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Abstract

We study the asymptotic properties of a class of estimators of the structural parameters in dynamic

discrete choice games. We consider K-stage policy iteration (PI) estimators, where K denotes the

number of policy iterations employed in the estimation. This class nests several estimators proposed in

the literature. By considering a “maximum likelihood” criterion function, our estimator becomes the K-

ML estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion

function, it defines a new K-MD estimator, which is an iterative version of the estimators in Pesendorfer

and Schmidt-Dengler (2008) and Pakes et al. (2007).

First, we establish that the K-ML estimator is consistent and asymptotically normal for any K. This

complements findings in Aguirregabiria and Mira (2007), who focus on K = 1 and K large enough to

induce convergence of the estimator. Furthermore, we show that the asymptotic variance of the K-ML

estimator can exhibit arbitrary patterns as a function K.

Second, we establish that the K-MD estimator is consistent and asymptotically normal for any K.

For a specific weight matrix, the K-MD estimator has the same asymptotic distribution as the K-ML

estimator. Our main result provides an optimal sequence of weight matrices for the K-MD estimator

and shows that the optimally weighted K-MD estimator has an asymptotic distribution that is invariant

to K. This new result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for

K-ML estimators. Our main result implies two new and important corollaries about the optimal 1-MD

estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal 1-MD estimator is

optimal in the class of K-MD estimators for all K. In other words, additional policy iterations do not

provide asymptotic efficiency gains relative to the optimal 1-MD estimator. Second, the optimal 1-MD

estimator is more or equally asymptotically efficient than any K-ML estimator for all K.
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1 Introduction

This paper investigates the asymptotic properties of a wide class of estimators of the structural parameters

in a dynamic discrete choice game, i.e., a dynamic game with discrete actions. In particular, we consider

the class of K-stage policy iteration (PI) estimators, where K ∈ N denotes the number of policy iterations

employed in the estimation. By definition, the K-stage PI estimator is defined by:

α̂K ≡ arg max
α∈Θ

Q̂(α, P̂K−1), (1.1)

where α∗ ∈ Θα is the true value of the structural parameter of interest, Q̂ is a criterion function, and P̂k

is the k-stage estimator of the conditional choice probabilities (CCPs), defined iteratively as follows. The

preliminary or 0-stage estimator of the CCP is denoted by P̂0. Then, for any k = 1, . . . ,K − 1,

P̂k ≡ Ψ(α̂k, P̂k−1), (1.2)

where Ψ is the best response CCP mapping of the structural game. Given any set of beliefs P , optimal or not,

Ψ(α, P ) indicates the corresponding optimal CCPs when the structural parameter is α. The idea of using

iterations to estimate the CCPs in Eq. (1.2) was introduced to the literature in the seminal contributions of

Aguirregabiria and Mira (2002, 2007).

Our K-stage PI estimator nests most of the estimators proposed in the dynamic discrete choice games

literature. By appropriate choice of Q̂ and K, our K-stage PI estimator coincides with the pseudo maximum

likelihood (PML) estimator proposed by Aguirregabiria and Mira (2002, 2007), the asymptotic least squares

estimators proposed by Pesendorfer and Schmidt-Dengler (2008), or the so-called simple estimators proposed

by Pakes et al. (2007).

To implement the K-stage PI estimator, the researcher must determine the number of policy iterations

K ∈ N. This choice poses several related research questions. How should researchers choose K? Does it make

a difference? If so, what is the “optimal” choice of K? The literature provides arguably incomplete answers

to these questions. The main contribution of this paper is to answer these questions. Before describing our

results, we review the main related findings in the literature.

Aguirregabiria and Mira (2002, 2007) propose K-stage PML estimators of the structural parameters

in dynamic discrete choice problems. The earlier paper considers single-agent problems whereas the later

one generalizes the analysis to multiple-agent problems, i.e., games. In both of these papers, the objective

function is the pseudo log-likelihood criterion function Q̂ = Q̂ML, defined by:

Q̂ML(α, P ) ≡ 1

n

n∑
i=1

ln
(
Ψ(α, P )(ai|xi)

)
. (1.3)

In this paper, we refer to the resulting estimator as the K-ML estimator. One of the main contributions of

Aguirregabiria and Mira (2002, 2007) is to study the effect of the number of iterations K on the asymptotic

distribution of the K-ML estimator.

In single-agent dynamic problems, Aguirregabiria and Mira (2002) show that the asymptotic distribution

of the K-ML estimators is invariant to K. In other words, any additional round of (computationally costly)

policy mapping iteration has no effect on the asymptotic distribution. This striking result is a consequence

of the so-called “zero Jacobian property” that occurs when a single agent makes optimal decisions. This

property does not hold in dynamic problems with multiple players, as each player makes optimal choices
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according to their preferences, which may not be aligned with their competitors’ preferences. Thus, in

dynamic discrete choice games, one should expect that the asymptotic distribution of K-ML estimators

changes with K.

In multiple-agent dynamic games, Aguirregabiria and Mira (2007) show that the asymptotic distribution

of the K-ML estimators is not invariant to K. Their contribution considers two specific choices of K. On one

hand, they consider the 1-ML estimator, i.e., K = 1, which they refer to as the two-step pseudo maximum

likelihood (PML) estimator. On the other hand, they consider the K-ML estimator that results from

increasing K until the estimator converges (i.e., α̂(K−1)−ML = α̂K−ML), which they refer to as the nested

pseudo likelihood (NPL) estimator. Kasahara and Shimotsu (2012) provide conditions that guarantee this

convergence. For concreteness, we refer to this estimator as the ∞-ML estimator. Under some conditions,

Aguirregabiria and Mira (2007) show that the 1-ML and∞-ML estimators are consistent and asymptotically

normal estimators of α, i.e.,

√
n(α̂1−ML − α∗)

d→ N(0,Σ1−ML)
√
n(α̂∞−ML − α∗)

d→ N(0,Σ∞−ML). (1.4)

More importantly, under additional conditions, Aguirregabiria and Mira (2007) show that Σ1−ML−Σ∞−ML

is positive definite, that is, the ∞-ML estimator is asymptotically more efficient than the 1-ML estimator.

So although iterating the K-ML estimator until convergence might be computationally costly, it improves

asymptotic efficiency.

In later work, Pesendorfer and Schmidt-Dengler (2010) indicate that the ∞-ML estimator may be incon-

sistent in certain games with unstable equilibria. The intuition for this is as follows. To derive Eq. (1.4),

Aguirregabiria and Mira (2007) consider an asymptotic framework with n → ∞ and then K → ∞ (in that

order). In practice, however, researchers consider K →∞ for a large but fixed sample size n. Thus, the more

relevant asymptotic framework for ∞-ML is K → ∞ and then n → ∞ (again, in that order). Pesendorfer

and Schmidt-Dengler (2010) show that, in an unstable equilibrium, reversing the order of the limits can

produce very different asymptotic results.1 In any case, the main findings in Aguirregabiria and Mira (2007)

are still applicable for dynamic games in which we observe data from a stable equilibrium.

Pesendorfer and Schmidt-Dengler (2008) consider estimation of dynamic discrete choice games using a

class of minimum distance (MD) estimators. Specifically, their objective is to minimize the sample criterion

function Q̂ = Q̂MD, given by:

Q̂MD(α, P̂0) ≡ (P̂0 −Ψ(α, P̂0))′Ŵ (P̂0 −Ψ(α, P̂0)),

where Ŵ is a weight matrix that converges in probability to a limiting weight matrix W .2 This is a single-

stage estimator and, consequently, we refer to it as the 1-MD estimator. Pesendorfer and Schmidt-Dengler

(2008) show that the 1-MD estimator is a consistent and asymptotically normal estimator of α, i.e.,

√
n(α̂1−MD − α∗)

d→ N(0,Σ1−MD(W )).

Pesendorfer and Schmidt-Dengler (2008) show that an appropriate choice of Ŵ implies that the 1-MD is

1To avoid the problem raised by Pesendorfer and Schmidt-Dengler (2010), we consider the asymptotic analysis for K-stage

PI estimators with fixed K and n→ ∞.
2Pesendorfer and Schmidt-Dengler (2008) also allow the preliminary estimators to include estimators other than P̂0 (e.g.

estimator of the transition probability). We ignore this issue for simplicity for now, but allow it in later sections of the paper.
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asymptotically equivalent to the 1-ML estimator in Aguirregabiria and Mira (2007) or the simple estimators

proposed by Pakes et al. (2007). Furthermore, Pesendorfer and Schmidt-Dengler (2008) characterize the

optimal choice of W (in terms of minimizing Σ1−MD(W )), denoted by W ∗1−MD. In general, Σ1−ML −
Σ1−MD(W ∗1−MD) is positive semidefinite, i.e., the optimal 1-MD estimator is more or equally asymptotically

efficient than the 1-ML estimator.

In the light of the results in Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008),

it is natural to inquire whether an iterated version of the MD estimator could yield asymptotic efficiency

gains relative to the 1-MD or the K-ML estimators. The consideration of iterated MD estimator opens

several important research questions. How should we define the iterated version of the MD estimator? Does

this strategy result in consistent and asymptotically normal estimators of α∗? If so, how should we choose

the weight matrix W? What about the number of iterations K? Finally, does iterating the MD estimator

produce asymptotic efficiency gains as Aguirregabiria and Mira (2007) find for the K-ML estimators? This

paper provides answers to all of these questions.

We now summarize the main findings of our paper. We consider a standard dynamic discrete-choice

game as in Aguirregabiria and Mira (2007) or Pesendorfer and Schmidt-Dengler (2008). In this context, we

investigate the asymptotic properties of K-ML and K-MD estimators.

First, we establish that the K-ML estimator is consistent and asymptotically normal for any K ∈ N.

This complements findings in Aguirregabiria and Mira (2007), who focus on K = 1 and K large enough

to induce convergence of the estimator. Furthermore, we show that the asymptotic variance of the K-ML

estimator can exhibit arbitrary patterns as a function of K. In particular, depending on the parameters of

the dynamic problem, the asymptotic variance can increase, decrease, or even oscillate with K.

Second, we also establish that the K-MD estimator is consistent and asymptotically normal for any

K ∈ N. This is a novel contribution relative to Pesendorfer and Schmidt-Dengler (2008) or Pakes et al.

(2007), who focus on non-iterative 1-MD estimators. The asymptotic distribution of the K-MD estimator

depends on the choice of the weight matrix. For a specific weight matrix, the K-MD has the same asymptotic

distribution as the K-ML. We investigate the optimal choice of the weight matrix for the K-MD estimator.

Our main result, Theorem 4.3, shows that an optimal K-MD estimator has an asymptotic distribution

that is invariant to K. This appears to be a novel result in the literature on PI estimation for games, and

it is particularly surprising given the findings in Aguirregabiria and Mira (2007) for K-ML estimators. Our

main result implies two important corollaries regarding the optimal 1-MD estimator (derived by Pesendorfer

and Schmidt-Dengler (2008)):

1. The optimal 1-MD estimator is asymptotically efficient in the class of K-MD estimators for all K ∈ N.

In other words, additional policy iterations do not provide asymptotic efficiency gains relative to the

optimal 1-MD estimator.

2. The optimal 1-MD estimator is more or equally asymptotically efficient than any K-ML estimator for

all K ∈ N.

The remainder of the paper is organized as follows. Section 2 describes the dynamic discrete choice

game used in the paper, introduces the structure of the estimation problem and the main assumptions, and

provides an illustrative example of the econometric model. Section 3 studies the asymptotic properties of

the K-ML estimator. Section 4 introduces the K-MD estimation method, relates it to the K-ML method,

and studies its asymptotic distribution. Section 5 presents results of Monte Carlo simulation and Section 6

concludes. The appendix of the paper collects all the proofs and intermediate results.
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2 Setup

This section describes the econometric model, introduces the estimator and the assumptions, and provides

an illustrative example.

2.1 Econometric model

We consider a standard dynamic discrete-choice game as described in Aguirregabiria and Mira (2007) or

Pesendorfer and Schmidt-Dengler (2008).

The game has discrete time t = 1, . . . , T ≡ ∞, and a finite set of players indexed by j ∈ J ≡ {1, . . . , |J |}.
In each period t, every player j observes a vector of state variables sjt and chooses an action ajt from a

finite and common set of actions A ≡ {0, 1, . . . , |A| − 1} (with |A| > 1) with the objective of maximizing

his expected discounted utility. The action denoted by 0 is referred to as the outside option, and we denote

Ã ≡ {1, . . . , |A| − 1}. All players choose their action simultaneously and independently upon observation of

state variables.

The vector of state variables sjt is composed of two subvectors xt and εjt. The subvector xt ∈ X ≡
{1, . . . , |X|} represents a state variable observed by all other players and the researcher, whereas the subvector

εjt ∈ R|A| represents an action-specific state vector only observed by player j. We denote εt ≡ {εjt : j ∈
J} ∈ R|A|×|J| and ~at ≡ {ajt : j ∈ J} ∈ A|J|.

We assume that εjt is randomly drawn from a strictly monotonic and continuous density function dFε(·|xt)
with full support, that it is independent of εs for s < t and at̃ for t̃ < t, and also that E[εjt|εjt ≥ e] exists

for all e ∈ R|A|. We also assume that the observed state variables behave according to a probability density

function dFx(xt+1|~at, xt) that specifies the probability that the future observed state variable is xt+1 given

that the actions are ~at and the current state is xt. It then follows that st+1 = (xt+1, εt+1) is a Markov

process with a probability density dPr(xt+1, εt+1|xt, εt,~at) that satisfies:

dPr(xt+1, εt+1|xt, εt,~at) = dFε(εt+1|xt+1) × dFx(xt+1|~at, xt).

Every player j has a time-separable utility and discounts future payoffs by βj ∈ (0, 1). The period t

payoff is received after every player made their choices and is given by:

πj(~at, xt) +
∑
k∈A

εjt(k) 1[ajt = k].

Following the literature, we assume Markov perfect equilibrium (MPE) as the equilibrium concept for the

game. By definition, a MPE is a collection of strategies and beliefs for each player such that each player has:

(a) rational beliefs, (b) an optimal strategy given his beliefs and other players’ choices, and (c) Markovian

strategies. According to Pesendorfer and Schmidt-Dengler (2008, Theorem 1), this model has an MPE and,

in fact, it could have multiple MPEs (e.g., see Pesendorfer and Schmidt-Dengler (2008, Sections 2 and 7)).

We follow Aguirregabiria and Mira (2007) and assume that data come from one of the MPEs in which every

player uses pure strategies.3

By definition, the MPE is a collection of equilibrium strategies and common beliefs. We denote the

probability that player j will choose action a ∈ A given observed state x by P ∗j (a|x), and we denote

P ∗ ≡ {P ∗j (a|x) : (j, a, x) ∈ J×Ã×X}. Note that beliefs only need to be specified in Ã for every (j, x) ∈ J×X,

3As explained in Aguirregabiria and Mira (2007, footnote 3), focusing on pure strategies can be rationalized by Harsanyi’s

Purification Theorem.
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as P ∗j (0|x) = 1−
∑
a∈Ã P

∗
j (a|x). We denote player j’s equilibrium strategy by {a∗j (e, x) : (e, x) ∈ R|A|×X},

where a∗j (e, x) denotes player j’s optimal choice when the current private shock is e and the observed state is

x. Given that equilibrium strategies are time-invariant, we can abstract from calendar time for the remainder

of the paper, and denote ~a = ~at, ~a
′ = ~at+1, x = xt, and x′ = xt+1.

We use θ∗ ∈ Θ to denote the finite-dimensional parameter vector that collects the model elements

({πj : j ∈ J}, {βj : j ∈ J}, dFε, dFx). Throughout this paper, we split the parameter vector as follows:

θ∗ ≡ (α∗, g∗) ∈ Θ ≡ Θα ×Θg, (2.1)

where α∗ ∈ Θα denotes a parameter vector of interest that is estimated iteratively and g∗ ∈ Θg denotes a

nuisance parameter vector that is estimated directly from the data. In practice, structural parameters that

determine the payoff functions {πj : j ∈ J} or the distribution dFε usually belong to α∗, while the transition

probability density function dFx is typically part of g∗.4

We now describe a fixed point mapping that characterizes equilibrium beliefs in any MPE. Let P =

{Pj(a|x) : (j, a, x) ∈ J × Ã×X} denote a set of beliefs, which need not be optimal. Given said beliefs, the

ex-ante probability that player j chooses equilibrium action a given observed state x is:

Ψj(a, x;α∗, g∗, P ) ≡
∫
ε

∏
k∈A

1[uj(a, x, α
∗, g∗, P ) + εj(a) ≥ uj(k, x, α∗, g∗, P ) + εj(k)]dFε(ε|x), (2.2)

where uj(a, x, α
∗, g∗, P ) denotes player j’s continuation value net of the pay-off shocks under action a, state

variable x, and with beliefs P . In turn,

uj(a, x, α
∗, g∗, P ) ≡

∑
ã∈A|J|−1

1[~a = (a, ã)]
∏

s∈J\{j}

Ps(ãs|x)[πj((a, ã), x) + β
∑
x′∈X

dFx(x′|(a, ã), x)Vj(x
′;P )],

where
∏
s∈J\{j} Ps(ãs|x) denotes the beliefs that the remaining players choose ã ≡ {ãs : s ∈ J\{j}} con-

ditional on x, and Vj(x;P ) is player j’s ex-ante value function conditional on x.5 By stacking up this

mapping for all decisions and states (a, x) ∈ Ã×X and all players j ∈ J , we define the probability mapping

Ψ(α∗, g∗, P ) ≡ {Ψj(a, x;α∗, g∗, P ) : (j, a, x) ∈ J × Ã × X}. Given any set of beliefs P (optimal or not),

Ψ(α∗, g∗, P ) indicates the corresponding optimal CCPs. Once again, note that Ψ(α∗, g∗, P ) only needs to

be specified in Ã for every (j, x) ∈ X × J , as Ψj(0, x;α∗, g∗, P ) = 1−
∑
a∈Ã Ψ(a, x;α∗, g∗, P ).

Aguirregabiria and Mira (2007, Representation Lemma) and Pesendorfer and Schmidt-Dengler (2008,

Proposition 1) both show that the mapping Ψ fully characterizes equilibrium beliefs P ∗ in the MPE. That

is, P ∗ is an equilibrium belief if and only if:

P ∗ = Ψ(α∗, g∗, P ∗), (2.3)

The goal of the paper is to study the problem of inference of α∗ ∈ Θα based on the fixed point equilibrium

condition in Eq. (2.3).

4Note that the distinction between components of θ∗ is without loss of generality, as one can choose to estimate all

parameters iteratively by setting θ∗ = α∗. The goal of estimating a nuisance parameter g∗ directly from the data is to simplify

the computation of the iterative procedure by reducing its dimensionality.
5The ex-ante value function is the discounted sum of future payoffs in the MPE given x and before players observe shocks

and choose actions. It can be computed with the mapping valuation operator defined in Aguirregabiria and Mira (2007, Eqs.

10 and 14) or Pesendorfer and Schmidt-Dengler (2008, Eqs. 5 and 6).
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2.2 Estimation procedure

The researcher estimates θ∗ = (α∗, g∗) ∈ Θ ≡ Θα ×Θg using a two-step and K-stage PI estimator. For any

K ∈ N, this estimator is defined as follows:

• Step 1: Estimate (g∗, P ∗) with preliminary estimators (ĝ, P̂0). We also refer to P̂0 as the 0-step

estimator of the CCPs.

• Step 2: Estimate α∗ with α̂K , computed using the following algorithm. Initialize k = 1 and then:

(a) Compute:

α̂k ≡ arg max
α∈Θα

Q̂k(α, ĝ, P̂k−1), (2.4)

where Q̂k : Θα × Θg × ΘP → R is the k-th step sample objective function. If k = K, exit the

algorithm. If k < K, go to (b).

(b) Estimate P ∗ with the k-step estimator of the CCPs, given by:

P̂k ≡ Ψ(α̂k, ĝ, P̂k−1).

Then, increase k by one unit and return to (a).

Throughout this paper, we consider α∗ to be our main parameter of interest, while g∗ is a nuisance

parameter. For any K ∈ N, the two-step and K-stage PI estimator of α∗ is given by:

α̂K ≡ arg max
α∈Θα

Q̂K(α, ĝ, P̂K−1), (2.5)

and the corresponding estimator of θ∗ = (α∗, g∗) is θ̂K = (α̂K , ĝ).

The algorithm does not specify the first-step estimators (ĝ, P̂0) or the sequence of sample criterion func-

tions {Q̂k : k ≤ K}. Rather than determining these objects now, we restrict them by making assumptions in

the next subsection. This allows us to use our framework to obtain results for multiple types of estimators,

e.g., K-ML and K-MD for any K ≥ 1, and several possible choices of preliminary estimators (ĝ, P̂0).

We conclude this subsection by describing an alternative estimator that we refer to as the single-step

K-stage PI estimator. By this, we refer to an estimation procedure in which the estimation of g∗ is removed

from the first step and incorporated into the parameter vector estimated in the second step. Note that this

is the framework considered in Aguirregabiria and Mira (2007). Section A.3 in the Appendix describes this

estimation procedure in detail and studies its properties. As we show there, every result obtained in this

paper can be adapted to single-step estimation after suitable relabelling the parameters of the problem.

2.3 Assumptions

This section introduces the main assumptions used in our analysis. As explained in Section 2.1, the game

has a MPE, but this need not be unique. To address this issue, we follow most papers in the literature and

assume that the data come from a single MPE. The researcher observes an i.i.d. sample of the current state,

the current actions, and the future state. To this end, we impose the following assumption.

Assumption A.1. (I.i.d. from one MPE) The data {{({ajt,i : j ∈ J}, xt,i, x′t,i)} : i ≤ n} are an

i.i.d. sample from a single MPE. This MPE determines the data generating process (DGP) denoted by
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Π∗ ≡ {Π∗j (a, x, x′) : (j, a, x, x′) ∈ J × A × X × X}, where Π∗j (a, x, x
′) denotes the probability that player j

chooses action a and the common state variable evolves from x to x′, i.e.,

Π∗j (a, x, x
′) ≡ Pr[ (ajt, xt, xt+1) = (a, x, x′) ].

See Aguirregabiria and Mira (2007, Assumptions 5(A) and 5(D))) for a similar condition. The observa-

tions in the i.i.d. sample are indexed by i = 1, . . . , n. Depending on the application, the index i can be used

to denote different time periods (i.e., i = τ for some τ ∈ {1, . . . ,∞}, and so (ajt,i, xt,i, x
′
t,i) = (ajτ , xτ , x

′
τ ) as

in Pesendorfer and Schmidt-Dengler (2008)) or to denote different markets (as in Aguirregabiria and Mira

(2007)). By Assumption A.1, the data identify the DGP, i.e., Π∗j (a, x, x
′) for every (j, a, x, x′) ∈ J×A×X×X.

In turn, the DGP identifies the equilibrium CCPs, transition probabilities, and marginal distributions. To

see why, note that for all (j,~a, x) ∈ J ×A|J| ×X,

P ∗j (~aj |x) ≡
∑
x′∈X Π∗j (~aj , x, x

′)∑
(ã,x̃′)∈A×X Π∗j (ã, x, x̃

′)

Λ∗(x′|x,~a) ≡
∏
j∈J Π∗j (~aj , x, x

′)∑
(ă,x̆)∈A|J|×X

∏
j∈J Π∗j (ăj , x̆, x

′)

m∗(x) ≡
∑

(a,x′)∈A×X

Π∗j (a, x, x
′),

where P ∗j (~aj |x) denotes the probability that player j will choose action ~aj given that the observed state is x,

Λ∗(x′|x,~a) denotes the probability that the future state observed state is x′ given that the current observed

state is x and the action vector is ~a, respectively, and m∗(x) denotes the (unconditional) probability that

the current observed state is x.6

Identification of the CCPs, however, is not sufficient for identification of the parameters of interest. To

this end, we make the following assumption.

Assumption A.2. (Identification) Ψ(α, g∗, P ∗) = P ∗ if and only if α = α∗.

This assumption is also imposed in the literature (e.g. Aguirregabiria and Mira (2007, Assumption 5(C))

and Pesendorfer and Schmidt-Dengler (2008, Assumption A4)). The problem of identification is studied in

Pesendorfer and Schmidt-Dengler (2008, Section 5). In particular, Pesendorfer and Schmidt-Dengler (2008,

Proposition 2) indicate the maximum number of parameters that could be identified from the model and

Pesendorfer and Schmidt-Dengler (2008, Proposition 3) provides sufficient conditions for identification.

The K-stage PI estimator is an example of an extremum estimator. The following assumption imposes

mild regularity conditions that are typically imposed for these estimators.

Assumption A.3. (Regularity conditions) Assume the following conditions:

(i) α∗ belongs to the interior of Θα.

(ii) supα∈Θα |Ψ(α, g̃, P̃ )−Ψ(α, g∗, P ∗)| = op(1), provided that (g̃, P̃ ) = (g∗, P ∗) + op(1).

(iii) infα∈Θα Ψjax(α, g̃, P̃ ) > 0 for all (j, a, x) ∈ J ×A×X, provided that (g̃, P̃ ) = (g∗, P ∗) + op(1).

(iv) Ψ(α, g, P ) is twice continuously differentiable in a neighborhood of (α∗, g∗, P ∗). We use Ψλ ≡
∂Ψ(α∗, g∗, P ∗)/∂λ for λ ∈ {α, g, P}.

6While the definition of m∗(x) is function of the player’s identity j ∈ J , all players should be in agreement in a MPE.
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(v) [IdP −ΨP ,−Ψg] ∈ RdP×(dP+dg) and Ψα ∈ RdP×dα are full rank matrices.

Assumption A.3(i) allows us to characterize α̂K using the first order condition produced by Eq. (2.5). It

is imposed by Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008, Assumption A2).

Assumptions A.3(ii)-(iii) are related to the uniform consistency requirement used to establish the consistency

of extremum estimators. Assumption A.3(iv) is a standard condition used to prove the asymptotic normality

of extremum estimators and is related to Pesendorfer and Schmidt-Dengler (2008, Assumption A5). Finally,

Assumption A.3(v) is a mild rank condition similar to Pesendorfer and Schmidt-Dengler (2008, Assumption

A7).

We next discuss introduce assumptions on (ĝ, P̂0), i.e., the preliminary estimators of (g∗, P ∗). As a

reference estimator for P ∗, we consider sample frequency CCP estimator, given by:

P̂ ≡ {P̂j(a|x) : (j, a, x) ∈ J × Ã×X}, (2.6)

with

P̂j(a|x) ≡
∑n
i=1

∑
x̃′∈X 1[(ajt,i, xt,i, x

′
t,i) = (a, x, x̃′)]/n∑n

i=1

∑
(ǎ,x̌′)∈A×X 1[(ajt,i, xt,i, x′t,i) = (ǎ, x, x̌′)]/n

.

Under Assumption A.1, P̂ is the maximum likelihood estimator (MLE) of P ∗, and it satisfies:

√
n(P̂ − P ∗) d→ N(0,ΩPP ),

where ΩPP ≡ diag{Σjx : (j, x) ∈ J ×X}, and Σxj ≡ (diag{P ∗jx}−P ∗jxP ∗′jx)/m∗(x) and P ∗jx ≡ {P ∗jax : a ∈ Ã}
for all (j, x) ∈ J×X. By standard arguments about the MLE, P̂ is an efficient estimator of P ∗; see Amemiya

(1985, Section 4.2.4).

Rather than imposing specific estimators for (ĝ, P̂0), we entertain two high-level assumptions.

Assumption A.4. (Baseline convergence) (P̂ , P̂0, ĝ) satisfies the following condition:

√
n

 P̂ − P ∗

P̂0 − P ∗

ĝ − g∗

 d→ N


 0dP

0dP
0dg

 ,

 ΩPP ΩP0 ΩPg

Ω′P0 Ω00 Ω0g

Ω′Pg Ω′0g Ωgg


 .

Assumption A.5. (Baseline convergence II) (P̂ , P̂0, ĝ) satisfies the following conditions.

(i) The asymptotic variance of (P̂ , ĝ) is nonsingular.

(ii) For any M ∈ RdP×dP , ((IdP −M)P̂ +MP̂0, ĝ) is not asymptotically more efficient than (P̂ , ĝ).

Assumption A.4 imposes the consistency and the joint asymptotic normality of (P̂ , P̂0, ĝ). Assumption

A.5(i) requires that the asymptotic variance of (P̂ , ĝ) is nonsingular. This condition is implicitly required

by the definition of the optimal weight matrix in Pesendorfer and Schmidt-Dengler (2008, Proposition 5).

To interpret Assumption A.5(ii), recall that P̂ is an asymptotically efficient estimator of P ∗, and so (IdP −
M)P̂+MP̂0 cannot be asymptotically more efficient than P̂ . Assumption A.5(ii) requires that this conclusion

applies also when these estimators are coupled with ĝ.
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To illustrate Assumptions A.4 and A.5, we need to specify the parameter vector g∗. A common specifi-

cation in the literature is the one in Pesendorfer and Schmidt-Dengler (2008), where g∗ is the vector of state

transition probabilities, i.e.,

g∗ = {Pr(x′|a, x) : (a, x, x′) ∈ A|J| ×X × X̃},

and X̃ ≡ {1, . . . , |X| − 1} is the state space with the last action removed (to avoid redundancy). In this

case, it is reasonable to propose sample frequencies estimators for (P̂0, ĝ), i.e., P̂0 = P̂ and ĝ ≡ {ĝ(a, x, x′) :

(a, x, x′) ∈ A|J| ×X × X̃} with

ĝ(a, x, x′) ≡
∑n
i=1 1[(~at,i, xt,i, x

′
t,i) = (a, x, x̃′)]/n∑n

i=1

∑
(ǎ,x̌′)∈A|J|×X 1[(at,i, xt,i, x′t,i) = (ǎ, x, x̌′)]/n

.

Then, (P̂0, ĝ) is the maximum likelihood estimator of (P ∗, g∗), and standard arguments imply Assumptions

A.4 and A.5. Note also that we would obtain the same conclusions if we replaced (P̂0, ĝ) with any asymp-

totically equivalent estimator, i.e., any estimator (P̃0, g̃) such that (P̃0, g̃) = (P̂0, ĝ) + o(n−1/2). Examples of

asymptotically equivalent estimators would be the ones resulting from the relaxation method in Kasahara

and Shimotsu (2012) or the “undersmoothed” kernel estimator in Grund (1993, Theorem 5.3).

We conclude the section with a comment on single-step estimation. As mentioned earlier, single-step

estimation case can be captured in our framework by eliminating the parameter g∗ from the estimation

problem. For the sake of completeness, Section A.3 of the Appendix shows how to adapt Assumptions

A.1-A.5 to the single-step estimation case.

2.4 An illustrative example

We illustrate the framework with the two-player version dynamic entry game in Aguirregabiria and Mira

(2007, Example 5). In each period t = 1, . . . , T ≡ ∞, two firms indexed by j ∈ J = {1, 2} simultaneously

decide whether to enter or not into the market, upon observation of the state variables. Firm j’s decision at

time t is ajt ∈ A = {0, 1}, which takes value one if firm j enters the market at time t, and zero otherwise. In

each period t, the vector of state variables observed by firm j is sjt = (xjt, εjt), where εjt = (εjt0, εjt1) ∈ R2

represents the privately-observed vector of action-specific state variables and xjt = xt ∈ X ≡ {1, 2, 3, 4} is a

publicly-observed state variable that indicates the entry decisions in the previous period, i.e.,

xjt =

[
1[(a1,t−1, a2,t−1) = (0, 0)] + 2× 1[(a1,t−1, a2,t−1) = (0, 1)]+

3× 1[(a1,t−1, a2,t−1) = (1, 0)] + 4× 1[(a1,t−1, a2,t−1) = (1, 1)]

]
.

We specify the profit function as in Aguirregabiria and Mira (2007, Eq. (48)). If firm j enters the market

in period t, its period profits are:

πj((1, a−j,t), xt) = λ∗RS − λ∗RN ln(1 + a−j,t)− λ∗FC,j − λ∗EC(1− aj,t−1) + εjt1, (2.7)

where λ∗RS represents fixed entry profits, λ∗RN represents the effect of a competitor’s entry, λ∗FC,j represents

a firm-specific fixed cost, and λ∗EC represents the entry. On the other hand, if firm j does not enter the

market in period t, its period profits are:

πj((0, a−j,t), xt) = εjt0.
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Firms discount future profits at a common discount factor β∗ ∈ (0, 1).

We assume that εj,a,t is i.i.d. drawn from an extreme value distribution with unit dispersion, i.e.,

dFε(εt = et|xt) =

1∏
a=0

2∏
j=1

exp(− exp(−ejta)),

Finally, since xt+1 is uniquely determined by ~at,

dFx(xt+1|~at, xt) = 1

xt+1 =

[
1[(a1,t−1, a2,t−1) = (0, 0)] + 2× 1[(a1,t−1, a2,t−1) = (0, 1)]+

3× 1[(a1,t−1, a2,t−1) = (1, 0)] + 4× 1[(a1,t−1, a2,t−1) = (1, 1)]

] .
This completes the specification of the econometric model up to (λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗). These

parameters are known to the players but not necessarily known to the researcher.

We will use this econometric model to illustrate our theoretical results and for our Monte Carlo simula-

tions. To ease the computational burden, we presume that the researcher knows that (λ∗RS , λ
∗
FC,1, λ

∗
FC,2, β

∗),

and is interested in estimating (λ∗RN , λ
∗
EC). In addition, we assume that these parameters are estimated using

a single-step PI estimator, i.e., θ∗ = α∗ ≡ (λ∗RN , λ
∗
EC).

3 Results for K-ML estimation

This section provides formal results for the K-ML estimator introduced in Aguirregabiria and Mira (2002,

2007) given an arbitrary number of iteration steps K ∈ N. The K-ML estimator is defined by Eq. (2.5) with

the pseudo log-likelihood criterion function, i.e., Q̂K = Q̂ML. That is,

• Step 1: Estimate (g∗, P ∗) with preliminary step estimators (ĝ, P̂0).

• Step 2: Estimate α∗ with α̂K−ML, computed using the following algorithm. Initialize k = 1 and then:

(a) Compute:

α̂k−ML ≡ arg min
α∈Θα

1

n

n∑
i=1

ln Ψ(α, ĝ, P̂k−1)(ai|xi).

If k = K, exit the algorithm. If k < K, go to (b).

(b) Estimate P ∗ with the k-step estimator of the CCPs, given by:

P̂k ≡ Ψ(α̂k−ML, ĝ, P̂k−1).

Then, increase k by one unit and return to (a).

As explained in Section 1, The K-ML estimator is the K-stage PI estimator introduced by Aguirregabiria

and Mira (2002) for dynamic single-agent problems and Aguirregabiria and Mira (2007) for dynamic games.

Aguirregabiria and Mira (2007) study the asymptotic behavior of α̂K−ML for two extreme values of K:

K = 1 and K large enough to induce the convergence of the estimator. Under some conditions, they show

that iterating the K-ML estimator until convergence produces asymptotic efficiency gains.

The results in Aguirregabiria and Mira (2007) open certain avenues for further research. First, they

focus on these two extreme values of K, without considering other possible values. Second, they restrict

attention to single-step K-ML estimators for simplicity of the analysis. In Theorem 3.1, we complement
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the analysis in Aguirregabiria and Mira (2007) along these two dimensions. In particular, we derive the

asymptotic distribution of the two-step K-ML estimator for any K ≥ 1.

Theorem 3.1 (Two-step K-ML). Fix K ≥ 1 arbitrarily and assume Assumptions A.1-A.4. Then,

√
n(α̂K−ML − α∗)

d→ N(0dα×1,ΣK−ML(P̂0, ĝ)),

where

ΣK−ML(P̂0) ≡



(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP× (IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

−Ψ′g(IdP + ΨPΦK,g)
′


′ ΩPP ΩP0 ΩPg

Ω′P0 Ω00 Ω0g

Ω′Pg Ω′0g Ωgg


 (IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

−Ψ′g(IdP + ΨPΦK,g)
′


×Ω−1

PPΨα(Ψ′αΩ−1
PPΨα)−1


,

and {Φk,P : k ≤ K}, {Φk,0 : k ≤ K}, and {Φk,g : k ≤ K} are defined as follows. Set Φ1,P ≡ 0dP×dP ,

Φ1,0 ≡ IdP , Φ1,g ≡ 0dP×dP and, for any k ≤ K − 1,

Φk+1,P ≡ (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΦk,P + Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP ,

Φk+1,0 ≡ (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΦk,0,

Φk+1,g ≡ (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΦk,g + (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP ). (3.1)

There are several important comments regarding this result. First, Theorem 3.1 considers K ≥ 1 but

fixed as n → ∞. Because of this, our asymptotic framework is not subject to the criticism raised by

Pesendorfer and Schmidt-Dengler (2010). Second, we can deduce an analogous result for the single-step

K-ML estimator by eliminating g∗ from the estimation problem. See Theorem A.2 in the appendix for the

corresponding result. Finally, note that we can consistently estimate ΣK−ML(P̂0, ĝ) for any K ≥ 1 based on

consistent estimators of the asymptotic variance in Assumption A.4 and the parameter vector (α∗, g∗) (e.g.,

(α̂1−ML, ĝ)).

Theorem 3.1 reveals that the K-ML estimator of α∗ is consistent and asymptotically normally distributed

for all K ≥ 1. Thus, the asymptotic mean squared error of the K-ML estimator is equal to its asymptotic

variance, ΣK−ML(P̂0). The goal for the rest of the section is to investigate how this asymptotic variance

changes with the number of iterations K.

In single-agent dynamic problems, Aguirregabiria and Mira (2002) show that the so-called zero Jacobian

property holds, i.e., ΨP = 0dP×dP . If we plug in this information into Theorem 3.1, we conclude the

asymptotic variance of the K-ML estimator is given by:

ΣK−ML(P̂0) = (Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP (ΩPP + ΨgΩggΨ
′
g −ΨgΩ

′
Pg − ΩPgΨ

′
g)Ω
−1
PPΨα(Ψ′αΩ−1

PPΨα)−1 .

This expression is invariant to K, corresponding to the main finding in Aguirregabiria and Mira (2002).

In multiple-agent dynamic problems, however, the zero Jacobian property no longer holds. Theorem

3.1 reveals that the asymptotic variance of the K-ML estimator is a complicated function of the number

of iteration steps K. We illustrate this complexity using the example of Section 2.4. In this example,

the researcher is interested in estimating (λ∗RN , λ
∗
EC) and uses single-step estimator. For simplicity, we set
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P̂0 = P̂ . In this context, the asymptotic variance of α̂K−ML = (λ̂RN,K−ML, λ̂EC,K−ML) is given by:

ΣK−ML(P̂0) = (Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP (IdP −ΨPΦk,P0)ΩPP (IdP −ΨPΦk,P )′Ω−1
PPΨα(Ψ′αΩ−1

PPΨα)−1, (3.2)

where {Φk,P0 : k ≤ K} is defined by Φk,P0 ≡ Φk,P + Φk,0, with {Φk,P : k ≤ K} and {Φk,0 : k ≤ K}
as in Eq. (3.1). For any true parameter vector and any K ∈ N, we can numerically compute Eq.

(3.2). For exposition, we focus on the [1,1]-element of ΣK−ML(P̂0), which corresponds to the asymp-

totic variance of λ̂RN,K−ML. Figures 1, 2, and 3 show the asymptotic variance of λ̂RN,K−ML as a func-

tion of K for (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2.8, 0.8, 0.7, 0.6, 0.4, 0.95), (2, 1.8, 0.2, 0.1, 0.3, 0.95), and

(2.2, 1.45, 0.45, 0.22, 0.29, 0.95), respectively. These figures confirm that, in general, the asymptotic variance

of the K-ML estimator can decrease, increase, or even wiggle with the number of iterations K. Note that

these widely different patterns occur within the same econometric model.

We view the fact that ΣK−ML(P̂0) can change so much with the number of iterations K as a negative

feature of the K-ML estimator. A researcher who uses the K-ML estimator and desires asymptotic efficiency

faces difficulties when choosing K. Prior to estimation, the researcher cannot be certain regarding the effect

of K on the asymptotic efficiency of the K-ML estimator. Additional iterations could help asymptotic

efficiency (as in Figure 1) or hurt asymptotic efficiency (as in Figure 2). In principle, the researcher can

consistently estimate the asymptotic variance of K-ML for each K by plugging in any consistent estimator

of the structural parameters (e.g., α̂1−ML and ĝ). This idea has two important drawbacks. First, the

conclusions are contaminated by sampling error. Second, the entire procedure represents an important

computational burden on the researcher.

Figure 1: Asymptotic variance of the K-ML estimator of λ∗RN as a function of the number of iterations K when
(λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2.8, 0.8, 0.7, 0.6, 0.4, 0.95).
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Figure 2: Asymptotic variance of the K-ML estimator of λ∗RN as a function of the number of iterations K when
(λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2, 1.8, 0.2, 0.1, 0.3, 0.95).

Figure 3: Asymptotic variance of the K-ML estimator of λ∗RN as a function of the number of iterations K when
(λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2.2, 1.45, 0.45, 0.22, 0.29, 0.95).
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4 Results for K-MD estimation

In this section, we introduce a novel K-stage PI estimator, referred to as the K-MD estimator. We demon-

strate that this has several advantages over the K-ML estimator. In particular, we show that an optimal

K-MD estimator is easy to compute, it dominates the K-ML estimator in asymptotic efficiency, and its

asymptotic variance does not change with K.

The K-MD estimator is defined by Eq. (2.5) with (negative) minimum distance criterion function:

Q̂K−MD(α, g, P ) ≡ − (P̂ −Ψ(α, g, P ))′ŴK(P̂ −Ψ(α, g, P )),

where {Ŵk : k ≤ K} is a sequence of positive semidefinite weight matrices. That is,

• Step 1: Estimate (g∗, P ∗) with preliminary step estimators (ĝ, P̂0).

• Step 2: Estimate α∗ with α̂K−MD, computed using the following algorithm. Initialize k = 1 and then:

(a) Compute:

α̂k−MD ≡ arg min
α∈Θα

(P̂ −Ψ(α, ĝ, P̂k−1))′Ŵk(P̂ −Ψ(α, ĝ, P̂k−1)).

If k = K, exit the algorithm. If k < K, go to (b).

(b) Estimate P ∗ with the k-step estimator of the CCPs, given by:

P̂k ≡ Ψ(α̂k−MD, ĝ, P̂k−1).

Then, increase k by one unit and return to (a).

The implementation of the K-MD estimator requires several choices: the number of iteration steps K

and the associated weight matrices {Ŵk : k ≤ K}. For instance, the least squares estimator in Pesendorfer

and Schmidt-Dengler (2008) is a particular case of our 1-MD estimator with P̂0 = P̂ . In this sense, our

K-MD estimator can be considered as an iterative version of their least squares estimator. The primary goal

of this section is to study how to make optimal choices of K and {Ŵk : k ≤ K}.
To establish the asymptotic properties of the K-MD estimator, we add the following assumption.

Assumption A.6. (Weight matrices) Ŵk
p→ Wk for all k ≤ K, where Wk ∈ RdP×dP is positive definite

and symmetric for all k ≤ K.

The next result derives the asymptotic distribution of the two-step K-MD estimator for any K ≥ 1.

Theorem 4.1 (Two-step K-MD). Fix K ≥ 1 arbitrarily and assume Assumptions A.1-A.4 and A.6. Then,

√
n(α̂K−MD − α∗)

d→ N(0dα×1,ΣK−MD(P̂0, {Wk : k ≤ K})),

where

ΣK−MD(P̂0, {Wk : k ≤ K}) ≡



(Ψ′αWKΨα)−1Ψ′αWK× (IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

−Ψ′g(IdP + ΨPΦK,g)
′


′ ΩPP ΩP0 ΩPg

Ω′P0 Ω00 Ω0g

Ω′Pg Ω′0g Ωgg


 (IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

−Ψ′g(IdP + ΨPΦK,g)
′


×W ′KΨα(Ψ′αW

′
KΨα)−1


,
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and {Φk,0 : k ≤ K}, {Φk,P : k ≤ K}, and {Φk,g : k ≤ K} defined as follows. Set Φ1,P ≡ 0dP×dP , Φ1,0 ≡ IdP ,

Φ1,g ≡ 0dP×dP and, for any k ≤ K − 1,

Φk+1,P ≡ (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΦk,P + Ψα(Ψ′αWkΨα)−1Ψ′αWk,

Φk+1,0 ≡ (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΦk,0,

Φk+1,g ≡ (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)(IdP + ΨPΦk,g). (4.1)

Several important comments are in order. First, as in Theorem 3.1, Theorem 4.1 considers K ≥ 1 but

fixed as n → ∞, and it thus is free from the criticism raised by Pesendorfer and Schmidt-Dengler (2010).

Second, we can deduce an analogous result for the single-step K-MD estimator by eliminating g∗ from the

estimation problem, see Theorem A.3 in the appendix. Third, we can consistently estimate ΣK−MD(P̂0, ĝ) for

any K ≥ 1 based on consistent estimators of the asymptotic variance in Assumption A.4 and the parameter

vector (α∗, g∗) (e.g., (α̂1−MD, ĝ)). Finally, note that the asymptotic distribution of the K-ML estimator

coincides with that of the K-MD estimator when Wk ≡ Ω−1
PP for all k ≤ K. We record this result in the

following corollary.

Corollary 4.1 (K-ML is a special case of K-MD). Fix K ≥ 1 arbitrarily and assume Assumptions A.1-A.4.

The asymptotic distribution of K-ML is a special case of K-MD with Wk ≡ Ω−1
PP for all k ≤ K.

Theorem 4.1 reveals that the asymptotic variance of the K-MD estimator is a complicated function of the

number of iteration steps K and sequence of limiting weighting matrices {Wk : k ≤ K}. A natural question

to ask is the following: Is there an optimal way of choosing these parameters? In particular, what is the

optimal choice of K and {Wk : k ≤ K} that minimizes the asymptotic variance of the K-MD estimator? We

devote the rest of this section to this question.

As a first approach to this problem, we consider the non-iterative 1-MD estimator. As shown in Pe-

sendorfer and Schmidt-Dengler (2008), the asymptotic distribution of this estimator is analogous to that of

a GMM estimator so we can leverage well-known optimality results. The next result provides a concrete

answer regarding the optimal choices of P̂0 and W1.

Theorem 4.2 (Optimality with K = 1). Assume Assumptions A.1-A.6. Let α̂∗1−MD denote the 1-MD

estimator with P̂0 = P̂ and W1 = W ∗1 with:

W ∗1 ≡ [(IdP −ΨP )ΩPP (IdP −Ψ′P ) + ΨgΩggΨ
′
g −ΨgΩ

′
Pg(IdP −Ψ′P )− (IdP −ΨP )ΩPgΨ

′
g]
−1. (4.2)

Then, √
n(α̂∗1−MD − α∗)

d→ N(0dα×1,Σ
∗),

with

Σ∗ ≡ (Ψ′α[(IdP −ΨP )ΩPP (IdP −Ψ′P ) + ΨgΩggΨ
′
g −ΨgΩ

′
Pg(IdP −Ψ′P )− (IdP −ΨP )ΩPgΨ

′
g]
−1Ψα)−1.

(4.3)

Furthermore, Σ1−MD(P̂0,W1) − Σ∗ is positive semidefinite for all (P̂0,W1), i.e., α̂∗1−MD is optimal among

all 1-MD estimators that satisfy our assumptions.

Theorem 4.2 indicates that P̂0 = P̂ and W1 = W ∗1 produce an optimal 1-MD estimator. On the one

hand, P̂0 = P̂ is a reasonable choice for an optimal estimator of the CCPs due to the asymptotic efficiency
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of the MLE. Given this choice, the asymptotic distribution of the 1-MD estimator is analogous to that of

a standard GMM problem. From this observation, W1 = W ∗1 follows. As one would expect, W ∗1 coincides

with the optimal weight matrix in the non-iterative analysis in Pesendorfer and Schmidt-Dengler (2008,

Proposition 5). Finally, note that W ∗1 6= Ω−1
PP , i.e., the optimal weight matrix does not coincide the one

that produces the 1-ML estimator. In fact, the 1-ML estimator need not be an asymptotical optimal 1-MD

estimator, i.e., Σ1−MD(P̂0,Ω
−1
PP ) 6= Σ∗.

We now move on to the general case with K ≥ 1. According to Theorem 4.1, the asymptotic variance

of the K-MD estimator depends on the number of iteration steps K, the asymptotic distribution of P̂0, and

the entire sequence of limiting weight matrices {Wk : k ≤ K}. In this sense, determining an optimal K-MD

estimator appears to be a complicated task. The next result provides a concrete answer to this problem.

Theorem 4.3 (Invariance and optimality). Fix K ≥ 1 arbitrarily and assume Assumptions A.1-A.6. In

addition, assume that the sequence of weight matrices {Wk : k ≤ K − 1} is such that the matrix

ΛK ≡ IdP + 1[K > 1]

K−1∑
b=1

b∏
c=1

ΨP (IdP −Ψα(Ψ′αWK−cΨα)−1Ψ′αWK−c) ∈ RdP×dP (4.4)

is non-singular. Then, we have the following two results.

1. Invariance. Let α̂∗K−MD denote the K-MD estimator with P̂0 = P̂ , weight matrices {Wk : k ≤ K − 1}
for steps 1, . . . ,K − 1 (if K > 1), and the corresponding optimal weight matrix in step K. Then,

√
n(α̂∗K−MD − α∗)

d→ N(0dα×1,Σ
∗),

where Σ∗ is as in Eq. (4.3).

2. Optimality. Let α̂K−MD denote the K-MD estimator with P̂0 and weight matrices {Wk : k ≤ K}.
Then, √

n(α̂K−MD − α∗)
d→ N(0dα×1,ΣK−MD(P̂0, {Wk : k ≤ K})).

Furthermore, ΣK−MD(P̂0, {Wk : k ≤ K})−Σ∗ is positive semidefinite, i.e., α̂∗K−MD is optimal among

all K-MD estimators that satisfy our assumptions.

Besides Assumptions A.1-A.6, Theorem 4.3 also requires that the matrix ΛK defined in Eq. (4.4) is non-

singular. This additional requirement appears to be very mild, as it was satisfied in the vast majority of our

Monte Carlo simulations. We now provide some theoretical interpretation of this condition. In single-agent

problems, the zero Jacobian property (i.e. ΨP = 0dP×dP ) implies that ΛK = IdP , which is always invertible.

In multiple-agent problems, the zero Jacobian property no longer holds and, thus, a singular ΛK is plausible.

However, note that ΛK will be non-singular as long as the amount of strategic interaction is sufficiently

small, i.e., if ΨP is sufficiently close to zero. We can then interpret the invertibility of ΛK as a high-level

condition that restricts the amount of strategic interaction between the players in the game.

Theorem 4.3 is the main finding of this paper, and it establishes two central results regarding the asymp-

totic optimality of the K-MD estimator. We begin by discussing the first one, referred to as “invariance”.

This result focuses on a particular CCP estimator: P̂0 = P̂ . This is a natural choice to consider, as P̂ is

asymptotically efficient under our assumptions. Given this choice, the asymptotic variance of the K-MD

estimator depends on the entire sequence of weight matrices {Wk : k ≤ K}. While the dependence on

the first K − 1 weight matrices is fairly complicated, the dependence on the last weight matrix (i.e., WK)
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resembles that of the weight matrix in a standard GMM problem. If the matrix in Eq. (4.4) is invertible, we

can use standard GMM results to define an optimal choice for WK , given the sequence of first K − 1 weight

matrices. In principle, one might expect that the resulting asymptotic variance depends on the first K − 1

weight matrices. The “invariance” result reveals that this is not the case. In other words, for P̂0 = P̂ and

an optimal choice of WK , the asymptotic distribution of the K-MD estimator is invariant to the first K − 1

weight matrices, or even K. Furthermore, the resulting asymptotic distribution coincides with that of the

optimal 1-MD estimator obtained in Theorem 4.2.

The “invariance” result is the key to the second result in Theorem 4.3, referred to as “optimality”. This

second result characterizes the optimal choice of P̂0 and {Wk : k ≤ K} for K-MD estimators. The intuition

of the result is as follows. First, given that P̂ is the asymptotically efficient estimator of the CCPs, it is

intuitive that P̂0 = P̂ is optimal. Second, it is also intuitive that asymptotic efficiency requires setting WK

to be optimal, given the sequence of first K − 1 weight matrices. At this point, our “invariance” result

indicates that the asymptotic distribution does not depend on K or the first K − 1 weight matrices. From

this, we can then conclude that the K-MD estimator with P̂0 = P̂ and an optimal last weight matrix WK

(given any first K − 1 weight matrices) is asymptotically efficient among all K-MD estimators. Also, this

optimal weight matrix can be estimated by sample analogues. By the usual asymptotic arguments based on

Slutsky’s theorem, the feasible K-MD estimator that uses the sample analogue of the optimal weight matrix

is also asymptotically efficient.

Theorem 4.3 implies two important corollaries regarding the optimal 1-MD estimator discussed in Theo-

rem 4.2. The first corollary is that the optimal 1-MD estimator is asymptotically efficient in the class of all

K-MD estimators that satisfy the assumptions of Theorem 4.3. In other words, additional policy iterations

do not provide asymptotic efficiency gains relative to the optimal 1-MD estimator. From a computational

point of view, this result suggests that researchers should restrict attention to the non-iterative 1-MD es-

timator with P̂0 = P̂ and W1 = W ∗1 , studied in Theorem 4.2. The intuition behind this result is that the

multiple iteration steps of the K-MD estimator are merely reprocessing the sample information, i.e., no new

information is added with each iteration step. Provided that the criterion function is optimally weighted, the

non-iterative 1-MD estimator is capable of processing the sample information in an asymptotically efficient

manner. Thus, additional iteration steps do not provide any additional asymptotic efficiency.

The second corollary of Theorem 4.3 is that the K-ML estimator is usually not asymptotically efficient,

and can be feasibly improved upon. In particular, provided that the assumptions of Theorem 4.3 are satisfied

when Wk = Ω−1
PP for all k ≤ K, the non-iterative 1-MD estimator with P̂0 = P̂ and W1 = W ∗1 is more or

equally asymptotically efficient than the K-ML estimator.

We illustrate the results of this section by revising the example of Section 2.4 with the parameter values

considered in Section 3. The asymptotic variance of α̂K−MD = (λ̂RN,K−MD, λ̂EC,K−MD) is given by:

ΣK−MD(P̂0, {Wk : k ≤ K}) = (Ψ′αWKΨα)−1Ψ′αWK(IdP−ΨPΦk,P0)ΩPP (IdP−ΨPΦk,P )′WKΨα(Ψ′αWKΨα)−1,

(4.5)

where {Φk,P0 : k ≤ K} is defined by Φk,P0 ≡ Φk,P + Φk,0, with {Φk,P : k ≤ K} and {Φk,0 : k ≤ K} as in

Eq. (4.1). For any true parameter vector and any K ∈ N, we can numerically compute Eq. (4.5).

In Section 3, we considered three specific parameter values of (λ∗RN , λ
∗
EC) that produced an asymptotic

variance of the K-ML estimator of λ∗RN decreased, increased, and wiggled with K. We now compute the

optimal K-MD estimator of λ∗RN for the same parameter values. The results are presented in Figures 4, 5,
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and 6, respectively.7 These graphs illustrate the findings in Theorem 4.3. In accordance to the “invariance”

result, the asymptotic variance of the optimal K-MD estimator does not vary with the number of iterations

K. Also in accordance to the “optimality” result, the asymptotic variance of the optimal K-MD estimator

is lower than any other K-MD estimator. In turn, since the asymptotic distribution of the K-ML estimator

is a special case of the K-MD estimator, the asymptotic variance of the optimal K-MD estimator is lower

than the K-ML estimator for all K ∈ N. Combining both results, the optimal non-iterative 1-MD estimator

is both computationally convenient and asymptotically efficient among the estimators under consideration.

Figure 4: Asymptotic variance of the K-ML and optimal K-MD estimator of λ∗RN as a function of the number of
iterations K when (λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2.8, 0.8, 0.7, 0.6, 0.4, 0.95). The optimal K-MD estimator is
computed using the optimal weighting matrix in every iteration step.

7According to the “invariance” result in Theorem 4.3, there are multiple asymptotically equivalent ways of implementing

the optimal K-MD estimator. For concreteness, we set the weight matrix optimally in each iteration step.
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Figure 5: Asymptotic variance of the K-ML and optimal K-MD estimator of λ∗RN as a function of the number
of iterations K when (λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2, 1.8, 0.2, 0.1, 0.3, 0.95). The optimal K-MD estimator is
computed using the optimal weighting matrix in every iteration step.

Figure 6: Asymptotic variance of the K-ML and optimal K-MD estimator of λ∗RN as a function of the number of
iterations K when (λ∗RN , λ

∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2.2, 1.45, 0.45, 0.22, 0.29, 0.95). The optimal K-MD estimator
is computed using the optimal weighting matrix in every iteration step.
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5 Monte Carlo simulations

This section investigates the finite sample performance of K-ML and K-MD estimators considered in previous

sections. We simulate data using the two-player dynamic entry game described in Section 2.4. Recall that

this model is specified up to the parameters (λ∗RS , λ
∗
RN , λ

∗
FC,1, λ

∗
FC,2, λ

∗
EC , β

∗). For simplicity, we assume

that the researcher knows (λ∗RS , λ
∗
FC,1, λ

∗
FC,2, β

∗) and wants to estimate α∗ ≡ (λ∗RN , λ
∗
EC). We consider the

three specific parameter values that were used to illustrate the theoretical results in Sections 3 and 4.

Our simulation results are the average of S = 10, 000 independent datasets {{({ajt,i : j ∈ J}, xt,i, x′t,i)} :

i ≤ n} that are i.i.d. distributed according to the econometric model. We show results in tables for sample

sizes n ∈ {500, 1, 000, 2, 000}. For brevity, we only show simulation results for λ∗RN , as this was the focus

of the discussion in Sections 3 and 4.

Table 1 provides results for the first parameter value, i.e., (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) =

(2.8, 0.8, 0.7, 0.6, 0.4, 0.95). Recall from previous sections that this parameter value produces an asymp-

totic variance of the K-ML estimator of λ∗RN that decreases with K (see Figures 1 and 4, repeated at the

bottom of the Table 1).

Let us first focus on the results for the K-ML estimator. The simulation results closely resemble the

predictions from the asymptotic approximation. First, the empirical variance and mean squared error are

extremely close, indicating that the asymptotic bias is almost negligible. Second, the empirical variance is

decreasing with K and is close to the one predicted by our asymptotic analysis.

Next, we turn attention to the optimal K-MD estimator. Recall that the “invariance” result in Theorem

4.3 indicates that there are multiple asymptotically equivalent ways of implementing the optimal K-MD

estimator. Throughout this section, the optimal K-MD estimator is a feasible estimator of the optimal K-

MD estimator derived in Theorem 4.3 where, in each iteration step, we estimate the optimal weight matrix.

According to our theoretical results, this feasible optimal K-MD estimator is asymptotically optimal among

K-MD estimators, has zero asymptotic bias, and has an asymptotic variance that does not change with

K. For the most part, these predictions are satisfied in our simulations. First, the empirical variance and

mean squared error are again extremely close, and so the finite-sample bias is almost negligible. Second,

the empirical variance is close to the one predicted by our asymptotic analysis. As the predicted by the

“optimality” result in Theorem 4.3, the feasible optimal K-MD estimator is more efficient than the K-ML

estimator. For most values of K under consideration, the empirical variance of the K-MD estimator appears

to be invariant to K, especially for the larger sample sizes. However, we find that the empirical variance

slightly decreases between K = 1 and K = 2. Our asymptotic analysis cannot explain this last empirical

finding. This anomalous behavior for low values of K is analogous to the one found by Aguirregabiria and

Mira (2002) and could be related to higher-order analysis in Kasahara and Shimotsu (2008). A high-order

analysis of these estimators is out of the scope of this paper and is left for future work.
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Estimator Statistic K = 1 K = 2 K = 3 K = 4 K = 5 K = 10 K = 15 K = 20

n = 500

K-ML
Var 123.11 107.36 104.81 100.87 99.16 95.99 95.77 95.75

MSE 123.13 107.68 105.34 101.09 99.32 96.05 95.83 95.81

Opt. K-MD Var 94.77 88.34 87.46 86.49 86.02 85.10 85.03 85.03
MSE 96.16 88.68 87.46 86.50 86.09 85.24 85.18 85.17

n = 1, 000

K-ML
Var 126.01 109.00 105.87 102.65 101.24 99.01 98.89 98.88

MSE 126.07 109.34 106.34 102.91 101.44 99.12 99.00 98.99

Opt. K-MD Var 93.39 89.61 88.91 88.43 88.14 87.70 87.67 87.67
MSE 94.30 89.89 88.92 88.43 88.15 87.73 87.70 87.70

n = 2, 000

K-ML
Var 122.87 107.33 103.80 101.12 99.85 98.18 98.10 98.10

MSE 122.87 107.42 103.92 101.17 99.89 98.20 98.12 98.12

Opt. K-MD Var 90.11 88.18 87.80 87.59 87.44 87.25 87.22 87.23
MSE 90.40 88.27 87.80 87.60 87.46 87.29 87.27 87.28

Asymptotic results
K-ML Asy. Var 121.98 107.13 103.63 101.44 100.39 99.26 99.21 99.21

Opt. K-MD Asy. Var 89.33 89.33 89.33 89.33 89.33 89.33 89.33 89.33

Table 1: Simulation results for estimation of λ∗RN when (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) =
(2.8, 0.8, 0.7, 0.6, 0.4, 0.95). “K-ML” denotes the K-ML estimator and “Opt. K-MD” denotes the feasible op-
timal K-MD estimator computed with an estimated optimal weight matrix in every iteration step. “Var” denotes
the average empirical variance scaled by n and “MSE” denotes the average scaled mean squared error scaled by
n and, for both statistics, the average is computed over S = 10, 000 simulations. Finally, “Asy. Var” denotes the
asymptotic variance according to Theorems 3.1, 4.1, and 4.3.

Table 2 provides results for the second parameter value, i.e., (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) =

(2, 1.8, 0.2, 0.1, 0.3, 0.95). Recall that this parameter value produced an asymptotic variance of the K-ML

estimator of λ∗RN that increases with K (see Figures 2 and 5, repeated at the bottom of the Table 2).

In turn, Table 3 provides results for the third parameter value, i.e., (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) =

(2.2, 1.45, 0.45, 0.22, 0.29, 0.95). This parameter value produced an asymptotic variance of the K-ML esti-

mator of λ∗RN that wiggles with K (see Figures 3 and 6, repeated at the bottom of the Table 3).

The simulation results for these two parameter values are qualitatively similar to the ones obtained for

the first parameter value and, for the most part, support our theoretical conclusions. First, both estimators

have very little empirical bias. Second, all the estimators have an empirical variance that is very close to

the one predicted by the asymptotic analysis. In particular, the empirical variance of the K-ML estimator

is increasing in K for the second parameter value and wiggles for the third parameter value. Third, in most

cases, the empirical variance of the optimal K-MD estimator is lower than that of the K-ML estimator.

Finally, the empirical variance of the optimal K-MD estimator is invariant to K except for small values of K

for which it is decreasing. One notable difference relative to the simulation is that the range of iterations over

which the empirical variance decreases now extends between K = 1 and K = 5. Once again, we conjecture

that this phenomenon is related to high-order effect, which is out of the scope of the analysis of this paper.
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Estimator Statistic K = 1 K = 2 K = 3 K = 4 K = 5 K = 10 K = 15 K = 20

n = 500

K-ML Var 85.84 87.48 91.57 91.55 92.18 91.63 91.18 90.90
MSE 85.84 87.82 92.39 92.21 92.83 92.18 91.70 91.42

Opt. K-MD Var 111.25 96.26 89.68 88.36 87.41 84.98 84.81 84.46
MSE 116.56 98.19 90.09 88.57 87.50 84.99 84.82 84.47

n = 1, 000

K-ML Var 86.09 87.45 90.75 90.84 91.28 90.87 90.62 90.52
MSE 86.12 87.73 91.32 91.32 91.76 91.27 91.01 90.91

Opt. K-MD Var 99.33 89.30 85.78 85.01 84.20 83.13 82.85 82.77
MSE 102.77 90.42 86.05 85.15 84.26 83.15 82.86 82.78

n = 2, 000

K-ML Var 82.42 83.96 86.38 86.59 86.84 86.62 86.54 86.52
MSE 82.42 84.05 86.56 86.73 86.98 86.74 86.65 86.63

Opt. K-MD
Var 87.91 83.43 81.53 81.26 80.86 80.39 80.28 80.27

MSE 89.53 83.92 81.63 81.31 80.88 80.39 80.29 80.27

Asymptotic results
K-ML Asy. Var 84.21 85.83 87.63 87.90 88.06 88.03 88.03 88.03

Opt. K-MD Asy. Var 82.49 82.49 82.49 82.49 82.49 82.49 82.49 82.49

Table 2: Simulation results for estimation of λ∗RN when (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) = (2, 1.8, 0.2, 0.1, 0.3, 0.95).
“K-ML” denotes the K-ML estimator and “Opt. K-MD” denotes the feasible optimal K-MD estimator computed
with an estimated optimal weight matrix in every iteration step. “Var” denotes the average empirical variance scaled
by n and “MSE” denotes the average scaled mean squared error scaled by n and, for both statistics, the average is
computed over S = 10, 000 simulations. Finally, “Asy. Var” denotes the asymptotic variance according to Theorems
3.1, 4.1, and 4.3.

Estimator Statistic K = 1 K = 2 K = 3 K = 4 K = 5 K = 10 K = 15 K = 20

n = 500

K-ML Var 92.71 91.47 94.02 92.98 92.65 89.98 89.31 89.17
MSE 92.72 91.88 94.83 93.58 93.20 90.36 89.66 89.52

Opt. K-MD Var 101.56 88.31 84.28 83.60 82.52 81.10 80.76 80.70
MSE 105.39 89.50 84.45 83.68 82.54 81.10 80.77 80.71

n = 1, 000

K-ML Var 92.01 91.95 94.34 93.71 93.54 92.07 91.78 91.73
MSE 92.02 92.19 94.83 94.08 93.88 92.32 92.02 91.97

Opt. K-MD Var 95.01 86.93 84.72 84.47 83.92 83.30 83.17 83.16
MSE 97.29 87.57 84.82 84.51 83.93 83.30 83.17 83.16

n = 2, 000

K-ML
Var 89.51 89.15 90.60 90.18 90.00 89.09 88.95 88.94

MSE 89.52 89.26 90.80 90.33 90.14 89.18 89.04 89.03

Opt. K-MD Var 86.67 83.69 82.33 82.26 81.94 81.61 81.56 81.55
MSE 87.80 84.03 82.38 82.28 81.95 81.61 81.56 81.55

Asymptotic results
K-ML Asy. Var 90.42 89.58 90.32 90.08 89.94 89.56 89.53 89.52

Opt. K-MD Asy. Var 84.20 84.20 84.20 84.20 84.20 84.20 84.20 84.20

Table 3: Simulation results for estimation of λ∗RN when (λ∗RN , λ
∗
EC , λ

∗
RS , λ

∗
FC,1, λ

∗
FC,2, β

∗) =
(2.2, 1.45, 0.45, 0.22, 0.29, 0.95). “K-ML” denotes the K-ML estimator and “Opt. K-MD” denotes the feasible
optimal K-MD estimator computed with an estimated optimal weight matrix in every iteration step. “Var” denotes
the average empirical variance scaled by n and “MSE” denotes the average scaled mean squared error scaled by
n and, for both statistics, the average is computed over S = 10, 000 simulations. Finally, “Asy. Var” denotes the
asymptotic variance according to Theorems 3.1, 4.1, and 4.3.
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6 Conclusions

This paper investigates the asymptotic properties of a class of estimators of the structural parameters in

dynamic discrete choice games. We consider K-stage policy iteration (PI) estimators, where K ∈ N denotes

the number of policy iterations employed in the estimation. This class nests several estimators proposed

in the literature. By considering a “maximum likelihood” criterion function, the K-stage PI estimator

becomes the K-ML estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance”

criterion function, K-stage PI estimator defines a novel K-MD estimator, which is an iterative version of

the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). Since we consider an

asymptotic framework with fixed K and n → ∞, our analysis is not affected by the problems described in

Pesendorfer and Schmidt-Dengler (2010).

First, we establish that the K-ML estimator is consistent and asymptotically normal for any K ∈ N.

This complements findings in Aguirregabiria and Mira (2007), who focus on K = 1 and K large enough

to induce convergence of the estimator. Furthermore, we show that the asymptotic variance of the K-ML

estimator can exhibit arbitrary patterns as a function K. In particular, we show that by changing the

parameter values in a typical dynamic discrete choice game, the asymptotic variance of the K-ML estimator

can increase, decrease, or even oscillate with K.

Second, we also establish that the K-MD estimator is consistent and asymptotically normal for any

K ∈ N. Its asymptotic distribution depends on the choice of the weight matrix. For a specific weight matrix,

the K-MD has the same asymptotic distribution as the K-ML. We investigate the optimal choice of the

weight matrix for the K-MD estimator. Our main result shows that an optimally weighted K-MD estimator

has an asymptotic distribution that is invariant to K. This appears to be a novel result in the literature

on PI estimation for games, and it is particularly surprising given the findings in Aguirregabiria and Mira

(2007) for K-ML estimators.

The main result in our paper implies two important corollaries regarding the optimal 1-MD estimator

(derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal 1-MD estimator is optimal in

the class of K-MD estimators for all K ∈ N. In other words, additional policy iterations do not provide

asymptotic efficiency gains relative to the optimal 1-MD estimator. Second, the optimal 1-MD estimator is

more or equally asymptotically efficient than any K-ML estimator for all K ∈ N.

We explored our theoretical findings in Monte Carlo simulations. For the most part, our finite-sample

simulation evidence supports our asymptotic conclusions. The K-ML and the optimal K-MD estimators

have negligible empirical bias and have an empirical variance that is very close to the one predicted by the

asymptotic analysis. In most cases, the empirical variance of the optimal K-MD estimator is lower than that

of the K-ML estimator. Also, it appears to be invariant to K except for very small values of K for which it

is decreasing in K. The behavior for low values of K is analogous to the one found by Aguirregabiria and

Mira (2002) and could be related to higher-order analysis in Kasahara and Shimotsu (2008).

A Appendix

Throughout this appendix, “s.t.” abbreviates “such that”, “RHS” abbreviates, and “PSD” abbreviates “positive

semidefinite”.

Several results in the appendix make use of the following high-level assumption. Note that whenever this assump-

tion is used to prove results in the main text, we first verify that it holds under the lower-level conditions.

Assumption A.7. (High-level assumptions for iterative estimators). There is a sequence of limiting criterion
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functions {Qk : k ≤ K} with Qk : Θα ×Θg ×ΘP → R such that:

1. supα∈Θα
|Q̂k(α, g̃, P̃ )−Qk(α, g∗, P ∗)| = op(1), provided that (g̃, P̃ ) = (g∗, P ∗) + op(1).

2. Qk(α, g∗, P ∗) is uniquely maximized at α∗.

3.
√
n∂Q̂k(α∗, g∗, P ∗)/∂α = Ξk

√
n(P̂ − P ∗) + op(1), for some matrix Ξk.

4. For any λ ∈ {α, g, P}, ∂2Q̂k(α̃, g̃, P̃ )/∂α∂λ′ = ∂2Qk(α∗, g∗, P ∗)/∂α∂λ′ + op(1), provided that (α̃, g̃, P̃ ) =

(α∗, g∗, P ∗) + op(1).

5. ∂2Qk(α∗, g∗, P ∗)/∂α∂α′ is non-singular.

A.1 Proofs of results in the main text

Proof of Theorem 3.1. This proof will require the following notation. For any (α, g, P ) ∈ Θα × Θg × ΘP and

(j, a, x) ∈ J × A × X, let njax ≡
∑n
i=1 1[(ajt,i, xt,i) = (a, x)], nx ≡

∑n
i=1 1[xt,i = x], Ψjax(α, g, P ) ≡∏

j∈J Ψj(α, g, P )(a|x), P̂jax ≡ njax/nx, P ∗jax ≡ P ∗j (a|x) =
∑
x′∈X Π∗j (a, x, x

′)/
∑

(ã,x̃′)∈A×X Π∗j (ã, x, x̃
′), and

m∗(x) ≡
∑

(a,x′)∈A×X Π∗j (a, x, x
′). Note that RHS of the last equation does not change with j ∈ J by the equi-

librium assumption in Assumption A.1. Also, Assumptions A.2 and A.3 imply P ∗jax > 0 and m∗(x) > 0 for every

(j, a, x) ∈ J ×A×X.

As we now show, Theorem 3.1 is a consequence of applying Theorem A.1 with Q̂k ≡ Q̂ML and Qk ≡ QML where,

for any (α, g, P ) ∈ Θα ×Θg ×ΘP ,

Q̂ML(α, g, P ) ≡ 1

n

n∑
i=1

ln Ψ(α, g, P )(ai|xi) =
∑

(j,a,x)∈J×A×X

njax
n

ln Ψjax(α, g, P )

=
∑

(j,x)∈J×X

nx
n

∑
a∈Ã

P̂jax ln Ψjax(α, g, P ) + P̂j0x ln(1−
∑
a∈Ã

Ψjax(α, g, P ))

 ,
and

QML(α, g, P ) ≡
∑

(j,a,x)∈J×A×X

m∗(x)P ∗jax ln Ψjax(α, g, P )

=
∑

(j,x)∈J×X

m∗(x)

∑
a∈Ã

P ∗jax ln Ψjax(α, g, P ) + P ∗j0x ln(1−
∑
a∈Ã

Ψjax(α, g, P ))

 ,
and where we have used that Ψj0x(α, g, P ) = 1−

∑
a∈Ã Ψjax(α, g, P ).

For any λ ∈ {α, g, P}, note that:

∂2QML(α∗, g∗, P ∗)

∂α∂λ′
= −

∑
(j,x)∈J×X

m∗(x)

 1
Ψjax(α∗,g∗,P∗)

∑
a∈Ã

∂Ψjax(α∗,g∗,P∗)
∂α

∂Ψjax(α∗,g∗,P∗)
∂λ′

+ 1
Ψj0x(α∗,g∗,P∗)

∑
ǎ∈Ã

∂Ψǎjx(α∗,g∗,P∗)
∂α

∑
ã∈Ã

∂Ψãjx(α∗,g∗,P∗)
∂λ′



= −


{ ∂Ψjax(α∗,g∗,P∗)

∂α
: (j, a, x) ∈ J × Ã×X}′×

diag{m∗(x)(diag{1/P ∗jax : a ∈ Ã}+ 1|Ã|×|Ã|/P
∗
j0x) : (j, x) ∈ J ×X}×

{ ∂Ψjax(α∗,g∗,P∗)
∂λ

: (j, a, x) ∈ J × Ã×X}

 = −Ψ′αΩ−1
PPΨλ,

where the first equality uses that Assumptions A.2 and A.3, the second equality follows from Assumption A.2, and

the final equality follows from the following argument. By Eq. (2.6), ΩPP = diag{Σjx : (j, x) ∈ J × X} with

Σjx ≡ (diag{P ∗jx} − P ∗jxP ∗′jx)/m∗(x) and P ∗jx ≡ {P ∗jax : a ∈ Ã}, and so Ω−1
PP = diag{Σ−1

jx : (j, x) ∈ J × X} with

Σ−1
jx = m∗(x)(diag{1/P ∗jax : a ∈ Ã}+ 1|Ã|×|Ã|/P

∗
j0x).

To apply Theorem A.1, we first verify Assumption A.7.
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Part (a). For any (g̃, P̃ ) = (g∗, P ∗) + op(1),

sup
α∈Θα

|Q̂ML(α, g̃, P̃ )−QML(α, g∗, P ∗)| ≤

[
supα∈Θα

|
∑

(j,a,x)∈J×A×X
njax
n

ln(Ψjax(α, g̃, P̃ )/Ψjax(α, g∗, P ∗))|
+ supα∈Θα

|
∑

(j,a,x)∈J×A×X(
njax
n
−m∗(x)P ∗jax) ln Ψjax(α, g∗, P ∗)|

]

≤
∑

(j,a,x)∈J×A×X

[
njax
n

supα∈Θα
| ln Ψjax(α, g̃, P̃ )− ln Ψjax(α, g∗, P ∗)|

+(
njax
n
−m∗(x)P ∗jax)| ln(infα∈Θα |Ψjax(α, g∗, P ∗)|)

]
= op(1),

where the second inequality uses Assumptions A.1, A.3, and the intermediate value theorem.

Part (b). Define the function:

G(α) ≡ QML(α, g∗, P ∗)−QML(α∗, g∗, P ∗) =
∑

(j,a,x)∈J×A×X

m∗(x)P ∗jax ln

(
Ψjax(α, g∗, P ∗)

Ψjax(α∗, g∗, P ∗)

)
,

which is properly defined by Assumptions A.2 and A.3. By definition, G(α∗) = 0. On the other hand, consider any

α 6= α∗. Assumption A.2 implies that Ψ(α, g∗, P ∗) 6= Ψ(α∗, g∗, P ∗). This and Assumption A.3 then implies that

Ψjax(α, g∗, P ∗)/Ψjax(α∗, g∗, P ∗) 6= 1 for some (j, a, x) ∈ J ×A×X. Then,

G(α) < ln

 ∑
(j,a,x)∈J×A×X

m∗(x)P ∗jax
Ψjax(α, g∗, P ∗)

Ψjax(α∗, g∗, P ∗)

 = ln

 ∑
(j,a,x)∈J×A×X

m∗(x)Ψjax(α, g∗, P ∗)

 = 0,

where inequality follows from Jensen’s inequality, the strict convexity of the logarithm, and

Ψjax(α, g∗, P ∗)/Ψjax(α∗, g∗, P ∗) 6= 1 for some (j, a, x) ∈ J × A × X, the first equality follows from Assump-

tion A.3, and the final equality follows from
∑

(j,a,x)∈J×A×X m
∗(x)Ψjax(α, g∗, P ∗) = 1 for any α ∈ Θα. Therefore,

G(α) and QML(α, g∗, P ∗) are uniquely maximized at α = α∗.

Part (c). Consider the following derivation for any (α, g, P ) ∈ Θα × Θg × ΘP s.t. Ψ(α, g, P ) is positive and

differentiable.

∂Q̂ML(α, g, P )

∂α
=

∂

∂α


∑

(j,x)∈J×X

nx
n

∑
a∈Ã

P̂jax ln Ψjax(α, g, P ) + P̂j0x ln

1−
∑
a∈Ã

Ψjax(α, g, P )





=
∑

(j,a,x)∈J×Ã×X

nx
n

[
P̂jax

Ψjax(α, g, P )
− P̂j0x

Ψj0x(α, g, P )

]
∂Ψjax(α, g, P )

∂α

=
∑

(j,x)∈J×X

nx
n

∑
a∈Ã

P̂jax −Ψjax(α, g, P )

Ψjax(α, g, P )
+

∑
ã∈Ã(P̂ãjx −Ψãjx(α, g, P ))

Ψj0x(α, g, P )

 ∂Ψjax(α, g, P )

∂α

=
∑

(j,a,x)∈J×Ã×X

nx
n

 P̂jax −Ψjax(α, g, P )

Ψjax(α, g, P )

∂Ψjax(α, g, P )

∂α
+
P̂jax −Ψjax(α, g, P )

Ψj0x(α, g, P )

∑
ã∈A

∂Ψãjx(α, g, P )

∂α

 , (A.1)

where we have used that P̂j0x = 1 −
∑
a∈Ã P̂jax and Ψj0x(α, g, P ) = 1 −

∑
a∈Ã Ψjax(α, g, P ), and so
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∂Ψj0x(α, g, P )/∂α = −
∑
a∈Ã ∂Ψjax(α, g, P )/∂α. Then,

√
n
∂Q̂ML(α∗, g∗, P ∗)

∂α

=
∑

(j,a,x)∈J×Ã×X

nx
n

√
n(P̂jax − P ∗jax)

 1

P ∗jax

∂Ψjax(α∗, g∗, P ∗)

∂α
+

1

P ∗j0x

∑
ã∈A

∂Ψãjx(α∗, g∗, P ∗)

∂α


=

∑
(j,a,x)∈J×Ã×X

m∗(x)
√
n(P̂jax − P ∗jax)

 1

P ∗jax

∂Ψjax(α∗, g∗, P ∗)

∂α
+

1

P ∗j0x

∑
ã∈A

∂Ψãjx(α∗, g∗, P ∗)

∂α

+ op(1)

=

 { ∂Ψjax(α∗,g∗,P∗)
∂α

: (j, a, x) ∈ J × Ã×X}′×
diag{m∗(x)(diag{1/P ∗jax : a ∈ Ã}+ 1|Ã|×|Ã|/P

∗
j0x) : (j, x) ∈ J ×X}×

{
√
n(P̂jax − P ∗jax) : (a, x, j) ∈ Ã×X × J}

+ op(1)

= Ψ′αΩ−1
PP

√
n(P̂ − P ∗) + op(1),

where the first equality holds by Eq. (A.1) and Assumption A.3, the second equality holds by Assumption A.1, and

the final equality follows Ω−1
PP = diag{Σ−1

jx : (j, x) ∈ J×X} with Σ−1
jx = m∗(x)(diag{1/P ∗jax : a ∈ Ã}+1|Ã|×|Ã|/P

∗
j0x).

Part (d). Consider the following derivation for any (α, g, P ) ∈ Θα ×Θg ×ΘP s.t. Ψ(α, g, P ) is positive and twice

differentiable.

∂2Q̂ML(α, g, P )

∂α∂λ′
=

∂

∂λ′

∑
(j,a,x)∈J×Ã×X

nx
n

[
P̂jax −Ψjax(α, g, P )

Ψjax(α, g, P )
− P̂j0x −Ψj0x(α, g, P )

Ψj0x(α, g, P )

]
∂Ψjax(α, g, P )

∂α

=
∑

(j,a,x)∈J×Ã×X

nx
n



[
P̂jax−Ψjax(α,g,P )

Ψjax(α,g,P )
− P̂j0x−Ψj0x(α,g,P )

Ψj0x(α,g,P )

]
∂Ψjax(α,g,P )

∂α∂λ′

−
[

Ψjax(α,g,P )+(P̂jax−Ψjax(α,g,P ))

Ψjax(α,g,P )2

]
∂Ψjax(α,g,P )

∂α

∂Ψjax(α,g,P )

∂λ′

+

[
Ψj0x(α,g,P )+(P̂j0x−Ψj0x(α,g,P ))

Ψj0x(α,g,P )2

]
∂Ψjax(α,g,P )

∂α

∂Ψj0x(α,g,P )

∂λ′


. (A.2)

Then, for any λ ∈ {α, g, P} and (α̃, g̃, P̃ ) = (α∗, g∗, P ∗) + op(1),

∂2Q̂ML(α̃, g̃, P̃ )

∂α∂λ′
p→

∑
(j,a,x)∈J×Ã×X

m∗(x)

[
1

P∗0xj

∂Ψjax(α∗,g∗,P∗)
∂α

∂Ψj0x(α∗,g∗,P∗)
∂λ′ − 1

P∗axj

∂Ψjax(α∗,g∗,P∗)
∂α

∂Ψjax(α∗,g∗,P∗)
∂λ′

]

= −
∑

(j,x)∈J×X

m∗(x)

 ∑
a∈Ã

1
P∗axj

∂Ψjax(α∗,g∗,P∗)
∂α

∂Ψjax(α∗,g∗,P∗)
∂λ′ +

1
P∗0xj

∑
ǎ∈Ã

∂Ψǎjx(α∗,g∗,P∗)
∂α

∑
ã∈Ã

∂Ψãjx(α∗,g∗,P∗)
∂λ′



= −

 { ∂Ψaxj(α
∗,g∗,P∗)
∂α

: (a, x, j) ∈ A×X × {1, . . . , J}}′×
diag{m∗(x)[diag{1/P ∗axj : a ∈ A}+ 1|A|×|A| × 1/P ∗0xj ] : (x, j) ∈ X × {1, . . . , J}}×

{ ∂Ψaxj(α
∗,g∗,P∗)
∂λ

: (a, x, j) ∈ A×X × {1, . . . , J}}


= −Ψ′αΩ−1

PPΨλ =
∂2QML(α∗, g∗, P ∗)

∂α∂λ′
,

where the first equality holds by Eq. (A.2) and Assumptions A.1 and A.3, the second equality holds by Ψj0x(α, g, P ) =

1−
∑
a∈Ã Ψjax(α, g, P ) and so ∂Ψj0x(α, g, P )/∂λ′ = −

∑
a∈Ã ∂Ψjax(α, g, P )/∂λ′, and the final equality follows Ω−1

PP =

diag{Σ−1
jx : (j, x) ∈ J ×X} with Σ−1

jx = m∗(x)(diag{1/P ∗jax : a ∈ Ã}+ 1|Ã|×|Ã|/P
∗
j0x).

Part (e). ∂2QML(α∗, g∗, P ∗)/∂α∂α′ = −Ψ′αΩ−1
PPΨα is nonsingular because Ψα has full rank.

This completes the verification of Assumption A.7. Since we also assume Assumptions A.3 and A.4, Theorem
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A.1 applies. In particular, Eq. (A.21) yields:

√
n(θ̂K−ML − θ∗) =

( √
n(α̂K−ML − α∗)√

n(ĝ − g∗)

)

=

[
AK +BKΥK,P BKΥK,0 BKΥK,g + CK

0dg×dP 0dg×dP Idg

]
√
n

 P̂ − P ∗

P̂0 − P ∗

ĝ − g∗

+ op(1), (A.3)

with AK , BK , and CK determined according to Eq. (A.22), and ΥK,P , ΥK,0, and ΥK,g determined according to Eq.

(A.23). As a next step, we now work out these constants.

For k ≤ K, Ξk = Ψ′αΩ−1
PP and ∂2QML(α∗, g∗, P ∗)/∂α∂λ′ = −Ψ′αΩ−1

PPΨλ, and so, according to Eq. (A.22),

Ak = (Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP , Bk = −(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PPΨP , and Ck = −(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PPΨg. In addition,

according to Eq. (A.23), {Υk,P : k ≤ K}, {Υk,g : k ≤ K}, and {Υk,0 : k ≤ K} are as follows. Set Υ1,0 ≡ IdP ,

Υ1,g ≡ 0dP×dg , Υ1,P ≡ 0dP×dP and, for any k = 1, . . . ,K − 1,

Υk+1,P = (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΥk,P + Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP

Υk+1,0 = (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΥk,0

Υk+1,g = (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΥk,g + (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )Ψg.

Then, Eq. (3.1) follows from setting Υk,P ≡ Φk,P , and Υk,g ≡ Φk,gΨg, Υk,0 ≡ Φk,0 for all k ≤ K.

If we plug this information into Eq. (A.3) and combine with Assumption A.4, we deduce that:

√
n(θ̂K−ML − θ∗) =

( √
n(α̂K−ML − α∗)√

n(ĝ − g∗)

)
d→ N

( 0dα
0dg

)
,

(
ΣK−ML(P̂0) Σαg,K−ML

Σ′αg,K−ML Ωgg

) , (A.4)

where ΣK−ML(P̂0) is as defined in Theorem 3.1 and

Σαg,K−ML ≡ (Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP [(IdP −ΨPΦK,P )ΩPg −ΨPΦK,0Ω0g − (ΨPΦK,g + IdP )ΨgΩgg].

The desired result is a corollary of Eq. (A.4).

Proof of Theorem 4.1. As we now show, this result is a consequence of applying Theorem A.1 with Q̂k ≡ Q̂k−MD

and Qk ≡ Qk−MD where, for any (α, g, P ) ∈ Θα ×Θg ×ΘP ,

Qk−MD(α, g, P ) ≡ − (P ∗ −Ψ(α, g, P ))′Wk(P ∗ −Ψ(α, g, P )).

For any λ ∈ {α, g, P}, notice that ∂2Qk−MD(α∗, g∗, P ∗)/∂α∂λ′ = −2Ψ′αWkΨλ.

To apply this result, we first verify Assumption A.7.

Part (a). For any (g̃, P̃ ) = (g∗, P ∗) + op(1),

sup
α∈Θα

|Q̂k−MD(α, g̃, P̃ )−Qk−MD(α, g∗, P ∗)| ≤

[
‖Ŵk −Wk‖+ ‖P̃ − P ∗‖2‖Wk‖+ 2‖P̃ − P ∗‖‖Wk‖

+2‖Wk‖ supα∈Θα
‖Ψ(α, g∗, P ∗)−Ψ(α, g̃, P̃ )‖

]
= op(1),

where the last equality uses Assumption A.6.

Part (b). First, consider α = α∗. Then, Assumption A.2 implies Ψ(α, g∗, P ∗) = P ∗ and this, in turn, implies

that Qk−MD(α∗, g∗, P ∗) = 0. Second, consider α 6= α∗. Then, Assumption A.2 implies Ψ(α, g∗, P ∗) 6= P ∗. This and

Assumption A.6 imply that Qk−MD(α, g∗, P ∗) < 0. Then, Qk−MD(α, g∗, P ∗) is uniquely maximized at α = α∗, as

required.
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Part (c). Consider the following derivation:

√
n
∂Q̂k−MD(α∗, g∗, P ∗)

∂α
= 2(P̂ −Ψ(α∗, g∗, P ∗))′Ŵk

∂Ψ(α∗, g∗, P ∗)

∂α

= 2Ψ′αWk

√
n(P̂ − P ∗) + op(1),

where the second line uses Assumptions A.3 and A.6.

Part (d). For any λ ∈ {α, g, P} and (α̃, g̃, P̃ ) = (α∗, g∗, P ∗) + op(1),

∂2Q̂k−MD(α̃, g̃, P̃ )

∂α∂λ′
= −2

∂Ψ(α̃, g̃, P̃ )′

∂λ′
Ŵk

∂Ψ(α̃, g̃, P̃ )

∂α
+ 2(P̂ −Ψ(α̃, g̃, P̃ ))′Ŵk

∂Ψ(α̃, g̃, P̃ )

∂α∂λ′

p→ ∂2Qk−MD(α∗, g∗, P ∗)

∂α∂λ′
= −2Ψ′αWkΨλ,

where the convergence uses Assumptions A.3 and A.6.

Part (e). ∂2QK−MD(α∗, g∗, P ∗)/∂α∂α′ = −2Ψ′αWkΨα is nonsingular by Assumptions A.3 and A.6.

This completes the verification of Assumption A.7. Since we also assume Assumptions A.3 and A.4, Theorem

A.1 applies. In particular, Eq. (A.21) yields:

√
n(θ̂K−MD − θ∗) =

( √
n(α̂K−MD − α∗)√

n(ĝ − g∗)

)

=

[
AK +BKΥK,P BKΥK,0 BKΥK,g + CK

0dg×dP 0dg×dP Idg

]
√
n

 P̂ − P ∗

P̂0 − P ∗

ĝ − g∗

+ op(1), (A.5)

with AK , BK , and CK determined according to Eq. (A.22), and ΥK,P , ΥK,0, and ΥK,g determined according to Eq.

(A.23). As a next step, we now work out these constants.

For k ≤ K, Ξk = 2Ψ′αWk and ∂2Qk−MD(α∗, g∗, P ∗)/∂α∂λ′ = −2Ψ′αWkΨλ, and so Ak = (Ψ′αWkΨα)−1Ψ′αWk,

Bk = −(Ψ′αWkΨα)−1Ψ′αWkΨP , and Ck = −(Ψ′αWkΨα)−1Ψ′αWkΨg. Then, {Υk,P : k ≤ K}, {Υk,g : k ≤ K}, and

{Υk,0 : k ≤ K} are as follows. Set Υ1,0 ≡ IdP , Υ1,g ≡ 0dP×dg , Υ1,P ≡ 0dP×dP and, for any k = 1, . . . ,K − 1,

Υk+1,P = (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΥk,P + Ψα(Ψ′αWkΨα)−1Ψ′αWk

Υk+1,0 = (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΥk,0

Υk+1,g = (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΥk,g + (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)Ψg.

Then, Eq. (4.1) follows from setting Υk,P ≡ Φk,P , and Υk,g ≡ Φk,gΨg, Υk,0 ≡ Φk,0 for all k ≤ K.

If we plug this information into Eq. (A.5) and combine with Assumption A.4, we deduce that:

√
n(θ̂K−MD−θ∗) =

( √
n(α̂K−MD − α∗)√

n(ĝ − g∗)

)
d→ N

( 0dα
0dg

)
,

(
ΣK−MD(P̂0, {Wk : k ≤ K}) Σαg,K−MD

Σ′αg,K−MD Ωgg

) ,

(A.6)

where ΣK−MD(P̂0, {Wk : k ≤ K}) is as defined in Theorem 4.1 and

Σαg,K−MD ≡ (Ψ′αWKΨα)−1Ψ′αWK [(IdP −ΨPΦK,P )ΩPg −ΨPΦK,0Ω0g − (ΨPΦK,g + IdP )ΨgΩgg].

The desired result is a corollary of Eq. (A.6).

Proof of Theorem 4.2. The asymptotic distribution with arbitrary P̂0 and W1 follows from Theorem 4.1. As a

corollary of Lemma A.2,

Σ1−MD(P̂0,W1)− Σ1−MD(P̂ ,W1) is PSD, (A.7)
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where

Σ1−MD(P̂ ,W1)

= (Ψ′αW1Ψα)−1Ψ′αW1

( IdP −ΨP −Ψg

) ΩPP ΩPP ΩPg

ΩPP ΩPP ΩPg

Ω′Pg Ω′Pg Ωgg


 IdP
−Ψ′P

−Ψ′g


W ′1Ψα(Ψ′αW

′
1Ψα)−1

= (Ψ′αW1Ψα)−1Ψ′αW1

( IdP −ΨP −Ψg

)( ΩPP ΩPg

Ω′Pg Ωgg

)(
IdP −Ψ′P

−Ψ′g

)W ′1Ψα(Ψ′αW
′
1Ψα)−1. (A.8)

By Assumptions A.3 and A.5, the expression in brackets in RHS of Eq. (A.8) is non-singular. Then, standard

arguments in GMM estimation (e.g. McFadden and Newey, 1994, page 2165) imply that W ∗1 in Eq. (4.2) minimizes

Σ1−MD(P̂ ,W1). In other words,

Σ1−MD(P̂ ,W1)− Σ1−MD(P̂ ,W ∗1 ) is PSD. (A.9)

By combining Eqs. (A.7) and (A.9), we conclude that Σ1−MD(P̂0,W1) − Σ1−MD(P̂ ,W ∗1 ) is PSD, as desired.

Finally, Eq. (4.3) follows from plugging in this information.

Proof of Theorem 4.3. As in the statement of optimality, let α̂K−MD denote the K-MD estimator with arbitrary

initial CCP estimator P̂0 and arbitrary weight matrices {Wk : k ≤ K}. By Theorem 4.1,
√
n(α̂K−MD − α∗)

d→
N(0dα ,ΣK−MD(P̂0, {Wk : k ≤ K})). As a corollary of Lemma A.2,

ΣK−MD(P̂0, {Wk : k ≤ K})− ΣK−MD(P̂ , {Wk : k ≤ K}) is PSD. (A.10)

As in the statement of invariance, let α̂∗K−MD denote the K-MD estimator with initial CCP estimator P̂ and

weight matrices {Wk : k ≤ K − 1} for steps 1, . . . ,K − 1 (if K > 1), and the corresponding optimal weight matrix in

step K. By Theorem 4.1,
√
n(α̂∗K−MD − α∗)

d→ N(0dα ,ΣK−MD(P̂ , {{Wk : k ≤ K − 1},W ∗K})). By definition of an

optimal choice of WK ,

ΣK−MD(P̂ , {{Wk : k ≤ K}})− ΣK−MD(P̂ , {{Wk : k ≤ K − 1},W ∗K}) is PSD. (A.11)

As a next step, we provide an explicit formula the optimal choice of WK and we compute the resulting asymptotic

variance ΣK−MD(P̂ , {{Wk : k ≤ K − 1},W ∗K}). To this end, consider the following derivation.

ΣK−MD(P̂ , {Wk : k ≤ K})

=



(Ψ′αWKΨα)−1Ψ′αWK× (IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

−((IdP + ΨPΦK,g)Ψg)
′


′ ΩPP ΩPP ΩPg

Ω′PP ΩPP ΩPg

Ω′Pg Ω′Pg Ωgg


 (IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

−((IdP + ΨPΦK,g)Ψg)
′


×W ′KΨα(Ψ′αW

′
KΨα)−1


= (Ψ′αWKΨα)−1Ψ′αWK∆KW

′
KΨα(Ψ′αW

′
KΨα)−1,

where

∆K ≡

[
(IdP −ΨPΦK,P0)′

−((IdP + ΨPΦK,g)Ψg)
′

]′(
ΩPP ΩPg

Ω′Pg Ωgg

)[
(IdP −ΨPΦK,P0)′

−((IdP + ΨPΦK,g)Ψg)
′

]
(A.12)

and {Φk,P0 : k ≤ K} is defined by Φk,P0 ≡ Φk,P + Φk,0 for k ≤ K.

We now derive W ∗K . To this end, we first show that ∆K is non-singular. Notice that (IdP −ΨPΦ1,P0) = (IdP −ΨP ).
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In addition, for any k ≤ K − 1,

IdP −ΨPΦk+1,P0 = (IdP −ΨPΨα(Ψ′αWkΨα)−1Ψ′αWk)−ΨP (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΦk,P0

= (IdP −ΨP ) + ΨP (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)(IdP −ΨPΦk,P0).

From this and some algebra, we conclude that

(IdP −ΨPΦK,P0) = ΛK(IdP −ΨP )

(IdP + ΨPΦK,g)Ψg = ΛKΨg. (A.13)

By combining Eqs. (A.12) and (A.13), we deduce that

∆K = ΛK

[
(IdP −ΨP )′

−Ψ′g

]′ [
ΩPP ΩPg

Ω′Pg Ωgg

][
(IdP −ΨP )′

−Ψ′g

]
Λ′K . (A.14)

By Assumptions A.3 and A.5, and that ΛK is non-singular, it follows that ∆K ∈ R is non-singular. Then, classical

results in GMM estimation imply that the optimal weight matrix is

W ∗K = ∆−1
K , (A.15)

resulting in an (optimal) asymptotic variance ΣK−MD(P̂ , {{Wk : k ≤ K − 1},W ∗K}) = (Ψ′α∆−1
K Ψα)−1.

Since the choice of {Wk : k ≤ K − 1} was completely arbitrary, the proof of invariance follows from showing that

Ψ′α∆−1
K Ψα = (Σ∗)−1, (A.16)

where we are using Assumptions A.3 and A.5 to deduce that Σ∗ is non-singular. To this end, define the following

matrices

AK ≡ (IdP −ΨPΦK,P0)ΩPP (IdP −ΨPΦK,P0)′

BK ≡

 (IdP + ΨPΦK,g)ΨgΩggΨ
′
g(IdP + ΨPΦK,g)

′

−(IdP + ΨPΦK,g)ΨgΩ
′
Pg(IdP −ΨPΦK,P0)′

−(IdP −ΨPΦK,P0)ΩPgΨ
′
g(IdP + ΨPΦK,g)

′


CK ≡ (IdP −ΨPΦK,P0)−1BK(IdP −ΨPΦK,P0)′−1, (A.17)

where we have used that (IdP −ΨPΦK,P0) is non-singular, which follows from Eq. (A.13), Assumption A.3, and that

ΛK is non-singular. In turn, this implies that AK is non-singular and, in fact,

A−1
K = (IdP −ΨPΦK,P0)′−1Ω−1

PP (IdP −ΨPΦK,P0)−1. (A.18)

The following derivation proves that CK = C1.

CK =

[
(IdP −ΨPΦK,P0)−1(IdP + ΨPΦK,g)ΨgΩggΨ

′
g(IdP + ΨPΦK,g)

′(IdP −ΨPΦK,P0)′−1

−(IdP −ΨPΦK,P0)−1(IdP + ΨPΦK,g)ΨgΩ
′
Pg − ΩPgΨ

′
g(IdP + ΨPΦK,g)

′(IdP −ΨPΦK,P0)′−1

]

=

[
(IdP −ΨP )−1ΨgΩggΨ

′
g(IdP −ΨP )′−1

−(IdP −ΨP )−1ΨgΩ
′
Pg − ΩPgΨ

′
g(IdP −ΨP )′−1

]
= C1.

where the first equality uses Eq. (A.17), the second equality uses Lemma A.1(b), and the final equality holds by Eq.

(A.17) with K = 1.
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We are now ready to prove Eq. (A.16), which follows immediately from the next derivation.

Ψ′α∆−1
K Ψα = Ψ′α(AK +BK)−1Ψα

= Ψ′α(A−1
K − (IdP +A−1

K BK)−1A−1
K BKA

−1
K )Ψα

= Ψ′α(IdP −ΨPΦK,P0)′−1Ω−1
PP {ΩPP − ΩPP (IdP + Ω−1

PPCK)−1Ω−1
PPCK}Ω

−1
PP (IdP −ΨPΦK,P0)−1Ψα

= Ψ′α(IdP −ΨP )′−1Ω−1
PP {ΩPP − ΩPP (IdP + Ω−1

PPC1)−1Ω−1
PPC1}Ω−1

PP (IdP −ΨP )−1Ψα

= Ψ′α

[ (IdP −ΨP )′

−Ψ′g

]′ [
ΩPP ΩPg

Ω′Pg Ωgg

][
(IdP −ΨP )′

−Ψ′g

]−1

Ψα = Ψ′α∆−1
1 Ψα = (Σ∗)−1,

where the first equality follows from ∆K = AK + BK , which is implied by combining Eqs. (A.12) and (A.17), the

second equality follows from ∆K and AK being non-singular, the third equality follows from Eqs. (A.17) and (A.18),

the fourth equality is based on Lemma A.1(a) and CK = C1, the fifth equality follows from algebra and the final

equality holds by Eq. (4.3).

Since the choice of {Wk : k ≤ K − 1} was completely arbitrary, the proof of optimality follows from showing the

following argument. Note that

ΣK−MD(P̂0, {Wk : k ≤ K})− Σ∗ =

 (ΣK−MD(P̂0, {Wk : k ≤ K})− ΣK−MD(P̂ , {Wk : k ≤ K}))
+(ΣK−MD(P̂ , {Wk : k ≤ K})− ΣK−MD(P̂ , {W̃k : k ≤ K}))

+ΣK−MD(P̂ , {W̃k : k ≤ K})− Σ∗

 .
The RHS is the sum of three terms. The first term is PSD by Eq. (A.10), the second term is PSD by Eq. (A.11),

and the third bracket is zero by Eq. (A.16). Then, ΣK−MD(P̂0, {Wk : k ≤ K})− Σ∗ is PSD, as desired.

A.2 Additional auxiliary results

Theorem A.1 (General result for iterative estimators). Fix K ≥ 1 arbitrarily. Assume Assumptions A.3,

A.4, and A.7. Then, for all k ≤ K,

√
n(α̂k − α∗) =

[
(Ak +BkΥk,P ) BkΥk,0 (BkΥk,g + Ck)

]√
n

 P̂ − P ∗

P̂0 − P ∗

ĝ − g∗

+ op(1) (A.19)

√
n(P̂k−1 − P ∗) =

[
Υk,P Υk,0 Υk,g

]√
n

 P̂ − P ∗

P̂0 − P ∗

ĝ − g∗

+ op(1), (A.20)

√
n(θ̂k − θ∗) =

[
(Ak +BkΥk,P ) BkΥk,0 (BkΥk,g + Ck)

0dg×dP 0dg×dP Idg

]
√
n

 P̂ − P ∗

P̂0 − P ∗

ĝ − g∗

+ op(1), (A.21)

where θ̂k ≡ (α̂k, ĝ), θ∗ ≡ (α∗, g∗), {Ak : k ≤ K}, {Bk : k ≤ K}, and {Ck : k ≤ K} are defined by:

Ak ≡ −

(
∂2Qk(α∗, g∗, P ∗)

∂α∂α′

)−1

Ξk

Bk ≡ −

(
∂2Qk(α∗, g∗, P ∗)

∂α∂α′

)−1(
∂2Qk(α∗, g∗, P ∗)

∂α∂P ′

)

Ck ≡ −

(
∂2Qk(α∗, g∗, P ∗)

∂α∂α′

)−1(
∂2Qk(α∗, g∗, P ∗)

∂α∂g′

)
, (A.22)
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and {Υk,P : k ≤ K}, {Υk,g : k ≤ K}, and {Υk,0 : k ≤ K} are iteratively defined as follows. Set Υ1,P ≡ 0dP×dP ,

Υ1,g ≡ 0dP×dg , Υ1,0 ≡ IdP and, for any k ≤ K − 1,

Υk+1,P ≡ (ΨP + ΨαBk)Υk,P + ΨαAk

Υk+1,0 ≡ (ΨP + ΨαBk)Υk,0.

Υk+1,g ≡ (ΨP + ΨαBk)Υk,g + Ψg + ΨαCk. (A.23)

Proof. We divide the proof into three steps.

Step 1. Show that (α̂k, P̂k−1) = (α∗, P ∗) + op(1) for any k ≤ K. We prove this by induction.

We begin with the initial step, i.e., show that the result holds for k = 1. First, P̂0 = P ∗ + op(1) follows

directly from Assumption A.4. Assumptions A.4 and A.7 imply that supα∈Θα
|Q̂1(α, ĝ, P̂0)−Q1(α, g∗, P ∗)| = op(1),

Q1(α, g∗, P ∗) is upper semi-continuous function of α, and Q1(α, g∗, P ∗) is uniquely maximized at α∗. From these

conditions, α̂1 = α∗ + op(1) follows from standard consistency results for extremum estimators (e.g. McFadden and

Newey (1994)).

We next show the inductive step, i.e., assume that the result holds for k ≤ K−1 and show that it holds for k+ 1.

First, notice that:

P̂k − P ∗ = Ψ(α̂k, ĝ, P̂k−1)−Ψ(α∗, g∗, P ∗)

= Ψα(α∗, g∗, P ∗)(α̂k − α∗) + Ψg(α
∗, g∗, P ∗)(ĝ − g∗) + ΨP (α∗, g∗, P ∗)(P̂k−1 − P ∗) + op(1) = op(1),

where the second line follows from the intermediate value theorem, the inductive hypothesis, and Assumptions A.3

and A.4. Assumptions A.4 and A.7 imply that supα∈Θα
|Q̂k+1(α, ĝ, P̂0) −Qk+1(α, g∗, P ∗)| = op(1), Qk+1(α, g∗, P ∗)

is upper semi-continuous function of α, and Qk+1(α, g∗, P ∗) is uniquely maximized at α∗. By repeating previous

arguments, α̂k+1 = α∗ + op(1) follows.

Step 2. Derive an expansion for
√
n(α̂k − α∗) for any k ≤ K.

For any k ≤ K, consider the following derivation.

0dα×1 =
√
n
∂Q̂k(α̂k, ĝ, P̂k−1)

∂α
+ op(1)

=

 √
n ∂Q̂k(α∗,g∗,P∗)

∂α
+ ∂2Qk(α∗,g∗,P∗)

∂α∂α′
√
n(α̂k − α∗)+

∂2Qk(α∗,g∗,P∗)
∂α∂P ′

√
n(P̂k−1 − P ∗) + ∂2Qk(α∗,g∗,P∗)

∂α∂g′
√
n(ĝ − g∗)

+ op(1)

=

 Ξk
√
n(P̂ − P ∗) + ∂2Qk(α∗,g∗,P∗)

∂α∂α′
√
n(α̂k − α∗)+

∂2Qk(α∗,g∗,P∗)
∂α∂P ′

√
n(P̂k−1 − P ∗) + ∂2Qk(α∗,g∗,P∗)

∂α∂g′
√
n(ĝ − g∗),

+ op(1), (A.24)

where the first line holds because (α̂k, ĝ, P̂k−1) = (α∗, g∗, P ∗) + op(1) (due to the step 1 and Assumption A.4), α̂k is

the maximizer of Q̂k(α, ĝ, P̂k−1) in Θα, and α̂k belongs to the interior of Θα with probability approaching one (due to

the preliminary result and Assumption A.3), the second line holds by the intermediate value theorem and elementary

convergence arguments based on Assumption A.7, and the third line holds by Assumption A.7.

We are now ready to derive the desired expansion.

√
n(α̂k − α∗) =

− ∂2Qk(α∗, g∗, P ∗)

∂α∂α′

−1
[

Ξk
√
n(P̂ − P ∗) +

∂2Q̂k(α∗, g∗, P ∗)

∂α∂P ′
√
n(P̂k−1 − P ∗) +

∂2Q̂k(α∗, g∗, P ∗)

∂α∂g′
√
n(ĝ − g∗)

]
= Ak

√
n(P̂ − P ∗) +Bk

√
n(P̂k−1 − P ∗) + Ck

√
n(ĝ − g∗) + op(1), (A.25)

where the first line holds by Eq. (A.24) and Assumption A.7, and the second line holds by Eq. (A.22) and Assumption

A.7.
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Step 3. Show Eqs. (A.19), (A.20), and (A.21). Eq. (A.21) follows immediately from Eq. (A.19). Eqs. (A.19) and

(A.20) are the result of the following inductive argument.

We begin with the initial step, i.e., show that the result holds for k = 1. By Υ1,P ≡ 0dP×dP , Υ1,g ≡ 0dP×dg ,

Υ1,0 ≡ IdP , Eq. (A.20) holds for k = 1. By the same argument and step 2, Eq. (A.19) holds for k = 1.

We next show the inductive step, i.e., assume that the result holds for k ≤ K−1 and show that it holds for k+ 1.

First, consider the following derivation:

√
n(P̂k − P ∗) = Ψα

√
n(α̂k − α∗) + Ψg

√
n(ĝ − g∗) + ΨP

√
n(P̂k−1 − P ∗) + op(1)

=

[
[ΨαAk + (ΨP + ΨαBk)Υk,P ]

√
n(P̂ − P ∗) + [ΨαCk + Ψg + (ΨP + ΨαBk)Υk,g]

√
n(ĝ − g∗)

+(ΨP + ΨαBk)Υk,0

√
n(P̂0 − P ∗)

]
+ op(1)

= Υk+1,P

√
n(P̂ − P ∗) + Υk+1,g

√
n(ĝ − g∗) + Υk+1,0

√
n(P̂0 − P ∗) + op(1), (A.26)

where the first equality holds by P̂k ≡ Ψ(α̂k, ĝ, P̂k−1), P ∗ = Ψ(α∗, g∗, P ∗), Assumption A.3, and the intermediate

value theorem, the second line holds by step 2 and the inductive hypothesis, and the last equality holds by Eq. (A.23).

This verifies Eq. (A.20) for k + 1. Second, consider the following derivation:

√
n(α̂k+1 − α∗) = Ak+1

√
n(P̂ − P ∗) +Bk+1

√
n(P̂k − P ∗) + Ck+1

√
n(ĝ − g∗) + op(1)

= (Ak+1 +Bk+1Υk+1,P )
√
n(P̂ − P ∗) + (Ck+1 +Bk+1Υk+1,g)

√
n(ĝ − g∗) +Bk+1Υk+1,0

√
n(P̂0 − P ∗) + op(1),

where the first equality holds by step 2 and the second equality follows from Eq. (A.26). This verifies Eq. (A.19) for

k + 1, and completes the proof.

Lemma A.1. Assume the conditions in Theorem 4.3. Let {Φk,0 : k ≤ K}, {Φk,P : k ≤ K}, and {Φk,g : k ≤ K}
defined as in Eq. (4.1), and let Φk,P0 ≡ Φk,P + Φk,0 for all k ≤ K. Then,

1. (IdP −ΨPΦK,P0)−1Ψα = (IdP −ΨP )−1Ψα.

2. (IdP −ΨPΦK,P0)−1(IdP + ΨPΦK,g) = (IdP −ΨP )−1.

Proof. Throughout this proof, denote Πk ≡ Ψα(Ψ′αWkΨα)−1Ψ′αWk for all k ≤ K.

Part 1. It suffices to show that (IdP − ΨPΦk,P0)(IdP − ΨP )−1Ψα = Ψα for k ≤ K. We show this by induction.

The initial step follows from Φk,P0 = IdP . We next show the inductive step, i.e., assume the result holds for k ≤ K−1

and show it also holds for k + 1. Consider the following derivation.

(IdP −ΨPΦk+1,P0)(IdP −ΨP )−1Ψα = (IdP −ΨP + ΨP (IdP −Πk)(IdP −ΨPΦk,P0))(IdP −ΨP )−1Ψα

= Ψα + ΨP (IdP −Πk)(IdP −ΨPΦk,P0)(IdP −ΨP )−1Ψα

= Ψα + ΨP (IdP −Πk)Ψα = Ψα,

as required, where the first equality follows from Eq. (4.1) and some algebra, the second equality follows from the

inductive hypothesis, and the final equality follows from ΠkΨα = Ψα.

Part 2. It suffices to show that (IdP + ΨPΦk,g)(IdP − ΨP ) = (IdP − ΨPΦk,P0) for k ≤ K. We show this by

induction. The initial step follows from Φ0,g = 0dP×dg and Φ0,P = IdP . We next show the inductive step, i.e.,

assume the result holds for k ≤ K − 1 and show it also holds for k + 1. Consider the following derivation.

(IdP + ΨPΦk+1,g)(IdP −ΨP ) = (IdP −ΨP ) + ΨP (IdP −Πk)(ΨPΦk,g + IdP )(IdP −ΨP )

= (IdP −ΨP ) + ΨP (IdP −Πk)(IdP −ΨPΦk,P0)

= −ΨP (IdP −Πk)ΨPΦk,P0 + IdP −ΨPΠk

= IdP −ΨPΦk+1,P0,

where the first and fourth equalities follows from Eq. (4.1), the second equality follows from the inductive hypothesis,

and the third equality follows from algebra.
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Lemma A.2. Under Assumptions A.4 and A.5, ΩPP ΩP0 ΩPg

Ω′P0 Ω00 Ω0g

Ω′Pg Ω′0g Ωgg

−
 ΩPP ΩPP ΩPg

ΩPP ΩPP ΩPg

Ω′Pg Ω′Pg Ωgg


is PSD.

Proof. First, note that Assumption A.4 implies

√
n

(
P̂0 − P ∗

ĝ − g∗

)
d→ N

( 0dP
0dg

)
,

(
Ω00 Ω0g

Ω′0g Ωgg

) .

Second, note that Assumption A.5 implies that(
Ω00 Ω0g

Ω′0g Ωgg

)
−

(
ΩPP ΩPg

Ω′Pg Ωgg

)

is PSD, i.e, for any γP ∈ RdP and γg ∈ Rdg ,

γ′P (Ω00 − ΩPP )γP + 2γ′P (Ω0g − ΩPg)γg ≥ 0. (A.27)

The remainder of this proof follows arguments similar to those used to show Hausman (1978, Lemma 2.1). Fix

r ∈ R and A ∈ RdP×dP arbitrarily. By Assumption A.4,

√
n

(
P̂ + rA(P̂0 − P̂ )− P ∗

ĝ − g∗

)
=
√
n

(
(IdP − rA)(P̂ − P ∗) + rA(P̂0 − P ∗)

ĝ − g∗

)
d→ N

( 0dP
0dg

)
,Σ

 ,

and

Σ ≡


(

r2AΩ00A
′ + (IdP − rA)ΩPP (IdP − rA

′)

+r(IdP − rA)ΩP0A
′ + rAΩ′P0(IdP − rA

′)

)
rA(Ω0g − ΩPg) + ΩPg

r(Ω0g − ΩPg)
′A′ + Ω′Pg Ωgg

 .

Assumption A.5 implies that

Σ−

(
ΩPP ΩPg

Ω′Pg Ωgg

)
=


(

r2AΩ00A
′ + (IdP − rA)ΩPP (IdP − rA

′)+

r(IdP − rA)ΩP0A
′ + rAΩ′P0(IdP − rA

′)− ΩPP

)
rA(Ω0g − ΩPg)

r(Ω0g − ΩPg)
′A′ 0dg×dg


is PSD, i.e., for any λP ∈ RdP and λg ∈ Rdg ,

H(r) ≡

(
λ′P (r2AΩ00A

′ + (IdP − rA)ΩPP (IdP − rA
′) + r(IdP − rA)ΩP0A

′ + rAΩ′P0(IdP − rA
′)− ΩPP )λP

+2rλ′P (Ω0g − ΩPg)
′A′λg

)
≥ 0.

(A.28)

Note that H(0) = 0, i.e., H(r) achieves a minimum at r = 0. Then, the first order condition for a minimization has

to be satisfied at r = 0, which implies

H ′(0) = λ′P (ΩP0A
′ +AΩ′P0 −AΩPP − ΩPPA

′)λP + 2λ′g(Ω0g − ΩPg)
′A′λP = 0. (A.29)

Since Eq. (A.29) has to hold for λg = 0dg , A = IdP , and all λP ∈ RdP , we deduce that

2ΩPP = ΩP0 + Ω′P0. (A.30)
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Plugging this information into Eq. (A.29) yields

H ′(0) = λ′P ((ΩP0 − Ω′P0)A′ +A(Ω′P0 − ΩP0))λP /2 + 2λ′P (Ω0g − ΩPg)
′A′λg = 0. (A.31)

Since Eq. (A.31) has to hold for λg = 0dg , A = ΩP0 − Ω′P0 and all λP ∈ RdP , we deduce that Ω′P0 = ΩP0. If we

combine this with Eq. (A.30), we conclude that

ΩPP = ΩP0 = Ω′P0. (A.32)

Plugging this information into Eq. (A.31) yields

H ′(0) = 2λ′P (Ω0g − ΩPg)
′A′λg = 0. (A.33)

Since Eq. (A.33) has hold for A = IdP and all λP ∈ RdP and λg ∈ Rdg , we conclude that

Ω0g = ΩPg. (A.34)

For any µ = (µ′P , µ
′
0, µ
′
g)
′ with µP , µ0 ∈ RdP and µg ∈ Rdg , consider the following argument.

µ′


 ΩPP ΩP0 ΩPg

Ω′P0 Ω00 Ω0g

Ω′Pg Ω′0g Ωgg

−
 ΩPP ΩPP ΩPg

ΩPP ΩPP ΩPg

Ω′Pg Ω′Pg Ωgg


µ = µ′0(Ω00 − ΩPP )µ0 ≥ 0,

where the equality uses Eqs. (A.32) and (A.34), and the inequality uses Eq. (A.27) for γP = µ0 and γg = 0dg . Since

the choice of µ was arbitrary, the desired result follows.

A.3 Single-step estimation

By definition, single-step K-stage PI estimation is a special case of the two-step version in which the estimation of

g∗ is removed from the first step and is incorporated into the second step. To capture this within the notation of the

paper, this section uses α∗ to refer to θ∗ = (α∗, g∗) in the main text.

A.3.1 Estimation procedure

The estimation procedure for single-step estimation is as follows.

• Step 1: Estimate P ∗ with preliminary or 0-step estimators of the CCPs denoted by P̂0.

• Step 2: Estimate α∗ with α̂K , computed using the following algorithm. Initialize k = 1 and then:

(a) Compute:

α̂k ≡ arg max
α∈Θα

Q̂k(α, P̂k−1),

where Q̂k : Θα × ΘP → R is the k-th step sample objective function. If k = K, exit the algorithm. If

k < K, go to (b).

(b) Estimate P ∗ with the k-step estimator of the CCPs, given by:

P̂k ≡ Ψ(α̂k, P̂k−1).

Then, increase k by one unit and return to (a).
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A.3.2 Assumptions

The assumptions for the single-step estimation are similar to the ones discussed in Section 2.3. In particular, As-

sumptions A.1 and A.6 remain the same, while Assumptions A.2-A.5 are modified as follows.

Assumption A.2’. (Identification) Ψ(α, P ∗) = P ∗ if and only if α = α∗.

Assumption A.3’. (Regularity conditions) Assume the following conditions:

(i) α∗ belongs to the interior of Θα.

(ii) supα∈Θα
|Ψ(α, P̃ )−Ψ(α, P ∗)| = op(1), provided that P̃ = P ∗ + op(1).

(iii) infα∈Θα Ψjax(α, P̃ ) > 0 for all (j, a, x) ∈ J ×A×X, provided that P̃ = P ∗ + op(1).

(iv) Ψ(α, P ) is twice continuously differentiable in a neighborhood of (α∗, P ∗). We use Ψλ ≡ ∂Ψ(α∗, P ∗)/∂λ for

λ ∈ {α, P}.

(v) IdP −ΨP ∈ RdP×dP and Ψα ∈ RdP×dα are full rank matrices.

Assumption A.4’. (Baseline convergence) (P̂ , P̂0) satisfies the following condition:

√
n

(
P̂ − P ∗

P̂0 − P ∗

)
d→ N

( 0dP
0dP

)
,

(
ΩPP ΩP0

Ω′P0 Ω00

) .

Assumption A.5’. (Baseline convergence II) For any M ∈ RdP×dP , (IdP −M)P̂ +MP̂0 is not asymptotically

more efficient than P̂ .

A.3.3 Results for K-ML estimation

Theorem 3.1 derives the asymptotic distribution of the two-step K-ML estimator. The analogue result for the

single-step K-ML estimator is as follows.

Theorem A.2 (Single-step K-ML). Fix K ≥ 1 arbitrarily. Assume Assumption A.1, A.2’, A.3’, and A.4’. Then,

√
n(α̂K−ML − α∗)

d→ N(0dα×1,ΣK−ML(P̂0)),

where

ΣK−ML(P̂0) ≡


(Ψ′αΩ−1

PPΨα)−1Ψ′αΩ−1
PP×[

(IdP −ΨPΦk,P )′

−(ΨPΦk,0)′

]′(
ΩPP ΩP0

Ω′P0 Ω00

)[
(IdP −ΨPΦk,P )′

−(ΨPΦk,0)′

]
×Ω−1

PPΨα(Ψ′αΩ−1
PPΨα)−1


,

and {Φk,P : k ≤ K} and {Φk,0 : k ≤ K} are defined as follows. Set Φ1,P ≡ 0dP×dP , Φ1,0 ≡ IdP and, for any

k ≤ K − 1,

Φk+1,P ≡ (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΦk,P + Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP ,

Φk+1,0 ≡ (IdP −Ψα(Ψ′αΩ−1
PPΨα)−1Ψ′αΩ−1

PP )ΨPΦk,0.

A.3.4 Results for K-MD estimation

Theorem 4.1 derives the asymptotic distribution of the two-step K-MD estimator. The analogue result for the

single-step K-MD estimator is as follows.
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Theorem A.3 (Sigle-step K-MD). Fix K ≥ 1 arbitrarily. Assume Assumption A.1, A.2’, A.3’, A.4’, and A.6.

Then,
√
n(α̂K−MD − α∗)

d→ N(0dα×1,ΣK−MD(P̂0, {Wk : k ≤ K})),

where

ΣK−MD(P̂0, {Wk : k ≤ K}) ≡


(Ψ′αWKΨα)−1Ψ′αWK×[

(IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

]′(
ΩPP ΩP0

Ω′P0 Ω00

)[
(IdP −ΨPΦK,P )′

−(ΨPΦK,0)′

]
×W ′KΨα(Ψ′αW

′
KΨα)−1


,

and {Φk,0 : k ≤ K} and {Φk,P : k ≤ K} defined as follows. Set Φ1,P ≡ 0dP×dP , Φ1,0 ≡ IdP and, for any k ≤ K − 1,

Φk+1,P ≡ (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΦk,P + Ψα(Ψ′αWkΨα)−1Ψ′αWk,

Φk+1,0 ≡ (IdP −Ψα(Ψ′αWkΨα)−1Ψ′αWk)ΨPΦk,0.

Theorems 4.2 and 4.3 study optimality for the two-step K-MD estimator. The analogue result for the single-step

K-MD estimator is as follows.

Theorem A.4 (Single-step optimality with K = 1). Assume Assumptions A.1, A.2’, A.3’, A.4’, A.5’, and A.6. Let

α̂∗1−MD denote the 1-MD estimator with P̂0 = P̂ and W1 = W ∗1 ≡ [(IdP −ΨP )ΩPP (IdP −Ψ′P )]−1. Then,

√
n(α̂∗1−MD − α∗)

d→ N(0dα×1,Σ
∗),

with

Σ∗ ≡ (Ψ′α[(IdP −ΨP )ΩPP (IdP −Ψ′P )]−1Ψα)−1. (A.35)

Furthermore, Σ1−MD(P̂0,W1)−Σ∗ is positive semidefinite for all (P̂0,W1), i.e., α̂∗1−MD is optimal among all 1-MD

estimators that satisfy our assumptions.

Theorem A.5 (Single-step invariance and optimality). Fix K ≥ 1 arbitrarily and assume Assumptions A.1, A.2’,

A.3’, A.4’, A.5’, and A.6. In addition, assume that the sequence of weight matrices {Wk : k ≤ K − 1} is such that

the matrix

ΛK ≡ IdP + 1[K > 1]

K−1∑
b=1

b∏
c=1

ΨP (IdP −Ψα(Ψ′αWK−cΨα)−1Ψ′αWK−c) ∈ RdP×dP (A.36)

is non-singular. Then, we have the following two results.

1. Invariance. Let α̂∗K−MD denote the K-MD estimator with P̂0 = P̂ , weight matrices {Wk : k ≤ K − 1} for steps

1, . . . ,K − 1 (if K > 1), and the corresponding optimal weight matrix in step K. Then,

√
n(α̂∗K−MD − α∗)

d→ N(0dα×1,Σ
∗),

where Σ∗ is as in Eq. (A.35).

2. Optimality. Let α̂K−MD denote the K-MD estimator with P̂0 and weight matrices {Wk : k ≤ K}. Then,

√
n(α̂K−MD − α∗)

d→ N(0dα×1,ΣK−MD(P̂0, {Wk : k ≤ K})).

Furthermore, ΣK−MD(P̂0, {Wk : k ≤ K}) − Σ∗ is positive semidefinite, i.e., α̂∗K−MD is optimal among all

K-MD estimators that satisfy our assumptions.
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