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Abstract

This paper develops the identification and estimation of nonlinear semi-parametric
panel data models with mismeasured variables and their corresponding average
partial effects using only three periods of data. The past observables are used as
instruments to control the measurement error problem, and the time averages of
perfectly observed variables are used to restrict the unobserved individual-specific
effect by a correlated random effects specification. The proposed approach relies on
the Fourier transforms of several conditional expectations of observable variables.
We then estimate the model via the semi-parametric sieve Generalized Method of
Moments estimator. The finite-sample properties of the estimator are investigated
through Monte Carlo simulations. We use our method to estimate the effect of the

wage rate on labor supply using PSID.
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1. Introduction

The availability of panel data allows economists to control for unobservable individual-
specific characteristics that may be correlated with explanatory variables in the model.
Substantial progress has been made to handle linear or nonlinear models ignoring the
potential presence of measurement error. However, many economic quantities such as
work hours, earnings, fringe benefits and employment in surveys are frequently mea-
sured with errors, if longitudinal information is collected through one-time retrospec-
tive surveysE] This concern has been heightened by the increased use of longitudinal
data sets and mismeasurement of the panel data may lead to false results or obscures
true economic relationships. The estimation problems caused by the mismeasurement
of economic data may be greatly exacerbated when economists exploit panel data to
control for the effects of unobserved individual effect using standard fixed effects or
first-differenced estimators.

Consider the following semi-parametric nonlinear panel data model with unknown

finite-dimensional parameter Sy
1) Yit:m(Wit,X;,Ci;ﬁO)‘i‘Uit, i=1,...,n, t=1,...,T.

In this model, Y;; is an observed scalar dependent variable, W;; is a perfectly observed
explanatory variable, X, is a latent continuous mismeasured variable, C; is an un-
observed individual-specific effect, and U;; is an unobserved random variable. The

function m may be inseparable in W;;, X, and C;, and belongs to a known, finite-

i’
dimensional parametric family. We focus on the case where the data consists of a large
number of individuals observed through a small (fixed) number of time periods. The
variable X;; is a proxy or measure of the unobserved true regressor X,.

The model described in Eq. has two aspects which are distinct in the literature

IThe problems of the measurement error have raised great concern in a number of practical applica-
tions. Studies in Bollinger (1998), Bound, Brown, Duncan, and Rodgers|(1994), and [Bound, Brown, and
Mathiowetz|(2001) provide evidences of the measurement errors in economics data sets.



of panel data models with measurement errors. First, the unobserved heterogene-
ity enters the structural regression function nonseparably without imposing a linear
index structure. Second, the potential nonlinear regression function also contains a
mismeasured variable nonseparably along with other explanatory variables. This sug-
gests that the proposed regression model can be a structural function derived from a
dynamic utility maximization problem with flexible preferences.

Linear panel data models with measurement error problems have been widely stud-
ied in the literature including (Griliches and Hausman! (1986), Wansbeek and Koning
(1991), Bigrn (1992), and Wansbeek| (2001). Their approaches involve first applying
an appropriate transformation to handle the unobserved effect and then using instru-
ments in a generalized method of moments (GMM) framework. On the other hand,
if we ignore the measurement error problem in Eq. (1)), then the models belong to
nonseparable panel data models which have been studied in: [Evdokimovi (2011), |Cher-
nozhukov, Fernandez-Val, Hahn, and Newey|(2013)), Hoderlein and White|(2012), Chen
and Swanson| (2012), Hoderlein and Mammen! (2007), |Altonji and Matzkin|(2005), and
Chernozhukov, Fernandez-Val, Hoderlein, Holzmann, and Newey (2015). In particular,
Chernozhukov, Fernandez-Val, Hahn, and Newey| (2013), Graham and Powell (2012)),
and Hoderlein and White (2012) use changes over time in x to obtain ceteris paribus ef-
fect of x on y for identification and estimation of nonseparable models. Wilhelm| (2015)
considers nonlinear panel data models with measurement error where fixed effects are
additively separable. He differences out the fixed effects and provides a nonparamet-
ric identification result without requiring any extra variable other than outcomes and
observed regressors. However, in nonseparable panel data models it is not clear how to
remove the unobserved heterogeneity and address measurement error problems simul-
taneously so there is a fundamental difference between additively separable models
and nonseparable models.

Besides short panel data considered here, there are a lot of closely related work
in the existing large panel literature but not allowing for measurement error. Alvarez

and Arellano/(2003) investigate the linear panel regression models with fixed effects for



large n,T, and they find that their GMM estimator has an asymptotic bias of an order
1/n and does not cause bias for large T'. Akashi and Kunitomo (2012) use the approach
in Alvarez and Arellano| (2003) to study panel dynamic simultaneous equation models.
Hahn and Kuersteiner| (2002) characterize the bias of the fixed effect estimator by
allowing both n, and T approach to infinity and the ratio n/T approach to a constant.

The identification technique developed in this paper builds on previous work of
Schennach|(2007), concerning the identification and estimation of nonlinear measure-
ment error models with instruments. The identification strategy is to employ Fourier
transforms of conditional expectations of observable variables and provide a closed for-
m solution to the regression function based on these transforms. We generalize the
method of Schennach|/ (2007) by allowing for a measurement error term in the regres-
sion function with an additional unobserved individual-specific effect in a panel data
setting. The proposed method works in a way that panel data contains enough infor-
mation on observables to identify the mismeasured variable X, and the unobserved
individual-specific effect C;. While the past observables are used as instruments to con-
trol the measurement error problem, the time averages of perfectly observed variables
are used to restrict the unobserved individual-specific effect by a correlated random ef-
fects specification. Thus, the nonseparable regression function of interest also admits
a similar representation of the closed form solution in Schennach|(2007) under a mild
regularity condition.

The estimation method closely follows the construction of the identification analysis
because the identification result is established from knowledge of the three conditional
expectations. Based on this identification result, we propose a sieve minimum dis-
tance (hereafter SMD) estimator for the parameters of interest. Then, estimating the
parameters of interest by implementing the methods of series or sieve estimation de-
veloped in/Ai and Chen|(2003) and Newey and Powell (2003). The estimation procedure
consists of applying the SMD method to a vector of the moment conditions related to
the identification result. It follows that the SMD estimator for the finite-dimensional

parameters of the structural function is y/n-consistent and asymptotically normally

4



distributed.

The rest of the paper is organized as follows. Section 2 describes the identification
assumptions and strategy for nonlinear panel data models with measurement errors.
Section 3 covers the sieve minimum distance (SMD) estimation procedure based on
the identification restrictions in Section 2. Section 4 discusses the implementation of
the SMD estimator and presents its Monte Carlo simulation. Section 5 presents our
empirical application, the elasticity of labor supply. Section 6 concludes. All proofs are

collected in the Appendix.

2. Semiparametric Identification

Without loss of generality, we consider both W;; and X, to be a scalar and a multi-
variate case can be straightforward extended. To avoid confusion, upper case letters
are used exclusively for random variables and lower case letters are used exclusively
for non-random quantities corresponding to its upper case random variables. The data
{yit,wit,x;;} is independently and identically distributed observable random sample for

{Y;;,Wi;,Xipbfori=1,2,...,nand t=1,...,T = 2.

Assumption 2.1. (Correlated Random Effects (CRE)) There exists a nonzero coefficient

Ao such that
(2) C;=MW; +n;,
where W; = %ZL Wi: is denoted as the time average of the perfectly observed explana-

tory variables. In particular, the remainder term n; is independent of W,.

Assumption can be generalized to include more perfectly observed explanato-
ry variables. For example, if there exist another time-invariant variable Z;, we can

consider the following CRE specification

C; =Ao1W,; + Ao2Z; +1;.

5



Including more control variables in the specification may make the independent as-

sumption of the projection error 77; more reasonable.

Assumption 2.2. (Classical measurement error) Assume

(i)(Past variables as IV) There exists an unknown function h; at time t satisfying
X,Ekt =hi(Gi<t)+Viy,

where Gi<y = W;i-1,Xit-1,...,Wi1,X;1), Vi is independent of G;<; and E[V;;]=0.

(ii)(Measurement error)
Xit =X, + 20X, EIAXitlWit,Gict, Vie, Wi,ni, U] = 0
(iti)(Conditional mean independence)
E[U;|Wit,Gict, Vie, Wi1=0;

(iv)(Independent Distribution) The remainder error of CRE 1n; and the unobservable V;;

are independent.

The setting for the measurement errors is the same as Schennach| (2007), which
uses instruments to identify nonlinear errors-in-variables models. Assumption [2.2(1)
can be regarded as a control function assumption which uses the past variable as IV
to construct the estimable 4:(G;<;) to extract the independent unobservable variable
Vit from the unobservable true regressor X, affecting the response. The assumption
is commonly used for identification of nonlinear modelsﬂ We can further assume X7,
follows a first order stationary Markov motion by setting X7, = A(Wj;—1,Xis-1) + Vis.
Assumption ii) implies that E[X,AX;;] = 0 or there is no correlation between the

2Combining Assumption i) and (ii) yields X;; = h¢(Gi<t) + Vi + AX;;. As mentioned in[Schennach
(2007), an indirect test of the validity of the independence of Vj; in Assumption [2.2(i) and conditional
mean independence of AX;; in Assumption [2.2[ii) can be conducted by testing the dependence of the
estimated residual from regressing X;; on (G ;).



unobserved true regressor and the measurement error. Assumption [2.2(iii) only impos-
es the standard orthogonality restriction that E[U;;|W;;,G;<;, Vis, W;1=0 and suggests
that the disturbance U;; does not have to be independent of W;;, G;<;, Vi, and W; and
the distribution of U;; does not have to be the same across time periods. This implies
that U;; can have an AR(1) stochastic process.

As mentioned in Eq. (A.3), the measurement error equation and correlated random

effects can be defined as follows:
X! =G~ Vi, and C; = oW, —7j;,

where h;(G;<;) = §i<t =E[X;;|Gi<], Vi; = —V;;, and 1; = —1n;. The following assumption
guarantees that the Fourier transforms of the related conditional expectations are well

defined.

Assumption 2.3. Consider E[Yitlwit,éiq,Wi], E[XitYitlwit,@i<t,Wi] for a fixed wi;.
These conditional expectations are functions in R? and belong to a function space &

which contains functions () satisfying

f(l +& &Y |f(©)|dE < oo, for some y > 0.

Assumption [2.3|ensures that the Fourier transforms of the conditional expectations
to be well defined members of a subclass of locally integrable functions,
Define the characteristic functions of the conditional expectations E[Y;:|w;;, G~i<t,Wi],

E[X;;Y;i/lwit,Gict,W;], and m (wit,x},,ci; Bo) for a fixed w;; as follows:

(3) gy(wit,fly’EZ):ffE[Yit|wit,§i<t,wi]eiélgktei£2wid§i<tdwi
(4) FryWir, E1,E2) = f f ELX;/Yitlwit, §i<s, ;e €1t 2Wid g, dw;
(5) gm(wityfbfz;ﬁo):ffm(wityx:taci;ﬁO)eiflx;eiézqu;dci,

where i = v/—1. Define also ¢,({1) = feiflﬁi’fvit(ﬁit)dﬁit and ¢, (&2) = [elo2li fr (7,)d;,
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where fVit(ﬁ) and f7,(n) are the density functions of V,; and 1ni, respectively.

Lemma 2.1. Suppose that Assumptions and [2.3|hold. Then,

o 1 S S
(6) Fy(wig,1,E9) = A—Oammit,él,A—i)qbv(sl)(pn(A—iL
1 0Fn@iné1,82) &
% Faywits 1,62 = 31 o Do),

Proof. See the appendix.

Assumption 2.4. Assume (i) flﬁitlfvit(ﬂit)dﬂit < oo, [IN;lf5,@:)d7; < oo; and (ii) the
characteristic functions ¢,($1) # 0, and ¢y(S2) # 0 are continuous, and continuously

differentiable for all £1,é9 € R.

Assumption 2.5. Set © as a parameter space containing fo. There exists a finite or
infinite constant { > 0 and some w;; such that for all B € O (i) Fn(w;s,E1,E0;8) #0

almost everywhere in [-{,{1? and (ii) FrWit,E1,E2;8) =0 for all |1],1¢2] > (.

Assumptions and are standard in the deconvolution literature. Assumption
[2.4]ii) requires that the characteristic functions of V and 7 to be non-vanishing which
excludes uniform or triangular distributions. Exploiting the conditional mean function
in Eq. by replacing f3,(7;) by f7,./(7), we have the following.

Denote y =(f,1) and y is a (dg +2) x 1-dimensional vector. Consider the parametric

conditional mean function in Eq. (A.16):
ElYi/lwit,&i<t,wisyl= ffm (wit, &ict = Vie, MW; =735 B) i, i) fi3y (71:)A0;2 AT .

Define the gradient of E[Y;/|w;;, &<, w;;y] as follows,

OE[Ytlwit,8i<t,wisy] OE[Y ;¢lw;¢, 8i<t, Wi Y] !

v?’E[Yit|wita§i<t,wi§Y]:( 3p1 yeees oy



Define the information matrix as follows:
I(y) = E |V, ElYitlwir, i<, Wi Y1 VyElYitlwis, §ict, w3371 |-

Assumption 2.6. (Nonsingular Parametric Structure) Set I' = O x Y as a parameter
space containing (Bo,Ao). The elements of the vector VyE[Y;;|w;s,8i<t,W;;Y] exist and

are continuous in I for each (wi;,8i<¢,w;) and the matrix 1(Boy, Ao) is nonsingular.

Theorem 2.1. Under Assumptions and [2.6] the three unknown

parameters of interest, including the finite-dimensional parameters By and Ay, the dis-
tribution of the remainder error of control function approach fVit(iF), and the distribu-

tion of the remainder error of CRE n,, f7.(1)) are identifiable.

Proof. See the appendix.

There are two main steps for the identification strategy for Theorem In the
first step, we use the method of Theorem 1 in|Schennach|(2007) and of Theorem 3(B) in
Zinde-Walsh! (2014) to identify the distribution of measurement error. As for the second
step we use CRE specification and the properties of Fourier transforms on convolution
functions to connect the distribution of individual effect to a parametric conditional
moment function. Then, the identification is achieved by the nonsingular paramet-
ric structure of the information matrix formed by the parametric conditional moment
function of Assumption 2.6

Other quantity of interest is on estimating partial effects. The magnitude of the
partial effect evidently cannot be estimated at meaningful values of the individual
effect. One solution is to average the partial effects across the distribution of the in-
dividual effect which is also identified by Theorem With the identification of the
distribution of n; and the independence assumption of n; in Assumption we have
f(clw;) = f5,(=c+Aow;). Then, the distribution of the individual effect can be identified



with the identification of f(c|w;) from the following equation:

®) fo.(e) = f flelwy-  f@) dm
——

estimable
from data

Suppose x7, takes continuous values. Given (wo,x;), the average partial effect

(APE) for x7, at the point is defined as

t)x:‘pci;ﬁ())
ox’

it

)(wihx;)z(w()axg

om (wi
©) APEGoox)= | feerde.

Corollary 2.1. Under Assumptions and the distribution of
the individual effect and the average partial effect defined in Eq. (9) is identified.

3. SMD Estimation

In Section[2], we have shown in Theorem[2.1] the three unknown parameters of interest,
including the finite-dimensional parameters By and 1, the distribution of the remain-
der error of control function approach fy, 0, and the distribution of the remainder
error of CRE n;, f5,(17) are uniquely identified. The identification is based on knowl-
edge of the three observable conditional expectations E[X;;|G;<¢], E[YitIWit,@i<t,Wi]
and E[XitYithit,éi<t,Wi], where Gi<t = h{(G;<s). In general, the conditioning set is
high dimensional and nonparametric estimation procedures will perform poorly. We

impose a Markov assumption, which reduces the dimensionality considerably.

Assumption 3.1. (Stationary Markov motion) The mismeasured covariate X, follows

a first order stationary Markov process, X Lfkt =h(W;;_1,X;:-1) + Vis for each t.

Denote Hj<; = h(Wi;_1,X;s-1), and Dj; = (Wi, Wis_1,X;¢-1,W;). Under the assump-
tions of Theorem [2.1] and Assumption we rewrite these conditional expectations as

10



follows ]

0=E[X;IW;;-1,X;s-1]1 - h(W;;_1,Xi-1),
0= E[YitlDit]—ffrn(Wit,ﬁiq—ﬁit,/loWi —77'1';,50) v, Wi f5,@M:)dvd7i,
0=E[X;;Y;;|D;] —ff(ﬁm -U;)m (Wit,ﬁiq ~ i, AoW; —ﬁi;ﬁo)

* [y, i) f5,(1:)dvidn;.
Denote ao = (o, A0, f7,(-), f-ﬁi(.),h(-))T. Define the following residual functions:

p1(X;t,Yi1,Di;a0) =X —h(Wip—1,Xi6-1),
o2 Xit,YiesDits 0) = Yis = [ [ (Wit Hict =it oW, =73 o) fy, @) i (0 0Tied s,
03 (XitaYit,Dit;ao)EXitYit_ff(ﬁi<t_5it)m (Witaﬁi<t_5it,A0Wi —ﬁi;ﬁo)

x fy, Wit f3,(11:)d 0 d7;.
Define the 3 x 1 vector of residual functions by

p1(Xit,Y4,D 5 a0)
pXit,Yit,Dit;a0) = | po(Xis,Yis,Dis; o)
p3(Xit,Yis,D 45 a00)

The parameter vector a = (B, A, fv (), (), h(-)) has three infinite-dimensional nuisance
parameters because of the presence of the unknown functions A, fv(-), f;(-), and A(-).
The conditional moments functions for ag can be summarized as the following condi-

tional moment restrictions
mDis;a) = Elp(Xt,Yie,Dis; a)|D ],

with m(D;s; @) = 0. Therefore, the model fits into the general models of conditional

3The detailed derivations can be found in Egs. 1i and in the appendix.
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moment restrictions in A1 and Chen|(2003), which contain finite dimensional unknown
parameters and infinite dimensional unknown functions.

Suppose m(D;;;a) is a consistent estimator for m(D;;; @) and </, is a sequence of
approximating sieve spaces for the parameter space </ containing ag. The SMD es-
timator @, minimizes the following sample analog of a minimum distance objective

function with the parameters restricted to the sieve spaces, </,:

r ~ TS -1 .

Y mDisa) [2Di)] MDD a),
t=2

where 3(D;;) is some positive 3 x 3 weighting matrix. There are two approximations
in the optimization problem to make the estimator feasible and consistent. One is
m(Di;; a) approximates m(D;;; @) and the other is <, approximates <.

Let p*() = (p1(),...,pr(-)" be a vector of some known univariate basis function
and pk(-,...,-) = (pl(-,...,-),...,pk(-,...,~))T be multivariate basis function generated by
tensor product construction. Denote the %, x 1 vector of approximating functions as
pin(Dyy) = (pl(Dit),...,pkn(Dit))T which is constructed from some known basis func-
tions for any square integrable real-valued function of D;;. A linear consistent sieve

estimator m(D;;; a) can be obtained by regressing p(X;;,Y;;,D;s; @) on pk"(Dit),

n T
(10) D) = p*" (D) H H Y. Y pP"(Di)pXir,Yir, Diss @),

i=1t=2
where H = (p*"(D12),...,P*(D,7r))". This GMM type estimator is proposed by |Ai and
Chen! (2003) and is called a sieve minimum distance (hereafter SMD) estimator. Ai
and Chen! (2003) show that the SMD estimator is consistent, and the parametric com-
ponents of the estimator have an asymptotically normal limiting distribution under

suitable regularity conditions.

12



4, Monte Carlo Simulation

This section presents the finite sample properties of the SMD estimator derived in
Section 3 by a Monte Carlo simulation. We focus on the estimation of fy and 1¢ which
correspond to the regression function m (Wit,X i*t,Ci;ﬁo) and the CRE C; = A1 W; +
Ao2Z; +1;, respectively. However, the distributions of fVit(i?) and f7,(7) are treated
nonparametrically and will be approximated by a sequence of truncated sieve series.
The simulation design is according to the following DGP: Denote Trun(®,[a,b]) as
a distribution of a random variable generated by ® 1(u - (®(b) — P(a)) + D(a)) where P
is the CDF of standard normal distribution, ®! is the inverse of ® and u is a uniform
random variable on [0,1]. Both W;;, and X lfkl are generated from Trun(®,[0,1]). The

covariates (W;;, X)) for t = 2,3 are generated according to

Wit = pWis—1 +Uw,is-1 with Uy j;—1 ~ Trun(®,[-2,2]),

X:t = pX;t—l + UX,it—l with UX,it—l ~ Trun(®,[-2,2]),
where p = 0.8. The specification for the measurement error problem is:
X=X, + AX;;, where AX;; ~ Trun(®,[-2,2]).

_ 3 —
Let W; = % Y W;; and Z; ~ Trun(®,[0,1]). Then, the specification for the individual
t=1

effect is:
C; = A01W; + A02Z; + 1, where (101, A02) = (—0.5,0.5),n; ~ Trun(®,[-2,2]).

Set Bo = (Boo, Bo1, Boz) =(0.5,0.5,-0.5). Considers three specifications for the regression

13



function:

Simulation I: m (Wiz, X, Ci; o) = Boo + Bor Wit + Bo2 X 2+ Ci,

Simulation II: m (Wit,X;t,Ci;ﬁo) = (,500 + ,601Wit + ﬁogX; + Ci)2 5

Simulation ITT: m (W;s, X}, Ci3 o) = (Boo + Bo1(1+ C)Wi, + Boa(1+ CHX [, +Ci)°.

The SMD procedure requires approximating the three nonparametric parts by sieves,
including the conditional expectation function A;, fVit(fD and f7,(7). Let f1 and f2 be
the nonparametric series estimators for fVit(m and f7,(7), respectively. We construct

11/ 2 and f21/ 2 by univariate Hermite functions,

3
f2@) =Y 61, Hi@),
1=0
3
2@ =Y 82:Hi (@),
1=0

where Hy(x) = e~ 7, Hi(x) =xe” 7, Ho(x) = (x2—1)e %, H3(x) = (x3 —3x)e” 2. The sieve

coefficients of both f; and f2 need to satisfy density restrictions. Because the Her-
mite functions form an orthogonal series that satisfies ff‘o’o H,(x)H,,(x)dx = V21n!6,m,
where 0,,, =1if n =m, and §,,, = 0 otherwise, the density restriction on the sieve co-
efficients is \/%(6%0 + 5%1 + 2!5%2 + 3!6%3) =1.

We use a tensor product polynomial sieve to approximate the conditional mean

function, which is the set of instruments. In other words, each argument of pk "(Dit) is

in the following set: {1, Wi, Wis—1,Xi1-1, Wi, Z;, W2, Wi Wip_1, Wi X 11, Wi W, Wi Z;,, W2 _ W,

it’
Wi1Zi, X i2t_1,X Wi, X it_lii,Wf,WiZ,Zf} and the total number of the instruments
is 21. As an illustration, we use the identity weighting, £(D;;) = I for the SMD estima-
tor.

The 200 replications of 500, and 1000 observations are drawn from these three data

generating processes corresponding to the different regression function m(-). The sim-

ulation results of Tables show the proposed SMD estimator performs well in these

14
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samples. The mean estimates are almost the same as median estimates of different
sample sizes and simulation designs. This implies that there does not exist skewness
in their respective distributions. For each estimated coefficient, the RMSE declines as
the sample size is increased, as would be expected for this simulation. We can further
use Eq. with the estimated coefficient of 1 and observation of w; to recover the
distribution of the individual effect f¢,(-) and then APEs can be calculated by Eq. @
Tables report the mean, standard deviation (SD) and RMSE of the APE estimation
results. All estimations are nearly unbiased and the APE estimator has the best per-
formance in DGP II. In terms of RMSE, the RMSE almost declines as the sample size

is increased.

5. Empirical Application

In this section, we apply our proposed nonlinear panel data model to investigate the
effect of the hourly wage rate of individuals on labor supply given their demographic
variables. The dependent variables are the log values of annual hours of work for those
with positive working hoursﬁ The variable of interest is the hourly wage rate and mea-
surement error may be greater for the hourly wage rate in the survey. Quality of the
variable is a critical issue for studies of labor supply. The proposed empirical nonlinear
panel data model can examine the measurement error of the hourly wage rate and pro-
vides consistent estimate of the effect. The panel data model fits to this labor supply
topic naturally. In the panel data setting, our model uses the correlated random effect
to control unobserved time invariant factors such as individual unobserved skill level,
ability, or motivation factors which may be correlated to the hourly wage rateE] The
data formate we used is from Ziliak (1997). Table [5| presents summary statistics for

the working hours, the hourly wage rate, and socioeconomic variables. The between

4We dropped observations with zero working hours. The logarithmic transformation is well defined
and still effectively capture the movement of working hours.

3Borjas|(2009) reviews the literature on the estimation of the labor supply elasticity and also discuss-
es the problems caused by measurement error.
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and within sample standard deviations are 0.233 and 0.172 for In(hours) and 0.432
and 0.118 for In(wage), respectively. We have a three-periods of the panel data with a
cross-sectional size 532 of males.

Consider an empirical model for labor supply elasticity:
In(hours;;) = 1(1+c;)In(wage;;) + Pokidsi; + Psage;; + ,B4age%t + Bsdisabi; +ci+uj;.

This specification allows the interactions between observables and unobservables. That
is the random coefficient term of 81(1+c;). In this empirical example, we can treat c; as
unmeasured ability or motivation factors that affect hours of working and u;; as a time-
varying macro shock for labor market. Because the true wage rate of each individual
is subject to a misreporting error, the measurement error of the variable In(wage;;) is
likely to occurﬁ The vector of time-varying covariates is (kidsit,ageit,age?t,d isabj;)
and the time averages of these variables are used in the CRE specification in this esti-
mation of labor supply elasticity. A theoretic model of labor supply implies that there
are two effects of a wage increase on labor supply, one is income effect and the other
is substitution effect. While the income effect induces less work, the substitution ef-
fect increases more work. Because both effects work in opposite directions, the overall
effect of a wage increase on labor supply is ambiguous.

Table [6] reports the estimates obtained with our sieve GMM method and with the
linear correlated random effect estimates. We find that the estimated coefficients for
the elasticity are not much different to both models. The values of the coefficients in
these estimates are 4.1%, and 3.9%. However, if we consider the estimates of APE
then the estimate for the elasticity in our semi-parametric nonlinear panel data model
is twice as the estimate in the linear correlated random effect model. A 1% increase
in wage exhibits an approximately 9% increase in working hours. Given the flexible
nature of our estimation approach, the difference implies that the estimate in the lin-

ear correlated random effect model might be biased downward when the measurement

6See detailed discussion in/Bound, Brown, and Mathiowetz (2001).

16



error problem is not accounted for. As for the sign of the labor supply elasticity, both
estimates are positive and this indicates that the number of hours worked is increasing

in the wage, i.e. the substitution effect is stronger than the income effect.

6. Conclusion

This paper presents the semi-parametric identification and estimation of nonlinear
panel data models with mismeasured variables and their corresponding average par-
tial effects using only three periods of data. The approach addresses the models with-
out external information such as a validation or replicate data set. This study was mo-
tivated by a richer structure of panel data. It is shown that using the past observables
as instruments to permit identification of nonlinear regression models in the presence
of measurement error and also applying the correlated random effects specification to
control the unobserved individual heterogeneity.

The identification equation is a system of three functional equations that relate
conditional expectations of observed variables to the regression function of interest and
distributions of unobservables. The identification strategy contains two steps. While
in the first step we use the method of |Schennach (2007) to identify the distribution
of measurement error, in the second step we use CRE specification and the properties
of Fourier transforms on convolution functions to connect the distribution of individ-
ual effect to a parametric conditional moment function. Then, the identification is
achieved by the nonsingular parametric structure of the information matrix formed by
the parametric conditional moment function. Using these conditional expectations of
observed variables for identification conditions, this study provides a semi-parametric
sieve-based GMM estimator and shows that this estimator is consistent and asymptot-
ically normal. Simulation experiments show that the sieve GMM estimators perform
well for both linear and nonlinear panel models with measurement errors. We illus-
trate the performance of this estimator by estimating the elasticity of labor supply and

find that the substitution effect is stronger than the income effect and a 1% increase in
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wage enhances an approximately 9% increase in working hours.

Appendix

A. Identification Results

The proof of Lemma 2.1} Because both W;; and X i*t are a scalar, we can write C; =

AoW; +1;. Combining Assumptions i) and (ii) yields
(A.1) Xit =hi(Gi<p) +Vip + AX ;.

Taking conditional expectation with respect to G;<;, and applying zero conditional

mean of V;;, and AX;; implies:

(A2) E[X;/|Gi<) = hi(Gi<t) = Gict.

Rewrite the measurement error equation and correlated random effects as follows:
(A.3) X} =Gict— Vi, and C; = oW, —7j;.

Use the relations in Eq. to write

(A.4) Yiie=m (Witaékt ~Vie, \oW; —ﬁi;ﬁo) +Ui

Then, using the conditional mean independence of U;; in Assumption [2.2(iii) and inde-
pendence of V;; and 7j; in Assumption iv), we obtain

(A.5) ElY;:lwit, 8i<t, w;]

:ffm(wit,§i<t_5it,/10wi_ﬁiQﬁO)fVit(ﬁit)fﬁi(ﬁi)dﬁitdﬁi-
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Expanding out the term X;;Y;; and taking conditional expectation with respect to

(wit,8i<t,w;) results in

ElXi:Yitlwit,8i<t, Wil
=ElGi<t - Vi)m (Wit,ékt ~Vie, loW; —ﬁi;ﬁo) lwit,§i<t, Wil
+E[AX;;m (Wit,ékt — Vi, AW, —ﬁi;ﬁo) lwit, &i<t, Wil
+ELG i<t~ VidUitlwis, §i<t, il + EIAX; Uirlwis, §i<s, ;]
=ElGi<t - Vi)m (Wit,ékt ~Vie, \oW; —ﬁi;ﬁo) lwit, &i<t, Wil
A6 = [ [@ici=Tim (wieGice - 510, AoT0i =1 ) i, i) i (00T s
where we have used the zero conditional mean of AX;; in Assumption [2.2(ii), the zero

conditional mean of Uj; in Assumption [2.2(iii), and the law of iterated expectation.
Given w;;, taking the Fourier transform on both sides of Eqs. (A.5) and (A.6) with

respect to Gi<t, and W;, we have

gy(wit1€1’§2)

:ffE[Yit|wit,§i<t,wi]eiflgi<tei62wid§i<tdwi

:ff(ffm(wit,giq—ﬁit,/lowi—ﬁi;ﬁo)fvit(ait)fﬁi(ﬁi)dﬁitdﬁi)eiélgi“eifﬂidgktdwi
]. % . * g ‘i % sy~ _ _ i ~_l _ _

- o (ffm (wit’xit’ci;ﬁo)elflx”e 27, dxitdci) (f elflv”fﬁit(vit)dvit) (fe 0 £ (@)dT;
1 2

_1 e b2 &2
= Aogm(wzt,'fl, /10 )(,bv(él)(/)r](AO ),
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and

gxy(wita 61) 52)
_ f f BLX /Yt lwic, §ic,10; 1691805 51 0 3, diw;

=ff(ff(§i<t—f7it)m (wit7§i<t_ﬁita/10wi_ﬁiQﬁO)fVit(ait)fﬁi(ﬁi)dUitdﬁi)eiflgmeifzwidgiqdwi

1 * * i « 3r.Ci " i T _ . . ﬁ_z _ _
= ([ [t i po) e R e [ 5% fy G [ 45 f o

1 0Fnwir &1, ) £
! 3¢ va(fl)cbn(—)
This yields Egs. (6) and (7). Q.E.D.

The proof of Theorem We will recover fy. (V) first. Differentiating the defini-
tion of F,(w;¢,¢1,¢2) in Eq. with respect to ¢; yields

0
S Pt = f f E[Yislwir, §i<ile 18 271 05, - dTm,

(A7) —i f f BIG i< Yitlwir, Giile 1812 05, dw;.

0Fm(w

it )
#%(ﬁ)%(“ = i%ywir,é1,62). On
the other hand, differentiating Eq. (6) with respect to {1, we obtain

Notice that Eq. can be written as

0
—Z (wlt’wl,€17£2)

3
1 (0Fn(wir, 1,732 £ 0po(ED)] &2
T e D Fntwi, 61, 2T [0y ()
1 &g 0y(&1) ¢
_ljxy(wltywlaélaé_z)-i- /,‘/_Jm( ltaély /lf) ('baé- - (tbfl(_Z)

—i f f BLX::Yitlwir, Gics, 116180 35T 4 3, d,

1 0y
(A8) +— m( zt#fl, 62 (/) (61)¢)n(€_2)

Ao 10 0¢1
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Combining Eqgs. (A.7) and (A.8) yields

1% G2y (Wi, &1,82)
Ei[fE[(éi<t_Xit)Yit|wit,§i<t,wi]eiglgiqeifzwidgktdwi

_ i or . 6_2 6(/)1;(61) 5_2
(A9) - /,L()Jm(wlt’é_l, A,O) aél ('bn(ﬂ,o)

Because ¢,(£1), ¢y(&2), and F(wir,&1,¢2; Bo) are all nonzero by Assumptions ii)
and we can divide each side of Eq. (A.9) by the corresponding side of Eq. (6) to

obtain

a(l)v(fl)

. F)

(A.10) —1iF(G_x)y(Wit,¢1,82) + 3l Fy(wit,¢1,82) = 0.

()bv(gl)

0py(¢q)

By Theorem 1(b) in Zinde-Walsh (2014), there exists a unique function Q({1) = %
such that
(A.11) —1F(G-2)yWit,€1,62) + Q(E 1) F (w4, 81,E2) = 0.

Integrating the above equation from 0 to ¢; with the boundary condition ¢, (0) = [ fy,(0i)dv;s =
1 yields

¢1
¢y($1) = exp (fo Q(é)df) :

This implies that ¢,(¢1) is identified because it is expressed in terms of the Fouri-
er transforms of observable conditional expectations. It follows that the distribution
fvﬂ(fiit) is identified. Rescaling éo by Agéo in Eq. @ and rearranging the terms, we

have

(A.12) MFy(wit, €1, 082) = Fm(wit,E1,82; Bo)Po(E1)Pp(E2),
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Solving ¢,(¢2) from the above equation yields

MFy(wit,1,A082)

A.13 = .
( ) Pnlé2) FmWit,€1,82; Bo)py(E1)

Because 7, (w;s,§1,¢2), Fm(wit,¢1,¢2; B) are all known from the data and the proposed
semi-parametric regression function, and ¢,({1) is identified, we can generalize the

relation into the following parametric function:

Agy(wit,é]_,/léé)
FmWig,&1,82; BPy(E1)

(A14) (pn;y(éZ) =

where ¢,y (&2) = ¢ ({2). Notice that the identification of the true parameter y( leads
to the identification of ¢,(¢2). Consider the following parametric function by applying

the inverse Fourier transform to ¢, ({2):

1 [ .
(A.15) Fror@ =5 f ey (E)dEs.

—00

Evaluating the parametric function at yo, we have f7,.,,(1) = f5,(1) by the Fourier in-
version theorem. Exploiting the conditional mean function in Eq. (A.5) by replacing

f5:@:) by f3,,(), we have

(A.16) ElY;¢lwit,8i<t, W5 Y]

=ffm(wit,§i<t—5it,hwi—ﬁi;ﬁ)fvit(ﬁit)fﬁi;y(ﬁi)dﬁitdﬁi-

with E[Y;|wis, 8i<t,wi;v0l = ElY tlwis, 8i<t,w;l. Next, we will show that yg is iden-
tifiable. If yo is not locally identifiable. Then there exists a sequence of distinct
parameters ys = (fBs,As) approaching to yo = (Bo,A0) such that [[(Bs,As) —(Bo, o)l # 0

and E[Y;/lwis,8i<s,wi;vs] = ElYjlwit, &i<t,w;]. Applying the mean value theorem to
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ElY;i/lwit, 8i<t,wi;ysl around yq yields

(A.17) ElY¢lwit, 8i<t,wisys]1 —ElY tlwis, §i<t, Wi y0l
dg ORIY: > S-rript 2 OEIY: > TR
— [ Ltlwztag1<t7why ](ﬁST_ﬁOT)+ Z [ ltlwlt7gl<t7wl7y ]

(Asr — Aor),
7=1 aﬁT k=1 6/17% ’ °

where y* =(*,1%) is a parameter between y; and y¢. Combining these relationships

yields

0= 3" OBidtir Bict,iiy"]__ (Par = Por)

=1 0p« 1(Bs, As) = (Bo, Ao
N i OE[Y tlwir, §i<t,wisy"]  (Asp — Aor) ’
hm 0Ar 1(Bs, As) — (Bo, Ao)I

[y

(Bs = Po) (As — Ao) T
1(Bs, As) = (Bo, Aol [1(Bs, As) — (Bo, o)l

(A18) =V, ElYilwin,&ict, Wiy 1'Sy,

=V, ElYilwir, &i<s, Wisy* 1"

Because IISYSII% =1for all s, {Sy, : s =1,...} is a distinct sequence on the unit sphere.
This implies that there exist a convergent subsequence {Sysj :j=1,...} whose limit is

also on the unit sphere. Denote the limit as S,,. Combining the continuity assumption

in Assumption [2.6/and Eq. (A.18), we obtain

(A.19) 0= V)/E[Yitlwit,gkt,wiQYO]TS}'O-

Multiplying each side by V,E[Y;:|w;s, &i<¢,Wi;v0l yields

(A.20) 0= (VYE[Yitlwit,gm,wi;Yo]-VYE[Yitlwit,giq,wi;YO]T)Syo.
Taking an expectation, we obtain

0=E|V,E[Yilwir, §i<t,Wi;Y0);Y0) - VyEYitlwir, &i<t,wi5701" | Syy

(A.21) = 1(Bo, 10)Sy, with S, #0.
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Since I(fo, o) is nonsingular by Assumption we have to conclude that (B, o) is
identifiable from this contradiction. Q.E.D.
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Table 1: Estimations of Nonlinear Panel Data Models with Measurement Error (n=500)
Bo=05 p1=05 Pa=-05 A;=-05 N193=0.5

Simulation I

Mean 0.557 0.511 -0.409 -0.498 0.514
Median 0.559 0.509 -0.420 -0.492 0.516
RMSE 0.154 0.121 0.162 0.111 0.126
Simulation IT

Mean 0.501 0.508 -0.499 -0.498 0.502
Median 0.504 0.508 -0.503 -0.500 0.508
RMSE 0.104 0.108 0.100 0.093 0.108
Simulation III

Mean 0.528 0.552 -0.507 -0.506 0.524
Median 0.530 0.552 -0.504 -0.498 0.526
RMSE 0.118 0.133 0.103 0.100 0.120

Note: Standard deviations of the parameters are computed by the standard de-
viation of the estimates across 200 simulations and called (simulation) standard
deviations.

Table 2: Estimations of Nonlinear Panel Data Models with Measurement Error
(n=1000)

Po=05 p1=05 P2=-05 A1=-05 12=05

Simulation I

Mean 0.536 0.506 -0.430 -0.485 0.516
Median 0.524 0.504 -0.423 -0.488 0.513
RMSE 0.125 0.111 0.121 0.101 0.120
Simulation II

Mean 0.502 0.506 -0.500 -0.499 0.502
Median 0.509 0.506 -0.498 -0.502 0.506
RMSE 0.104 0.109 0.100 0.093 0.107
Simulation III

Mean 0.530 0.544 -0.502 -0.507 0.525
Median 0.531 0.539 -0.499 -0.509 0.521
RMSE 0.117 0.129 0.097 0.099 0.120

Note: Standard deviations of the parameters are computed by the standard de-
viation of the estimates across 200 simulations and called (simulation) standard
deviations.
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Table 3: Estimation of the APEs in Simulations (n=500)
Infeasible Sieve GMM

Simulation I:

Mean -0.250 -0.203
Std. dev. 0.000 0.072
RMSE - 0.086
Simulation II:

Mean -0.375 -0.387
Std. dewv. 0.038 0.117
RMSE - 0.117
Simulation III:

Mean -1.661 -1.273
Std. dev. 0.083 0.251
RMSE - 0.461

Note: Standard deviations of the parameters are
computed by the standard deviation of the esti-
mates across 150 simulations.

Table 4: Estimation of the APEs in Simulations (n=1000)
Infeasible Sieve GMM

Simulation I:

Mean -0.250 -0.216
Std. dew. 0.000 0.049
RMSE - 0.059
Simulation II:

Mean -0.375 -0.388
Std. dev. 0.025 0.118
RMSE - 0.118
Simulation III:

Mean -1.662 -1.266
Std. dev. 0.060 0.225
RMSE - 0.454

Note: Standard deviations of the parameters are
computed by the standard deviation of the esti-
mates across 150 simulations.
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Table 5: Data Summary

Variable Mean Std. Devw. Min Max
In(hours) overall 7.671 0.289 2.770 8.560
between 0.233 4.950 8.407
within 0.172 5.491 10.011
In(wage) overall 2.614 0.448 -0.220 4.600
between 0.432 0.877 4.367
within 0.118 1.274 3.344
kids overall 1.484 1.218 0 6
between 1.191 0 5.333
within 0.257 -0.183 3.150
age overall 42.415 7.973 29 60
between 7.933 30 59
within 0.849 40.748 44.081
age® overall 1,862.545 708.068 841 3,600
between 704.740  900.667 3,481.667
within 72.973 1,668.212 2,051.545
disab overall 0.083 0.276 0 1
between 0.230 0 1
within 0.153 -0.583 0.750

Note: The data is a three-periods of panel data with a cross-sectional
size 532.
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Table 6: Estimates for the Elasticity of Labor Supply

Dependent Variable: In(hours)

Linear Correlated Semi-parametric
Random Effects Nonlinear Regression

In(wage) 0.041 0.039
(0.021) (0.017)

kids -0.015 -0.019
(0.021) (0.007)

age -0.009 -0.007
(0.034) (0.004)

age® 0.000 -0.001
(0.000) (0.001)

disab -0.048 -0.024
(0.035) (0.027)

kids 0.018 0.020
(0.024) (0.045)

age 0.015 0.015
(0.037) (0.052)

age’ 0.000 0.001
(0.000) (0.002)

disab -0.109 -0.072
(0.056) (0.089)

constant 7.526 2.957
(0.319) (1.957)

APE — 0.090
- (0.057)

Note: Bootstrap (simulation) standard errors are reported in paren-
theses, using 200 bootstrap replications.
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