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Abstract

This paper develops the identification and estimation of nonlinear semi-parametric

panel data models with mismeasured variables and their corresponding average

partial effects using only three periods of data. The past observables are used as

instruments to control the measurement error problem, and the time averages of

perfectly observed variables are used to restrict the unobserved individual-specific

effect by a correlated random effects specification. The proposed approach relies on

the Fourier transforms of several conditional expectations of observable variables.

We then estimate the model via the semi-parametric sieve Generalized Method of

Moments estimator. The finite-sample properties of the estimator are investigated

through Monte Carlo simulations. We use our method to estimate the effect of the

wage rate on labor supply using PSID.
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1. Introduction

The availability of panel data allows economists to control for unobservable individual-

specific characteristics that may be correlated with explanatory variables in the model.

Substantial progress has been made to handle linear or nonlinear models ignoring the

potential presence of measurement error. However, many economic quantities such as

work hours, earnings, fringe benefits and employment in surveys are frequently mea-

sured with errors, if longitudinal information is collected through one-time retrospec-

tive surveys.1 This concern has been heightened by the increased use of longitudinal

data sets and mismeasurement of the panel data may lead to false results or obscures

true economic relationships. The estimation problems caused by the mismeasurement

of economic data may be greatly exacerbated when economists exploit panel data to

control for the effects of unobserved individual effect using standard fixed effects or

first-differenced estimators.

Consider the following semi-parametric nonlinear panel data model with unknown

finite-dimensional parameter β0

(1) Yit = m
(
Wit, X∗

it,Ci;β0
)+Uit, i = 1, . . . ,n, t = 1, . . . ,T.

In this model, Yit is an observed scalar dependent variable, Wit is a perfectly observed

explanatory variable, X∗
it is a latent continuous mismeasured variable, Ci is an un-

observed individual-specific effect, and Uit is an unobserved random variable. The

function m may be inseparable in Wit, X∗
it, and Ci, and belongs to a known, finite-

dimensional parametric family. We focus on the case where the data consists of a large

number of individuals observed through a small (fixed) number of time periods. The

variable X it is a proxy or measure of the unobserved true regressor X∗
it.

The model described in Eq. (1) has two aspects which are distinct in the literature

1The problems of the measurement error have raised great concern in a number of practical applica-
tions. Studies in Bollinger (1998), Bound, Brown, Duncan, and Rodgers (1994), and Bound, Brown, and
Mathiowetz (2001) provide evidences of the measurement errors in economics data sets.
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of panel data models with measurement errors. First, the unobserved heterogene-

ity enters the structural regression function nonseparably without imposing a linear

index structure. Second, the potential nonlinear regression function also contains a

mismeasured variable nonseparably along with other explanatory variables. This sug-

gests that the proposed regression model can be a structural function derived from a

dynamic utility maximization problem with flexible preferences.

Linear panel data models with measurement error problems have been widely stud-

ied in the literature including Griliches and Hausman (1986), Wansbeek and Koning

(1991), Biørn (1992), and Wansbeek (2001). Their approaches involve first applying

an appropriate transformation to handle the unobserved effect and then using instru-

ments in a generalized method of moments (GMM) framework. On the other hand,

if we ignore the measurement error problem in Eq. (1), then the models belong to

nonseparable panel data models which have been studied in: Evdokimov (2011), Cher-

nozhukov, Fernández-Val, Hahn, and Newey (2013), Hoderlein and White (2012), Chen

and Swanson (2012), Hoderlein and Mammen (2007), Altonji and Matzkin (2005), and

Chernozhukov, Fernandez-Val, Hoderlein, Holzmann, and Newey (2015). In particular,

Chernozhukov, Fernández-Val, Hahn, and Newey (2013), Graham and Powell (2012),

and Hoderlein and White (2012) use changes over time in x to obtain ceteris paribus ef-

fect of x on y for identification and estimation of nonseparable models. Wilhelm (2015)

considers nonlinear panel data models with measurement error where fixed effects are

additively separable. He differences out the fixed effects and provides a nonparamet-

ric identification result without requiring any extra variable other than outcomes and

observed regressors. However, in nonseparable panel data models it is not clear how to

remove the unobserved heterogeneity and address measurement error problems simul-

taneously so there is a fundamental difference between additively separable models

and nonseparable models.

Besides short panel data considered here, there are a lot of closely related work

in the existing large panel literature but not allowing for measurement error. Alvarez

and Arellano (2003) investigate the linear panel regression models with fixed effects for
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large n,T, and they find that their GMM estimator has an asymptotic bias of an order

1/n and does not cause bias for large T. Akashi and Kunitomo (2012) use the approach

in Alvarez and Arellano (2003) to study panel dynamic simultaneous equation models.

Hahn and Kuersteiner (2002) characterize the bias of the fixed effect estimator by

allowing both n, and T approach to infinity and the ratio n/T approach to a constant.

The identification technique developed in this paper builds on previous work of

Schennach (2007), concerning the identification and estimation of nonlinear measure-

ment error models with instruments. The identification strategy is to employ Fourier

transforms of conditional expectations of observable variables and provide a closed for-

m solution to the regression function based on these transforms. We generalize the

method of Schennach (2007) by allowing for a measurement error term in the regres-

sion function with an additional unobserved individual-specific effect in a panel data

setting. The proposed method works in a way that panel data contains enough infor-

mation on observables to identify the mismeasured variable X∗
it, and the unobserved

individual-specific effect Ci. While the past observables are used as instruments to con-

trol the measurement error problem, the time averages of perfectly observed variables

are used to restrict the unobserved individual-specific effect by a correlated random ef-

fects specification. Thus, the nonseparable regression function of interest also admits

a similar representation of the closed form solution in Schennach (2007) under a mild

regularity condition.

The estimation method closely follows the construction of the identification analysis

because the identification result is established from knowledge of the three conditional

expectations. Based on this identification result, we propose a sieve minimum dis-

tance (hereafter SMD) estimator for the parameters of interest. Then, estimating the

parameters of interest by implementing the methods of series or sieve estimation de-

veloped in Ai and Chen (2003) and Newey and Powell (2003). The estimation procedure

consists of applying the SMD method to a vector of the moment conditions related to

the identification result. It follows that the SMD estimator for the finite-dimensional

parameters of the structural function is
p

n-consistent and asymptotically normally
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distributed.

The rest of the paper is organized as follows. Section 2 describes the identification

assumptions and strategy for nonlinear panel data models with measurement errors.

Section 3 covers the sieve minimum distance (SMD) estimation procedure based on

the identification restrictions in Section 2. Section 4 discusses the implementation of

the SMD estimator and presents its Monte Carlo simulation. Section 5 presents our

empirical application, the elasticity of labor supply. Section 6 concludes. All proofs are

collected in the Appendix.

2. Semiparametric Identification

Without loss of generality, we consider both Wit and X∗
it to be a scalar and a multi-

variate case can be straightforward extended. To avoid confusion, upper case letters

are used exclusively for random variables and lower case letters are used exclusively

for non-random quantities corresponding to its upper case random variables. The data

{yit,wit, xit} is independently and identically distributed observable random sample for

{Yit,Wit, X it} for i = 1,2, . . . ,n and t = 1, . . . ,T ≥ 2.

Assumption 2.1. (Correlated Random Effects (CRE)) There exists a nonzero coefficient

λ0 such that

Ci =λ0W i +ηi,(2)

where W i = 1
T

∑T
t=1 Wit is denoted as the time average of the perfectly observed explana-

tory variables. In particular, the remainder term ηi is independent of W i.

Assumption 2.1 can be generalized to include more perfectly observed explanato-

ry variables. For example, if there exist another time-invariant variable Z i, we can

consider the following CRE specification

Ci =λ01W i +λ02Z i +ηi.
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Including more control variables in the specification may make the independent as-

sumption of the projection error ηi more reasonable.

Assumption 2.2. (Classical measurement error) Assume

(i)(Past variables as IV) There exists an unknown function ht at time t satisfying

X∗
it = ht(G i<t)+Vit,

where G i<t = (Wit−1, X it−1, . . . ,Wi1, X i1), Vit is independent of G i<t and E[Vit]= 0.

(ii)(Measurement error)

X it = X∗
it +∆X it, E[∆X it|Wit,G i<t,Vit,W i,ηi,Uit]= 0

(iii)(Conditional mean independence)

E[Uit|Wit,G i<t,Vit,W i]= 0;

(iv)(Independent Distribution) The remainder error of CRE ηi and the unobservable Vit

are independent.

The setting for the measurement errors is the same as Schennach (2007), which

uses instruments to identify nonlinear errors-in-variables models. Assumption 2.2(i)

can be regarded as a control function assumption which uses the past variable as IV

to construct the estimable ht(G i<t) to extract the independent unobservable variable

Vit from the unobservable true regressor X∗
it affecting the response. The assumption

is commonly used for identification of nonlinear models.2 We can further assume X∗
it

follows a first order stationary Markov motion by setting X∗
it = h(Wit−1, X it−1)+Vit.

Assumption 2.2(ii) implies that E[X∗
it∆X it] = 0 or there is no correlation between the

2Combining Assumption 2.2(i) and (ii) yields X it = ht(G i<t)+Vit +∆X it. As mentioned in Schennach
(2007), an indirect test of the validity of the independence of Vit in Assumption 2.2(i) and conditional
mean independence of ∆X it in Assumption 2.2(ii) can be conducted by testing the dependence of the
estimated residual from regressing X it on ht(G i<t).
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unobserved true regressor and the measurement error. Assumption 2.2(iii) only impos-

es the standard orthogonality restriction that E[Uit|Wit,G i<t,Vit,W i]= 0 and suggests

that the disturbance Uit does not have to be independent of Wit, G i<t, Vit, and W i and

the distribution of Uit does not have to be the same across time periods. This implies

that Uit can have an AR(1) stochastic process.

As mentioned in Eq. (A.3), the measurement error equation and correlated random

effects can be defined as follows:

X∗
it = G̃ i<t − Ṽit, and Ci =λ0W i − η̃i,

where ht(G i<t)≡ G̃ i<t =E[X it|G i<t], Ṽit =−Vit, and η̃i =−ηi. The following assumption

guarantees that the Fourier transforms of the related conditional expectations are well

defined.

Assumption 2.3. Consider E[Yit|wit,G̃ i<t,W i], E[X itYit|wit,G̃ i<t,W i] for a fixed wit.

These conditional expectations are functions in R2 and belong to a function space S

which contains functions f (ξ) satisfying

∫
(1+ξᵀξ)r| f (ξ)|dξ<∞, for some γ> 0.

Assumption 2.3 ensures that the Fourier transforms of the conditional expectations

to be well defined members of a subclass of locally integrable functions,

Define the characteristic functions of the conditional expectations E[Yit|wit,G̃ i<t,W i],

E[X itYit|wit,G̃ i<t,W i], and m
(
wit, x∗it, ci;β0

)
for a fixed wit as follows:

Fy(wit,ξ1,ξ2)=
∫ ∫

E[Yit|wit, g̃ i<t,wi]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi(3)

Fxy(wit,ξ1,ξ2)=
∫ ∫

E[X itYit|wit, g̃ i<t,wi]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi(4)

Fm(wit,ξ1,ξ2;β0)=
∫ ∫

m
(
wit, x∗it, ci;β0

)
eiξ1x∗it eiξ2ci dx∗itdci,(5)

where i =p−1. Define also φv(ξ1) = ∫
eiξ1 ṽit fṼit

(ṽit)dṽit and φη(ξ2) = ∫
eiξ2η̃i fη̃i (η̃i)dη̃i,
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where fṼit
(ṽ) and fη̃i (η̃) are the density functions of Ṽit and η̃i, respectively.

Lemma 2.1. Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Then,

Fy(wit,ξ1,ξ2)= 1
λ0

Fm(wit,ξ1,
ξ2

λ0
)φv(ξ1)φη(

ξ2

λ0
),(6)

Fxy(wit,ξ1,ξ2)= 1
λ0

− i
∂Fm(wit,ξ1, ξ2

λ0
)

∂ξ1
φv(ξ1)φη(

ξ2

λ0
).(7)

Proof. See the appendix.

Assumption 2.4. Assume (i)
∫ |ṽit| fṼit

(ṽit)dṽit < ∞,
∫ |η̃i| fη̃i (η̃i)dη̃i < ∞; and (ii) the

characteristic functions φv(ξ1) 6= 0, and φη(ξ2) 6= 0 are continuous, and continuously

differentiable for all ξ1,ξ2 ∈R.

Assumption 2.5. Set Θ as a parameter space containing β0. There exists a finite or

infinite constant ζ̄ > 0 and some wit such that for all β ∈ Θ (i) Fm(wit,ξ1,ξ2;β) 6= 0

almost everywhere in [−ζ̄, ζ̄]2 and (ii) Fm(wit,ξ1,ξ2;β)= 0 for all |ζ1|, |ζ2| > ζ̄.

Assumptions 2.4 and 2.5 are standard in the deconvolution literature. Assumption

2.4(ii) requires that the characteristic functions of V and η̃ to be non-vanishing which

excludes uniform or triangular distributions. Exploiting the conditional mean function

in Eq. (A.5) by replacing fη̃i (η̃i) by fη̃i ;γ(η̃), we have the following.

Denote γ= (β,λ) and γ is a (dβ+2)×1-dimensional vector. Consider the parametric

conditional mean function in Eq. (A.16):

E[Yit|wit, g̃ i<t,wi;γ]=
∫ ∫

m
(
wit, g̃ i<t − ṽit,λ1wi − η̃i;β

)
fṼit

(ṽit) fη̃i ;γ(η̃i)dṽitdη̃i.

Define the gradient of E[Yit|wit, g̃ i<t,wi;γ] as follows,

∇γE[Yit|wit, g̃ i<t,wi;γ]=
(
∂E[Yit|wit, g̃ i<t,wi;γ]

∂β1
, . . . ,

∂E[Yit|wit, g̃ i<t,wi;γ]
∂λ2

)ᵀ
.
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Define the information matrix as follows:

I(γ)=E
[
∇γE[Yit|wit, g̃ i<t,wi;γ] ·∇γE[Yit|wit, g̃ i<t,wi;γ]

ᵀ]
.

Assumption 2.6. (Nonsingular Parametric Structure) Set Γ = Θ×Υ as a parameter

space containing (β0,λ0). The elements of the vector ∇γE[Yit|wit, g̃ i<t,wi;γ] exist and

are continuous in Γ for each (wit, g̃ i<t,wi) and the matrix I(β0,λ0) is nonsingular.

Theorem 2.1. Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, the three unknown

parameters of interest, including the finite-dimensional parameters β0 and λ0, the dis-

tribution of the remainder error of control function approach fṼit
(ṽ), and the distribu-

tion of the remainder error of CRE ηi, fη̃i (η̃) are identifiable.

Proof. See the appendix.

There are two main steps for the identification strategy for Theorem 2.1. In the

first step, we use the method of Theorem 1 in Schennach (2007) and of Theorem 3(B) in

Zinde-Walsh (2014) to identify the distribution of measurement error. As for the second

step we use CRE specification and the properties of Fourier transforms on convolution

functions to connect the distribution of individual effect to a parametric conditional

moment function. Then, the identification is achieved by the nonsingular paramet-

ric structure of the information matrix formed by the parametric conditional moment

function of Assumption 2.6.

Other quantity of interest is on estimating partial effects. The magnitude of the

partial effect evidently cannot be estimated at meaningful values of the individual

effect. One solution is to average the partial effects across the distribution of the in-

dividual effect which is also identified by Theorem 2.1. With the identification of the

distribution of ηi and the independence assumption of ηi in Assumption 2.1, we have

f (c|wi)= fη̃i (−c+λ0wi). Then, the distribution of the individual effect can be identified
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with the identification of f (c|wi) from the following equation:

fCi (c)=
∫

f (c|wi) · f (wi)︸ ︷︷ ︸
estimable
from data

dwi.(8)

Suppose x∗it takes continuous values. Given (w0, x∗0 ), the average partial effect

(APE) for x∗it at the point is defined as

APE(w0, x∗0 )=
∫
C

∂m
(
wit, x∗it, ci;β0

)
∂x∗it

∣∣∣
(wit,x∗it)=(w0,x∗0 )

fCi (c)dc.(9)

Corollary 2.1. Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, the distribution of

the individual effect and the average partial effect defined in Eq. (9) is identified.

3. SMD Estimation

In Section 2, we have shown in Theorem 2.1, the three unknown parameters of interest,

including the finite-dimensional parameters β0 and λ0, the distribution of the remain-

der error of control function approach fṼit
(ṽ), and the distribution of the remainder

error of CRE ηi, fη̃i (η̃) are uniquely identified. The identification is based on knowl-

edge of the three observable conditional expectations E[X it|G i<t], E[Yit|Wit,G̃ i<t,W i]

and E[X itYit|Wit,G̃ i<t,W i], where G̃ i<t = ht(G i<t). In general, the conditioning set is

high dimensional and nonparametric estimation procedures will perform poorly. We

impose a Markov assumption, which reduces the dimensionality considerably.

Assumption 3.1. (Stationary Markov motion) The mismeasured covariate X∗
it follows

a first order stationary Markov process, X∗
it = h(Wit−1, X it−1)+Vit for each t.

Denote H̃i<t = h(Wit−1, X it−1), and D it = (Wit,Wit−1, X it−1,W i). Under the assump-

tions of Theorem 2.1 and Assumption 3.1, we rewrite these conditional expectations as
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follows:3

0≡E[X it|Wit−1, X it−1]−h(Wit−1, X it−1),

0≡E[Yit|D it]−
∫ ∫

m
(
Wit, H̃i<t − ṽit,λ0W i − η̃i;β0

)
fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i,

0≡E[X itYit|D it]−
∫ ∫

(H̃i<t − ṽit)m
(
Wit, H̃i<t − ṽit,λ0W i − η̃i;β0

)
× fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i.

Denote α0 = (β0,λ0, fṼit
(·), fη̃i (·),h(·))ᵀ . Define the following residual functions:

ρ1 (X it,Yit,D it;α0)≡ X it −h(Wit−1, X it−1),

ρ2 (X it,Yit,D it;α0)≡Yit −
∫ ∫

m
(
Wit, H̃i<t − ṽit,λ0W i − η̃i;β0

)
fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i,

ρ3 (X it,Yit,D it;α0)≡ X itYit −
∫ ∫

(H̃i<t − ṽit)m
(
Wit, H̃i<t − ṽit,λ0W i − η̃i;β0

)
× fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i.

Define the 3×1 vector of residual functions by

ρ(X it,Yit,D it;α0)=


ρ1 (X it,Yit,D it;α0)

ρ2 (X it,Yit,D it;α0)

ρ3 (X it,Yit,D it;α0)

 .

The parameter vector α= (β,λ, fV (·), fη(·),h(·))ᵀ has three infinite-dimensional nuisance

parameters because of the presence of the unknown functions λ, fV (·), fη(·), and h(·).
The conditional moments functions for α0 can be summarized as the following condi-

tional moment restrictions

m(D it;α)≡E[ρ(X it,Yit,D it;α)|D it],

with m(D it;α) = 0. Therefore, the model fits into the general models of conditional

3The detailed derivations can be found in Eqs. (A.5) and (A.6)in the appendix.
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moment restrictions in Ai and Chen (2003), which contain finite dimensional unknown

parameters and infinite dimensional unknown functions.

Suppose m̂(D it;α) is a consistent estimator for m(D it;α) and An is a sequence of

approximating sieve spaces for the parameter space A containing α0. The SMD es-

timator α̂n minimizes the following sample analog of a minimum distance objective

function with the parameters restricted to the sieve spaces, An:

α̂n = arg min
α∈An

1
n(T −1)

n∑
i=1

T∑
t=2

m̂(D it;α)
ᵀ [
Σ̂(D it)

]−1 m̂(D it;α),

where Σ̂(D it) is some positive 3×3 weighting matrix. There are two approximations

in the optimization problem to make the estimator feasible and consistent. One is

m̂(D it;α) approximates m(D it;α) and the other is An approximates A .

Let pk(·) = (p1(·), . . . , pk(·))ᵀ be a vector of some known univariate basis function

and pk(·, . . . , ·) = (p1(·, . . . , ·), . . . , pk(·, . . . , ·))ᵀ be multivariate basis function generated by

tensor product construction. Denote the kn ×1 vector of approximating functions as

pkn(D it) = (p1(D it), . . . ,pkn(D it))
ᵀ

which is constructed from some known basis func-

tions for any square integrable real-valued function of D it. A linear consistent sieve

estimator m̂(D it;α) can be obtained by regressing ρ(X it,Yit,D it;α) on pkn(D it),

(10) m̂(D it;α)= pkn(D it)
ᵀ
(H

ᵀ
H)−1

n∑
i=1

T∑
t=2

pkn(D it)ρ(X it,Yit,D it;α),

where H = (pkn(D12), . . . ,Pkn(DnT))
ᵀ
. This GMM type estimator is proposed by Ai and

Chen (2003) and is called a sieve minimum distance (hereafter SMD) estimator. Ai

and Chen (2003) show that the SMD estimator is consistent, and the parametric com-

ponents of the estimator have an asymptotically normal limiting distribution under

suitable regularity conditions.
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4. Monte Carlo Simulation

This section presents the finite sample properties of the SMD estimator derived in

Section 3 by a Monte Carlo simulation. We focus on the estimation of β0 and λ0 which

correspond to the regression function m
(
Wit, X∗

it,Ci;β0
)

and the CRE Ci = λ01W i +
λ02Z i + ηi, respectively. However, the distributions of fṼit

(ṽ) and fη̃i (η̃) are treated

nonparametrically and will be approximated by a sequence of truncated sieve series.

The simulation design is according to the following DGP: Denote Trun(Φ, [a,b]) as

a distribution of a random variable generated by Φ−1(u · (Φ(b)−Φ(a))+Φ(a)) where Φ

is the CDF of standard normal distribution, Φ−1 is the inverse of Φ and u is a uniform

random variable on [0,1]. Both Wi1, and X∗
i1 are generated from Trun(Φ, [0,1]). The

covariates (Wit, X∗
it) for t = 2,3 are generated according to

Wit = ρWit−1 +UW ,it−1 with UW ,it−1 ∼Trun(Φ, [−2,2]),

X∗
it = ρX∗

it−1 +UX ,it−1 with UX ,it−1 ∼Trun(Φ, [−2,2]),

where ρ = 0.8. The specification for the measurement error problem is:

X it = X∗
it +∆X it, where ∆X it ∼Trun(Φ, [−2,2]).

Let W i = 1
3

3∑
t=1

Wit and Z i ∼ Trun(Φ, [0,1]). Then, the specification for the individual

effect is:

Ci =λ01W i +λ02Z i +ηi, where (λ01,λ02)= (−0.5,0.5),ηi ∼Trun(Φ, [−2,2]).

Set β0 = (β00,β01,β02)= (0.5,0.5,−0.5). Considers three specifications for the regression
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function:

Simulation I: m
(
Wit, X∗

it,Ci;β0
)=β00 +β01Wit +β02X∗2

it +Ci,

Simulation II: m
(
Wit, X∗

it,Ci;β0
)= (

β00 +β01Wit +β02X∗
it +Ci

)2 ,

Simulation III: m
(
Wit, X∗

it,Ci;β0
)= (

β00 +β01(1+Ci)Wit +β02(1+Ci)X∗
it +Ci

)2 .

The SMD procedure requires approximating the three nonparametric parts by sieves,

including the conditional expectation function ht, fṼit
(ṽ) and fη̃i (η̃). Let f1 and f2 be

the nonparametric series estimators for fṼit
(ṽ) and fη̃i (η̃), respectively. We construct

f 1/2
1 and f 1/2

2 by univariate Hermite functions,

f 1/2
1 (ṽ)=

3∑
i=0

δ1iHi(ṽ),

f 1/2
2 (η̃)=

3∑
i=0

δ2iHi(η̃),

where H0(x)= e−
x2
2 , H1(x)= xe−

x2
2 , H2(x)= (x2−1)e−

x2
2 , H3(x)= (x3−3x)e−

x2
2 . The sieve

coefficients of both f1 and f2 need to satisfy density restrictions. Because the Her-

mite functions form an orthogonal series that satisfies
∫ ∞
−∞ Hn(x)Hm(x)dx =p

2πn!δnm,

where δnm = 1 if n = m, and δnm = 0 otherwise, the density restriction on the sieve co-

efficients is
p

2π(δ2
10 +δ2

11 +2!δ2
12 +3!δ2

13)= 1.

We use a tensor product polynomial sieve to approximate the conditional mean

function, which is the set of instruments. In other words, each argument of pkn(D it) is

in the following set: {1,Wit,Wit−1, X it−1,W i, Z i,W2
it,WitWit−1,WitX it−1,WitW i,WitZ i,W2

it−1,Wit−1X it−1,Wit−1W i,

Wit−1Z i, X2
it−1, X it−1W i, X it−1Z i,W

2
i ,W iZ i, Z

2
i } and the total number of the instruments

is 21. As an illustration, we use the identity weighting, Σ̂(D̃ it)= I for the SMD estima-

tor.

The 200 replications of 500, and 1000 observations are drawn from these three data

generating processes corresponding to the different regression function m(·). The sim-

ulation results of Tables 1-2 show the proposed SMD estimator performs well in these
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samples. The mean estimates are almost the same as median estimates of different

sample sizes and simulation designs. This implies that there does not exist skewness

in their respective distributions. For each estimated coefficient, the RMSE declines as

the sample size is increased, as would be expected for this simulation. We can further

use Eq. (8) with the estimated coefficient of λ and observation of wi to recover the

distribution of the individual effect fCi (·) and then APEs can be calculated by Eq. (9).

Tables 3-3 report the mean, standard deviation (SD) and RMSE of the APE estimation

results. All estimations are nearly unbiased and the APE estimator has the best per-

formance in DGP II. In terms of RMSE, the RMSE almost declines as the sample size

is increased.

5. Empirical Application

In this section, we apply our proposed nonlinear panel data model to investigate the

effect of the hourly wage rate of individuals on labor supply given their demographic

variables. The dependent variables are the log values of annual hours of work for those

with positive working hours.4 The variable of interest is the hourly wage rate and mea-

surement error may be greater for the hourly wage rate in the survey. Quality of the

variable is a critical issue for studies of labor supply. The proposed empirical nonlinear

panel data model can examine the measurement error of the hourly wage rate and pro-

vides consistent estimate of the effect. The panel data model fits to this labor supply

topic naturally. In the panel data setting, our model uses the correlated random effect

to control unobserved time invariant factors such as individual unobserved skill level,

ability, or motivation factors which may be correlated to the hourly wage rate.5 The

data formate we used is from Ziliak (1997). Table 5 presents summary statistics for

the working hours, the hourly wage rate, and socioeconomic variables. The between

4We dropped observations with zero working hours. The logarithmic transformation is well defined
and still effectively capture the movement of working hours.

5Borjas (2009) reviews the literature on the estimation of the labor supply elasticity and also discuss-
es the problems caused by measurement error.
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and within sample standard deviations are 0.233 and 0.172 for ln(hours) and 0.432

and 0.118 for ln(wage), respectively. We have a three-periods of the panel data with a

cross-sectional size 532 of males.

Consider an empirical model for labor supply elasticity:

ln(hoursit)=β1(1+ ci) ln(wage it)+β2kidsit +β3age it +β4age2
it +β5disabit + ci +uit.

This specification allows the interactions between observables and unobservables. That

is the random coefficient term of β1(1+ci). In this empirical example, we can treat ci as

unmeasured ability or motivation factors that affect hours of working and uit as a time-

varying macro shock for labor market. Because the true wage rate of each individual

is subject to a misreporting error, the measurement error of the variable ln(wage it) is

likely to occur.6 The vector of time-varying covariates is (kidsit,age it,age2
it,disabit)

ᵀ

and the time averages of these variables are used in the CRE specification in this esti-

mation of labor supply elasticity. A theoretic model of labor supply implies that there

are two effects of a wage increase on labor supply, one is income effect and the other

is substitution effect. While the income effect induces less work, the substitution ef-

fect increases more work. Because both effects work in opposite directions, the overall

effect of a wage increase on labor supply is ambiguous.

Table 6 reports the estimates obtained with our sieve GMM method and with the

linear correlated random effect estimates. We find that the estimated coefficients for

the elasticity are not much different to both models. The values of the coefficients in

these estimates are 4.1%, and 3.9%. However, if we consider the estimates of APE

then the estimate for the elasticity in our semi-parametric nonlinear panel data model

is twice as the estimate in the linear correlated random effect model. A 1% increase

in wage exhibits an approximately 9% increase in working hours. Given the flexible

nature of our estimation approach, the difference implies that the estimate in the lin-

ear correlated random effect model might be biased downward when the measurement

6See detailed discussion in Bound, Brown, and Mathiowetz (2001).
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error problem is not accounted for. As for the sign of the labor supply elasticity, both

estimates are positive and this indicates that the number of hours worked is increasing

in the wage, i.e. the substitution effect is stronger than the income effect.

6. Conclusion

This paper presents the semi-parametric identification and estimation of nonlinear

panel data models with mismeasured variables and their corresponding average par-

tial effects using only three periods of data. The approach addresses the models with-

out external information such as a validation or replicate data set. This study was mo-

tivated by a richer structure of panel data. It is shown that using the past observables

as instruments to permit identification of nonlinear regression models in the presence

of measurement error and also applying the correlated random effects specification to

control the unobserved individual heterogeneity.

The identification equation is a system of three functional equations that relate

conditional expectations of observed variables to the regression function of interest and

distributions of unobservables. The identification strategy contains two steps. While

in the first step we use the method of Schennach (2007) to identify the distribution

of measurement error, in the second step we use CRE specification and the properties

of Fourier transforms on convolution functions to connect the distribution of individ-

ual effect to a parametric conditional moment function. Then, the identification is

achieved by the nonsingular parametric structure of the information matrix formed by

the parametric conditional moment function. Using these conditional expectations of

observed variables for identification conditions, this study provides a semi-parametric

sieve-based GMM estimator and shows that this estimator is consistent and asymptot-

ically normal. Simulation experiments show that the sieve GMM estimators perform

well for both linear and nonlinear panel models with measurement errors. We illus-

trate the performance of this estimator by estimating the elasticity of labor supply and

find that the substitution effect is stronger than the income effect and a 1% increase in
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wage enhances an approximately 9% increase in working hours.

Appendix

A. Identification Results

The proof of Lemma 2.1: Because both Wit and X∗
it are a scalar, we can write Ci =

λ0W i +ηi. Combining Assumptions 2.2(i) and (ii) yields

X it = ht(G i<t)+Vit +∆X it.(A.1)

Taking conditional expectation with respect to G i<t, and applying zero conditional

mean of Vit, and ∆X it implies:

E[X it|G i<t]= ht(G i<t)≡ G̃ i<t.(A.2)

Rewrite the measurement error equation and correlated random effects as follows:

X∗
it = G̃ i<t − Ṽit, and Ci =λ0W i − η̃i.(A.3)

Use the relations in Eq. (A.3) to write

(A.4) Yit = m
(
Wit,G̃ i<t − Ṽit,λ0W i − η̃i;β0

)
+Uit

Then, using the conditional mean independence of Uit in Assumption 2.2(iii) and inde-

pendence of Ṽit and η̃i in Assumption 2.2(iv), we obtain

E[Yit|wit, g̃ i<t,wi](A.5)

=
∫ ∫

m
(
wit, g̃ i<t − ṽit,λ0wi − η̃i;β0

)
fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i.
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Expanding out the term X itYit and taking conditional expectation with respect to

(wit, g̃ i<t,wi) results in

E[X itYit|wit, g̃ i<t,wi]

=E[(G̃ i<t − Ṽit)m
(
Wit,G̃ i<t − Ṽit,λ0W i − η̃i;β0

)
|wit, g̃ i<t,wi]

+E[∆X itm
(
Wit,G̃ i<t − Ṽit,λ0W i − η̃i;β0

)
|wit, g̃ i<t,wi]

+E[(G̃ i<t − Ṽit)Uit|wit, g̃ i<t,wi]+E[∆X itUit|wit, g̃ i<t,wi]

=E[(G̃ i<t − Ṽit)m
(
Wit,G̃ i<t − Ṽit,λ0W i − η̃i;β0

)
|wit, g̃ i<t,wi],

=
∫ ∫

( g̃ i<t − ṽit)m
(
wit, g̃ i<t − ṽit,λ0wi − η̃i;β0

)
fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i.(A.6)

where we have used the zero conditional mean of ∆X it in Assumption 2.2(ii), the zero

conditional mean of Uit in Assumption 2.2(iii), and the law of iterated expectation.

Given wit, taking the Fourier transform on both sides of Eqs. (A.5) and (A.6) with

respect to G̃ i<t, and W i, we have

Fy(wit,ξ1,ξ2)

=
∫ ∫

E[Yit|wit, g̃ i<t,wi]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi

=
∫ ∫ (∫ ∫

m
(
wit, g̃ i<t − ṽit,λ0wi − η̃i;β0

)
fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i

)
eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi

= 1
λ0

(∫ ∫
m

(
wit, x∗it, ci;β0

)
eiξ1x∗it eiξ2

ci
λ0 dx∗itdci

)(∫
eiξ1 ṽit fṼit

(ṽit)dṽit

)(∫
eiξ2

η̃i
λ0 fη̃i (η̃i)dη̃i

)
= 1
λ0

Fm(wit,ξ1,
ξ2

λ0
)φv(ξ1)φη(

ξ2

λ0
),
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and

Fxy(wit,ξ1,ξ2)

=
∫ ∫

E[X itYit|wit, g̃ i<t,wi]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi

=
∫ ∫ (∫ ∫

( g̃ i<t − ṽit)m
(
wit, g̃ i<t − ṽit,λ0wi − η̃i;β0

)
fṼit

(ṽit) fη̃i (η̃i)dṽitdη̃i

)
eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi

= 1
λ0

(∫ ∫
x∗itm

(
wit, x∗it, ci;β0

)
eiξ1x∗it eiξ2

ci
λ0 dx∗itdci

)(∫
eiξ1 ṽit fṼit

(ṽit)dṽit

)(∫
eiξ2

η̃i
λ0 fη̃i (η̃i)dη̃i

)

= 1
λ0

− i
∂Fm(wit,ξ1, ξ2

λ0
)

∂ξ1
φv(ξ1)φη(

ξ2

λ0
).

This yields Eqs. (6) and (7). Q.E.D.

The proof of Theorem 2.1: We will recover fṼit
(ṽ) first. Differentiating the defini-

tion of Fy(wit,ξ1,ξ2) in Eq. (3) with respect to ξ1 yields

∂

∂ξ1
Fy(wit,ξ1,ξ2)= ∂

∂ξ1

∫ ∫
E[Yit|wit, g̃ i<t]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi

= i
∫ ∫

E[G̃ i<tYit|wit, g̃ i<t]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi.(A.7)

Notice that Eq. (7) can be written as
∂Fm(wit,ξ1, ξ2λ0

)
∂ξ1

φv(ξ1)φη( ξ2
λ0

) = iFxy(wit,ξ1,ξ2). On

the other hand, differentiating Eq. (6) with respect to ξ1, we obtain

∂

∂ξ1
Fy(wit,wi,ξ1,ξ2)

= 1
λ0

[∂Fm(wit,ξ1, ξ2
λ0

)

∂ξ1
φv(ξ1)+Fm(wit,ξ1,

ξ2

λ0
)
∂φv(ξ1)
∂ξ1

]
φη(

ξ2

λ0
)

= iFxy(wit,wi,ξ1,ξ2)+ 1
λ0

Fm(wit,ξ1,
ξ2

λ0
)
∂φv(ξ1)
∂ξ1

φη(
ξ2

λ0
)

= i
∫ ∫

E[X itYit|wit, g̃ i<t,wi]eiξ1 g̃ i<t eiξ2xi dg̃ i<tdxi

+ 1
λ0

Fm(wit,ξ1,
ξ2

λ0
)
∂φv(ξ1)
∂ξ1

φη(
ξ2

λ0
).(A.8)
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Combining Eqs. (A.7) and (A.8) yields

iF( g̃−x)y(wit,ξ1,ξ2)

≡ i
∫ ∫

E[(G̃ i<t − X it)Yit|wit, g̃ i<t,wi]eiξ1 g̃ i<t eiξ2wi dg̃ i<tdwi

= 1
λ0

Fm(wit,ξ1,
ξ2

λ0
)
∂φv(ξ1)
∂ξ1

φη(
ξ2

λ0
)(A.9)

Because φv(ξ1), φη(ξ2), and Fm(wit,ξ1,ξ2;β0) are all nonzero by Assumptions 2.4(ii)

and 2.5, we can divide each side of Eq. (A.9) by the corresponding side of Eq. (6) to

obtain

−iF( g̃−x)y(wit,ξ1,ξ2)+
∂φv(ξ1)
∂ξ1

φv(ξ1)
Fy(wit,ξ1,ξ2)= 0.(A.10)

By Theorem 1(b) in Zinde-Walsh (2014), there exists a unique function Q(ξ1) ≡
∂φv(ξ1)
∂ξ1

φv(ξ1)

such that

−iF( g̃−x)y(wit,ξ1,ξ2)+Q(ξ1)Fy(wit,ξ1,ξ2)= 0.(A.11)

Integrating the above equation from 0 to ξ1 with the boundary condition φv(0)= ∫
fṼit

(ṽit)dṽit =
1 yields

φv(ξ1)= exp
(∫ ξ1

0
Q(ξ)dξ

)
.

This implies that φv(ξ1) is identified because it is expressed in terms of the Fouri-

er transforms of observable conditional expectations. It follows that the distribution

fṼit
(ṽit) is identified. Rescaling ξ2 by λ0ξ2 in Eq. (6) and rearranging the terms, we

have

λ0Fy(wit,ξ1,λ0ξ2)= Fm(wit,ξ1,ξ2;β0)φv(ξ1)φη(ξ2),(A.12)
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Solving φη(ξ2) from the above equation yields

φη(ξ2)= λ0Fy(wit,ξ1,λ0ξ2)
Fm(wit,ξ1,ξ2;β0)φv(ξ1)

.(A.13)

Because Fy(wit,ξ1,ξ2), Fm(wit,ξ1,ξ2;β) are all known from the data and the proposed

semi-parametric regression function, and φv(ξ1) is identified, we can generalize the

relation into the following parametric function:

φη;γ(ξ2)= λFy(wit,ξ1,λξ2)
Fm(wit,ξ1,ξ2;β)φv(ξ1)

,(A.14)

where φη;γ0(ξ2) = φη(ξ2). Notice that the identification of the true parameter γ0 leads

to the identification of φη(ξ2). Consider the following parametric function by applying

the inverse Fourier transform to φη;γ(ξ2):

fη̃i ;γ(η̃)= 1
2π

∫ ∞

−∞
e−iξ2η̃φη;γ(ξ2)dξ2.(A.15)

Evaluating the parametric function at γ0, we have fη̃i ;γ0(η̃) = fη̃i (η̃) by the Fourier in-

version theorem. Exploiting the conditional mean function in Eq. (A.5) by replacing

fη̃i (η̃i) by fη̃i ;γ(η̃), we have

E[Yit|wit, g̃ i<t,wi;γ](A.16)

=
∫ ∫

m
(
wit, g̃ i<t − ṽit,λ1wi − η̃i;β

)
fṼit

(ṽit) fη̃i ;γ(η̃i)dṽitdη̃i.

with E[Yit|wit, g̃ i<t,wi;γ0] = E[Yit|wit, g̃ i<t,wi]. Next, we will show that γ0 is iden-

tifiable. If γ0 is not locally identifiable. Then there exists a sequence of distinct

parameters γs ≡ (βs,λs) approaching to γ0 = (β0,λ0) such that ‖(βs,λs)− (β0,λ0)‖ 6= 0

and E[Yit|wit, g̃ i<t,wi;γs] = E[Yit|wit, g̃ i<t,wi]. Applying the mean value theorem to
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E[Yit|wit, g̃ i<t,wi;γs] around γ0 yields

E[Yit|wit, g̃ i<t,wi;γs]−E[Yit|wit, g̃ i<t,wi;γ0](A.17)

=
dβ∑
τ=1

∂E[Yit|wit, g̃ i<t,wi;γ∗]
∂βτ

(βsτ−β0τ)+
2∑

k=1

∂E[Yit|wit, g̃ i<t,wi;γ∗]
∂λk

(λsk −λ0k),

where γ∗ ≡ (β∗,λ∗) is a parameter between γs and γ0. Combining these relationships

yields

0=
dβ∑
τ=1

∂E[Yit|wit, g̃ i<t,wi;γ∗]
∂βτ

(βsτ−β0τ)
‖(βs,λs)− (β0,λ0)‖

+
2∑

k=1

∂E[Yit|wit, g̃ i<t,wi;γ∗]
∂λk

(λsk −λ0k)
‖(βs,λs)− (β0,λ0)‖ ,

=∇γE[Yit|wit, g̃ i<t,wi;γ∗]T
[ (βs −β0)′

‖(βs,λs)− (β0,λ0)‖
(λs −λ0)′

‖(βs,λs)− (β0,λ0)‖
]T

≡∇γE[Yit|wit, g̃ i<t,wi;γ∗]TSγs(A.18)

Because ‖Sγs‖2
E = 1 for all s, {Sγs : s = 1, ...} is a distinct sequence on the unit sphere.

This implies that there exist a convergent subsequence {Sγs j
: j = 1, ...} whose limit is

also on the unit sphere. Denote the limit as Sγ0 . Combining the continuity assumption

in Assumption 2.6 and Eq. (A.18), we obtain

0=∇γE[Yit|wit, g̃ i<t,wi;γ0]TSγ0 .(A.19)

Multiplying each side by ∇γE[Yit|wit, g̃ i<t,wi;γ0] yields

0=
(
∇γE[Yit|wit, g̃ i<t,wi;γ0] ·∇γE[Yit|wit, g̃ i<t,wi;γ0]T

)
Sγ0 .(A.20)

Taking an expectation, we obtain

0=E
[
∇γE[Yit|wit, g̃ i<t,wi;γ0];γ0] ·∇γE[Yit|wit, g̃ i<t,wi;γ0]T

]
Sγ0

= I(β0,λ0)Sγ0 with Sγ0 6= 0.(A.21)
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Since I(β0,λ0) is nonsingular by Assumption 2.6, we have to conclude that (β0,λ0) is

identifiable from this contradiction. Q.E.D.
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Table 1: Estimations of Nonlinear Panel Data Models with Measurement Error (n=500)
β0 = 0.5 β1 = 0.5 β2 =−0.5 λ1 =−0.5 λ2 = 0.5

Simulation I
Mean 0.557 0.511 -0.409 -0.498 0.514
Median 0.559 0.509 -0.420 -0.492 0.516
RMSE 0.154 0.121 0.162 0.111 0.126

Simulation II
Mean 0.501 0.508 -0.499 -0.498 0.502
Median 0.504 0.508 -0.503 -0.500 0.508
RMSE 0.104 0.108 0.100 0.093 0.108

Simulation III
Mean 0.528 0.552 -0.507 -0.506 0.524
Median 0.530 0.552 -0.504 -0.498 0.526
RMSE 0.118 0.133 0.103 0.100 0.120
Note: Standard deviations of the parameters are computed by the standard de-
viation of the estimates across 200 simulations and called (simulation) standard
deviations.

Table 2: Estimations of Nonlinear Panel Data Models with Measurement Error
(n=1000)

β0 = 0.5 β1 = 0.5 β2 =−0.5 λ1 =−0.5 λ2 = 0.5

Simulation I
Mean 0.536 0.506 -0.430 -0.485 0.516
Median 0.524 0.504 -0.423 -0.488 0.513
RMSE 0.125 0.111 0.121 0.101 0.120

Simulation II
Mean 0.502 0.506 -0.500 -0.499 0.502
Median 0.509 0.506 -0.498 -0.502 0.506
RMSE 0.104 0.109 0.100 0.093 0.107

Simulation III
Mean 0.530 0.544 -0.502 -0.507 0.525
Median 0.531 0.539 -0.499 -0.509 0.521
RMSE 0.117 0.129 0.097 0.099 0.120
Note: Standard deviations of the parameters are computed by the standard de-
viation of the estimates across 200 simulations and called (simulation) standard
deviations.
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Table 3: Estimation of the APEs in Simulations (n=500)
Infeasible Sieve GMM

Simulation I:
Mean -0.250 -0.203
Std. dev. 0.000 0.072
RMSE – 0.086
Simulation II:
Mean -0.375 -0.387
Std. dev. 0.038 0.117
RMSE – 0.117
Simulation III:
Mean -1.661 -1.273
Std. dev. 0.083 0.251
RMSE – 0.461
Note: Standard deviations of the parameters are
computed by the standard deviation of the esti-
mates across 150 simulations.

Table 4: Estimation of the APEs in Simulations (n=1000)
Infeasible Sieve GMM

Simulation I:
Mean -0.250 -0.216
Std. dev. 0.000 0.049
RMSE – 0.059
Simulation II:
Mean -0.375 -0.388
Std. dev. 0.025 0.118
RMSE – 0.118
Simulation III:
Mean -1.662 -1.266
Std. dev. 0.060 0.225
RMSE – 0.454
Note: Standard deviations of the parameters are
computed by the standard deviation of the esti-
mates across 150 simulations.
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Table 5: Data Summary
Variable Mean Std. Dev. Min Max

ln(hours) overall 7.671 0.289 2.770 8.560
between 0.233 4.950 8.407
within 0.172 5.491 10.011

ln(wage) overall 2.614 0.448 -0.220 4.600
between 0.432 0.877 4.367
within 0.118 1.274 3.344

kids overall 1.484 1.218 0 6
between 1.191 0 5.333
within 0.257 -0.183 3.150

age overall 42.415 7.973 29 60
between 7.933 30 59
within 0.849 40.748 44.081

age2 overall 1,862.545 708.068 841 3,600
between 704.740 900.667 3,481.667
within 72.973 1,668.212 2,051.545

disab overall 0.083 0.276 0 1
between 0.230 0 1
within 0.153 -0.583 0.750

Note: The data is a three-periods of panel data with a cross-sectional
size 532.
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Table 6: Estimates for the Elasticity of Labor Supply

Dependent Variable: ln(hours)

Linear Correlated Semi-parametric
Random Effects Nonlinear Regression

ln(wage) 0.041 0.039
(0.021) (0.017)

kids -0.015 -0.019
(0.021) (0.007)

age -0.009 -0.007
(0.034) (0.004)

age2 0.000 -0.001
(0.000) (0.001)

disab -0.048 -0.024
(0.035) (0.027)

kids 0.018 0.020
(0.024) (0.045)

age 0.015 0.015
(0.037) (0.052)

age2 0.000 0.001
(0.000) (0.002)

disab -0.109 -0.072
(0.056) (0.089)

constant 7.526 2.957
(0.319) (1.957)

APE – 0.090
– (0.057)

Note: Bootstrap (simulation) standard errors are reported in paren-
theses, using 200 bootstrap replications.
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