly impacted by
the expenditures of their neighbors, with the size of the impact being that a one dollar increase in neighbors’
expenditures leads to an increase in own-state expenditures by seventy cents.

31We report robust standard errors and so do not adjust them for the fact that Ŵecon is estimated.
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of ρ are smaller, and less precisely estimated when exogenous social effects are allowed. This is
not surprising given that the instrument set is based on neighbors’ characteristics. Many of these
characteristics are directly controlled for in (21), thus reducing the effective variation induced by
the instrument in neighbors’ taxes. Hence, in Column 7, we report 2SLS estimates based on the
alternative instruments using neighbor-of-neighbor characteristics. This represents our preferred
specification: we find ρ̂2SLS = .608 (with a standard error of .220). This value also accords with
the requirements on ρ in Corollaries 3 and 4, needed for global identification.

In short, there is robust evidence of endogenous social interactions in tax setting behavior of
governors across mainland US states. Appendix Table A6 shows the full set of exogenous social
effects (so Columns 1 to 4 in Table A6 refer to the same specifications as Columns 4 to 7 in Table
3). We find there are exogenous social effects across states operating through economic neighbors’
income per capita and unemployment rate. Demographic characteristics of economic neighbors to
state i do not impact its tax rate.

5.4 Identified Social Interactions Matrix (Ŵecon)

We now describe the identified social interactions matrix, Ŵecon from estimating the full model
in (21). Figure 3B provides a graphical representation of how the structure of economic (Ŵecon)
and geographic networks (Wgeo) differ, where connected edges imply that two states are linked in
at least one direction (either state i causally impacts state taxes in j, and/or vice versa). This
comparison makes it clear whether all states geographically adjacent to i matter for its tax setting
behavior and whether there are relevant non-adjacent states that influence its tax rate.

The left-hand panel of Figure 3B shows the network of geographic neighbors (whose edges are
colored blue), onto which we have superimposed the edges that are not identified as links in Wecon;
these dropped edges are indicated in red. This first implies that not all geographically adjacent
states are relevant for tax setting behavior.

The right-hand panel of Figure 3B adds new edges identified in Ŵecon that are not part of
Wgeo. These represent non-adjacent states through which social interactions occur. This implies
the existence of spatially dispersed social interactions between states.

As Table 4 summarizes, Wgeo has 214 edges, while Ŵecon has only 144 edges. States are less
connected than implied by postulating geographic networks. Ŵecon and Wgeo have 79 edges in
common. However, Wgeo has 135 edges that are absent in Ŵecon. Hence, while geography remains
a key determinant of tax competition, the majority of geographical neighbors (135/214 = 63%)
are not relevant for tax setting. There are 65 edges that exist only in Wgeo, so although there are
fewer edges in Ŵecon, the identified social interactions are more spatially dispersed than under the
assumption of geographic networks. This is reflected in the far lower clustering coefficient in Ŵecon

than in Wgeo (.026 versus .194).32

32The clustering coefficient is the frequency of the number of fully connected triplets over the total number of

26



The broad implication is that in the context of tax setting, economic distance is imperfectly
measured if we simply assume that interactions depend only on geographical distance. As detailed
below, this has many implications for the economics of tax competition.

5.5 Strength of Ties and Reciprocity

As demonstrated in the simulations, our method naturally identifies the continuous strength of
ties, W0,ij, where W0,ij > 0 is interpreted as node (state) j influencing outcomes in node (state)
i. This allows us to assess whether links are reciprocal: namely whether W0,ij > 0 and W0,ji > 0,
and asymmetries in link strength. This is useful because recent developments in tax competition
theory, using insights from the social networks literature, suggest links need not be reciprocal or
of symmetric strength.33

Figure 4A shows the distribution of W0,ij’s across edges in Ŵecon (conditional on W0,ij > 0).
The strength of ties between pairs of states varies greatly. The mean strength of ties is .19, that is
far higher than the median strength, .085, suggesting there are many weak ties. At the other end
of the distribution, the strongest 10% of ties have weight above .6.

On the reciprocity of ties, Table 4 reveals that only 29.2% of edges in Ŵecon are reciprocal (all
edges in Wgeo are reciprocal by construction). Hence, tax competition is both spatially disperse
and highly asymmetric. In most cases where tax setting in state i is influenced by taxes in state
j, the opposite is not true.

Panels B and C in Figure 4 illustrate this for California, indicating the strength of each tie
(Ŵecon,CA,j). Figure 4B shows the in-network for California: those states that influence tax setting
in California. Some geographic neighbors to California influence its tax setting behavior (Nevada
and Oregon), although the strength of these ties is weak. On the other hand, non-adjacent states
influence California (Colorado, Maine), and these in-network ties are stronger than the geograph-
ically adjacent in-network ties. Figure 4C shows the out-network for California, again indicating
each tie strength (Ŵecon,i,CA): those states whose taxes are influenced by taxes in California. We
see that none of the geographic neighbors to California are influenced by its tax setting behavior,
whereas a number of non-adjacent states are influenced by California (including East Coast states
such as Virginia, and Southern states, such as Louisiana). When states are influenced by taxes in
California, these ties tend to be relatively strong ties: Ŵecon,i,CA > .19 for all five in-network ties.

Of course, focusing in on the ties of a given state is only illustrative. In Section 5.7 we provide

triplets. Other metrics can also be used to provide a scalar comparison of Wgeo and Ŵecon. One way to do so is
to reshape both matrices as vectors of length (48 × 47) and to compute their correlation. Doing so, we obtain a
correlation coefficient of .322.

33Janeba and Osterleh (2013) present theory and evidence on asymmetries in social interactions in tax setting
across jurisdictions. Their model is based on an assumption of two levels of tax competition. The first level involves
local competition among geographically close neighbors. The second idea is that large/populous jurisdictions (cities)
compete with other cities of which some are geographically distant. Results of a survey of political decision-makers
(mayors of 1108 cities and municipalities) in the German state of Baden-Wï¿œrttemberg support their theory.
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systematic evidence on the characteristics of states that predict the existence and strength of ties
between them, considering the sample of all N × (N − 1) = 48 × 47 = 2256 potential links that
could have formed between mainland states.

To be clear, given the common time shocks αt in (21), row-sum normalization is required and
ensures

∑
jW0,ij = 1. Hence, for every state i there will be at least one economic neighbor state

j∗ impacts it, so that W0,ij∗ > 0. This just reiterates that social interactions matter. On the other
hand, our procedure imposes no restriction on the derived columns of Ŵecon. It could be that
a state does not affect any other state. Examining this possibility directly in Ŵecon, we see this
occurs for five states: Minnesota, New Jersey, New Mexico, Vermont, and Wisconsin. These states
have an out-degree of zero. Their tax rate appear to impact no other states.

Table 4 reports the degree distribution across all nodes (states), splitting for in-networks and
out-networks. In Wgeo, the in-degree is by construction equal to the out-degree, as all ties are
reciprocal. The greater sparsity of the network of economic neighbors, relative to the network of
geographic neighbors, is picked up again in the degree distribution being lower for Ŵecon than for
Wgeo. In Ŵecon the dispersion of in- and out-degree networks is very different (as measured by
the standard deviation), being near double for the in-degree. This asymmetry in Ŵecon further
suggests that some highly focal or influential states drive tax setting behavior in other states.

Figures 5A and 5B show complete histograms for the in- and out-degree across states. The
histogram on the left is for in-degree, and shows that states under Ŵecon generally have lower
in-degree than under Wgeo. The states that are influenced by the highest number of other states
are Utah, Pennsylvania and Ohio. The histogram on the right for out-degree, shows the five states
described above that do not impact other states (Wisconsin, Vermont, New Mexico, New Jersey
and Minnesota). Delaware is an outlier influential state in its out-degree in determining tax setting
in other states: as discussed later, Delaware is a well-known potential tax haven.34

5.6 Counterfactuals

We can contrast how shocks to tax setting in a given state propagate through mainland US states
under our estimated social interactions matrix Ŵecon, relative to what would have been predicted
under a postulated network structure based on geographic neighbors, Wgeo. We illustrate this by
considering a scenario in which California exogenously increases the change in its taxes per capita.
We set ∆τit to correspond to an increase of 10%. We then examine the propagation of this tax
setting shock on other states. Figure 4C already hints at how such propagation might start: first
through the impulse responses of the out-network of California, then through the impulse responses

34Dyreng et al. (2013) find that taxes play an important role in determining whether firms locate subsidiaries in
Delaware: a Delaware-based state tax avoidance strategy lowers state effective tax rates by around 1 percentage
point. They also report that in June 2010, Delaware landed at the top of National Geographic magazine’s published
list of the most secretive tax havens in the world (ahead of foreign tax havens such as Luxembourg, Switzerland,
and the Cayman Islands).
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of the out-network of those states and so forth. This immediately suggests that as Ŵecon is spatially
more dispersed than Wgeo, the general equilibrium effect on state taxes might be very different
under both scenarios. We therefore derive not only the general equilibrium impacts of tax shocks,
we also discuss the implications for tax inequality under Ŵecon and the Wgeo counterfactual. We
measure the differential change in equilibrium state taxes in state j under the two scenarios using
the following statistic:

Υj = log(∆τjt|Ŵecon)− log(∆τjt|Wgeo), (22)

so that positive (negative) values imply taxes being higher (or lower) under Ŵecon than Wgeo.35

Figure 6 graphs Υj for each mainland US state (including for California itself, the origin of
the shock). A wide discrepancy between the equilibrium state tax rates predicted under Ŵecon

relative to Wgeo: across states Υj varies from −3.03 to 9.61. Only in one state is Υj close to
zero. Appendix Table A7 summarizes the general equilibrium effects under both scenarios. We
see that average tax rate increases are 74% higher under Ŵecon. The dispersion of tax rates across
states also increases dramatically under Ŵecon relative to Wgeo. Finally, we note that assuming
interactions across states are based solely on geographic neighbors, we miss the fact that many
states will have relatively small tax increases.

5.7 Factor Mobility or Yardstick Competition?

We conclude by presenting two strategies to shed light on whether factor mobility and yardstick
competition drive interactions across states in tax setting behavior: (i) exploiting information
in the identified social interactions matrix Ŵecon; (ii) following Besley and Case (1995), using
gubernatorial re-election as an indirect test of the relevance of yardstick competition.

For our first strategy, we estimate the factors correlated with the existence/strength of links
between states i and j in Ŵecon using the following dyadic regression specification:

Ŵecon,ij = λ0 + λ1Xij + λ2Xi + λ3Xj + uij. (23)

To begin, we discretize link strength so Ŵecon,ij ∈ {0, 1} and predict the existence of a link using
a linear probability model. We then estimate the correlates of link strength Ŵecon,ij ∈ [0, 1] using
a Tobit model. The elements Xij, Xi, and Xj correspond to characteristics of the pair of states
(i, j), of state i, and state j, respectively. Covariates are time-averaged over the sample period, and
robust standard errors are reported. The sample thus corresponds to N×(N−1) = 48×47 = 2256

potential ij links that could have formed.
Table 5 presents the results. Column 1 controls only for whether states i and j are geographic

neighbors. This is highly predictive of a link between them. Columns 2 and 3 show that distance
35We calculate the counterfactual at ρ̂2SLS = .608, the endogenous effect parameter estimated in our preferred

specification, Column 7 of Table 3.
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between states also negatively correlates with them being linked, but that when both geographic
adjacency and distances are included, it is the former that is more predictive. Hence, we control
only for whether i and j are geographic neighbors in the remaining Columns.

The next set of specifications use the insight from the literature that economic neighbors are
likely to be based on a mixture of similarity in geography, income per capita, and demography (Case
et al., 1989). Column 4 thus adds two Xij covariates to capture the economic and demographic
homophily between states i and j. GDP homophily is the absolute difference in the states GDP
per capita. Demographic homophily is the absolute difference of the share of young people (aged
5-17) plus the absolute difference of the share of elderly people (aged 65+) across the states. GDP
homophily predicts ties, whereas demographic homophily does not.

Columns 5 to 7 then sequentially add in several sets of controls. For labor mobility, we use
net state-to-state migration data to control for the net migration flow of individuals from state i
to state i (defined as the flow from i to j minus the flow from j to i).36 We then add a political
homophily variable between states. For any given year, this is set to one if a pair of states have
governors of the same political party. As this is time averaged over our sample, this element
captures the share of the sample period in which the states have governors of the same party.
Lastly, we include whether state j is considered a tax haven (and so might have disproportionate
influence on other states). Based on Findley et al. (2012), the following states are coded as tax
havens: Nevada, Delaware, Montana, South Dakota, Wyoming and New York. This corroborates
earlier evidence in Figure 5B, where Delaware, Wyoming and Nevada were among the states with
the highest out-degree.

The specification in Column 7 shows that with this full set of controls, geographic adjacency
remains a robust predictor of the existence of links between states. However, the identified eco-
nomic network highlights additional significant predictors of tax competition between stares. In
particular, political homophily reduces the likelihood of a link, suggesting that any element of
yardstick competition driving social interactions occurs when voters compare their governor to
governors of the opposing political party in other states. The tax haven states appear to be es-
pecially influential in the tax setting behaviors of other states. The strong influence of these tax
haven states might be especially indicative of endogenous social effects in tax setting, and may
lead to a race-to-the-bottom (Brennan and Buchanan, 1980; Wilson, 1986; Oates and Schwab,
1988). Relative to these factors, the economic and demographic similarity between states play an
insignificant role in determining links between states.

The final column considers the continuous link strength as an outcome and reports Tobit partial
36We also experimented with alternative measures of labor migration, and results were qualitatively the same.

State-to-state migration data are based on year-to-year address changes reported on individual income tax re-
turns filed with the IRS. The data cover filing years 1991 through 2015, and include the number of returns filed,
which approximates the number of households that migrated, the number of personal exemptions claimed, which
approximates the number of individuals who migrated. The data are available at https://www.irs.gov/statistics/soi-
tax-stats-migration-data (accessed September 2017).
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average effect estimates. This reinforces that geography, political homophily, and tax haven status
all robustly correlate to the strength of influence states tax setting has on others. Labor mobility
between states does not robustly predict either the existence or strength of ties.

Our second strategy to investigate factor mobility and yardstick competition follows the in-
tuition of Besley and Case (1995). They suggest an indirect test of the relevance of yardstick
competition is that this mechanism only applies to governors not facing term limits. Therefore we
compare our main effects across two subsamples: state-years in which the governor can and cannot
run for reelection. The results are reported in Table 6. The 2SLS results suggest that in both
samples, endogenous social interaction effects exist, although they are more precisely estimated
when governors can run for re-election.

Taken together, our evidence suggests that both factor mobility (of both labor and capital,
as measured through the influence of tax havens), and yardstick competition (occurring through
comparisons to governors of the other political party), are important mechanisms driving the
existence and strength of social interactions in tax setting behavior across US states.

6 Conclusion

It is almost self-evident that social interactions can determine economic behavior and outcomes.
Yet, information on social ties does not exist in most publicly available and widely used datasets.
The literature has tried to overcome this challenge either through postulating ties based on some
common observable, or eliciting ties. It is however increasingly recognized that both postulated
and elicited networks remain imperfect solutions to the fundamental problem of missing data on
social ties, either because of econometric concerns that arise through either method, or the cost of
collecting primary data on networks. Two consequences are that: (i) classes of problems in which
social interactions play a critical role remain understudied; (ii) there is no way to validate social
interactions analysis in contexts where ties are postulated.

We tackle this challenge by deriving sufficient conditions under which global identification of
the entire structure of social networks is obtained, using only observational panel data that itself
contains no information on network ties. In short, our method allow the study of social interactions
with social networks data, and the validation of social interactions analysis where social ties have
hitherto only been postulated. In the context of a canonical social interactions model, we provide
sufficient conditions under which the social interactions matrix, and endogenous and exogenous
social effects are globally identified. Our identification strategy is novel, and may bear fruits
in other areas (see for example the proof for Theorem 2). We describe how high-dimensional
estimation techniques can be used to estimate the model based on the Adaptive Elastic Net GMM
method. We showcase our method in Monte Carlo simulations using two stylized and two real
world networks. Finally, we employ our method to provide novel insights on the study of tax
competition across US states.
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Our method is immediately applicable to other classic peer effects problems where large T
panel data is readily available. For example, in finance, a long-standing question has been whether
CEOs and other top executives are subject to relative performance evaluation, and if so, what
is the comparison set of firms/CEOs used (Edmans and Gabaix, 2016).37 Other fields such as
macroeconomics, political economy and trade are all obvious areas in which long panel data sets
exist for key outcomes, and social interactions across jurisdictions/countries etc. might be key
determinants of them.

Three further directions for future research are worth highlighting. First, under partial ob-
servability of W0 (as in Blume et al., 2015), the number of parameters in W0 to be retrieved falls
quickly. Our methods can then still be applied to complete knowledge of W0, and this could be
achieved with potentially weaker assumptions for identification, and in shorter panels. To illustrate
possibilities, Appendix Figure A1 shows results from a final simulation exercise in which we assume
the researcher starts with partial knowledge of W0. We do so for the Banerjee et al. (2013) village
network, showing simulation results for scenarios in which the researcher knows the social ties of
the three (five, ten) households with the highest out-degree. For comparison we also show the
earlier simulation results when W0 is entirely unknown. This clearly illustrates that with partial
knowledge of the social network, performance on all six metrics generally improves for given T .

Second, we have developed our approach in the context of the canonical linear social interactions
model (1). This allows to build closely on Manski (1993) when W0 is known to the researcher, and
the reflection problem is the main challenge in identifying endogenous and exogenous social effects.
However, as established in Blume et al. (2011) and Blume et al. (2015), the reflection problem is
functional-form dependent and may not apply to many non-linear models. An important topic for
future research is thus to extend the insights gathered here to non-linear social interaction settings.

Finally, our approach has taken the network structure as predetermined and fixed. Clearly, an
important part of the social networks literature examines endogenous network formation (Jackson
et al., 2017; de Paula, 2017). Our analysis allows us to only hint at the issue in two ways. First, in
sufficiently long panels it would be possible to examine whether the identified social interactions
matrix were stable across sample splits. Second, the kind of dyadic regression analysis in Section
5 on the correlates of entries in W0,ij suggests factors driving link formation and dissolution. A
rich avenue for future work is to address the challenge of simultaneously identifying and estimating
models of network formation and social interaction.

37Edmans and Gabaix (2016) overview the theory and empirics of executive compensation. Applying the infor-
mativeness principle in contract theory to CEO pay suggests peer performance is informative about the degree to
which firm value is due to high CEO effort or luck. In a first generation of studies, Aggarwal and Samwick (1999)
and Murphy (1999) showed that CEO pay is determined by absolute, rather than relative performance. However,
this conclusion has been challenged by others such as Gong et al. (2011) who argue these conclusions arise from
identifying relative performance evaluation (RPE) based on an implicit approach, assuming a peer group (e.g. based
on industry and/or size). Indeed, when Gong et al. (2011) study the explicit use of RPE, based on the disclosure
of peer firms and performance measures mandated by the SEC in 2006, they actually find that 25% of S&P 1500
firms explicitly using RPE. Our method could provide novel evidence on the matter.
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A Proofs

Theorem 1

Proof. The local identification result follows Rothenberg (1971). We first demonstrate that the
parameter space is open which is an maintained assuption (Assumption I) in that article. The
spectral radius of a matrix is a continuous function of its entries38 and we restrict the spectral radius
to lie in an open set relative to the set of non-negative real numbers (which is the admissible range
for the spectral radius of a matrix). Since under a continuous function the inverse image of an
open set is also open, the set of ρ and W such that ρW has spectral radius stricly less than one
is open. Consequently, since β, γ ∈ R, the parameter space Θ ⊂ Rm is an open set (recall that
m = N(N − 1) + 3.)

We have that,

∂Π

∂Wij

= ρ (I − ρW )−1 ∆ij (I − ρW )−1 (βI + γW ) + (I − ρW )−1 γ∆ij

∂Π

∂ρ
= (I − ρW )−1W (I − ρW )−1 (βI + γW )

∂Π

∂γ
= (I − ρW )−1W

∂Π

∂β
= (I − ρW )−1 ,

where ∆ij is the N × N matrix with 1 in the (i, j)-th position and zero elsewhere. Write the
N2 × m derivative matrix ∇Π ≡ ∂vec(Π)

∂θ′
. By assumption, row i in matrix W sums up to one,

38The eigenvalues ofW vary continuously with its entries since they are the solution to the associated characteristic
polynomial and the roots for a polynomial are a continuous function of its coefficients (see Harris and Martin, 1987).
Consequently the spectral radius is a continuous function of the entries in W .
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incorporated through the restriction that ϕ ≡
∑N

j=1,j 6=iWij − 1 = 0, for the unit-normalised row
i. The derivative of the restriction ϕ is the m-dimensional vector ∇′W ≡

∂ϕ
∂θ′

=
[
e′i ⊗ ι′N−1 01×3

]
(where ei is an N -dimensional vector with 1 in the ith component and zero, otherwise). Following
Theorem 6 of Rothenberg (1971), the structural parameters θ ∈ Θ are locally identified if, and
only if, the matrix ∇ ≡ [∇′Π ∇′W ]′ has rank m.39

If ∇ is does not have rank m, there is a nonzero vector c ≡
(
cW12 , . . . , cWN,N−1

, cρ, cγ, cβ
)′ such

that ∇ · c = 0. This implies that

cW12

∂Π

∂W12

+ · · ·+ cWN,N−1

∂Π

∂WN,N−1

+ cρ
∂Π

∂ρ
+ cγ

∂Π

∂γ
+ cβ

∂Π

∂β
= 0 (24)

and, for the unit-normalized row i (see A4),∑
j 6=i,j=1,...,n

cWij
= 0. (25)

Premultiplying equation (24) by (I − ρW ) and substituting the derivatives,

N∑
i,j=1,i 6=j

cWij

[
ρ∆ij (I − ρW )−1 (βI + γW ) + γ∆ij

]
+

+cρW (I − ρW )−1 (βI + γW ) + cγW + cβI = 0.

Define C ≡
∑N

i,j=1,i 6=j cWij
∆ij. Since the spectral radius of ρW is strictly less than one by A2, one

can show (by representing (I − ρW )−1 as a Neumann series, for instance) that (βI + γW ) and
(I − ρW )−1 commute. Then, the expression above is equivalent to

ρC (βI + γW ) (I − ρW )−1 + γC + cρW (βI + γW ) (I − ρW )−1 + cγW + cβI = 0.

Post-multiplying by (I − ρW ), we obtain

ρC (βI + γW ) + γC (I − ρW ) + cρW (βI + γW ) + cγW (I − ρW ) + cβ (I − ρW ) = 0

which, upon rearrangement, yields

(γ + ρβ)C + cβI + (βcρ − cβρ+ cγ)W + (cργ − ρcγ)W 2 = 0. (26)

Because Cii = 0 andWii = 0 (by A1), we have that cβ +(cργ − ρcγ) (W 2)ii = 0 for all i = 1, . . . , N .
39For a parameter vector to be locally identified, Rothenberg (1971) requires that the derivative matrix ∇ have

rank m at that point and that this vector be (rank-)regular. A (rank-)regular point of the parameter space is one
for which there is a neighborhood where the rank of ∇ is constant (see Definition 4 in Rothenberg, 1971). Because
we show that the derivative matrix has rank m at every point in the parameter space, this also guarantees that
every point in the parameter space is (rank-)regular.
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Since by assumption A5 there isn’t a constant κ such that diag (W 2
0 ) = κι, then cβ = cργ−ρcγ = 0.

Plugging back in (26), we obtain

(γ + ρβ)C + (βcρ + cγ)W = 0.

which implies that C = −βcρ+cγ
γ+ρβ

W since γ + ρβ 6= 0 by assumption A3. Taking the sum of the
elements in row i, we get

(γ + ρβ)
∑

j 6=i,j=1,...,n

cWij
+ (βcρ + cγ) = 0.

Note that, by equation (25),
∑

j 6=i,j=1,...,n cWij
= 0. So βcρ + cγ = 0 and C = −βcρ+cγ

γ+ρβ
W = 0. This

implies that cWij
= 0 for any i and j. Combining βcρ + cγ = 0 with cργ − ρcγ = 0 obtained above,

we get that cρ (ρβ + γ) = 0. Since ρβ + γ 6= 0, then cρ = 0. Given that βcρ + cγ = 0, it follows
that cγ = 0. This shows that θ ∈ Θ is locally identified.

Corollary 1

Proof. The parameter θ0 being locally identified (see Theorem 1) implies that the set {θ : Π(θ) =

Π(θ0)} is discrete. If it is also compact, then the set is finite. To establish that we now show that
Π is a proper function: the inverse image Π−1(K) of any compact set K ⊂ Rm is also compact
(see Krantz and Parks (2013), p.124).

Let A be a compact set in the space of N × N real matrices. Since it is a compact set in
a finite dimensional space, it is closed and bounded. Since Π is a continuous function of θ, the
pre-image of a compact set, which is closed, is also closed. BecauseW is bounded and ρ ∈ (−1, 1),
their corresponding coordinates in θ ∈ Π−1(A) are bounded. Suppose the coordinates for β or γ in
θ ∈ Π−1(A) are not bounded. So one can find a sequence (θk)

∞
k=1 such that |βk| → ∞ or |γk| → ∞.

Denote the Frobenius norm of the matrix A as ‖A‖. By the submultiplicative property ‖AB‖ ≤
‖A‖ · ‖B‖,

‖βI + γW‖ ≤
∥∥(βI + γW ) (I − ρW )−1

∥∥ · ‖I − ρW‖ .
Note that (I − ρW )−1 and (βI + γW ) commute, and so

∥∥(βI + γW ) (I − ρW )−1
∥∥ =

∥∥(I − ρW )−1 (βI + γW )
∥∥ = ‖Π‖ .

It follows that

‖βI + γW‖
‖I − ρW‖

≤ ‖Π‖ .
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Given W has zero main diagonal,

‖βI + γW‖2 = β2 ‖I‖2 + γ2 ‖W‖2 = β2N + γ2 ‖W‖2 .

Also, ‖I − ρW‖2 = N + ρ2 ‖W‖2 ≤ N + ρ2C, for some constant C ∈ R, since W is bounded by
assumption A2. We then have that√

β2N + γ2 ‖W‖2√
N + ρ2C

≤ ‖Π‖ .

Since |ρ| < 1 by Assumption (A2) the denominator above is bounded. Hence |βk| → ∞ ⇒
‖Π(θk)‖ → ∞. We now use the fact that

∑
jWij = 1 to show that there is a lower bound on

‖W‖2, and so |γk| → ∞ ⇒ ‖Π(θk)‖ → ∞. To see this, note that

min
s.t.

∑
jWij=1

‖W‖2 ≥ min
s.t.

∑
jWij=1

N∑
j=1

W 2
ij.

The Lagrangean for the right-hand side minimization problem is:

L (Wi1, . . . ,Wi,i−1,Wi,i+1, . . . ,WiN ;µ) =
N∑
j=1

W 2
ij − µ

(∑
j

Wij − 1

)
.

where µ is the Lagrangean multiplier for the normalisation constraint. The first-order conditions
for this convex minimization problem are:

∂L
∂Wij

= 2Wij − µ = 0, for any j 6= i

∂L
∂µ

=
N∑
j=1

Wij − 1 = 0.

The first equation implies that Wij = µ
2
for j = 1, . . . , i − 1, i + 1, . . . , N . Using the fact that

Wii = 0, the second equation implies that µ = 2/(N − 1). We have then that Wij = 1
N−1

, j 6= i

and, consequently, ‖W‖2 ≥ (N − 1) 1
(N−1)2

= 1
N−1

. Hence, if |γk| → ∞, the numerator in the lower
bound for ‖Π‖ above also goes to infinity. Consequently, A would not be compact.

Therefore, if A is compact the coordinates in θ ∈ Π−1(A) corresponding to β and γ are also
bounded. Hence, Π−1(A) is bounded (and closed). Consequently it is compact.

For a given reduced form parameter matrix Π, the set {θ : Π(θ) = Π(θ0)} is then compact.
Since it is also discrete, it is finite.

The following lemmas are used in proving Theorem 2.
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Lemma 1. Assume (A1)-(A4). If γ0 = 0, then θ0 ∈ Θ is globally identified.

Proof. With γ = 0, we have

Π = (I − ρW )−1β.

Take a candidate (W ∗, ρ∗, β∗) possibly different from (W, ρ, β) such that the models are observa-
tionally equivalent. Then

Π = (I − ρW )−1β = (I − ρ∗W ∗)−1β∗.

Note that the equation above is equivalent to

b1I + b2W + b3W
∗ = 0

with b1 = β∗−β, b2 = −ρβ∗ and b3 = ρ∗β. This implies that b1 = 0 since diag(W ) = diag(W ∗) = 0.
Because b2 = −ρβ∗ = −ρβ 6= 0 (by A3) and b3 = ρ∗β = ρ∗β∗ 6= 0 (also by A3), b2, b3 6= 0 and we
can write W ∗ = − b2

b3
W . Since the ith row of W and W ∗ sums to one, we have that b2

b3
= −1 which

implies that ρ∗/ρ = β/β∗ = 1 and, in turn, W = W ∗.

Lemma 2. Assume (A1)-(A2) and (A4)-(A5). The image of Π(·), for θ ∈ Θ+, is path-connected
and, therefore, connected.

Proof. Take θ and θ∗ ∈ Θ+. Consider first the subvectors corresponding to the adjacency matrices
W and W ∗. Without loss of generality, let 1, . . . , N be ordered such that (W 2)11 > (W 2)22. Con-
sider the adjacency matrix W∗ corresponding to the network of directed connections {(1, 2), (2, 1)}
and {(3, 4), (4, 5), . . . , (N − 1, N), (N, 3)}:

W∗ =



0 1 0 0 · · · 0

1 0 0 0 · · · 0

0 0 0 1 · · · 0
...

...
... . . . . . . ...

0 0 1 0 · · · 0


.

Note that diag(W 2
∗ ) = (1, 1, 0, . . . , 0) and this is an admissible adjacency matrix under assumptions

(A1)-(A2) and (A4)-(A5). We first show that W is path-connected to W∗.
Consider the path given by

W (t) = tW∗ + (1− t)W
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which implies that

(W (t)2)11 = (1− t)2(W 2)11 + t2 + (1− t)t(W12 +W21)

(W (t)2)22 = (1− t)2(W 2)22 + t2 + (1− t)t(W12 +W21).

Since (W (t)2)11 − (W (t)2)22 = (1 − t)2[(W 2)11 − (W 2)22] > 0 for t ∈ [0, 1) and W (1) = W∗,
(A5) is satisfied for any matrix W (t) such that t ∈ [0, 1]. Since all rows in W∗ sum to one and
(W∗)ii = 0 for any i, it is straightforward to see that W (t) also satisfies (A1) and (A4). Finally,∑N

j=1 |Wij(t)| ≤ t
∑N

j=1 |(W∗)ij| + (1− t)
∑N

j=1 |Wij| ≤ 1 for every i = 1, . . . , N and W (t) satisfies
Assumption (A2).

If W ∗ is such that (W ∗2)11 6= (W ∗2)22, the convex combination of W ∗ and W∗ is also seen to
satisfy (A1)-(A2) and (A4)-(A5) and a path between W and W ∗ can be constructed via W∗. If,
on the other hand (W ∗2)11 = (W ∗2)22, suppose without loss of generality that (W ∗2)11 6= (W ∗2)33.
In this case, one can construct a path between W ∗ and W∗∗ where W∗∗ represents the network of
directed connections {(1, 3), (3, 1)} and {(2, 4), (4, 5), . . . , (N − 1, N), (N, 2)}:

W∗∗ =



0 0 1 0 · · · 0

0 0 0 1 · · · 0

1 0 0 0 · · · 0
...

...
... . . . . . . ...

0 1 0 0 · · · 0


.

Like W (t) above, this path can be seen to satisfy assumptions (A1)-(A2) and (A4)-(A5). Now
note that a path can also be constructed between W∗ and W∗∗ as their convex combination also
satisfies (A1)-(A2) and (A4)-(A5). For example, note that Ŵ (t) = tW∗ + (1− t)W∗∗ is such that
(Ŵ (t)2)11 = t2 + (1 − t)2 and (Ŵ (t)2)NN = 0 so (Ŵ (t)2)11 − (Ŵ (t)2)NN > 0 for any t ∈ (0, 1)

and both Ŵ (0) and Ŵ (1) satisfy (A5). Hence, we can construct a path W (t) between W and W ∗

through W∗ and W∗∗.

Furthermore, ρ(t) = tρ∗+(1−t)ρ, β(t) = (tρ∗β∗+(1−t)ρβ)/(tρ∗+(1−t)ρ), γ(t) = tγ∗+(1−t)γ
are such that

f(t) ≡ ρ(t)β(t) + γ(t) = t(ρ∗β∗ + γ∗) + (1− t)(ρβ + γ) > 0,

since θ∗ and θ ∈ Θ+. (Note also that |ρ(t)| < 1 so Assumption (A2) is satisfied.) These facts taken
together imply that

θ(t) ≡ (W (t)12, . . . ,W (t)N,N−1, ρ(t), γ(t), β(t)) ∈ Θ+.
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That is, Θ+ is path-connected and therefore connected. Since Π(·) is continuous on Θ+, Π(Θ+) is
connected.

Theorem 2

Proof. The proof uses Corollary 1.4 in Ambrosetti and Prodi (1995, p. 46),40 which we reproduce
here with our notation for convenience: Suppose the function Π(·) is continuous, proper and locally
invertible with a connected image. Then the cardinality of Π−1(Π) is constant for any Π in the
image of Π(·).

The mapping Π(θ) is continuous and proper (by Corollary 1), with connected image (Lemma
2), and non-singular Jacobian at any point (as per the proof for Theorem 1) which guarantees local
invertibility. Following Corollary 1.4 in Ambrosetti and Prodi (1995, p.46) reproduced above, we
obtain that the cardinality of the pre-image of Π(θ) is finite and constant. Take θ ∈ Θ+ such that
γ = 0. By Lemma 1, that cardinality is one.

Corollary 3

Proof. Since ρ ∈ (0, 1) and Wij ≥ 0,
∑∞

k=1 ρ
k−1W k is a non-negative matrix. By (6), the off-

diagonal elements of Π(θ) are equal to the off-diagonal elements of (ρβ + γ)
∑∞

k=1 ρ
k−1W k, the

sign of those elements identifies the sign of ρβ + γ. By Theorem 2, the model is identified.

Corollary 4

Proof. Since W0 is non-negative and irreducible, there is a real eigenvalue equal to the spectral
radius of W0 corresponding to the unique eigenvector whose entries can be chosen to be strictly
positive (i.e., all the entries share the same sign). A generic eigenvalue of W0, λ0, corresponds to
an eigenvalue of Π0 according to:

λΠ0 = β0 + (ρ0β0 + γ0)
λ0

1− ρ0λ0

If λ0 = a0 + b0i where a0, b0 ∈ R and i =
√
−1, then

λΠ0 = β0 + (ρ0β0 + γ0)
a0(1− ρ0a0)− ρ0b

2
0

(1− ρ0a0)2 + ρ2
0b

2
0

+ (ρ0β0 + γ0)
b0

(1− ρ0a0)2 + ρ2
0b

2
0

i.

If the eigenvalue λ0 is real, b0 = 0 and the corresponding λΠ0 eigenvalue is also real. Differentiating
Re(λΠ0), the real part of λΠ0 , with respect to Re(λ0) = a0, we get:

∂Re(λΠ0)

∂a0

=
(1− ρ0a0)2 − ρ2

0b
2
0

[(1− ρ0a0)2 + ρ2
0b

2
0]2
× (ρ0β0 + γ0). (27)

40Related results can be found in Ambrosetti and Prodi (1972) and de Marco et al. (2014)

43



If the eigenvalue λ0 is real, the expression (27) becomes:

∂Re(λΠ0)

∂a0

=
∂λΠ0

∂a0

=
1

(1− ρ0a0)2
× (ρ0β0 + γ0).

The fraction multiplying ρ0β0 + γ0 is positive. If ρ0β0 + γ0 < 0, the real eigenvalues of Π0 are
decreasing on the real eigenvalues ofW0. Consequently, the eigenvector corresponding to the largest
(real) eigenvalue ofW0 will be associated with smallest real eigenvalue of Π0. If, on the other hand,
ρ0β0 + γ0 > 0 the eigenvector corresponding to the largest real eigenvalue of W0 will correspond
to the largest real eigenvalue of Π0. Since that eigenvector is the unique eigenvector that can be
chosen to have strictly positive entries, the sign of ρ0β0 +γ0 is identified by the λΠ0 eigenvalue it is
associated with and whether it is the largest or smallest real eigenvalue. By Theorem 2, the model
is identified.

If there is only one real eigenvalue, note that the denominator in the fraction in (27) is positive.
The minimum value of the numerator subject to |λ0|2 = a2

0 + b2
0 ≤ 1 is given by

min
a0,b0

(1− ρ0a0)2 − ρ2b2
0 s.t. a2

0 + b2
0 ≤ 1.

The Lagrangean for this minimization problem is given by:

L (a0, b0;µ) = (1− ρ0a0)2 − ρ2b2
0 + µ(a2

0 + b2
0 − 1).

where µ is the Lagrange multiplier associated with the constraint a2
0 + b2

0 ≤ 1. The Kuhn-Tucker
necessary conditions for the solution (a∗0, b

∗
0, µ

∗) of this problem are given by:

(∂a0 :) ρ0(1− ρ0a
∗
0)− µ∗a∗0 = 0

(∂b0 :) (ρ2
0 − µ∗)b∗0 = 0

µ∗(a∗20 + b∗20 − 1) = 0

a∗20 + b∗20 ≤ 1 and µ∗ ≥ 0,

Let ρ0 6= 0. (Otherwise, the objective function above is equal to one irrespective of a0 or b0 and the
partial derivative is ρ0β0 + γ0.) If µ∗ = 0, ∂b0 implies that b∗0 = 0. Then ∂a0 would have a∗0 = ρ−1

0

which violates a∗20 + b∗20 ≤ 1.
Hence, a solution should have µ∗ > 0. In this case, there are two possibilities: b∗0 = 0 or

b∗0 6= 0. If b∗0 6= 0, condition ∂b0 implies that µ∗ = ρ2
0 and ∂a0 then gives a∗0 = (2ρ0)−1. Because the

constraint is binding, b∗20 = 1− (4ρ2
0)−1. In this case, a∗20 ≤ 1 and b∗20 ≥ 0 requires that |ρ0| ≥ 1/2.

The value of the minimised objective function in this case 1/2−ρ2
0. This is positive if |ρ0| <

√
2/2.

The other possibility is to have b0 = 0. Because the constraint is binding, a0 = 1 and the
objective function takes the value (1− ρ0)2 > 0. Since (1− ρ0)2− 1/2 + ρ2

0 = 2ρ2
0− 2ρ0 + 1/2 ≥ 0,
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this solution is dominated by the previous one when |ρ0| ≥ 1/2.
Consequently, the fraction multiplying ρ0β0 + γ0 is non-negative and it can be ascertained that

sgn
[
∂Re(λΠ0)

∂a0

]
= sgn[ρ0β0 + γ0]

as long as |ρ0| <
√

2/2.
If ρ0β0 + γ0 < 0, the real part of the eigenvalues of Π0 is decreasing on the real part of the

eigenvalues of W0. Consequently, the eigenvector corresponding to the eigenvalue of W0 with the
largest real part will correspond to the eigenvalue of Π0 with the smallest real part. If, on the
other hand, ρ0β0 + γ0 > 0 the eigenvector corresponding to the eigenvalue of W0 with the largest
real part will correspond to the eigenvalue of Π0 with the largest real part. Since that eigenvector
is the unique eigenvector that can be chosen to have strictly positive entries, the sign of ρ0β0 + γ0

is identified by the λΠ0 eigenvalue it is associated with.
By Theorem 2, the model is identified.

Proposition 1

Proof. From equation (7) we observed that Π0vj = λΠ0,jvj, where vj is an eigenvector of both W0

and Π0 with corresponding eigenvalue λΠ0,j =
β0+γ0λ0,j
1−ρ0λ0,j . We also have that

Π̃0vj = (I −H)Π0vj = λΠ0,j(I −H)vj (28)

and so Π̃0 and Π0 have common eigenvalues, with corresponding eigenvector ṽj = vj − v̄jι, where
v̄j = 1

N
ι′vj, j = 1, . . . , N . Since λΠ0,j and ṽj are observed from Π̃0, identification of Π0 is equivalent

to identification of v̄j.
To establish identification of v̄j, note that W0(ṽj + v̄jι) = λj(ṽj + v̄jι) since vj is an eigenvector

of W0. Consider an alternative constant v̄∗j 6= v̄j that satisfies the previous equation. Then

W0ι(v̄j − v̄∗j ) = λ(v̄j − v̄∗j ). (29)

Since W0ι = ι, vj must satisfy (1 − λj)(v̄j − v̄∗j ) = 0. For j = 2, . . . , N , |λj| < 1. So v̄j = v̄∗j and
therefore identified. For j = 1, it is known that λ1 = 1 with eigenvector v1 = ι.

Proposition 2

Proof. Under row-sum normalization and |ρ0| < 1, (I − ρ0W0)−1ι = ι + ρ0W0ι + ρ2
0W

2
0 ι + · · · =

ι+ρ0ι+ρ2
0ι+ · · · = ι 1

1−ρ0 , so Π01 ≡ (I−ρ0W )−1 has constant row-sums. If row-sum normalization
fails, Π01 may not have constant row-sums. Define hij as the (ij)-th element of H̃. The first row
of the system (I − H̃)(I − ρ0W )−1ι = (I − H̃)rW0 = 0 is h∗11rW0,1 − h12rW0,2 − · · · − h1NrW0,N = 0

where h∗11 = 1−h11 and rW0,l is the l-th element of rW0 . If there are N possibleW0,W
(1)
0 , . . . ,W

(n)
0 ,
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such that [r
W

(1)
0
· · · r

W
(N)
0

] has rank N , then h∗11 = h12 = · · · = h1N = 0. Since the same reasoning

applies to all rows, H̃ is the trivial transformation H̃ = I.

B Estimation

B.1 Sparsity of W0 and Π0

Define Ñ as the number of non-zero elements of Π0. We say that Π0 is sparse if Ñ � T . Denote
the number of connected pairs in W0 via paths of any length as Ñc. We equivalently say that W0

is "sparse connected" if Ñc � T . We show that sparsity of Π0 is related to sparse connectedness
of W0.

Proposition 3. Π0 is sparse if, and only if, the number of unconnected pairs W0 is small.

Proof. For |ρ0| < 1, we have that

Π0 = β0I + (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 .

Given that ρ0β0 + γ0 6= 0, it follows directly that [Π0]ij = 0 if, and only if, there are no paths
between i and j inW0. Therefore, sparsity of Π0 translates into a large number of (i, j) unconnected
pairs in W0.

On the one hand, sparsity does not imply sparse connectedness. A circular graph is clearly
sparse, but all nodes connect with all other nodes through a path of length at most N

2
. On the

other hand, the sparse connectedness implies sparsity and therefore is a stronger requirement.
To see this, take any arbitrary network G with Ñ (G) non-zero elements and Ñc (G) connected
pairs. Now consider the operation of “completing” G: for every connected (i, j) pair, add a direct
link between (i, j) if non-existent in G and denote the resulting matrix as C (G). It is clear that
Ñ (G) ≤ Ñ (C (G)). Yet, Ñ (C (G)) = Ñc (G).

B.2 Adaptive Elastic Net

Caner and Zhang (2014) show that (see their Theorems 3 and 4):

Proposition 4. Under the following assumptions:

(i) Define ĜNT (θ) = ∂gNT (θ)
∂θ′

. Then sup
θ∈Bm
‖ĜNT (θ) − G (θ) ‖ p→ 0 where G (θ) is a continuous

function in θ with full column rank m, Bm is compact and individual components of θ are
uniformly bounded by a constant a, 0 ≤ a <∞.

(ii)
∥∥∥[E (gNT (θ0) gNT (θ0)

′)−1 − Ω−1
]∥∥∥2

2
→ 0.

46



(iii) MT is a symmetric and positive definite matrix such that ‖MT −M‖2
2

p→ 0.

(iv) m ≡ N(N − 1) + 3 = (NT )α, 0 < α < 1, p/ (NT ) = (N(N − 1) + 3)/ (NT ) → 0,
q/ (NT ) = N2/ (NT ) = N/T → 0 as NT →∞.

(v) λ1/(NT ) → 0, λ2/(NT ) → 0, λ∗1/(NT ) → 0, λ∗1
(NT )3+α

(NT )γ(1−α) → ∞, (NT )1−vη2 → ∞,
(NT )1−αηγ →∞ for η = minij,W0,ij 6=0 |W0,ij|, η = O (N−p), 0 < p < α/2 and γ > 2+α

1−α .

(vi) maxt
E‖gt(θ0)‖2+l

2+l√
NT

→ 0 for l > 0 and gt(θ) = [x1tet(θ)
′ · · · xNT et(θ)′]′

then, for compact Θ and θ0 ∈ int(Θ),

1. P ({j : θ̂j 6= 0} = A)→ 1, where A =
{
j : θ0

j 6= 0
}
and θ0 = (w′0, ρ0, β0, γ0)′.

2. Let θ̂A correspond to the estimator elements corresponding to the non-zero true parameters.

Taking MNT = Ω̂−1, KNT (nT )−
1
2 (θ̂A−θ0

A)
d→ N (0, 1), KNT = ϕ′

[
ĜNT (θ̂A)′Ω̂−1ĜNT (θ̂A)

] 1
2 ,

and ϕ is an unit-norm vector.

Condition (i)-(iii) are standard in the literature. In particular, (i) is satisfied immediately by
continuity of the Cayley transform with respect to θ and corresponds to assumption 1 in Caner
and Zhang (2014). Condition Conditions (ii) and (iii) correspond to assumptions 3(i) and 2 in that
paper, respectively. (iv) sets admissible rates of growth relating N and T and matches assumption
3(ii) in Caner and Zhang (2014). Since m = N(N − 1) + 3, m

NT
= N−1

T
+ 3

NT
→ 0 implies that

T grows faster than N (in this setting, condition q
NT
→ 0 is redundant since q = N2). Fan

et al. (2011) denote this case as “relatively high-dimensional” since sample size is required to grow
faster than the number of parameters.41 Condition (v) gives the rate of growth of the different
penalization factors and limits the absolute value of the minimum of the non-zero element of W0.
It appears as assumptions 5(i)-(v) and 3(iii) in Caner and Zhang (2014). It is a well-known feature
that shrinkage estimators, such as the Adaptive Elastic Net, shrink small parameters to zero. As
Caner and Zhang (2014, pp. 33) state, “local to zero coefficients should be larger than N−

1
2 to be

differentiated from zero”. Finally, condition (vi) is replicates assumption 4 in Caner and Zhang
(2014) which is necessary to apply the triangular central limit theorem. The authors also show
finite-sample properties of the estimators above.

B.2.1 Implementation and Initial Conditions

To make our procedure robust to the choice of initial condition, we use the particle swarm algo-
rithm. This is an optimization algorithm tailored to more aptly find global optima, which does
not depend on choice of initial conditions. It works as follows. The procedure starts from a large

41These are sufficient conditions to ensure convergence of the parameters of the Elastic Net GMM. While it might
be possible to relax some of those assumptions, we are unaware of any such work for this particular estimator.
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number of initial conditions covering the parameter space, known as “particles” (Kennedy and
Eberhart, 1995). Each particle is iterated independently until convergence. The algorithm returns
the optimum calculated across particles.42,43

To ensure compliance with row-sum normalization for each row i ofW , one non-zero parameter
Wi,j∗ is set to 1 −

∑N
j=1,j 6=j∗Wi,j. This avoids making use of constrained optimization routines.44

We also impose the restriction that ρ ≥ 0 and Wij ≥ 0 by minimizing the objective function with
respect to ρ̃ with ρ = ρ̃2 and W̃ij with Wij = W̃ 2

ij.
Optimization of (18) starts from the initial condition selected by the particle swarm algorithm

and is minimized with respect to the parameters that were neither set to zero nor were chosen to
ensure row-sum normalization. Estimates from the first stage are subsequently used to adjust the
penalization, as in the Adaptive Elastic Net GMM objective function (19).45 The steps above are
repeated for different combinations of p = (p1, p

∗
1, p2), selected on a grid. The final estimate is the

one that minimizes the BIC criterion.

B.3 OLS

For the purpose of estimation, it is convenient to write the model in the stacked form. Let
x = [x1, . . . , xT ]′ be the T × N matrix of explanatory variables, yi = [yi1, . . . , yiT ]′ be the T × 1

vector of response variables for individual i and π0
i = [π0

i1, . . . , π
0
iN ]
′ where π0

ij is a short notation
for the (i, j)-th element of Π0. The concise model is then,

yi = xπ0
i + vi (30)

42We set Caner and Zhang’s (2014) suggestion for the initial condition as one of those particles, with minor
modifications. The authors suggest calculating the absolute value of the derivative of the unpenalized GMM
objective function evaluated at zero, ∇W , and the set parameters smaller than p1 at zero. The rationale is that
if the GMM objective function is invariant with respect to certain parameters, the Elastic Net problem achieves a
corner solution (where parameters are set to zero). In our case, allowing only for positive interactions, we set to zero
the elements such that −∇W ≤ p1. All other elements of W gain equal weights such that row-sum normalization is
respected. The derivative ∇W is mechanically zero if ρ = γ = 0. So we set ρ = .5, given that the parameter space
is bounded and ρ ∈ [0, 1). The other parameters that enter the derivative are β̂ estimated from a regression of y on
x, with the full set of fixed effects, and γ = 0.

43We also implemented an additional five particles. Particle 2: like Particle 1 but with size proportional to the
magnitude of the derivatives conditional on −∇W being greater than p1; Particle 3: sets to non-zero all positive
elements of −∇W with equal weights; Particle 4: selects 5% highest values of −∇W , sets all others to zero, and non-
zero gain equal weights; Particle 5: W obtained from the Lasso regression of yt on the yt of others with penalization
p1; Particle 6: W obtained from the Lasso regression of yt on the xt of others with penalization p1. In all cases,
weights are rescaled by row-specific constants such that row-sum normalization is complied with. The remaining
94 particles are uniformly randomly selected by the built-in MATLAB particle swarm algorithm.

44At each row, we pick the j∗ closest to the main diagonal of W .
45Note that the Elastic Net penalty p1

∑
|Wi,j | is invariant with respect to choices ofW if row-sum normalization

is imposed. Yet, the penalty affects the initial selection of arguments in which Wi,j is restricted to zero if the
derivative of the objective function is smaller than p1 in absolute value.
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for each i = 1, . . . , N , where also vi = [vi1, . . . , viT ]′. Model (30) can then be estimated equation-
by-equation. Denote π0 = [π0

1
′
, . . . , π0

N
′
]′. Stacking the full set of N equations,

y = Xπ0 + v (31)

where y = [y1, . . . , yN ], X = IN ⊗ x, π0 = vec (Π′0), and v = [v1, . . . , vN ]. If the number of individ-
uals in the network N is fixed and much smaller than data points available, N2 � NT , equation
(31) can be estimated via ordinary least squares (OLS). Under suitable regularity conditions, the
OLS estimator π̂ = (X ′X)−1X ′y is asymptotically distributed,

√
NT (π̂ − π0)

d−→ N
(
0, Q−1ΣQ−1

)
where QT ≡ 1

NT
X ′X, Q ≡ p limT→∞QT , ΣT ≡ 1

NT
X ′vv′X and Σ ≡ p limT→∞ΣT . The proof is

standard and omitted here. As noted above, in typical applications it is customary to row-sum
normalize matrix W . If no individual is isolated, one obtains that, by equation (6),

Π0ιN = β0ι+ (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 ι

=
β0 + γ0

1− ρ0

ι (32)

where ιN is the N -length vector of ones. The last equality follows from the observation that, under
row-normalization of W0, W kι = Wι = ι, k > 0. Equation (32) implies that Π has constant
row-sums, which implies that row-sum normalization is, in principle, testable. This suggests a
simple Wald statistic applied to the estimates of π0. Under the null hypothesis,

√
NTRπ̂

d−→ N
(
0, RQ−1ΣQ−1R′

)
where R = [IN−1 ⊗ ι′N ;−ιN−1 ⊗ ι′N ]. The Wald statistic is W = NT (Rπ̂)′ (Q−1ΣQ−1)

−1
(Rπ̂) ∼

χ2
N−1 which is a convenient expression for testing row-sum normalization of W0. We also note that

the asymptotic distribution of θ̂ can be immediately obtained by the Delta Method,

√
T (θ̂ − θ0)

d−→ N
(
0,∇′−1

θ Q−1ΣQ−1∇θ

)
where ∇θ is the gradient of θ̂ with respect to π̂.
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Erdos-Renyi Political Party High school Village
Coleman (1964) Banerjee et al. (2013)

Number of nodes 30 30 70 65

(a) Network-wide statistics

Number of edges 30 45 366 240

Number of strong edges 30 30 70 65

Number of weak edges 0 15 296 175

Number of reciprocated edges 2 2 184 240

Clustering coefficient - .000 .120 .141

Number of components 12 11 3 3

Size of maximal component 10 16 68 51

Standard deviation of the

diagonal of squared W

(b) Node-level statistics

In-degree distribution 1.00 (0.00) 1.50 (.509) 5.23 (2.04) 3.69 (2.35)

Out-degree distribution 1.00 (1.05) 1.50 (2.49) 5.23 (3.64) 3.69 (2.35)

Nodes with highest out-degree { 7, 11, 26 } { 1, 11 , 28 } { 21, 22, 69 } { 16, 35, 57 }

(a) Network-wide statistics

Number of edges 30 38 210 194

Number of strong edges 30 30 70 68

Number of weak edges 0 8 140 126

Number of reciprocated edges 2 2 184 170

Clustering coefficient - .000 .162 .134

Number of components 12 11 1 4

Size of maximal component 10 14 70 48

(b) Node-level statistics

In-degree distribution 1.00 (0.00) 1.27 (.450) 3.00 (1.18) 2.99 (1.29)

Out-degree distribution 1.00 (1.05) 1.27 (1.76) 3.00 (1.02) 2.99 (1.15)

Nodes with highest out-degree { 7, 11, 26 } { 1, 11, 28 } { 21, 48, 69 } { 16, 35, 57 }

A. True Networks

Table 1: True and Recovered Networks

Notes: Panel A refers to the true networks. Panel B refers to the recovered networks. In each Panel, the summary statistics are divided into

network-wide and node-level statistics. Strong edges are defined as those with strength greater than or equal to .3. For the in-degree and out-

degree distribution, the mean is shown and the standard deviation is in parentheses. The nodes with the highest out-degree are those with the

greatest influence on others, and are calculated as the column-sum of the social interaction matrix. The recovered networks statistic are calculated

over the average network across simulations with T=100.

.254 .254 .167 .239

B. Recovered Networks



Table 2: Geographic Neighbors

Dependent variable: Change in per capita income and corporate taxes

Coefficient estimates, standard errors in parentheses

(1) OLS (2) 2SLS (3) OLS (4) 2SLS

Geographic Neighbors' Tax Change (t - [t-2]) .375*** .868*** .271*** .642***

(.120) (.273) (.075) (.152)

Period 1962-1988 1962-1988 1962-2015 1962-2015

First Stage (F-stat) 6.267 27.320

Controls Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes

Observations 1,296 1,248 2,592 2,544

Extended SampleBesley and Case (1995) Sample

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. In all specifications, a pair of states are considered neighbors if they share a geographic border. The

sample covers 48 mainland US states. In Columns 1 and 2 the sample runs from 1962 to 1988 (as in Besley and Case (1995)). In Columns 3 and 4 the sample is

extended to run from 1962 to 2015. The dependent variable is state i's total taxes per capita in year t. OLS regressions estimates are shown in Columns 1 and 3.

Columns 2 and 4 show 2SLS regressions where each geographic neighbors' tax change is instrumented by lagged neighbor's state income per capita and unemployment

rate. At the foot of Columns 2 and 4 we report the p-value on the F-statistic from the first stage of the null hypothesis that instruments are jointly equal to zero. All

regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of young (aged 5-17) and elderly (aged 65+) in state i’s

population, and the state governor's age. All specifications include state and time fixed effects. With the exception of governor's age, all variables are differenced between

period t and period t-2. Robust standard errors are reported in parentheses.



Table 3: Economic Neighbors

Dependent variable: Change in per capita income and corporate taxes

Coefficient estimates, standard errors in parentheses

(1) Initial (2) OLS

(3) 2SLS: IVs are

Characteristics of

Neighbors

(4) Initial (5) OLS

(6) 2SLS: IVs are

Characteristics of

Neighbors

(7) 2SLS: IVs are

Characteristics of

Neighbors-of

Neighbors

Economic Neighbors' Tax Change (t - [t-2]) .886 .378*** .641*** .645 .145** .332* .608***

(.061) (.060) (.072) (.199) (.220)

Period

First Stage (F-stat) 19.353 9.571 10.480

Controls Yes Yes Yes Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Observations 2,952 2,952 2,544 2,952 2,952 2,544 2,592

Exogenous Social Effects

1962-20151962-2015

No Exogenous Social Effects

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland US states running from 1962 to 2015. The dependent variable is state i's total taxes per

capita in year t. We allow for exogenous social effects in Columns 4 to 7. In subsequent OLS and IV regressions, the economic neighbors' effect is calculated as the weighted average of

economic neighbors' variables. OLS regressions estimates are shown in Column 2, 3 and 5. Column 3 and 6 show the 2SLS regression where each geographic neighbors' tax change is

instrumented by lagged neighbor's state income per capita and unemployment rate. Column 7 shows a 2SLS regression where each geographic neighbors' tax change is instrumented by

lagged neighbor-of-neighbor's state income per capita and unemployment rate. At the foot of Columns 3, 6 and 7 we report the p-value on the F-statistic from the first stage of the null

hypothesis that instruments are jointly equal to zero. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of young (aged 5-

17) and elderly (aged 65+) in state i’s population, and the state governor's age. All specifications include state and time fixed effects. With the exception of governor's age, all variables are

differenced between period t and period t-2. Robust standard errors are reported in parentheses.



Table 4: Geographic Versus Economic Neighbor Networks

Geographic Neighbor

Network

Economic Neighbor

Network

Number of Edges 214 144

Edges in Both Networks 79 79

Edges in W-geo only 135

Edges in W-econ only 65

Clustering .1936 .0259

Reciprocated Edges 100% 29.17%

out-degree 3.000 (1.185)

in-degree 3.000 (2.073)
4.458 (1.597)

Degree Distribution Across Nodes (states)

Notes: This compares statistics derived from the geographic network of US states to those from the estimated economic

network among US states. The number of edges, edges in both networks, edges in W-geo only, edges in W-econ only

counts the number of edges in those categories. Reciprocated edges is the frequency of in-edges that are reciprocated by

out-edges (by construction, this is 100% for geographic networks). The clustering coefficient is the frequency of the

number of fully connected triplets over the total number of triplets. The degree distribution across nodes counts the

average number of connections (standard deviation in parentheses): we show this separately for in-degree and out-degree

(by construction, these are identical for geographic networks).



Table 5: Predicting Links to Economic Neighbors

Columns 1-7: Linear Probability Model; Column 8: Tobit

Dependent variable (Cols 1-7): =1 if Economic Link Between States Identified

Dependent variable (Col 8): =Weighted Link Between States

Coefficient estimates, standard errors in parentheses

Economic and

Demographic

Homophyly

Labor

Mobility

Political

Homophyly

Tax

Havens

Tobit, Partial

Avg Effects

(1) (2) (3) (4) (5) (6) (7) (8)

Geographic Neighbor .699*** .701*** .701*** .698*** .698*** .697*** .068***

(.030) (.032) (.030) (.031) (.031) (.031) (.006)

Distance -.453*** -.008

(.033) (.024)

Distance sq. .0949*** .003

(.007) (.006)

GDP Homophyly 2.409** 2.369* 2.296* 1.046 .322

(1.183) (1.186) (1.193) (1.150) (.302)

Demographic Homophyly .222 .235 .241 .256 .077

(.226) (.226) (.228) (.225) (.067)

Net Migration .044* .044* -0.032 0.001

(.025) (.025) (.025) (.002)

Political Homophyly -.057 -.083** -.025*

(.042) (.042) (.014)

Tax Haven Sender .107*** .021***

(.024) (.005)

Adjusted R-squared 0.427 0.152 0.427 0.428 0.429 0.429 0.440 -

Observations 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256

Geography

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The specifications in Columns 1-7 are cross-sectional linear probabilities models where

the dependent variable is equal to 1 if two states are linked, and zero otherwise. In Column 8 the dependent variable is the weighted link between

states. Column 8 reports the partial average effects from a Tobit model. A pair of states is considered a first-degree geographic neighbor if they share a

border. Distance and distance squared are calculated from the centroids of states' capital cities. GDP homophyly is the absolute difference of states'

GDP per capita. Demographic homophyly is the absolute difference of share of young (aged 5-17) plus the absolute difference of the share of elderly in

states' population (aged 65+). Net migration based on individuals tax returns (Source: Internal Revenue Service, https://www.irs.gov/statistics/soi-tax-

stats-migration-data). Political homophyly is equal to one if a pair of states have governors of same party at given year. Nevada, Delaware, Montana,

South Dakota, Wyoming and New York are considered tax haven states. Time averages are taken for all explanatory variables. Robust standard errors

in parentheses.



Table 6: Gubernatorial Term Limits

Dependent variable: Change in per capital income and corporate taxes

Coefficient estimates, standard errors in parentheses

IVs: Characteristics of Neighbors-of-Neighbors

(1) OLS (2) 2SLS (3) OLS (4) 2SLS (5) OLS (6) 2SLS

Economic Neighbors' tax change (t - [t-2]) .145** .608*** .016 .937* .182** .543**

(.072) (.220) (.105) (.534) (.084) (.237)

Period

First Stage (F-stat) 10.480 2.835 10.120

Controls Yes Yes Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes Yes Yes

Observations 2,592 2,592 640 640 1,917 1,917

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample in Columns 1 and 2 covers 48 mainland US states running from 1962 to 2015. In Columns 3 and 4 we use

the subsample of state-years in which the governor that faced term limits in the subsequent gubernatorial election. In Columns 5 and 6 we use the subsample of state-years in which

the governor did not face term limits in the subsequent gubernatorial election, and so could run for reelection. The dependent variable is state i's total taxes per capita in year t. We

first estimate our procedure which outputs parameters and the network of economic neighbors. We penalize geographic neighbors throughout and also allow for exogenous social

effects. OLS regressions estimates are shown in Columns 1, 3 and 5. Columns 2, 4 and 6 show a 2SLS regression where each geographic neighbors' tax change is instrumented by

lagged neighbor-of-neighbor's state income per capita and unemployment rate. At the foot of Columns 2, 4 and 6 we report the p-value on the F-statistic from the first stage of the

null hypothesis that instruments are jointly equal to zero. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of

young (aged 5-17) and elderly (aged 65+) in state i’s population, and the state governor's age. All specifications include state and time fixed effects. With the exception of governor's

age, all variables are differenced between period t and period t-2. Robust standard errors are reported in parentheses.

1962-2015 1962-2015 1962-2015

All Governors
Governor Cannot Run for Re-

election

Governor Can Run for Re-

election



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of D. Mean Absolute Deviation of

E. Endogenous Social Effect, F. Exogenous Social Effect

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen

by BIC, under various true networks and time periods T=25, 50, 100, 125 and 150. In all cases, 1000 Monte Carlo iterations

were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. In Panel A, the % of zeroes refers to the

proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. In Panel B, the % of

non-zeros refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-

zeros. In Panels C and D, the Mean Absolute Deviations are the mean absolute error of the estimated network compared to

the true network for the social interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true

parameter values are marked in the horizontal red lines. The recovered parameter are the estimated parameters averaged

across iterations. All specifications include time and node fixed effects.

Figure 1: Simulation Results, Adaptive Elastic Net GMM
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Figure 2: Simulated and True Networks

Notes: These simulation results are based on the Elastic Net algorithm, with penalization parameters chosen by BIC, under various

true networks and time periods T=50, 100 and 150. In the two stylized networks (Erdos-Renyi and political party), we set N=30, and

the real world networks, the high school friendship and village network are based on N=65 and 70 non-isolated nodes respectively.

Party leaders in the political party network are marked in black in Panel B. In all cases, 1,000 Monte Carlo iterations were performed.

The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. All specifications include time and node fixed effects. Kept edges are

depicted in blue: these links are estimated as non-zero in at least 5% of the iterations and are also non-zero in the true network.

Added edges are depicted in green: these links are estimated as non-zero in at least 5% of the iterations but the edge is zero in the

true network. Removed edges are depicted in red: these links are estimated as zero in at least 5% of the iterations but are non-zero in

the true network. The figures further distinguish between strong and weak links: strong links are shown in solid edges (whose strength

is greater than or equal to .3), and weak links are shown as dashed edges.

A. Erdos-Renyi B. Political Party

C. High-school D. Village



Geographic network edges

Removed (geographic) edges in economic network

New edges added in economic networks

Figure 3B: Network Graph of US States, Identified Economic Neighbors

Notes: Figure 3B represents the continental United States (N=48). The economic network is derived from our preferred specification, where we penalize geographic neighbors to states, and

allow for exogenous social effects. A blue edge is drawn between a pair of states if they are geographic neighbors and were estimated as connected. A red edge is drawn between a pair of states

if they are geographic neighbors but were not estimated as connected. A green edge is drawn between a pair of states if they are not geographic neighbors and were estimated connected. The

left hand side graph just shows read and blue edges. The right hand side shows all three types of edges. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-

are/postal-history/state-abbreviations.pdf).

Notes: Figure 3A represents the continental US states (N=48). An edge is drawn between a pair of states if they share a geographic border. State abbreviations are as used by US Post Office

(http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).

Figure 3A: Network Graph of US States, Geographic Neighbors



Geographic network edges

Removed (geographic) edges in economic network

New edges added in economic networks

Panel B: In-network for California

Figure 4: Strength of Ties and Reciprocity

Panel C: Out-network for California

Panel A: Histogram of Strength of Ties, Conditional on W0,ij>0

Notes: Panel A is the histogram of ties in the economic network, conditional on non-zero ties. Panels B and C show the in-network and out-network of California as derived

from our preferred specification, where we penalize geographic neighbors to states, and allow for exogenous social effects. The in-network are the states that determine tax

setting in California. The out-network is the states in which taxes are set in direct response to those in California. A blue edge is drawn between a pair of states if they are

geographic neighbors and were estimated as connected. A red edge is drawn between a pair of states if they are geographic neighbors but were not estimated as connected.

A green edge is drawn between a pair of states if they are not geographic neighbors and were estimated connected. State abbreviations are as used by US Post Office

(http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).



Figure 5: In- and Out-degree Distribution

Panel A: In-degree distribution Panel B: Out-degree distribution

Notes: In-degree distribution (Panel A) and out-degree distribution (Panel B). Distribution calculated from geographic neighbors' network (W-geo) in blue. Distribution calculated from economic neighbor's

network in (W-econ) in red. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf).



Positive values indicate higher equilibrium taxes under Economic neighbors than geographic neighbors

Negative values indicate low equilibrium taxes under Economic neighbors than geographic neighbors

Figure 6: General Equilibrium Impacts of CA Tax Rise Shocks

State's Reaction to 10 p.p. increase in CA taxes

Log(equilibrium taxes under W-econ) - Log(equilibrium taxes under W-geo)

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of California increasing its tax change by 10%. This is as derived from our preferred

specification, where we penalize geographic neighbors to states, and allow for exogenous social effects. We compare these derived tax changes under the identified economic network

structure, relative to that assumed under a geographic neighbors structure. We graph the log change in equilibrium taxes under economic neighbors, minus the log change in equilibrium

taxes under geographic neighbors. Positive values (red shaded) states indicate higher equilibrium taxes under economic neighbors than geographic neighbors, and negative values

(blue shaded) states indicate lower equilibrium taxes under economic neighbors than geographic neighbors.



Table A1: Simulation Results, Adaptive Elastic Net GMM

T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150

% True Zeroes .954 .976 .973 .957 .992 .997 .947 .965 .979 .950 .977 .979 .943 .978 .989 .943 .961 .976

(.033) (.031) (.031) (.009) (.004) (.002) (.007) (.006) (.005) (.031) (.025) (.024) (.009) (.006) (.005) (.007) (.006) (.006)

% True Non-Zeroes .899 .919 .924 .958 .960 .962 .977 .978 .977 .914 .925 .932 .930 .954 .960 .970 .977 .977

(.051) (.032) (.026) (.017) (.016) (.011) (.007) (.007) (.008) (.038) (.022) (.009) (.037) (.023) (.016) (.015) (.009) (.007)

.021 .007 .004 .017 .003 .001 .020 .011 .006 .032 .019 .017 .028 .014 .010 .023 .014 .009

(.014) (.011) (.008) (.004) (.001) (.001) (.002) (.001) (.001) (.011) (.007) (.004) (.004) (.002) (.002) (.002) (.001) (.001)

.025 .012 .009 .020 .004 .003 .054 .016 .007 .034 .021 .019 .028 .014 .012 .065 .019 .009

(.012) (.008) (.006) (.004) (.002) (.001) (.018) (.004) (.002) (.009) (.006) (.003) (.004) (.002) (.001) (.028) (.004) (.001)

.262 .270 .276 .286 .286 .283 .667 .398 .270 .235 .245 .241 .209 .228 .223 .700 .383 .242

(.069) (.044) (.038) (.079) (.026) (.022) (.079) (.050) (.050) (.078) (.049) (.038) (.084) (.035) (.029) (.100) (.069) (.051)

.403 .399 .400 .405 .400 .400 .380 .399 .401 .405 .400 .397 .404 .399 .398 .380 .400 .401

(.039) (.028) (.022) (.028) (.018) (.015) (.025) (.015) (.012) (.040) (.028) (.022) (.029) (.019) (.015) (.024) (.015) (.012)

.577 .521 .507 .670 .516 .498 .748 .686 .595 .550 .481 .459 .669 .501 .463 .686 .666 .566

(.094) (.059) (.046) (.054) (.022) (.018) (.118) (.056) (.028) (.093) (.060) (.050) (.060) (.027) (.021) (.128) (.063) (.032)

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes and

time periods T=50, 100 and 150. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers

to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater

than .3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true

network for the social interaction matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All

specifications include time and node fixed effects. Standard errors across iterations are in parentheses.

N = 15 N = 30 N = 50

A. Erdos-Renyi B. Political party

N = 15 N = 30 N = 50
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Table A2: Simulation Results, Adaptive Elastic Net GMM, Alternative Parameters

.1 .5 .7 .9 .0 .8 .3 .7 .3 .5 .8 1.0 .1 .5 .7 .9 .0 .8 .3 .7 .3 .5 .8 1.0

% True Zeroes .986 .994 .991 .979 .986 .987 .974 .997 .996 .997 .997 .997 .971 .983 .982 .966 .978 .977 .959 .986 .985 .992 .996 .997

(.005) (.004) (.004) (.005) (.005) (.007) (.006) (.002) (.002) (.003) (.002) (.002) (.008) (.005) (.006) (.007) (.008) (.007) (.007) (.005) (.004) (.004) (.004) (.003)

% True Non-Zeroes .951 .963 .963 .956 .806 .967 .961 .961 .963 .962 .961 .959 .772 .813 .836 .864 .469 .856 .741 .834 .803 .808 .816 .832

(.028) (.011) (.011) (.017) (.096) .000 (.015) (.016) (.012) (.013) (.013) (.018) (.045) (.036) (.034) (.031) (.147) (.035) (.044) (.036) (.037) (.035) (.034) (.027)

.005 .002 .003 .007 .014 .004 .011 .001 .001 .001 .000 .000 .017 .012 .012 .018 .029 .012 .023 .010 .011 .009 .008 .007

(.002) (.001) (.001) (.002) (.005) (.002) (.003) (.001) (.001) (.001) (.001) (.001) (.003) (.002) (.002) (.003) (.007) (.002) (.003) (.002) (.002) (.001) (.001) (.001)

.005 .006 .013 .077 .013 .007 .009 .004 .003 .003 .002 .002 .011 .021 .043 .208 .021 .017 .016 .016 .013 .011 .010 .009

(.002) (.002) (.005) (.051) (.004) (.003) (.002) (.002) (.001) (.001) (.001) (.001) (.002) (.002) (.004) (.026) (.004) (.003) (.002) (.002) (.002) (.001) (.001) (.001)

.081 .487 .709 .917 .318 .244 .287 .286 .285 .285 .288 .292 .046 .403 .598 .847 .298 .171 .221 .225 .224 .222 .218 .218

(.034) (.027) (.025) (.012) (.047) (.076) (.036) (.023) (.023) (.020) (.017) (.009) (.038) (.031) (.040) (.040) (.071) (.067) (.048) (.030) (.030) (.028) (.025) (.018)

.401 .399 .397 .364 (.008) .801 .402 .399 .401 .400 .400 .400 .400 .399 .398 .380 -.015 .801 .402 .400 .399 .398 .398 .398

(.018) (.019) (.019) (.023) (.025) (.018) (.019) (.019) (.016) (.012) (.009) (.001) (.019) (.020) (.020) (.026) (.029) (.020) (.020) (.019) (.016) (.014) (.009) (.003)

.532 .512 .517 .509 .432 .552 .376 .698 .503 .495 .493 .492 .519 .489 .488 .469 .305 .548 .391 .638 .474 .454 .440 .431

(.023) (.022) (.024) (.028) (.070) (.033) (.027) (.021) (.018) (.015) (.012) (.007) (.030) (.027) (.031) (.050) (.117) (.038) (.036) (.025) (.023) (.019) (.015) (.010)

B. Political party

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes, time periods T=100 and parameter values. In all cases,

1000 Monte Carlo iterations were performed. The % of true zeroes refers to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of

true elements greater than .3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social interaction

matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node fixed effects. Standard errors across iterations are in

parentheses.
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T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150

% True Zeroes .728 .798 .842 .737 .848 .878 .845 .846 .913 .730 .799 .840 .737 .849 .880 .846 .846 .921

(.023) (.024) (.022) (.012) (.008) (.008) (.005) (.006) (.027) (.024) (.025) (.023) (.013) (.009) (.009) (.006) (.006) (.008)

% True Non-Zeroes .996 1.000 1.000 .497 1.000 1.000 .494 .496 .930 .992 1.000 1.000 .507 1.000 1.000 .498 .501 .996

(.039) (.000) (.000) (.096) (.001) (.000) (.071) (.074) (.177) (.023) (.002) (.000) (.105) (.004) (.001) (.074) (.076) (.042)

.071 .050 .039 .064 .039 .033 .039 .039 .027 .070 .050 .039 .063 .038 .032 .039 .038 .025

(.005) (.005) (.004) (.002) (.002) (.002) (.000) (.002) (.005) (.005) (.004) (.004) (.002) (.002) (.002) (.000) (.002) (.001)

.092 .056 .042 .084 .049 .036 .071 .045 .032 .093 .057 .044 .084 .050 .036 .071 .045 .033

(.008) (.005) (.004) (.005) (.003) (.002) (.004) (.003) (.002) (.008) (.005) (.003) (.005) (.003) (.002) (.004) (.002) (.002)

.962 .815 .535 .998 .988 .965 1.000 .993 .995 .970 .783 .512 .998 .993 .979 1.000 .994 .995

(.112) (.186) (.231) (.040) (.066) (.095) (.000) (.075) (.054) (.106) (.199) (.236) (.041) (.050) (.077) (.000) (.069) (.054)

.131 .285 .330 .000 .158 .254 .000 .000 .121 .144 .292 .336 .000 .177 .259 .000 .000 .167

(.079) (.049) (.038) (.000) (.053) (.030) (.000) (.000) (.066) (.081) (.049) (.039) (.000) (.047) (.030) (.000) (.000) (.044)

.996 .998 .968 .000 1.000 .999 .000 .000 .863 1.000 .995 .942 .000 1.000 .999 .000 .000 .992

(.063) (.015) (.051) (.000) (.000) (.007) (.000) (.000) (.344) (.000) (.023) (.066) (.000) (.000) (.014) (.000) (.000) (.089)

Notes: These simulation results are based on the Adaptive Lasso algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes and time periods

T=50, 100 and 150. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the

proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater than

.3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network

for the social interaction matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications

include time and node fixed effects. Standard errors across iterations are in parentheses.

Table A3: Simulation Results, Adaptive Lasso
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T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500

% True Zeroes .825 .878 .911 .884 .928 .958 .936 .966 .979 .824 .882 .916 .886 .932 .959 .940 .967 .979

(.018) (.020) (.021) (.007) (.007) (.006) (.019) (.003) (.002) (.020) (.021) (.020) (.007) (.007) (.005) (.003) (.003) (.002)

% True Non-Zeroes 1.000 1.000 1.000 1.000 1.000 1.000 .977 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(.000) (.000) (.000) (.000) (.000) (.000) (.107) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

.039 .032 .028 .031 .025 .022 .025 .021 .019 .037 .030 .025 .030 .024 .021 .024 .020 .018

(.003) (.004) (.004) (.001) (.001) (.001) (.000) (.000) (.000) (.003) (.003) (.003) (.001) (.001) (.001) (.000) (.000) (.000)

.038 .027 .022 .039 .027 .022 .040 .027 .022 .038 .027 .022 .038 .027 .022 .039 .027 .022

(.002) (.001) (.001) (.001) (.001) (.001) (.001) (.000) (.000) (.002) (.001) (.001) (.001) (.001) (.001) (.001) (.000) (.000)

.488 .381 .362 1.000 .981 .617 1.000 1.000 1.000 .465 .396 .382 1.000 .953 .590 1.000 1.000 1.000

(.114) (.117) (.108) (.000) (.051) (.064) (.000) (.000) (.000) (.108) (.104) (.074) (.000) (.075) (.062) (.000) (.000) (.000)

.394 .398 .399 .343 .372 .400 .256 .350 .353 .397 .401 .399 .346 .382 .400 .280 .350 .350

(.017) (.009) (.006) (.017) (.025) (.003) (.064) (.002) (.013) (.022) (.014) (.005) (.013) (.024) (.000) (.029) (.002) (.000)

.964 .871 .809 1.000 1.000 .998 .956 1.000 1.000 .955 .841 .769 1.000 1.000 .995 1.000 1.000 1.000

(.046) (.079) (.083) (.000) (.000) (.009) (.205) (.000) (.000) (.053) (.068) (.046) (.000) (.000) (.015) (.000) (.000) (.000)

Notes: These simulation results are based on OLS estimates, under various true networks, network sizes and time periods T=500, 1000 and 1500. In all cases, 1000 Monte Carlo

iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the proportion of true zero elements in the social interaction

matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as

non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social interaction matrix W and the reduced form

matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node fixed effects. Standard errors across

iterations are in parentheses.

Table A4: Simulation Results, OLS
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Table A5: Summary Statistics, Tax Competition Application

Obs Mean SD Min q25 Median q75 Max

State total tax per capita 1296 .371 .266 .036 .145 .300 .530 1.345

State income per capita 1296 9.951 2.130 4.105 8.585 9.919 11.375 18.808

Unemployment rate 1296 5.885 2.242 1.800 4.200 5.500 7.000 18.000

Proportion of young 1296 .234 .033 .160 .210 .240 .260 .310

Proportion of elderly 1296 .106 .020 .040 .090 .110 .120 .190

State governor's age 1296 51.088 7.441 33.000 45.000 50.000 56.000 73.000

Governor term limit dummy 1296 .258 .438 .000 .000 .000 1.000 1.000

State total tax per capita 2688 0.983 0.803 0.036 0.037 0.813 1.557 4.298

State income per capita 2736 13.268 4.016 4.147 10.348 12.960 15.879 27.974

Unemployment rate 2688 5.764 2.026 1.800 4.300 5.400 6.800 17.800

Proportion of young 2688 0.236 0.033 0.170 0.210 0.230 0.260 0.340

Proportion of elderly 2688 0.117 0.023 0.050 0.100 0.120 0.130 0.190

State governor's age 2736 53.557 8.134 33.000 47.000 53.000 59.000 78.000

Governor term limit dummy 2638 0.249 0.433 0.000 0.000 0.000 0.000 1.000

Notes: Summary statistics of variables (in levels) used in subsequent regressions. Besley and Case sample runs from 1962 to 1988 and

extended sample until 2014. State total tax per capita is the sum of sales, income and corporation tax in thousands of 1982 US dollars. State

income per capita in thousands of 1982 US dollars. Proportion of young is the proportion of the population between 5 and 17 years. Proportion

of elderly is the proportion of the population aged 65 or older. State governor's age in years. Governor term limit dummy is equal to 1 if governor

faces term limits in the current mandate. Data sources: State total tax per capita, Census of Governments (1972, 1977, 1982, 1987, 1992-2016)

and Annual Survey of Goverment Finances (all other years); Steta income per capita, Bureau of Economic Analysis; Unemployment rate,

Bureau of Labor Statistics; Proportion of young (aged 5-17) and elderly (aged 65+), Census Population & Housing Data; State governor's age

and political variables manually sourced from individual governor's webpages on Wikipedia.

A. Besley and Case sample (1962-1988)

B. Extended sample (1962-2014)



Table A6: Exogenous Social Effects

Dependent variable: Change in per capital income and corporate taxes

Coefficient estimates, standard errors in parentheses

(1) Initial (2) OLS

(3) 2SLS: IVs are

Characteristics of

Neighbors

(4) 2SLS: IVs are

Characteristics of

Neighbors-of Neighbors

Economic Neighbors' tax change (t - [t-2]) .645 .145** .332* .608***

(.072) (.199) (.220)

Economic Neighbors' income per capita .090 .098*** .091*** .080***

(.011) (.012) (.014)

Economic Neighbors' unemployment rate 37.200 9.899*** 11.780*** 13.714***

(3.443) (2.856) (3.022)

Economic Neighbors' population aged 5-17 1378.1 376.2 478.5 596.6

(399.0) (414.2) (401.7)

Economic Neighbors' population aged 65+ -4304.5 -842.8 -769.7* -641.3

(504.3) (450.2) (468.6)

Economic Neighbors' governor age -2.158 -0.311 -0.293 -0.263

(.281) (.285) (.294)

Period

First Stage (F-stat) 9.571 10.480

Controls Yes Yes Yes Yes

State and Year Fixed Effects Yes Yes Yes Yes

Observations 2,952 2,952 2,544 2,592

1962-2015

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland US states running from 1962 to 2015. The dependent

variable is state i's total taxes per capita in year t. In all Columns, we penalize geographic neighbors in all Columns and allow for exogenous social

effects. In OLS and IV regressions, the economic neighbors' effect is calculated as the weighted average of economic neighbors' variables. OLS

regressions estimates are shown in Column 2. Column 3 shows the 2SLS regression where each geographic neighbors' tax change is instrumented by

lagged neighbor's state income per capita and unemployment rate. Column 4 shows a 2SLS regression where each geographic neighbors' tax change

is instrumented by lagged neighbor-of-neighbor's state income per capita and unemployment rate. At the foot of Columns 3 and 4 we report the p-value

on the F-statistic from the first stage of the null hypothesis that instruments are jointly equal to zero. All regressions control for state i’s income per

capita in 1982 US dollars, state i’s unemployment rate, the proportion of young (aged 5-17) and elderly (aged 65+) in state i’s population, and the state

governor's age. All specifications include state and time fixed effects. With the exception of governor's age, all variables are differenced between period

t and period t-2. Robust standard errors are reported in parentheses.



Table A7: General Equilibrium Impacts of California Tax Rise

Geographic Neighbor

Network

Economic Neighbor

Network
Ratio

Average tax increase 0.0038 0.0066 1.74

Variance tax increase 0.0160 0.0153 0.96

Tax dispersion 0.0053 0.0141 2.66

States with tax increase 48 48 1.00

States with tax increase > 0.05% 11 44 4.00

States with tax increase > 0.5% 5 11 2.20

States with tax increase > 1% 4 8 2.00

States with tax increase > 2.5% 1 3 3.00

States with tax increase > 5% 1 1 1.00

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of California increasing its tax change by 10%. The rho

coefficient is derived from our preferred specification to estimate the economic network, where we penalize geographic neighbors to states, and

allow for exogenous social effects (based on a sample of 48 mainland US states running from 1962 to 2015). We compare these derived tax

changes under the identified economic network structure, relative to that assumed under a geographic neighbors structure. The final Column

shows the ratio of the same statistic derived under each network.



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of D. Mean Absolute Deviation of

E. Endogenous Social Effect, F. Exogenous Social Effect

Notes: These simulation results are based on the Banerjee et al. (2013) village network, using the Adaptive Elastic Net GMM

algorithm, with penalization parameters chosen by BIC, under various assumptions about knowledge of the true network and

time periods T=25, 50, 100, 125 and 150. The “Village" case refers to the simulation implemented without knowledge about the

true network. "Village (top 3)" refers to the case where all connections of the three households with highest out-degrees are

assumed to be known. "Village (top 5)" and "Village (top 103)" are analogously defined. In all cases, 1000 Monte Carlo

iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. In Panel A, the % of zeroes refers to

the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. In Panel B, the % of

non-zeros refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-

zeros. In Panels C and D, the Mean Absolute Deviations are the mean absolute error of the estimated network compared to the

true network for the social interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true parameter

values are marked in the horizontal red lines. The recovered parameter are the estimated parameters averaged across

iterations. All specifications include time and node fixed effects.

Figure A1: Simulation Results, Adaptive Elastic Net GMM
Partial Knowledge of W0
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