
Vogt, Michael; Linton, Oliver

Working Paper

Multiscale clustering of nonparametric regression curves

cemmap working paper, No. CWP08/18

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Vogt, Michael; Linton, Oliver (2018) : Multiscale clustering of nonparametric
regression curves, cemmap working paper, No. CWP08/18, Centre for Microdata Methods and
Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2018.0818

This Version is available at:
https://hdl.handle.net/10419/189697

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2018.0818%0A
https://hdl.handle.net/10419/189697
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Multiscale clustering of
nonparametric regression
curves

Michael Vogt
Oliver Linton

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP08/18

Multiscale Clustering

of Nonparametric Regression Curves

Michael Vogt1

University of Bonn

Oliver Linton2

University of Cambridge

We study a longitudinal data model with nonparametric regression functions
that may vary across the observed subjects. In a wide range of applications, it
is natural to assume that not every subject has a completely different regression
function. We may rather suppose that the observed subjects can be grouped
into a small number of classes whose members share the same regression curve.
We develop a bandwidth-free clustering method to estimate the unknown group
structure from the data. More specifically, we construct estimators of the un-
known classes and their unknown number which are free of classical bandwidth
or smoothing parameters. In the theoretical part of the paper, we analyze the
statistical properties of our estimators. The technical analysis is complemented
by a simulation study and an application to temperature anomaly data.

Key words: Clustering of nonparametric curves; nonparametric regression; multiscale

statistics; longitudinal/panel data.

AMS 2010 subject classifications: 62G08; 62G20; 62H30.

1 Introduction

In this paper, we are concerned with the problem of clustering nonparametric regres-

sion curves in a longitudinal data framework. We consider the following model setup:

We observe data {(Yit, xit) : 1 ≤ t ≤ Ti} for n different subjects i = 1, . . . , n. The data

of subject i satisfy the nonparametric regression equation

Yit = mi(xit) + εit (1.1)

for t = 1, . . . , Ti, where mi is an unknown smooth function, xit are deterministic or

random design points and εit denotes the error term. The subjects in our sample

are supposed to belong to K0 different classes. More specifically, the set of subjects

{1, . . . , n} can be partitioned into K0 groups G1, . . . , GK0 such that for each k =

1, . . . , K0,
mi = mj for all i, j ∈ Gk. (1.2)

Hence, the members of each group Gk all have the same regression function. In Section

2, we introduce model (1.1)–(1.2) in detail.

1Corresponding author. Address: Department of Economics and Hausdorff Center for Mathematics,
University of Bonn, 53113 Bonn, Germany. Email: michael.vogt@uni-bonn.de.

2Address: Faculty of Economics, Austin Robinson Building, Sidgwick Avenue, Cambridge, CB3 9DD,
UK. Email: obl20@cam.ac.uk.

1

An interesting statistical problem is how to construct estimators of the unknown

groups G1, . . . , GK0 and their unknown number K0 in model (1.1)–(1.2). A number

of estimation methods have been proposed in the context of functional data models

related to (1.1)–(1.2); see for example Abraham et al. (2003), Tarpey and Kinateder

(2003) and Tarpey (2007) for procedures based on k-means clustering, James and

Sugar (2003) and Chiou and Li (2007) for model-based clustering approaches, Ray

and Mallick (2006) for a Bayesian approach and Jacques and Preda (2014) for a re-

cent survey. In these functional data models, the design points usually represent time

and are thus deterministic. Hence, fixed design settings are analyzed. In the random

design case where the regressors xit are stochastic, the literature is much more sparse.

Abraham et al. (2003) allow for random design points, though only under the very

strong restriction that the design points are independent of the error terms. An esti-

mation method for the random design case under much more general conditions has

recently been developed in Vogt and Linton (2017).

Most of the proposed procedures have the following drawback: they depend on a

number of smoothing parameters required to estimate the nonparametric functions mi.

A common approach is to approximate the functions mi by a series expansion mi(x) ≈∑N
j=1 βijφj(x), where {φj : j = 1, 2, . . .} is a function basis and N is the number of

basis elements taken into account for the estimation of mi. Here, N plays the role of the

smoothing parameter and may vary across i, that is, N = Ni. To estimate the classes

G1, . . . , GK0 , estimators β̂i of the coefficient vectors βi = (βi1, . . . , βiN)> are clustered

into groups by a standard clustering algorithm. Variants of this approach have for

example been investigated in Abraham et al. (2003), Luan and Li (2003), Chiou and Li

(2007) and Tarpey (2007). Another approach is to compute nonparametric estimators

m̂i = m̂i,h of the functions mi for some smoothing parameter h (which may differ

across i) and to calculate distances ρ̂ij = ρ(m̂i, m̂j) between the estimates m̂i and m̂j,

where ρ(·, ·) is a distance measure such as a supremum or an L2-distance. A distance-

based clustering algorithm is then applied to the distances ρ̂ij. This strategy has for

example been used in Vogt and Linton (2017). As is well-known, smoothing parameter

selection is a quite delicate matter. In general, nonparametric curve estimates strongly

depend on the chosen smoothing parameters. A clustering procedure which is based

on nonparametric estimates of the curves mi can thus be expected to be markedly

influenced by the choice of smoothing parameters as well.

The main aim of this paper is to construct estimators of the unknown groups

G1, . . . , GK0 and of their unknown number K0 in model (1.1)–(1.2) which are free of

classical smoothing or bandwidth parameters. To achieve this, we make use of tech-

niques from statistical multiscale testing studied e.g. in Chaudhuri and Marron (1999),

Dümbgen and Spokoiny (2001), Hannig and Marron (2006) and Schmidt-Hieber et al.

(2013). More specifically, we develop multiscale statistics which measure the distances

between pairs of functions mi and mj. To construct these statistics, we estimate the

2

functions mi and mj at different resolution levels, that is, with the help of different

bandwidths h. The resulting estimators are aggregated in supremum-type statistics.

We thereby obtain multiscale statistics which simultaneously take into account multi-

ple bandwidth levels and thus avoid the need to pick a specific bandwidth. To estimate

the unknown classesG1, . . . , GK0 , we combine the constructed multiscale statistics with

a hierarchical clustering algorithm. To estimate the unknown number of classes K0,

we develop a thresholding rule that is applied to the dendrogram produced by the

clustering algorithm.

Apart from being free of classical bandwidth parameters, our estimation methods

have the following features:

(a) They can be applied in both the fixed and the random design case. We thus allow

the design points xit to be either deterministic or random. Section 2 provides a

detailed description of the fixed and the random design model we work with.

(b) The multiscale statistics on which our methods are based need not be combined

with a hierarchical clustering algorithm as proposed in Section 4. Alternatively,

they may be combined with other distance-based clustering algorithms. In partic-

ular, they can be used to turn the estimation strategy of Vogt and Linton (2017)

into a bandwidth-free procedure. We comment on this in detail in Section 9.

(c) By construction, our methods allow to detect differences between the functions

mi at different scales or resolution levels. Local differences can be detected by

inspecting the functions on a high resolution level, that is, by means of small

bandwidths. Global differences can be spotted by examining the functions on

a low resolution level, that is, by means of large bandwidths. Another (very

different) way to construct clustering methods which allow to detect differences

between the functions mi at multiple scales is to employ Wavelet methods. In a

fixed design setting, a Wavelet-based approach has for example been suggested

in Ray and Mallick (2006). In many applications, it is not clear at all on which

resolution levels the functions mi mainly differ. Being able to detect differences

on multiple scales is thus crucial to obtain a reliable clustering algorithm.

Our estimation methods are described in detail in Sections 3–5. In Section 3,

we construct the multiscale statistics that form the basis of our methods. Section 4

explains how to combine them with a hierarchical clustering algorithm to estimate the

unknown classes G1, . . . , GK0 in model (1.1)–(1.2). In Section 5, we finally introduce

our procedure to estimate the unknown number of classes K0. The main theoretical

result of the paper is laid out in Section 6. This result characterizes the asymptotic

convergence behaviour of the multiscale statistics and forms the basis to derive the

theoretical properties of our clustering methods. To explore the finite sample proper-

ties of our methods, we conduct a simulation study in Section 7. Moreover, we apply

3

our procedure to a sample of temperature anomaly data from the Berkeley Earth

project in Section 8. The aim of the application is to cluster the spatial locations in

our sample into geographical regions which are characterized by distinct temperature

anomaly profiles, or put differently, by distinct climate change patterns.

2 The model

We now introduce the model framework in detail which underlies our analysis. We

develop estimation methods for both a fixed and a random design setting.

Fixed design model. The data {(Yit, xit) : 1 ≤ t ≤ Ti} of each subject i = 1, . . . , n

satisfy the model equation

Yit = mi(xit) + εit (2.1)

with E[εit] = 0 for 1 ≤ t ≤ Ti, where mi is an unknown nonparametric function and

xit are deterministic design points. For simplicity, we restrict attention to real-valued

design points, the theory carrying over to the multivariate case in a straightforward

way. The points xit are normalized to lie in the unit interval, that is, 0 ≤ xi1 < . . . <

xiTi ≤ 1. An important special case is the uniform design with xit = t/Ti. We do

not only consider this special case but allow for a wide range of non-uniform designs.

Technically speaking, we assume that the design points are generated by a design

density in the sense of Sacks and Ylvisaker (1970): for each i, there exists a density fi

such that ∫ xit

xi,t−1

fi(w)dw =
1

Ti
for t = 1, . . . , Ti,

where we set xi0 = 0. The densities fi are supposed to fulfill certain regularity con-

ditions specified in Section 6. Roughly speaking, we require them to be sufficiently

smooth and to be bounded away from zero on their support [0, 1]. Note that by set-

ting fi ≡ 1 for all i, we obtain the special case of a uniform design with xit = t/Ti.

The error terms εit have the property that E[εit] = 0 for all i and t, implying that

E[Yit] = mi(xit). They are allowed to be correlated both across i and t. The exact

conditions on their dependence structure are summarized in assumptions (CFD1) and

(C4) in Section 6 and are briefly discussed in comments (a) and (b) in Section 6.

Random design model. We have data {(Yit, Xit) : 1 ≤ t ≤ Ti} for n different

subjects i = 1, . . . , n. The data of subject i follow the model

Yit = mi(Xit) + εit (2.2)

with E[εit|Xit] = 0 for 1 ≤ t ≤ Ti, where Xit are random design points. Here and

in what follows, we use the upper case letter Xit to distinguish the random from the

4

fixed design points. As in the fixed design case, we restrict attention to real-valued

regressors Xit, the theory easily extending to the vector-valued case. We suppose that

the variables Xit have compact support, which w.l.o.g. is equal to [0, 1]. As before,

the errors εit are allowed to be correlated both across i and t. The exact conditions

on their dependence structure can be found in (CRD1) and (C4) in Section 6.

Group structure. We impose the following group structure on both the fixed and

the random design model: there are K0 groups of subjects G1, . . . , GK0 with
⋃̇K0

k=1Gk =

{1, . . . , n} such that for each 1 ≤ k ≤ K0,

mi = mj for all i, j ∈ Gk. (2.3)

Put differently, mi = gk for all i ∈ Gk, where gk is the group-specific regression

function associated with the class Gk. Hence, the subjects of a given class Gk all have

the same regression curve gk. To make sure that subjects of different classes have

different regression curves, we suppose that gk 6= gk′ for k 6= k′. The exact technical

conditions on the functions gk are summarized in (C6) in Section 6. To keep the

exposition simple, we assume that the number of groups K0 is fixed. It is however

straightforward to allow K0 to grow with the number of subjects n. We comment on

this in more detail in Section 9. The groups Gk = Gk,n depend on the cross-section

dimension n in general. For ease of notation, we however suppress this dependence on

n throughout the paper.

Dimensions n and Ti. We impose the following conditions on the sample sizes Ti

and the number of subjects n:

(a) The sample sizes Ti all tend to infinity. Technically speaking, we regard Ti = τi(T)

as a function τi : N→ N of some underlying sample size parameter T and suppose

that Ti = τi(T)→∞ as T →∞ for any i.

(b) The sample sizes Ti may differ across i. However, they are not allowed to differ

too much in the sense that they all grow at the same rate T . Technically speaking,

we assume the following: there exist constants ci with 0 < c ≤ ci ≤ c < ∞ such

that ∣∣∣Ti
T
− ci

∣∣∣ ≤ ρ(T)→ 0 as T →∞ (2.4)

for all 1 ≤ i ≤ n, where c, c and ρ(·) do not depend on i. (2.4) in particular

implies that Ti/T → ci for each i.

(c) The number of subjects n may either be fixed or diverging. We only impose the

condition that n does not grow too quickly as compared to the sample sizes Ti.

Technically speaking, we regard n as a function of T , that is, n = n(T), and

suppose that n ≤ CT ρ, where C > 0 is a fixed constant and the parameter ρ > 0

5

is specified by conditions (C8) and (C9) in Section 6.

W.l.o.g. we assume that (i) max1≤i≤n(T) ci → c as T → ∞ and (ii) c = 1. (i) is

no restriction at all since we can set c = limT→∞max1≤i≤n(T) ci. Moreover, (ii) can

always be satisfied by replacing T with T̃ = cT and by writing Ti = τ̃i(T̃) along with

τ̃i(·) = τi(·/c). Under (i) and (ii), (2.4) implies that max1≤i≤n(T) Ti/T → 1 as T →∞.

Hence, the constants ci can be approximated by ĉi = Ti/max1≤i≤n Ti. To simplify

notation, we use the shorthand Tmax = max1≤i≤n Ti in what follows. Throughout the

paper, asymptotic statements are to be understood in the sense that T →∞.

3 The multiscale distance statistics

3.1 Construction of the statistics

In what follows, we construct multiscale statistics d̂ij which estimate the distance be-

tween any two functions mi and mj. To do so, let dij be a measure of distance between

mi and mj. In particular, consider the supremum distance dij = supx∈[0,1] |mi(x) −
mj(x)|. A straightforward estimator of dij is

d̃ij,h = sup
x∈[h,1−h]

|m̂i,h(x)− m̂j,h(x)|,

where m̂i,h denotes some kernel estimator of the function mi and h is the bandwidth.

For simplicity, we take the supremum over all x ∈ [h, 1 − h] rather than over all

x ∈ [0, 1] in the definition of d̃ij,h to avoid boundary effects. In Section 9, we outline

some technical modifications which allow the supremum to run over the whole unit

interval. The estimator d̃ij,h obviously depends on the chosen bandwidth h. To get rid

of this dependence, we compute d̃ij,h not only for a single bandwidth h but for a wide

range of different bandwidths. This leaves us with a whole family of statistics {d̃ij,h :

hmin ≤ h ≤ hmax}, where hmin and hmax are the minimal and maximal bandwidths

that are taken into account, respectively. We now define an estimator of dij by taking

the supremum over all the statistics in this family. Specifically, we set

d̃ij = sup
h∈[hmin,hmax]

|d̃ij,h| = sup
h∈[hmin,hmax]

sup
x∈[h,1−h]

|m̂i,h(x)− m̂j,h(x)|. (3.1)

This is a rudimentary multiscale statistic which serves as a starting point for the

construction of our multiscale distance statistic d̂ij. The statistic d̃ij does not depend

on a specific bandwidth h but takes into account a wide range of different bandwidths

h ∈ [hmin, hmax] simultaneously. It is thus free of a classical bandwidth parameter that

needs to be selected. To compute it, we only have to choose the minimal and maximal

bandwidth levels hmin and hmax. In Section 3.2, we explain in detail how to pick hmin

and hmax in practice.

6

The multiscale statistic d̃ij has the following drawback: By definition, it is the

supremum over the statistics

ψ̃ij(x, h) := m̂i,h(x)− m̂j,h(x),

where the supremum runs over all x ∈ [h, 1 − h] and all h ∈ [hmin, hmax]. In general,

the statistics ψ̃ij(x, h) may have a very different stochastic behaviour across x and h

as well as across i and j. In particular, their variance may strongly differ across x,

h, i and j. Hence, the supremum d̃ij = supx,h |ψ̃ij(x, h)| may be dominated by only

a small number of random variables ψ̃ij(x, h) with a very large variance. To avoid

this issue and to put the statistics ψ̃ij(x, h) on an equal footing, we replace them by

normalized versions. In particular, we normalize them such that their variances are

approximately equal to 1 for all x, h, i and j. We now explain how to obtain such a

normalization. We first consider the fixed and then the random design case.

Fixed design model. For technical reasons concerning the smoothing bias, we esti-

mate the functions mi by the local linear smoothers

m̂i,h(x) =

∑Ti
t=1Wit(x, h)Yit∑Ti
t=1Wit(x, h)

, (3.2)

where the weights Wit(x, h) have the form

Wit(x, h) = Kh(xit − x)
{
Si,2(x, h)−

(xit − x
h

)
Si,1(x, h)

}
(3.3)

with Si,`(x, h) = T−1i

∑Ti
t=1Kh(xit−x)(xit−x

h
)` for ` = 0, 1, 2 and K is a kernel function

with Kh(ϕ) = h−1K(ϕ/h). Throughout the paper, we assume that the kernel K has

compact support [−CK , CK] and we set CK = 1 for ease of notation.

Suppose that the technical conditions from Section 6 are satisfied and assume for

a moment that the errors εit are independent across i and t. In this case, standard

calculations yield that for any given point x ∈ (0, 1),√
Tmaxh

[(
m̂i,h(x)− m̂j,h(x)

)
−Bij,h(x)

]
d−→ N

(
0, νij(x)

)
, (3.4)

where Tmax = max1≤i≤n Ti and

Bij,h(x) =
{
mi(x)−mj(x)}+

h2

2
κ2
{
m′′i (x)−m′′j (x)

}
+Op(h

3) (3.5)

νij(x) =
{ σ2

i

cifi(x)
+

σ2
j

cjfj(x)

}
‖K‖22. (3.6)

Here, σ2
i = E[ε2it] denotes the error variance and we make use of the shorthands

7

κ2 =
∫
ϕ2K(ϕ)dϕ and ‖K‖22 =

∫
K2(ϕ)dϕ. If the subjects i and j belong to the same

class, that is, if mi = mj, we in particular obtain that Bij,h(x) = Op(h
3) and√

Tmaxh
(
m̂i,h(x)− m̂j,h(x)

) d−→ N
(
0, νij(x)

)
(3.7)

for any h with Th→∞ and h = o(T−1/7).

The normality results (3.4) and (3.7) motivate to replace the variables ψ̃ij(x, h)

by the normalized versions

ψ̂ij(x, h) =
√
Tmaxh

(
m̂i,h(x)− m̂j,h(x)

)/√
ν̂ij,h(x), (3.8)

where

ν̂ij,h(x) =

{
σ̂2
i,h

ĉif̂i,h(x)
+

σ̂2
j,h

ĉj f̂j,h(x)

}
‖K‖22 (3.9)

is an estimator of νij(x). Here, f̂i,h(x) = T−1i

∑Ti
t=1Kh(xit− x) is a kernel estimator of

the design density fi(x) and σ̂2
i,h = T−1i

∑Ti
t=1{Yit − m̂i,h(xit)}2 is an estimator of the

error variance σ2
i . Standard arguments show that the normalized random variables

ψ̂ij(x, h) are asymptotically normal with unit variance for any pair of subjects i and j

from the same class, for any x ∈ (0, 1) and for any h with Th→∞ and h = o(T−1/7).

Hence, their variances can be expected to be approximately equal to 1 in finite samples

as well, provided that the sample sizes Ti are sufficiently large.

To construct the normalized statistics ψ̂ij(x, h), we have made the simplifying

assumption that the errors εit are independent across i and t. In principle, it is

straightforward to take into account dependencies in the errors when setting up the

statistics ψ̂ij(x, h). Suppose for example that the variables εit are (weakly) dependent

across t but independent across i. The normality results (3.4) and (3.7) remain to hold

true in this case if we substitute σ2
i in the asymptotic variance νij(x) by the long-run

error variance Γi =
∑∞

`=−∞ γi(`) with γi(`) = E[εitεi,t+`]. Hence, we can simply replace

the estimator σ̂2
i,h in (3.9) by a suitable estimator of Γi to obtain statistics ψ̂ij(x, h)

which are asymptotically normal with unit variance. From a practical point of view, it

is however not recommendable to proceed in this way. The long-run variances Γi are

quite difficult to estimate, in particular much more difficult than σ2
i . It is thus quite

likely that the estimates of Γi are fairly poor at least for some indices i, implying that

the statistics ψ̂ij(x, h) are normalized inappropriately for these indices.

The statistics ψ̂ij(x, h) defined in (3.8), in contrast, are much simpler to estimate

and have a more robust behaviour. Moreover, they are not only useful when the errors

εit are independent across i and t. As long as the dependence in the errors is not

too strong, the normalization (3.9) can be expected to make sure that the statistics

ψ̂ij(x, h) have variances of comparable size across x, h, i and j, even though the

asymptotic variances are not exactly equal to 1 in general. Hence, from a practical

8

point of view, it makes sense to work with the statistics ψ̂ij(x, h) defined in (3.8) even

when the errors εit are dependent across i and t. These statistics are also a valid choice

from a theoretical point of view. Notably, our theory does not require us to work with

statistics that have unit variance asymptotically. We can thus base our methods on

the statistics ψ̂ij(x, h) from (3.8) while allowing the errors to be correlated across i and

t. The exact conditions on the dependence structure of the error terms εit are specified

in (CFD1), (CRD1) and (C4) in Section 6. In addition, they are briefly discussed in

comments (a) and (b) in Section 6.

Random design model. The estimators of the functions mi are constructed in

exactly the same way as in the fixed design case. Specifically, we define the estimator

m̂i,h of mi as described in equations (3.2) and (3.3), with the fixed design points xit

replaced by the random points Xit. Under the technical conditions from Section 6, it

holds that for any given x ∈ (0, 1),√
Tmaxh

[(
m̂i,h(x)− m̂j,h(x)

)
−Bij,h(x)

]
d−→ N

(
0, νij(x)

)
, (3.10)

where the bias Bij,h(x) has the same structure (3.5) as in the fixed design case. The

asymptotic variance has the form

νij(x) =
{ σ2

i (x)

cifi(x)
+

σ2
j (x)

cjfj(x)

}
‖K‖22, (3.11)

where σ2
i (x) = E[ε2it|Xit = x] is the conditional error variance. If the errors are

homoskedastic, that is, if σ2
i (x) ≡ σ2

i = E[ε2it] for all x, we obtain the following result

which is completely analogous to that from the fixed design case: For any pair of

subjects i and j from the same class, for any x ∈ (0, 1) and for any h with Th → ∞
and h = o(T−1/7), the statistic

ψ̂ij(x, h) =
√
Tmaxh

(
m̂i,h(x)− m̂j,h(x)

)/√
ν̂ij,h(x) (3.12)

is asymptotically standard normal, where we define

ν̂ij,h(x) =

{
σ̂2
i,h

ĉif̂i,h(x)
+

σ̂2
j,h

ĉj f̂j,h(x)

}
‖K‖22 (3.13)

with f̂i,h(x) = T−1i

∑Ti
t=1Kh(Xit − x) and σ̂2

i,h = T−1i

∑Ti
t=1{Yit − m̂i,h(Xit)}2. If

the errors are heteroskedastic, we replace σ̂2
i,h in (3.13) by an estimator σ̂2

i,h(x) of

the conditional error variance σ2
i (x) = E[ε2it|Xit = x], for example by σ̂2

i,h(x) =

T−1i

∑Ti
t=1Kh(Xit−x){Yit− m̂i,h(Xit)}2/f̂i,h(x). For simplicity, we assume throughout

the paper that the errors εit are homoskedastic. However, our theoretical arguments

easily carry over to the case of heteroskedastic error terms.

9

Our discussion so far suggests to replace the multiscale statistics d̃ij from (3.1) by the

normalized versions

d̂ij = sup
h∈[hmin,hmax]

sup
x∈[h,1−h]

|ψ̂ij(x, h)|, (3.14)

where the statistics ψ̂ij(x, h) are defined in (3.8) and (3.12) for the fixed and the random

design case, respectively. The asymptotic normality results (3.4) and (3.10) which

motivate this normalization include the bias term Bij,h(x). To make sure that this

bias is asymptotically negligible, we have assumed that Th → ∞ with h = o(T−1/7).

We take this restriction into account by supposing that hmin ≥ cT−(1−δ) and hmax ≤
CT−(1/7+δ) for some small δ > 0 and positive constants c and C. These conditions

on hmin and hmax are fairly moderate: Since the optimal bandwidth for estimating mi

is of the order T−1/5 for any i under our technical conditions from Section 6, we can

choose the interval [hmin, hmax] to contain a wide variety of bandwidths, thus allowing

for both substantial under- and oversmoothing.

Even though the statistics d̂ij are an improvement on the initial versions d̃ij, they

still suffer from the following drawback: they do not take into account all bandwidths

h ∈ [hmin, hmax] in an equal fashion but tend to be dominated by small bandwidths

h. The reason for this is as follows: Let i and j be two subjects that belong to the

same class and suppose for simplicity that the variables (Yit, xit) and (Yit, Xit) are

independent across i and t in the fixed and the random design case, respectively. By

construction, the statistics ψ̂ij((2` − 1)h, h) for ` = 1, . . . , b1/2hc are approximately

standard normal and independent for any given bandwidth h. Since the maximum

over b1/2hc independent standard normal random variables is C(2h) + op(1) as h→ 0

with C(r) =
√

2 log(1/r), we obtain that max` ψ̂ij((2`−1)h, h) is approximately of size

C(2h) for small bandwidths h. Moreover, since the statistics ψ̂ij(x, h) with (2`−1)h <

x < (2`+1)h are correlated with ψ̂ij((2`−1)h, h) and ψ̂ij((2`+1)h, h), the supremum

supx ψ̂ij(x, h) approximately behaves as the maximum max` ψ̂ij((2` − 1)h, h). As a

result, we obtain that

d̂ij ≈ sup
h∈[hmin,hmax]

max
1≤`≤b1/2hc

|ψ̂ij((2`− 1)h, h)|,

where max` |ψ̂ij((2`− 1)h, h)| ≈ C(2h) for small values of h. In particular, the maxi-

mum max` |ψ̂ij((2`− 1)h, h)| tends to have a much larger size for small than for large

bandwidths h. This suggests that the stochastic behaviour of d̂ij is dominated by the

statistics ψ̂ij(x, h) corresponding to small bandwidths h.

To fix this problem, we follow Dümbgen and Spokoiny (2001) and replace the

statistics d̂ij by the modified versions

d̂ij = sup
h∈[hmin,hmax]

sup
x∈[h,1−h]

{
|ψ̂ij(x, h)| − C(2h)

}
, (3.15)

10

where C(r) =
√

2 log(1/r). For each given bandwidth h, we thus subtract the ad-

ditive correction term C(2h) from the statistics ψ̂ij(x, h). According to the heuristic

considerations from above, when i and j belong to the same class, the maximum of

the statistics ψ̂ij(x, h) with the bandwidth h is approximately of size C(2h) for small

values of h. Hence, we correct the statistics ψ̂ij(x, h) corresponding to a small band-

width h by subtracting the approximate size of their maximum. This puts the statistics

ψ̂ij(x, h) with different bandwidth values h on a more equal footing and prevents small

bandwidths from dominating the behaviour of the multiscale statistics.

To make the statistics d̂ij defined in (3.15) computable in practice, we finally

replace the supremum over x ∈ [h, 1 − h] and h ∈ [hmin, hmax] by the maximum over

all points x and h in a suitable grid GT . We may work with any grid which has the

following properties: GT is a subset of

G =
{

(x, h)
∣∣hmin ≤ h ≤ hmax and h ≤ x ≤ 1− h

}
, (3.16)

GT becomes dense in G as T →∞, and |GT | ≤ CT β for some arbitrarily large but fixed

constants C, β > 0, where |GT | denotes the cardinality of GT . For example, we may use

the Wavelet multiresolution grid GT = {(x, h) = (2−νr, 2−ν) | 1 ≤ r ≤ 2ν−1 and hmin ≤
2−ν ≤ hmax}. With this notation at hand, we can make the following formal definition:

Definition 3.1. For any pair of subjects i and j with 1 ≤ i, j ≤ n, we call

d̂ij = max
(x,h)∈GT

{
|ψ̂ij(x, h)| − C(2h)

}
a multiscale distance statistic or, synonymously, a multiscale distance measure. Here,

C(r) =
√

2 log(1/r) and the expressions ψ̂ij(x, h) are defined in (3.8) and (3.12) for the

fixed and the random design, respectively. Moreover, GT is any grid with the properties

specified above.

3.2 Tuning parameter choice

The multiscale statistics d̂ij do not depend on a specific bandwidth h that needs

to be selected. They rather take into account a wide range of different bandwidths

h ∈ [hmin, hmax] simultaneously. They are thus free of classical bandwidth or smooth-

ing parameters. However, they are of course not completely free of tuning parameters.

They obviously depend on the minimal and maximal bandwidths hmin and hmax. Im-

portantly, hmin and hmax are much more harmless tuning parameters than a classical

bandwidth h. In particular, (i) they are much simpler to choose and (ii) their exact

choice influences the estimation results much less. In what follows, we discuss the

reasons for (i) and (ii) in detail and give some guidelines how to choose hmin and hmax

appropriately in practice. These guidelines are used in particular to implement our

11

methods in the simulations of Section 7 and the empirical application of Section 8.

We first have a closer look at hmin and then turn to hmax.

Choice of hmin. Ideally, we would like to make the interval [hmin, hmax] as large as

possible, thus taking into account as many different bandwidth values h as possible.

In particular, we would like to choose hmin as small as possible. From a technical

perspective, we can pick any value hmin such that hmin ≥ cT−(1−δ) for some small

δ > 0 and some positive constant c. This allows hmin to converge to zero almost as

quickly as the sample size parameter T and thus to be extremely small. Heuristically

speaking, the bandwidth hmin can be considered very small if the effective sample size

Tihmin is very small, say Tihmin ≤ 10 for all i (when an Epanechnikov kernel is used).

Hence, from an applied point of view, it is clear in which range we have to pick the

bandwidth hmin. Moreover, the exact choice of hmin can be expected to have little

effect on the estimation results. The reason is as follows: According to the heuristic

discussion from the previous subsection, maxx |ψ̂ij(x, h)| ≈ C(2h) + op(1) as h → 0,

implying that maxx{|ψ̂ij(x, h)|−C(2h)} tends to zero as h→ 0. This suggests that the

multiscale statistic d̂ij = maxx,h{|ψ̂ij(x, h)| − C(2h)} should not attain its maximum

at extremely small bandwidth values h. As a consequence, the precise value of hmin

should barely influence the overall behaviour of the multiscale statistics. In view of

these considerations, we propose to choose hmin in practice such that the effective

sample size Tihmin is small, say ≤ 10 for all i (when an Epanechnikov kernel is used).

Choice of hmax. Ideally, we would like to choose hmax as large as possible. From a

technical point of view, we can pick any value hmax such that hmax ≤ CT−(1/7+δ) for

some small δ > 0 and some positive constant C. This allows us to oversmooth sub-

stantially and to choose hmax much larger than the optimal bandwidths for estimating

the functions mi, which are of the order T−1/5 for all i under our technical conditions

from Section 6.

The condition that hmax ≤ CT−(1/7+δ) is mainly needed because we allow the

design densities fi to be very different across i. In a wide range of applications,

however, the design densities are fairly similar. In a fixed design context, for instance,

the design points are often close to equidistant for all i. In these cases, the condition

that hmax ≤ CT−(1/7+δ) tends to be overly pessimistic and may be weakened. The

reason is as follows: For i and j in the same class, we would like the difference m̂i,h(x)−
m̂j,h(x) to converge to zero sufficiently fast for any h ∈ [hmin, hmax]. To ensure this,

the bias part of m̂i,h(x) − m̂j,h(x) in particular needs to converge fast enough. The

bias of the smoother m̂i,h(x) has the following two properties: it depends on the design

density fi and it tends to become larger when the bandwidth increases. Hence, if the

design densities fi and fj strongly differ, m̂i,h(x)− m̂j,h(x) can be expected to have a

strong bias for large bandwidths h. To control this bias, we impose the condition that

12

hmax ≤ CT−(1/7+δ). If the design densities fi and fj do not differ so much, the bias of

m̂i,h(x)− m̂j,h(x) will commonly not be very pronounced for i and j in the same class

in contrast. Hence, the condition that hmax ≤ CT−(1/7+δ) is overly restrictive in this

case. As an example, consider the fixed design setting with Ti = T and fi = f for all

i. In this case, the bias terms of m̂i,h(x) and m̂j,h(x) are exactly the same for i and

j in the same class. This allows us to drastically weaken the conditions on hmax. In

particular, we only require that hmax = o(1). (Indeed, we could even allow hmax not

to converge to zero but to remain fixed.)

According to the above considerations, hmax can be chosen extremely large as long

as the design densities do not differ strongly across i. From a heuristic perspective, the

bandwidth value hmax can be regarded as extremely large if the effective sample size

Tihmax is very large as compared to the full sample size Ti for all i, say Tihmax ≈ Ti/4

or Tihmax ≈ Ti/3 (when an Epanechnikov kernel is used). Hence, it is clear in which

range we need to pick the bandwidth hmax in practice. Moreover, the exact choice

of hmax can be expected to have little influence on the estimation results: If we pick

hmax very large, we smooth out virtually all features of the curves mi and basically

fit a straight line to the data. Whether we pick hmax a bit smaller or larger will not

have a strong effect on the produced fits. In either case, we will end up with strongly

oversmoothed, approximately linear estimates of the regression functions. In view of

these points, we suggest to choose hmax in practice such that the effective sample size

Tihmax is large in comparison to the sample size Ti, say Tihmax ≥ Ti/4 for all i (when

an Epanechnikov kernel is used). This should yield a reasonable value for hmax, at

least as long as the design densities are not extremely different across i.

3.3 Properties of the multiscale statistics

We now discuss some theoretical properties of the multiscale statistics d̂ij which are

needed to derive the formal properties of the clustering methods developed in the

following sections. Specifically, we compare the maximal multiscale distance between

subjects i and j from the same class,

max
1≤k≤K0

max
i,j∈Gk

d̂ij,

with the minimal distance between subjects i and j from two different classes,

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij.

In Section 6, we show that under appropriate regularity conditions,

max
1≤k≤K0

max
i,j∈Gk

d̂ij = Op

(√
log n+ log T +

√
Th7max

)
(3.17)

13

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij ≥ c0
√
Thmax + op

(√
Thmax

)
, (3.18)

where c0 is a sufficiently small positive constant. These two statements immediately

imply that

max
1≤k≤K0

max
i,j∈Gk

d̂ij
/√

Thmax = op(1) (3.19)

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij
/√

Thmax ≥ c0 + op(1). (3.20)

According to (3.19) and (3.20), the maximal distance between subjects of the same

class converges to zero when normalized by
√
Thmax, whereas the minimal distance

between subjects of two different classes remains bounded away from zero. Asymp-

totically, the distance measures d̂ij thus contain enough information to detect which

subjects belong to the same class. Technically speaking, we can make the following

statement for any fixed positive constant c < c0: with probability tending to 1, any

subjects i and j with d̂ij ≤ c belong to the same class, whereas those with d̂ij > c

belong to two different classes. The hierarchical clustering algorithm introduced in the

next section exploits this information in the distances d̂ij.

4 Estimation of the unknown classes

Let S ⊆ {1, . . . , n} and S ′ ⊆ {1, . . . , n} be two sets of subjects from our sample. We

define a dissimilarity measure between S and S ′ by setting

∆̂(S, S ′) = max
i∈S,
j∈S′

d̂ij. (4.1)

This is commonly called a complete linkage measure of dissimilarity. Alternatively, we

may work with an average or a single linkage measure. To partition the set of subjects

{1, . . . , n} into groups, we combine the multiscale dissimilarity measure ∆̂ with a

hierarchical agglomerative clustering (HAC) algorithm which proceeds as follows:

Step 0 (Initialization): Let Ĝ
[0]
i = {i} denote the i-th singleton cluster for 1 ≤ i ≤ n

and define {Ĝ[0]
1 , . . . , Ĝ

[0]
n } to be the initial partition of subjects into clusters.

Step r (Iteration): Let Ĝ
[r−1]
1 , . . . , Ĝ

[r−1]
n−(r−1) be the n−(r−1) clusters from the previous

step. Determine the pair of clusters Ĝ
[r−1]
k and Ĝ

[r−1]
k′ for which

∆̂(Ĝ
[r−1]
k , Ĝ

[r−1]
k′) = min

1≤`<`′≤n−(r−1)
∆̂(Ĝ

[r−1]
` , Ĝ

[r−1]
`′)

and merge them into a new cluster.

14

Iterating this procedure for r = 1, . . . , n− 1 yields a tree of nested partitions {Ĝ[r]
1 , . . .

. . . , Ĝ
[r]
n−r}, which can be graphically represented by a dendrogram. Roughly speaking,

the HAC algorithm merges the n singleton clusters Ĝ
[0]
i = {i} step by step until we

end up with the cluster {1, . . . , n}. In each step of the algorithm, the closest two

clusters are merged, where the distance between clusters is measured in terms of the

dissimilarity ∆̂. We refer the reader to Ward (1963) for an early reference on HAC

clustering and to Section 14.3.12 in Hastie et al. (2009) for an overview of hierarchical

clustering methods.

We now examine the properties of our HAC algorithm. In particular, we investi-

gate how the partitions {Ĝ[r]
1 , . . . , Ĝ

[r]
n−r} for r = 1, . . . , n − 1 are related to the true

class structure {G1, . . . , GK0}. From (3.19) and (3.20), it immediately follows that the

multiscale statistics d̂ij have the following property:

P
(

max
1≤k≤K0

max
i,j∈Gk

d̂ij < min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij

)
→ 1. (4.2)

To formulate the results on the HAC algorithm, we do not restrict attention to the

multiscale statistics d̂ij from Definition 3.1 but let d̂ij denote any statistics with the

high-level property (4.2). We further make use of the following notation: Let A =

{A1, . . . , Ar} and B = {B1, . . . , Br′} be two partitions of the set {1, . . . , n}, that is,⋃̇r

`=1A` = {1, . . . , n} and
⋃̇r′

`=1B` = {1, . . . , n}. We say that A is a refinement of B if

each A` ∈ A is a subset of some B`′ ∈ B. With this notation at hand, the properties

of the HAC algorithm can be summarized as follows:

Theorem 4.1. Suppose that the statistics d̂ij satisfy condition (4.2). Then

(a) P
({
Ĝ

[n−K0]
1 , . . . , Ĝ

[n−K0]
K0

}
=
{
G1, . . . , GK0

})
→ 1,

(b) P
({
Ĝ

[n−K]
1 , . . . , Ĝ

[n−K]
K

}
is a refinement of

{
G1, . . . , GK0

})
→ 1 for any K > K0,

(c) P
({
G1, . . . , GK0

}
is a refinement of

{
Ĝ

[n−K]
1 , . . . , Ĝ

[n−K]
K

})
→ 1 for any K < K0.

The proof of Theorem 4.1 is trivial and thus omitted, the statements (a)–(c) being

immediate consequences of condition (4.2). By (a), the partition {Ĝ1, . . . , ĜK0} with

Ĝk = Ĝ
[n−K0]
k for 1 ≤ k ≤ K0 is a consistent estimator of the true class structure

{G1, . . . , GK0} in the following sense: {Ĝ1, . . . , ĜK0} coincides with {G1, . . . , GK0}
with probability tending to 1. Hence, if the number of classes K0 were known, we

could consistently estimate the true class structure by {Ĝ1, . . . , ĜK0}. The partitions

{Ĝ[n−K]
1 , . . . , Ĝ

[n−K]
K } with K 6= K0 can of course not serve as consistent estimators of

the true class structure. According to (b) and (c), there is nevertheless a close link

between these partitions and the unknown class structure. In particular, by (b), for

15

any K > K0, the estimated clusters Ĝ
[n−K]
1 , . . . , Ĝ

[n−K]
K are subsets of the unknown

classes with probability tending to 1. Conversely, by (c), for any K < K0, the unknown

classes are subsets of the estimated clusters with probability tending to 1.

5 Estimation of the unknown number of classes

5.1 The estimation method

Let ∆̂(S, S ′) be the dissimilarity measure from (4.1) and define the shorthand ∆̂(S) =

∆̂(S, S). Moreover, let {πn,T} be any sequence with the property that√
log n+ log T +

√
Th7max � πn,T �

√
Thmax, (5.1)

where the notation an,T � bn,T means that an,T = o(bn,T). Combining properties (3.17)

and (3.18) of the multiscale distance statistics d̂ij with the statements of Theorem 4.1,

we immediately obtain the following: For any K < K0,

P
(

max
1≤k≤K

∆̂
(
Ĝ

[n−K]
k

)
≤ πn,T

)
→ 0, (5.2)

whereas for K = K0,

P
(

max
1≤k≤K0

∆̂
(
Ĝ

[n−K0]
k

)
≤ πn,T

)
→ 1. (5.3)

Taken together, (5.2) and (5.3) motivate to estimate the unknown number of classes

K0 by the smallest number K for which the criterion

max
1≤k≤K

∆̂
(
Ĝ

[n−K]
k

)
≤ πn,T

is satisfied. Formally speaking, we estimate K0 by

K̂0 = min
{
K = 1, 2, . . .

∣∣∣ max
1≤k≤K

∆̂
(
Ĝ

[n−K]
k

)
≤ πn,T

}
.

K̂0 can be shown to be a consistent estimator of K0 in the sense that P(K̂0 = K0)→ 1.

More precisely, we can prove the following result.

Theorem 5.1. Suppose that the multiscale statistics d̂ij from Definition 3.1 have the

properties (3.17) and (3.18). Moreover, let {πn,T} be any threshold sequence with the

property (5.1). Then it holds that P(K̂0 = K0)→ 1.

The proof of Theorem 5.1 is straightforward: As already noted, the properties (3.17)

and (3.18) of the multiscale distance statistics and the statements of Theorem 4.1

immediately imply (5.2) and (5.3). From (5.2), it further follows that P(K̂0 < K0) =

16

0
2

4
6

8

Figure 1: Example of a dendrogram produced by the HAC algorithm. The red horizontal
line indicates the dissimilarity level πn,T . The estimator K̂0 can be computed by counting

the vertical lines that intersect the red horizontal threshold. In the above example, K̂0 is
equal to 6.

o(1), whereas (5.3) yields that P(K̂0 > K0) = o(1). As a consequence, we obtain that

P(K̂0 = K0)→ 1.

The estimator K̂0 can be interpreted in terms of the dendrogram produced by the

HAC algorithm. It specifies a simple cutoff rule for the dendrogram: The value

max
1≤k≤K

∆̂
(
Ĝ

[n−K]
k

)
= min

1≤k<k′≤K+1
∆̂
(
Ĝ

[n−(K+1)]
k , Ĝ

[n−(K+1)]
k′

)
is the dissimilarity level at which two clusters are merged to obtain a partition with

K clusters. In the dendrogram, the clusters are usually indicated by vertical lines

and the dissimilarity level at which two clusters are merged is marked by a horizontal

line which connects the two vertical lines representing the clusters. To compute the

estimator K̂0, we may simply cut the dendrogram at the dissimilarity level πn,T and

count the vertical lines that intersect the horizontal cut at the level πn,T . See Figure

1 for an illustration.

5.2 Choice of the threshold level πn,T

As shown in Theorem 5.1, K̂0 is a consistent estimator of K0 for any threshold sequence

{πn,T} with the property that
√

log n+ log T +
√
Th7max � πn,T �

√
Thmax. From an

asymptotic perspective, we thus have a lot of freedom to choose the threshold πn,T . In

finite samples, a totally different picture arises. There, different choices of πn,T may

result in markedly different estimates of K0. Selecting the threshold level πn,T in a

suitable way is thus a crucial issue in finite samples.

In what follows, we give some heuristic discussion on how to pick the threshold

level πn,T appropriately in practice. To do so, we concentrate on the fixed design case.

17

The arguments for the random design are fully analogous. For the heuristic discussion,

we make the following simplifications: (i) We assume that Ti = T and fi ≡ f for all

i, where f is some design density. Loosely speaking, we thus suppose that the sample

sizes Ti and the design densities fi are similar enough to neglect differences between

them. It of course depends on the application at hand whether this assumption is

justified or not. (ii) We suppose that not only the functions mi are the same within

groups but also the error variances σ2
i . Slightly abusing notation, we employ the

symbol σ2
k to denote the group-specific error variance of the class Gk. Under these

simplifying assumptions, we can make the following heuristic observations:

(a) Consider any pair of subjects i and j that belong to the same class Gk. Ac-

cording to the normality result (3.7), the bias part of
√
Th{m̂i,h(x)− m̂j,h(x)} is

asymptotically negligible for any h = o(T−1/7). This motivates the approximation

ψ̂ij(x, h) ≈
√
Th
(
m̂i,h(x)− m̂j,h(x)

)/√
2‖K‖22σ2

k/f(x)

≈ ψ̂i(x, h)− ψ̂j(x, h)

with

ψ̂i(x, h) =
{ 1√

Th

T∑
t=1

K
(xit − x

h

)
εit

}/√
2‖K‖22σ2

kf(x).

For each i, we stack the random variables ψ̂i(x, h) with (x, h) ∈ GT in the vector

ψ̂i =
(
ψ̂i
(
x11, h1

)
, . . . , ψ̂i

(
xN1
1 , h1

)
, , ψ̂i

(
x1p, hp

)
, . . . , ψ̂i

(
xNpp , hp

))>
,

where GT =
⋃p
ν=1 GT,ν and GT,ν = {(x`ν , hν) : 1 ≤ ` ≤ Nν} is the set of points cor-

responding to the bandwidth level hν . Moreover, we define the vector of additive

corrections C = (C1, . . . ,Cp)
>, where Cν = (C(2hν), . . . , C(2hν)) is a vector of

length Nν for each ν. We finally introduce the shorthands |z| = (|z1|, . . . , |zq|)>

and (z)∞ = max1≤`≤q z` for vectors z ∈ Rq. With this notation at hand, we obtain

that

d̂ij ≈
(
|ψ̂i − ψ̂j| −C

)
∞

for any pair of subjects i and j that belong to the same class.

(b) For any fixed number of points z1, . . . , zq ∈ (0, 1) and related bandwidths hz` with

hmin ≤ hz` ≤ hmax for ` = 1, . . . , q, the random vector [ψ̂i(z1, hz1), . . . , ψ̂i(zq, hzq)]>

is asymptotically normal. Hence, the random vector ψ̂i can be treated as approx-

imately Gaussian for sufficiently large sample sizes. More specifically, since

Cov
(
ψ̂i(x, h), ψ̂i(x

′, h′)
)
≈
√
h

h′

{∫
K(ϕ)K

(hϕ+ (x− x′)
h′

)
dϕ
}/

2‖K‖22, (5.4)

18

we can approximate the random vector ψ̂i by a Gaussian vector with the co-

variance structure specified on the right-hand side of (5.4). Moreover, since the

vectors ψ̂i are independent across i under our simplifying assumptions, we can

approximate the distribution of

max
i,j∈S

(
|ψ̂i − ψ̂j| −C

)
∞

by that of

max
i,j∈S

(
|ζi − ζj| −C

)
∞

for any S ⊆ {1, . . . , n}, where ζi are independent Gaussian vectors with the

covariance structure from (5.4).

Ideally, we would like to tune the threshold level πn,T such that K̂0 = K0 with high

probability. Put differently, we would like to choose πn,T such that it is slightly larger

than max1≤k≤K0 ∆̂(Ĝ
[n−K0]
k) with high probability. With the help of the observations

(a) and (b) as well as some further heuristic arguments, this can be achieved as follows:

Since the partition {Ĝ[n−K0]
1 , . . . , Ĝ

[n−K0]
K0

} consistently estimates the class structure

{G1, . . . , GK0}, we have that

max
1≤k≤K0

∆̂(Ĝ
[n−K0]
k) ≈ max

1≤k≤K0

∆̂(Gk). (5.5)

By observation (a), we further obtain that

max
1≤k≤K0

∆̂(Gk) = max
1≤k≤K0

{
max
i,j∈Gk

d̂ij

}
≈ max

1≤k≤K0

{
max
i,j∈Gk

(
|ψ̂i − ψ̂j| −C

)
∞

}
, (5.6)

and by (b),

max
1≤k≤K0

{
max
i,j∈Gk

(
|ψ̂i − ψ̂j| −C

)
∞

}
d
≈ max

1≤k≤K0

{
max
i,j∈Gk

(
|ζi − ζj| −C

)
∞

}
, (5.7)

where Z
d
≈ Z ′ means that Z is approximately distributed as Z ′. Since the right-hand

side of (5.7) depends on the unknown groups G1, . . . , GK0 , we apply the trivial bound

max
1≤k≤K0

{
max
i,j∈Gk

(
|ζi − ζj| −C

)
∞

}
≤ Bn := max

1≤i,j≤n

(
|ζi − ζj| −C

)
∞ (5.8)

and define qn(α) to be the α-quantile of Bn. Taken together, (5.5)–(5.8) suggest that

max
1≤k≤K0

∆̂(Ĝ
[n−K0]
k) ≤ qn(α)

19

holds with high probability if we pick α close to 1. In particular, if the random

variable max1≤k≤K0 ∆̂(Ĝ
[n−K0]
k) is not only approximately but exactly distributed as

max1≤k≤K0 maxi,j∈Gk(|ζi − ζj| −C)∞, then

P
(

max
1≤k≤K0

∆̂(Ĝ
[n−K0]
k) ≤ qn(α)

)
≥ α.

According to these considerations, πn,T = qn(α) with α close to 1 should be an appro-

priate threshold level. Throughout the simulations and applications, we set α to the

value 0.95.

6 Theoretical results

In this section, we examine the asymptotic properties of the multiscale statistics d̂ij.

We in particular derive statements (3.17) and (3.18) under appropriate regularity

conditions. These statements characterize the convergence behaviour of the statistics

d̂ij and underlie Theorems 4.1 and 5.1 which describe the theoretical properties of our

clustering methods.

To prove (3.17) and (3.18), we impose the following regularity conditions. We first

summarize the assumptions for the fixed design case:

(CFD1) The error processes Pi = {εit : 1 ≤ t ≤ Ti} are strictly stationary and strongly

mixing for all 1 ≤ i ≤ n.

(CFD2) For each 1 ≤ i ≤ n, there exists a density fi such that
∫ xit
xi,t−1

fi(w)dw = 1/Ti

for 1 ≤ t ≤ Ti, where xi0 = 0.

(CFD3) There exist a real number θ > 4 and a positive constant C such that

max
1≤i≤n

E
[
|εit|θ

]
≤ C <∞.

The conditions in the random design case are essentially analogous:

(CRD1) The processes Pi = {(Xit, εit) : 1 ≤ t ≤ Ti} are strictly stationary and strongly

mixing for all 1 ≤ i ≤ n.

(CRD2) For each 1 ≤ i ≤ n, the random variables Xit have a density fi and the

variables (Xit, Xit+`) have a joint density fi,`. The densities fi have bounded

support, which w.l.o.g. equals [0, 1] for all i. The joint densities are uniformly

bounded away from infinity, that is, fi,`(x, x
′) ≤ C <∞ for all i, x, x′ and `,

where the constant C neither depends on i, x, x′ nor on `.

20

(CRD3) There exist a real number θ > 4 and a natural number `∗ such that for any

` ∈ Z with |`| ≥ `∗ and some constant C <∞,

max
1≤i≤n

sup
x∈[0,1]

E
[
|εit|θ

∣∣Xit = x
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εitεit+`|

∣∣Xit = x,Xit+` = x′
]
≤ C <∞.

For simplicity, the error terms εit are homoskedastic, that is, σ2
i = E[ε2it] =

E[ε2it|Xit = x] for all x ∈ [0, 1].

The following conditions are needed in both the fixed and the random design case:

(C4) Let αi(`) for ` = 1, 2, . . . be the mixing coefficients corresponding to the i-th

process Pi. It holds that αi(`) ≤ α(`) for all i, where the coefficients α(`)

decay exponentially fast to zero as `→∞.

(C5) The densities fi are uniformly bounded away from zero and infinity on [0, 1],

that is, 0 < c ≤ fi(x) ≤ C <∞ for all i and x ∈ [0, 1], where the constants c

and C neither depend on i nor on x. Moreover, they are twice continuously

differentiable on [0, 1] with first and second derivatives that are uniformly

bounded away from infinity in absolute value.

(C6) The group-specific regression functions gk are twice continuously differentiable

on [0, 1] for 1 ≤ k ≤ K0 with Lipschitz continuous second derivatives g′′k , that

is, |g′′k(v) − g′′k(w)| ≤ L|v − w| for any v, w ∈ [0, 1] and some constant L.

Moreover, for any pair of indices (k, k′) with 1 ≤ k < k′ ≤ K0, the functions

gk and gk′ are different in the sense that gk(x) 6= gk′(x) for some x ∈ [0, 1].

(C7) The error variances σ2
i are uniformly bounded away from zero and infinity,

that is, 0 < c ≤ σ2
i ≤ C < ∞ for all i, where the constants c and C do not

depend on i.

(C8) It holds that Ti = τi(T) → ∞ as T → ∞ for all i. Moreover, there exist

constants ci with 0 < c ≤ ci ≤ c <∞ for all i such that |Ti/T−ci| ≤ ρ(T)→ 0

as T →∞, where c, c and ρ(·) do not depend on i. Finally, n = n(T) is such

that

n ≤ C
(T 1/2 ∧ Thmin)

θ−δ
2

T 1+δ
(6.1)

for some small δ > 0 and a sufficiently large constant C > 0, where we use

the notation a ∧ b = min{a, b} and θ is defined in (CFD3) and (CRD3).

(C9) The minimal and maximal bandwidths have the form hmin = aT−B and hmax =

AT−b with some positive constants a, A, b and B, where 1/7 < b ≤ B < 1.

Moreover, h5max/hmin = o(1).

21

(C10) The kernel K is non-negative, bounded and integrates to one. Moreover, it is

symmetric about zero, has compact support [−1, 1] and fulfills the Lipschitz

condition that there exists a positive constant L with |K(x)−K(x′)| ≤ L|x−
x′| for all x, x′ ∈ R. We use the notation ‖K‖2 =

∫
K2(ϕ)dϕ and κ` =∫

K(ϕ)ϕ`dϕ for ` = 0, 1, 2, . . .

We briefly comment on the above conditions.

(a) Assumptions (CFD1) and (CRD1) restrict the dependence structure of the model

variables across t by imposing mixing conditions on them. (C4) requires the

mixing coefficients to decay exponentially fast. This assumption is not necessarily

needed but it is nevertheless imposed to keep the proofs as clear as possible.

The exponential mixing rate may alternatively be replaced by a sufficiently high

polynomial rate.

(b) Assumptions (CFD1) and (CRD1) do not impose any restrictions on the dependence

structure of the model variables across i. Hence, our theory allows the model

variables to be dependent across i in an arbitrary way.

(c) (CFD3), (CRD3), (C5) and (C6) are standard-type moment and smoothness con-

ditions to derive uniform convergence results for the kernel estimators on which

the multiscale statistics d̂ij are based; see Hansen (2008) for similar assumptions.

(d) (C8) imposes restrictions on the growth of the number of subjects n. Loosely

speaking, it says that n is not allowed to grow too quickly as compared to T .

More specifically, let hmin = aT−B with some B ≤ 1/2 and hmax = AT−b with

some b > 1/7, which implies that (C9) is satisfied. In this case, (6.1) simplifies to

n ≤ CT
θ
4
−1− 5

4
δ,

which essentially says that n should not grow more quickly than T θ/4−1. According

to this, the growth restriction (6.1) on n is closely connected with the moment

conditions on the error terms εit in (CFD3) and (CRD3). In particular, the larger

the value of θ, that is, the stronger the moment conditions on εit, the faster n

may grow as compared to T . If θ = 8, for example, then n may grow (almost)

as quickly as T . If θ can be picked arbitrarily large, that is, if all moments of εit

exist, then n may grow as quickly as any polynomial of T , that is, n ≤ CT ρ with

ρ > 0 as large as desired.

(e) (C9) imposes some conditions on the minimal and maximal bandwidths hmin and

hmax. Specifically, it requires that hmin ≥ cT−(1−δ) and hmax ≤ CT−(1/7+δ) for some

small δ > 0 and positive constants c and C. These conditions are fairly moderate:

Since the optimal bandwidth for estimating mi is of the order T−1/5 for any i under

22

the smoothness conditions (C5) and (C6), we can choose the interval [hmin, hmax]

to be quite large, allowing for both substantial under- and oversmoothing.

(f) Finally, it is worth noting that our assumptions do not impose any restrictions on

the class sizes |Gk|. The sizes |Gk| may thus be very different across the classes Gk.

In particular, they may be fixed for some classes and grow to infinity at different

rates for others.

Under the regularity conditions just discussed, we can derive the following state-

ments on the convergence behaviour of the multiscale statistics d̂ij.

Theorem 6.1. Let (CFD1)–(CFD3) and (CRD1)–(CRD3) be fulfilled in the fixed and

the random design case, respectively. Moreover, suppose that (C4)–(C10) are satisfied.

Then it holds that

max
1≤k≤K0

max
i,j∈Gk

d̂ij = Op

(√
log n+ log T +

√
Th7max

)
(6.2)

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij ≥ c0
√
Thmax + op

(√
Thmax

)
, (6.3)

where c0 is a fixed positive constant that does not depend on T (nor on n = n(T)).

The proof of Theorem 6.1 is provided in the Supplementary Material.

7 Simulations

To explore the finite sample properties of our methods, we carry out some simulations.

We consider the model

Yit = mi(Xit) + εit (1 ≤ t ≤ Ti, 1 ≤ i ≤ n), (7.1)

where T = Ti = 200 for all i and n = 240. The individuals i are supposed to

belong to K0 = 6 different groups of the same size. In particular, we set Gk =

{(k−1)n/6+1, . . . , kn/6} for 1 ≤ k ≤ K0 = 6. The group-specific regression functions

gk : [0, 1]→ R are given by

g1(x) = G(x, 1
2
, 1
2
)

g2(x) = G(x, 1
4
, 1
4
) +G(x, 3

4
, 1
4
)

g3(x) = G(x, 1
8
, 1
8
) +G(x, 3

8
, 1
8
) +G(x, 3

4
, 1
4
)

g4(x) = G(x, 1
4
, 1
4
) +G(x, 5

8
, 1
8
) +G(x, 7

8
, 1
8
)

g5(x) = G(x, 1
12
, 1
12

) +G(x, 1
4
, 1
12

) +G(x, 5
12
, 1
12

) +G(x, 3
4
, 1
4
)

g6(x) = G(x, 1
4
, 1
4
) +G(x, 7

12
, 1
12

) +G(x, 3
4
, 1
12

) +G(x, 11
12
, 1
12

),

23

g1

0 0.5 1

0
0.

5
1

g2

0 0.5 1

0
0.

5
1

g3

0 0.5 1

0
0.

5
1

g4

0 0.5 1

0
0.

5
1

g5

0 0.5 1

0
0.

5
1

g6

0 0.5 1

0
0.

5
1

Figure 2: Plot of the functions gk for 1 ≤ k ≤ 6.

where G(x, x0, h) = 1(|(x−x0)/h| ≤ 1) (1− ((x−x0)/h)2)2. Figure 2 gives a graphical

illustration of the functions gk for 1 ≤ k ≤ 6. As can be seen, some of the functions

are much smoother than others.3 Moreover, the smoothness of some functions varies

across the support [0, 1]. The function g6, for instance, is much smoother on the

interval [0, 0.5] than on [0.5, 1]. To deal with these varying degrees of smoothness, we

need to inspect the functions at different resolution levels. Whereas an approach with

a fixed bandwidth is barely able to do so, our multiscale approach easily accommodates

functions of varying smoothness.

Both the regressors Xit and the error terms εit are supposed to be independent

across i and t. We draw the regressors Xit from a uniform distribution on the unit

interval [0, 1] and the errors εit from a normal distribution with mean 0 and different

variance levels σ2. We ignore dependence structures in the model variables Xit and εit

across i and t because their effect is obvious: the stronger the dependence (in particular

the dependence across t), the more difficult it gets to estimate the curves mi and thus

to infer the unknown group structure from the data. To assess the noise level in the

simulated data, we define the noise-to-signal ratios NSRk = Var(εit)/Var(gk(Xit)) =

σ2/Var(gk(Xit)) for 1 ≤ k ≤ 6. Since NSRk is the same for all k in our design, we

simply write NSR = NSRk for all k. We consider three different noise-to-signal ratios

NSR = 2, 3 and 4, which correspond to the error variances σ2 ≈ 0.492, 0.602 and 0.702.

For each noise-to-signal ratio NSR = 2, 3 and 4, we draw S = 1000 samples from

model (7.1). For each sample, we compute the class estimates {Ĝ[n−K]
1 , . . . , Ĝ

[n−K]
K }

for K = 1, 2, . . . as well as the estimate K̂0 of the number of classes. To implement

3We here use the term “smoothness” in an informal way. By saying that a function is smoother than
another one, we simply mean that it is more wiggly.

24

NSR = 2

#F

0
20

0
40

0
60

0
80

0
10

00

0 5 10 15 20

NSR = 3

#F

0
20

0
40

0
60

0
80

0
10

00

0 5 10 15 20

NSR = 4

#F

0
20

0
40

0
60

0
80

0
10

00

0 5 10 15 20

Figure 3: Histograms of the number #F of classification errors for the three simulation
scenarios with the noise-to-signal ratios NSR = 2, 3 and 4. (To visualize the histograms, we
concentrate on values of #F in the range [0, 20]. #F > 20 in 5, 16 and 69 of the S = 1000
simulations for NSR = 2, 3 and 4, respectively.)

our clustering methods, we use the grid

GT =
{

(x, h)
∣∣ [x− h, x+ h] ⊆ [0, 1] with x = r/100 for some r = 1, . . . , 100

and h ∈ {0.05, 0.1, 0.15, 0.2, 0.25}
}

(7.2)

and the threshold parameter πn,T = qn(α) with α = 0.95. The simulation study

splits into two parts: In the first part, we treat the number of classes K0 as known

and investigate how well the estimated partition {Ĝ1, . . . , ĜK0} = {Ĝ[K0]
1 , . . . , Ĝ

[K0]
K0
}

approximates the true class structure. In the second part, we examine how well the

estimates K̂0 approximate the true number of classes K0.

The results for the first part of the study are presented in Figure 3. To measure

how well the partition {Ĝ1, . . . , ĜK0} approximates the class structure {G1, . . . , GK0},
we compute the number #F of wrongly classified indices i for each simulated sample.4

The three panels of Figure 3 show histograms of the S = 1000 values of #F that are

obtained for the three noise-to-signal ratios under consideration. For the lowest noise-

to-signal ratio NSR = 2, our algorithm produces very accurate results: in almost all of

the S = 1000 simulations, the number of classification errors #F is at most 3, and in

more than 90% of the cases, #F is equal to 0. For the ratio level NSR = 3, the results

are less precise but still quite accurate: #F ≤ 5 in about 96% of the simulations and

#F = 0 in around 40% of the cases. When NSR = 4, the noise level in the data is

very high, the error variance σ2 being 4 times larger than the variance Var(gk(Xit))

of the signal. In this case, the estimation results are much less precise than in the

4#F is defined as follows: let π be some permutation of the class labels {1, . . . ,K0} and denote the
set of all possible permutations by Π. Moreover, denote the group membership of subject i by ρ(i),
i.e. set ρ(i) = k if i ∈ Gk. Similarly, let ρ̂π(i) be the estimated group membership of subject i, where
the estimated classes are labelled according to the permutation π. More specifically, set ρ̂π(i) = π(k)

if i ∈ Ĝk. With this notation at hand, we define #F = minπ∈Π

∑n
i=1 1(ρ(i) 6= ρ̂π(i)).

25

NSR = 2 NSR = 3 NSR = 4

K̂0 = 5 0 0 13

K̂0 = 6 873 854 825

K̂0 = 7 119 136 156

K̂0 = 8 8 10 6

Table 1: Simulation results for the estimator K̂0 of K0 = 6. The three columns of the table
correspond to the three simulation scenarios with NSR = 2, 3 and 4. The entries in each
column give the number of simulations (out of a total of S = 1000) in which K̂0 takes a
certain value.

previous two cases. Nevertheless, we still get that #F ≤ 10 in around 85% of the

simulations and #F ≤ 20 in around 93% of them, meaning that we misclassify at

most 10 out of 240 subjects in 85% of the cases and not more than 20 subjects in 93%

of them. Hence, even though the noise level in the data is very high, the partition

{Ĝ1, . . . , ĜK0} gives a reasonable approximation to the true class structure in a large

part of the simulations. All in all, the simulations suggest that our clustering algorithm

produces appropriate estimates of the true class structure as long as the noise level in

the data is not extremely high.

The simulation results for the second part of the study are summarized in Table

1. The entries of the table specify the number of simulations in which a certain value

of K̂0 is obtained. The results suggest that the estimator K̂0 performs well in all

three simulation scenarios with the noise-to-signal ratios NSR = 2, 3 and 4. As one

can see, the estimation precision deteriorates as the noise-to-signal ratio increases.

Nevertheless, even for the highest ratio level NSR = 4, the results are still fairly

accurate: the estimated number of clusters K̂0 is equal to the true number K0 = 6 in

around 82% of the cases. Moreover, K̂0 lies between 5 and 8 in all of the simulations,

thus being reasonably close to K0 = 6 in all of the cases.

8 Application

Global warming is a very pressing issue which has received a lot of attention in both

the scientific and the public debate over the last few decades. There is a huge number

of climatological studies which aim to shed light on both the global warming trend and

the regional variations thereof. Global temperature records are analyzed in Bloomfield

(1992) and Hansen et al. (2010) among many others. Regional variations of the warm-

ing trend are investigated for example in Karoly and Wu (2005), Stott et al. (2010)

and Knutson et al. (2013).

In this section, we use our clustering methods to estimate the regional patterns of

global warming from a large data set on land surface temperature anomalies that was

collected by the investigators of the Berkeley Earth project. The data are publicly

available at http://berkeleyearth.org/data. A detailed description of them can

26

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●

●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●

●

●
●
●
●

●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●

●
●

●
●
●

●
●

●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●

●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Figure 4: Estimated temperature anomaly clusters presented in a worldmap. The black dots
are the exact locations i where we observe data. The colour around each location i indicates
which cluster the location belongs to.

be found in Rohde et al. (2013). From the data set, we compute yearly temperature

anomalies (measured in degree Celsius) for a wide range of spatial locations. The

temperature anomaly at location i in year t is defined as the departure of the average

temperature at location i in year t from a certain reference value, in particular from the

average temperature at location i over the period from 1951 to 1980. For our analysis,

we consider all spatial locations on land which lie on a 5 degree (longitude) by 5 degree

(latitude) grid. We take into account all grid points where data are available for the

time span from 1880 to 2016. This leaves us with a total of n = 347 spatial grid points.

For each grid point, we observe a time series of length T = 137 which consists of the

yearly temperature anomalies from 1880 to 2016.

Throughout the section, we use the symbol Yit to denote the temperature anomaly

at location i and time point t. The time series {Yit : 1 ≤ t ≤ T} at location i is

supposed to follow the model

Yit = mi

(t
T

)
+ εit

for 1 ≤ t ≤ T , where xit = t/T are the design points and E[εit] = 0. We thus model the

temperature anomalies Yit at location i as a nonparametric trend mi(t/T) corrupted

by noise εit. As in the theoretical part of the paper, we assume that the locations

i in our sample can be partitioned into K0 groups G1, . . . , GK0 such that for each

1 ≤ k ≤ K0,

mi = mj for all i, j ∈ Gk.

27

time

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 1

time
te

m
pe

ra
tu

re
 a

no
m

al
ie

s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 2

time

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 3

time

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 4

time

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 5

time
te

m
pe

ra
tu

re
 a

no
m

al
ie

s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 6

time

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 7

time

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1880 1920 1960 2000

−
1

0
1

2
3

Cluster 8

Figure 5: Estimated temperature anomaly clusters. Each panel corresponds to one cluster.
The black lines are the estimated regression curves m̂i,h that belong to the respective cluster.
The red lines are estimates of the group-specific regression functions.

We thus suppose that there is a certain number of spatial regions Gk where the tem-

perature anomalies evolve in the same way over time (or at least very similarly). The

aim of our analysis is to estimate the unknown regions G1, . . . , GK0 along with their

unknown number K0. Put differently, we want to estimate the regional patterns of

global warming from the data.

To implement our clustering methods, we employ the grid GT defined in (7.2)

and the threshold parameter πn,T = qn(α) with α = 0.95. Our estimation results are

presented in Figures 4 and 5. The estimated number of regions is K̂0 = 8. Figure 4

visualizes the estimated regions in a worldmap. Figure 5 presents them in an alter-

native way: Each panel of the figure depicts the estimated curves m̂i,h that belong to

28

one of the K̂0 = 8 estimated clusters. The red curve in each panel is an estimate ĝk,h

of the group-specific regression function gk. In particular, we define

ĝk,h(x) =
1

Ĝ
[K̂0]
k

∑
i∈Ĝ[K̂0]

k

m̂i,h(x),

that is, we simply average the fits m̂i,h with i ∈ Ĝ
[K̂0]
k . To compute the local linear

smoothers m̂i,h, we of course need to select a bandwidth value h. As the smoothers are

only computed for illustrative purposes, we use the same bandwidth h for all locations

i. In particular, we choose the bandwidth adhoc as h = 0.15 for all i, which produces

a good visual impression of the results.

Inspecting Figures 4 and 5, our clustering methods appear to give a reasonable

picture of the regional patterns present in the temperature anomaly data. They pro-

duce clusters which mainly correspond to connected geographical regions. Cluster 5,

for example, corresponds to Northern Russia (and a small part of Greenland for which

data are available), whereas Cluster 8 covers most of Australia. As can be seen from

Figure 5, the clusters are fairly homogeneous, consisting of curves with similar shapes.

Moreover, the curves of some clusters have very different shapes from those of other

clusters. This suggests that the pattern of climate change may be quite different across

geographical regions. The curves of Cluster 5, for instance, which mainly represent

locations in Northern Russia have a highly nonlinear shape. Moreover, they exhibit

a strong increase from the 1970s onwards. This sharply contrasts with the curves in

Cluster 8, for example, which cover most of Australia. These curves are fairly flat over

the whole time range from 1880 to 2016. To summarize, our clustering methods appear

to be a useful data mining tool. The produced clusters allow to get a first overview of

the regional patterns of the anomaly data and may thus serve as a starting point for

a more thorough data analysis.

9 Extensions and modifications

Before closing the paper, we discuss some possible extensions and modifications of our

methods.

Extension 1. Throughout the paper, we have assumed that the number of classes K0

is fixed. We now allow K0 to grow with the number of subjects n, that is, we admit of

K0 = K0,n →∞ as n→∞. To deal with this situation, we require the group-specific

regression functions gk to fulfill the following additional condition:

(C11) The functions gk as well as their first and second derivatives are uniformly

bounded in absolute value, that is, |g(`)k (x)| ≤ C for all x ∈ [0, 1] and ` = 0, 1, 2,

29

where g
(`)
k denotes the `-th derivative of gk and the constant C < ∞ does not

depend on k. Moreover,

min
1≤k<k′≤K0

max
{x : (x,hmax)∈GT }

|gk(x)− gk′(x)| �
√

log n+ log T +
√
Th5max√

Thmax

. (9.1)

As before, the expression an,T � bn,T means that bn,T = o(an,T) and the notation

an,T � bn,T is used analogously. (9.1) essentially says that the regression functions gk

and gk′ of two different classes do not approach each other too quickly. If condition

(C11) is fulfilled, a slightly modified version of Theorem 6.1 can be proven. In partic-

ular, with the help of the technical arguments from the Supplementary Material, it is

not difficult to show that

max
1≤k≤K0

max
i,j∈Gk

d̂ij = Op

(√
log n+ log T +

√
Th7max

)
min

1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij �
√

log n+ log T +
√
Th5max.

These two statements immediately imply that Theorem 4.1 remains to hold true.

Moreover, Theorem 5.1 remains valid as well if the threshold level πn,T satisfies a

strengthened version of condition (5.1), namely the condition that
√

log n+ log T +√
Th7max � πn,T �

√
Thmax min1≤k<k′≤K0 max{x : (x,hmax)∈GT } |gk(x)− gk′(x)|.

Extension 2. By assumption, the grid GT of location-bandwidth points (x, h) is a

subset of G = {(x, h) |hmin ≤ h ≤ hmax and h ≤ x ≤ 1 − h}. Hence, the multiscale

statistics d̂ij take into account locations x ∈ [h, 1 − h] but ignore points x in the

boundary region [0, h) ∪ (1− h, 1]. To include boundary points x, we need to modify

the multiscale statistics d̂ij. Specifically, we need to adjust the normalization term

ν̂ij,h(x) in two ways: (i) The normalization ν̂ij,h(x) is an estimator of the asymptotic

variance νij(x) from the normality results (3.4) and (3.10). As the variance νij(x) has

a slightly different form for boundary points x, the normalization ν̂ij,h(x) needs to be

changed accordingly at the boundary. (ii) The kernel densities f̂i,h(x) and f̂j,h(x) in

the definition of ν̂ij,h(x) need to be replaced by boundary-corrected versions. Impor-

tantly, the other kernel estimators involved in the definition of d̂ij do not suffer from

boundary effects and can thus remain unchanged. Modifying the multiscale statistics

d̂ij according to (i) and (ii), we can enlarge the grid GT to contain points (x, h) with x

in the boundary region [0, h) ∪ (1− h, 1]. The theoretical results of the paper remain

unaffected by these changes, the proofs in the Supplementary Material being easily

adjusted.

Extension 3. In order to estimate the unknown class structure in model (1.1)–(1.2),

we have combined the multiscale statistics d̂ij with a hierarchical clustering algorithm.

30

It is also possible to combine them with other distance-based clustering approaches.

In particular, they can be employed as distance statistics in the thresholding algo-

rithm of Vogt and Linton (2017). To do so, we simply replace the L2-type distance

statistics from Vogt and Linton (2017) by the multiscale statistics d̂ij and construct

the threshold estimators of the unknown groups G1, . . . , GK0 and of their unknown

number K0 exactly as described in Section 2.2 of Vogt and Linton (2017). This leads

to estimators K̃0 and G̃1, . . . , G̃K̃0
, which unlike those constructed in Vogt and Linton

(2017) are free of classical bandwidth parameters.

Under regularity conditions very similar to those from Section 6, we can derive

some basic theoretical properties of the estimators K̃0 and G̃1, . . . , G̃K̃0
: Suppose that

the threshold parameter τn,T of the procedure fulfills Condition 6 from Section 3.2

of Vogt and Linton (2017), that is, τn,T ↘ 0 such that maxi,j∈Gk ∆̂ij ≤ τn,T with

probability tending to 1 for all k. Then it can be shown that P(K̃0 = K0)→ 1 as well

as P({G̃1, . . . , G̃K̃0
} = {G1, . . . , GK0})→ 1.

To implement the estimators K̃0 and G̃1, . . . , G̃K̃0
in practice, we need to choose

the threshold level τn,T . In view of Condition 6 from Vogt and Linton (2017), we

would like to tune τn,T such that maxi,j∈Gk ∆̂ij ≤ τn,T holds with high probability for

all k. According to our heuristic arguments from Section 5.2, this may be achieved

by setting τn,T = qn(α) with α close to 1. We thus suggest to choose the threshold

parameter τn,T in the same way as the dissimilarity level πn,T at which we cut the

dendrogram to estimate K0.

References

Abraham, C., Cornillon, P. A., Matzner-Løber, E. and Molinari, N. (2003). Unsu-

pervised curve clustering using B-splines. Scandinavian Journal of Statistics, 30 581–595.

Bloomfield, P. (1992). Trends in global temperature. Climatic Change, 21 1–16.

Chaudhuri, P. and Marron, J. (1999). SiZer for exploration of structures in curves.

Journal of the American Statistical Association, 94 807–823.

Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of

longitudinal data. Journal of the Royal Statistical Society: Series B, 69 679–699.

Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses.

Annals of Statistics, 29 124–152.

Hannig, J. and Marron, J. S. (2006). Advanced distribution theory for SiZer. Journal of

the American Statistical Association, 101 484–499.

Hansen, B. (2008). Uniform convergence rates for kernel estimation with dependent data.

Econometric Theory, 24 726–748.

31

Hansen, J., Ruedy, R., Sato, M. and Lo, K. (2010). Global surface temperature change.

Reviews of Geophysics, 48.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learn-

ing. New York, Springer.

Jacques, J. and Preda, C. (2014). Functional data clustering: a survey. Advances in Data

Analysis and Classification, 8 231–255.

James, M. and Sugar, C. A. (2003). Clustering for sparsely sampled functional data.

Journal of the American Statistical Association, 98 397–408.

Karoly, D. J. and Wu, Q. (2005). Detection of regional surface temperature trends.

Journal of Climate, 18 4337–4343.

Knutson, T. R., Zeng, F. and Wittenberg, A. T. (2013). Multimodel assessment of

regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations.

Journal of Climate, 26 8709–8743.

Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixed-

effects model with B-splines. Bioinformatics, 19 474–482.

Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian wavelet methods.

Journal of the Royal Statistical Society: Series B, 68 305–332.

Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele,

J., Curry, J., Wickham, C. and Mosher, S. (2013). Berkeley Earth Temperature

averaging process. Geoinformatics & Geostatistics: An Overview, 1:2.

Sacks, J. and Ylvisaker, D. (1970). Designs for regression problems with correlated

errors. III. Annals of Mathematical Statistics, 41 2057–2074.

Schmidt-Hieber, J., Munk, A. and Dümbgen, L. (2013). Multiscale methods for shape

constraints in deconvolution: confidence statements for qualitative features. Annals of

Statistics, 41 1299–1328.

Stott, P. A., Gillett, N. P., Hegerl, G. C., Karoly, D. J., Stone, D. A., Zhang,

X. and Zwiers, F. (2010). Detection and attribution of climate change: a regional

perspective. Wiley Interdisciplinary Reviews: Climate Change, 1 192–211.

Tarpey, T. (2007). Linear transformations and the k-means clustering algorithm. The

American Statistician, 61 34–40.

Tarpey, T. and Kinateder, K. K. J. (2003). Clustering functional data. Journal of

Classification, 20 93–114.

Vogt, M. and Linton, O. (2017). Classification of non-parametric regression functions in

longitudinal data models. Journal of the Royal Statistical Society: Series B, 79 5–27.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of

the American Statistical Association, 58 236–244.

32

	cover1
	CWP081818

