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Abstract

This paper studies nonparametric identification in market level demand models for

differentiated products with heterogeneous consumers. We consider a general class of

models that allows for the individual specific coefficients to vary continuously across the

population and give conditions under which the density of these coefficients, and hence

also functionals such as welfare measures, is identified. Building on earlier work by Berry

and Haile (2013), we show that key identifying restrictions are provided by (i) a set

of moment conditions generated by instrumental variables together with an inversion of

aggregate demand in unobserved product characteristics; and (ii) the variation of the

product characteristics across markets that is exogenous to the individual heterogeneity.

We further show that two leading models, the BLP-model (Berry, Levinsohn, and Pakes,

1995) and the pure characteristics model (Berry and Pakes, 2007), require considerably

different conditions on the support of the product characteristics.
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1 Introduction

Modeling consumer demand for products that are bought in single or discrete units has a

long and colorful history in applied Economics, dating back to at least the foundational work

of McFadden (1974, 1981). While allowing for heterogeneity, much of the earlier work on this

topic, however, was not able to deal with the fact that in particular the own price is endogenous.

In a seminal paper that provides the foundation for much of contemporaneous work on discrete

choice consumer demand, Berry, Levinsohn and Pakes (1994, BLP) have proposed a solution

to the endogeneity problem. Indeed, this work is so appealing that it is not just applied in

discrete choice demand and empirical IO, but also increasingly in many adjacent fields, such as

health, urban or education economics, and many others. From a methodological perspective,

this line of work is quite different from traditional multivariate choice, as it uses data on the

aggregate level and integrates out individual characteristics1 to obtain a system of nonseparable

equations. This system is then inverted for unobservables for which in turn a moment condition

is then supposed to hold.

Descending in parts from the parametric work of McFadden (1974, 1981), market-level de-

mand models share many of its features, in particular (parametric) distributional assumptions,

but also a linear random coefficients (RCs) structure for the latent utility. Not surprisingly,

there is increasing interest in the properties of the model, in particular which features of the

model are nonparametrically point identified, and how the structural assumptions affect identi-

fication of the parameters of interest. Why is the answer to these questions important? Because

an empiricist working with this model wants to understand whether the results she obtained

are a consequence of the specific parametric assumptions she invoked, or whether they are at

least qualitatively robust. In addition, nonparametric identification provides some guidance on

essential model structure and on data requirements, in particular about instruments. Finally,

understanding the basic structure of the model makes it easier to understand how the model

can be extended. Extensions of the BLP framework that are desirable are in particular to allow

for consumption of bundles and multiple units of a product without modeling every choice as

a new separate alternative.

We are not the first to ask the nonparametric identification question for market demand

models. In a series of elegant papers, Berry and Haile (2011, 2013, BH henceforth) provide im-

portant answers to many of the identification questions. In particular, they establish conditions

under which the “Berry inversion”, a core building block of the BLP model named after Berry

(1994), which allows to solve for unobserved product characteristics, as well as the distribution

1There are extensions of the BLP framework that allow for the use of Microdata, see Berry, Levinsohn
and Pakes (2004, MicroBLP). In this paper, we focus on the aggregate demand version of BLP, and leave an
analogous work to MicroBLP for future research.

2



of a heterogeneous utility index are nonparametrically identified.

Our work complements this line of work in that we follow more closely the original BLP

specification and assume in addition that the utility index has a linear random coefficients

(RCs) structure. More specifically, we show how to nonparametrically identify the distribution

of random coefficients in this framework. This result does not just close the remaining gap in

the proof of nonparametric identification of the original BLP model, but is also important for

applications because the distribution of random coefficients allows to characterize the distri-

bution of the changes in welfare due to a change in regressors, in particular the own price (to

borrow an analogy from the treatment effect literature, if we think of a price as a treatment, BH

recover the treatment effect on the distribution, while we recover the distribution of treatment

effects). For example, consider a change in the characteristics of a good. The change may be

due to a new regulation, an improvement of the quality of a product, or an introduction of a

new product. Knowledge of the random coefficient density allows the researcher to calculate the

distribution of the welfare effects. This allows one to answer various questions. For example,

one may investigate whether the change gives rise to a Pareto improvement. This is possible

because, with the distribution of the random coefficients being identified, one can track each in-

dividual’s welfare before and after the change. If a change in one of the product characteristics

is not Pareto improving, one can also calculate the proportion of individuals who would benefit

from the change and therefore prefers the product with new characteristics.2 Identification of

the random coefficient distribution allows one to conduct various types of welfare analysis that

are not possible by only identifying the demand function. Our focus therefore will be on the set

of conditions under which one can uniquely identify the random coefficient distribution from

the observed demand.

Naturally, Identification will depend crucially on the specific model at hand. As it turns out,

there are important differences between the classical BLP and the pure characteristics model

(see Berry and Pakes (2007), PCM henceforth) that stem from the presence of an alternative,

individual and market specific error, typically assumed to be logistically distributed and hence

called “logit error” in the following. A lucid discussion about the pros and cons of both

approaches can be found in Berry and Pakes (2007). One advantage of the PCM we would

like to emphasize at this point is that it is well-suited for the analysis of welfare changes when

a new product with a particular characteristic is introduced to the market. Moreover, the

pure characteristics model also predicts a reasonable substitution pattern when the number

of products is large, while the BLP-type model may give counter-intuitive predictions. In

2Note that a simultaneous change in the product characteristic and price is allowed. Hence, one can also
investigate how much price change can be made to compensate for a change (e.g. downgrading of a feature) in
one of the product characteristics to let a certain fraction of individuals receive a non-negative utility change,
i.e. P (∆Uijt ≥ 0) ≥ τ for some prespecified τ ∈ [0, 1], where ∆Uijt denotes the utility change.
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addition to these important economic differences, the identification strategies including the

required assumptions also differ significantly across the two models. In particular, in the BLP

model, one needs to rely on an identification at infinity argument to isolate the unobservable

for each product. In remarkable contrast, in the PCM one does not require such an argument

(and therefore does not have to employ some restrictive assumptions). Instead, in the PCM, we

demonstrate that one may combine demand on products across different markets to construct a

function that depends on the random coefficients through a single index so that we can recover

the distribution of unobserved heterogeneity without relying on identification at infinity. We

call this construction marginalization (or aggregation) of demand. This is possible due to the

unique structure of the PCM in which only the product characteristics (but not the tastes for

products) determine the demand. To our knowledge, this identification strategy is novel.

The arguments in establishing nonparametric identification of these changes are construc-

tive and permit the construction of sample counterparts estimators, using theory in Hoderlein,

Klemelä and Mammen (2010). From this theory it is well known that these estimators reveal

that the random coefficients density is only weakly identified, suggesting that numerical insta-

bilities and problems frequently reported and discussed in the BLP literature, e.g., Dube, Fox

and Su (2013), are caused or aggravated by this feature of the model.

Another contribution in this paper is that we use the insights obtained from the identifi-

cation results to extend the market demand framework to cover bundle choice (i.e., consume

complementary goods together), as well as consumption of multiple units. Note that bun-

dles and multiple purchases can in principle be accommodated within the BLP framework by

treating them as separate alternatives. However, this is not parsimonious as the number of

alternatives increases rapidly and with it the number of unobserved product characteristics,

making the system quickly intractable. To fix ideas, suppose there were two goods, say good A

and B. First, we allow for the joint consumption of goods A and B, and second, we allow for the

consumption of several units of either A and/or B, without labeling it a separate alternative.

We model the utility of each bundle as a combination of the utilities for each good and an

extra utility from consuming the bundle. This structure in turn implies that the dimension of

the unobservable product characteristic equals the number of goods J instead of the number

of bundles. There are three conclusions we draw from this contribution: first, depending on

the type of model, the data requirements vary. In particular, to identify all structural parts of

the model, in, say, the model on bundle choice, market shares are not the correct dependent

variable any more. Second, depending on the object of interest, the data requirements and

assumptions may vary depending on whether we want to just recover demand elasticities, or

the entire distribution of random coefficients. Third, the parsimonious features of the structural

model result in significant overidentification of the model, which opens up the way for specifi-
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cation testing, and efficient estimation. As in the classical BLP setup, in all setups we may use

the identification argument to propose a nonparametric sample counterpart estimators, but we

also use the insights obtained to propose a parametric estimator for models where there had

not been an estimator before.

Related literature: as discussed above, this paper is closely related to both the original

BLP line of work (Berry, Levinsohn and Pakes (1994, 2004)), as well as to the recent identi-

fication analysis of Berry and Haile (2011, 2013). Because of its generality, our approach also

provides identification analysis for the “pure characteristics” model of Berry and Pakes (2007),

see also Ackerberg, Benkard, Berry and Pakes (2007) for an overview. Other important work

in this literature that is completely or partially covered by the identification results in this

paper include Petrin (2002) and Nevo (2001). Moreover, from a methodological perspective,

we note that BLP continues a line of work that emanates from a broader literature which in

turn was pioneered by McFadden (1974, 1981); some of our identification results extend there-

fore beyond the specific market demand model at hand. Other important recent contributions

in discrete choice demand include Gowrisankaran and Rysman (2012), Armstrong (2013) and

Moon, Shum, and Weidner (2013). Less closely related is the literature on hedonic models, see

Heckman, Matzkin and Nesheim (2010), and references therein.

In addition to this line of work, we also share some commonalities with the work on bundle

choice in IO, most notably Gentzkow (2007), and Fox and Lazzati (2013). For some of the

examples discussed in this paper, we use Gale-Nikaido inversion results, which are related

to arguments in Berry, Gandhi and Haile (2013). Because of the endogeneity, our approach

also relates to nonparametric IV, in particular to Newey and Powell (2003), Andrews (2011),

and Dunker, Florens, Hohage, Johannes, and Mammen (2014). Finally, our arguments are

related to the literature on random coefficients in discrete choice model, see Ichimura and

Thompson (1995), Gautier and Kitamura (2013), Dunker, Hoderlein and Kaido (2013), Fox

and Gandhi (2012), and Matzkin (2012). Since we use the Radon transform introduced by

Hoderlein, Klemelä and Mammen (2010, HKM) into Econometrics, possibly in conjunction

with tensor products as in Dunker, Hoderlein and Kaido (2013), this work is particularly close

to the literature that uses the Radon transform, in particular HKM and Gautier and Hoderlein

(2013). Finally, the class of models we consider is related but differs from the mixed logit

model (without endogeneity) analyzed by Fox, Kim, Ryan, and Bajari (2012) who established

the identification of the distribution of the random coefficients from micro-level data, while

maintaining the logit assumption on the tastes for products. Our focus here is on market-level

models with endogeneity with the main goal being the identification of the distribution of all

random coefficients without any parametric assumption. As such, our identification strategy

differs significantly from theirs.
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Structure of the paper: The second section lays out preliminaries we require for our main

result: We first introduce the class of models and detail the structure of our two main setups.

Still in the same section, for completeness we quickly recapitulate the results of Berry and Haile

(2013) concerning the identification of structural demands, adapted to our setup. The third

section contains the key novel result in this paper, the nonparametric (point-)identification of

the distribution of random coefficients in the class of discrete choice demand model with IV type

endogeneity, which includes the BLP and PCM models. The fourth section contains various

extensions: We discuss the identification in the bundles case, including how the structural

demand identification results of Berry and Haile (2013) have to be adapted, but again focusing

on the random coefficients density. As another set of extensions, we discuss the multiple units

case. Finally, we discuss how full independence assumptions may be utilized to increase the

strength of identification, in particular in the identification of structural demands. The fifth

section discusses estimation. The objective here is twofold, first we sketch how a nonparametric

sample counterparts estimator that utilizes the insights of the identification sections could be

constructed, and we propose a simple parametric estimator for the bundles model which we

believe to be relevant for applications. We end with an outlook.

2 Preliminaries

2.1 Model

We begin with a setting where a consumer faces J ∈ N products and an outside good which

is labeled good 0. Throughout, we index individuals by i, products by j and markets by

t. We use upper-case letters, e.g. Xjt, for random variables (or vectors) that vary across

markets and lower-case letters, e.g. xj, for particular values the random variables (vectors)

can take. In addition, we use letters without a subscript for products e.g. Xt to represent

vectors e.g. (X1t, · · · , XJt). For individual i in market t, the (indirect) utility from consuming

good j depends on its (log) price Pjt, a vector of observable characteristics Xjt ∈ RdX , and an

unobservable scalar characteristic Ξjt ∈ R. We model the utility from consuming good j using

the linear random coefficient specification:

U∗ijt ≡ X ′jtβit + αitPjt + Ξjt + σεεijt, j = 1, · · · , J , (2.1)

where (αit, βit)
′ ∈ RdX+1 is a vector of random coefficients representing the tastes for the

product characteristics. For each j, εijt represents the “taste for the product” itself. Following

Berry and Pakes (2007), we consider a class of general market-level demand models that nests

models with tastes for products (σε = 1) and without tastes for products (σε = 0). The models
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with tastes for products include the random coefficient logit model used in BLP, in which case

σε = 1 and εijt, j = 1, · · · , J are i.i.d. Type-I extreme value random variables. When σε = 0,

the model is called the pure characteristic model (PCM). The two models are known to have

different theoretical properties. For example, the BLP model predicts that even with a large

number of products, the mark-up remains positive implying there is always an incentive to

develop a new product. As the number of new products grows, each individual’s utility tends

to infinity. On the other hand, in PCM, the model approaches competitive equilibrium and

the incentive to develop a new product diminishes as the number of products increases.3 As

we will show below, the two models also differ in terms of empirical contents.

Throughout, we assume that Xjt is exogenous, while Pjt can be correlated with the unob-

served product characteristic Ξjt in an arbitrary way. Without loss of generality, we normalize

the utility from the outside good to 0. This mirrors the setup considered in BH (2013).

We think of a large sample of individuals as iid copies of this population model. The

random coefficients θit ≡ (αit, βit, εi1t, · · · , εiJt)′ vary across individuals in any given market

(or, alternatively, have a distribution in any given market in the population), while the product

characteristics vary solely across markets. These coefficients are assumed to follow a distribution

with a density function fθ with respect to Lebesgue measure, i.e., be continuously distributed.4

This density is assumed to be common across markets, and is therefore not indexed by t. As we

will show, an important aspect of our identification argument is that, once the demand function

is identified, one may recover Ξt from the market shares and other product characteristics

(Xt, Pt). Then, by creating exogenous variations in the product characteristics and exploiting

the linear random coefficients structure, one may trace out the distribution fθ of the preference

that is common across markets. We note that we can allow for the coefficients (αit, βit) to

be alternative j specific, and will indeed do so below. However, parts of the analysis will

subsequently change, and we start out with the more common case where the coefficients are

the same across j.

Having specified the model on individual level, the outcomes of individual decisions are then

aggregated in every market. The econometrician observes exactly these market level outcomes

Sl,t, where l belongs to some index set denoted by L. Below, we give two examples. The first

example is the setting of the BLP and pure characteristics models, where individuals choose a

single good out of multiple products, while the second is about the demand for bundles.

Example 1 (Multinomial choice). Each individual chooses the product that maximizes her

3See Berry and Pakes (2007) for more details.
4This assumption is not crucial but made for the ease of exposition. Our main identification results (Theorems

3.1 and 3.2) hold for any Borel measure.
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utility out of J ∈ N products. Hence, product j is chosen if

U∗jt > U∗kt , ∀k 6= j . (2.2)

The demand for good j in market t is obtained by aggregating the individual demand with respect

to the distribution of individual preferences.

ϕj(Xt, Pt,Ξt) =

∫
1{X ′jtb+aPjt+σεej > −Ξjt}1{(Xjt−X1t)

′b+a(Pjt−P1t)+σε(ej−e1) > −(Ξjt−Ξ1t)}

· · · 1{(Xjt −XJt)
′b+ a(Pjt − PJt) + σε(ej − eJ) > −(Ξjt − ΞJt)}fθ(b, a, e)dθ , (2.3)

for j = 1, · · · , J , while the aggregate demand for good 0 is given by

ϕ0(Xt, Pt,Ξt) =

∫
1{X ′1tb+ aP1t + σεe1 < −Ξ1t} · · · 1{X ′Jtb+ aPJt + σεeJ < −ΞJt}fθ(b, a, e)dθ ,

(2.4)

where (b, a, e1, · · · , eJ) are placeholders for the random coefficients θit = (βit, αit, εi1t, · · · , εiJt).

The researcher then observes the market shares of products Slt = ϕl(Xt, Pt,Ξt), l ∈ L, where

L = {0, 1, · · · , J}.

The second class of examples considers discrete choice, but allows for the choice of bundles.

Example 2 (Bundles). Each individual faces J = 2 products and decides whether or not to

consume a single unit of each of the products. There are therefore four possible combinations

(Y1, Y2) of consumption units, which we call bundles. In addition to the utility from consuming

each good as in (2.1), the individuals gain additional utility (or disutility) ∆it if the two goods

are consumed simultaneously. Here, ∆it is also allowed to vary across individuals. The utility

U∗i,(Y1,Y2),t from each bundle is therefore specified as follows:

U∗i,(0,0),t = 0,

U∗i,(1,0),t = X ′1tβit + αitP1t + Ξ1t + σεεi1t, U∗i,(0,1),t = X ′2tβit + αitP2t + Ξ2t + σεεi2t,

U∗i,(1,1),t = X ′1tβit +X ′2tβit + αitP1t + αitP2t + Ξ1t + Ξ2t + σεεi1t + σεεi2t + ∆it , (2.5)

Each individual chooses a bundle that maximizes her utility. Hence, bundle (y1, y2) is chosen
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when U∗i,(y1,y2),t > U∗i,(y′1,y′2),t for all (y′1, y
′
2) 6= (y1, y2). For example, bundle (1, 0) is chosen if

X ′1tβit+αitP1t+Ξ1t+σεεi1t > 0, and X ′1tβit+αitP1t+Ξ1t+σεεi1t > X ′2tβit+αitP2t+Ξ2t+σεεi2t, and

X ′1tβit+αitP1t+Ξ1t+σεεi1t > X ′1tβit+αitP1t+Ξ1t+σεεi1t+X ′2tβit+αitP2t+Ξ2t+σεεi2t+∆it .

(2.6)

Suppose the random coefficients θit = (β′it, αit,∆it, εi1t, εi2t) have a joint density fθ. The aggre-

gate structural demand for (1, 0) can then be obtained by integrating over the set of individuals

satisfying (2.6) with respect to the distribution of the random coefficients:

ϕ(1,0)(Xt, Pt,Ξt) =

∫
1{X ′1tb+aP1t+σεe1 > −Ξ1t}1{(X1t−X2t)

′b+a(P1t−P2t)+σε(e1−e2) > Ξ2t−Ξ1t}

× 1{X ′2tb+ aP2t + σεe2 + ∆ < −Ξ2t}fθ(b, a,∆, e)dθ . (2.7)

The aggregate demand on other bundles can be obtained similarly. The econometrician then

observes a vector of aggregate demand on the bundles: Sl,t = ϕl(Xt, Pt,Ξt), l ∈ L where

L ≡ {(0, 0), (1, 0), (0, 1), (1, 1)}.

In Examples 2, we assume that the econometrician observes the aggregate demand for all

the respective bundles. We emphasize this point as it changes the data requirement, and

an interesting open question arises about what happens if these requirements are not met.

Examples of data sets that would satisfy these requirements are when 1. individual observations

are collected through direct survey or scanner data on individual consumption (in every market),

2. aggregate variables (market shares) are collected, but augmented with a survey that asks

individuals whether they consume each good separately or as a bundle. 3. Finally, another

possible data source are producer’s direct record of sales of bundles, provided each bundles are

recorded separately (e.g., when they are sold through promotional activities). When discussing

Example 2 (and Example 3 in Section 4), we henceforth tacitly assume to have access to such

data in principle.

2.2 Structural Demand

The first step toward identification of fθ is to use a set of moment conditions generated by

instrumental variables to identify the aggregate demand function ϕ. Following BH (2013), we

partition the covariates as Xjt = (X
(1)
jt , X

(2)
jt ) ∈ R×RdX−1, and make the following assumption.

Assumption 2.1. The coefficient β
(1)
ij on X

(1)
jt is non-random for all j and is normalized to 1.

Assumption 2.1 requires that at least one coefficient on the covariates is non-random. Since

we may freely choose the scale of utility, we normalize the utility by setting β
(1)
ij = 1 for all

9



j. Under Assumption 2.1, the utility for product j can be written as U∗jt = X
(2)′

jt βij
(2) +

αijPjt + σεεijt + Djt, where Djt ≡ X
(1)
jt + Ξjt is the part of the utility that is common across

individuals. Assumption 2.1 (i) is arguably strong but will provide a way to obtain valid

instruments required to identify the structural demand (see BH, 2013, Section 7 for details).

Under this assumption, U∗ijt is strictly increasing in Djt but unaffected by Dit for all i 6= j.

In Example 1, together with a mild regularity condition, this is sufficient for inverting the

demand system to obtain Ξt as a function of the market shares St, price Pt, and exogenous

covariates Xt (Berry, Gandhi, and Haile, 2013). In what follows, we redefine the aggregate

demand as a function of (X
(2)
t , Pt, Dt) instead of (Xt, Pt,Ξt) by φ(X

(2)
t , Pt, Dt) ≡ ϕ(Xt, Pt,Ξt),

where Xt = (X
(1)
t , X

(2)
t ) and Dt = Ξt +X

(1)
t and make the following assumption

Assumption 2.2. For some subset L̃ of L whose cardinality is J , there exists a unique function

ψ : RJ×(dX−1) × RJ × RJ → RJ such that Djt = ψj(X
(2)
t , Pt, S̃t) for j = 1, · · · , J , where S̃t is a

subvector of St, which stacks the components of St whose indices belong to L̃.

Under Assumption 2.2, we may write

Ξjt = ψj(X
(2)
t , Pt, S̃t)−X(1)

jt . (2.8)

This can be used to generate moment conditions in order to identify the aggregate demand

function.

Example 1 (BLP, continued). Let L̃ = {1, · · · , J}. In this setting, the inversion discussed

above is the standard Berry inversion. A key condition for the inversion is that the products

are connected substitutes (Berry, Gandhi, and Haile (2013)). The linear random coefficient

specification as in (2.1) is known to satisfy this condition. Then, Assumption 2.2 follows.

In Example 2, one may employ an alternative inversion strategy to obtain ψ in (2.8) using

only subsystems of demand such as L̃ = {(1, 0), (1, 1)} or L̃ = {(0, 0), (0, 1)}. We defer details

on this case to Section 4.

The inverted system in (2.8), together with the following assumption, yields a set of moment

conditions the researcher can use to identify the structural demand.

Assumption 2.3. There is a vector of instrumental variables Zt ∈ RdZ such that (i) E[Ξjt|Zt, Xt] =

0, a.s.; (ii) for any B : RJk2 × RJ × RJ → R with E[|B(X
(2)
t , Pt, S̃t)|] <∞, it holds that

E[B(X
(2)
t , Pt, S̃t)|Zt, Xt] = 0 =⇒ B(X

(2)
t , Pt, S̃t) = 0, a.s.

Assumption 2.3 (i) is a mean independence assumption on Ξjt given a set of instruments Zt,

which also normalizes the location of Ξjt. Assumption 2.3 (ii) is a completeness condition, which
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is common in the nonparametric IV literature, see BH (2013) for a detailed discussion. However,

the role it plays here is slightly different, as the moment condition leads to an integral equation

which is different from nonparametric IV (Newey & Powell, 2003), and more resembles GMM.

In Appendix C, we discuss an approach based on a strengthening of the mean independence

condition to full independence. In case such a strengthening is economically palatable, we

still retain the sum X
(1)
jt + Ξjt. Where X

(1)
jt has a close analogy to a dependent variable in

nonparametric IV.

Given Assumption 2.3 and (2.8), the unknown function ψ can be identified through the

following conditional moment restrictions:

E[ψj(X
(2)
t , Pt, St)−X(1)

jt |Zt, Xt] = 0, j = 1, · · · , J. (2.9)

We here state this result as a theorem.

Theorem 2.1. Suppose Assumptions 2.1-2.3 hold. Then, ψ is identified.

Once ψ is identified, the structural demand φ can be identified nonparametrically in Exam-

ples 1 and 2.

Example 1 (Multinomial choice, continued). Recall that ψ is a unique function such that

Sjt = φj(X
(2)
t , Pt, Dt), j = 1, · · · , J ⇔ Ξjt = ψj(X

(2)
t , Pt, S̃t)−X(1)

jt , j = 1, · · · , J,
(2.10)

where S̃t = (S1t, · · · , SJt). Hence, the structural demand (φ1, · · · , φJ) is identified by Theorem

2.1 and the equivalence relation above. In addition, φ0 is identified through the identity: φ0 =

1−
∑J

j=1 φj.

Example 2 (Bundles, continued). Let L̃ = {(1, 0), (1, 1)}. ψ is then a unique function such

that

Slt = φl(X
(2)
t , Pt, Dt), l ∈ L̃ ⇔ Ξjt = ψj(X

(2)
t , Pt, S̃t)−X(1)

t , j = 1, 2,

where S̃t = (S(1,0),t, S(1,1),t). Theorem 2.1 and the equivalence relation above then identify the de-

mand for bundles (1, 0) and (1, 1). This, therefore, only identifies subcomponents of φ. Although

these subcomponents are sufficient for recovering the random coefficient density, one may also

identify the rest of the subcomponents by taking L̃ = {(0, 0), (0, 1)} and applying Theorem 2.1

again.
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3 Identification of the Random Coefficient Density

This section contains the main innovation in this paper: We establish that the density of

random coefficients in the market-level demand models is nonparametrically identified. Our

strategy for identification of the random coefficient density is to construct a function from the

structural demand, which is related to the density through an integral transform known as the

Radon transform. More precisely, we construct a function Φ(w, u) such that

∂Φ(w, u)

∂u
= R[f ](w, u) , (3.1)

where f is the density of interest, w is a vector in Rq (with q the dimension of the random

coefficients), normalized to have unit length, and u ∈ R is a scalar. In what follows, we let

Sq ≡ {v ∈ Rq : ‖v‖ = 1} denote the unit sphere in Rq. R is the Radon transform defined

pointwise by

R[f ](w, u) =

∫
Pw,u

f(v)dµw,u(v). (3.2)

where Pw,u denotes the hyperplane {v ∈ Rq : v′w = u}, and µw,u is the Lebesgue measure on

Pw,u. See for example Helgason (1999) for details on the properties of the Radon transform

including its injectivity. Our identification strategy is constructive and will therefore suggest a

natural nonparametric estimator. Applications of the Radon transform to random coefficients

models have been studied in Beran, Feuerverger, and Hall (1996), Hoderlein, Klemelä, and

Mammen (2010), and Gautier and Hoderlein (2013).

Throughout, we maintain the following assumption.

Assumption 3.1. (i) For all j ∈ {1, · · · , J}, (X
(2)
jt , Pjt, Djt) are absolutely continuous with

respect to Lebesgue measure on RdX−1 × R× R; (ii) the random coefficients θ are independent

of (Xt, Pt, Dt).

Assumption 3.1 (i) requires that (X
(2)
jt , Pjt, Djt) are continuously distributed for all j. By

Assumption 3.1 (ii), we assume that the covariates (Xt, Pt, Dt) are exogenous to the individual

heterogeneity. These conditions are used to invert the Radon transform.

Before proceeding further, we overview our identification strategy in relation to the key

differences between the BLP and pure characteristics models. Heuristically, for a given (w, u) ∈
Sq × R, the Radon transform aggregates individuals whose coefficients are on the hyperplane

Pw,u. For each (w, u), we relate this aggregate value to a feature of the demand with a specific

product characteristics. By varying (w, u) and inverting the map R in (3.1), we may then

recover the distribution of the random coefficients. A key step in this identification argument

is the construction of a function Φ satisfying (3.1). The two demand models suggest different
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strategies to construct Φ. In the BLP model, we construct Φ for each product j and recover the

joint distribution of the coefficients (β
(2)
it , αit, εijt). We take this approach because the presence

of the tastes for products requires us to isolate the demand for each product from the rest. On

the other hand, the pure characteristics model does not require such an approach. Furthermore,

both models allow the researcher to combine demand across different markets to construct Φ.

3.1 BLP model

Throughout this section, we let σε = 1.5 Recall that the demand for good j with the product

characteristics (Xt, Pt,Ξt) is as given in (2.3). Since Dt = X
(1)
t + Ξt, the demand in market t

with (X
(2)
t , Pt, Dt) = (x(2), p, δ) is given by:

φj(x
(2), p, δ) =

∫
1{x(2)

j
′b(2)+apj+ej > −δj}1{(x(2)

j −x
(2)
1 )′b(2)+a(pj−p1)+(ej−e1) > −(δj−δ1)}

· · · 1{(x(2)
j − x

(2)
J )′b(2) + a(pj − pJ) + (ej − eJ) > −(δj − δJ)}fθ(b(2), a, e)dθ . (3.3)

Suppose the vertical characteristics {Dkt, k 6= j} (for products other than j) have a large enough

support so that (X
(2)
jt − X

(2)
kt )′β

(2)
it + αit(Pjt − Pkt) + (εijt − εikt) − Djt > Dkt for all k 6= j for

some values of Dkt, k 6= j. The demand for good j for such values of Dkt, k 6= j is then

Φ̃j(x
(2)
j , pj, δj) = lim

δ1,...,δj−1,δj+1,...,δJ→−∞
φj(x

(2), p, δ)

=

∫
1{x(2)

j
′b(2) + apj + ej < −δj}fϑj(b(2), a, ej)dϑj, (3.4)

where fϑj is the joint density of the subvector ϑijt ≡ (β
(2)
it , αit, εijt) of the random coefficients.

Let w ≡ (x
(2)
j , pj, 1)/‖(x(2)

j , pj, 1)‖ and u ≡ δj/‖(x(2)
j , pj, 1)‖. Define

Φ(w, u) ≡ Φ̃j

(
x

(2)
j

‖(x(2)
j , pj, 1)‖

,
pj

‖(x(2)
j , pj, 1)‖

,
δj

‖(x(2)
j , pj, 1)‖

)
= Φ̃j(x

(2)
j , pj, δj), (x

(2)
j , pj, δj) ∈ supp (X

(2)
jt , Pjt, Djt), (3.5)

5Here, the scale of the taste for product εijt is normalized relative to the scale of X
(1)
jt as we set the coefficient

on X
(1)
jt to 1 in Assumption 2.1.
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where the second equality holds because normalizing the scale of (x
(2)
j , pj, δj) does not change

the value of Φ̃j. Φ then satisfies

Φ(w, u) = −
∫

1{w′ϑj < −u}fϑj(b(2), a, ej)dϑj

= −
∫ −u
−∞

∫
Pw,r

fϑj(b
(2), a, ej)dµw,r(b

(2), a, ej)dr = −
∫ −u
−∞
R[fϑj ](w, r)dr , (3.6)

Hence, by taking a derivative with respect to u, we may relate Φ to the random coefficient

density through the Radon transform:

∂Φ(w, u)

∂u
= R[fϑj ](w, u). (3.7)

Note that since the structural demand φ is identified by Theorem 2.1, Φ is nonparametrically

identified as well. Hence, Eq. (3.7) gives an operator that maps the random coefficient density to

an object identified by the moment condition studied in the previous section. To construct Φ de-

scribed above and to invert the Radon transform, we formally make the following assumptions.

Below, for each 1 ≤, j, k ≤ J , we let Vjk = (X
(2)
jt −X

(2)
kt )′β

(2)
it +αit(Pjt−Pkt) + (εijt− εikt)−Djt

and make the following assumptions on the support of the product characteristics.6

Assumption 3.2. Let J be a nonempty subset of {1, · · · , J}. For each j ∈ J , supp (Vjk, k 6=
j) ⊂ supp (Dkt, k 6= j).

Assumption 3.2 requires that one may vary the vertical characteristics of the alternative

products {Dkt, k 6= j} on a large enough support so that the demand for product j is determined

through its choice between product j and the outside good. This identification argument

therefore uses a “thin” (lower-dimensional) subset of the support of the covariates, which is due

to the presence of the tastes for products. This is in remarkable contrast with the identification

of the random coefficients density in the PCM which does not rely on thin sets.

Assumption 3.3. One of the following conditions hold

(i)
⋃
j∈J supp (X

(2)
jt , Pjt, Djt) has full support in RdX−1 × R× R.

(ii)
⋃
j∈J supp (X

(2)
jt , Pjt) contains an open ball BJ ⊂ RdX−1 × R. For every (x, p) ∈ BJ and

every (b(2), a, ej) ∈ supp (ϑj) it holds that

(
x, p,−x′b(2) − ap− ej

)
∈
⋃
j∈J

supp
(
X

(2)
jt , Pjt, Djt

)
. (3.8)

6Vjk is a random variable that varies across individuals and markets and hence should be denoted as Vijkt
in principle. For conciseness, we drop subscripts i and t below.
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Furthermore, all the absolute moments of each component of θit are finite, and for any

fixed z ∈ R+, 0 = liml→∞
zl

l!
E[(|θ(1)

it |+ · · ·+ |θ
(dθ)
it |)l].

Assumption 3.3 (i) is our benchmark assumption. Under this assumption, no restrictions

on θit are necessary for identification. In fact, the identification strategy would be valid for

arbitrary Borel measures and may also be applied to settings where θit does not have a density.7

However, this large support assumption is stringent and may be violated by various product

characteristics and prices used in practice. Hence, it should be viewed as a benchmark to

understand what the model requires to identify the distribution fθ of θit if one does not impose

any restriction on it.

Assumption 3.3 (ii) is an alternative condition, which relaxes the support requirement sig-

nificantly. Instead of a large support, it is enough for the product characteristics to have a

properly combined support that contains a (possibly small) open ball BJ in it. This includes

as a special case where a single product’s characteristics (X
(2)
jt , Pjt) contains an open ball, which

can be met in various applications. Even if such a product does not exist, identification of the

random coefficient density is possible as long as the required support condition is met by com-

bining the supports of multiple products belonging to J . This means that our identification

strategy may use variations of (X
(2)
jt , Pjt) across products. To illustrate, consider three products

J = 3. If (D2t, D3t) have a large support in the sense of Assumption 3.2 (J = {1} in this case),

identification of the random coefficient density is possible as long as the characteristics of good

1 contains an open ball. If all {Djt}3
j=1 jointly have a large support (this implies J = {1, 2, 3}),

our requirement on (X
(2)
jt , Pjt) becomes even milder as we only need to construct an open ball

by combining the characteristics of all three products.

The condition in (3.8) allows for bounded support of (X
(2)
jt , Pjt). Further, if ϑj has a bounded

support, Assumption 3.3 (ii) will allow for a bounded support of Dj. The price to pay for this

relaxation of the support requirement is a regularity assumption on the moments of θit. This

rules out heavy tailed distributions that are not determined by their moments. A sufficient,

yet stronger than necessary, condition for this assumption is a compact support of fθ. Under

Assumption 3.3 (ii), the characteristic function w 7→ ϕϑj(tw) of ϑijt (a key element of the Radon

inversion) is analytic and thereby uniquely determined by its restriction to a non-empty full

dimensional subset of its domain.8 Hence, fϑj can be identified if one may vary (X
(2)
jt , Pjt) on

a non-empty full dimensional subset.

7More precisely, the Radon transform R[fϑj ](w, u) gives fϑj ’s integral along each hyperplane Pw,u = {v ∈
Rdθ : v′w = u} defined by the angle w = (x

(2)
j , pj , 1)/‖(x(2)j , pj , 1)‖ and offset u = δj/‖(x(2)j , pj , 1)‖. For

recovering fϑj from its Radon transform, one needs exogenous variations in both. Our proof uses the fact that

varying w over the hemisphere H+ ≡ {w = (w1, w2, · · · , wdϑj
) ∈ Sdϑj−1 : wdϑj

≥ 0} and u over R suffices to

recover fϑj .
8This type of moment condition on θit is common in the recent literature. See, for example, Hoderlein,

Holzmann, and Meister (2014) and Masten (2014).
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Under the conditions given in the theorem below, the Radon inversion identifies fϑj . If one

is interested in the joint density of the coefficients on the product characteristics (β
(2)
it , αit),

one may stop here as marginalizing fϑj gives the desired density. The joint distribution of the

coefficients including the tastes for products can be identified under an additional independence

assumption. We state this result in the following theorem.

Theorem 3.1. Suppose Assumptions 2.1-3.3 hold. Suppose the conditional distribution of

εijt given (β
(2)
it , αit) is identical for all j ∈ J . Then, (i) for each j ∈ J , the density fϑj

is identified, where ϑijt = (β
(2)
it , αit, εijt); (ii) If, in addition, {εijt, j ∈ J } are independently

distributed (across j) conditional on (β
(2)
it , αit), the joint density fθJ of θJ = (β

(2)
it , αit, {εijt}j∈J )

is identified.

An immediate corollary is the following.

Corollary 3.1. Suppose Assumptions 2.1-3.3 hold. Suppose that {εijt}Jj=1 is i.i.d. (across j)

conditional on (β
(2)
it , αit). Then, the joint density fθ of all random coefficients θit = (β

(2)
it , αit, {εijt}Jj=1)

is identified.

Several remarks are in order.

Remark 3.1. Theorems 2.1 and 3.1 shed light on the roles played by the key features of the

BLP-type demand model: the invertibility of the demand system, instrumental variables, and

the linear random coefficients specification. In Theorem 2.1, the invertibility and instrumental

variables play key roles in identifying the demand. Once the demand is identified, one may

“observe” the vector (X
(2)
t , Pt, Dt) of product characteristics. This is possible because the

invertibility of demand allows one to recover the unobserved product characteristics Ξt from

the market shares St (together with other covariates). One may then vary (X
(2)
t , Pt, Dt) across

markets in a manner that is exogenous to the individual heterogeneity θit. Theorem 3.1 and

Corollary 3.1 show that this exogenous variation combined with the linear random coefficients

specification allows to trace out the distribution of θit.

Remark 3.2. The identical distribution assumption on the tastes for products in Theorem 3.1

is compatible with commonly used utility specifications and can also be relaxed at the cost of a

stronger support condition on the product characteristics. In applications, it is often assumed

that the utility of product j is

U∗ijt = β0
it + X̃ ′jtβit + αitPjt + Ξjt + ε̃ijt, (3.9)

where X̃jt is a vector of non-constant product characteristics, β0
it is an individual specific inter-

cept, which measures the utility difference between inside goods and the outside good, and ε̃ijt
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is a mean zero error that follows the Type-I extreme value distribution. The requirement that

εijt = β0
it + ε̃ijt are i.i.d. across j (conditional on (βit, αit)) can be met if ε̃ijt are i.i.d. across j.

If for each j, (X
(2)
jt , Pjt, Djt) fulfills the support condition in Assumption 3.3 (i) or Assump-

tion 3.3 (ii), one can drop the identical distribution assumption. This is because one can identify

fϑj for all j by inverting the Radon transform in (3.7) repeatedly. This in turn implies that the

distribution of εijt conditional on (β
(2)
it , αit) is identified for each j. If the tastes for products

{εijt}Jj=1 are mutually independent (conditional on (β
(2)
it , αit)), as is commonly assumed in BLP,

the joint distribution fθ of all coefficients is identified.

Finally, we comment on what an additional parametric assumption may add to our result.

If one assumes that the tastes for products are i.i.d. and follows a parametric distribution, Eq

(3.3) reduces to φj(x
(2), p, δ) =

∫
L(x(2)′(2)+ap+δ)f(β,α)(b, a)dbda, for some function L, e.g. L is

the logit function when {εijt} follows a Type-I extreme value distribution. This type of integral

equation is considered in Fox, Kim, Ryan, and Bajari (2012) in the context of individual-level

demand model without endogeneity. Given that φ is identified, we believe that it is possible to

extend their framework to the market-level demand model with endogeneity and identify f(β,α)

semiparametrically. This approach may allow us to relax some of the support conditions. To

keep a tight focus on nonparametric identification, we leave this extension elsewhere.

Remark 3.3. Our identification result reveals the nature of the BLP-type demand model. A

positive aspect of our result is that the preference is nonparametrically identified if one observes

full dimensional variations in the consumers’ choice sets (represented by (X
(2)
jt , Pjt, Djt)) across

markets. The identifying power is quite strong, if the product characteristics jointly span a

full support, i.e.
⋃
j∈J (X

(2)
jt , Pjt, Djt) = RdX−1 × R × R. On the other hand, if the product

characteristics have limited variations, the identifying power of the model on the distribution

of preferences may be limited. In particular, identification is not achieved only with discrete co-

variates. Hence, for such settings, one needs to augment the model structure with a parametric

specification. Another interesting direction would be to conduct partial identification analysis

on functionals of fθ, while imposing weak support restrictions. We leave this possibility for

future research.

3.2 Pure Characteristics Demand Models

Throughout this section, we consider the following utility specification where each product’s

utility is fully determined by the tastes for the product characteristics:

U∗ijt ≡ X ′jtβit + αitPjt + Ξjt, j = 1, · · · , J . (3.10)
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In other words, we set σε = 0 in (2.1). For this model, we employ a different, and arguably less

restrictive, strategy from the one adopted in the previous section to construct Φ in (3.1). Below,

we maintain Assumptions 2.1-2.3, which ensure the identification of demand by Theorem 2.1.

The demand for good j with the product characteristics (Xt, Pt,Ξt) is as given in (2.3) but

with σε = 0. Since Dt = X
(1)
t + Ξt, the demand in market t with (X

(2)
t , Pt, Dt) = (x(2), p, δ) is

given by:

φj(x
(2), p, δ) =

∫
1{x(2)

j
′b(2) + apj > −δj}1{(x(2)

j − x
(2)
1 )′b(2) + a(pj − p1) > −(δj − δ1)}

· · · 1{(x(2)
j − x

(2)
J )′b(2) + a(pj − pJ) > −(δj − δJ)}fθ(b(2), a)dθ . (3.11)

For any subset J of {1, · · · , J} \ {j}, let MJ denote the map (x(2), p, δ) 7→ (x́(2), ṕ, δ́) that

is uniquely defined by the following properties:

(x́
(2)
j − x́

(2)
i , ṕj − ṕi, δ́j − δ́i) = −(x

(2)
j − x

(2)
i , pj − pi, δj − δi), ∀i ∈ J , (3.12)

(x́
(2)
i , ṕi, δ́i) = (x

(2)
i , pi, δi), ∀i /∈ J . (3.13)

This map converts each product characteristic vector (x(2), p, δ) to another value (x́(2), ṕ, δ́).

Consider the composition φj ◦MJ (x(2), p, δ). If (x́(2), ṕ, δ́) is in the support, this corresponds

to the demand of product j in some market (say t′) with (X
(2)
t′ , Pt′ , Dt′) = (x́(2), ṕ, δ́). We then

define

Φ̃j(x
(2)
j , pj, δj) ≡ −

∑
J⊆{1,···J}\{j}

φj ◦MJ (x(2), p, δ) . (3.14)

Eq (3.14) aggregates the structural demand function for good j in different markets to define a

function, which can be related to the random coefficient density in a simple way. This operation

can be easily understood when J = 2, where for example φ1 is given by

φ1(x(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 < −δ1}

× 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) < −(δ1 − δ2)}fθ(b(2), a)dθ . (3.15)
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Then, Φ̃1 is given by

Φ̃1(x
(2)
1 , p1, δ1) = −φ1 ◦M∅(x

(2), p, δ)− φ1 ◦M{2}(x
(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 < −δ1}

(
1{(x(2)

1 − x
(2)
2 )′b(2) + a(p1 − p2) < −(δ1 − δ2)}

+ 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) > −(δ1 − δ2)}

)
fθ(b

(2), a)dθ

= −
∫

1{x(2)
1
′b(2) + ap1 < −δ1}fθ(b(2), a)dθ (3.16)

This shows that aggregating the demand in the two markets with (X
(2)
t , Pt, Dt) = (x(2), p, δ) and

(X
(2)
t′ , Pt′ , Dt′) = (x́(2), ṕ, δ́) yields a function Φ̃1 that depends only on product 1’s characteristic

(x
(2)
1 , p1, δ1) through a single index in (3.16). This then allows us to trace out the random

coefficients density by varying product 1’s characteristic as done in the BLP model. Since the

operation above yields a function that depends only on the characteristic of a single product,

we call it marginalization of demand.9

Eq. (3.14) generalizes this argument to settings with J ≥ 2. For the marginalization of

demand to work, the product characteristic (x́(2), ṕ, δ́) =MJ (x(2), p, δ) needs to be an observ-

able value, meaning it must be in the support. Formally, a value of the product characteristic

(x(2), p, δ) ∈ supp(X
(2)
t , Pt, Dt) is said to permit marginalization of demand with respect to

product j if

MJ (x(2), p, δ) ∈ supp(X
(2)
t , Pt, Dt), ∀J ⊆ {1, · · · , J} \ {j}. (3.17)

As done in the BLP setting, we will only require that a rich enough set to recover fθ can be

constructed by combining the supports of multiple products’ characteristics. Toward this end,

for each j ∈ {1, · · · , J}, let πj be the projection map such that (x
(2)
j , pj, δj) = πj(x

(2), p, δ), and

define the following sets:

Hj ≡ {(x(2), p, δ) ∈ supp(X
(2)
t , Pt, Dt) :MJ (x(2), p, δ) ∈ supp(X

(2)
t , Pt, Dt),

for all J ⊆ {1, · · · , J} \ {j}}, (3.18)

Sj ≡ {(x(2)
j , pj, δj) ∈ supp(X

(2)
jt , Pjt, Djt) : (x

(2)
j , pj, δj) = πj(x

(2), p, δ) for some (x(2), p, δ) ∈ Hj}.
(3.19)

In words, Hj is the set of the entire product characteristic vectors for which marginalization

with respect to product j is permitted. Sj is the coordinate projection of Hj onto the space of

product j’s characteristics. We then make the following assumption.

9Note however that this marginalized demand still depends on the joint distribution of the entire random
coefficient vector.
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Assumption 3.4. One of the following conditions hold:

(i)
⋃J
j=1 Sj = RdX−1 × R× R;

(ii)
⋃J
j=1 Sj = E× D, where E contains an open ball B ⊂ RdX−1 × R, and D ⊆ R. For every

(x, p) ∈ B and every (b(2), a) ∈ supp (θit), it holds that (x, p,−x′b(2) − ap) ∈
⋃J
j=1 Sj.

Furthermore, all the absolute moments of each component of θit are finite, and for any

fixed z ∈ R+, 0 = liml→∞
zl

l!
(E[|θ(1)

it |l] + · · ·+ E[|θ(dθ)
it |l]).

The idea behind Assumption 3.4 is as follows. For the moment, suppose we don’t impose

any moment condition on the random coefficient density. Also, fix a benchmark product j. For

any (x
(2)
j , pj, δj) ∈ Sj, one may find a vector (x(2), p, δ) of all product characteristics for which

marginalization of demand is allowed. Then, one would wish to vary (x
(2)
j , pj, δj) to trace out

the random coefficient density. This is possible, of course, if Sj = RdX−1×R×R, meaning that

marginalization is possible everywhere with respect to product j. However, this assumption

may be too strong in empirical applications. One may not be able to find any single product,

for which this condition is satisfied. Assumption 3.4 (i) relaxes this requirement substantially

using the structure of the model. Observe that the identification argument is symmetric across

products because only the characteristics matter. Hence, the argument is valid as long as, for

each (x(2),p,d) ∈ RdX−1 × R × R, one can find some product for which marginalization is

permitted. This is the reason why it is enough to “patch” Sjs together to RdX−1 × R × R in

Assumption 3.4 (i). This condition can be made even weaker with the help of an additional

moment condition. In Assumption 3.4 (ii), we only require that Sjs are combined together to

form a set that contains an open ball (in terms of (x(2),p)). This support requirement is quite

mild, and hence it can be satisfied even if each product’s characteristic has limited variation

across markets. Note also that, if supp (θit) is compact, the support of Djt can be compact as

well.

It is important to note that we construct Φ̃j without relying on any “thin” (lower-dimensional)

subset of the support of the product characteristics as done in the BLP model. Instead, we

construct Φ̃j in (3.14) by combining the demand in different markets. This is desirable as

estimators that rely on thin or irregular identification may have a slow rate of convergence

(Khan and Tamer, 2010). In the pure characteristics model, the individuals have varying tastes

(random coefficients) over the product characteristics but not over the products themselves.

This is the key feature of the model that allows us to identify the random coefficients through

the variation of the product characteristics (X
(2)
t , Pt, Dt). In contrast, in the BLP model, there

was an additional taste for the product itself, which was the main reason for using the thin set

to isolate the demand for each product.
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Given Assumption 3.4, we now construct Φ in Eq. (3.1). For each (x(2),p,d) ∈
⋃J
j=1 Sj, let

w ≡ (x(2),p)/‖(x(2),p)‖ and u ≡ d/‖(x(2),p)‖. Define

Φ(w, u) ≡ Φ̃j

( x(2)

‖(x(2),p)‖
,

p

‖(x(2),p)‖
,

d

‖(x(2),p)‖

)
, where (x(2),p,d) ∈ Sj. (3.20)

Here, for each (x(2),p,d), any j can be used to construct Φ̃j through marginalization as long

as Sj contains (x(2),p,d). Then Φ is defined on a set that is rich enough to invert the Radon

(or limited angle Radon) transform. The rest of the analysis parallels our analysis of the BLP

model.10 We therefore obtain the following point identification result.

Theorem 3.2. Suppose Assumptions 2.1-3.1, and 3.4 hold. Then, fθ is identified in the pure

characteristics demand model, where θit = (β
(2)
it , αit).

4 Extensions

Below, we show that our strategy set forth in the previous section can also be applied to

extended models that share the key features of the market level demand model. These extended

models involve choices of bundles (Section 4.1) and multiple units of consumption (Section 4.2).

For both models, we consider the setting with σε = 1, but it is also possible to analyze the case

without the tastes for products.11 We further analyze the case in which random coefficients are

alternative specific (Section 4.3).

4.1 Bundle choice (Example 2)

We consider an alternative procedure for inverting the demand in Example 2. This is because

this example (and also the example in the next section) has a specific structure. We note

that the inversion of Berry, Gandhi, and Haile (2013) can still be applied to bundles if one

treats each bundle as a separate good and recast the bundle choice problem into a standard

multinomial choice problem. However, as can be seen from (2.5), Example 2 has the additional

structure that the utility of a bundle is the combination of the utilities for each good and extra

utilities, and hence the model does not involve any bundle specific unobserved characteristic.

This structure in turn implies that the dimension of the unobservable product characteristic

Ξt equals the number of goods J , while the econometrician observes dim(S) = ΠJ
j=1(dj + 1)

aggregate choice probabilities over bundles, where dj is the maximum number of consumption

10Note that the additional independence (or i.i.d.) assumptions on (εi1t, · · · , εiJt) is not needed in the pure
characteristics model.

11For the setting without the tastes for products, we refer to Dunker, Hoderlein, and Kaido (2013), an earlier
version of the paper.
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units allowed for each good (e.g. in Example 2, J = 2, and dim(S) = 4). This suggests that (i)

using only a part of the demand system is sufficient for obtaining an inversion, which can be used

to identify fθ and (ii) using additional subcomponents of S, one may potentially overidentify

the parameter of interest. We therefore consider an inversion that exploits a monotonicity

property of the demand system that follows from this structure.12 For this, we assume that the

following condition is met.

Condition 4.1. The random coefficient density fθ is continuously differentiable. (εi1t, εi2t) and

(D1t, D2t) have full supports in R2 respectively.

Let L̃ = {(1, 0), (1, 1)}. From (2.7), it is straightforward to show that ϕ(1,0) is strictly in-

creasing in D1t but is strictly decreasing in D2t, while ϕ(1,1) is strictly increasing both in D1t and

D2t. Hence, the Jacobian matrix is non-degenerate. Together with a mild support condition on

(D1t, D2t), this allows to invert the demand (sub)system and write Ξjt = ψj(X
(2)
t , Pt, S̃t)−X(1)

jt ,

where S̃t = (S(1,0),t, S(1,1),t). This ensures Assumption 2.2 in this example (see Lemma B.2 given

in the appendix). By Theorem 2.1, one can then nonparametrically identify subcomponents

(ϕ(1,0), ϕ(1,1)) of the demand function ϕ.

One may alternatively choose L̃ = {(0, 0), (0, 1)}, and the argument is similar, which then

identifies (ϕ(0,0), ϕ(0,1)), and hence all components of the demand function ϕ are identified. This

inversion is valid even if the two goods are complements. This is because the inversion uses the

monotonicity property of the aggregate choice probabilities on bundles (e.g. φ(1,0) and φ(1,1))

with respect to (D1t, D2t). Hence, even if the aggregate share of each good (e.g. aggregate

share on good 1: σ1 = φ(1,0) + φ(1,1)) is not invertible in the price Pt due to the presence of

complementary goods, one can still obtain a useful inversion provided that aggregate choice

probabilities on bundles are observed.

Given the demand for bundles, we now analyze identification of the random coefficient

density. By (2.5), the demand for bundle (0,0) is given by

φ(0,0)(x
(2), p, δ)

=

∫
1{x(2)

1
′b(2) + ap1 + e1 < −δ1}1{x(2)

2
′b(2) + ap2 + e2 < −δ2}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + (e1 + e2) + ∆ < −δ1 − δ2}fθ(b(2), a, e,∆)dθ.

(4.1)

12The additional structure can potentially be tested. In Example 2, one may identify the demand for bundles
(1,0) and (1,1) using the inversion described below under the hypothesis that eq. (2.5) holds. Further, treating
(1,0), (0,1), and (1,1) as three separate goods (and (0,0) as an outside good) and applying the inversion of
Berry, Gandhi, and Haile (2013), one may identify the demand for bundles (1,0) and (1,1) without imposing
(2.5). The specification can then be tested by comparing the demand functions obtained from these distinct
inversions. We are indebted to Phil Haile for this point.
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Given product j ∈ {1, 2}, let −j denote the other product. We then define Φ̃l with l = (0, 0)

as in the BLP example by letting D−jt take a large negative value. For each (x(2), p, δ), let

Φ̃(0,0)(x
(2)
j , pj, δj) ≡ − lim

δ−j→−∞
φ(0,0)(x

(2), p, δ), j = 1, 2. (4.2)

We then define Φ(0,0) as in (3.5).13 Consider for the moment j = 1 in (4.2). Then, Φ(0,0) is

related to the joint density fϑ1 of ϑi1t ≡ (β
(2)
it , αit, εi1t) through a Radon transform.14 Arguing

as in (3.6), it is straightforward to show that ∂Φ(0,0)(w, u)/∂u = R[fϑ1 ](w, u) with w ≡
(x

(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖ and u ≡ δ1/‖(x(2)
1 , p1, 1)‖. Hence, one may identify fϑ1 by inverting

the Radon transform under Assumptions 3.1 and 3.2 with J = 2.

If the researcher is only interested in the distribution of (β
(2)
it , αit, εijt) but not in the bundle

effect, the demand for (0, 0) is enough for recovering their density. However, ∆it is often of

primary interest. The demand on (1,1) can be used to recover its distribution by the following

argument.

The demand for bundle (1,1) is given by

φ(1,1)(x
(2), p, δ)

=

∫
1{x(2)

1
′b(2) + ap1 + e1 + ∆ > −δ1}1{x(2)

2
′b(2) + ap2 + e2 + ∆ > −δ2}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + (e1 + e2) + ∆ > −δ1 − δ2}fθ(b(2), a, e,∆)dθ. (4.3)

Note that ∆it can be viewed as an additional random coefficient on the constant whose sign is

fixed. Hence, the set of covariates includes a constant. Again, conditioning on an event where

D−jt takes a large negative value and normalizing the arguments by the norm of (x
(2)
j , pj, 1)

yield a function Φ(1,1) that is related to the density of ηijt ≡ (β
(2)
it , αit,∆it + εijt) through the

Radon transform in (3.2). Note that the last component of ηj and ϑj differ only in the bundle

effect ∆it. Hence, if εijt is independent of ∆it conditional on (β
(2)
it , αit), the distribution of ∆it

can be identified via deconvolution. For this, let Ψεj |(β(2),α) denote the characteristic function

of εijt conditional on (β
(2)
it , αit). We summarize these results below.

Theorem 4.2. Suppose Assumptions 2.1-3.2, 3.4 and Condition 4.1 hold with J = 2 and

θit = (β
(2)
it , αit,∆it, εi1t, εi2t). Suppose the conditional distribution of εijt given (β

(2)
it , αit) is

identical for j = 1, 2.

Then, (a) fϑj , fηj are nonparametrically identified in Example 2; (b) If, in addition, ∆it ⊥
13In the BLP example, we invert a Radon transform only once. Hence Φ in (3.5) does not have any subscript.

In Examples 2 and 3, we invert Radon transforms multiple times, and to make this point clear we add subscripts
to Φ (e.g. Φ(0,0) and Φ(1,1)).

14Since the bundle effect ∆it does not appear in (4.1), one may only identify the joint density of the subvector

(β
(2)
it , αit, εi1t) from the demand for bundle (0,0).
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εijt|(β(2)
it , αit) and Ψεj |(β(2),α)(t) 6= 0 for almost all t ∈ R and for some j, and εijt, j = 1, 2

are independently distributed (across j) conditional on (β
(2)
it , αit), then fθ is nonparametrically

identified in Example 2.

The identification of the distribution of the bundle effect requires the characteristic function

of εijt to have isolated zeros (see e.g. Devroye, 1989, Carrasco and Florens, 2010). This condition

can be satisfied by various distributions including the Type-I extreme value distribution and

normal distribution.

Remark 4.1. Note that the conditions of Theorem 4.2 do not impose any sign restriction on

∆it. Hence, the two goods can be substitutes (∆it < 0) for some individuals and complements

(∆it > 0) for others. This feature, therefore, can be useful for analyzing bundles of goods whose

substitution pattern can significantly differ across individuals (e.g. E-books and print books).

Remark 4.2. We note that the utility specification adopted in the pure characteristics model

can also be combined with the bundle choice and multiple units of consumption studied next.

The identification of the random coefficients can be achieved using arguments similar to the

ones in Section 3.215.

4.2 Multiple units of consumption (Example 3)

One may also consider settings where multiple units of consumption are allowed. For simplicity,

we consider the simplest setup where J = 2 and Y1 ∈ {0, 1, 2} and Y2 ∈ {0, 1}. The utility from

consuming y1 units of product 1 and y2 units of product 2 is specified as follows:

U∗i,(y1,y2),t = y1U
∗
i1t + y2U

∗
i2t + ∆i,(y1,y2),t , (4.4)

where ∆i,(y1,y2),t is the additional utility (or disutility) from consuming the particular bundle

(y1, y2). This specification allows, e.g., for decreasing marginal utility (with the number of

units), as well as interaction effects. We assume that ∆(1,0) = ∆(0,1) = 0 as U∗i1t and U∗i2t give

the utility from consuming a single unit of each of the two goods. Throughout this example,

we assume that U∗i,(y1,y2),t is concave in (y1, y2). Then, a bundle is chosen if its utility exceeds

those of the neighboring alternatives. For example, bundle (2, 0) is chosen if it is preferred to

15The analysis of these settings are contained in an earlier version of this paper, which is available from the
authors upon request.
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bundles (1,0), (1,1) and (2,1). That is,

2(X ′1tβit + αitP1t + Ξ1t + εi1t) + ∆i,(2,0),t > X ′1tβit + αitP1t + Ξ1t + εi1t ,

2(X ′1tβit + αitP1t + Ξ1t + εi1t) + ∆i,(2,0),t

> X ′1tβit + αitP1t + Ξ1t + εi1t +X ′2tβit + αitP2t + Ξ2t + εi2t + ∆i,(1,1),t

2(X ′1tβit + αitP1t + Ξ1t + εi1t) + ∆i,(2,0),t ,

> 2(X ′1tβit + αitP1t + Ξ1t + εi1t) +X ′2tβit + αitP2t + Ξ2t + εi2t + ∆i,(2,1),t. (4.5)

The aggregate structural demand can be obtained as

ϕ(2,0)(Xt, Pt,Ξt) =

∫
1{X ′1tb+ aP1t + e1 + ∆(2,0) > −Ξ1t}

× 1{(X1t −X2t)
′b+ a(P1t − P2t) + (e1 − e2) + ∆(2,0) −∆(1,1) > −Ξ1t + Ξ2t}

× 1{X ′2tb+ aP2t + e2 + ∆(2,1) −∆(2,0) < −Ξ2t}fθ(b, a, e,∆)dθ . (4.6)

The observed aggregate demand on the bundles are similarly defined for Sl,t = ϕl(Xt, Pt,Ξt), l ∈
L where L ≡ {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1)}.

Let L̃ = {(2, 0), (2, 1)}. From (4.5), ϕ(2,0) is increasing in D1 but is decreasing in D2.

Similarly, ϕ(2,1) is increasing in both D1 and D2. The rest of the argument is similar to

Example 2. This ensures Assumption 2.2 in this example, and by Theorem 2.1, one can then

nonparametrically identify subcomponents {ϕl, l ∈ L̃} of the demand function ϕ. One may

alternatively take L̃ = {(0, 0), (0, 1)} and use the same line of argument. Note, however, that

(1,0) or (1,1) cannot be included in L̃ as φ(1,0) and φ(1,1) are not monotonic in one of (D1, D2).

This is because increasing D1 while fixing D2, for example, makes good 1 more attractive

and creates both an inflow of individuals who move from (0,0) to (1,0) and an outflow of

individuals who move from (1,0) to (2,0). Hence, the demand for (1,0) does not necessarily

change monotonically.

The nonparametric IV step identifies φl for l ∈ {(0, 0), (0, 1), (2, 0), (2, 1)}. Using them, we

may first recover the joint density of some of the random coefficients: θit = (β
(2)
it , αit, εi1t, εi2t,

∆i,(1,1),t,∆i,(2,0),t,∆i,(2,1),t)
′. We begin with the demand for (0, 0), (0, 1), (2, 0), and (2, 1) given
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by

φ(0,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 + e1 < −δ1}

× 1{x(2)
2
′b(2) + ap2 + e2 < −δ2}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + (e1 + e2) < −δ1 − δ2}fθ(b(2), a, e,∆)dθ ,

φ(0,1)(x
(2), p, δ) =

∫
1{x(2)

2
′b(2) + ap2 + e2 > −δ2}

× 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) + (e1 − e2) < −δ1 + δ2}

× 1{x(2)
1
′b(2) + ap1 + e1 + ∆(1,1) > −δ1}fθ(b(2), a, e,∆)dθ ,

φ(2,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 + e1 + ∆(2,0) > −δ1}

× 1{(x(2)
1 − x

(2)
2 )′b(2) + a(p1 − p2) + (e1 − e2) + ∆(2,0) −∆(1,1) > −δ1 + δ2}

× 1{x(2)
2
′b(2) + ap2 + e2 + ∆(2,1) −∆(2,0) < −δ2}fθ(b(2), a, e,∆)dθ ,

φ(2,1)(x
(2), p, δ) =

∫
1{x(2)

1
′b(2) + ap1 + e1 + ∆(2,1) −∆(1,1) > −δ1}

× 1{x(2)
1
′b(2) + ap1 + e1 + ∆(2,1) −∆(2,0) > −δ2}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + (e1 + e2) + ∆(2,1) > −δ1 − δ2}fθ(b(2), a, e,∆)dθ .

Hence, if D2t has a large support, by taking δ2 sufficiently small or sufficiently large, we may

define

Φ̃(0,0)(x
(2)
1 , p1, δ1) ≡ − lim

δ2→−∞
φ(0,0)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 < −δ1}fθ(b(2), a, e,∆)dθ , (4.7)

Φ̃(0,1)(x
(2)
1 , p1, δ1) ≡ − lim

δ2→∞
φ(0,1)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆(1,1) > −δ1}fθ(b(2), a, e,∆)dθ , (4.8)

Φ̃(2,0)(x
(2)
1 , p1, δ1) ≡ − lim

δ2→−∞
φ(2,0)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆(2,0) > −δ1}fθ(b(2), a, e,∆)dθ , (4.9)

Φ̃(2,1)(x
(2)
1 , p1, δ1) ≡ − lim

δ2→∞
φ(2,1)(x

(2), p, δ)

=

∫
1{x(2)

1
′b(2) + ap1 + e1 + ∆(2,1) −∆(1,1) > −δ1}fθ(b(2), a, e,∆)dθ . (4.10)

For each l ∈ {(0, 0), (0, 1), (2, 0), (2, 1)}, define Φl as in (3.5). Arguing as in Example 2, Φl is
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then related to the random coefficient densities by

∂Φl(w, u)

∂u
= R[fϑl ](w, u), l ∈ {(0, 0), (0, 1), (2, 0), (2, 1)},

where w ≡ −(x
(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖ and u ≡ δ1/‖(x(2)
1 , p1, 1)‖. Here, for each l, fϑl is the

joint density of a subvector ϑi,l,t of θit, which is given by16

ϑi,(0,0),t = (β
(2)
it , αit, εi1t), ϑi,(0,1),t = (β

(2)
it , αit, εi1t + ∆i,(1,1),t),

ϑi,(2,0),t = (β
(2)
it , αit, εi1t + ∆i,(2,0),t), ϑi,(2,1),t = (β

(2)
it , αit, εi1t + ∆i,(2,1),t −∆i,(1,1),t). (4.11)

The joint density of θit is identified by making the following assumption.

Assumption 4.1. (i) (∆i,(1,1),t,∆i,(2,0),t,∆i,(2,1),t) ⊥ εijt|(β(2)
it , αit) and Ψεj |(β(2),α)(t) 6= 0 for

almost all t ∈ R and for some j ∈ {1, 2}; (ii) εijt, j = 1, 2 are independently and identically

distributed (across j) conditional on (β
(2)
it , αit); (iii) (∆i,(1,1),t,∆i,(2,0),t,∆i,(2,1),t) are independent

of each other conditional on (β
(2)
it , αit) and Ψ∆(1,1)|(β(2),α)(t) 6= 0 for almost all t ∈ R.

Assumption 4.1 (iii) means that, relative to the benchmark utility given as an index func-

tion of (X
(2)
t , Pt, Dt), the additional utilities from the bundles are independent of each other.

Assumption 4.1 (iii) also adds a regularity condition for recovering the distribution of ∆i,(2,1),t

from those of ∆i,(2,1),t −∆i,(1,1),t and ∆i,(1,1),t through deconvolution.

Identification of the joint density fθ allows one to recover the demand for the middle alter-

native: (1,0), which remained unidentified in our analysis in the nonparametric IV step. To see

this, we note that the demand for this bundle is given by

φ(1,0)(x
(2), p, δ) =

∫
1{0 < x

(2)
1
′(2) + ap1 + e1 + δ1 < −∆(2,0)}

× 1{x(2)
2
′(2) + ap2 + e2 + δ2 < −∆(1,1)}1{(x(2)

1 − x
(2)
2 )′(2) + a(p1 − p2) + (e1 − e2) < −(δ1 − δ2)}

× 1{(x(2)
1 + x

(2)
2 )′b(2) + a(p1 + p2) + (e1 + e2) + ∆(2,1) < −(δ1 + δ2)}fθ(b(2), a, e,∆)dθ. (4.12)

Since the previously unknown density fθ is identified, this demand function is identified. This

and φ(1,1) = 1 −
∑

l∈L\{(1,1)} φl further imply that all components of φ are now identified. We

summarize these results below as a theorem.17

16Alternative assumptions can be made to identify the joint density of different components of the random
coefficient vector. For example, a large support assumption on D1t would allow one to recover the joint density

of (β
(2)
it , αit, εi2t + ∆i,(2,1),t −∆i,(2,0),t) from the demand for bundle (2,0).

17For simplicity, we only consider the case where δ2 → −∞ or ∞ in (4.7)-(4.8). This requires a full sup-
port condition on D1t. It is possible to replace this assumption with an analog of Assumption 3.3 by also
considering the case where δ1 → −∞ or ∞ and imposing an additional restriction on the distribution of
(εi1t, εi2t,∆i,(1,1),t,∆i,(2,0),t,∆i,(2,1),t).
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Theorem 4.3. Suppose U(y1,y2),t is concave in (y1, y2). Suppose Condition 4.1 and Assump-

tions 2.1, 2.3-3.1, 3.4 hold with J = 2 and θit = (β
(2)
it , αit, εi1t, εi2t,∆i,(1,1),t,∆i,(2,0),t,∆i,(2,1),t).

Suppose that (X1t, P1t, D1t) has a full support. Then, (a) fϑl , l ∈ {(0, 0), (0, 1), (2, 0), (2, 1)}
are nonparametrically identified in Example 3; (b) Suppose further that Assumption 4.1 holds.

Then, fθ is identified in Example 3. Further, all components of the structural demand φ are

identified.

4.3 Alternative specific coefficients

So far, we have maintained the assumption that (βijt, αijt) = (βit, αit), ∀j almost surely. This

excludes alternative specific random coefficients. However, this is not essential in our analysis.

One may allow some or all components of (βijt, αijt) to be different random variables across

j and identify their joint distribution under an extended support condition on the product

characteristics.

We first note that the aggregate demand is identified as long as Assumptions 2.1-2.3 hold.

In the BLP model, the marginal density fϑj of ϑijt = (β
(2)
ijt , αijt, εijt) can be identified for any j

as long as the corresponding product characteristics (X
(2)
jt , Pjt, Djt) has a full support using the

same identification strategy in Section 3 (see Remark 3.2). For the pure characteristics demand

model, we note that the maps MJ cannot be used as the use of this map is justified when

(βijt, αijt) = (βit, αit), ∀j. However, the large support assumption supp (Dkt) = R for k 6= j

can still be used to construct Φ. Hence, the analysis of this case becomes similar to the BLP

model. In both models, the joint density fθ of θit = (ϑi1t, · · · , ϑiJt) can be recovered under the

assumption that ϑijt are independent across j.

When the covariates (X
(2)
t , Pt, Dt) have rich variations jointly, it is also possible to identify

the joint density fθ without the independence assumption invoked above. This requires us to

extend our identification strategy. To see this, we take Example 2 as an illustration below.

Consider identifying the joint density of θit = (β
(2)
i1t , β

(2)
i2t , αi1t, αi2t, εi1t, εi2t + ∆it) under the

assumption that the two goods are complements, i.e. ∆it > 0, a.s. In this setting, we may use

the demand for bundle (1, 0), which can be written as

φ(1,0)(x
(2), p, δ) =

∫
1{x(2)

1
′b

(2)
1 + a1p1 + e1 > −δ1}

× 1{x(2)
2
′b

(2)
2 + a2p2 + e2 + ∆ < −δ2}fθ(b(2)

1 , b
(2)
2 , a1, a2,∆)dθ. (4.13)

To recover the joint density, one has to directly work with this demand function without

simplifying it further. A key feature of (4.13) is that it involves multiple indicator functions

and that distinct subsets of θ show up in each of these indicator functions. For example, the first
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indicator function in (4.13) involves (β
(2)
i1t , αi1t, εi1t), while the second indicator function involves

(β
(2)
i2t , αi2t, εi2t + ∆it). Integral transforms of this form are studied in Dunker, Hoderlein, and

Kaido (2013) in their analysis of random coefficients discrete game models. They use tensor

products of integral transforms to study nonparametric identification of random coefficient

densities. Using their framework, one may show that

∂2φ(1,0)(w1, w2, u1, u2)

∂u1∂u2

= (R⊗R)[fθ](w1, w2, u1,−u2), (4.14)

where w1 = −(x
(2)
1 , p1, 1)/‖(x(2)

1 , p1, 1)‖, w2 = (x
(2)
2 , p2, 1)/‖(x(2)

2 , p2, 1)‖, u1 = −δ1/‖(x(2)
1 , p1, 1)‖,

u2 = δ2/‖(x(2)
2 , p2, 1)‖, and R ⊗ R is the tensor product of Radon transforms, which can be

inverted to identify fθ. The main principle of our identification strategy is therefore the same

as before. Inverting the transform in (4.14) to identify fθ requires Assumption 3.3 (i) to be

strengthened as follows.

Assumption 4.2. (X
(2)
1t , P1t, D1t, X

(2)
2t , P2t, D2t) has a full support.

This is a stronger support condition than Assumption 3.3 (i) as it requires a joint full

support condition for the characteristics of both goods.This condition is violated, for example,

when there is a common covariate that enters the characteristics of both goods. This is in line

with the previous findings in the literature that identifying the joint distribution of potentially

correlated unobservable tastes for products (e.g. ε1 and ε2) requires variables that are excluded

from one or more goods (see e.g. Keane, 1992 and Gentzkow, 2007). Identification of fθ is then

established by the following theorem.18

Theorem 4.4. In Example 2, let θit = (β
(2)
i1t , β

(2)
i2t , αi1t, αi2t, εi1t, εi2t + ∆it). Suppose that As-

sumptions 2.1-2.3, 3.1, and 4.2 hold. Suppose further that ∆it > 0, a.s. Then, fθ is identified.

5 Suggested estimation methods

5.1 Nonparametric estimator

The structure of the nonparametric identification suggests a nonparametric estimation strategy

in a natural way. It consists of three steps. The first step is the estimation of the structural

function ψj. The second step is to derive the function Φ from the estimated ψ̂j. The last step

of the estimation is the inversion of a Radon transform.

18We omit the proof of this result for brevity. Similar to Theorem 3.1, it is also possible to establish identifi-
cation using an analog of Assumption 3.3 (ii), which relaxes the support requirement at the cost of an additional
moment condition. We also note that one may disentangle the distribution of ∆it from that of εi2t + ∆it using
a deconvolution argument as done in Theorem 4.2.
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The mathematical structure of the first step is similar to nonparametric IV. The conditional

expectation operator on the left hand side of the equation

E[ψj(x
(2)
t , Pt, St)|Zt = zt, Xt = xt] = x

(1)
jt for all xt, zt

has to be inverted. Let us denote this linear operator by T and rewrite the problem as

(Tψj)(zt, xt) = x
(1)
jt . Here x

(1)
jt should be interpreted as a function in xt and zt which is constant

in x
(2)
t , zt, and x

(1)
it for i 6= j. The operator depends on the joint density of (Xt, Pt, St, Zt)

which has to be estimated nonparametrically, e.g. by kernel density estimation. This gives an

estimator T̂ . As in nonparametric IV the operator equation is usually ill-posed, and regularized

inversion schemes must be applied. We propose Tikhonov regularization for this purpose:

ψ̂j := min
ψ
‖T̂ψ − x(1)

jt ‖2
L2(Xt,Zt)

+ αR(ψ). (5.1)

Here, α ≥ 0 is a regularization parameter and R a regularization functional. A common choice

is R(ψ) = ‖ψ‖2
L2 , however, if more smoothness is expected, this can be a squared Sobolev

norm or some other norm. In the case of bundles and multiple goods we know that ψ must be

monotonically increasing or decreasing in St. One may incorporate this a priori knowledge by

setting R(ψ) =∞ for all functions ψ not having this property. Since monotonicity is a convex

constraint, even with this choice of R, equation (5.1) is a convex minimization problem. Solving

the problem is computationally feasible, see Eggermont (1993), Burger and Osher (2004), and

Resmerita (2005) for regularization with general convex regularization functional. Furthermore,

we refer to Newey and Powell (2003) for the related nonparametric IV problem.

In the second step ψ̂j(X
(2)
t , Pt, St) is inverted in St to get an estimate φ̂j for the demand

function φj. In the BLP model, we approximate the limit of ψ̂j(X
(2)
t , Pt, St) for Dkt → −∞ to

construct an estimate for Φ̃j as in (3.4). When εijt is iid across j, one may improve efficiency

by repeating this process for all products and averaging Φ̃j across j = 1, · · · , J . For the pure

characteristics model an estimate of Φ̃j is computed from φ̂j by a sum over permutations as

in (3.14). Similar constructions can be carried out for the models of bundel choices (4.2) and

multiple unites of consumption (4.7) – (4.10). From an estimator of Φ̃j we get an estimate Φ̂

of Φ by normalization as in (3.5) or (3.20).

The third step of our nonparametric estimation strategy is the inversion of a Radon trans-

form. A popular and efficient method for the problem is the filtered back projection

f̂θ(ϑ) = R∗
(

Ωr ∗δ
∂Φj(x

(2)
j , pj, δj)

∂δj

)
(ϑ).
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Here ϑ = (b, a, e) in the BLP model, ϑ = (b, a) in the PCM, or ϑ = (b, a,∆) in other models.

The operator (R∗g)(x) :=
∫
‖w‖=1

g(w,w′x)dw is the adjoint of the Radon transform, and ∗δ
denotes the convolution with respect to the last variable δj, and Ωr is the function

Ωr(s) :=
1

4π2

(cos(rs)− 1)/s2 for s 6= 0,

r2/2 for s = 0.

For more details on this algorithm in a deterministic setting we refer to Natterer (2001). A

similar estimator for random coefficients is proposed and analyzed in HKM.

5.2 Parametric estimators for bundle choice models

Our nonparametric identification analysis shows that the choice of bundles and multiple units

of consumption can be studied very much in the same way as the standard BLP model (or the

pure characteristic model). This suggests that one may construct parametric estimators for

these models by extending standard estimation methods, given appropriate data. Below, we

take Example 2 and illustrate this idea.

Let θit = (β
(2)
it , αit,∆it, ε1it, ε2it) be random coefficients and let fθ(·; γ) be a parametric

density function, where γ belongs to a finite dimensional parameter space Γ ⊂ Rdγ . The

estimation procedure consists of the following steps:

Step 1 : Compute the aggregate share of bundles as a function of parameter γ conditional on

the set of covariates.

Step 2 : Use numerical methods to solve demand systems for (D1t, D2t), where Djt = Ξjt +

X
(1)
jt , j = 1, 2 and obtain the inversion in eq. (2.8).

Step 3 : Form a GMM criterion function using instruments and minimize it with respect to

γ over the parameter space.

The first step is to compute the aggregate share. One may approximate the aggregate share

of each bundle such as the one in (2.7) by simulating θ from fθ(·; γ) for each γ. Specifically, if

the conditional CDF of εijt given (β
(2)
it , αit,∆it) has an analytic form, the two-step method in

BLP and Berry and Pakes (2007) can be employed. We take the demand for bundle (0,0) in

eq. (4.1) as an example. Conditional on the product characteristics y ≡ (x(2), p, δ) and the rest

of the random coefficients (β
(2)
it , αit,∆it), bundle (0,0) is chosen when

σεεi1t < h1(y, b(2), a,∆) and σεεi2t < h2(y, b(2), a,∆), if ∆ < 0 (5.2)

σεεi1t < h2(y, b(2), a,∆) and σε(εi1t + εi2t) < h3(y, b(2), a,∆), if ∆ ≥ 0, (5.3)

31



where

h1(y, β(2), a,∆) ≡ −x(2)
1
′b(2) − ap1 − δ1, h2(y, β(2), a,∆) ≡ −x(2)

2
′b(2) − ap2 − δ2,

h3(y, β(2), a,∆) ≡ −(x
(2)
1 + x

(2)
2 )′(2) − a(p1 + p2)− (δ1 − δ2). (5.4)

In what follows, we consider the BLP setting where σε = 1.19 Specify the conditional distribu-

tion of (εi1t, εi2t) given (β
(2)
it , αit,∆it). For each (y, b(2), a,∆), define

G(y, b(2), a,∆) ≡

Pr(εi1t < h1(y, b(2), a,∆), εi2t < h2(y, b(2), a,∆)|y, b(2), a,∆) ∆ < 0

Pr(εi1t < h2(y, b(2), a,∆), εi1t + εi2t < h3(y, b(2), a,∆)|y, b(2), a,∆) ∆ > 0.

(5.7)

The value of G(y, b(2), a,∆) can be calculated analytically, for example, if one specifies the joint

distribution of (εi1t, εi2t) as normal. Eq. (5.2)-(5.3) then imply that the aggregate share of

bundle (0,0) is given by

φ(0,0)(x
(2), p, δ; γ) =

∫
G(y, b(2), a,∆)fβ(2),a,∆(b, a,∆; γ)dθ. (5.8)

This can be approximated by the simulated moment:

φ̂(0,0)(x
(2), p, δ; γ) =

1

nS

nS∑
i=1

G(y, b
(2)
i , ai,∆i), (5.9)

where the simulated sample {(b(2)
i , ai,∆i), i = 1, · · · , nS} is generated from fβ(2),a,∆(·; γ).20

Computation of the aggregate demand for other bundles is similar. This step therefore gives

the model predicted aggregate demand φ̂l for all bundles under a chosen parameter value γ.

The next step is then to invert subsystems of demand and obtain ψ numerically. Given

φ̂l, l ∈ L from Step 1, this step can be carried out by numerically calculating inverse mappings.

For example, take L̃ = {(0, 0), (0, 1)}. Then, (δ1, δ2) 7→ (φ̂(0,0)(x
(2), p, δ; γ), φ̂(0,1)(x

(2), p, δ; γ))

defines a mapping from R2 to [0, 1]2. Standard numerical methods such as the Newton-Raphson

method or the homotopy method (see Berry and Pakes, 2007) can then be employed to calculate

19In the PCM, one may adopt a similar approach by letting one of the remaining random coefficients play
the role of εijt. For example, replace (5.2)-(5.3) with

a < h1(y, b(2),∆), and a < h2(y, b(2),∆), if ∆ < 0 (5.5)

a < h2(y, b(2),∆), and a < h3(y, b(2),∆), if ∆ ≥ 0, (5.6)

where h1(y, b(2),∆) = (−x(2)1
′(2) − δ1)/p1, and h2, h3 are defined similarly. Specify the conditional distribution

of αit so that an analog of (5.7) can be calculated. The rest of the estimation procedure is similar.
20One may also use an importance sampling method.
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the inverse of this mapping21, which then yields ψ̂(·; γ) ≡ (ψ̂1(·; γ), ψ̂2(·; γ)) such that

Ξ1,t = ψ̂1(X
(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

1t , Ξ2,t = ψ̂2(X
(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

2t

(5.10)

where (S(0,0),t, S(0,1),t) are observed shares of bundles. One may further repeat this step with

L̃ = {(1, 0), (1, 1)}, which yields

Ξ1,t = ψ̂3(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

1t , Ξ2,t = ψ̂4(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

2t

(5.11)

This helps generate additional moment restrictions in the next step.

The third step is to use (5.10)-(5.11) to generate moment conditions and estimate γ by

GMM. There are four equations in total, while because the shares sum up to 1 one equation is

redundant. Hence, by multiplying instruments to the residuals from the first three equations,

we define the sample moment:

gn(Xt, Pt, St, Zt; γ) ≡ 1

n

n∑
t=1


ψ̂1(X

(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

1t

ψ̂2(X
(2)
t , Pt, S(0,0),t, S(0,1),t; γ)−X(1)

2t

ψ̂3(X
(2)
t , Pt, S(1,0),t, S(1,1),t; γ)−X(1)

1t

⊗
(
Zt

Xt

)
.

LettingWn(γ) be a (possibly data dependent) positive definite matrix, define the GMM criterion

function by

Qn(γ) ≡ gn(Xt, Pt, St, Zt; γ)′Wn(γ)gn(Xt, Pt, St, Zt; γ).

The GMM estimator γ̂ of γ can then be computed by minimizing Qn over the parameter space.

A key feature of this method is that it uses the familiar BLP methodology (simulation, inversion

& GMM) but yet allows one to estimate models that do not fall in the class of multinomial

choice models. Employing our procedure may, for example, allow one to estimate bundle choices

(e.g. print newspaper, online newspaper, or both) or platform choices using market level data.

6 Outlook

This paper is concerned with the nonparametric identification of models of market demand.

It provides a general framework that nests several important models, including the workhorse

21Whether the demand subsystems admit an analog of BLP’s contraction mapping method is an interesting
open question, which we leave for future research.
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BLP model, and provides conditions under which these models are point identified. Important

conclusions include that the assumption necessary to recover various objects differ; in partic-

ular, it is easier to identify demand elasticities and more difficult to identify the individual

specific random coefficient densities. Moreover, the data requirements are also shown to vary

with the model considered. The identification analysis is constructive, extends the classical

nonparametric BLP identification as analyzed in BH to other models, and opens up the way for

future research on sample counterpart estimation. A particularly intriguing part hereby is the

estimation of the demand elasticities, as the moment condition is different from the one used

in nonparametric IV. Understanding the properties of these estimators, and evaluating their

usefulness in an application, is an open research question that we hope this paper stimulates.
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A Notation and Definitions

The following is a list of notations and definitions used throughout the appendix.
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Sq−1 : The unit sphere Sq−1 ≡ {v ∈ Rq : ‖v‖ = 1}.
H+ : The hemisphere H+ ≡ {v = (v1, v2, · · · , vq) ∈ Sq−1 : vq ≥ 0}.
Pw,r : The hyperplane: Pw,r ≡ {v ∈ Rq : v′w = r}.
µw,r : Lebesgue measure on Pw,r.
R : Radon transform: R[f ](w, u) =

∫
Pw,u

f(v)dµw,u(v).

B Proofs

Proof of Theorem 2.1. The proof of the theorem is immediate from Theorem 1 in BH (2013).

We therefore give a brief sketch. By Assumptions 2.1 and 2.2, we note that there exists a

function ψ : RJk2 × RJ × RJ → RJ such that for some subvector S̃t of St,

Ξjt = ψj(X
(2)
t , Pt, S̃t)−X(1)

jt , j = 1, · · · , J,

and by Assumption 2.3, the following moment condition holds:

E[ψj(X
(2)
t , Pt, S̃t)−X(1)

jt |Zt, Xt] = 0 .

Identification of ψ then follows from applying the completeness argument in the proof of The-

orem 1 in BH (2013).

Lemma B.1. Let θ = (θ1, . . . ; θd) be a d-dimensional random vector with density fθ. Assume

that the moments of all components are finite E[|θd|l] < ∞ for all i = 1, . . . , d and l = N. In

addition, let for any z > 0

0 = lim
p→∞

zl

l!
E
[
(|θ1|+ |θ2|+ . . .+ |θd|)l

]
.

For any open neighborhood U ⊂ Sd−1 it holds that if the Radon transform of R[fθ](w, δ) is

known for all (w, δ) ∈
{

(w,w′t)|w ∈ U , t ∈ supp (θ)
}

, the density fθ is identified.

Proof of Lemma B.1. We first show that Ffθ the Fourier transform of fθ is analytic. The

Fourier transform can be approximated by the p-th Taylor polynomial for some point b0 ∈ Rd.

The Taylor remainder for some point b ∈ Rd is bounded by

Rp(Ffθ)(b; b0) ≤
∑

α∈Nd,|α|=p+1

(b− b0)α

α!
‖DαFfθ‖∞ .

In this formula the multi-index notation is used with respect to α. This means α = (α1, α2, . . . , αd) ∈
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Nd, |α| :=
∑d

i=1 αi, α! :=
∏d

i=1 αi!, and

DαFfθ =
∂|α|Ffθ

∂bα1
1 ∂b

α2
2 . . . ∂bαkk

.

Note that

‖DαFfθ‖∞ ≤
∫
Rd
|vα1

1 vα2
2 . . . vαdd |fθ(v1, v2, . . . , vd)dv

≤
∫
Rd
|v1|α1|v2|α2 . . . |vd|αdfθ(v1, v2, . . . , vd)dv

= E[|θ2|α1|θ2|α2 . . . |θd|αk |].

This yields

Rp(Ffθ)(b; b0) ≤ ‖b− b0‖p∞E

 ∑
α∈Nd,|α|=p+1

|θ1|α1|θ2|α2 . . . |θd|αd
α!


≤ ‖b− b0‖p∞E

[
(p!)−1 (|θ1|+ |θ2|+ . . .+ |θd|)p

]
≤ ‖b− b0‖p∞

p!
E [(|θ1|+ |θ2|+ . . .+ |θd|)p] .

Hence, the Taylor approximation converges point-wise to Ffθ on Rd. Consequently, if Ffθ is

know on some neighborhood around b0, Ffθ is identified. This makes Ffθ an analytic function.

Since the Fourier transform is bijectiv this identifies fθ as well.

It remains to show that Ffθ is known in some open neighborhood. By the Fourier slice

theorem for the Radon transform (Ffθ)(wη) = F1(Rfθ[w, ·])(η). Here F1 denotes the one-

dimensional Fourier transform that acts on the free variable denoted by “ · ”. Note that

Rfθ[w, δ] = 0 if w ∈ U but (w, δ) /∈
{

(w,w′t)|w ∈ U , t ∈ supp (θ)
}

. Thus, if Rfθ[w, δ] is known

for all (w, δ) ∈
{

(w,w′t)|w ∈ U , t ∈ supp (θ)
}

, it is known for all w ∈ U and all δ ∈ R. It

follows that Ffθ is known on some open neighborhood. This identifies fθ.

Proof of Theorem 3.1. (i) First, under the linear random coefficient specification, the con-

nected substitutes assumption in Berry, Gandhi, and Haile (2013) is satisfied. By Theorem 1

in Berry, Gandhi, and Haile (2013), Assumption 2.2 is satisfied. Then, by Assumptions 2.1-2.3

and Theorem 2.1, ψ is identified. Further, the aggregate demand φ is identified by (2.10) and

the identity φ0 = 1−
∑J

j=1 φj.

For any product j and product characteristics (x
(2)
j , pj, δj) define the new function

Φ̃j(x
(2)
j , pj, δj) = − lim

δ1,...,δj−1,δj+1,...,δJ→−∞
φj(x

(2), p, δ)
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point wise. Here φj(x
(2), p, δ) can be any fixed vector of product characteristics where (x

(2)
j , pj, δj)

coincide with the values on the l.h.s. of the equation. The limit on the r.h.s. exists and is

unique. This can be seen by using the definition of φj, Lebesgue’s theorem, and Assumption

3.2. Consequently,

Φ̃(x
(2)
j , pj, δj) = −

∫
1{x(2)

j
′b(2) + apj + εj < −δj}fϑj(b(2), a, ej)dϑj.

Now define Φ as in (3.5) and conclude

Φ(w, u) = −
∫

1{w′θ < −u}fϑj(b(2), a, ej)dθ

= −
∫ −u
−∞

∫
Pw,r

fϑj(b
(2), a, ej)dµw,r(b

(2), a, ej)dr = −
∫ −u
−∞
R[fϑj ](w, r)dr . (B.1)

Taking a derivative with respect to u yields (3.7). By the assumption that the conditional

distribution of εijt given (β
(2)
it , αit) is identical for j = 1, · · · , J , it follows that fϑj = fϑ,∀j for

some common density fϑ. Hence, we may rewrite (3.7) as

∂Φ(w, u)

∂u
= R[fϑ](w, u). (B.2)

Note that by Assumptions 3.1 (i) and 3.2, ∂Φ(w, u)/∂u is well-defined for some (w, u) ∈ H+×R.

By Assumption 3.3 ∂Φ(w, u)/∂u is either identified for all (w, u) ∈ H+×R or only for w in some

open neighborhood of H+. In the first case the identification of fϑ follows from Assumption

from the injectivity of the Radon transform (Theorem I in Cramér and Wold, 1936). In the

second case the the identification of fϑ follows from Lemma B.1.

(ii) In the first part of the proof fϑj , j = 1, 2, . . . , J were identified (as fϑ). Hence, the

conditional distribution fεj |β(2),α of εijt given (β
(2)
it , αit) and the marginal distribution fβ(2),α of

(β
(2)
it , αit) are identified for any j. Under the additional assumption that εi1t, εi2t, . . . , εiJt are

independent conditional on (β
(2)
it , αit) we get the joint distribution of θit by

fθ(b
(2), α, e1, . . . , eJ) =

J∏
j=1

fεj |β(2),α(ej|b(2), α)× fβ(2),α(b(2), α). (B.3)

Hence, fθ is identified.

Proof of Theorem 3.2. First, under the linear random coefficient specification, the con-

nected substitutes assumption in Berry, Gandhi, and Haile (2013) is satisfied. By Theorem

1 in Berry, Gandhi, and Haile (2013), Assumption 2.2 is satisfied. Then, by Assumptions 2.1-

2.3 and Theorem 2.1, ψ is identified. Further, the aggregate demand φ is identified by (2.10)
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and the identity φ0 = 1−
∑J

j=1 φj. By Assumption 3.4, for each (x(2),p,d) ∈ RdX−1 × R× R,

there is a product (say j), with respect to which the marginalization of the demand is permit-

ted. Therefore, there is (x(2), p, δ) ∈ Hj whose coordinate projection is (x(2),p,d). Hence, one

may construct

Φ̃j(x
(2),p,d) =

∑
J⊆{1,··· ,J}\{j}

φj ◦MJ (x(2), p, δ) =

∫
1{x(2)

j
′b(2) + apj < −δj}fθ(b(2), a)dθ,

(B.4)

where the second equality follows because of the following. First,MJ replaces the indicators in

φj of the form 1{(x(2)
j −x

(2)
i )′b(2) +a(pj−pi) < −(δj−δi)} with 1{(x(2)

j −x
(2)
i )′b(2) +a(pj−pi) >

−(δj− δi)} for i ∈ J . The random coefficients are assumed to be continuously distributed. We

therefore have

1{(x(2)
j − x

(2)
i )′b(2) + a(pj − pi) < −(δj − δi)}

+ 1{(x(2)
j − x

(2)
i )′b(2) + a(pj − pi) > −(δj − δi)} = 1, a.s.

Therefore,
∑
J⊆{1,··· ,J} φj◦MJ (x(2), p, δ) = 1. Since Φ̃j is constructed by summing φj◦MJ over

subsets of {1, · · · , J} except {j}, we are left with the integral of the single indicator function

1{x(2)
j
′b(2) + apj < −δj} with respect to fθ. This ensures (B.4).

Now define Φ as in (3.20). Then, it follows that

Φ(w, u) = −
∫

1{w′θ < −u}fθ(b(2), a)dθ

= −
∫ −u
−∞

∫
Pw,r

fθ(b
(2), a)dµw,r(b

(2), a)dr = −
∫ −u
−∞
R[fθ](w, r)dr . (B.5)

Taking a derivative with respect to u then yields

∂Φ(w, u)

∂u
= R[fθ](w, u). (B.6)

Note that by Assumption 3.4 ∂Φ(w, u)/∂u is either well-defined for all (w, u) ∈ H+×R or only

for w in some open neighborhood. In the first case the theorem follows from the injectivity of

the Radon transform. In the second case it follow from Lemma B.1.

The following lemma is used in the proof of Theorem 4.2.

Lemma B.2. Suppose the Assumptions 2.1 and Condition 4.1 hold and that φl is given as in Ex-

ample 2 or Example 3 with l ∈ L̃ = {(0, 1), (0, 0)}. Then for all (x(2), p) =
(
x

(2)
1 , x

(2)
2 , p1, p2

)
∈
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R2k with (x
(2)
1 , p1) 6= (x

(2)
2 , p2) the function φ : R2k × R2 → [0, 1]2 defined as

φ(x
(2)
1 , x

(2)
2 , p1, p2, d1, d2) ≡

[
φ(0,0)

(
x

(2)
1 , x

(2)
2 , p1, p2, d1, d2

)
, φ(0,1)

(
x

(2)
1 , x

(2)
2 , p1, p2, d1, d2

)]
is invertible in (d1, d2) on any bounded subset of R2. This holds for other appropriate choices

of L̃ as well (e.g. L̃ = {(1, 0), (1, 1)}).

Proof of Lemma B.2. We start with the observation that φ(0,0)(x
(2), p, d) is monotonically

decreasing in d1 and also in d2 while φ(0,1)(x
(2), p, d) is monotonically decreasing in d1 and

monotonically increasing in d2 by definition. Furthermore, the full support of ε1 and ε2 implies

that φ(0,0) and φ(0,1) are strictly increasing or decreasing in d1 and d2

∂φ(0,0)(x
(2), p, d)

∂d1

< 0,
∂φ(0,0)(x

(2), p, d)

∂d2

< 0,
∂φ(0,1)(x

(2), p, d)

∂d1

< 0,
∂φ(0,1)(x

(2), p, d)

∂d2

> 0.

Hence, the determinant of the Jacobian of d 7→ φ(x(2), p, d) as well as their principle minors are

strictly negative for all d ∈ supp (D)

det(Jφ)(x, d) =
∂φ(0,0)(x

(2), p, d)

∂d1

∂φ(0,1)(x
(2), p, d)

∂d2

−
∂φ(0,1)(x

(2), p, d)

∂d1

∂φ(0,0)(x
(2), p, d)

∂d2

< 0.

Thus, on every rectangular domain in R2 the assumptions of the Gale-Nikaido theorem are

fulfilled. Since any bounded subset in R2 is contained in some rectangular domain, φ is invertible

on any bounded subset of R2.

Proof of Theorem 4.2. (a) First, let L̃ = {(1, 0), (1, 1)}. By Condition 4.1 and Lemma B.2,

Assumption 2.2 is satisfied. By Assumptions 2.1-2.3 and Theorem 2.1, ψ is identified. Further,

the aggregate demand {φl, l = (1, 0), (1, 1)} is identified by Lemma B.2. Second, take L̃ =

{(0, 0), (0, 1)}. Then by the same argument, the aggregate demand {φl, l = (0, 0), (0, 1)} is

identified as well. Hence, the entire aggregate demand vector φ is identified.

Recall that the demand for bundle (0,0) satisfies (4.1). Together with Assumption 3.2 and

Lebesgue’s theorem the limits

Φ̃(0,0),1(x
(2)
1 , p1, δ1) = − lim

δ2→−∞
φ(0,0)(x

(2), p, δ) = −
∫

1{x(2)
1
′b(2) + ap1 + e1 < −δ1}fθ(b(2), a, e,∆)dθ

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 < −δ1}fϑ1(b(2), a, e1)dϑ1

Φ̃(0,0),2(x
(2)
2 , p2, δ2) = − lim

δ1→−∞
φ(0,0)(x

(2), p, δ) = −
∫

1{x(2)
2
′b(2) + ap2 + e2 < −δ2}fθ(b(2), a, e,∆)dθ

= −
∫

1{x(2)
2
′b(2) + ap2 + e2 < −δ2}fϑ2(b(2), a, e2)dϑ2
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exist and are unique. Note that in both equations ∆ and e1 or e2 are integrated out. Hence, the

first equation connects fϑ1 to Φ̃(0,0),1 and the second equation connects fϑ2 to Φ̃(0,0),2. Following

the argumentation in the proof of Theorem 3.1 yields that fϑ1 and fϑ2 are identified.

As a second step we repeat the argument for φ(1,1). The demand for bundle (1,1) can be

written as (4.3). By taking the limits

Φ̃(1,1),1(x
(2)
1 , p1, δ1) = − lim

δ2→−∞
φ(1,1)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆ < −δ1}fθ(b(2), a, e,∆)dθ

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆ < −δ1}fη1(b(2), a, e1 + ∆)dη1

Φ̃(1,1),2(x
(2)
2 , p2, δ2) = − lim

δ1→−∞
φ(1,1)(x

(2), p, δ)

= −
∫

1{x(2)
2
′b(2) + ap2 + e2 + ∆ < −δ2}fθ(b(2), a, e,∆)dθ

= −
∫

1{x(2)
2
′b(2) + ap2 + e2 + ∆ < −δ2}fϑ2(b(2), a, e2 + ∆)dη2

and following the argument in the proof of Theorem 3.1 the identification of fη1 and fη1 is

proven.

(b) With fηj for j = 1, 2 the characteristic function Ψ∆+εj |(β(2),α) of (∆it + εijt) con-

ditional on (β
(2)
it , αit) is identified as well. With the conditional independence assumption

∆it ⊥ εijt|(β(2)
it , αit) and Ψεj |(β(2),α)(t) 6= 0 for almost all t ∈ R the densities fηj and fϑj can be

disentangled by the deconvolution:

f∆|β(2),α = F−1

(
Ψ∆+εj |(β(2),α)

Ψεj |(β(2),α)

)
,

where F denotes the Fourier transform with respect to ∆. This obviously identifies fβ(2),α,∆ as

well. If in addition εi1t and εi2t are independent conditional on (β
(2)
it , αit), the density of fθ is

identified by

fθ(b
(2), a, e,∆) = fε1|β(2),α(e1|b(2), a) fε2|β(2),α(e2|β(2), α) fβ(2),α,∆(b(2), a,∆)

This completes the proof of the theorem.

Proof of Theorem 4.3. First, let L̃ = {(2, 0), (2, 1)}. By Condition 4.1 and Lemma B.2, As-

sumption 2.2 is satisfied. By Assumptions 2.1-2.3 and Theorem 2.1, ψ is identified. This implies

that the aggregate demand {φl, l = (2, 0), (2, 1)} is identified. Second, take L̃ = {(0, 0), (0, 1)}.
Then by the same argument, the aggregate demand {φl, l = (0, 0), (0, 1)} is identified as well.
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Again by Condition 4.1, we can take the limits

Φ̃(0,0)(x
(2)
1 , p1, δ1) = − lim

δ2→−∞
φ(0,0)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 < −δ1}fθ(b(2), a, e,∆)dθ

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 < −δ1}f(β(2),α,ε1)(b

(2), a, e1)dθ

Φ̃(0,1)(x
(2)
1 , p1, δ1) = − lim

δ2→∞
φ(0,1)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆(1,1) > −δ1}fθ(b(2), a, e,∆(1,1))dθ

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆(1,1) > −δ1}f(β(2),α,ε1+∆(1,1))

(b(2), a, e+ ∆(1,1))dθ

Φ̃(2,0)(x
(2)
1 , p1, δ1) = − lim

δ2→−∞
φ(2,0)(x

(2), p, δ)

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆(2,0) > −δ1}fθ(b(2), a, e,∆(2,0))dθ

= −
∫

1{x(2)
1
′b(2) + ap1 + e1 + ∆(2,0) > −δ1}f(β(2),α,ε1+∆(2,0))

(b(2), a, e1 + ∆(2,0))dθ

Φ̃(2,1)(x
(2)
1 , p1, δ1) = − lim

δ2→∞
φ(2,1)(x

(2), p, δ)

=

∫
1{x(2)

1
′b(2) + ap1 + e1 + ∆(2,1) −∆(1,1) > −δ1}fθ(b(2), a, e,∆(1,1))dθ

=

∫
1{x(2)

1
′b(2)+ap1 + e1 + ∆(2,1) −∆(1,1) > −δ1}f(β(2),α,ε1+∆(2,1)−∆(1,1))

(b(2), a, e1 + ∆(2,1) −∆(1,1))dθ .

By the argument in the proof of Theorem 3.1 and the assumption that (X
(2)
1t , P1t, D1t) has

a full support, this identifies the joint densities of (β
(2)
it , αit, εi1t), (β

(2)
it , αit, εi1t + ∆i,(1,1),t),

(β
(2)
it , αit, εi1t + ∆i,(2,0),t), and (β

(2)
it , αit, εi1t + ∆i,(2,1),t −∆i,(1,1),t) respectively.

In what follows, the arguments are made conditional on (β
(2)
it , αit) unless otherwise noted. By

Assumption 4.1 (i), we may disentangle the distribution of εi1t with that of ∆i,(1,1),t, ∆i,(2,0),t,

and ∆i,(2,1),t − ∆i,(1,1),t respectively by deconvolution as done in the proof of Theorem 4.2.

Thus, the marginal densities of ∆i,(2,1),t −∆i,(1,1),t and ∆i,(1,1),t are identified. Further, we note

that ∆i,(2,1),t − ∆i,(1,1),t is a convolution of ∆i,(2,1),t and −∆i,(1,1),t. By Assumption 4.1 (ii),

Proposition 8 of Carrasco and Florens (2010) applies. Hence, the marginal density of ∆i,(2,1),t is

identified. By Assumption 4.1 (i), ∆i,(1,1),t ⊥ ∆i,(2,0),t ⊥ ∆i,(2,1),t conditional on (β
(2)
it , αit, εi1t),

and each of the marginal densities was identified in the previous step. Therefore, the joint

density f
(∆(1,1),∆(2,0),∆(2,1))|(β

(2)
it ,αit,εi1t)

is identified as the product of the marginal densities. Since

the density of (β
(2)
it , αit, εi1t) is identified as well, we may identify the joint density fϑ1 as

fϑ1 = f(∆(1,1),∆(2,0),∆(2,1))|(β(2),α,ε1)f(β(2),α,ε1). fϑ2 is identified as fϑ1 by Assumption 4.1 (ii). By

Assumption 4.1 (ii) and arguing as in (B.3), fθ is identified. Given fθ, all components of φ is
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identified. This completes the proof of the theorem.

C Nonparametric identification of ψ with full indepen-

dence

In Section 2.2, we discussed the the nonparametric identification of the functions ψj in the

equation Ξjt = ψj(X
(2)
t , Pt, S̃t) − X

(1)
jt . Following BH (2013), we proposed to identify the

structural functions by the conditional moment equations

E
[
ψj

(
X

(2)
t , Pt, St

) ∣∣∣Zt = zt, Xt =
(
x

(1)
t , x

(2)
t

) ]
= x

(1)
jt , j = 1, · · · , J.

with instrumental variables Zt. The identification relies on the assumption that the unobserv-

able Ξjt is mean independent of the instruments. However, in many applications researchers

choose instruments by arguing that they are independent of the unobservable. Using only

mean independence means using only parts of the available information. Thereby, the iden-

tifying power is weakened. Adding the stronger independence assumption when it is justified

will improve identification as well as estimation. Therefore, we propose an approach similar to

Dunker et. al. (2014) by formally assuming

Ξjt ⊥⊥ (Zt, Xt) and E[Ξjt] = 0 for all j, t.

This leads to the nonlinear equation

0 =

(
P [ψj(X

(2)
t , St, Pt)−X(1)

jt ≤ ξ]− P [ψj(X
(2)
t , St, Pt)−X(1)

jt ≤ ξ|Zt = zt, Xt = xt]

E[ψj(X
(2)
t , St, Pt)−X(1)

jt ]

)

for all ξ, zt, xt. Nonparametric estimation of problems involving this type of nonlinear restric-

tions are studied in Dunker et. al. (2014). To give sufficient conditions for identification, we

define the operator

F (ϕ) (ξ, zt, xt) :=

(
P [ϕ(X

(2)
t , St, Pt)−X(1)

jt ≤ ξ]− P [ϕ(X
(2)
t , St, Pt)−X(1)

jt ≤ ξ|Zt = zt, Xt = xt]

E[ϕ(X
(2)
t , St, Pt)−X(1)

jt ]

)
.

The function ψj is a root of the operator F . It is, therefore, globally identified under the

following assumption.

Assumption C.1. The operator F has a unique root.

On first sight this may appear as a strong assumption due to the complexity of the operator.
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It is, however, weaker than the usual completeness assumption for the mean independence

assumption. This is because, if Ξjt ⊥⊥ (Zt, Xt) and the usual completeness assumption hold,

then F has only one root. On the other hand, completeness is not necessary for F to have

a unique root. Hence, when Ξjt ⊥⊥ (Zt, Xt), Assumption C.1 is weaker than Assumption 2.3.

Another important advantage of this method is that because the Dj do not vanish, we have a

close analog to nonparametric IV with full independence, see, Dunker et al. (2014) and Dunker

(2015), where Dj now plays the role of the dependent variable.
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