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Abstract

The interaction of economic agents is one of the most important elements in economic
analyses. While most empirical studies investigate peer effects on objective final achieve-
ments, peer effects on subjective outcomes are inherently difficult to identify and estimate
because these variables are prone to measurement errors. In particular, peer effects on stu-
dents’ attitudes towards learning are believed to have a significant impact on their achieve-
ments, while we found the presence of misclassification errors in students’ self-reported
attitudes. We develop a binary choice model with misclassification and social interactions
and use a recently developed technique of measurement error models to correct misreport-
ing errors for estimating the peer effects on attitude. Our estimates suggest that a signifi-
cant proportion of students overreport their attitudes towards learning and that peer effects
are not only significant, but also much larger than estimates ignoring the misreporting er-
rors. Our method may be generalized to the identification and estimation of peer effects
with imperfect data information.

Keywords: Misclassification, Binary Choice, Peer Effects, Attitude Towards Learning, Silent
Rivalry, Social Desirability.
JEL Classifications: C25; C57; C63; I20.

1 Introduction

Models with strategic interactions, e.g. peer effects, competitive effects, etc., have been es-

timated across many fields in economics, including financial economics, industrial organiza-

tion, labor economics and socioeconomics. Much of the existing empirical work has taken the

behavior data as accurately measured while decisions data usually suffer from measurement

error in the surveys. With mismeasured decision variables, the simultaneity of strategic in-

teractions study naturally raises the problems from the left and the problems from the right

[Hausman (2001)]. In this paper, we develop a binary choice model with misclassification and

∗Corresponding author, Department of Economics, Johns Hopkins University, 3400 N. Charles Street, Baltimore,
MD 21218. Email: yhu@jhu.edu.

†Department of Economics, Emory University, 1602 Fishburne Drive, Atlanta, GA 30322, Email:
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social interactions for analyzing the peer effects among students on attitude towards learn-

ing. We rectify the biases due to misclassification by using a recently developed technique in

measurement error models with repeated measurements.

Measurement errors prevail in survey data for economics analyses. There are four sorts

of source of measurement errors: mistakes made during the cognitive processes of answering

survey questions; social desirability for some answers; essential survey conditions; and ap-

plicability of findings to the measurement of economic phenomena; see Bound, Brown, and

Mathiowetz (2001) for details. Decision variables possess discreteness and sometimes are di-

chotomous. Discrete measurement error is also called misclassification error. Typically, dis-

crete decision variables require nonlinear techniques that are different from those deployed

in linear models. Econometricians have devoted increasing attention to the magnitude and

consequences of measurement error in the nonlinear models, see Chen, Hong, and Nekipelov

(2011); Schennach (2016); Hu (2017) and reference therein for details. In the peer effects on atti-

tude, the self-reported attitudes of students are prone to measurement errors as some answers

to attitude questions are social desirable, e.g. “hard-working”.

Major development of misclassification is on the right hand side with few exceptions, e.g.

see Hausman, Abrevaya, and Scott-Morton (1998); Lewbel (2000) and Meyer and Mittag (2017)

for binary choice models, Hsiao and Sun (1998) for multinomial models, Abrevaya and Haus-

man (1999) for duration models and Li, Trivedi, and Guo (2003) for count models. In the

continuous setting, Lewbel (1996); De Nadai and Lewbel (2016) investigate the measurement

errors on both sides of regression. Unlike in the linear models where measurement errors on

the left hand side cause only efficiency loss, there is sizable distortion of econometric analysis

of nonlinear models with measurement errors on the dependent variable. This paper attempts

to study a case where there are misclassification errors on both sides due to the simultaneity

of strategic interactions. Peer effects on attitude post the misclassified attitudes on both sides

of the binary choice model.

In the last three decades, tremendous attention was paid to social interactions and peer

effects among individuals in many fields, e.g. education, production adoption, information

diffusion, word of mouth, etc. Brock and Durlauf (2001a,b) pioneer the discrete choice analy-

sis with social interactions. The nonlinear model of discrete choice avoids the reflection prob-

lem raised by Manski (1993), see Brock and Durlauf (2007). Brock and Durlauf (2001a, 2007)
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provide novel equilibrium characterization of the discrete game and the identification strate-

gies for unique equilibrium and multiple equilibria. For more discussion on the identification

of discrete choice with social interactions, see Durlauf and Ioannides (2010); Blume, Brock,

Durlauf, and Ioannides (2011); Blume, Brock, Durlauf, and Jayaraman (2015).

The binary choice with misclassification and social interactions is modeled through a static

game played on an exogenously given large social network. We obtain the identification of

the true model, the conditional distribution of latent true decision variable through the tech-

nique of the two repeated measurements, see Hu (2008, 2017). We extend the likelihood-like

algorithm (nested pseudo likelihood (NPL) estimation) from Aguirregabiria and Mira (2007)

(dynamic game) and Lin and Xu (2017) (social interactions) to our model with a homogeneous

misclassification condition. We establish the asymptotic properties of the NPL estimator and

illustrate its finite sample performance with eight Monte Carlo experiments.

The interaction of economic agents is one of the most important elements in economic anal-

yses. In a school, peer effects on students’ attitudes towards learning are believed to have a

significant impact on their achievements. Extant empirical studies pay much attention to the

peer effects on the final achievements while the inquiry on students’ attitudes is underdevel-

oped. In this paper, we aim to bridge this gap by investigating the peer effects on attitude

towards learning. We provide empirical evidence on the presence of misclassification errors

in students’ self-reported attitudes and use a recently developed technique for measurement

error models to correct such misreporting errors for estimating the peer effects on attitude.

We denote such peer effects as silent rivalry as students strive in a silent manner. While our

methodology sheds light on how to study peer effects in a general framework with imper-

fect data information, our estimates show that a significant proportion of students overreport

their attitudes towards learning and that peer effects are not only significant, but also much

larger than estimates ignoring the misreporting errors. These stronger peer effects elaborate

the statement in the Coleman report of 1966 that it is more well-grounded to improve school

performance through manipulation of peer group influence than by increased per student ex-

penditures [Coleman et al. (1966)].

The paper unfolds as follows. Section 2 introduces the binary choice model with misclassi-

fication and social interactions. Section 3 provides the theoretical results on the identification

of the conditional distribution of latent variable and the structural parameter. We then demon-
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strate the estimation strategy in Section 4. Eight Monte Carlo experiments mimicking the peer

effects on attitude are conducted in Section 5 to illustrate the finite sample performance of

the model and the NPL algorithm. Section 6 presents our main empirical results on the silent

rivalry among high school students on attitude towards learning and the overreporting phe-

nomenon. The last section concludes. Proofs are rendered in the Appendix A. We also check

the robustness of our estimation with different discretized definition of positive attitude to-

wards learning in Appendix B.

2 Binary Choice Model with Misclassification and Social Interactions

There are n individuals, I = {1, · · · , n}, located (physically or socially) in a single exogenously

given large social network. Each individual i is associated with a group of friends, Fi. Let Fij =

1 denote that individual i considers j as a best friend and friendships are taken exogenously.

The friendship is not necessarily reciprocal, i.e., Fij , Fji is allowed. We denote Fii = 0 by

convention. Therefore the friends set is Fi = {j ∈ I : Fij = 1}. Denote Ni as the number of

friends of individual i.

Exogenous network setting prevails in peer effects study, either in the linear-in-mean model,

see Manski (1993, 2000); Lee (2007); Graham (2008); Bramoullé, Djebbari, and Fortin (2009);

Calvó-Armengol, Patacchini, and Zenou (2009); Lee, Liu, and Lin (2010); Lin (2010); Liu and

Lee (2010); Goldsmith-Pinkham and Imbens (2013); Bramoullé, Kranton, and D’amours (2014);

Dahl, Løken, and Mogstad (2014); Hoshino (2017) to name only a few, or in the discrete choice

with social interactions, e.g. Brock and Durlauf (2001a, 2007); Card and Giuliano (2013); Lee,

Li, and Lin (2014); Song (2014); Blume, Brock, Durlauf, and Jayaraman (2015); Menzel (2015a);

Li and Zhao (2016); Xu (2016); Canen, Schwartz, and Song (2017); Eraslan and Tang (2017);

Lin and Xu (2017); Liu (2017); Yang and Lee (2017) to mention but a few. There is a growing

literature on the econometrics of dynamic network formation, e.g. Christakis, Fowler, Imbens,

and Kalyanaraman (2010); Leung (2015); Menzel (2015b); Chandrasekhar and Jackson (2016);

Badev (2017); Graham (2017); Mele (2017); Paula, Richards-Shubik, and Tamer (2017); Sheng

(2017). This paper focuses on the static game played on exogenous network and and does not

study the network formation issue. For more discussion of games played on networks, see

Bramoullé and Kranton (2016).
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Individuals make binary decisions {Y∗
i ∈= {0, 1}}i∈I simultaneously. The interactions

transit through the directed link, Fij, which means that individuals take into account the ac-

tions of their friends when they make decisions. For example, in the silent rivalry study, Y∗
i = 1

means that student i chooses to work hard. Here we use Y∗
i to denote the true latent decision

of individual i. We will use Yi and Zi for the reported measurements of the latent decision. Fol-

lowing the standard binary choice literature, e.g. Mcfadden (1974); Train (2009), we normalize

the utility of choosing Y∗
i = 0 as 0. We specify the latent utility of Y∗

i = 1 as

Ui(Y
∗
−i, Xi, Fi, ε i) = XT

i β +
γ

Ni
∑
j∈Fi

Y∗
j − ε i, (1)

where superscript T stands for the matrix transpose, Xi ∈ X is a d × 1 vector representing

the demographic characteristics, Y∗
−i are the decisions of others, and ε i is the private utility

shock. The utility of individual i has three components: the deterministic part from demo-

graphics, XT
i β; the deterministic social utility from the average choice of friends (peer effects),

γ
Ni

∑j∈Fi
Y∗

j , and a private utility shock, ε i. γ captures the peer effects from friends. Denote

µ = (βT, γ)T.

To complete the setting for the model, we further specify the information structure: let

Wn = ({Xi}i∈I , {Fi}i∈I ) be the public information set including all demographic characteris-

tics and friendship information1. The private utility shock ε i is only known to individual i.

Therefore we consider an incomplete information structure in the Bayesian Nash game and

individuals form beliefs on the actions of their friends2. We elaborate the belief idea that indi-

viduals do not fully observe the decisions of their friends. The decision rule is:

Y∗
i = 1

{

XT
i β +

γ

Ni
∑
j∈Fi

E(Y∗
j |Wn, ε i)− ε i ≥ 0

}

, (2)

1The usage of all demographics and friendship as public information is for the tractability of the equilibrium
as we will see below. This can be approximated by information from subnetwork if we have weak dependence.
Xu (2016) establishes such weak dependence (network decaying dependence property) of the discrete game that
the conditional probabilities based on the whole network can be well approximated by the counterpart calculated
based on subnetwork, e.g. the one with individual, friends and the friends of friends.

2The importance of incomplete information structure is well documented in the discrete game literature, see
Brock and Durlauf (2001a,b); Bajari, Hong, Krainer, and Nekipelov (2010); Blume, Brock, Durlauf, and Jayara-
man (2015); Xu (2016); Lin and Xu (2017) for social interactions/peer effects study; Seim (2006); Sweeting (2009)
for competition in industrial organization; Aradillas-Lopez (2010, 2012); Tang (2010); Paula and Tang (2012); Xu
(2014) for estimation and inference of the static games and Aguirregabiria and Mira (2002, 2007); Pesendorfer and
Schmidt-Dengler (2008); Arcidiacono, Bayer, Blevins, and Ellickson (2016)for dynamic games. We would like to
refer interested readers to the global game literature with incomplete information structure, e.g. Morris and Shin
(2003).
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where the incomplete information structure is presented by conditional expectation (belief).

Individuals make decisions based on the belief of their peers’ choices, not on the friends’ actual

decisions. A similar setting can be found in Brock and Durlauf (2001a,b); Ioannides (2006);

Durlauf and Ioannides (2010); Blume, Brock, Durlauf, and Jayaraman (2015); Xu (2016); Lin

and Xu (2017).

2.1 Bayesian Nash Equilibrium

With an incomplete information structure, we consider the Bayesian Nash equilibrium (BNE)

of the Bayesian Nash game. To characterize the equilibrium, we make the following assump-

tions on the random utility terms.

Assumption 1. The private random utility terms ε i’s are i.i.d. across individuals and conform to the

standard Logistic distribution.

Remark 1. Assumption 1 is fairly standard in the discrete choice model literature, e.g. Bajari, Hong,

Krainer, and Nekipelov (2010). As a matter of fact, Assumption 1 provides a closed-form expression

for individuals’ best responses in terms of choice probabilities and streamlines the belief term, i.e.,

E(Yj|Wn, ε i) = E(Yj|Wn).

Denote Λ(t) = et

1+et . We define σ∗
j (Wn; µ) as the equilibrium choice probability of individ-

ual j. With E(Y∗
j |Wn; µ) = P(Y∗

j = 1|Wn ; µ) = σ∗
j (Wn; µ), we have

σ∗
i (Wn; µ) = Λ

[

XT
i β +

γ

Ni
∑
j∈Fi

σ∗
j (Wn; µ)

]

≡ Γi(Wn, σ∗; µ), i ∈ I , (3)

where σ∗ = [σ∗
1 (Wn; µ), ..., σ∗

n (Wn; µ)]T is the equilibrium choice probabilities profile . Equa-

tion (3) is a simultaneous system of equations of σ∗
i (Wn; µ), i ∈ I . The function Γi(Wn, ·; µ) is

the best response function for individual i. Let P be an arbitrary choice probabilities profile.

The equilibrium choice probability profile σ∗ defined in Equation (3) is then a fixed point of

Γ(Wn, P; µ) ≡ (Γ1(Wn, P; µ), · · · , Γn(Wn, P; µ))T = P.

To obtain the uniqueness of the BNE, we restrict the interaction parameter, γ.

Assumption 2. The strength of interactions is moderate, i.e. 0 < γ < 4.
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Remark 2. In the literature concerning interaction games, a similar assumption is denoted as Mod-

erate social influence (MSI) condition for uniqueness, see Glaeser and Scheinkman (2000); Horst and

Scheinkman (2006, 2009). In the literature of discrete choice with social interactions, Brock and Durlauf

(2001a,b); Xu (2016); Lin and Xu (2017); Liu (2017) employ a similar condition to characterize the

uniqueness of the BNE in the Bayesian Nash game. Assumption 2 restricts the size of dependence along

individuals’ decisions. This size restriction is similar to the stationarity condition in the autoregressive

model, e.g. in an AR(1) model, the dependence parameter is within (−1, 1). The time series analysis is

one dimension and our social interactions analysis is multiple-dimensional that each friend of a individ-

ual provides one dimension.Similar as the existence of explosive time series, there are exceptions with

dominant peer effects, e.g. tipping (Schelling (1971); Granovetter (1978); Gladwell (2000)); rush into

the market (Park and Smith (2008); Anderson, Smith, and Park (2017)). In the silent rivalry study in

Section 6, this condition is feasible. There is also literature to work with multiple equilibria with partial

identification technique, e.g. Li and Zhao (2016) construct moments inequalities based on subnetworks

for partial identification analysis. For more discussion on multiple equilibria and partial identification,

see Tamer (2003, 2010); Paula (2013).

Lemma 1. With Assumptions 1 and 2, there exists a unique pure strategy Bayesian Nash equilibrium

for the Bayesian Nash game represented in Equation (3).

Proof. See Appendix A. �

Lemma 1 establishes the uniqueness of the Baysian Nash equilibrium. The uniqueness en-

sures that the conditional distributions of repeated measurements are identified from the data.

Other option for the equilibrium characterization is to assume that the data comes from one

single equilibrium, see Bajari, Hong, Krainer, and Nekipelov (2010). The uniqueness based on

Assumption 2 has the advantage that we can impose the restriction in our estimation strategy

to ensure that the data is from the unique equilibrium.

2.2 Misclassification

Our Bayesian Nash game builds on the binary latent decisions {Y∗
i }i∈I which are prone to

measurement errors. It is well accepted that misclassification induces problems of analysis

and interpretation. In the binary choice with misclassification and social interactions, the si-

multaneity of social interactions raises misclassification errors on the left and on the right.
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There are several ways to deal with the misclassification problem: repeated measurements,

validation data, instrumental variables, etc. Hu (2008) provides a general framework for the

identification and estimation of the misclassification problem with repeated measurements.

For the misclassification on the dependent variable, Lewbel (2000) establishes the identifica-

tion of the model with misclassification on the left using an instrument variable (exogenous

shifter). Hausman, Abrevaya, and Scott-Morton (1998) propose a partial maximum likelihood

estimator to handle misclassified response variable.

3 Identification

In this paper, we adopt repeated measurements to identify the true conditional distribution

of the latent response variable and the structural parameter. Let {Yi}i∈I and {Zi}i∈I be two

observed measurements of the latent decisions. For instance, in the silent rivalry study in

Section 6, there are two repeated measurements of students’ attitude in the Add Health data

regarding the question “Skipped school without an excuse” which was asked in both the in-

school and at-home surveys. We adopt the two measurements technique based on the social

desirability feature of the survey question. We denote two misclassification types: desired

misclassification that individuals overreport from a null latent attitude, i.e. Y = 1 or Z = 1

when Y∗ = 0; and evasive misclassification that individuals underreport a positive attitude,

i.e. Y = 0 or Z = 0 when Y∗ = 13. We establish the identification of the conditional distribu-

tion of the latent decisions, P(Y∗|W), through the LU decomposition with a condition on the

evasive misclassification and propose an estimator based on the complete likelihood function

drawing on both Y and Z. We introduce the following two assumptions for our closed-form

identification.

Assumption 3. (Y, Z) are jointly independent conditional on Y∗ and W

Y ⊥ Z | (Y∗, W). (4)

Remark 3. Assumption 3 is standard in the nonlinear measurement error literature, e.g. Li (2002); Li

and Hsiao (2004); Hu (2008); Hu and Schennach (2008); Schennach (2016); Hu (2017) and reference

3For notational simplicity, we suppress the subscription in this section.
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therein. Assumption 3 means that the repeated measurements provide no extra useful information other

than those embedded in the true latent decisions.

Assumption 4. Individuals do not underreport their positive attitudes, i.e.,

P(Y = 0|Y∗ = 1, W) = P(Z = 0|Y∗ = 1, W) = 0.

Remark 4. Assumption 4 states that there are zero evasive misclassification probabilities. This assump-

tion builds on the social desirability feature of survey data. In data collection, some socially and per-

sonally sensitive questions are often asked. It is well documented that such questions provoke patterns

of underreporting (for socially undesirable behavior and attitudes) as well as overreporting (for socially

desirable behaviors and attitudes), see Bound, Brown, and Mathiowetz (2001). Assumption 4 can be

further dropped with a third repeated measurement, see Hu (2017) for review of the 3-measurement

model. Assumption 4 implies P(Y = 1|Y∗ = 1, W) = P(Z = 1|Y∗ = 1, W) = 1.

3.1 A Closed-form Identification

In this section, we establish a closed-form identification result for the conditional probabilities

of the latent decisions, i.e., P(Y∗ = 1|Wn)4. Identification is about the recovery of P(Y∗ =

1|Wn) uniquely from observables, i.e., P(Y = 1|Wn), P(Z = 1|Wn) and P(Y, Z|Wn).

We define

MY,Z|W ≡







P(Y = 0, Z = 0|W) P(Y = 0, Z = 1|W)

P(Y = 1, Z = 0|W) P(Y = 1, Z = 1|W)






,

≡
[

P(Y = i − 1, Z = j − 1|W)
]2

i,j=1
.

Similarly, we define MY|Y∗,W = [P(Y = i − 1|Y∗ = j − 1, W)]i,j, MZ|Y∗,W = [P(Z = i − 1|Y∗ =

j − 1, W]i,j, MY,Y∗|W = [P(Y = i − 1, Y∗ = j − 1|W)]i,j and MZ,Y∗|W = [P(Z = i − 1, Y∗ =

4Because we are considering the binary case, P(Y∗ = 1|Wn) fully characterize the conditional distribution, i.e.,
P(Y∗ = 0|Wn) = 1 − P(Y∗ = 1|Wn).

9



j − 1|W)]i,j. These are lower triangular matrices by Assumption 4. Denote

DY∗|W ≡







P(Y∗ = 0|W) 0

0 P(Y∗ = 1|W)






.

Theorem 1. With Assumptions 1 to 4, we identify the conditional distribution of the latent variable,

i.e., DY∗|W .

Proof. With Assumptions 1 and 2, MY,Z|W is identified from the data. By law of total probability

and Assumption 3, we obtain

MY,Z|W = MY|Y∗,W × MT
Z,Y∗|W = MZ|Y∗ ,W × MT

Y,Y∗|W , (5)

MY,Z|W = MY|Y∗,W × DY∗|W × MT
Z|Y∗,W . (6)

With condition on the evasive misclassification probabilities (Assumption 4), MY|Y∗,W and

MT
Z,Y∗|W are lower and upper triangular matrices, respectively. The point identification of these

two unknown matrices is feasible through the so-called LU decomposition. One can show that

such a decomposition is unique given that each column sum of MY|Y∗,W equals one and that

the sum of all the entries in MT
Z,Y∗|W also equals one. Thus we have identified two misclassi-

fication matrices MY|Y∗,W and MZ,Y∗|W . Similarly we identify MZ|Y∗ ,W and MY,Y∗|W . For more

details on LU decomposition, see Hu and Sasaki (2017). Then the conditional distribution of

the latent variable is identified through:

DY∗|W = M−1
Y|Y∗,W · MY,Z|W · MT−1

Z|Y∗,W . (7)

�

We then take P(Y∗ = 1|Wn) as known for the next step identification of the structural

parameter.

3.2 Identification of the Structural Parameter, µ

For equilibrium presented in Equation (3), the identification of µ is standard in a constructive

way. As shown in the first step identification, P(Y∗
i = 1|Wn), i ∈ I is identified from the
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observables. From Equation (3), we have

Ξ(Wn) ≡ log
[

P(Y∗
i = 1|Wn)

]

− log
[

P(Y∗
i = 0|Wn ; µ)

]

= XT
i β +

γ

Ni
∑
j∈Fi

P(Y∗
j = 1|Wn), i ∈ I .

(8)

We make the following rank condition assumption to achieve identification.

Assumption 5. E

[(

XT
i ,

∑j∈Fi
P(Y∗

j =1|Wn)

Ni

)T

×
(

XT
i ,

∑j∈Fi
P(Y∗

j =1|Wn)

Ni

)]

is with full rank d + 1.

Remark 5. Assumption 5 requires no perfect collinearity of

(

XT
i ,

∑j∈Fi
P(Y∗

j =1|Wn)

NFi

)

. This assumption

is essentially a full rank condition. As is pointed out in Bajari, Hong, Krainer, and Nekipelov (2010), it

is other individuals’ exclusive payoff shifters that induce independent variations in individual i’s beliefs,

which render the rank condition meaningful.

With assumption 5, we have identified µ as

µ = E

[(

XT
i ,

∑j∈Fi
P(Y∗

j = 1|Wn)

Ni

)T

×
(

XT
i ,

∑j∈Fi
P(Y∗

j = 1|Wn)

Ni

)]−1

× E

[(

XT
i ,

∑j∈Fi
P(Y∗

j = 1|Wn)

Ni

)T

× Ξ(Wn)

]

.

(9)

4 Estimation Strategy

The identification in Section 3 is for the population and it takes P(Yi, Zi|Wn) as identified from

the observables. This is the identification at infinity in the nonparametric identification litera-

ture, see Matzkin (2007, 2013). However, the nonparametric estimation of the joint conditional

distribution is infeasible due to the large dimension of Wn. To avoid such problem, we adopt

the sequential algorithm, the Nested Pseudo Likehood (NPL) estimation to estimate the struc-

tural parameter. The method is first introduced by Aguirregabiria and Mira (2002, 2007) for

dynamic discrete games. Lin and Xu (2017) extend the method to social interactions studies.

Before we proceed to the details of the NPL estimator, we make the following simplification

assumption
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Assumption 6. The misclassification probabilities satisfy

P(Yi = 1|Y∗
i = 0, Wn) = P(Yi = 1|Y∗

i = 0) = α ∈ (0, 1),

P(Zi = 1|Y∗
i = 0, Wn) = P(Zi = 1|Y∗

i = 0) = δ ∈ (0, 1).

Remark 6. Assumption 6 reduces the number of unknown in the misclassification probabilities. The-

oretically, this assumption is not necessary, but is introduced to make the empirical analysis feasible

given the sample size and the complexity of social network analysis. Hausman, Abrevaya, and Scott-

Morton (1998) make the same assumption when constructing the partial likelihood function. From

Assumption 4, we have P(Yi = 0|Y∗
i = 1, Wn) = P(Zi = 0|Y∗

i = 1, Wn) = 0, therefore the mono-

tone condition in Hausman, Abrevaya, and Scott-Morton (1998) is satisfied, i.e., α + 0 ∈ (0, 1) and

δ + 0 ∈ (0, 1).

We now have the structural parameter, θ ≡ (α, δ, µT)T and

P(Yi = 1|Wn ; θ) = α + (1 − α)P(Y∗
i = 1|Wn ; µ),

P(Zi = 1|Wn ; θ) = δ + (1 − δ)P(Y∗
i = 1|Wn ; µ).

(10)

Our log likelihood function is formulated by the observed conditional distribution function

f (Yi, Zi|Wn; θ). Denote P∗ = (P∗
1 , P∗

2 , · · · , P∗
n ) =

(

P(Y∗
1 = 1|Wn; θ), P(Y∗

2 = 1|Wn; θ), · · · , P(Y∗
n =

1|Wn; θ)
)

. With Equation (10), we have the log-likelihood function5:

L(θ, P∗) = ∑
i∈I

{

Yi log
[

α + (1 − α)P∗
i

]

+ (1 − Yi) log
[

1 − α − (1 − α)P∗
i

]

+ Zi log
[

δ + (1 − δ)P∗
i

]

+ (1 − Zi) log
[

1 − δ − (1 − δ)P∗
i

]

}

.

(11)

We first introduce the MLE to motivate the NPL estimation method.

θ̂MLE = arg max
θ∈Θ

L(θ, P) s.t. P = Γ(P, Wn; θ). (12)

For small number of players, we can implement the MLE method by the nested fixed point

(NFP) algorithm [Rust (1987)], which repeatedly solves all the fixed points of P = Γ(P, Wn; θ)

5Here we construct complete likelihood function based on both Y and Z. Hausman, Abrevaya, and Scott-Morton
(1998) use either Y or Z to construct partial likelihood function.
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for each candidate parameter value. As n becomes large, the NFP algorithm for the MLE is

computationally intensive to solve the n−dimensional fixed points for each candidate value

of θ and obtain the optimal θ̂ with maximized log-likelihood function. To address the com-

putational burden, we adopt the Nested Pseudo Likelihood estimation method which swaps

the order of the NFP algorithm. The NPL algorithm starts with an arbitrary choice prob-

abilities profile, P(0), and the estimation of θ becomes a standard Logit regression, θ̂(1) =

arg max
θ∈Θ

L(θ, P(0)). The algorithm then updates the choice probabilities profile using best

response function, i.e., P(1) = Γ
(

Wn, P(0); θ̂(1)
)

defined in Equation (3) with the Logit esti-

mate and the previous probabilities profile. The algorithm stops when the gap between the

estimates in the consecutive two iterations is smaller than some preset tolerance value, i.e.,
∣

∣

∣θ̂(K+1) − θ̂(K)
∣

∣

∣ < tol. It is computationally feasible that we do not actually calculate the BNE

choice probabilities profile but instead adopt a recursive method starting from an arbitrary

probabilities value.

4.1 Consistency and Asymptotic Normality of the NPL Estimator

Because the equilibrium choice probabilities profile is solved through iterated steps, in this

section, we suppress the public information Wn, i.e., P = Γ(P; θ)6. We make similar assump-

tions as in Aguirregabiria and Mira (2007); Kasahara and Shimotsu (2012); Lin and Xu (2017).

Define the pseudo log-likelihood function:

L(θ, P) =
1
n ∑

i∈I
Li(θ, P),

≡ 1
n ∑

i∈I

{

Yi log
[

α + (1 − α)Pi

]

+ (1 − Yi) log
[

1 − α − (1 − α)Pi

]

+ Zi log
[

δ + (1 − δ)Pi

]

+ (1 − Zi) log
[

1 − δ − (1 − δ)Pi

]

}

,

6Here we abuse the notation to use θ instead of µ though α and δ do not enter the best response function.
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where P = (P1, · · · , Pn) is not necessarily the true equilibrium choice probabilities profile. Let

θ̃n(P) ≡ arg max
θ∈Θ

L(θ, P),

φn(P) ≡ Γ(θ̃n(P), P),

L0(θ, P) ≡ lim
n→∞

1
n

E

[

∑
i∈I

Li(θ, P)
]

,

θ̃0(P) ≡ arg max
θ∈Θ

L0(θ, P),

φ0(P) ≡ Γ(θ̃0(P), P).

Define the population NPL fixed points set as Λ0 ≡ {(θ, P) ∈ (Θ,P) : θ = θ̃(P), P = φ0(P)}
and the NPL fixed points set as Λn ≡ {(θ, P) ∈ (Θ,P) : θ = θ̃n(P), P = φn(P)}. Let N denote

a closed neighborhood of (θ0, P∗). The first order condition for the NPL estimation is

∂L
(

θ, Γ(P; θ)
)

∂θ

∣

∣

∣

∣

∣

(θ,P)=(θ̂NPL,P̂NPL)

= 0. (13)

Assumption 7. (a) Θ is compact, θ0 is an interior point of Θ, and P is a compact and convex subset of

(0, 1)n; (b) (θ0, P∗) is an isolated population NPL fixed point, i.e., it is unique, or else there is an open

ball around it that does not contain any other element of Λ0; (c) ∂2L0(θ,P∗)
∂θ∂θT is a nonsingular matrix in

N ; (d) The operator φ(P)− P has a nonsingular Jacobian matrix at P∗; (e) There exist non-singular

matrices V1(θ0) and V2(θ0) such that

E

[

∂2L(θ0, P∗)
∂θ∂θT

+
∂2L(θ0, P∗)

∂θ∂PT
·
[

I −
(∂Γ(P∗; θ0)

∂P

)T]−1
· ∂Γ(P∗; θ0)

∂θT

]

p−→ V1(θ0),

E

[

∂L(θ0, P∗)
∂θ

∂L(θ0, P∗)
∂θT

]

p−→ V2(θ0).

Moreover, V1(θ0) is positive definite.

Remark 7. Since we are assuming the logistic error term, we can check that θ̃0(P) is a single-valued

and continuous function of P in a neighborhood of P∗. Further, with the best response functions in

Equation (3), we can easily verify that L0(θ, P) is globally concave in θ for P ∈ N .
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Theorem 2. Suppose Assumptions 1-7 hold, we have θ̂NPL
p−→ θ0 and

√
n(θ̂NPL − θ0)

d−→ N (0, VNPL), (14)

where VNPL = V−1
1 (θ0)V2(θ0)V

T−1
1 (θ0).

Proof. See Appendix A �

5 Monte Carlo Experiments

The Monte Carlo experiments are designed to mimic the silent rivalry study in Section 6. We

conduct eight Monte Carlo experiments to investigate the finite sample performance of the

model and our estimation method. The Monte Carlo designs have three covariates: X1 is

drawn from a standard normal distribution, X2 is drawn from a uniform distribution U[−
√

3,
√

3]

and X3 is drawn from discrete distribution taking values from {−1, 1} with equal probability

1
2 . X1, X2 and X3 have mean 0 and variance 1. We generate a random network with maximum

number of friends as 10 (the same as in the Add Health dataset). The latent dependent variable

is given by

Y∗
i = 1

{

β0 + β1Xi1 + β2Xi2 + β3Xi3 +
γ

Ni
∑
j∈Fi

E(Y∗
j |Wn)− ε i ≥ 0

}

(15)

Observed measurements Yi and Zi are generated with misclassification probabilities, (α, δ) =

(0.05, 0.05), (0.1, 0.1), (0.2, 0.2), (0.4, 0.4). We generate 1,000 samples of pseudo-random num-

bers with n ∈ {500, 1, 000, 2, 000}. We denote θ̂NPL as the NPL estimates with misclassification

correction and θ̃NPL as the NPL estimates without misclassification correction. We report the

average biases, standard deviations and the mean square errors in Tables 1 to 8. The NPL es-

timators with misclassification correction converge to the true parameter at the very nice rate,
√

n, while those without misclassification correction do not converge even when studying such

a large sample size. The results demonstrate the good finite sample performance of the NPL

algorithm for the binary choice model with misclassification and social interactions.
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Table 1: Experiment I

True Parameters: θ0 = (0.05, 0.05;−1, 1,−1, 1; 1)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 0.002 0.001 -0.061 0.046 -0.033 0.041 0.049 0.229 -0.118 0.125 -0.117 -0.109
(0.037) (0.037) (0.341) (0.187) (0.184) (0.181) (0.646) (0.247) (0.124) (0.124) (0.118) (0.561)

1,000 -0.001 -0.001 -0.002 0.011 -0.013 0.007 -0.013 0.249 -0.128 0.123 -0.126 -0.144
(0.027) (0.026) (0.228) (0.124) (0.117) (0.118) (0.448) (0.179) (0.090) (0.083) (0.081) (0.411)

2,000 0.001 0.001 -0.013 0.012 -0.010 0.010 0.015 0.245 -0.128 0.128 -0.127 -0.126
(0.020) (0.019) (0.160) (0.087) (0.087) (0.082) (0.314) (0.123) (0.062) (0.061) (0.058) (0.282)

Mean Square Errors
500 0.001 0.001 0.120 0.037 0.035 0.034 0.419 0.113 0.029 0.031 0.028 0.326

1,000 0.001 0.001 0.052 0.016 0.014 0.014 0.201 0.094 0.025 0.022 0.022 0.190
2,000 0.000 0.000 0.026 0.008 0.008 0.007 0.098 0.075 0.020 0.020 0.020 0.095

Table 2: Experiment II

True Parameters: θ0 = (0.1, 0.1;−1, 1,−1, 1; 1)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 0.000 -0.001 -0.060 0.048 -0.035 0.041 0.046 0.441 -0.220 0.223 -0.217 -0.212
(0.046) (0.046) (0.378) (0.207) (0.205) (0.200) (0.671) (0.249) (0.118) (0.118) (0.114) (0.536)

1,000 -0.002 -0.002 -0.005 0.012 -0.015 0.007 -0.015 0.457 -0.228 0.221 -0.223 -0.248
(0.032) (0.032) (0.251) (0.135) (0.128) (0.128) (0.459) (0.180) (0.087) (0.080) (0.078) (0.397)

2,000 0.001 0.001 -0.020 0.014 -0.013 0.012 0.016 0.453 -0.229 0.227 -0.223 -0.229
(0.023) (0.023) (0.175) (0.092) (0.095) (0.089) (0.326) (0.125) (0.059) (0.056) (0.055) (0.272)

Mean Square Errors
500 0.002 0.002 0.146 0.045 0.043 0.042 0.452 0.256 0.063 0.063 0.060 0.332

1,000 0.001 0.001 0.063 0.018 0.017 0.016 0.211 0.241 0.060 0.055 0.056 0.219
2,000 0.001 0.001 0.031 0.009 0.009 0.008 0.106 0.221 0.056 0.055 0.053 0.126
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Table 3: Experiment III

True Parameters: θ0 = (0.2, 0.2;−1, 1,−1, 1; 1)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 -0.001 -0.001 -0.078 0.057 -0.047 0.050 0.056 0.792 -0.361 0.357 -0.354 -0.363
(0.052) (0.052) (0.418) (0.232) (0.227) (0.229) (0.711) (0.246) (0.113) (0.111) (0.105) (0.476)

1,000 -0.001 -0.002 -0.020 0.017 -0.020 0.013 -0.001 0.810 -0.371 0.360 -0.359 -0.401
(0.038) (0.037) (0.294) (0.151) (0.144) (0.146) (0.511) (0.192) (0.079) (0.075) (0.072) (0.375)

2,000 0.001 0.001 -0.023 0.017 -0.015 0.016 0.009 0.816 -0.369 0.364 -0.357 -0.408
(0.026) (0.026) (0.206) (0.104) (0.106) (0.104) (0.359) (0.132) (0.055) (0.052) (0.051) (0.261)

Mean Square Errors
500 0.003 0.003 0.181 0.057 0.054 0.055 0.509 0.687 0.143 0.140 0.136 0.358

1,000 0.001 0.001 0.087 0.023 0.021 0.021 0.261 0.692 0.144 0.135 0.134 0.301
2,000 0.001 0.001 0.043 0.011 0.012 0.011 0.129 0.683 0.139 0.135 0.130 0.234

Table 4: Experiment IV

True Parameters: θ0 = (0.4, 0.4;−1, 1,−1, 1; 1)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 -0.004 -0.004 -0.101 0.078 -0.066 0.069 0.085 1.410 -0.526 0.521 -0.512 -0.565
(0.059) (0.059) (0.529) (0.281) (0.281) (0.274) (0.807) (0.250) (0.107) (0.106) (0.099) (0.394)

1,000 -0.003 -0.002 -0.033 0.025 -0.027 0.020 0.012 1.429 -0.536 0.523 -0.518 -0.608
(0.041) (0.042) (0.363) (0.185) (0.178) (0.178) (0.593) (0.197) (0.074) (0.070) ( 0.070) (0.319)

2,000 0.000 0.000 -0.028 0.020 -0.019 0.019 0.016 1.443 -0.535 0.525 -0.515 -0.628
(0.029) (0.028) (0.250) (0.125) (0.124) (0.123) (0.412) (0.137) (0.051) (0.051) (0.050) (0.223)

Mean Square Errors
500 0.003 0.003 0.289 0.085 0.083 0.080 0.657 2.050 0.288 0.283 0.272 0.475

1,000 0.002 0.002 0.133 0.035 0.032 0.032 0.352 2.080 0.293 0.278 0.274 0.471
2,000 0.001 0.001 0.063 0.016 0.016 0.016 0.170 2.102 0.289 0.278 0.267 0.444
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Table 5: Experiment V

True Parameters: θ0 = (0.05, 0.05;−1, 1,−1, 1; 2)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 0.003 0.004 -0.042 0.036 -0.033 0.040 0.039 0.206 -0.094 0.095 -0.084 -0.212
(0.042) (0.041) (0.331) (0.176) (0.168) (0.163) (0.606) (0.272) (0.136) (0.124) (0.116) (0.538)

1,000 -0.003 -0.003 0.009 0.010 -0.013 0.017 -0.017 0.219 -0.097 0.093 -0.088 -0.228
(0.031) (0.031) (0.240) (0.118) (0.117) (0.116) (0.436) (0.193) (0.089) (0.086) (0.085) (0.384)

2,000 0.000 0.000 -0.006 0.007 -0.008 0.008 0.000 0.211 -0.105 0.101 -0.098 -0.216
(0.023) (0.023) (0.165) (0.084) (0.080) (0.078) (0.297) (0.129) (0.062) (0.060) (0.057) (0.264)

Mean Square Errors
500 0.002 0.002 0.111 0.032 0.029 0.028 0.368 0.117 0.027 0.024 0.021 0.334

1,000 0.001 0.001 0.057 0.014 0.014 0.014 0.190 0.085 0.017 0.016 0.015 0.200
2,000 0.001 0.001 0.027 0.007 0.007 0.006 0.088 0.061 0.015 0.014 0.013 0.117

Table 6: Experiment VI

True Parameters: θ0 = (0.1, 0.1;−1, 1,−1, 1; 2)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 -0.002 -0.002 -0.032 0.034 -0.031 0.038 0.029 0.396 -0.177 0.177 -0.166 -0.387
(0.053) (0.053) (0.367) (0.193) (0.184) (0.180) (0.638) (0.280) (0.127) (0.118) (0.112) (0.526)

1,000 -0.006 -0.005 0.012 0.009 -0.013 0.017 -0.020 0.406 -0.181 0.173 -0.167 -0.402
(0.038) (0.037) (0.256) (0.126) (0.124) (0.123) (0.457) (0.197) (0.087) (0.085) (0.082) (0.377)

2,000 -0.001 0.000 -0.009 0.007 -0.010 0.008 0.001 0.400 -0.190 0.182 -0.177 -0.394
(0.026) (0.027) (0.176) (0.088) (0.086) (0.083) (0.319) (0.133) (0.061) (0.058) (0.055) (0.263)

Mean Square Errors
500 0.003 0.003 0.135 0.038 0.035 0.034 0.407 0.235 0.048 0.045 0.040 0.427

1,000 0.001 0.001 0.066 0.016 0.016 0.015 0.209 0.203 0.040 0.037 0.034 0.304
2,000 0.001 0.001 0.031 0.008 0.008 0.007 0.102 0.177 0.040 0.037 0.034 0.224
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Table 7: Experiment VII

True Parameters: θ0 = (0.2, 0.2;−1, 1,−1, 1; 2)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 -0.005 -0.004 -0.043 0.039 -0.037 0.046 0.048 0.738 -0.307 0.300 -0.286 -0.676
(0.064) (0.064) (0.424) (0.216) (0.211) (0.210) (0.703) (0.299) (0.119) (0.112) (0.107) (0.521)

1,000 -0.005 -0.006 0.014 0.011 -0.017 0.021 -0.024 0.759 -0.310 0.298 -0.289 -0.709
(0.042) (0.043) (0.285) (0.140) (0.134) (0.134) (0.497) (0.201) (0.083) (0.080) (0.077) (0.354)

2,000 0.000 0.000 -0.011 0.010 -0.014 0.011 0.012 0.748 -0.318 0.306 -0.299 -0.696
(0.030) (0.030) (0.196) (0.095) (0.095) (0.092) (0.352) (0.140) (0.057) (0.055) (0.053) (0.253)

Mean Square Errors
500 0.004 0.004 0.181 0.048 0.046 0.046 0.496 0.634 0.108 0.103 0.094 0.728

1,000 0.002 0.002 0.081 0.020 0.018 0.018 0.247 0.617 0.103 0.095 0.090 0.628
2,000 0.001 0.001 0.038 0.009 0.009 0.009 0.124 0.579 0.104 0.097 0.093 0.548

Table 8: Experiment VIII

True Parameters: θ0 = (0.4, 0.4;−1, 1,−1, 1; 2)
n α̂NPL δ̂NPL β̂NPL γ̂NPL β̃NPL γ̃NPL

500 -0.007 -0.006 -0.061 0.057 -0.049 0.065 0.075 1.400 -0.470 0.459 -0.439 -1.126
(0.073) (0.073) (0.527) (0.257) (0.250) (0.247) (0.829) (0.317) (0.112) (0.108) (0.109) (0.466)

1,000 -0.004 -0.006 0.007 0.026 -0.024 0.031 -0.017 1.420 -0.471 0.457 -0.447 -1.158
(0.046) (0.047) (0.362) (0.170) (0.167) (0.167) (0.601) (0.225) (0.080) (0.077) (0.076) (0.345)

2,000 -0.002 -0.001 -0.011 0.010 -0.014 0.011 0.018 1.398 -0.478 0.460 -0.449 -1.134
(0.031) (0.031) (0.246) (0.114) (0.111) (0.109) (0.416) (0.154) (0.054) (0.051) (0.054) (0.237)

Mean Square Errors
500 0.005 0.005 0.282 0.069 0.065 0.065 0.692 2.062 0.233 0.223 0.204 1.484

1,000 0.002 0.002 0.131 0.030 0.029 0.029 0.362 2.067 0.229 0.215 0.206 1.460
2,000 0.001 0.001 0.061 0.013 0.013 0.012 0.173 1.977 0.232 0.215 0.205 1.343
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6 The Hidden Silent Rivalry

Students live in two distinct social worlds: the hierarchical world with adults and the egalitar-

ian world with peers. The former leads students to the society as new members and the latter

helps students develop skills like negotiation, cooperation, and so on. Students interact with

peers in many different activities, e.g. studying together, attending sport clubs, conducting

delinquent behaviors, etc. Among these spillovers, the peer effects in education has received

considerable attention in the literature, see more details in Epple and Romano (2011) and Sac-

erdote (2011). When it comes to the learning spillover, scholars emphasize the achievements

of students, e.g. Hoxby (2000); Zimmerman (2003); Calvó-Armengol, Patacchini, and Zenou

(2009) to name only a few. However, in the context of the education, students have partial

control over the outcomes.

There are two main factors determining students’ achievements: ability and attitude. Abil-

ity is the physical or mental power to do something and is usually unobserved. The unob-

served ability causes endogeneity problems in many studies, e.g. return to schooling. Proxy

or IV approach is adopted to handle the unobserved ability in cross sectional setting. Arcidi-

acono, Foster, Goodpaster, and Kinsler (2012) treat ability as the unobserved heterogeneity

in panel data model and remove this unobserved heterogeneity by standard approaches in

panel data models with fixed effects. Fruehwirth (2014) deploys a specific relationship be-

tween achievement and the ability to investigate the “black box”. Generally, genetics and

learning shape ability and people do not make conscious decisions on ability.

Attitude towards learning is the way of thinking or feeling about study and educational

aspirations. Typically, attitude is reflected in a student’s behavior and originates from the stu-

dent’s decisions. Peer effects demonstrate the interconnection among students on choices, e.g.

work hard, take exercise, smoke, drink, etc. For learning spillover, peer effects play role in the

chosen attitude rather than in the final achievements. Thus investigation on peer effects on

attitude is legitimate, however, attitude is subjective and difficult to measure. In the National

Longitudinal Study of Adolescent Health (Add Health) dataset, we obtain several measurements in

the survey regarding the attitudes of students. Attitude regarding questions are socially and

personally sensitive and students tend to overreport. This feature raises the issue of misclas-

sification errors due to social desirability. Fortunately, repeated measurements in the survey
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provide a remedy to such a misclassification error problem.

We denote the peer effects on attitude towards learning as “silent rivalry” that students

strive in a silent manner. Using both in-school and at-home surveys, we obtain repeated mea-

surements for attitude from the question “Skipped school without an excuse”. Interestingly,

we find that the silent rivalry either disappears or is underestimated if we directly use these

two measurements as attitudes. The silent rivalry based on the binary choice with misclas-

sification and social interactions in this paper is roughly three times larger than the direct

application of the original attitude measurement (1.543 vs 0.482). Our findings confirm our

insight into the prevalence of silent rivalry among students and support the conclusion in

the Coleman Report 1966 that “academic achievement was less related to the quality of a stu-

dent’s school, and more related to the social composition of the school, the student’s sense of

control of his environment and future, the verbal skills of teachers, and the student’s family

background”. We also find that significant proportions of students overreport their attitudes

(28.9% in the in-school survey and 25.6% in the at-home survey, respectively). A corresponding

policy implication of this documented silent rivalry suggests the importance of an initiation of

a “diligent” atmosphere in the school. The multiplier effects from silent rivalry would help to

obtain a desired result.

6.1 The Add Health Data

The National Longitudinal Study of Adolescent Health (Add Health) is a longitudinal study of a

nationally representative sample of adolescents in grades 7-12 in the United States during

the 1994-95 school year for the first wave. The study also contains Wave II, III, and IV data,

which are collected in 1995-1996, 2001-2002, and 2008 [Harris, Halpern, Whitsel, Hussey, Ta-

bor, Entzel, and Udry (2009)]. Wave V data collection began in 2016 and is still in progress.

Add Health combines longitudinal survey data on respondents’ social and economic features

with contextual data on the family, friendships and peer groups. In this paper, we use the data

from Wave I.

In the Add Health dataset, each student can nominate at most five male friends and at most

five female friends, from which we construct the network with direct links
[

{Fij}n
i,j=1

]

. Note

that although students have at most 10 out-links, they may have more than 10 in-links. In Wave
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I, there are both in-school and at-home questionnaires which generate multiple measurements

for the attitude variable. The Add Health dataset also include questionnaires for demographic

characteristics such as age, parents’ education, race information, gender, etc.

As students, not only their achievements but also their attitudes toward learning are im-

portant. Attitude is a vague and subjective concept. Thus the study of attitude exhibits mis-

classification problems. Fortunately, the Add Health dataset contains repeated measurements

for students’ attitudes. There is a question, “During the past twelve months, how often did

you skip school without an excuse?” in the in-school survey. In the at-home survey, there is

a question “During this school year how many times {HAVE YOU SKIPPED/DID YOU SKIP}

school for a full day without an excuse?”. We take the answer for the at-home question as Y

and the answer for the in-school question as Z. We take the answer “never” as a “positive” at-

titude and all other answers as “negative” attitudes. Here, Y and Z are obvious measurements

for the same question related to the student’s attitude. This provides enough data for the iden-

tification of the conditional distribution of the latent attitude in our first step identification.

We consider the sister schools No. 77 and No. 177 for our analysis. These two schools

contain the largest single connected school network in the Add Health dataset. There are friend-

ships across the sister schools. After data management, we obtain 1,173 students in the sample.

Table 9 summarizes the statistics of the demographic characteristics and the attitude variables.

More than half of students escape school without excuse at least once in the year. The sister

schools are gender balanced that 49.7% students are female.

6.2 The Hidden Silent Rivalry and the Misclassification Probabilities

We report our estimation results in Table 10. The misclassification probabilities are 28.9% and

25.6% for the in-school answer and at-home answer, respectively. Both estimates are statis-

tically significant. Roughly, one quarter of students overreport their attitudes. Students are

more likely to be honest at home where there are no peers. Our finding confirms the desire to

be “positive” for students. When it comes to the silent rivalry, we have three options to back

out the interaction parameter. We can either take Y or Z as the true latent attitude to estimate

the binary choice with social interactions without misclassification correction (Model M1 and

M2), or we adopt the full information from two repeated measurements to rectify the misclas-
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Table 9: Summary of Statistics of Key Variables from the Data

Variable Mean Std. Dev.
Age 15.882 1.187
Female 0.497 0.500
Parents’ Education† 5.257 2.459
White 0.092 0.289
American Indian 0.049 0.215
Asian 0.348 0.476
African American 0.265 0.442
Hispanic 0.385 0.487
Others∗ 0.130 0.336
Attitude(Y) 0.450 0.498
Attitude(Z) 0.471 0.499
†5 means “went to a business, trade, or vocational school after high school”

and 6 means “went to college but did not graduate”.

*Some students are associated with more than one race.

sification errors (2M model). In Table 10, models without misclassification correction either

fail to detect a significant silent rivalry (γ̂ = 0 in model M1) or underestimate the peer effects

(γ̂ = 0.482 in model M2). Our 2M model estimates a significant 1.5437 peer effects parameter

which is three times bigger than the model with the in-school measurement. We also provide

results for simple Logit models without simultaneous peer effects on attitudes towards learn-

ing. The results are very similar for demographic covariates, e.g. older students pay more

attention to their studies as they mature.

We further investigate the silent rivalry for both female and male. Table 11 reports the

estimates for 2M, M1 and M2 models for both female and male groups. For female students,

all three models do not find significant peer effects in attitude towards learning. For males,

2M model finds stronger peer effects, 2.173. The size of silent rivalry in the 2M model is three

times bigger than estimates in both the M1 and M2 models. This result is similar to the one we

get for the whole students group.

To summarize, we find significant misclassification problems when students self-report

their attitudes towards learning, either in-school or at-home. The peer effects analysis in atti-

tude is contaminated by this misclassification error. Treatment on misclassification is needed

7Standard errors obtain from the last step MLE with convergence tolerance of NPL algorithm satisfied. As the
last step MLE is calculated using the near equilibrium choice probabilities, the MLE standard error is very closed
to the NPL standard error, which is consistent with our simulation results. We are working on a project to derive
bootstrapping standard error for the network generated dependent data.
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Table 10: Estimation Results

2M M1 M2 Logit models
Y Z

Age -0.449* -0.347* -0.200* -0.350* -0.199*
(0.123) (0.056) (0.053) (0.056) (0.053)

Female -0.062 0.111 -0.107 0.111 -0.083
(0.162) (0.122) (0.119) (0.121) (0.119)

Parents’ Education 0.050 0.009 0.029 0.009 0.032
(0.040) (0.027) (0.026) (0.027) (0.026)

Hispanic -0.630* -0.496* -0.241 -0.499* -0.239
(0.285) (0.197) (0.192) (0.197) (0.192)

Asian -0.257 -0.097 -0.161 -0.099 -0.121
(0.255) (0.201) (0.197) (0.199) (0.196)

African American -0.173 -0.086 -0.124 -0.090 -0.141
(0.253) (0.207) (0.204) (0.207) (0.204)

Native American -0.680 -0.089 -0.375 -0.091 -0.389
(0.518) (0.288) (0.286) (0.288) (0.286)

Other 0.245 0.326* -0.051 0.327 -0.033
(0.259) (0.197) (0.194) (0.197) (0.193)

α 0.256* —- —- —- —-
(0.067) —- —- —- —-

δ 0.289* —- —- —- —-
(0.064) —- —- —- —-

Peer Effects (γ) 1.543* 0.000 0.482* —- —-
(0.712) (0.289) (0.279) —- —-

Constant 5.848* 5.413* 3.007* 5.464* 3.110*
(1.549) (0.947) (0.902) (0.936) (0.896)

a. * for 5% significance.

b. significances of α, δ and γ obtained from the one-sided test.

c. White students are left for comparison.

to restore the conjectured silent rivalry among students. We also conduct robustness check of

the discretized definition of “positive” attitude to include both “never” and “once” answers

for the survey question in Appendix B. Results are similar for covariates effects and peer ef-

fects. Our rectification with two repeated measurements helps to detect a much stronger peer

effects on attitude towards learning and justifies the importance of the manipulation of the

peer group influence. Our investigation has important policy implications.
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Table 11: Silent Rivalry for Females and Males

Female Male
2M M1 M2 2M M1 M2

Age -0.411* -0.292* -0.154* -0.470* -0.416* -0.238*
(0.196) (0.081) (0.078) (0.141) (0.080) (0.074)

Parents’ Education 0.165 0.094* 0.062 -0.059 -0.082* -0.005
(0.095) (0.038) (0.038) (0.043) (0.038) (0.037)

Hispanic -0.474 -0.359 -0.227 -0.564 -0.606* -0.208
(0.406) (0.293) (0.288) (0.324) (0.273) (0.260)

Asian -0.273 -0.134 -0.137 -0.205 -0.123 -0.182
(0.415) (0.302) (0.298) (0.316) (0.273) (0.264)

African American 0.147 -0.032 0.108 -0.239 -0.131 -0.307
(0.383) (0.303) (0.299) (0.335) (0.295) (0.289)

Native American -0.686 0.259 -0.455 -0.812 -0.447 -0.327
(1.063) (0.414) (0.408) (0.776) (0.427) (0.409)

Other 0.082 0.150 -0.010 0.314 0.485 -0.109
(0.378) (0.264) (0.261) (0.344) (0.299) (0.290)

α 0.291* —- —- 0.193* —- —-
(0.107) —- —- (0.087) —- —-

δ 0.292* —- —- 0.268* —- —-
(0.104) —- —- 0.079 —- —-

Peer Effects (γ) 0.000 0.000 0.233 2.173* 0.610 0.751*
(0.880) (0.376) (0.382) (0.752) (0.405) (0.362)

Constant 4.655* 4.166* 2.013 6.792* 6.886* 3.768*
(2.305) (1.356) (1.303) (1.955) (1.360) (1.253)
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7 Conclusion

In this paper, we develop a binary choice model with misclassification and social interactions

for analyzing the silent rivalry among students on attitude towards learning. We provide a

closed-form identification result to our model primitives by adopting a novel two measure-

ments approach developed in the recent measurement error literature. Taking into account the

full information embedded in the two measurements, we construct complete likelihood func-

tion for estimation of the structural parameter in the silent rivalry study using nested pseudo

likelihood algorithm. We find peer effects on attitude towards learning are either hidden or

underestimated if omitting the misclassification problem. This finding provides insights of

how to improve school performance rather than monetary tools. We also find that signifi-

cant proportions of students overreport their attitudes towards learning. This documents the

source of the misclassification since a specific answer is socially-desired regarding attitude.

The silent rivalry triggers multiplier effects which help improve the performance of schools

and are meaningful for policy implications.
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Appendix A Proofs

Proof of Lemma 1. The existence of the BNE is guaranteed by Brouwer’s fixed-point theorem
and the continuity of Γ(·). Consider that there are two distinct BNEs: P1 = (P1
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where P†
j is the probability between P1

j and P2
j . The third line comes from the Mean Value

theorem and the inequality is based on Λ(·)[1 − Λ(·)] ≤ 1
4 . Taking maximization over i ∈ I

on the left-hand side of Equation (16), we have

max
i∈I

|P1
i − P2

i | < max
j∈I

|P1
j − P2

j |,

which is a contradiction. Therefore we have a unique BNE for the Bayesian Nash game in
Equation (3). �

Proof of Theorem 2. The proof is similar as that in Aguirregabiria and Mira (2007); Newey and
McFadden (1994). With Assumption 7(a), we have that θNPL = θ0. Recall that the pseudo
likelihood function is L(θ, P) in the NPL estimation. Define the function

T(θ, P) ≡ max
c∈Θ

{

L0(c, P)
}

−L0(θ, P).

Because L0(θ, P) is continuous and Θ ×P is compact, Berge’s maximum theorem establishes
that T(θ, P) is a continuous function. By construction, T(θ, P) ≥ 0 for any (θ, P). Let E be the
set of vectors (θ, P) that are fixed points of the equilibrium mapping Γ, i.e.,

E ≡
{

(θ, P) ∈ Θ ×P : P = Γ(θ, P)
}

.

Given that Θ × P is compact and Γ is continuous, E then is a compact set. By definition, the
set Λ0 is included in E . Let Bǫ(θ0) = {θ ∈ R

d+3 : ‖θ − θ0‖ < ǫ, ∀ǫ > 0} be an arbitrarily small
open ball that contains θ0. We then see that Bc

ǫ(θ0) ∩ E is also compact. Define the constant

τ ≡ min
(θ,P)∈Bc

ǫ(θ0)∩E
T(θ, P) > 0. (17)

Define the event

A ≡
{
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.

Let
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Furthermore, we have L
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from the NPL fixed point definition. There-
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fore, we have that L0
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θ, P(n)
)

− τ for any θ ∈ Θ
}

,

⇒
{

L0

(

θ(n), P(n)
)

> max
θ∈Θ

L0

(

θ, P(n)
)

− τ
}

,

⇒
{

τ > T
(

θ(n), P(n)
)}

,

⇒
{

min
(θ,P)∈Bc

ǫ(θ0)∩E
T(θ, P) > T

(

θ(n), P(n)
)}

by Equation (17),

⇒
{

(θ(n), P(n)) ∈ Bǫ(θ0)
}

.

The last induction uses the fact that (θ(n), P(n)) ∈ E . Therefore, Pr(A) ≤ Pr
(

(θ(n), P(n)) ∈
Bǫ(θ0)

)

. Because Pr(A) → 1 as n → ∞, Pr
(

(θ(n), P(n)) ∈ Bǫ(θ0)
)

→ 1. Because ǫ in Bǫ(θ0) is
an arbitrarily small constant, we have

(

θ(n), P(n)
)

p−→ (θ0, P∗).

From the definition of Λn, we have that θ̂NPL
p−→ θ0. Now we establish the asymptotic normality

of the NPL estimator. Taking Taylor expansion over the first order condition in Equation (13)
around the true parameter (θ0, P∗), we have

∂L(θ0, P∗)
∂θ

+
∂2L(θ+, P+)

∂θ∂θT
(θ̂NPL − θ0)

+
∂2L(θ+, P+)

∂θ∂P

[

I −
(∂Γ(P+, Wn; θ+)

∂P

)T]−1 ∂Γ(P+, Wn; θ+)

∂θ
(θ̂NPL − θ0) = 0,

(18)

where θ+ is between θ̂NPL and θ0 and P+ is between P̂NPL and P∗ respectively. From Equa-
tion (18), we have that
[

∂2L(θ+, P+)

∂θ∂θT
+

∂2L(θ+, P+)

∂θ∂P

[

I −
(∂Γ(P+, Wn; θ+)

∂P

)T]−1 ∂Γ(P+, Wn; θ+)

∂θ

] √
n(θ̂NPL − θ0)

= − 1√
n

∑
i∈I

∂Li(θ0, P∗)
∂θ

.

(19)

Because Yi is conditionally independent (conditional on Wn), by Lindeberg-Feller theorem,
Mann-Wald theorem and Assumption 7(c-e), we have

√
n(θ̂NPL − θ0)

d−→ N(0, VNPL), (20)

where
VNPL = V−1

1 (θ0) · V2(θ0) · VT−1
1 (θ0).

�
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Table 12: Robustness

2M M1 M2 Logit models
Y Z

Age -0.447* -0.335* -0.105 -0.337* -0.101
(0.172) (0.056) (0.057) (0.056) (0.057)

Female 0.241 0.187 0.287* 0.186 0.332*
(0.176) (0.122) (0.131) (0.121) (0.130)

Parents’ Education 0.013 -0.003 -0.002 -0.003 0.001
(0.042) (0.027) (0.028) (0.027) (0.028)

Hispanic -0.672* -0.474* -0.249 -0.478* -0.252
(0.331) (0.196) (0.207) (0.196) (0.207)

Asian 0.039 0.066 0.070 0.065 0.128
(0.278) (0.200) (0.215) (0.198) (0.213)

African American -0.034 0.171 -0.248 0.168 -0.291
(0.282) (0.207) (0.221) (0.207) (0.220)

Native American -0.423 -0.258 -0.084 -0.259 -0.108
(0.474) (0.290) (0.297) (0.290) (0.296)

Other 0.560 0.500* -0.017 0.501* 0.005
(0.345) (0.198) (0.208) (0.197) (0.207)

α 0.289* —- —- —- —-
(0.105) —- —- —- —-

δ 0.573* —- —- —- —-
(0.065) —- —- —- —-

Peer Effects (γ) 1.553* 0.003 0.466* —- —-
(0.823) (0.256) (0.198) —- —-

Constant 5.879* 5.358* 2.343* 5.400* 2.457*
(2.122) (0.950) (0.966) (0.939) (0.968)

Appendix B Robustness Check

In this section, we check the robustness of the definition of attitude. We take “never” and “once
or twice” as positive. The results are similar as those in Tables 10 and 11. The peer effects is
1.553 compared to 1.543 in the 2M model. The coefficients are 0.003 and 0.466 compared to
0 and 0.482 in the M1 and M2 models respectively for the whole sample. For female and
male groups, the silent rivalry parameters are similar as those in Table 11. The overreport
proportions increase as there are more students categorized as “positive” in the new definition.

34



Table 13: Robustness: Females and Males

Female Male
2M M1 M2 2M M1 M2

Age -0.396 -0.294* -0.102 -0.438* -0.393* -0.117
(0.318) (0.082) (0.087) (0.166) (0.079) (0.077)

Parents’ Education 0.116 0.077* 0.023 -0.088 -0.087* -0.025
(0.099) (0.038) (0.042) (0.049) (0.038) (0.039)

Hispanic -0.506 -0.416 0.021 -0.659 -0.522 -0.437
(0.561) (0.293) (0.325) (0.363) (0.268) (0.272)

Asian -0.032 0.024 0.099 0.055 0.039 0.069
(0.435) (0.303) (0.238) (0.352) (0.268) (0.279)

African American 0.017 0.092 -.175 0.057 0.225 -0.277
(0.420) (0.305) (0.338) (0.366) (0.290) (0.300)

Native American -0.175 0.077 0.188 -0.837 -0.583 -0.236
(1.007) (0.421) (0.463) (0.795) (0.425) (0.403)

Other 0.433 0.419 -0.188 0.630 0.543 0.134
(0.550) (0.267) (0.287) (0.408) (0.297) (0.303)

α 0.324 —- —- 0.225* —- —-
(0.227) —- —- (0.114) —- —-

δ 0.621* —- —- 0.509* —- —-
(0.128) —- —- 0.076 —- —-

Peer Effects (γ) 0.738 0.000 0.283 2.157* 0.422 0.666*
(1.319) (0.331) (0.271) (0.847) (0.365) (0.274)

Constant 4.801 4.496* 2.434 6.399* 6.639* 2.678*
(3.451) (1.371) (1.451) (2.241) (1.347) (1.306)
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