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Abstract
We extend the Berry, Levinsohn and Pakes (BLP, 1995) random coefficients discrete-
choice demand model, which underlies much recent empirical work in I0. We add
interactive fixed effects in the form of a factor structure on the unobserved product
characteristics. The interactive fixed effects can be arbitrarily correlated with the
observed product characteristics (including price), which accommodates endogeneity
and, at the same time, captures strong persistence in market shares across products
and markets. We propose a two-step least squares-minimum distance (LS-MD) pro-
cedure to calculate the estimator. Our estimator is easy to compute, and Monte
Carlo simulations show that it performs well. We consider an empirical illustration

to US automobile demand.
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1 Introduction

The Berry, Levinsohn and Pakes (1995) (hereafter BLP) demand model, based on the
random coeflicients logit multinomial choice model, has become the workhorse of demand
modeling in empirical industrial organization and antitrust analysis. An important virtue
of this model is that it parsimoniously and flexibly captures substitution possibilities be-
tween the products in a market. At the same time, the nested simulated GMM procedure
proposed by BLP accommodates possible endogeneity of the observed product-specific re-
gressors, notably price. This model and estimation approach has proven very popular (e.g.
Nevo (2001), Petrin (2002); surveyed in Ackerberg et. al. (2007)).

Taking a cue from recent developments in panel data econometrics (e.g. Bai and Ng
(2006), Bai (2009), and Moon and Weidner (2015a; 2015b)), we extend the standard BLP
demand model by adding interactive fixed effects to the unobserved product characteristic,
which is the main “structural error” in the BLP model. This interactive fixed effect
specification combines market (or time) specific fixed effects with product specific fixed
effects in a multiplicative form, which is often referred to as a factor structure.

Our factor-based approach extends the baseline BLP model in two ways. First, we
offer an alternative to the usual moment-based GMM approach. The interactive fixed
effects “soak up” some important channels of endogeneity, which may obviate the need for
instrumental variables of endogenous regressors such as price. This is important as such
instruments may not be easy to identify in practice. Moreover, our analysis of the BLP
model with interactive fixed effects illustrates that the problem of finding instruments
for price (which arises in any typical demand model) is distinct from the problem of
underidentification of some model parameters (such as the variance parameters for the
random components), which arises from the specific nonlinearities in the BLP random
coefficients demand model. In our setting, the fixed effects may obviate the need for
instruments to control for price endogeneity but, as we will point out, we still need to
impose additional moment conditions in order to identify these nonlinear parameters.
Second, even if endogeneity persists in the presence of the interactive fixed effects, the
instruments only need to be exogenous with respect to the residual part of the unobserved
product characteristics, which is not explained by the interactive fixed effect. This may
expand the set of variables which may be used as instruments.

To our knowledge, the current paper presents the first application of some recent de-
velopments in the econometrics of long panels (with product and market fixed effects) to
the workhorse demand model in empirical 10. Relative to the existing panel factor lit-
erature (for instance, Bai (2009), and Moon and Weidner (2015a; 2015b)) that assume

a linear regression with exogenous regressors, the nonlinear model that we consider here



poses both identification and estimation challenges. Namely, the usual principal compo-
nents approach for linear factor models with exogenous regressors is inadequate due to the
nonlinearity of the model and the potentially endogenous regressors. At the same time,
the conventional GMM approach of BLP cannot be used for identification and estimation
due to the presence of the interactive fixed effects.

We propose an alternative identification and estimation scheme which we call the Least
Squares-Minimum Distance (LS-MD) method. It consists of two steps. The first step
is a least squares regression of the mean utility on the included product-market specific
regressors, factors, and the instrumental variables. The second step minimizes the norm of
the least squares coefficient of the instrumental variables in the first step. This estimation
approach is similar to the two stage estimation method for a class of instrumental quantile
regressions in Chernozhukov and Hansen (2006). We show that under regularity conditions
that are comparable to the standard GMM problem, the parameter of interest is point
identified and its estimator is consistent. We also derive the limit distribution under
asymptotic sequences where both the number of products and the number of markets
converge to infinity. In practice, the estimator is simple and straightforward to compute.
Monte Carlo simulations demonstrate its good small-sample properties.

Our work complements some recent papers in which alternative estimation approaches
and extensions of the standard random coefficients logit model have been proposed, in-
cluding Villas-Boas and Winer (1999), Knittel and Metaxoglou (2014), Dube, Fox and Su
(2012), Harding and Hausman (2007), Bajari, Fox, Kim and Ryan (2011), and Gandhi,
Kim and Petrin (2010).

We illustrate our estimator on a dataset of market shares for automobiles, inspired by
the exercise in BLP. This application illustrates that our estimator is easy to compute
in practice. Significantly, we find that, once factors are included in the specification,
the estimation results under the assumption of exogenous and endogenous price are quite
similar, suggesting that the factors are indeed capturing much of the unobservable product
and time effects leading to price endogeneity.

The paper is organized as follows. Section 2 introduces the model. In Section 3 we
discuss how to identify the model when valid instruments are available. In Section 4 we
introduce the LS-MD estimation method. Consistency and asymptotic normality are dis-
cussed in Section 5. Section 6 contains Monte Carlo simulation results, and Section 7
discusses the empirical example. Section 8 concludes. In the appendix we list the assump-
tions for the asymptotic analysis and provide technical derivations and proofs of results in

the main text.



Notation

We write A’ for the transpose of a matrix or vector A. For column vectors v the Euclidean
norm is defined by |[v|| = vv'v . For the n-th largest eigenvalues (counting multiple
eigenvalues multiple times) of a symmetric matrix B we write pu,(B). For an m x n
matrix A the Frobenius norm is [|A||p = /Tr(AA’), and the spectral norm is [|A] =
MaxXgL4yecRn ”ﬁ’"‘, or equivalently ||A| = \/u1(A’A). Furthermore, we use Py = A(A’A)f A’
and My = 1,, — A(A’A)TA’, where 1,, is the m x m identity matrix, and (A’A)" denotes a
generalized inverse, since A may not have full column rank. The vectorization of an m x n
matrix A is denoted vec(A), which is the mn x 1 vector obtained by stacking the columns
of A. For square matrices B, C, we use B > C (or B > () to indicate that B — C' is
positive (semi) definite. We use V for the gradient of a function, i.e. V f(x) is the vector

[43

of partial derivatives of f with respect to each component of x. We use “wpal” for “with

probability approaching one”.

2 Model

The random coefficients logit demand model is an aggregate market-level model, formu-
lated at the individual consumer-level. Consumer 7’s utility of product j in market! ¢ is

given by
Uit = 5% + €t + X]/'t Vi, (2.1)

where €;;; is an idiosyncratic product-specific preference shock, and v; = (vi1, ..., vik)" is

an idiosyncratic characteristic preference. The mean utility is defined as
0 = X380+ &, (2.2)

where Xj; = (X1 ¢,..., X K,jt)/ is a vector of K observed product characteristics (including
price), and B° = (B?, ey B?()/ is the corresponding vector of coefficients. Following BLP,
;-)t denotes unobserved product characteristics of product j, which can vary across markets
t. This is a “structural error”, in that it is observed by all consumers when they make
their decisions, but is unobserved by the econometrician. In this paper, we focus on the
case where these unobserved product characteristics vary across products and markets

according to a factor structure:

gzvﬁ+%, (2.3)

IThe t subscript can also denote different time periods.



where )\9 = </\?j, e A%)l is a vector of factor loadings corresponding to the R factors?
= ( I f%t)/, and ej; is a product and market specific error term. Here )\?’ fP
represent interactive fixed effects, in that both the factors f and factor loadings )\9 are
unobserved to the econometrician, and can be correlated arbitrarily with the observed
product characteristics X ;. We assume that the number of factors R is known.? The su-
perscript zero indicates the true parameters, and objects evaluated at the true parameters.
Let X0 = ()\?r) and f% = (\?) be J x R and T x R matrices, respectively.

The factor structure in equation (2.3) approximates reasonably some unobserved prod-
uct and market characteristics of interest in an interactive form. For example, television
advertising is well-known to be composed of a product-specific component as well as an
annual cyclical component (peaking during the winter and summer months).* The factors
and factor loadings can also explain strong correlation of the observed market shares over
both products and markets, which is a stylized fact in many industries that has motivated
some recent dynamic oligopoly models of industry evolution (e.g. Besanko and Doraszelski
(2004)). The standard BLP estimation approach, based on moment conditions, allows for
weak correlation across markets and products, but does not admit strong correlation due
to shocks that affect all products and markets simultaneously, which we model via the
factor structure.

To begin with, we assume that the regressors Xj; are exogenous with respect to the
errors ej;, that is, Xj; and ej;; are uncorrelated for given (j, t). This assumption, however,
is only made for ease of exposition, and in both Section 4.1 below and in the empirical
illustration, we consider the more general case where regressors (such as price) may be

endogenous. Notwithstanding, regressors which are strictly exogenous with respect to e;;

can still be endogenous with respect to the ?t, due to correlation of the regressors with the
factors and factor loadings. Thus, including the interactive fixed effects may “eliminate”
endogeneity problems, so that instruments for endogeneity may no longer be needed. This
possibility of estimating a demand model without searching for instruments may be of

great practical use in antitrust analysis.

2Depending on the specific application one has in mind one may have different interpretations for Aj and f.
For example, in the case of national brands sold in different markets it seems more natural to interpret A; as
the underlying factor (a vector product qualities) and f; as the corresponding loadings (market specific tastes
for these qualities). For convenience, we refer to f; as factors and \; as factor loadings throughout the whole

paper, which is the typical naming convention in applications where ¢ refers to time.
3Known R is also assumed in Bai (2009) and Moon and Weidner (2015a) for the linear regression model with

interactive fixed effects. Allowing for R to be unknown presents a substantial technical challenge even for the

linear model, and therefore goes beyond the scope of the present paper.
4cf. TV Dimensions (1997).



Moreover, when endogeneity persists even given the interactive fixed effects, then our
approach may allow for a larger set of IV’s. For instance, one criticism of the so-called
“Hausman” instruments (cf. Hausman (1997)) — that is, using the price of product j in
market ¢’ as an instrument for the price of product j in market ¢ — is that they may not be
independent of “nationwide” demand shocks — that is, product-specific shocks which are
correlated across markets. Our interactive fixed effect )\9 ft can be interpreted as one type
of nationwide demand shock, where the A; factor loadings capture common (nationwide)
components in the shocks across different markets ¢t and ¢'. Since the instruments in our
model can be arbitrarily correlated with A; and f;, the use of Hausman instruments in our
model may be (at least partially) immune to the aforementioned criticism.

Next, we introduce the key equations for market shares in the random-coefficient logit
demand model. Following Berry, Levinsohn, and Pakes (1995), the probability that agent

i chooses product j in market ¢ takes the multinomial logit form:

exp (6jt + X}ﬂi)
1+ Zil:1 exp (6 + X,v;) '

th(ét,Xt,Ui) = (2.4)

We do not observe individual specific choices, but market shares of the J products in the

T markets. The market share of product j in market ¢ is given by
sje(a, 6, Xy) = / Tt (61, Xi,v) dG oo (v) (2.5)

where G0 (v) is the known distribution of consumer taste v; over the product characteristic,
and a is an L x 1 vector of parameters of this distribution.?

Underlying these derivations are assumptions that (i) the distributions of € = (€;j¢)
and v = (v;) are mutually independent, and are also independent of X = (Xj;) and
€0 = ( 0)i (ii) €50 follows a marginal type I extreme value distribution iid across i and j
(but not necessarily independent across t).5 Moreover, the most often used specification
for the distribution of random coefficients in the literature is to assume that they have a
multivariate normal distribution, that is, v ~ N(0,%°), where X0 is a K x K matrix of
parameters, which can be subject to constraints (e.g. only one or a few regressors may
have random coefficients, in which case the components of X° are only non-zero for these

regressors), and o’ consists of the independent parameters in X9.7

5The dependence of (6, X¢, v;) and sjt(ao, 0, X¢) on t stems from the arguments §; and X;.
SWhen the index t refers to time (or otherwise possesses some natural ordering), then sequential exogeneity

is allowed throughout the whole paper, that is, X;; can be correlated with past values of the errors, e;,,s < t.

The errors ej; are assumed to be independent across j and ¢, but heteroscedasticity is allowed.
"We focus in this paper on the case where the functional form of the distribution function G, is known by

the researcher. Recent papers have addressed estimation when this is not known; e.g. Bajari, Fox, Kim and
Ryan (2011), (2012).



The observables in this model are the market shares sj; and the regressors X jt.s In ad-
dition, we need M instruments Zj; = (Z1jt, ..., Zwm,j¢)" to construct extra (unconditional)
moment conditions, in addition to the unconditional moment conditions constructed by
Xj¢, in order to estimate the parameters «, with M > L. These additional instruments
are also needed in the usual BLP estimation procedure, even in the absence of the factor
structure. Suppose that Xj; is exogenous with respect to §?7t. From this, we construct
unconditional moment conditions E(thﬁg-{t) = 0. Then, extra moment conditions are
still required to identify the covariance parameters in the random coefficients distribution.
Notice that those Z’s may be non-linear functions of the exogeneous X’s, so we do not
necessarily need to observe additional exogenous variables.”

Let s = (sj1), Xp = (Xk,jt), Zm = (Zm,jt) and e = (e;) be J x T matrices, and also
define the tensors X = (X, j¢) and Z = (Z j¢), which contain all observed product charac-
teristics and instruments. In the presence of the unobserved factor structure, it is difficult
to identify regression parameters of regressors X that have a factor structure themselves,
which includes product invariant and time invariant regressors. Our assumptions below
rule out all those X, and Z,, that have a low rank when considered as a J x T' matrix.'?
The unknown parameters are o, 5%, \°, and fO.

The existing literature on demand estimation usually considers asymptotic sequences
with either J growing large and T fixed, or T growing large and J fixed. Under these
standard asymptotic sequences, the estimation of the nuisance parameters \° and f° cre-
ates a Neyman and Scott (1948) incidental parameter problem: because the number of
nuisance parameters grows with the sample size, the estimators for the parameters of
interest become inconsistent. Following some recent panel data literature, for example,
Hahn and Kuersteiner (2002; 2004) and Hahn and Newey (2004), we handle this prob-
lem by considering asymptotic sequences where both J and T" become large. Under this

alternative asymptotic, the incidental parameter problem is transformed into the issue of

8In the present paper we assume that the true market shares s;; = s;(6Y) are observed. Berry, Linton and
Pakes (2004) explicitly consider sampling error in the observed market shares in their asymptotic theory. Here,
we abstract away from this additional complication and focus on the econometric issues introduced by the factor

structure in &Y.
91f one is willing to impose the conditional moment condition E(e;;|X;¢) = 0, then valid Z;; can be constructed

as non-linear transformations of X ;.
10This is exactly analogous to the usual short panel case, in which the presence of fixed effects for each cross-

sectional unit precludes identification of the coeflicients on time-invariant regressors. If the number of factors R is
known accurately, then the coefficients of these low-rank regressors can be identified, but the necessary regularity
conditions are relatively cumbersome. For ease of exposition we will therefore rule out both low-rank regressors
and low-rank instruments by our assumptions below, and we refer to Bai (2009) and Moon and Weidner (2015a)

for a further discussion of this topic.



asymptotic bias in the limiting distribution of the estimators of the parameters of interest.
This asymptotic bias can be characterized and corrected for. Our Monte Carlo simulations
suggest that the alternative asymptotic provides a good approximation of the properties

of our estimator at finite sample sizes, as long as J and T are moderately large.

3 Identification

Given the non-linearity of the model, questions regarding the identification of the model
parameters of interest are naturally raised. In the following we provide conditions under
which the parameters « and 3 as well as the product Af’ are identified. We do not consider
how to identify A and f separately, because they only enter into the model jointly as Af’.11

Following standard identification arguments (e.g. Matzkin (2013)), our proof demon-
strates identification by showing the existence of an injective mapping from the model
parameters (a, 3, A\f’) and the distribution of the random elements of the model (e, X, Z)
to the distribution of the observed data (s, X, Z), where the random elements of the model
are comprised of unobserved error terms, product characteristics, and instruments and the
observed data are the market shares, product characteristics, and instruments.'?

Our identification result utilizes a population distribution of a full J x T panel of
observables (s, X, Z), conditional on parameters «, 8 and Af’. The fact that we have
nuisance parameters A\; and f; in both panel dimensions makes the distribution of the full
J x T panel of observables a natural starting point for the identification discussion (where
J and T are are finite constants in this section). Normally in the large N, T panel data lit-
erature (e.g. in Hahn and Newey (2004), Bai (2009), etc.) there is no explicit identification
discussion, but consistency as N, T — oo (or in our case J,T — o0) is shown directly. The
reason is that there is no fixed population distribution that corresponds to the sample as
both panel dimensions become large. Thus, when going from identification to estimation
there will not be a simple analog principle that allows to treat the sample as multiple
draws from the population. This is a general conceptual issue, independent of our paper.

The inference results below therefore do not follow immediately from the identification

" The transformation A — AS and f — fS~! gives observationally equivalent parameters for any non-
degenerate R X R matrix S. Once the product Af’ is identified, one can impose further normalization restrictions

to identify A\ and f separately, if desired.
12Injectivity implies that the mapping is one-to-one — and hence invertible — along the relevant range. The range

of this mapping excludes some distributions of (s, X, Z); for instance, distributions in which some of the market
shares take zero values with non-zero probability cannot be generated by our model, due to the multinomial
logit structure. See Gandhi, Lu, and Shi (2013) for additional discussion of estimating discrete-choice demand

models when some of the products are observed to have zero market shares.



result presented in this section; in particular, the incidental parameter problem (Neyman
and Scott (1948)) related to inference of \; and f; needs to be properly addressed.

For our identification result we assume, as in BLP, that there exists a one-to-one
relationship between market shares and mean utilities, as summarized by the following

assumption. Let B, C R” be a given parameter set for a.

Assumption INV (Invertibility Assumptions). We assume that equation (2.5)
is invertible, that is, for each market t the mean utilities 0; = (1¢,...,95¢) are unique
functions of a € By, the market shares s; = (Sit,...,575), and the regressors X; =

(Xit,...,Xt). We denote these functions by d;1(c, sy, Xt).*

Berry, Gandhi, and Haile (2013) provide general conditions under which this invert-
ibility assumption is satisfied, and Berry and Haile (2014) and Chiappori and Komunjer
(2009) utilize this inverse mapping in their nonparametric identification results.

Using Assumption INV and the specifications (2.2) and (2.3) we have
K R
6% = 0ju(®, 81, X0) =) BY X+ D A% S+ €5t - (3.1)
k=1 r=1

In JT-vector notation this equation can be written as §7¢¢(a®) = xﬁ%—Zle O +evee,
where 6V°°(a) = vec[d(a, s, X)] and e¥*® = vec(e) are JT-vectors, and z is a JT x K matrix
with columns z_j = vec (X}). For simplicity we suppress the dependence of 6V*“(«) on
s and X. It is furthermore convenient to define the JI' x M matrix z with columns
z.m = vec (Zp), the mean utility difference d(a) = §V°(a) — §V°°(a?), and the unobserved
utility difference A&, g = d(a) —z(8— ). Both d(a) and A&, g are JT vectors. Note that
A&, g is simply the vectorized difference of the residual unobserved product characteristic
at (o, 8) and (o, 8°). In the following the indices j and ¢ run from 1 to J and 1 to T,

respectively.

Assumption ID (Assumptions for Identification).
(i) The second moments of d;1(«), Xji and Zj; exist for all o, and all j, t.
(ii) Blesi) = 0.
(iii) E(Xjiej) =0, E(Zjiej) = 0, for all j, t.1*
(iv) B[(z,z) (1p @ My 0))(x,2)] > blgin, for some b >0 and all X € R7*R .15

3Note that the dependence of dj¢(a, s¢, X¢) on t stems from the arguments s; and X;.
4The exogeneity assumption E(Xjie;;) = 0 can be relaxed. Regression coefficients 3°*¢ on endogenous

regressors need to be included in the parameter vector a, i.e. « is replaced by (o, 3°"), see Section 4.1 below.
15Here, Py x0) = (A, A)[(A, X%)(X, A9)]T(X, A), where T refers to a generalized inverse, and M o) = 15 —
Py z0y are the J x J matrices that project onto and orthogonal to the span of (A, \9).

9



(v) For all (o, B) # (a,8%), and all A € RV we assume that'®
E[AE, 4 (v,2)|E[(x,2) (x,2)] 'E[(x,2) Abay] > E [Ag’m 5 (17 ® Py o)) Agaﬁ] .

In this assumption, and also for the remainder of the paper, we treat the fixed effects A%
and f as non-random parameters, that is, all expectations in Assumption ID are implicitly
conditional on \° and f9. The assumptions are discussed in Section 3.1 below.

To formulate our identification result we need to introduce some additional notation.
We denote the set of joint distributions of e, X, Z by F. x 7, and the set of joint distribu-
tions of s, X, Z (the observables) by F; x,z. The model described in Section 2 gives unique
market shares s for any given e, X, Z and parameters «, 3, A\f’. The model therefore also
uniquely describes the distribution of observables for a given distribution F, x 7z € Fc x 7z
and parameters «, 8, Af’, and we denote this distribution of observables given by the
model as I'(a, B, \f', Fe x,7z) € Fs x,z. We say that two distributions Fi, Fy € Fs x 7 are
equal if the corresponding joint cdf’s are the same, and we write F} = F5 in that case.

Analogously, we define equality on F¢ x 7.

Theorem 3.1 (Identification). Let Assumption INV be satisfied. Let FeO,X,Z € Fex,z
be such that it satisfies Assumption ID. Let F, x 7 € Fe x,z and consider two sets of param-
eters (o, B, Af') and (a°, 8% X0 f). Then, (o, B,\f', Fex2) = F(ao,ﬁo,)\ofo’,Fe()’X’Z)
implies that a = %, B =B, A\f' =X0fY and F. x 7 = FeO,X,Z'

The theorem states that if the distribution of observables F' 2 xz=T (a®, B, N0V 2 X, 7)
is generated from the parameters (a?, 3%, A°f%) and Fg X7 satisfying Assumption ID,
then any other (o, 8, \f’) and F¢ x z that generate the same distribution of observables
FQX,Z = I'(a, B,Af', Fo x.z) must be equal to the original (a?, 3% \°f%) and FGSX,Z.
In other words, we can uniquely recover the model parameters from the distribution of
observables. Two observationally equivalent model structures (a, 3%, \0f% F 2 X, ») and
(e, B, \f', Fe x.7) need to be identical.

The key tool for the proof of Theorem 3.1 is the the expected least squares objective

function

T
2
Q (o, 8,7\ 5 Fx 7) =Eo{ D > [(e) = XjuB = Zjyy = Nifi] " ¢,
j=1t=1
where v € R’ is an auxiliary parameter, and Eg refers to the expectation under the
distribution of observables F' 3 X, Z,16 which is assumed to be generated from the model, i.e.

FO,X,Z =T(a B N\ FO FeO,X,Z)7 with FeO,X,Z satisfying Assumption ID.

S

6Normally, we refer to Eg simply as IE. We only use different notation here to stress at which point the

argument F;),X,Z enters into ) (a, B, A\ f; FQX’Z).

10



The true value of the auxiliary parameter -y is zero, because of the exclusion restriction
on Zj;. In the proof of Theorem 3.1 we show that under our assumptions the minimizer
of Q (a,ﬁ,’y,)\,f;Fng) over (B, A, f,v), for fixed «a, only satisfies v = 0 if and only if
a = aY. Thus, by using the expected least squares objective function as a tool we can
uniquely identify o from the distribution of obervables F' g x.z- Having identified a¥ we can
identify 8% and \°f” simply as the unique minimizers of Q (ozo, 8,7, A\, f Fg X, Z). These
findings immediately preclude observational equivalence, viz two sets of distinct parameters
(%, BY A0 F0) £ (o, B, ALfY) which are both consistent with the observed distribution
Fg x.z- For complete details we refer to the proof in the appendix. Furthermore, our

identification argument is constructive, as it leads naturally to the LS-MD estimator which

we introduce in subsequent sections.

3.1 Discussion of the Identification Conditions

In this section we discuss the conditions of the identification theorem. First, we note that
when no factors are present (R = 0), then our identification Assumptions ID below essen-
tially require that the unconditional moment conditions E(Xj.e;;) = 0 and E(Zjej) =0
uniquely identify the model parameters o and 3, thus following the original identification
strategy in BLP (1995).17

Assumption (i) demands existence of second moments, assumption (ii) requires the
error process to have zero mean, and assumption (iii) imposes exogeneity of the product
characteristics X;; and the instruments Z; with respect to the error ej; (endogenous
regressors are discussed in Section 4.1). Apart from the term M, y0), Assumption ID(iv)
is a standard non-collinearity condition on the product characteristics and the instruments
— which jointly appear as regressors in the first step of (4.1). The generalized condition
E[(z, 2) (11 ® My x0))(z,2)] > b > 0 requires non-collinearity of the regressors even after
projecting out all directions proportional to the true factor loading A° and to any other
possible factor loadings A. A sufficient condition for this assumption is the rank condition
rank[E(2Z’)] > 2R for any non-zero linear combination Z = - X + + - Z. This rank
condition, for example, rules out product-invariant regressors and instruments, as already
mentioned above.

Those parts of the conditions () to (iv) that do not contain Zj; are used to identify

B and A°f% when oV is already identified. These conditions are typical regularity con-

17 As such, our identification results do not add to the literature on non-parametric identification of the BLP
model (as in Berry and Haile (2014), Chiappori and Komunjer (2009), Bajari, Fox, Kim and Ryan (2011)); our
concern is, rather, to show that the logit demand model with parametrically-distributed random coefficients can

still be identified after the introduction of the interactive fixed effects.
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ditions for identification of a linear regression model with a modification only required in
condition (iv) to accommodate the interactive fixed effects. (See also Moon and Weid-
ner (2015b).)

The key additional assumption that we need for identification of a is Assumption ID(v).
Note that A&,0 go = 0, that is, both the left and right side of the inequality in assumption
(v) are zero for (a, B) = (a2, BY), which is why this case is explicitly ruled out in the
assumption. The left hand side of the inequality in assumption (v) is the sum of squares of
that part of A, g that is explained by the regressors x and the instruments z. The right
hand side is the sum of squares of that part of A&, g that is explained by the true factor
loading A and an arbitrary other factor loading A. Thus, the condition is a relevance
condition on the instruments, which requires that the explanatory power of the regressors
and the instruments needs to be larger than the explanatory power of A and A° for A&y 8-

A more concrete intuition for Assumption ID(v) can be obtained in the case without

factors. Without factors, the identification condition simplifies to ¥(c, 8) # (a2, %) :
-1
E [A&, 5 (2,2)] E [(z,2) (z,2)] " E[(2,2) Ao ] > 0. (3.2)
This can be shown to be equivalent to the statement Vo # oV :

E [d(a)'(fn, z)] E [(:17, 2) (x, z)]_l E [(:L’, z)'d(oz)] >E [d (oz)/x] E (:U’a:)_l E [l‘/d (oz)} .

We see that this condition is nothing more than the usual instrument relevance condition
(for z in this case) underlying the typical GMM approach in estimating BLP models.
It can also be shown to be equivalent to the condition that for all a # o the matrix
E[(d(a),z) (x, 2)] has full rank (equal to K + 1).

The matrix valued function §(«) = (v, s, X) was introduced as the inverse of equation
(2.5) for the market shares s;;(d;). Thus, once a functional form for s;;(d;) is chosen and
some distributional assumptions on the data generating process are made, it is in principle
possible to analyze Assumption ID(v) further and to discuss validity and optimality of the
instruments. Unfortunately, too little is known about the properties of d(a) to enable a
general analysis.'® For this reason, in our Monte Carlo simulations in section 6 below,
we provide both analytical and and numerical verifications for Assumption ID(v) for the
specific setup there.

The final remark is that Assumption ID(v) also restricts the family of the distribution

of the random coefficient. As a very simple example, suppose that we would specify the

18This is a problem not only with our approach, but also with the estimators in BLP, and for Berry, Linton
and Pakes (2004).
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distribution G, for the random vector v as v ~ N(ay,as), where a = (ay,as), and
we would also include a constant in the vector of regressors Xj;. Then, the regression
coefficient on the constant and «; cannot be jointly identified (because they both shift
mean utility by a constant, but have no other effect), and Assumption ID(v) will indeed

be violated in this case.

4 LS-MD Estimator

If (5% is known, then the above model reduces to the linear panel regression model with
interactive fixed effects. Estimation of this model was discussed under fixed T" asymptotics
in, for example, Holtz-Eakin, Newey and Rosen (1988), and Ahn, Lee, Schmidt (2001),
and for J,T — oo asymptotics in Bai (2009), and Moon and Weidner (2015a; 2015b).

The computational challenge in estimating the model (3.1) lies in accommodating both
the model parameters («, 8), which in the existing literature has mainly been done in a
GMM framework, as well as the nuisance elements \;, f;, which in the existing literature
have been treated using a principal components decomposition in a least-squares context
(e.g., Bai (2009), and Moon and Weidner (2015a; 2015b)). Our estimation procedure
— which mimics the identification proof discussed previously — combines both the GMM
approach to demand estimation and the least squares approach to the interactive fixed
effect model.

Definition: the least squares-minimum distance (LS-MD) estimators for a and § are

defined by

Step 1 (least squares): for given « let

() = (a8, X)),

J
(Bav :Yaa 5\0“ fa) = argmin ZZ [5jt(a) *X],'tﬁ* Zg/'tfyf)‘;'ft]Qa

{B:n: A Y =1 =1
Step 2 (minimum distance):

~ . ~/ -
a = argmin v, Wir 9a ,
aEBy

Step 3 (least squares):
é(a) = do(a, s, X),
J T
]t

([3, , >—argm1 ZZ

— X8 NP (4.1)

Here, 3 € RX, 6(a, s, X), X}, and Z,,, are J x T matrices, A\ is J x R, fis T x R, Wyr is

a positive definite M x M weight matrix, B, C R” is an appropriate parameter set for a.
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Steps 1 and 2 are nested, because 7, defined by step 1 needs to be calculated multiple
times while performing the numerical optimization in step 2, but step 3 only needs to be
performed once after the calculation of & in step 2 is finished. Step 1 resembles the linear
least-squares estimators with interactive fixed effects considered in Bai (2009) and Moon
and Weidner (2015a), but because our model also includes the nonlinear parameter «, this
step is nested within step 2, which involves iteration over different candidate values for «.

In step 1, we include the IV’s Z,, as auxiliary regressors, with coefficients v € RM.
Step 2 is based on imposing the exclusion restriction on the IV’s, which requires that v = 0,
at the true value of a. Thus, we first estimate 3, A, f, and the instrument coefficients ~
by least squares for fixed «, and subsequently we estimate o by minimizing the norm of
Yo with respect to a.

Step 3 in (4.1), which defines E, is just a repetition of step 1, but with @ = @ and
v = 0. One could also use the step 1 estimator Ba to estimate 8. Under the assumptions
for consistency of (a, B) presented below, this alternative estimator is also consistent for
BY. However, in general B5 has a larger variance than B, since irrelevant regressors are
included in the estimation of 5@.

For given «a, 8 and v the optimal factors and factor loadings in the least squares
problems in step 1 (and step 3) of (4.1) turn out to be the principal components estimators
for A and f. These incidental parameters can therefore be concentrated out easily, and the
remaining objective function for S and  turns out to be given by an eigenvalue problem
(see e.g. Moon and Weidner (2015a; 2015b) for details), namely

T
(Bar da) = argmin > [(0(@) =B+ X =7-2) (8(a) = 8- X —7-2)] ,  (4.2)
8.7 ZR+1
where - X = Zszl B Xp, v-Z = Z%Zl Ym Zm, and p,.(.) refers to the r’th largest
eigenvalue of the argument matrix. This formulation greatly simplifies the numerical
calculation of the estimator, since eigenvalues are easy and fast to compute, and we only
need to perform numerical optimization over 8 and =y, not over A and f.

The step 1 optimization problem in (4.1) has the same structure as the interactive fixed
effect regression model. Thus, for o = o it is known from Bai (2009), and Moon and
Weidner (2015a; 2015b) that (under their assumptions) S,o0 is v/JT-consistent for 4% and
asymptotically normal as J,T — oo with J/T — k2, 0 < k < c0.

Step 1 also involves solving for the vector of §’s which solves the market share equations
(2.5), at a given value for o. This computational problem is well-studied in the BLP

literature.?

9We solve it using nonlinear equation solvers, which is a relatively standard procedure from the existing BLP
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The LS-MD estimator we propose above is distinctive, because of the inclusion of the
instruments Z as regressors in the first-step. This can be understood as a generalization of
an estimation approach for a linear regression model with endogenous regressors. Consider
a simple structural equation y; = Yoo + e, where the endogenous regressors Ys have the
reduced form specification Yo = Zd + V, and e and V are correlated. The two stage least
squares estimator of « is Qagrs = (YQ’PZYQ)il Y, Pzy1, where Py = Z (Z’Z)f1 Z'. In this
set up, it is possible to show that dogrg is also an LS-MD estimator with a suitable choice
of the weight matrix. Namely, in the first step the OLS regression of (y; — Yoa) on Z
yields the OLS estimator 5, = (2'Z) "' Z' (y1 — Yaa). Then, in the second step minimiz-
ing the distance 5/, W7, with respect to « gives a(W) = [Y9Z(Z'Z) W (Z'Z2) "1 2"y, 1
Y5Z(Z'Z2)"*W(2'Z)~1Z'y]. Choosing W = Z'Z thus results in @ = a (Z'Z) = QasLs.
Obviously, for our nonlinear model, strict 2SLS is not applicable; however, our estimation
approach can be considered a generalization of this alternative iterative estimator, in which
the exogenous instruments Z are included as “extra” regressors in the initial least-squares
step.20

The two-step procedure in the LS-MD estimation is similar to the two stage estima-
tion method in Chernozhukov and Hansen (2006) that investigated endogenous quantile

regressions.

4.1 Extension: regressor endogeneity with respect to ej

So far, we have assumed that the regressors X could be endogenous only through the
factors )\3. ft, and they are exogenous wrt e. However, this could be restrictive in some
applications, for example, when price pj;; is determined by {;; contemporaneously. Hence,
we consider here the possibility that the regressors X could also be correlated with e. This
is readily accommodated within our framework. Let X! c X denote the endogenous
regressors, with dim(X°®"?) = K,. (Hence, the number of exogenous regressors equals
K — K3.) Similarly, let 44 denote the coefficients on these regressors, while 3 continues
to denote the coefficients on the exogenous regressors. Correspondingly, we assume that

M, the number of instruments, exceeds L + Ko.

literature. Its validity is ensured by results (in Berry, Levinsohn, Pakes (1995)) showing that, for fixed «, these

equations constitute a contraction mapping, and the nonlinear equation solver recovers the (unique) fixed point.
20Moreover, the presence of the factors makes it inappropriate to use the moment condition-based GMM

approach proposed by BLP, see Appendix B. Moment based approaches to factor model estimation like Holtz-
Eakin, Newey and Rosen (1988) and Ahn, Lee, Schmidt (2001; 2013) would also have to be non-trivially extended

to handle the random coefficient parameter « in the presence of two dimensional incidental parameters in a

nonlinear framework, but we have not explored this possibility.
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Definition: the least-squares minimum distance (LS-MD) estimators for a and  with

endogenous regressors X" is defined by:

step 1: for given o™ = (a, Y) let

() = §(ay s, X)),

J T
~ ~ ~ 2
<Baend y ;)v/aend y )\aend y faend> = {%I'%H;Hfl} E E |:($]t(a) — X;L{ld//gend — X‘;tﬁ — Z‘;t’}/ — )\‘/]ft] s
I ER4T) ]:1 t=1

step 2:
~end __ (~ 7Jendy __ . ~/ Wor A
a™ = (a,p") = argmin 7 ca Wi Ygend ,
O[end EBa XBgnd
step 3:

(@) = do(a, s, X),
J T 9
(3 Y f) = argmin Yy [5jt(a) — xgdiged _ xt g -\ f] (4.3)
{BERK, X, f} 527 =1
where B, and Bgnd are parameter sets for o and 5",

The difference between this estimator, and the previous one for which all the regressors
were assumed exogenous, is that the estimation of 5°*4, the coefficients on the endogenous
regressors X, has been moved to the second step. The estimation procedure in (4.3) can
me mapped into our original LS-MD procedure in (4.1), if we make the following formal

replacements:
Oéend — (a,ﬂend) — a, (S(Oé) o Bend . Xend — (S(Oé) (44)

Thus, by changing the meaning of « and §(«) accordingly, the identification result above
is still valid, and all results below on the consistency, asymptotic distribution and bias
correction of the LS-MD estimator (4.1) with only (sequentially) exogenous regressors
directly generalize to the estimator (4.3) with more general endogenous regressors. Given
this discussion, we see that the original BLP (1995) model can be considered a special case

of our model in which factors are absent (i.e. R = 0).

5 Consistency and Asymptotic Distribution

In this section we present our results on the properties of the LS-MD estimator & and B\

defined in (4.1) under the asymptotics J, T — oo.

Assumption 1 (Assumptions for Consistency).
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(Z) sup ||5(a) — 6(aO)HF — Op(\/T),

acBa0  |la—a?|

| XkllF = Op(VIT), | ZmllFr = Op(VJIT), fork=1,...,K and m=1,..., M.

(1) llell = Op(v/max(J, T)).

(iti) = Tr (Xge') = 0p(1), 77 Tv (Zpne') = 0p(1), fork=1,....K andm=1,..., M. %

(iv) AGI?RiJIiR {prsm [Fr(z,2) (17 ® M(/\,)\O))(ZE,Z)]} > b, wpal, for some b > 0.

(v) There exists b > 0 such that wpal for all o € B, and B € RE

[Fr8& s (@,2)] [F7(@.2) (@,2)] 7 [Fp(@,2) Abag]

T eRAR [F7AE, 5 (11 @ Py x0y) Al g] = blla —a®|* + 6] — 8°|1%.

(’Ui) Wir —p W > 0.

Theorem 5.1 (Consistency). Let Assumption 1 hold, and let o € By. In the limit
J, T — oo we then have & = a° + 0,(1), and B=p5"+ op(1).

The proof of Theorem 5.1 is given in the appendix. The similarity between Assump-
tion 1 and Assumption ID is obvious, so that for the most part we can refer to Section 3.1
for the interpretation of these assumptions, and in the following we focus on discussing the
differences between the consistency and identification assumptions. The one additional
assumption is the last one, which requires existence of a positive definite probability limit
of the weight matrix W r.

Apart from a rescaling with appropriate powers of JT', the Assumptions 1(7), (iii), (iv),
and (v) are almost exact sample analogs of their identification counterparts in Assump-
tion ID. The two main differences are that assumption (i) also imposes a Lipschitz-like
continuity condition on §(a) around o, and that the right hand-side of the inequality in
assumption (v) is not just zero, but a quadratic form in (o —a®) and (8 — %) — the latter
is needed, because expressions which are exactly zero in the identification proof are now
only converging to zero asymptotically.

Assumption 1(4i) imposes a bound on the the spectral norm of e, which is satisfied
as long as e;; has mean zero, has a uniformly bounded fourth moment (across j,t,J,T’)

t.22

and is weakly correlated across j and The assumption is therefore the analog of

Assumption ID(i7).

2I'We can relax the exogeneity assumption J%Tr (Xxe') = op(1). For all endogenous regressor the corre-

sponding regression coefficients 3°"? need to be included in the parameter vector a, see the replacement (4.4)

22Such a statement on the spectral norm of a random matrix is a typical result in random matrix theory.

The difficulty — and the reason why we prefer such a high-level assumption on the spectral norm of e — is to
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At finite J, T, a sufficient condition for existence of b > 0 such that the inequality in
Assumption 1(iv) is satisfied, is rank(Z) > 2R for any non-zero linear combination = of
Xy, and Z,,,. This rank condition rules out product-invariant and market-invariant product
characteristics X and instruments Z,,, since those have rank 1 and can be absorbed into
the factor structure.?? There are many reformulations of this rank condition, but in one
formulation or another this rank condition can be found in any of the above cited papers
on linear factor regressions, and we refer to Bai (2009), and Moon and Weidner (2015a)
for a further discussion.

Next, we present results on the limiting distribution of & and B . Some further regularity
condition are necessary to derive the limiting distribution of our LS-MD estimator, and
those are summarized in Assumption 2 to 4 in the appendix. These assumptions are
straightforward generalization of the assumptions imposed by Moon and Weidner (2015a;
2015b) for the linear model, except for part (i) of Assumption 4, which demands that d(«)
can be linearly approximated around a such that the Frobenius norm of the remainder
term of the expansion is of order o,(v/JT||a — aP||) in any v/J shrinking neighborhood of

0

a’. Notice also that Assumption 4(iv) implies E(ej|Xj¢, Zj:) = 0, while so far we only

required ej; to be uncorrelated with Xj;; and Zj;.

Theorem 5.2. Let Assumptions 1, 2, 3 and /4 be satisfied, and let o® be an interior point

of By In the limit J, T — oo with J/T — k%, 0 < k < 0o, we then have

-~ 0
o —

VaT | — N (kBo+ 171 By + KBy, (GWG) T GWaWG' (Gwa) ™)
B—p°

with the formulas for G, W, Q, By, B1 and By given in the appendiz C.

The proof of Theorem 5.2 is provided in the appendix. Analogous to the least squares
estimator in the linear model with interactive fixed effects, there are three bias terms in
the limiting distribution of the LS-MD estimator. The bias term xBg is only present if
regressors or instruments are pre-determined, that is, if Xj; or Z;; are correlated with e,

for t > 7 (but not for ¢ = 7, since this would violate weak exogeneity). A reasonable

specify the meaning of “weakly correlated across j and t”. The extreme case is obviously independence across j

and t, but weaker assumptions are possible. We refer to the discussion in Moon and Weidner (2015a) for other

examples.

ZInclusion of product-invariant and market-invariant characteristics (“low-rank regressors”) does not hamper
the identification and estimation of the regression coefficients on the other (“high-rank”) regressors. This is
because including low-rank regressors is equivalent to increasing the number of factors R, and then imposing

restrictions on the factors and factors loadings of these new factors. Conditions under which the coefficients of

low-rank regressors can be estimated consistently are discussed in Moon and Weidner (2015a).
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interpretation of this bias terms thus requires that the index t refers to time, or has
some other well-defined ordering. The other two bias terms k~1By and kB, are due to
heteroscedasticity of the idiosyncratic error ej; across firms j and markets ¢, respectively.
The first and last bias terms are proportional to k, and thus are large when T is small
compared to J, while the second bias terms is proportional to x~', and thus is large
when T is large compared to J. Note that no asymptotic bias is present if regressors
and instruments are strictly exogenous and errors ej; are homoscedastic. There is also no
asymptotic bias when R = 0, since then there are no incidental parameters. For a more
detailed discussion of the asymptotic bias, we again refer to Bai (2009) and Moon and
Weidner (2015a).

While the structure of the asymptotic bias terms is analogous to the bias encountered
in linear models with interactive fixed effects, we find that the structure of the asymptotic
variance matrix for @ and B\ is analogous to the GMM variance matrix. The LS-MD
estimator can be shown to be equivalent to the GMM estimator if no factors are present.
In that case the weight matrix W that appears in Theorem 5.2 can be shown to be the
probability limit of the GMM weight matrix that is implicit in our LS-MD approach and,
thus, our asymptotic variance matrix exactly coincides with the one for GMM (see also
Appendix B). If factors are present, there is no GMM analog of our estimator, but the
only change in the structure of the asymptotic variance matrix is the appearance of the
projectors Mo and Mo in the formulas for G, {2 and W. The presence of these projectors
implies that those components of X}, and Z,, which are proportional to f and A° do not
contribute to the asymptotic variance, that is, do not help in the estimation of & and B .
This is again analogous the standard fixed effect setup in panel data, where time-invariant
components do not contribute to the identification of the regression coefficients.

Using the explicit expressions for the asymptotic bias and variance of the LS-MD
estimator, one can provide estimators for this asymptotic bias and variance. By replacing
the true parameter values (o, 3%, A\°, f9) by the estimated parameters (@, B, /)\\, f), the
error term (e) by the residuals (€), and population values by sample values it is easy to
define estimators Eo, El, Eg, CAv’, Q and W for By, Bi, Be, G, Q and W. This is done
explicitly in appendix C.4.

Theorem 5.3. Let the assumptions of Theorem 5.2 and Assumption 5 be satisfied. In the
limit J, T — oo with J/T — k2, 0 < k < 0o we then have B; = Bi+o0,(1), By = By+op,(1),
G = G+op(1), Q= Q+o0p(1) and W = W+o,(1). If in addition the bandwidth parameter
h, which enters in the definition of EO, satisfies h — oo and h® /T — 0, then we also have
By = By + 0,(1).

The proof is again given in the appendix. Theorem 5.3 motivates the introduction of
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the bias corrected estimator
ar a 15 15 14
A B
Under the assumptions of Theorem 5.3 the bias corrected estimator is asymptotically unbi-
ased, normally distributed, and has asymptotic variance (GWG') "' GWOWG (GWG') ™1,
SN O |

which is consistently estimated by (GWG’ ) GWOWG' (GWG”) . These results allow
inference on o and Y.

From the standard GMM analysis it is know that the (K + M) x (K + M) weight

matrix ¥V which minimizes the asymptotic variance is given by W = c¢Q~!, where c is

2
e

ag plim ;7 % (.Z‘)‘f, z)‘f)/ (w/\f, z)‘f), with 22 and 2z defined in Appendix C. In this

case it is straightforward to show that the optimal W = 02 Q™! is attained by choosing

an arbitrary scalar. If the errors e;; are homoscedastic with variance o7 we have Q0 =

L,
W]T = ﬁz MfoZ . (52)

Under homoscedasticity this choice of weight matrix is optimal in the sense that it mini-
mizes the asymptotic variance of our LS-MD estimator, but nothing is known about the
efficiency bound in the presence of interactive fixed effects, that is, a different alternative
estimator could theoretically have even lower asymptotic variance.

The unobserved factor loading A° and factor f° enter into the definition of z* and
thus also into the optimal W in (5.2). A consistent estimator for the optimal W;r can
be obtained by estimating A° and f° in a first stage LS-MD estimation, using an arbitrary
positive definite weight matrix.

Under heteroscedasticity of e;; there are in general not enough degrees of freedom
in Wjr to attain the optimal W. The reason for this is that we have chosen the first
stage of our estimation procedure to be an ordinary least squares step, which is optimal
under homoscedasticity but not under heteroscedasticity. By generalizing the first stage
optimization to weighted least squares one would obtain the additional degrees of freedom
to attain the optimal VW also under heteroscedasticity, but in the present paper we will

not consider this possibility further.
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6 Monte Carlo Simulations

We consider a model with only one regressors Xj; = pj;, which we refer to as price. The

data generating process for mean utility and price is given by

5t = Bpje + N f) + eje,

where )\?, 12, ej¢ and pj; are mutually independent and are all independent and identically
distributed across j and t as N'(0,1). In the data generating process the number of factors
is R = 1. For the number of factors used in the estimation procedure, RrsT, we consider
the correctly specified case RgsT = R = 1, the misspecified case RgsT = 0, and the case
where the number of factors is overestimated Rrst = 2. We have truncated the data
generating process for price so that p;; takes no values smaller than 0.2.

The market shares are computed from the mean utilities according to equation (2.4)
and (2.5), where we assume a normally distributed random coefficient on price pj;, i.e.
v ~ N(0,a?). We chose the parameters of the model to be 8% = —3 and a® = 1. These
parameters corresponds to a distribution of consumer tastes where more than 99% of
consumers prefer low prices.

Although the regressors are strictly exogenous with respect to ej;, we still need an
instrument to identify a. We choose Z;; = p?t, the squared price. Thus, the number
of instruments is M = 1. We justify the choice of squared price as an instrument in
subsection 6.1 by verifying the instrument relevance Assumption 1(v) is satisfied for our
simulation design.

Simulation results for three different samples sizes J = T = 20, 50 and 80, and three
different choices for the number of factors in estimation Rggt = 0, 1, and 2 are presented in
Table 1. We find that the estimators for & and B to be significantly biased when Rggt = 0
factors are chosen in the estimation. This is because the factor and factor loading enter into
the distribution of the regressor p;; and the instrument Z;, which makes them endogenous
with respect to the total unobserved error f?t = )\? R+ ej¢, and results in the estimated
model with RgsT = 0 to be misspecified. The standard errors of the estimators are also
much larger for RgsT = 0 than for Rgst > 0, since the variation of the total unobserved
error 5% is larger than the variation of ej;, which is the residual error after accounting for
the factor structure.

For the correctly specified case RgsT = R = 1 we find the biases of the estimators &
and B to be negligible relative to the standard errors. For J =T = 20 the absolute value
of the biases is about one tenth the standard errors, and the ratio is even smaller for the

larger sample sizes. As the sample size increases from J =T = 20 to J = T = 50 and

21



Rgst =0 Rpst =1 Rpst =2

J, T statistics a B\ a B\ a B\
20,20 bias 0.4255 -0.3314 | 0.0067 -0.0099 | 0.0024 -0.0050
std 0.1644 0.1977 | 0.0756 0.0979 | 0.0815 0.1086
rmse 0.4562 0.3858 | 0.0759 0.0983 | 0.0815 0.1086
50,50 bias 0.4305 -0.3178 | 0.0005 -0.0012 | 0.0022 -0.0024
std 0.0899 0.0984 | 0.0282 0.0361 | 0.0293 0.0369
rmse 0.4398 0.3326 | 0.0282 0.0361 | 0.0293 0.0369
80,80 bias 0.4334 -0.3170 | -0.0009  0.0010 | 0.0003 -0.0003
std 0.0686 0.0731 | 0.0175 0.0222 | 0.0176  0.0223
rmse 0.4388 0.3253 | 0.0175 0.0222 | 0.0176  0.0223

Table 1: Simulation results for the data generating process (6.1), using 1000 repetitions. We report the bias,
standard errors (std), and square roots of the mean square errors (rmse) of the LS-MD estimator (@, B) The

true number of factors in the process is R = 1, but we use Rgst = 0,1, and 2 in the estimation.

J =T = 80 one finds the standard error of the estimators to decrease at the rate 1/ \/ﬁ,
consistent with our asymptotic theory.

The result for the case RgsT = 2 are very similar to those for RgsT = 1, that is,
overestimating the number of factors does not affect the estimation quality much in our
simulation, at least as long as Rpgr is small relative to the sample size J, T.24 The biases
for the estimators found for RpgT = 2 are still negligible and the standard errors are
about 10% larger for RgsT = 2 than for RgsT = 1 at J = T = 20, and even less than
10% larger for the larger sample sizes. The result that choosing Rgst > R has only a
small effect on the estimator is not covered by the asymptotic theory in this paper, where
we assume Rpst = R, but is consistent with the analytical results found in Moon and
Weidner (2015b) for the linear model with interactive fixed effects.

We have chosen a data generating process for our simulation where regressors and
instruments are strictly exogenous (as opposed to pre-determined) with respect to ej;, and
where the error distribution ej; is homoscedastic. According to our asymptotic theory
there is therefore no asymptotic bias in the estimators a and B , which is consistent with

the results in Table 1. The simulation results for the bias corrected estimators a* and B*

24In pure factor models consistent inference procedures on the number of factors are known, e.g. Bai and Ng
(2002), Harding (2007), Onatski (2010), and Ahn and Horenstein (2013). In our model the number of factor can
be estimated by applying those pure factor model techniques to the residuals E =d(Q) — B - X, where @ and B
are LS-MD estimator obtained with Rgst > R. Showing consistency of this procedure, however, goes beyond

the scope of the current paper.
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are reported in Table 3 in the appendix, but there is virtually no effect from bias correction
here, that is, the results in Table 1 and Table 3 are almost identical.

Table 3 also reports the average estimated standard error based on our asymptotic
variance estimator, as well as the empirical size of a nominal 5% t-test for the hypothesis
that the respective parameter equals its true value. Those are not particularly interesting
for Rgst < R, where the model is badly misspecified. For Rgst > R we find that for
small sample sizes (J = T = 20) our standard errors underestimate the dispersion of the
estimator distributions by around 20%, and the t-test is oversized accordingly. For larger
sample sizes (J = T = 80) our standard errors are still a bit too small, but only by around

5% or less, thus resulting in empirical sizes quite close to the nominal size.

6.1 Remarks: Instrument Choice

For the special case where there is only one normally distributed random coefficient at-

tached to the regressor pj;, one can write equation (2.5) as

1 8 ; 2
sjt(a, 0, X¢) = / e);p( jt + Pit?) exp (1}2> dv. (6.2)
2o 14>, exp (6 + piv) 2a

For x > 0 we have the general inequalities 1 > (1 +z)~! > 1 — 2. Applying this to (6.2)
with x = lezl exp (0 + pirv) one obtains s;-ltp(a, 0, Xi) > sje(a, 0, Xy) > sﬁw(a,ét,Xt),

where

1 02
Jora / exp (8¢ + pjiv) exp <_W> dv

= exp ((5jt + a2p§t/2) ,

S;‘lf(av 5t7 Xt) =

J
1 02
syt (o, 604, Xy) = oo / exp (85t + pjtv) [1 — lz_; exp (dy + puv) | exp (—W) dv
J
= Sﬁj(a, 8¢, X4) [1 — Z exp (0u + a°pjy/2 + &*pjipur) ] . (6.3)
=1
:Vj;(:)76t)

Here, the integrals over v that appear in the upper and lower bound are solvable analyti-
cally, so that we obtain convenient expressions for s}ltp (o, 0y, Xy) and sﬁw(a, Ot, Xt).
Consider the specification (6.1) for 8 negative and large (in absolute value) relative
to a?. Then dj¢ is also negative and large in absolute value, which implies that the
vjr = vji(c, 0;) defined in (6.3) is small. For vj; < 1, as here, the lower and upper bounds
are almost identical, which implies sj (v, d¢, Xi) ~ exp <5jt + a2p§t / 2), where =~ means

almost equal under that approximation. Solving for the mean utility yields d;:(cv, s¢, X¢) =~
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log sji(a, 6, Xt) — a2p?t/2. The difference between §;;(c, s¢, X;) and 5% = 5jt(a0,st,Xt)
can then be approximated by
2

djt(a, s, Xi) — 5;) ~ —% [a2 — (040)2] ) (6.4)
This shows that whenever the approximation vj; < 1 is justified, then the squared price p?t
is a valid instrument to identify a.. More precisely, equation (6.4) implies that the LS-MD
estimator with instrument p?t is approximately equivalent to the least squares estimator
for the linear model with outcome variable Yj; = Bpj; + 042p?t + )\;- ft + ej. Consistency of
this least squared estimator for 5 and o? in the presence of the parameters Aj and f; is
discussed in Bai (2009) and Moon and Weidner (2015a).

We have thus shown that v;; < 1 is a sufficient condition for validity of the instrument
p?t. However, for the data-generating process with parameters o = 1 and 8° = —3 used
in the Monte Carlo simulation this is not a good approximation — when calculating v
in that setup one typically finds values much larger than one. Therefore, we next confirm

by numerical methods that pJQ-t is also a valid instrument when v;; < 1 does not hold.

The Instrument Relevance Condition: Some Numerical Evidence

We want to verify the instrument relevance Assumption 1(v) for the data generating pro-
cess (6.1) in the Monte Carlo Simulations with parameters 8° = —3, and a” = 1. For this

purpose we define

| Fr A5 (@,2)] [, 2) (@,2)] 7" [Fp(e,2) Abays]

prv(e, B) = ,
JLTA%,,BAfa,ﬁ
maxycRJxR [J%Afgﬂ (]1T ® P()W\O)) Afa’5:|
el ) = 7708 5A 8 ’
JT «, «,
Ap(&,,@) = PIV(%B) _pF(a>B) (65>

prv (a, B) is the amount of A&, g explained by the instruments and regressors relative to the
total variation of A&, g, i.e. the relative explanatory power of the instruments. pp(a, ) is
the maximum amount of A, g explained by R factor loadings relative the total variation
of A&, s, i.e. the relative explanatory power of the factors. prv(«,3) and pr(«, 3) take
values betweens 0 and 1.

The difference between the explanatory power of the instruments and regressors and
the explanatory power of the factors is given by Ap(a, 3). Assumption 1(v) requires that
Ap(a, B) > 0 for all a € B, and 3 € RE.

Figure 1 contains plots of pry(«, 8), pr(a, §) and Ap(a, B) as a function of a and 3 for

one particular draw of the data generating process with J = T = 80. The sample size is
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sufficiently large that for different draws the plots in Figure 1 look essentially identical.??
Although the data generating process only contains one factor, we used R = 2 factors in
the calculation of pr(a, 8) and Ap(a, ) in Figure 1, in order to verify Assumption 1(v)
also for the case where the number of factors is overestimated (denoted RpsT=2 above) —
since pr(a, () is an increasing function of R, we thus also verify the conditions of R = 1.
For the given draw and within the examined parameter range one finds that pry(«, )
varies between 0.69 and 1.00, pp(«, 8) varies between 0.34 and 0.87, and Ap(«, §) varies
between 0.03 and 0.49, in particular Ap(«, 8) > 0, which is what we wanted to verify.
The variation in Ap(a, B) in this example is mostly driven by the variation in pg(«, ),
since prv(a, 8) for the most part is quite close to one, that is, the explanatory power of
the instruments and regressors is very large. The analytical approximation above showed
that for vj;; < 1 the regressor pj; and the instrument pjzt perfectly predict A&, g, that
is, we have pry(a, ) ~ 1 under that approximation. Our numerical result now shows
that p?t can be a sufficiently powerful instrument also outside the validity range of this

approximation.

7 Empirical illustration: estimation of demand
for new automobiles

As an illustration of our procedure, we estimate an aggregate random coefficients logit
model of demand for new automobiles, modeled after the analysis in BLP (1995). We
compare specifications with and without factors, and with and without price endogeneity.
Throughout, we allow for one normally-distributed random coefficient, attached to price.26

For this empirical illustration, we use the same data as was used in BLP (1995), which
are new automobile sales from 1971-1990.2” However, our estimation procedure requires
a balanced panel for the principal components step. Since there is substantial entry and

exit of individual car models, we aggregate up to manufacturer-size level, and assume that

consumers choose between aggregate composites of cars.?® Furthermore, we also reduce

25The appendix contains additional details on the numerical calculation of pr(c, 3).

26Tn principle, multiple random coefficients could be accommodated in a straightforward manner; as this

application is primarily illustrative, we do not consider this here.

2"In such a setting, where we have a single national market evolving over time, we can interpret Aj as (un-
observed) national advertising for brand j, which may be roughly constant across time, and f; represents the
effectiveness or “success” of the advertising, which varies over time. Indeed, for the automobile sector (which is

the topic of our empirical example), the dollar amount of national brand-level advertising does not vary much

across years, but the success of the ad campaign does vary.

28This resembles the treatment in Esteban and Shum’s (2007) empirical study of the new and used car markets,
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our sample window to the sixteen years 1973-1988. In Table 5, we list the 23 car aggregates
employed in our analysis, along with the across-year averages of the variables.

Except from the aggregation, our variables are the same as in BLP. Market share is
given by total sales divided by the number of households in that year. Price is measured
in $1000 of 1983/84 dollars. Our unit for “horse power over weight” (hp/weight) is 100
times horse power over pound. “Miles per dollar” (mpd) is obtained from miles per gallons
divided by real price per gallon, and measured in miles over 1983/84 dollars. Size is given
by length times width, and measured in 10~*inch?.

We construct instruments using the idea of Berry (1994). The instruments for a par-
ticular aggregated model and year are given by the averages of hp/weight, mpd and size,
over all cars produced by different manufactures in the same year. As the weight matrix
in the second step of the LS-MD procedure we use W = %z’ M, z, which is the optimal

weight matrix under homoscedasticity of e;; and for R = 0.2

Results. Table 2 contains estimation results from four specifications of the model. In
specification A, prices are considered exogenous (wrt e;;), but one factor is present, which
captures some degree of price endogeneity (wrt. &j;). Specification B also contains one
factor, but treats prices as endogenous, even conditional on the factor. Specification C cor-
responds to the BLP (1995) model, where prices are endogenous, but no factor is present.
Finally, in specification D, we treat prices as exogenous, and do not allow for a factor.
This final specification is clearly unrealistic, but is included for comparison with the other
specifications. In table 2 we report the bias corrected LS-MD estimator (this only makes a
difference for specification A and B), which accounts for bias due to heteroscedasticity in
the error terms, and due to pre-determined regressors (we choose bandwidth h = 2 in the
construction of Eo). The estimation results without bias correction are reported in table 4.
It turns out, that it makes not much difference, whether the LS-MD estimator, or its bias
corrected version are used. The t-values of the bias corrected estimators are somewhat
larger, but apart from the constant, which is insignificant anyways, the bias correction

changes neither the sign of the coefficients nor the conclusion whether the coefficients are

which likewise required a balanced panel.

29We do not change the weight matrix when estimating specifications with R = 1, because we do not want

differences in the results for different values of R to be attributed to the change in W ;.

We include a constant regressor in the model, although this is a “low-rank” regressor, which is ruled out by
our identification and consistency assumptions. However, as discussed in a footnote above the inclusion of a
low-rank regressor does not hamper the identification and estimation of the regression coefficients of the other

(“high-rank”) regressors. One certainly wants to include a constant regressor when estimating the model with

no factors (R = 0), so to make results easily comparable we include it in all our model specifications.
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Specifications:
A: R=1 B: R=1 C. R=0 D: R=0

exogenous p endogenous p endogenous p exogenous p
price -4.109 (-3.568) | -3.842 (-4.023) |-1.518 (-0.935) |-0.308 (-1.299)
hp/weight | 0.368 (1.812) 0.283 (1.360) -0.481 (-0.314) 0.510 (1.981)
mpd 0.088 (2.847) 0.117 (3.577) 0.157 (0.870) 0.030 (1.323)
size 5.448 (3.644) 5.404 (3.786) 0.446 (0.324) 1.154 (2.471)
Q@ 2.092 (3.472) 2.089 (3.837) 0.894 (0.923) 0.171 (1.613)
const 3.758 (1.267) 0.217 (0.117) -3.244 (-0.575) | -7.827 (-8.984)

Table 2: Parameter estimates (and t-values) for four different model specifications (no factor R = 0 vs. one
factor R = 1; exogenous price vs. endogenous price). « is the standard deviation of the random coefficient
distribution (only price has a random coefficient), and the regressors are p (price), hp/weight (horse power per

weight), mpd (miles per dollar), size (car length times car width), and a constant.

significant at 5% level.

In Specification A, most of the coefficients are precisely estimated. The price coefficient
is -4.109, and the characteristics coefficients take the expected signs. The a parameter,
corresponding to the standard deviation of the random coefficient on price, is estimated
to be 2.092. These point estimates imply that, roughly 97% of the time, the random price
coefficient is negative, which is as we should expect.

Compared to this baseline, Specification B allows price to be endogenous (even condi-
tional on the factor). The point estimates for this specifications are virtually unchanged
from those in Specification A, except for the constant term. Overall, the estimation re-
sults for the specifications A and B are very similar, and show that once factors are taken
into account it does not make much difference whether price is treated as exogenous or
endogenous. This suggests that the factors indeed capture most of the price endogeneity
in this application.

In contrast, the estimation results for specifications C and D, which are the two speci-
fications without any factors, are very different qualitatively. The t-values for specification
C are rather small (i.e. standard errors are large), so that the difference in the coefficient
estimates in these two specifications are not actually statistically significant. However, the
differences in the t-values themselves shows that it makes a substantial difference for the
no-factor estimation results whether price is treated as exogenous or endogenous.

Specifically, in Specification C, the key price coefficient and « are substantially smaller
in magnitude; furthermore, the standard errors are large, so that none of the estimates are

significant at usual significance levels. Moreover, the coefficient on hp/weight is negative,
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which is puzzling. In Specification D, which corresponds to a BLP model, but without
price endogeneity, we see that the price coefficient is reduced dramatically relative to the

other specifications, down to -0.308.

Elasticities. The sizeable differences in the magnitudes of the price coefficients across
the specification with and without factors suggest that these models may imply economi-
cally meaningful differences in price elasticities. For this reason, we compute the matrices
of own- and cross-price elasticities for Specifications B (see Table (6)) and C (see Ta-
ble (7)). The elasticities were computed using the data in 1988, the final year of our
sample. Comparing these two sets of elasticities, the most obvious difference is that the
elasticities — both own- and cross-price — for Specification C, corresponding to the standard
BLP model without factors, are substantially smaller (about one-half in magnitude) than
the Specification B elasticities. For instance, reading down the first column of Table (6),
we see that a one-percent increase in the price of a small Chevrolet car would result in a
28% reduction in its market share, but increase the market share for large Chevrolet cars
by 1.5%. For the results in Table (7), however, this same one-percent price increase would
reduce the market share for small Chevrolet cars by only 13%, and increase the market
share for large Chevrolet cars by less than half a percent.

On the whole, then, this empirical illustration shows that our estimation procedure is
feasible even for moderate-sized datasets like the one used here. Including interactive fixed
effects delivers results which are strikingly different than those obtained from specifications

without these fixed effects.

8 Conclusion

In this paper, we consider an extension of the popular BLP random coefficients discrete-
choice demand model, which underlies much recent empirical work in I0. We add interac-
tive fixed effects in the form of a factor structure on the unobserved product characteris-
tics. The interactive fixed effects can be arbitrarily correlated with the observed product
characteristics (including price), which accommodate endogeneity and, at the same time,
captures strong persistence in market shares across products and markets. We propose a
two-step least squares-minimum distance (LS-MD) procedure to calculate the estimator.
Our estimator is easy to compute, and Monte Carlo simulations show that it performs
well.

The model in this paper is, to our knowledge, the first application of factor-modeling

to a nonlinear setting with endogenous regressors. Since many other models used in
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applied settings (such as duration models in labor economics, and parametric auction
models in 10) have these features, we believe that factor-modeling may prove an effective
way of controlling for unobserved heterogeneity in these models. We are exploring these

applications in ongoing work.
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A Additional Tables and Figures

‘:“"A'A‘

Figure 1: For one draw of the data generating process used in the Monte Carlo design with J = T = 80 we
plot prv(a, B), pr(a, B) and Ap(a, B) defined in (6.5) as a function of a and 5. The number of factors used in

the calculation of pr(«, 8) is R = 2, although only one factor is present in the data generating process.
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Rgst =0 Rpst =1 Rggt = 2

J,T  statistics a* B* a* //6’\* a* B\*
20,20 bias 0.4255 -0.3314 | 0.0042 -0.0068 | 0.0001 -0.0023
std 0.1644 0.1977 | 0.0759 0.0981 | 0.0818 0.1085
rmse 0.4562  0.3858 | 0.0760 0.0983 | 0.0817 0.1084
mean(SE) | 0.0938  0.1300 | 0.0660 0.0870 | 0.0632  0.0833
emp. size 0.96 0.65 0.09 0.07 0.15 0.12
50,50 bias 0.4305 -0.3178 | 0.0000 -0.0006 | 0.0017 -0.0018
std 0.0899 0.0984 | 0.0283 0.0362 | 0.0293 0.0368
rmse 0.4398 0.3326 | 0.0282 0.0361 | 0.0293  0.0369
mean(SE) | 0.0418  0.0551 | 0.0270  0.0344 | 0.0265 0.0338
emp. size 1.00 0.99 0.07 0.06 0.10 0.10
80,80 bias 0.4334 -0.3170 | -0.0012  0.0012 | 0.0001  0.0000
std 0.0686 0.0731 | 0.0175 0.0222 | 0.0176  0.0223
rmse 0.4388 0.3253 | 0.0175 0.0222 | 0.0176  0.0223
mean(SE) | 0.0272  0.0354 | 0.0171 0.0215 | 0.0169  0.0213
emp. size 1.00 1.00 0.07 0.07 0.06 0.06

Specifications:
A R=1 B: R=1
exogenous p endogenous p
price -3.112  (-2.703) | -2.943 (-3.082)
hp/weight | 0.340 (L.671) | 0.248 (1.190)
mpd 0.102 (3.308) | 0.119 (3.658)
size 4568 (3.055) | 4.505 (3.156)
a 1.613 (2.678) | 1.633 (3.000)
const -0.690 (-0.232) | -2.984 (-1.615)
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Table 3: Simulation results for the data generating process (6.1), using 1000 repetitions. We report the bias,
standard errors (std), square roots of the mean square errors (rmse), and the average of the estimated standard
error (mean SE) of the bias corrected LS-MD estimator (a*, B*) In addition, we report the empirical size of a
nominal size 5% t-test based on a* and B* for the hypothesis that the parameter equals its true value. The true

number of factors in the process is R = 1, but we use Rgst = 0,1, and 2 in the estimation.

Table 4: Parameter estimates (and t-values) for model specification A and B. Here we report the LS-MD

estimators without bias correction, while in table 2 we report the bias corrected LS-MD estimators.
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B Alternative GMM approach

In this section we show that in the presence of factors a moment based estimation approach
along the lines originally proposed by BLP is inadequate. The moment conditions imposed

by the model are

E [e't (O[O, BO )\OfOI)X ]t] —

E [eji (a°, 8% A°fY) Zp i) =0, m=1,...,M, (B.1)

where eji(cov, B, Af') = 0j¢(cx, 54, Xy) — Zle Br Xk jt — Zle Ajr fir- Note that we write
the residuals ej; as a function of the J x T' matrix Af’ in order to avoid the ambiguity of

the decomposition into A and f. The corresponding sample moments read

1
1
m(av 67 )‘fl) = ﬁ Tr (6(0&, ﬁ? )‘f/) Z;n) . (B2)
We also define the sample moment vectors m™ («, 3, Af) = (ml ,...,m%)/ and m?(a, B, \f') =
(mlz, e ,m]\Z/I)/. An alternative estimator for o, 8, A and f is then given by’

(jxa,g, faﬂ) = argmin EJ: ET: e, B, A7)

N F) =1 t=1

A~ ~ / A~ ~

. X A /4 X A /4

(dGMM’ 6GMM> _ argmin ( mZ(a, B, Aoe,ﬁ]i?,g) ) Wi ( mZ(oz, B, a,ﬁjfa,g) ) ’
{QEBawB} m (Oé, 67 Aa,ﬁfa,ﬁ) (

where W is a positive definite (K + M) x (K + M) weight matrix. The main difference
between this alternative estimator and our estimator (4.1) is that the least-squares step is
used solely to recover estimates of the factors and factor loadings (principal components
estimator), while the structural parameters («, §) are estimated in the GMM second step.
The relation between & and 3 defined in (4.1) and 4SMM and BOMM (efined in (B.3) is as

follows

30The minimizing ;\a,g and fa, g are the least squares estimators, or equivalently, the principal components

estimators, e.g. /A\a,g consists of the eigenvectors corresponding to the R largest eigenvalues of the J x J matrix

K

<(5(O¢, S, X)—Zﬂka> ( «, S, X Z/Bka> .

k=1
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(i) Let R =0 (no factors) and set

-1 _ _
= (G o (e} (1
O Onrscmr 1§V JT

(B.4)

where z is a JT' x K matrix and z is a JT x M matrix, given by z_; = vec (X}),
kE=1,...,K, and z ,, = vec(Z,;,), m = 1,...,M. Then & and A solve (4.1) with
weight matrix Wr if and only if they solve (B.3) with this weight matrix W, 3!

i.c. in this case we have (&, 3) = (@GMM, FGMM),

(ii) Let R > 0 and M = L (exactly identified case). Then a solution of (4.1) also is a
solution of (B.3), but not every solution of (B.3) needs to be a solution of (4.1).

(iii) For M > L and R > 0 there is no straightforward characterization of the relationship
between the estimators in (4.1) and (B.3).

We want to discuss the exactly identified case M = L a bit further. The reason
why in this case every solution of (4.1) also solves (B.3) is that the first order conditions
(FOC’s) wrt to 8 and 7 of the first stage optimization in (4.1) read m™ (&, §, j\aﬂfzﬁ) =0
and m? (4, B, Xaﬁflg) = 0, which implies that the GMM objective function of (B.3) is
zero, i.e. minimized. The reverse statement is not true, because for R > 0 the first
stage objective function in (4.1) is not a quadratic function of 5 and - anymore once one
concentrates out A and f, and it can have multiple local minima that satisfy the FOC.

GMM and BEMM can be inconsistent, while & and (3 are consistent, which is

Therefore, &
the main reason to consider the latter in this paper.

To illustrate this important difference between GSMM BGMM and &, B, we want to
give a simple example for a linear model in which the least squares objective function has
multiple local minima. Consider a DGP where Yj; = 89X, + )x?fto + e, with Xj; =

1+ 05X + AfP, and Xji, e, A and f{ are all identically distributed as N(0,1),

31'With this weight matrix W;r the second stage objective function in (B.3) becomes

(d(e) —zB) z (2'x) " 2’ (d(a) — zB) JJT + d'(a) My z (2’ My2z) " *Wyp(2 My2z)~t 2/ M, d(a)
= (d(e) — xB)' Py (d(a) — x8) [IT + 3, Wit o »

where d(a) = vec(§(a, s, X) — 5(a®, 5, X)). Here, 3 only appears in the first term, and by choosing 3 =

B = (2/x)"'a’d(a) this term becomes zero. Thus, we are left with the second term, which is exactly the

second stage objective function in (4.1) in this case, since for R = 0 by the Frisch-Waugh theorem we have

Ao = (2’ My2)~1 2’ M, d(«).
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mutually independent, and independent across j and t. Here, the number of factors R =
1, and we assume that Yj; and Xj;; are observed and that BY = 0. The profiled least
squares objective function in this model, which corresponds to our inner loop, is given
by L(5) = ZTTZQ wr [(Y = BX) (Y — fX)]. For J =T = 100 and a concrete draw of Y
and X, this objective function is plotted in figure 2. The shape of this objective function
is qualitatively unchanged for other draws of Y and X, or larger values of J and T. As
predicted by our consistency result, the global minimum of L(3) is close to 8% = 0, but
another local minimum is present, which does neither vanish nor converge to 8° = 0 when
J and T grow to infinity. Thus, the global minimum of L(/3) gives a consistent estimator,
but the solution to the FOC OL(5)/0 = 0 gives not. In this example, the principal
components estimator of A(5) and f(f), which are derived from Y — X, become very
bad approximations for A’ and f° for § > 0.5. Thus, for 8 > 0.5, the fixed effects are
essentially not controlled for anymore in the objective function, and the local minimum

around [ ~ 0.8 reflects the resulting endogeneity problem.

objective function

Figure 2: Example for multiple local minima in the least squares objective function L(3). The global minimum
can be found close to the true value 8 = 0, but another local minimum exists around 3 ~ 0.8, which renders

the FOC inappropriate for defining the estimator A.

C Details for Theorems 5.2 and 5.3

C.1 Formulas for Asymptotic Variance Terms

We define the JT x K matrix 2, the JT x M matrix z*, and the JT x L matrix g by

x)‘,]: = vec (M,\oXkao) , z% = vec (M)\OZmeo) , g = —vec (Vld(ao)) , (C.1)
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where k = 1,...,K, m =1,...,M, and | = 1,...,L. Note that 2 = (17 ® M,o)xz/
M = (17 ® Myo)z/, and g is the vectorization of the gradient of §(c), evaluated at the
true parameter. We introduce the (L4 K) x (L+ K) matrix G and the (K + M) x (K + M)

matrix 2 as follows

1 g/x f g/Z)\f . 1 \ , .
= pli —_— O = pl _ ( f )\f) d yivec ( \f )\f)
G J%inoo JT < x)‘f/a;)\f wkflz)\f ’ J%I_I;HOO JT Tz lag( e ) T,z )

(C.2)

where YV = vec []E (ejzt)} i—1...5 ¢ 1s the JT-vector of vectorized variances of ej.
=1,.

J
t
Finally, we define the (K + M) X (K + M) weight matrix W by

1 AfroAf 1 AT AFY=1 AF1 A
W= plim (ﬁzv Iy f) O s M N —(@MIA) TIPS
JT—00 Onxk Onrrxmr T

!
1 A N -1 1 Af/ -1 _(fo/x)\f)—lx)\f/ZAf
M M
X (JT AR WJT JT )\fZ ]lM

Existence of these probability limits is imposed by Assumption 3 below.

C.2 Formulas for Asymptotic Bias Terms

Here we provide the formulas for the asymptotic bias terms By, By and Bs that enter into
Theorem 5.2. Let the J x 1 vector Egl), the T" x 1 vector E((f), and the T x T matrices
S0 k=1,...,K,and ©5°, m =1,..., M, be defined by

T J
m_ 1 2 2 _ 1
Yej =7 2 B(eh) Sei =5 > E(e
t=1 j=1
L7 L7
X, Z,
b)righ 7 Z E (Xgjt €jr) Em,etr 7 Z m.jt €57) (C.4)
j=1 j=1
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where j=1,...,J and t,7 =1,...,T. Furthermore, let

b7V = plim v |diag (T0) Mo X f0 (7507 (AT
J,T—o0
b7 = plim Tr |diag () Mo XA (AN (#7707 ]
J,T—o0
b0 = plim Tr (P $%°) |
J,T— o0
b(z,l) _ li Tr | di 2(1) Mo Z 0 07 £0\—1 )\O/)\O -1 )\0/
piam 1ag e A0 mf (f f) ( ) ’
J,T— 00
be? = plim Tr |diag (S2) Mpo 27, X AUX) L (FV0 Y (C)

. . AN/ R . AN/
and we set b@9) = (bg”“), . .,bﬁ?”) and b — (bﬁz”), . ,bgy)) ,for i = 0,1,2. With
these definitions we can now give the expression for the asymptotic bias terms which appear
in Theorem 5.2, namely

_ bl
B, = — (GWG) " aw ( (0 > (C.6)

where i = 0,1, 2.

C.3 Additional Assumptions for Asymptotic Distribution

and Bias Correction

In addition to Assumption 1, which guarantees consistency of the LS-MD estimator, we
also require the Assumptions 2, 3 and 4 to derive the limiting distribution of the estimator
in Theorem 5.2, and Assumption 5 to provide consistent estimators for the asymptotic
bias and asymptotic covariance matrix in Theorem 5.3. These additional assumptions are

presented below.

Assumption 2.  We assume that the limits of A\ \°/.J and f” f°/T are finite and have
full rank, i.e. (a) limyr_o0 (AYA?/J) >0, (b) lim oo (f¥f0/T) > 0.

Assumption 2 guarantees that |\°| and || f°|| grow at a rate of v/.J and /T, respectively.
This is a so called “strong factor” assumption that makes sure that the influence of the
factors is sufficiently large, so that the principal components estimators X and fcan pick

up the correct factor loadings and factors.

Assumption 3. We assume existence of the probability limits G, Q, W, b@9 and b=
i =0,1,2. In addition, we assume GWG' > 0 and GWQWG' > 0.
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Assumption 4.

(1)

(ii)
(iii)

(i)

There exist J x T matrices r™(a) and V;6(a®), 1 =1,..., L, such that

L
d(cx) = (= a]) Vis(a®) + r(a)
1=1
and

1
m’|vl5(a0)||F:Op(1) ; fOT lzl,...,L,
Z=llr2 (@) F
sup YT op(1)

0 forall ¢>0.
{a: V|l a—al|<c, azal} o —«a H

HA?H and ||f2|| are uniformly bounded across j, t, J and T.

The errors ej; are independent across j and t, they satisfy Eej; = 0, and E(ejt)8+6 1S

bounded uniformly across j,t and J,T, for some € > 0.

The regressors Xy, k = 1,..., K, (both high- and low rank regressors) and the

weak
X k

instruments Zmy,, m = 1,...,M, can be decomposed as X = X" + and

T = Z8% + Z¥%eak - The components X3 and Z5" are strictly ezogenous, i.e. X,f:t;t

weak weak
X} AL

and ZStjt are independent of ejr for all j,i,t,7. The components and

are weakly exogenous, and we assume

weak weak __
k:,]t E Ck,jr €jt—7 » Z m,jt E dm,jT €it—T »

for some coefficients ci jr and dp, j- that satisfy
ek jr] < 7, dy,jr| <

where o € (0,1) is a constant that is independent of T =1,...., T —1, j=1...J,

k=1,...,Kandm=1,...,M. We also assume that IE[(XS“r )8+€] and E[(Z,iir]t)s“'ﬁ]

are bounded uniformly over j,t and J,T, for some e > 0.

Assumption 1(7i) and (i7i) are implied by Assumption 4, so it would not be necessary

to impose those explicitly in Theorem 5.2. Part (ii), (¢i¢) and (iv) of Assumption 4 are

identical to Assumption 5 in Moon and Weidner (2015a; 2015b), except for the appearance

of the instruments Z,, here, which need to be included since they appear as additional

regressors in the first step of our estimation procedure. Part (i) of Assumption 4 can

for example be justified by assuming that within any v/J-shrinking neighborhood of a®

we have wpal that d;;(a) is differentiable, that |V;0,;(«)| is uniformly bounded across j,

t, J and T, and that V;d;:(«) is Lipschitz continuous with a Lipschitz constant that is
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uniformly bounded across j, t, J and 7', for all [ = 1,... L. But since the assumption is
only on the Frobenius norm of the gradient and remainder term, one can also conceive

weaker sufficient conditions for Assumption 4(7).

Assumption 5. Forallc>0andl=1,...,L we have
sup |Vid(a) — Vi5(a%) || r = 0,(VJIT).
{a: VIT|la=a®|<c}

This last assumption is needed to guarantee consistency of the bias and variance esti-

mators that are presented in the following.

C.4 Bias and Variance Estimators

Here we present consistent estimators for the matrices G, €2, and W, which enter into the
asymptotic variance of the LS-MD estimator, and for the vectors By, B; and Bs, which
enter into the asymptotic bias of the estimator. Consistency of these estimators is stated
in Theorem 5.3.

Given the LS-MD estimators & and E , we can define the residuals
K o~
e=06(a,s X) =) BXp—Af. (C.7)
k=1
We also define the JT x K matrix 2, the JT x M matrix 2, and the JT x L matrix
g by

M = vec <MXX;€M?) B = veo (MXZme)  Gu=-vec(V,5(@),  (CS8)

)

where k=1,..., K, m=1,...,M,and [ =1,..., L. The definition of i‘e’ec, iél) and 29)
is analogous to that of »Y°°, 29) and zﬁf), but with E(e?t) replaced by é\?t. The T x T
matrices ii(’e, k=1,...,K, and iff, m=1,..., M, are defined by

sXe
Ek,t’r - {
SZe
Em,i&‘r - {

23'121 Xijejr for0O<t—7<h

otherwise

S |~

Zj:l Zmjt€jr for0<t—7<h

S |~

otherwise
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where t,7=1,...,T, and h € N is a bandwidth parameter. Using these objects we define

=N 1 @\/&:)\f g’?Af
G=—
JT \ MNIN A1 oM f ’

~ L raor oY S Af A~
Q= 5T (a:/\f,z)‘f) diag(Xy%) <w)‘f,z)‘f> ,

/b\gf’o) = Tr <Pf§kX’e) ,

B = I [diag (50) My X F (PR RN

B = v [diag (S2) M X AN (THTF

W0 = v (PrSZ)

Bt = T [diag (S0) Mg Zo F(FHTVNTX]

e = Ty :diag (ig@) M7 Zp XN (F R ?] , (C.10)

~ S i\ ~
for k= 1,...,K and m = 1,..., M. We set b@i) — (bgﬂ”’”,...,b%’”) and b=i) —
'~ - o~ . /

(bgz’z), e b%j’”) , for i = 0,1,2. The estimator of W is given by

1 SAfISAS —1 0 SAFISAF\=1Nf1 2AF 1 -1
— 7L X —\x x X z

Onmxk Onrxm T JT
/
1 -1 _(‘%\Af//x\/\f)—l/x\kf/ fz\)\f
W NN . C.11
i (2 M s (©1)
Finally, for ¢ = 0, 1, 2, we have
~ e\ — 1 i)\(zﬂ)
B;=—-(GWG) GW | . : (C.12)
p(z:4)

The only subtlety here lies in the definition of i?e and f]rz,{e, where we explicitly impose
the constraint that i?ti = ETZnBtT =0fort—7 <0 and for t —7 > h, where h € N
is a bandwidth parameter. On the one side (¢ — 7 < 0) this constraint stems from the
assumption that X and Z,, are only correlated with past values of the errors e, not with
present and future values, on the other side (¢ — 7 > h) we need the bandwidth cutoff to
guarantee that the variance of our estimator for By converges to zero. Without imposing
this constraint and introducing the bandwidth parameter, our estimator for By would be

inconsistent.

C.5 Correlation of ¢j; across j

Our assumptions impose that the error term ej; is independent both across products j and

over markets/time ¢t. We allow for the regressors X;; to be pre-determined, for example,
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lagged dependent variables are allowed, and would therefore run into identification prob-
lems if we also allowed ej; to be to be correlated over time. However, it would not cause
any conceptual problem to allow weak correlation of e;; across products j. The above
formulas for the asymptotic variance and bias of the LS-MD estimator would need to be

modified as follows:

e The diagonal matrix diag(3Y¢°) that appears in the definition of € in equation (C.2)
needs to be replaced by the potentially non-diagonal JT x JT variance-covariance ma-
trix of the JT-vector of error terms vec(e). Otherwise, the formula for the asymptotic
variance-covariance matrix (GWG') ™" GWOQWG' (GWG') ™ of the LS-MD estimator

is unchanged.

e The diagonal matrix diag (ES)) that enters into the definition of bl(f’l) and b,,(;i’l)
in equation (C.5) needs to be replaced with the potentially non-diagonal J x J
matrix %Z?:l Ege), where Ege) is the variance-covariance matrix of the J-vector
(eje + j=1,...,J). After this change and the change of Q already described above,
the asymptotic bias terms By, By and B are still given by equation (C.6).

Those two modifications to the asymptotic variance and bias are very much in line with
the results in Bai (2009), who allows for cross-sectional dependence in the error term in
a linear model with interactive fixed effects. We leave the question of bias correction and

inference for the case of cross-sectional dependence in ej; for future work.

D Proofs

In addition to the vectorizations x, 2/, z, 22/, g, and d(«), which were already defined above, we
also introduce the JT x K matrix zf, the JT x M matrix 27, and the JT x 1 vector & by

x{k:vec (XpMpo), 2 = vec (ZmMjyo) e = vec (e),

L,moT

where k=1,..., Kand m=1,..., M.

D.1 Proof of Identification

Proof of Theorem 3.1. To show that any two different parameters cannot be observational

equivalent, we introduce the following functional

Q(@.8,7. A f: Flx 7) = Bo [[5t0) =6 X —v- 27

where [Eg refers to the expectation under the distribution of observables F 2 x,z» Which is implied
by the model, i.e. FQy , =T(a% %X f7 FQy /).
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First, we show that under Assumption ID(i)-(iv), the minima of the function @ (ao, By, A S E2X7Z)
over (B, v, A, f) satisfies 8 = 3%, v = 0, and A\f’ = A\°f%. Using model (3.1) and Assumption
ID(i%) and (¢it) we find

Q. B\ fiFlx.2)

=EoTr {[6(a®) ~ 8- X —v-Z—MV[6(a®) — B-X —7-Z — Af']}

=EoTr{[(8° = B)- X =7 Z+ X" = Af' +€[(B°=B) - X —7- Z+ A" = Af' +e]}

= EoTr(e'e) + Bo Tr {[(8° — B) - X — 7+ Z+ A% —AfT1(B° — B) - X —~-Z+2f" —Af]} .

=Q* (B fiF) x 2)

(D.1)

Note that Q*(ﬁ,v,A,f;FﬁX,Z) > 0 and that Q*(ﬁO,O,/\O,fO;FL?’X’Z) = 0. Thus, the minimum
value of @ (@, 8,7, A, f; F2 . ) equals EgTr(ee) and all parameters that minimize Q (o, 5,7, A, f; F2 x ;)
must satisfy Q*(8,7, A, f; FSVX’Z) = 0. We have for any A and f

Q (B A Fi FOx ) > Bo T {[(8° — B) - X — - Z) My a0y [(8° — B) - X — - Z]}
= 1(8° = 8), 7 Eol(x, 2)' (11 ® My x0)) (. 2)][(8° = B), )’
> b (/18- 82 + 1)°, (D.2)

where the last line holds by Assumption ID(iv). This shows that 8 = 3° and v = 0 is necessary to
minimize Q (ao,ﬂﬁ, A FB,X,Z)- Since Tr(AA’) = 0 for a matrix A implies A = 0, we find that
Q*(BO,O,A,f;FﬁX’Z) = 0 implies 8 = %, v = 0 and A\°f% — Af’ = 0. We have thus shown that
Q (ao,,@,fy,/\,f;quX,Z) is minimized if and only if 3 = %, v = 0 and Af’ = A0 fV.

For the second part, we introduce a second functional; for a given « we define:

7(047 FS,X,Z) € argmin’y énir} Q (Oé, 57 s )\7 f7 FB,X,Z) . (DS)

We show that under Assumption ID(i)-(v), v(a; FY x ) = 0 implies a = a°. From part (i)

we already know that y(a% F{y ;) = 0. The proof proceeds by contradiction. Assume that
(o F‘SX,Z) = 0 for a # . By definition of 4(-) in Eq. (D.3), this implies that there exists 3, A
and f such that

Q (@ BO0AFiFlx z) < min Q (0B N fiFlx 7). (D.4)

YA,

Using model (3.1) and our assumptions we obtain the following lower bound for the lhs of inequal-
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N FiFOxz) = EoTr {(5(04) ~B-X A7) (8a) ~ 5 X Xf’)]
EoTre[ (3(0) ~ 3(a°) — (3 - 8°)- X +A°f° = Af' + e)/
(5(a) = 6(a%) = (B 8%)- X + 2" = Af" +¢) |
= 2y Tr [ (5(0) — 8(a%) + ¢) ¢] + BoTe[ ((a) — 8(a®) — (5 ) - X +X°7° ~ 3f")
(5(a) = 6(a®) = (B = 8% - X +X°4° = 37"} |
> 9By T | (6(a) — 5(0°) + be) €] + EoTr[ (5(a) —6(a%) — (5 ) X) M5 50,
((a) = 8% = (5 8°) - X) |
— 2B Tr[ (3() — 0(a®) + 3e) ¢| + Eo [AE, 5 (1r @ M5 10 ) A, 5]

= 2IETr (6(c) — () + %6)/ 6: + Eo {Afg)BAﬁa,g} —Eo {Af;,g (JlT ® P(S\,/\O)) Afa,B} :
(D.5)

Similarly, we obtain the following upper bound for the rhs of the above inequality (D.4)

min a, D, ,A, 7}7‘0 < min a, o, 7)\0a O;FO
B,w\fQ( Byvs A f s7X,Z)—B7’YQ( B,y f s,X7Z)

= minEyTr [(5(a) —BX =y Z =" (§(a) = B-X — - Z - Aofo’)}

= rg’i’?EoTr[(é(a) —6(®) - (B-pY-X f’y-ZJre)/

(6(a) = 6(a®) = (8= 8% - X =7+ Z+¢) |

= ZIEOTr[ (6(c) = 6(a”) + %e)/e} + IéuA?IEO'H{ (6(c) =6(a®) = (B=8")- X — - Z)/

(6(a) = 8(a) = (8= B)- X =7 2)]
= 2]E0Tr[ (6(c) — 6(a”) + le)/ e]
- ’ -
+ min Eo {(Afa s—a(B=B)—=) (Mg 5—2(8—B) - zv)]
By ' '
!/
= 2IE0Tr[ (6(c) = () + %e) e} + Eo [Af;ﬁAgaﬁ}
-1
— T, [Ag;ﬁ (z,2)|Eo[(x,2) (z,2)] Eo[(x,z2) Afaﬁ]. (D.6)
Plugging these bounds in the original inequality we obtain
-1
Eo[Ag] ; (2, 2)] Bo[(z, 2)'(z,2)] " Eo|(z, 2)' AL, 5] < Eo {Ag;ﬁ (11T ® Pmo)) Agaﬁ} ., (D.7)
which is a contradiction to Assumption ID(v).
We have thus shown that ~(a; F 2 X, ») = 0 implies @ = o, which shows that o is uniquely
identified from F 2 x,z- Using that o? is identified, we can now use the first part of the proof, and
uniquely identify 8% and A°f from F(y , as the unique minimizers of Q(a®, 8,7, \, f; Fo x 5)-

Note that these findings immediately preclude observational equivalence, viz two sets of distinct pa-
rameters (a?, 8%, A0, f9) # (al, 81, AL, f1) which are both consistent with the observed distribution

0
FS,X,Z'
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Assumption INV guarantees that for given a”, 3% and A\° f the Inap FOX 7 =Tl B0 N0 Fg,x,z)

from F y , to FY y , is invertible, i.e. we can uniquely identify F? y , from Fy ,. |

D.2 Proof of Consistency

Proof of Theorem 5.1. # Part 1: We show that for any consistent estimator & (not necessarily
the LS-MD estimator) we have S5 = 8° 4 0,(1) and 55 = 0,(1). Thus, for this part of the proof
assume that @ = o + op(1). This part of the proof is a direct extension of the consistency proof in
Moon and Weidner (2015b). We denote the least square objective function by Qr(«a, 8,7, A, f) =
ﬁ I6(a) = B- X —~-Z — )\f’||§. We first establish a lower bound on Q ;7 (@, 3,7, A, f). We have
for all A, f:

Qur(@ 8,7\ f) = 7T [(6@) = 6+ X = 2= Af) (5@) = - X —7- Z = AP
zjiTTr[(é(a)—ﬁ-X—v.z—Af)M(MO)(() B-X—n-Z— Af)}

— T (6@ = 6@ + e (3= 8- X =7 2) Mo

(<6<a>—5<a0>>+e—<ﬂ—ﬂ0>~x—w2)}
> 018~ B + b1 4 0p (18— B+ Iy 1) + 35 T (e€) + 0,(1).
(D.8)

where in the last line we used Assumption 1(7), (i), (¢ii), and (iv). Here are some representative

examples of how the bounds in this last step are obtained from these assumptions:

JLTTr {((5 = 8% X =7 2) Moy (B 5°) - X - Z)}
= (8,937 (2, 2) (11 ® M(x x0)) (2, 2)](6',7")'
> b(8',7") (8 7) =18 = Bl + byl

7T (6(@) = 60 Moso) (5 ) X))

< == 1@ = 80| [ Mo xey (8= 8% X)|

1 .
< 77 18@) =8| (8 = 8%) - X[
D) fl@=a®|[|8 = 8%l = on[l8 = 5°ID),

‘Tr [e M o) ((B=8°) - X) } ’
=[] @m0 |+ | [eram - - x) |
< op ()18~ 81l + el | (8 — 5% - X]
< 018 — 81l + s llel 68— %) - X = o,([18 — ). (D.9)
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See the supplementary material in Moon and Weidner (2015a) for further details regarding the

algebra here. Applying the same methods, we also obtain
~ 0 0 (0 1 /
Qur(a,s”,0,\", fY) = J—TTr (e€') + op(1). (D.10)

Since we could choose 8 = 8, v =0, A = A% and f = £ in the first step minimization of the LS-MD
estimator, the optimal LS-MD first stage parameters at & need to satisty Q jr(a, Ba, Az, Aas fa) <
Qur(@,8°,0,X° f9). Using the above results thus gives

bl16a — 8112 + b11Fal + o (1132 — B + I —1°Il) +0p(1) < 0. (D.11)

It follows that ||G5 — 8°)| = 0,(1) and A5 = 0,(1).
# Part 2: Now, let @ be the LS-MD estimator. We want to show that @ — a® = 0,(1). From
part 1 of the proof we already know that 4,0 = 0,(1). In the second step of the LS-MD estimator

the optimal choice @ minimizes 45 W7 75, which implies that
~/ ~ ~/ ~
YaWirYa < Foo WirJao = 0p(1), (D.12)

and therefore 45 = o,(1). Here we used that W;r converges to a positive definite matrix in
probability. Analogous to the identification proof we are now going to find an upper and a lower
bound for Q ;1 (a, Ba, Y&, Aa, fa) In the rest of this proof we drop the subscript a on B8, ¥, A and

f. Using model (3.1) and our assumptions we obtain the following lower bound
Qur (@83, A f) = #x [(6(@) ~B-X-5-2-5F) (sa )—B-X—i-Z—S\f’)}
— 1] (6@) - 6(a”) — (3 - 8°) -X—&-Z+A°f°—ﬂf’+e)l
(6@) = 8(a®) = (B =8 X =5-Z+ X" = A +¢)]
> L] (@)~ 6(0%) ~ (B ) X —5-Z +¢) Mg
(5@) — 8% — (5% - X —7-Z+¢)|
= ] (5@) = 8(0%) = (5= %) X) Mg o) (@) = 5(a%) = (5= 5 - X)
+ 7T | (5(@) = 8(a®) + 3¢) ¢| + op(@— | + 15 = Bl + 0p(1)
7o [88, 5 (12@ M x0)) A6 5]
+ ] (0@) — 6(a%) + Se) €] + op(Ia — a®| + 18 = B°I) + 0p(1)
- 4 [ag, ~Agaﬁ} — 7 |88, 5 (10© Py ao) ) Aéag)

+ 5] (5@) — 6(a%) + Le)’ e: +op(la—a®l + 18 = BOY) + 0,(1). (D.13)

The bounds used here are analogous to those in (D.9), and we again refer to the supplementary
material in Moon and Weidner (2015a).
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Similarly, we obtain the following upper bound
Qrr (8. Bs 3, da fa) = min Qe (@,6,7. 0, f) < minQur (8.8,7, X", £°)
— min T (@)~ 5 X — 7 Z = \fY) (6@) ~ B+ X -2 = Xf")]
= min - Tx[ (6@) = 8(a) = (8= 8)- X =7 Z+¢)
(6@) = 6(a") = (B—8°)- X =7 Z +¢) |
= F T [ (3(@) ~ 50" + 3¢)' ] + min - Tx[ (6(3) — 8(a°) = (8- 5 - X = - 2)'
(6(@) = 8(a®) = (8= %) - X —7-2) |

= ZTr| (6(3) - 9(a”) + Je) ]

)

+min {(Agaﬁ ~2(8~B) ~ =) (Dbgs— (8- F) - zv)}

= Z2Te[ (5@) - 8(a%) + 3e)' o] + 7 [Ag] 508 5]

— (A, 5 (@, 2)] [(@,2) (2,2)] " [(3,2) A& 5] (D.14)

Combining this upper and lower bound we obtain

F AL, 5 (,2)] [(@,2) (@, 2)] T [(,2) Ay 5]

~ 77 (88 5 (10 ® P aoy) A 5| < o(ld@ = a®ll + 11 = 8°1) + 0, (1).
(D.15)
Using Assumption 1(v) we thus obtain

bl — a®|* + b5 = B°I* < op(ll@ — @l + 18 = B°I) + 0p(1), (D.16)

from which we can conclude that [|@ — a®|| = 0,(1) and ||3 — 8° = 0,(1).
# Part 3: Showing consistency of B obtained from step 3 of the LS-MD estimation procedure
is analogous to part 1 of the proof — one only needs to eliminate all v variables from part 1 of the

proof, which actually simplifies the proof. |

D.3 Proof of Limiting Distribution

Lemma D.1. Let Assumption 1 be satisfied and in addition let (JT)~*/?Tr(eX]) = Op(1), and
(JT)"'2Tr(eZ!) = O,(1). In the limit J, T — oo with J/T — x%, 0 < Kk < oo, we then have
V(@ —a) = 0,(1).

Proof. The proof is exactly analogous to the consistency proof. We know from Moon and Weidner
(2015a; 2015b) that v/J540 = O, (1). Applying the inequality (D.12) one thus finds VIJAs = O,(1).

With the additional assumptions in the lemma one can strengthen the result in (D.13) as follows
QJT (aagaﬁﬂj‘a.f)
> Jr A& 508 5] = #r (A8, ;5 (1r © Py o)) Abag]

+ & e[ (5@) = 6(0%) + e) | + 0, (VIla — all + VT3 - 8°]) + Op(1/7). (D.17)
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Using this stronger result and following the steps in the consistency proof then yields v/.J (a—a) =
0,(1). ]

Proof of Theorem 5.2. Assumption 4 guarantees (JT)~1/2Tr(eX}) = O,(1), and (JT)"1/2Tr(eZ!,) =
O,(1), so that we can apply Lemma D.1 to conclude v/J(@ — a) = O,(1).

The first step in the definition of the LS-MD estimator is equivalent to the linear regression
model with interactive fixed effects, but with an error matrix that has an additional term Ad(a) =
§(a) — 8(aV), we write ¥(a) = e + Ad(a) for this effective error term. Using @ — a® = 0,(1) and
Assumption 1(i) we have || ¥(Q)| = 0,(v/JT), so that the results in Moon and Weidner (2015a;
2015b) guarantee G5 — 8% = 0,(1) and ||7z] = 0,(1), which we already used in the consistency
proof. Using v/J(& —a) = O,(1) and Assumption 4(i) we find ||¥(Q)| = O,(v/J), which allows us
to truncate the asymptotic likelihood expansion derived in Moon and Weidner (2015a; 2015b) at

an appropriate order. Namely, applying their results we have

. G g0 . [CO) (X, U(a)) + C® (X, ‘I’(a))]kzl,...,K + 5 (a),
. [CD (Zy, ©()) + CO (Z, W(@))], ),
(D.18)
where
. TlT ( [H(Mfolx;ﬂMAoX;@z)}kl,kzzlr..,x [Tr(MfOXI%ZW)\OZm)]k:l,...,K;m:L»-wM )
(Te(Mpo Z, Moo Xi)] ey argmr, e (M0 Z0, Mo Do)y s
:T;(fo’ZAf)/(fo,zAf) : (D.19)

and for X either X}, or Z,,, and ¥ = ¥(a) we have

cW(x, v) = \/% Tr [Mfo ¥’ Myo X]

c® (X, ¥) = — \/% {Tr (\IJMfo U Myo X fO (£ f0)~1 (AV20) /\0/)

+ Tr (U Myo W Myo X' X% (AYX0) (Y 971 )
+ Tr (U Myo X Mpo W' AO (AYX0) (£ F9) 71 %) } , (D.20)
and finally for the remainder we have
rS(a) = 0, ((IT) 2@ P X4l1) + Oy ((IT) 29 (@)||Zun )
+ 0 (D) @KL 1Ba = 8°11) + Op (VT @) Znl2IFal) + (D-21)

which holds uniformly over a. The first two terms in 75(a) stem from the bound on higher
order terms in the score function (C®), C'¥)| etc.), where ¥(a) appears three times or more in the
expansion, while the last two terms in 7% () reflect the bound on higher order terms in the Hessian
expansion, and beyond. Note that Assumption 1(iv) already guarantees that V;r > b > 0, wpal.
Applying | Xi ]| = O,(VIT), [ Zun]l = O,(VIT), and [[¥(a)| = O,(v/T) within VT a - a%] < c,
we find for all ¢ > 0

sup [ ) —o,(1) (D.22)
(o vVTlla—a0<e} L+ VIT||Ba — 8O + VIT|IFal *
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The inverse of the partitioned matrix V;p is given by
(.I‘)\f/MzAfﬂf)\f)_l _ (a:Af’Mzufo)_l (x)\flzkf) (ZAf/Z,\f)—l

VJTI =JT 1 1 —1
— (zkf/MfoZAf) (ZAfI$Af> (l'/\flt'lf)\f) (ZAf/kaf Z/\f)

(D.23)
Using v J (& — a) = O,(1) and Assumption 4(i) we find

[T (X, ¥(a))]

k=1,.. K 1 AN
= — (.'L' , 2 ) 13
(€O (Zn ¥ @],y 0 ) VT
1 —~ N
-5 @) | VIT@ - )+ 0,(VTT]8 - %)),
(€O (X, 9(@))],_ i?
k=1,....K _ 2 +o0, (\/7\\@ -~ a0||) , (D.24)
[C®) (Zp, \Ij(a))]mzl,.u,lw t?
where
@) _ [~ 2 — [0®@
c?) = [C’ (Xk,e)} btk = [C (Zm&)]m:le - (D.25)

From this one can conclude that VJT| 8z — 8% = Op(1) + O,(VJIT||a — a°|)) and VJIT|3al =
0,(1) + O,(VJIT|a — a°)), so that we find r5(a) = 0,(1) + 0,(VJT||@ — a°||). Combining the

above results we obtain

1
VvJT

(L o VIT (4 — o
(JTZ Mx/\fg> JT (& — a”)

ZAf/ vaa_’_cg) _ (ZAf/fo) (wxf/fo)fl 0552)

1 -1
VJIT 35 = ((]TZAf/Mm%fZV)

+0,(1) + 0,(VJT|a - a°))).  (D.26)

The above results holds not only for &, but uniformly for all « in any v/J shrinking neighborhood

of a® (we made this explicit in the bound on 7%(a) above; one could define similar remainder

terms with corresponding bounds in all intermediate steps), i.e. we have

1 ! -1
VIT 54 = (z)‘f’M AfZAf> —— M Mypare + B — (MM (N '2M) T D)
« JT x \/ﬁ T z T
1
— (JT A Mfog> VIT (a — )| +77(a), (D.27)
where for all ¢ > 0
N
sup [ ()] = 0,(1) . (D.28)

{a: VTla—a%|<c} 1+ VIT[|a —al

Therefore, the objective function for & reads

T, Wor fa = Ao =245 [VIT (o= )|+ [VIT o= ") 43 [VIT (=) +5(a)
(D.29)
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where Ag is a scalar, Ay is an L x 1 vector, and As is an L x L matrix defined by

1 1] (1 -
Ay = L/ﬁ M Morse + ¢ — (M) (227N Cg)} <JTZ)‘f/MfoZ>‘f> Wt
-1
L o bYi L (2) NN (A AT (2)
A\ = M _
(JTZ oy mz 2ME T+ C; (z T )(x T ) Ca ;
1 1 - 1 -
Al = (JT g’ MIAfZAf) (HZAf/Mw/\f Z)‘f> WJT (JTZ)‘f/MIAfZAf>
1 Af1 (2) MfIoNF AP (2)}
2 Moare + ¢ — (27 'z e,
o Mg D = () ()
1 1 N\ 1 o
A2 = (J g’ Mx)\fZAf) (HZ)\f/Mw,\fZ)\f> WJT (JTzAf/MIAfZAf) (JT ZAf/ szfg> s
(D.30)
and the remainder term in the objective function satisfies
obj
sup [l QO 5 = 0p(1) . (D.31)
(@ VT la=avl<e} (14 v/ T]a — o)
Under our assumptions one can show that [|A;|| = Op(1) and plim ;4 A2 > 0. Combining the

expansion of the objective function with the results of v/J-consistency of & we can thus conclude
that

VIT (@—a®) = A" Ay +0,(1) . (D.32)
Analogous to equation (D.18) for the first step, we can apply the results in Moon and Weidner
(2015a; 2015b) to the third step of the LS-MD estimator to obtain

VIT(E -8 = (e ) [ (X, 0(@) + 0 (9@, + o)

k=1, K

1 -1 1 1 ~
() e (G e) VIT G )+ 2] + o).
(D.33)

Here, the remainder term o, (v JT||a — a®||) is already absorbed into the 0,(1) term, since (D.32)
already shows v/ JT-consistency of a. Let G ;1 and W;r be the expressions in equation (C.2) and
(C.3) before taking the probability limits, i.e. G = plim;,_, . Gyr and W = plim; 1, Wyr.

One can show that

GirWirGyp =

5[~
S

Ay 0
(9,2) Poas (g,2) + 20 ThxK o) (D.34)
Orxr Orxk

Using this, one can rewrite equation (D.32) and (D.33) as follows

a—al
GJTWJTG{]T vJT N
B—-p°
1
1 , A+ (Fpg'a™) (Fpaad) e
= ﬁ (ga Z‘) Pw*f‘g + 0(2) + Op(l) ) (D35)
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and therefore

a—al
VaT |
B—p°
_ 1 /
= (GyrWirG’ Y Garw [ oM AN 5]
(JT JT JT) JTVVJT \/ﬁ( )
[ A () - g ()] ()
+ (GyoWirGlyr) @) +0,(1)
Cg
2
= (GWa)teaw ! (fo,z’\f)/€+ 0%2; +0p(1), (D.36)
VJIT c: v

where Az = (F5g' Mxs2™N) (%z’\f’erfz’\f)_l Wi (2N My z)‘f)_l. Having equation (D.36),
all that is left to do is to derive the asymptotic distribution of c_(2)7 cf) and ﬁ (x)‘f, zAf)/ e. This
was done in Moon and Weidner (2015a; 2015b) under the same assumptions that we impose here.

They show that

B = 7@ — gp@2 4o (1), B = k71D — kb2 £ o,(1), (D.37)
and
]. )\f )\f / b(x’o)
ﬁ (I’ , 2 ) g T N —K b(z,O) 5 Q. (D38)
Plugging this into (D.36) gives the result on the limiting distribution of & and B which is stated in
the theorem. ]

D.4 Consistency of Bias and Variance Estimators

Proof of Theorem 5.3. From Moon and Weidner (2015a; 2015b) we already know that under
our assumptions we have € = Q+o0,(1), b@9) = b= 40 (1) and bED = b 40,(1), fori = 0,1,2.
They also show that ||M5 — Myo|| = O,(J~1/2) and [M7— Mol = O, (J~1/?), from which we can
conclude that W = W + op(1). These results on M5 and M7 together with V/JT-consistency of &
and Assumption 5 are also sufficient to conclude G = G + 0,(1). It follows that B; = B; + 0,(1),
fori=0,1,2. |

E Additional details on numerical verification of

instrument relevance condition

Here we present some additional details related to the numerical verification of the instrument

relevance condition, which was discussed in Section 6.1 of the main text.
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For the numerator of pg(a, 8) one finds

max [Ag;ﬁ (]lT ® P()\)\O)) A{aﬁ]

AERIXE
= Af;’ﬁ (I ® Pyo) Aén g + Ag}l{anXR [A{;’ﬁ (17 @ MyoPyxMyo) Afa‘ﬂ]
= A&lx,[j (]lT 39 P)\o) Aga,ﬁ + /\éﬁl{ij}iRTI‘ [(5(0[) — (5(@0) _ 5 . X)/M)\(JP)\M)\O((S(O[) — 5(a0> _ ﬁ . X)}

R

= A&, 3 (17 @ Pyo) Abas + Z pr [(6(a) = 8(a®) — B+ X) Myo(5(cr) — 6(a°) — 8- X)] .
r=1

In the first step we used P(x xo) = Pxo + MyoPa,,aMyo. The optimal value of A in the second
line always satisfies A = Mo\, so we could write Py instead of PMAO A- In the second step we
plugged in the definition of A&, g. In the final step we used the characterization of the eigenvalues
in terms of a maximization problem, and the fact that the non-zero eigenvalues of the matrices
(0(r)=6(a®) = B-X) Mo (8(r) =6(a”) — B-X) and Mo (8(er) =6(a’) = 5-X) (8(er) =6(a’) = B-X) Mo
are identical.

Because of this, pr(a, 8) is equal to
AL, 5 (L1 @ Pyo) Aba g
Af;ﬂAga,B

iyt [(0(e) = 5(a) = B+ X)' Myo(8(ar) — 5(a°) = 8- X)]
Ag&’ﬁAga,b’ ’

/)F(Oé’ﬁ) =

+

Thus, computation of pr only involves the numerical calculation of the first R eigenvalues pu, of a

T x T matrix, which can be done very quickly even for relatively large values of T
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