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1 Introduction
The idea that the information contained in a large number of variables can be summarized by a

small number of variables (the “factors” or “principal components”) has been widely adopted in

economics and statistics. For example, asset returns are often modeled as a function of a small

number of factors (e.g., Stock and Watson (1989), Ludvigson and Ng (2007), Bai and Ng (2002),

Bai (2003), Bai and Ng (2012)). Cross-country variations are also found to have common compo-

nents (e.g., Gregory and Head (1999)). Factor analysis is used for forecasting (Stock and Watson

(1999)) and for Engel curves construction in demand analysis (Lewbel (1991)). More broadly,

applications can be found in many fields of statistics (Loève (1978)) and include medical imaging

(Sjöstrand, Stegmann, and Larsen (2006)), data compression (Wallace (1991)) and even search

engines (Brin and Page (1998)).

Although Principal Component Analysis (PCA) has a long history as an effective device for

dimension reduction (Jolliffe (1986)), it exhibits two main limitations. First, it is fundamentally a

linear transformation of the data and is thus not the most appropriate representation to use if the dif-

ferent data dimensions exhibit some form of mutual nonlinear relationships. Second, the resulting

principal components are merely uncorrelated, but not necessarily independent, thus suggesting

that they do not capture truly unrelated effects, except, of course, in a simple linear Gaussian

setting.

The importance of obtaining independent factors is perhaps best understood with a simple

example: Consider two uncorrelated zero-mean variables X and Y that however exhibit statistical

dependence because they are functionally related via Y = X2 − 1 (with X satisfying E [X2] =
1 and E [X3] = 0). In a linear framework, two factors are needed (X and Y themselves) to

fully describe the data, whereas one factor would be sufficient in a nonlinear framework, with a

curvilinear coordinate system defined by:

(X, Y ) =
(
F, F 2 − 1

)
where F is the factor. This example is simple and low-dimensional — the savings in term of

number of factors could be significantly greater in higher dimensions.

∗This work is supported by the US National Science Foundation under grant SES-1659334.
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The aim of this paper is to introduce a practical nonlinear generalization of PCA that captures

nonlinear forms of dependence and delivers truly independent factors. The output of the method is

a low-dimensional curvilinear coordinate system that tracks the important features of the data. The

key ingredients of our approach are (i) the reliance on the theory of Brenier maps (Brenier (1991)),

which are a natural generalization of monotone functions in multivariate settings, (ii) the use of

entropy (Kullback (1959), Csiszar (1991), Golan, Judge, and Miller (1996), Shore and Johnson

(1980), Gray (2011), Shannon (1948)) to determine the principal nonlinear components that cap-

ture most of the information content of the data and (iii) the introduction of a novel multivariate

additive decomposition of the entropy into one-dimensional contributions. The resulting method is

computationally attractive, as it reduces to the well-studied problem of computing a Brenier map

followed by a suitable matrix diagonalization step. These features distinguish our approach from

the numerous other solutions that have been previously proposed in the very active literature seek-

ing nonlinear generalizations of PCA (see, e.g., Lawrence (2012) and Lee and Verleysen (2007)

for reviews). An appealing theoretical feature of our approach is the virtual absence of technical

regularity conditions for the results to hold — is that is needed is that the data admits a density

with respect to the Lebesgue measure.

This paper is organized as follows. In Section 2, we first informally outline and motivate our

method before turning to more formal treatment of the approach and a description of its implemen-

tation. We then compare our approach with previously proposed nonlinear extensions of PCA in

Section 3. We finally provide examples of applications, in Section 4, to both simulated and actual

data. In particular, we focus on an application to the determination of a nonlinear version of the

well-known Fama-French factors (Fama and French (1992), Fama and French (1993)).

2 Method

2.1 Outline
The proposed method relies on a powerful result of convex analysis, which characterizes the so-

lution to the following optimization problem. Consider a random vector Y taking values in R
d

with density f (y) (with respect to the Lebesgue measure) and one wishes to find a (measurable)

mapping T : Rd �→ R
d such that the random variable x = T (y) has a pre-specified density Φ̃ (x).

As there are obviously an infinite number of possible T that satisfy this constraint, it is natural to

select the simplest transformation in the sense that it minimizes:∫
‖y − T (y)‖2 f (y) dy,

where ‖·‖ denotes the Euclidian norm. This minimization problem is known as the Monge-

Kantorovich-Brenier optimal transportation problem, as it identifies the mapping that requires the

least amount of probability mass movement in the mean square sense. (For introductions to this

topic, we refer to Galichon (2016), Rachev and Rüschendorf (1998), Santambrogio (2015), Villani

(2003), and Villani (2009).) The solution to this problem has desirable regularity properties, in par-

ticular, the so-called Brenier map T must take the form of the gradient of a convex function, which

is often regarded as a natural generalization of the concept of monotonicity in multivariate settings

(Brenier (1991), McCann (1995), Carlier, Chernozhukov, and Galichon (2016)). Remarkably, one
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can even show that T (y) is the only transformation (subject to almost everywhere qualifications)

mapping f to Φ̃ that is the gradient of a convex function. This characterization of the Brenier map

actually even relaxes any requirement of y having a finite variance. Numerous numerical meth-

ods to find T (y) are available in the literature (e.g., Villani (2003), Villani (2009), Benamou and

Brenier (2000), Chartrand, Wohlberg, Vixie, and Bollt (2009), Benamou, Froese, and Oberman

(2014)).

We show that this optimal transportation problem is directly related to the determination of

nonlinear independent components that best represent the data. By selecting a target density Φ̃ (x)
that factors as a product of univariate densities

∏d
i=1 φ̃i (xi), we obtain, by construction, indepen-

dent components. These components define a curvilinear coordinate system in the space of the

original variables via the inverse mapping y = T−1 (x). Note that the factorization in terms of uni-

variate marginals does not need to be along one specific Cartesian coordinate system. In general,

one can have:

Φ̃ (x) =
d∏

i=1

φ̃i

(
ui · x)

where {ui}di=1 is a set of orthogonal unit vectors and φ̃i (·) are functions of one variable.

Obviously, there are many possible choices of ui and φ̃i (·) and we need to be more specific

to construct a well-defined procedure. First, we observe that, for a given choice of {ui}di=1, the

choice of the φ̃i (·) is arbitrary, because different choices generate essentially equivalent curvilin-

ear coordinate systems that only differ in the “speed” at which one travels along each axis. We

exploit this arbitrariness by selecting the φ̃i (x) to be of a particularly convenient form: A standard

univariate normal, denoted φ (x). This choice is driven by the fact that a multivariate standard

normal Φ (x) ≡ ∏d
i=1 φ (xi) is the only distribution which exhibits two properties: (i) it factors as

a product of marginal and (ii) it is invariant under arbitrary rotations of the coordinate system. We

can exploit the invariance under rotation to straightforwardly explore various possible choices of

coordinate systems {ui}di=1 in search of an optimal one, in a sense to be made precise below.

Ultimately, our goal is to only keep the subset {ui}ki=1 (with k < d) of the d dimensions that

“explains” the most important features of the data. We show that, although the concept of variance

is not very useful in nonlinear settings to identify the most important components, the concept of

entropy proves extremely useful. Entropy is defined as

H = −
∫

f (y) ln f (y) dy (1)

for a given density f (y) with respect to the Lebesgue measure and where the integral is over Rd

and, by convention, 0 ln 0 ≡ limt→0 t ln t = 0. The concept of entropy has a long history as a

measure of the amount of information contained in a probability distribution (Kullback (1959),

Csiszar (1991), Golan, Judge, and Miller (1996), Shore and Johnson (1980)). We seek the {ui}ki=1

that accounts for the largest possible fraction of this entropy. We demonstrate that the k most

important components u1, . . . , uk can be simply identified from the (normalized) eigenvectors as-

sociated with the k largest eigenvalues of the matrix J̄ ≡ − ∫
f (y) ln J (y) dy where J (y) = ∂T (y)

∂y′
is the Jacobian of the transformation T (the previously obtained Brenier mapping f onto Φ) and

the ln of a matrix M , diagonalizable as M = P diag (λ1, . . . , λd)P
−1 is defined in the usual way

(Gantmacher (1959)) as lnM ≡ P diag (lnλ1, . . . , lnλd)P
−1.

3



Our low-dimensional nonlinear representation of the data, denoted yk∗ then takes the form:

yk∗ = T−1

(
k∑

j=1

ujxj

)
. (2)

where xj ∈ R for j = 1, . . . , k are arbitrary coordinates expressed in our curvilinear coordinate

system. This expression clearly reduces to standard PCA if T−1 is a linear map, which would be

the case if the data is Gaussian. In this work, we take the number of factor k as given and leave the

question of its data-driven determination for future work.

2.2 Main results
The first step in the construction is to obtain the Brenier map T : Rd → R

d mapping a given

density f (with respect to the Lebesgue measure) to the standard Normal Φ of the same dimension.

Once the Brenier map T has been determined, the principal components (or factors) can be deter-

mined by rotating the coordinate system of the standard normal variables. The implied curvilinear

coordinate system in the space of the original vector y provides the nonlinear factors. The principal

components are determined by keeping the coordinates that contribute the most to the entropy of

the distribution of y.

Our only regularity condition, which we assume throughout, is:

Assumption 1 The random vector y admits a density f (y) with respect to the Lebesgue measure.

In order to be able to select which nonlinear factor contributes the most to the overall entropy

of the observed distribution, we need to introduce a formal definition of the entropy contribution

of each factor. The following lemma shows that the entropy of the distribution of y, denoted H ,

can be naturally expressed as a sum of factor-specific contributions.

Lemma 1 Let T be the Brenier map transporting f onto Φ. Then, for any set of unit vectors
{uj}dj=1 forming an orthogonal basis, the entropy of f (y) can we written as

H =
d∑

j=1

Huj

where, for a given unit vector u, Hu is the the effective contribution of factor u to the entropy,
given by

Hu = −1

2
ln (2πe) + u′J̄u.

Here, −1
2
ln (2πe) is the entropy of a univariate standard normal while

J̄ ≡ −
∫

Φ (x) ln
(
J
(
T−1 (x)

))
dx = −

∫
f (y) ln J (y) dy

where J (y) = ∂T (y)
∂y′ . (The ln of a matrix M , diagonalizable as M = P diag (λ1, . . . , λd)P

−1 is
defined as lnM ≡ P diag (lnλ1, . . . , lnλd)P

−1.)
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An automatic consequence of this Lemma is that the most important factors (based on our

entropy criterion) can be determined as follows.

Theorem 2 For a given k ≤ d, a solution to

(
u1, . . . , uk

)
= argmax

(u1,...,uk)∈Uk,d

k∑
j=1

Huj

where Uk,d =
{
ui ∈ R

d : ui · uj = 1 {i = j} for i, j ∈ {1, . . . , k}}, is given by the k eigenvectors
associated with the k largest eigenvalues of the matrix J̄ (defined in Lemma 1).

Remark There may be multiple solutions, corresponding to trivial changes in the signs of ui

or permutations among them. Also, as in standard PCA, eigenvectors are not unique if some

eigenvalues are degenerate.

The definition of the effective contribution of a factor to the entropy in Lemma 1 exhibits

a number of desirable properties. First, in well-known special cases, it reduces to the standard

properties relied upon in linear PCA.

Corollary 3 (Special cases) (i) For independent random variables, the decomposition of Lemma
1 reduces to the usual fact that the entropy of independent random variables is additive. (ii) For
normally distributed variables, picking the k < d factors with largest variance is equivalent to
picking the k factors with largest entropy.

However, the advantage of our concept of additive entropy decomposition is that maintains the

same natural form and interpretation in general nonlinear and non-Gaussian models. In contrast,

the concept of variance does not generalize well to nonlinear factor setting (as it is not clear what

is the meaning of comparing the variances of random variables that are nonlinearly related). The

problem can best be seen by the following example. Consider two bivariate distributions, which

could represent the projection of the same data along two directions. One is uniformly distributed

on a “s”-shaped set and one is uniformly distributed on an “l”-shaped set. The longest linear

dimension of the “s” could be shorter that the “l” and yet, the length of the “s” along the its curve

could be longer than the “l”. Variance would identify the distribution with support “l” as explaining

more variation in the data, whereas, in fact, it is arguably the distribution with support “s” that

does. Uniform distributions with a larger support have a larger entropy and thus, in our example,

the distribution with “s”-shaped support would be correctly identified as more informative.

A second desirable property is the fact that the principal factors (that contribute the most to

the entropy) can be easily determined by diagonalizing the matrix J̄ , which is no more involved

than for linear PCA. The computation of the Brenier map is an additional preliminary step relative

to the linear case, but it only needs to be performed once for one arbitrary choice of coordinate

system. The optimization of the “orientation” of the principal factors can be done via simple linear

algebra operations, despite the nonlinear nature of the original problem.

If k components are kept, then our low-dimensional nonlinear representation of the data, de-

noted yk∗, takes the form:

yk∗ = T−1

(
k∑

j=1

ujxj

)
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where uj for j = 1, . . . , k are the normalized eigenvectors of the J̄ matrix associated with the

k largest eigenvalues and xj ∈ R for j = 1, . . . , k are an arbitrary coordinates expressed in our

curvilinear coordinate system. This expression clearly reduces to standard PCA if T−1 is a linear

map, which would be the case if the data is Gaussian.

2.3 Implementation
Our implementation is based on Chartrand, Wohlberg, Vixie, and Bollt (2009) and ideas from

Benamou, Froese, and Oberman (2014) and uses the known fact that the Brenier map is the only

mapping (i) that will transform the one given density into another given density and (ii) that can

be written as the gradient of a convex function. The constraint that the original density f (y) be

mapped to Φ (x) by the map x = T (y) can be expressed using the usual change of variables

formula:

f (y) = Φ (T (y)) det

(
∂T (y)

∂y′

)
.

We also know, more specifically, that the Brenier map can be written as a gradient T (y) =
∂c (y) /∂y of some convex function c (y). This implies that the problem reduces to finding the

convex function c (y) solving the equation:

f (y)− Φ

(
∂c (y)

∂y

)
det

(
∂2c (y)

∂y∂y′

)
= 0. (3)

Chartrand, Wohlberg, Vixie, and Bollt (2009) further showed that c (y) minimizes a functional

whose gradient (or, more formally, whose functional derivative with respect to the function c (y))
is the left-hand side of Equation (3). Hence, one can simply update a trial c (y) in the direction of

this gradient to iteratively converge to the solution:

cn+1 (y) = cn (y) + τ

(
f (y)− Φ

(
∂cn (y)

∂y

)
det

(
∂2cn (y)

∂y∂y′

))

where cn (y) represents a converging sequence of approximations to the solution and τ denotes a

user-specified step size parameter.

A useful heuristic rule that improves the convergence of the iterative solution method is to mul-

tiply τ by factor θd ≈ 0.2 whenever the current value of τ would have lead
∥∥∥f (y)− Φ

(
∂cn(y)
∂y

)
det

(
∂2cn(y)
∂y∂y′

)∥∥∥
to increase from one iteration to the next. This prevents the method from making steps that over-

shoot the solution. We also found, empirically, that convergence is sped up if τ is increased by

a factor θu ≈ 1.1 whenever
∥∥∥f (y)− Φ

(
∂cn(y)
∂y

)
det

(
∂2cn(y)
∂y∂y′

)∥∥∥ has been decreasing for nu ≈ 20

iterations.

Another useful fail-safe strategy is to enforce convexity of cn (y) at each step. This can be

accomplished by checking if one of the eigenvalues of the Hessian of cn (y) is negative at some

point y and, if so, by reducing cn (y) at y so that this eigenvalue becomes equal to a small user-

specified positive number εc. This is iterated until all points of nonconvexity have been eliminated.

The value εc is gradually reduced as iterations over n progress, so that, asymptotically, the positive

curvature constraint is not binding at the solution.
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The density f (y) is first obtained by kernel smoothing and we implement Equation (3) via finite

differences and by sampling the functions on a grid. We place a regular, fixed, grid on the original

data, with grid points ym, indexed by m ∈ {−M, . . . ,+M}d. The corresponding curvilinear grid

in the transformed space is xm = T (ym) where the d elements Tj (ym) of T (ym) are approximated

via centered finite differences1 as

Tj (ym) ≈
c
(
ym+Δj

)− c
(
ym−Δj

)∥∥ym+Δj
− ym−Δj

∥∥
where Δj is a d-dimensional vector containing 1 at the j-th element and zero elsewhere. The

Jacobian is also approximated via centered finite differences:

∂2c (y)

∂yi∂yj
≈ c

(
ym+Δj+Δi

)− c
(
ym+Δj−Δi

)− c
(
ym−Δj+Δi

)
+ c

(
ym−Δj−Δi

)
‖ym+Δi

− ym−Δi
‖ ∥∥ym+Δj

− ym−Δj

∥∥ .

Once c (y) has been determined, the optimal rotation can be found as follows. The matrix J̄ from

Lemma 1 can approximated by

J̄ ≈ −
∑

m∈{−M,...,+M}d
Φ (xm) ln (J (ym))

d∏
j=1

∥∥xm+Δj
− xm−Δj

∥∥ /2.
Diagonalization of this matrix yields the (normalized) eigenvectors u1, . . . , uk associated with the k
largest eigenvalues. The curvilinear coordinate system representing the k most important nonlinear

factors is then given by Equation (2).

Our implementation is general in that it can handle data of any dimensions, although computa-

tional requirements do increase steeply with the dimension due to the grid-type representation of

the factors. For very high-dimensional problems, it may not be practical to perform a full nonlin-

ear PCA analysis. In such a case, one can exploit the fact that, by a Taylor expansion argument,

the effect of the less important factors can often be linearized. This implies that a very effective

approach is to initially perform a linear PCA step to first identify the very small components that

can be linearized and only perform a nonlinear PCA on the remaining components that are large

enough to even have nonlinear features.

3 Discussion
While the idea of extending PCA to nonlinear settings has apparently not been explored in the field

of econometrics, this problem has received more attention in the field of machine learning. It is

thus instructive to identify key distinguishing features of the proposed method that clearly differ

from general features shared by many other existing methods.

Our approach guarantees, by construction, that the resulting factors are statistically indepen-

dent, thus implying that they each truly represent distinct and unrelated features of the data. Many

1At boundary points, noncentered differences need to be used instead. We use noncentered differences that are

second-order accurate (so that their accuracy is theoretically equivalent to the centered differences used for non bound-

ary points). This remark applies to all finite differences throughout the paper.
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existing methods (e.g., Schölkopf, Smola, and Müller (1998), Gorban and Zinovyev (2010), Gash-

ler, Ventura, and Martinez (2008), Tenenbaum, de Silva, and Langford (2000)) specifically target

the goal of accurately representing the data by a manifold of a given dimension and thus perform

very well in this respect. However, the goal of obtaining independent factors is largely overlooked.

Even methods designed with independence in mind (e.g., Bell and Sejnowski (1995)), only achieve

it approximately in general. The importance of independence can also be appreciated from a data

compression perspective: Any remaining dependence in the factors implies that one could, in prin-

ciple, obtain a more compact representation of the data by exploiting the statistical dependence

to partially predict some of the factor from the values of others and thus reduce the amount of

information that needs to be stored (the prediction error could have a smaller variance than the

factors themselves, for instance). This is not possible under full independence of the factors, thus

indicating that the data has already been optimally “compressed”.

Our approach relies on the concept of entropy (e.g., Kullback (1959), Shore and Johnson

(1980), Schennach (2005)) to gauge the importance of the factors, whereas most existing methods

employ some concept of “distance” to identify the important factors. Unfortunately, the concept

of distance becomes somewhat ambiguous in the context of curvilinear coordinate systems (e.g., is

distance measured in, say, the Euclidian metric in terms of the data coordinates y or in the curvi-

linear coordinates x?). In contrast, the idea of entropy is directly tied to the information content of

the data and can be defined independently of a choice of metric,2 a key realization that has, so far,

only been used in a few methods (e.g., Bell and Sejnowski (1995), although they use entropy in a

very different way).

Our procedure has a well-defined unique global optimal solution thanks to a direct connec-

tion to the theory of optimal transport and Brenier maps (Brenier (1991), McCann (1995)). Some

existing methods enjoy global optimization properties (e.g., Tenenbaum, de Silva, and Langford

(2000)) but most do not. Many methods rely on an iterative refinement of a manifold based on some

local rules that penalize complexity and reward accuracy. While these rules convey useful proper-

ties to the decomposition, their complexity and locality make it hard to ascertain convergence to a

global optimum. Many methods (e.g., Demartines and Hérault (1997), Bell and Sejnowski (1995),

Kramer (1991)) rely on neural networks for optimization, and convergence properties are typically

verified by experimentation rather than by formal proof.

Our procedure reduces, without user input, to linear PCA in the classic linear Gaussian case.

This apparently simple property is not guaranteed in most sophisticated nonlinear dimension re-

duction techniques, even those (e.g., Schölkopf, Smola, and Müller (1998)) that have a very direct

connection to linear PCA. Yet, this property ensures that (i) the procedure is at least as good as lin-

ear PCA and that (ii) it can be freely combined with linear methods to reach the best compromise

between computational and statistical efficiency.

A large fraction of existing methods (e.g., Roweis and Saul (2000), Tenenbaum, de Silva, and

Langford (2000)) only work directly with data points, rather than with a density of the input data.

Our approach can work with both, which is extremely useful if the input data can be accurately

modeled (in part or entirely) by a parametric model. Perhaps even more importantly, the ability to

work with densities represents a major theoretical advantage to study the asymptotic properties of

the method in the limit of large data sets.

2However, it does depend on the choice of reference probability measure, here taken to be the Lebesgue measure.
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Figure 1: Nonlinear principal component analysis in a simple two-dimensional example using a

mixture of 3 normals as an input density. The density is shown as a color map while the overlaid

curvilinear grid represents the nonlinear factors.

4 Illustrative Examples
Our first example employs simulated data to clearly illustrate the method’s ability to capture both

the general “direction” and the nonlinear nature of the main features of the data. As an input

density, we use a mixture of three normals:

N

([
3
−3

]
,

[
3 2
2 3

])
, N

([ −3
3

]
,

[
3 −3
−3 4

])
, N

([ −1
−1

]
,

[
4 −2
−2 2

])

with equal weights. The resulting nonlinear principal component analysis, depicted in Figure

1, shows that the method correctly identifies the direction along which the data exhibits the most

variation. The curvilinear coordinate system also roughly follows the clear ridge in the data despite

its multimodal nature. Additionally, the grid lines are further apart in areas where the density is

spread over a bigger area, indicating that they do “adapt” to the target distribution in a nontrivial

nonlinear fashion.

We have also empirically verified that our approach recovers the usual PCA result in the special

case of normally distributed data. The resulting coordinate system is indeed linear and the rotation

matrix that yields the linear factors matches the known principal axes of the normal data within the

expected numerical accuracy (typically two decimal places).

As an empirical illustration, we revisit the well-known Fama-French factors (Fama and French

(1992), Fama and French (1993)) with a nonlinear perspective. We take their 3-factor data (French

(2017)) as an input and check if they could be better reparametrized by a curvilinear coordinate

system. The existence of nonlinear (rather than linear) factors is a necessary condition for the

proposed method to deliver a more efficient representation of the data. As shown in Figure 2, we

find that nonlinear factors are indeed necessary to obtain independent latent factors. We also find

that our entropy-driven method to select the “directions” of the curvilinear coordinate system is

effective at identifying the dominant orientation of the main features of the data.

Of course, the ultimate test of the usefulness of the method in this context would be to ascertain

that predictions of asset returns made with the nonlinear factors are more accurate than with the

same number of linear factors. This could be shown, for instance, by reducing the 5-factor Fama-

French model to 3 nonlinear factor and comparing the performance the latter with the conventional
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Figure 2: Nonlinear principal component analysis of the 3-factor Fama-French data. The color

surfaces show contours of constant probability density, with a portion cut out to better show the

geometry of the inner contours. The overlaid grid represents the curvilinear coordinate system

identified with our method (for clarity, only the subset of the mesh lying along the boundary of the

cutout is shown). The linear axes labelled x, y and z represent the original coordinate system.

linear 3-factor Fama-French model. This analysis is under way and will be included in future

versions of this paper.

A Proofs
Proof of Lemma 1. The density of the observed data, f (y), can be expressed in terms of the

Brenier map T (y) and the standard multivariate normal Φ (x):

f (y) = Φ (T (y)) det

(
∂T (y)

∂y′

)
,

where the Jacobian matrix ∂T (y) /∂y′ is almost everywhere well-defined as Brenier maps are

differentiable almost everywhere, by a theorem from Aleksandrov (Aleksandrov (1939); see also

Villani (2003)).

We can then find a simple expression for the entropy H = − ∫
f (y) ln f (y) dy, via the change

10



of variable: x = T (y) (so that dx = det
(

∂T (y)
∂y′

)
dy):

H = −
∫

Φ (T (y)) det

(
∂T (y)

∂y′

)
ln

(
Φ (T (y)) det

(
∂T (y)

∂y′

))
dy

= −
∫

Φ (x) ln

(
Φ (x)

[
det

(
∂T (y)

∂y′

)]
y=T−1(x)

)
dx

= −
∫

Φ (x) ln
(
Φ (x) det J

(
T−1 (x)

))
dx

where J (y) = ∂T (y)
∂y′ .

H = −
∫

Φ (x) ln
(
Φ (x) det J

(
T−1 (x)

))
dx

= −
∫ (

d∏
i=1

φ (xi)

)
ln

((
d∏

i=1

φ (xi)

)
det J

(
T−1 (x)

))
dx

= A+B

where

A = −
∫ (

d∏
i=1

φ (xi)

)
ln

((
d∏

i=1

φ (xi)

))
dx

B = −
∫

Φ (x) ln
(
det J

(
T−1 (x)

))
dx.

Each term can then be simplified:

A = −
d∑

j=1

∫ (
d∏

i=1

φ (xi)

)
ln (φ (xj)) dx

= −
d∑

j=1

∫
φ (xj) ln (φ (xj)) dxj

∏
i �=j

(∫
φ (xi) dxi

)

= −
d∑

j=1

∫
φ (xj) ln (φ (xj)) dxj =

d∑
j=1

−H0

where H0 = −1
2
ln (2πe) is the entropy of a univariate normal.

To evaluate B, we use the equality:

ln det J
(
T−1 (x)

)
= ln

d∏
i=1

λi (x)

where λi are the eigenvalues of J (T−1 (x)). Note that since T is the gradient of a continuously

differentiable convex function, J (y) = J (T−1 (x)) is symmetric and therefore diagonalizable.

11



Also, a Brenier map between two Lebesgue densities is almost everywhere strictly convex (by

Theorem 2.12 in Villani (2003)), which implies that λi (x) > 0 for i = 1, . . . , d almost everywhere.

Next, we observe that

ln det J
(
T−1 (x)

)
=

d∑
j=1

lnλj (x) = tr ln J
(
T−1 (x)

)
=

d∑
j=1

uj′ (ln J (
T−1 (x)

))
uj

where we introduced the logarithm of a matrix, have exploited the fact that the sum of eigenvalues

is equal to the trace and that the trace of a matrix can be evaluated in any orthogonal coordinate

system {uj}dj=1. Then,

B = −
∫

Φ (x)
d∑

j=1

uj′ (ln J (
T−1 (x)

))
ujdx

=
d∑

j=1

−uj′
(∫

Φ (x)
(
ln J

(
T−1 (x)

))
dx

)
uj

=
d∑

j=1

uj′J̄uj

where J̄ =
∫
Φ (x) (ln J (T−1 (x))) dx, as defined in the statement of the Lemma. (Note that we

also have J̄ = − ∫
f (y) ln J (y) dy, by the simple change of variable y = T−1 (x).) Collecting

these results, we then have:

H = A+B =
d∑

j=1

−H0 +
d∑

j=1

uj′J̄uj =
d∑

j=1

Huj

for Huj defined in the statement of the theorem.

Proof of Theorem 2. Since matrix J̄ is symmetric, it is diagonalizable with orthogonal eigenvec-

tors. We can thus decompose it as J̄ = PΛP ′ where Λ is diagonal and its elements are ordered in

decreasing order of magnitude and P is normalized so that P ′P = I (this also states that, in case

of degenerate eigenvalues, we select an orthogonal set of eigenvectors among the infinite number

of possibilities). We then have (observing that the additive constants −1
2
ln (2πe) do not affect the

optimization problem):

(
u1, . . . , uk

)
= argmax

(u1,...,uk)∈Uk,d

k∑
j=1

Huj = argmax
(u1,...,uk)∈Uk,d

k∑
j=1

uj′J̄uj

= argmax
(u1,...,uk)∈Uk,d

k∑
j=1

uj′PΛP ′uj = P argmax
(v1,...,vk)∈Uk,d

k∑
j=1

vj′Λvj

= P
[
e1, e2, . . . , ek

]
= (P·1, P·2, . . . P·k)

where ei is a d-dimensional column vector with 1 as its i entry and 0 elsewhere and P·i is the i-th
column of P , i.e., the i-th eigenvector.
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Proof of Corollary 3. The special case (i) of independent factors corresponds to the case where

T (y) takes the element-by-element form Ti (y) = gi (yi) for some strictly increasing function

gi (yi). Note that this mapping is a Brenier map because it is the gradient of the convex func-

tion c (y) ≡ ∑d
i=1 Gi (yi), where Gi (yi) =

∫ yi
y∗ gi (u) du for some y∗ ∈ R. Indeed, since

gi (yi) is strictly increasing, Gi (yi) is strictly convex, i.e. Gi (αy
1
i + (1− α) y2i ) < αGi (y

1
i ) +

(1− α)Gi (y
2
i ) for any y1 ≡ (y11, . . . , y

1
d) ∈ R

d and y2 ≡ (y21, . . . , y
2
d) ∈ R

d, which implies that

c
(
αy1 + (1− α) y2

)
=

d∑
i=1

Gi

(
αy1i + (1− α) y2i

)
<

d∑
i=1

(
αGi

(
y1i
)
+ (1− α)Gi

(
y2i
))

= α
d∑

i=1

Gi

(
y1i
)
+ (1− α)

d∑
i=1

Gi

(
y2i
)
= αc

(
y1
)
+ (1− α) c

(
y2
)
,

i.e., c (y) is convex.

We also observe that J (T−1 (x)) is diagonal since ∂Ti (y) /∂yj = 0 for j 
= i. We then have,

for an orthogonal basis uj that is aligned with the independent factors, that uj′ (ln J (T−1 (x))) uj =

[ln J (T−1 (x))]jj = ln Jjj (T
−1 (x)) = ln

[
∂gj(yj)

∂yj

]
yj=g−1

j (xj)
and

Huj = −1

2
ln (2πe)−

∫ (
d∏

i=1

φ (xi)

)(
ln

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)
dx

= −1

2
ln (2πe)−

∫
φ (xj) ln

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

dxj

∏
i �=j

∫
φ (xi) dxi

= −1

2
ln (2πe)−

∫
φ (xj) ln

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

dxj

Using the fact that −1
2
ln (2πe) = − ∫

φ (xi) lnφ (xi) dxi and performing the change of variables

xj = gj (yj), we have:

Huj = −
∫

φ (xj) ln

(
φ (xj)

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)
dxj

= −
∫

φ (xj)

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

ln

(
φ (xj)

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)([
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)−1

dxj

= −
∫

φ (gj (yj))
∂gj (yj)

∂yj
ln

(
φ (gj (yj))

∂gj (yj)

∂yj

)
dyj

= −
∫

fj (yj) ln fj (yj) dyj

where fj is the marginal density of yj with respect to Lebesgue measure. Thus, our definition

generalizes this simple additive result to the case where the yj are not independent (they are not, in

general).
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To show statement (ii), we observe that the entropy of a multivariate normal where each inde-

pendent factor has variance σ2
i is given by

∑d
j=1 Huj with

Huj = −1

2
ln (2πe) +

1

2
ln σ2

i

Hence, picking the k < d factors with largest variance is equivalent to picking the k factors with

largest entropy.
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