
Ma, Shujie; Linton, Oliver; Gao, Jiti

Working Paper

Estimation in semiparametric quantile factor models

cemmap working paper, No. CWP07/18

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Ma, Shujie; Linton, Oliver; Gao, Jiti (2018) : Estimation in semiparametric quantile
factor models, cemmap working paper, No. CWP07/18, Centre for Microdata Methods and Practice
(cemmap), London,
https://doi.org/10.1920/wp.cem.2018.0718

This Version is available at:
https://hdl.handle.net/10419/189695

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2018.0718%0A
https://hdl.handle.net/10419/189695
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Estimation in semiparametric 
quantile factor models

Shujie Ma
Oliver Linton

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP07/18



 Electronic copy available at: https://ssrn.com/abstract=2963579 

Estimation in Semiparametric Quantile Factor Models

Shujie Ma

University of California at Riverside

Oliver Linton

University of Cambridge

Jiti Gao

Monash University∗

May 5, 2017

Abstract
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1 Introduction

In a series of papers, Fama and French (1992,1993,1995,1996,1998) developed a general

methodology for estimating factor panel models for stock returns and for testing the Arbi-

trage Pricing Theory, which has been extremely influential. Connor and Linton (2007) and

Connor, Hagmann and Linton (2012) developed a semiparametric panel regression method-

ology to describe the same phenomenon, but with the feature that stock characteristics

were used explicitly inside a model, which then allowed proper inferential procedures that

account fully for the sampling uncertainty. Specifically, they introduced a semiparamet-

ric characteristic-based factor model in which the factor betas are smooth functions of a

small number of observable characteristics, while the factor returns are estimable quanti-

ties. Their estimation methodology is based on two steps: estimating the beta functions

using nonparametric kernel smoothing for additive regression given the factor returns, and

second, estimating the factor returns by OLS or GLS given the estimated beta functions.

They established some large sample properties of their procedure and applied it to the same

monthly data used in FF, finding improved results. In addition, because their work was

based on an explicit regression model, they were able to give standard errors that accounted

correctly for the sampling variability in their estimates. This methodology was based on

least squares concepts and made use of projection arguments. They required at least four

moments to establish their CLT, which may not be a binding restriction for monthly stock

returns. However, for daily stock returns this is be a bit strong, especially for small caps.

In the empirical literature, there is a lot of interest in applying factor models to daily

data. Perhaps the current state of the art for factor modelling proposed by Fan, Lv, and

Mikusheva (2013) extended the work of Bai and Ng (2002) by allowing the idiosyncratic co-

variance matrix to be non-diagonal but sparse, and used thresholding techniques to impose

sparsity and thereby obtain a better estimator of the covariance matrix and its inverse in

this big-data setting. They also imposed many moments on the return series for their theo-

retical analysis, although they applied their techniques to daily data. Quantile methods are

widely used in economics and finance, see, for example, Koenker and Bassett (1978); indeed,

they are classified as ”harmless econometrics”, see Angrist and Pischke (2009). They have

the advantage of being robust to large observations. Boneva, Linton, and Vogt (2015) have

applied quantile techniques to a linear in parameters panel model with unobserved effects,

extending Pesaran (2006). Sharma, Gupta, and Singh (2016) applied linear quantile regres-

sion to estimate a four factor FF ”model” to daily Indian data from 1993-2016. They found

that not all factors are substantially present across all quantiles, which adds some colour to

the usual mean results. Horowitz and Lee (2005) defined an estimaiton method for additive

quantile regression. Belloni, Chernozhukov and Fernandez-Val (2016) have recently proposed
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a number of inference methods for quantile regression with a nonparametric component or a

large number of unknown parameters, but their tools are developed within a cross-sectional

iid setting and so do not directly apply here.

In this paper, we propose estimation and inferential methodology for the quantile version

of the Connor and Linton (2007) semiparametric panel model for financial returns, which

does not require such strong moment restrictions, thereby facilitating work with daily data.

Our contribution is summarized as follows.

First, we propose an estimation algorithm for this model. We use sieve techniques to

obtain preliminary estimators of the nonparametric beta functions, see Chen (2011) for a

review, and then update each component sequentially. We compute the estimator in two

steps for computational reasons. We have J × T unknown factor return parameters as

well as J ×KN sieve parameters to estimate, and to estimate these simultaneously without

penalization would be challenging. Penalization of the factor returns here would not be

well motivated so we do not pursue this. Instead we first estimate the unrestricted additive

quantile regression function for each time period and then impose the factor structure in a

sequential fashion.

Second, we derive the limiting properties of our estimated factor returns and factor

loading functions under the assumption that the included factors all have non zero mean and

under weak conditions on cross-section and temporal dependence. A key consideration in the

panel modelling of stock returns is what position to take on the cross sectional dependence

in the idiosyncratic part of stock returns. Early studies assumed iid in the cross section,

but this turns out not to be necessary. More recent work has allowed for cross sectional

dependence in a variety of ways. Connor, Hagmann and Linton (2012) imposed a known

industry cluster/block structure where the number of industries goes to infinity as do the

number of members of the industry. Under this structure one obtains a CLT and inference can

be conducted by estimating only the intra block covariances. Robinson and Thawornkaiwong

(2012) considered a linear process structure driven by independent shocks. Dong, Gao and

Peng (2015) introduced a spatial mixing structure to accommodate both serial correlation

and cross–sectional dependence for a general panel data setting. Under a lattice structure

or some observable or estimable distance function that determines the ordering, Conley

(1999), one can consistently estimate the asymptotic covariance matrix. However, this type

of structure is hard to justify for stock returns, and in that case their approach does not

deliver consistent inference. Connor and Koraczyck (1993) considered a different cross-

sectional dependence structure, namely they supposed that there was an ordering of the

cross sectional units such that weak dependence of the alpha mixing variety was held. They

do not assume knowledge of the ordering as this was not needed for their main results. We
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adopt and generalize their structure. In fact, we allow for weak dependence simultaneously in

the cross-section and time series dependence. This structure affects the limiting distribution

of the estimated factor returns in a complicated fashion, and the usual Newey–West type of

standard errors can’t be adapted to account for the cross-sectional dependence here because

the ordering is not assumed to be known. To conduct inference we have to take account

of the correlation structure. We use the so-called fix-b asymptotics to do this, namely

we construct a test statistic based on an inconsistent fixed-b kitchen sink estimator of the

correlation structure, as in Kiefer and Vogelsang (2002), and show that it has a pivotal

limiting distribution that is a functional of a Gaussian process.

Third, our estimation procedure requires only that the time series mean of factor returns

be non zero. A number of authors have noted that in the presence of a weak factor, regres-

sion identification strategies can break down, Bryzgalova (2015). In view of this we provide

a test of whether a given factor is present or not in each time period. Fourth, we apply our

procedure to CRSP daily data and show how the factor loading functions vary nonlinearly

with state. The median regression estimators are comparable to those of Connor, Hagmann

and Linton (2012) and can be used to test asset pricing theories under comparable quantile

restrictions, see for example, Bassett, Koenker and Kordas (2004), and to design investment

strategies. The lower quantile estimators could be used for risk management purposes. The

advantage of the quantile method is its robustness to heavy tails in the response distribu-

tion, which may be present in daily data. Indeed our theory does not require any moment

conditions.

The organization of this paper is given as follows. Section 2 proposes the main model

and then discusses some identification issues. An estimation method based on B–splines is

then proposed in Section 3. Section 4 establishes an asymptotic theory for the proposed

estimation method. Section 5 discusses a covariance estimation problem and then considers

testing for the factors involved in the main model. Section 6 gives an empirical application

of the proposed model and estimation theory to model the dependence of daily returns on a

set of characteristic variables. Section 7 concludes the paper with some discussion. All the

mathematical proofs of the main results are given in an appendix.

2 The model and identification

We introduce some notations which will be used throughout the paper. For any positive num-

bers an and bn, let an � bn denote limn→∞an/bn = c, for a positive constant c, and let an � bn

denote a−1
n bn = o(1). For any vector a = (a1, . . . , an)ᵀ ∈ Rn, denote ||a|| = (

∑n
i=1 a

2
i )

1/2
. For

any symmetric matrix As×s, denote its L2 norm as ‖A‖ = maxζ∈Rs,ζ 6=0 ‖Aζ‖ ‖ζ‖−1. We use
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(N, T )→∞ to denote that N and T pass to infinity jointly.

We consider the following model for the τ th conditional quantile function of the response

yit for the ith asset at time t given as

Qyit(τ |Xi, ft) = f 0
ut +

∑J

j=1
g0
j (Xji)f

0
jt, (2.1)

i.e., we suppose that

yit = fut +
∑J

j=1
gj(Xji)fjt + εit, (2.2)

for i = 1, . . . , N and t = 1, . . . , T , where yit is the excess return to security i at time t;

fut and fjt are factor returns, which are unobservable; gj(Xji) are the factor betas, which

are unknown but smooth functions of Xji, where Xji are observable security characteristics,

and Xji lies in a compact set Xji. The error terms εit are the asset-specific or idiosyncratic

returns and they satisfy that the conditional τ th quantile of εit in (2.2) given (Xi, ft) is

zero. The factors f 0
ut and f 0

jt and the factor betas g0
j (·) should be τ specific. For notational

simplicity, we suppress the τ subscripts. For model identifiability, we assume that:

Assumption A0. For some probability measures Pj we have
∫
g0
j (xj)dPj(xj) = 0 and∫ (

g0
j (xj)

)2
dPj(xj) = 1 for all j = 1, . . . , J . Furthermore, lim infT→∞

∣∣∣∑T
t=1 f

0
jt/T

∣∣∣ > 0 for

each j.

The case where τ = 1/2 corresponds to the conditional median, and is broadly comparable

to the conditional mean model used in Connor and Linton (2007) and Connor, Hagmann

and Linton (2012). The advantage of the median over the mean is its robustness to heavy

tails and outliers, which is especially important with daily data. The case where τ = 0.01,

say, might be of interest for the purposes of risk management, since this corresponds to

a standard Value-at-Risk threshold in which case (2.1) gives the conditional Value-at-Risk

given the characteristics and the factor returns at time t. To obtain an ex-ante measure we

should have to employ a forecasting model for the factor returns.

Suppose that the τ th conditional quantile function Qyit(τ |Xi = x) of the response yit at

time t given the covariate Xi = x is additive

Ht(τ |x) = h0
ut +

∑J

j=1
h0
jt(xj), (2.3)

where h0
jt(·) are unknown functions without loss of generality satisfying

∫
h0
jt(xj)dPj(xj) = 0

for t = 1, . . . , T, Horowitz and Lee (2005). Under the factor structure (2.1), we have for all

j

∫ (
1

T

T∑
t=1

h0
jt(xj)

)2

dPj(xj) =

∫
g0
j (xj)

2dPj(xj)×

(
1

T

T∑
t=1

f 0
jt

)2

=

(
1

T

T∑
t=1

f 0
jt

)2

. (2.4)
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Provided
∑T

t=1 f
0
jt 6= 0, then we may identify g0

j (xj) by

g0
j (xj) =

1
T

∑T
t=1 h

0
jt(xj)√∫ (

1
T

∑T
t=1 h

0
jt(xj)

)2

dPj(xj)

. (2.5)

We will use this as the basis for estimation.

Note that the identification strategy also works in the case where Xi also varies over t.

3 Estimation

3.1 Factor returns and characteristic-beta functions

We propose an iterative algorithm to estimate the factor returns and the characteristic-beta

function. The algorithm makes use of the structure so as to minimize the dimensonality

of the optimization problems involved. The right hand side of (2.1) is bilinear in unknown

quantities, and so it seems hard to avoid such an algorithmic approach.

To estimate g0
j (·), we first approximate them by B-spline functions described as follows.

Let bj(xj) = {bj,1(xj), . . . , bj,KN
(xj)}ᵀ be a set of normalized B-spline functions of order m

(see, for example, de Boor (2001)), where KN = LN + m, and LN is the number of interior

knots satisfying LN → ∞ as N → ∞. We adopt the centered B-spline basis functions

Bj(xj) = {Bj,1(xj), . . . , Bj,KN
(xj)}ᵀ, where

Bjk(xj) =
√
KN

[
bj,k(xj)−N−1

∑N

i=1
bj,k(Xji)

]
,

so that N−1
∑N

i=1Bjk(Xji) = 0 and var{Bjk(Xj)} � 1. We first approximate the unknown

functions gj(xj) by B-splines such that gj(xj) ≈ Bj(xj)
ᵀλj, where λj = (λj,1, . . . , λj,KN

)ᵀ are

spline coefficients. Hence N−1
∑N

i=1Bj(Xji)
ᵀλj = 0. Denote ft = {fut, (fjt, 1 ≤ j ≤ J)ᵀ}ᵀ.

Let λ = (λᵀ
1, . . . ,λ

ᵀ
J)ᵀ and let ρτ (u) = u(τ − I(u < 0)) be the quantile check function. The

iterative algorithm is described as follows:

1. Find the initial estimates f̂ [0] and ĝ
[0]
j (·).

2. For given f̂ [i], we obtain

λ̂[i+1] = arg min
λ∈RJKN

∑N

i=1

∑T

t=1
ρτ

(
yit − f̂ [i]

ut −
∑J

j=1
Bj(Xji)

ᵀλj f̂
[i]
jt

)
.

Let ĝ
∗[i+1]
j (xj) = Bj(xj)

ᵀλ̂
[i+1]
j . The estimate for gj(xj) at the (i+ 1)th step is

ĝ
[i+1]
j (xj) =

ĝ
∗[i+1]
j (xj)√

N−1
∑N

i=1 ĝ
∗[i+1]
j (Xji)2

.
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3. For given ĝ
[i+1]
j (xj), we obtain for t = 1, . . . , T

f̂
[i+1]
t = arg min

ft∈RJ+1

∑N

i=1
ρτ

(
yit − fut −

∑J

j=1
ĝ

[i+1]
j (Xji)fjt

)
.

We repeat steps 2 and 3, and consider that the algorithm converges at the (i + 1)th

step when ||f̂ [i+1] − f̂ [i]|| < ε and ||λ̂[i+1] − λ̂[i]|| < ε for a small positive value ε. Then the

final estimates are f̂t = f̂
[i+1]
t and ĝj(xj) = ĝ

[i+1]
j (xj). Our experience in numerical analysis

suggests that the proposed method converges well and rapidly. Below, we propose a way

to obtain consistent initial starting values. The algorithm can stop after a finite number of

iterations by using the consistent initial values.

3.2 Initial estimators

Let bj(xj) = {bj,1(xj), . . . , bj,RN
(xj)}ᵀ be a set of normalized B-spline functions of order m

(22), where RN is the number of interior knots satisfying RN → ∞ as N → ∞. We adopt

the centered B-spline basis functions Bj(xj) = {Bj,1(xj), . . . , Bj,RN
(xj)}ᵀ, where

Bjk(xj) =
√
RN

[
bj,k(xj)−N−1

∑N

i=1
bj,k(Xji)

]
,

so that N−1
∑N

i=1Bjk(Xji) = 0 and var{Bjk(Xj)} � 1. We first approximate the unknown

functions hjt(xj) by B-splines such that hjt(xj) ≈ Bj(xj)
ᵀϑj, where ϑj = (ϑj,1, . . . , ϑj,RN

)ᵀ

are spline coefficients. Hence N−1
∑N

i=1 Bj(Xji)
ᵀϑj = 0. Let ρτ (u) = u(τ − I(u < 0)) be the

quantile check function. Let

ϑ̂t = (ϑ̂0,t, ϑ̂
ᵀ

1,t, . . . , ϑ̂
ᵀ

J,t)
ᵀ

= arg min
ϑ=(ϑ0,ϑ

ᵀ
1 ,...,ϑ

ᵀ
J )

ᵀ∈RJRN+1

∑N

i=1
ρτ

(
yit − ϑ0 −

∑J

j=1
Bj(Xji)

ᵀϑj

)
,

and let ĥjt(xj) = Bj(xj)
ᵀϑ̂j,t.

Let h̃ut and h̃jt(Xji) be the estimators of h0
ut and h0

jt(Xji) from fitting the quantile

regression model (2.3). We let the initial estimators of g0
j (xj) be

ĝ
[0]
j (xj) =

1
T

∑T
t=1 h̃jt(xj)√∫ (

1
T

∑T
t=1 h̃jt(xj)

)2

dPj(xj)

. (3.1)

We use the spline smoothing method to obtain the estimators h̃jt(xj).We first approximate

the unknown functions hjt(xj) by B-splines such that hjt(xj) ≈ Bj(xj)
ᵀθjt, where θjt =

(θjt,1, . . . , θjt,KN
)ᵀ are spline coefficients. Let θt = (θᵀ1t, . . . ,θ

ᵀ
Jt)

ᵀ. Then the estimators

(h̃ut, θ̃
ᵀ
t )

ᵀ of (hut,θ
ᵀ
t )

ᵀ are obtained by minimizing∑N

i=1
ρτ (yit − hut −

∑J

j=1
Bj(Xji)

ᵀθjt) (3.2)
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with respect to (hut,θ
ᵀ
t )

ᵀ ∈ RJKN . Then the estimator of h0
jt(xj) is h̃jt(xj) = Bj(xj)

ᵀθ̃jt.

The initial estimator for ft is

f̂
[0]
t = arg min

ft∈RJ+1

∑N

i=1
ρτ (yit − fut −

∑J

j=1
ĝ

[0]
j (Xji)fjt) (3.3)

for t = 1, . . . , T.

4 Asymptotic theory of the estimators

We suppose that there is some relabelling of the cross-sectional units il1 , . . . , ilN , whose

generic index we denote by i∗, such that the cross sectional dependence decays with the

distance |i∗−j∗|. This assumption has been made in Connor and Korajczyk (1993). There are

available algorithms to determine the true ordering from the original ordering given sample

data (and under the assumption that this ordering is monotonic), but we shall not pursue

this, because it will not be necessary for estimation or inference to know this ordering. In fact

we will allow dependence both across time and in the cross-section. For notational simplicity,

we denote the indices as {i, 1 ≤ i ≤ N} after the ordering. Let N denotes the collection of

all positive integers. We use a φ-mixing coefficient to specify the dependence structure. Let

{Wit : 1 ≤ i ≤ N, 1 ≤ t ≤ T}, where Wit = (X
ᵀ

i , f
ᵀ

t , εit)
ᵀ

and εit = yit−f 0
ut−

∑J
j=1 g

0
j (Xji)f

0
jt.

For S1, S2 ⊂ [1, . . . , N ]× [1, . . . , T ], let

φ(S1, S2) ≡ sup{|P (A|B)− P (A)| :

A ∈ σ(Wit, (i, t) ∈ S1), B ∈ σ(Wit, (i, t) ∈ S2)},

where σ (·) denotes a σ-field. Then the φ-mixing coefficient of {Wit} for any k ∈ N is defined

as

φ(k) ≡ sup{φ(S1, S2) : d(S1, S2) ≥ k},

and

d(S1, S2) ≡ min{
√
|t− s|2 + |i− j|2 : (i, t) ∈ S1, (j, s) ∈ S2}.

Without loss of generality, we assume that Xji = [a, b]. Denote h0
t (x) = {h0

jt(xj), 1 ≤
j ≤ J}ᵀ and h̃t(x) = {h̃jt(xj), 1 ≤ j ≤ J}ᵀ, where x = (x1, . . . , xJ)ᵀ. Let G0

i (Xi) =

{1, g0
1(X1i), . . . , g

0
J(XJi)}ᵀ. We make the following assumptions.

(C1) {Wit} is a random field of φ-mixing random variables. The φ-mixing coefficient of

{Wit} satisfies φ(k) ≤ K1e
−λ1k for K1, λ1 > 0. For each given i, {Wit}is a strictly

stationary sequence.

(C2) The conditional density pi (ε |xi, ft ) of εit given (xi, ft) satisfies the Lipschitz condition

of order 1 and inf1≤i≤N,1≤t≤T pi (0 |xi, ft ) > 0. For every 1 ≤ j ≤ J , the density

8



function pXji
(·) of Xji is bounded away from 0 and satisfies the Lipschitz condition of

order 1 on [a, b]. The density function fXi
(·) of Xi is absolutely continuous on [a, b]J .

(C3) The functions g0
j and h0

jt are r-times continuously differentiable on its support for some

r > 2. The spline order satisfies m ≥ r.

(C4) There exist some constants 0 < ch ≤ Ch < ∞ and 0 < C ′h < ∞ such that ch ≤(
1
T

∑T
t=1 f

0
jt

)2

≤ Ch for all j with probability tending to one.

(C5) The eigenvalues of the (J+1)×(J+1) matrixN−1
∑N

i=1E(G0
i (Xi)G

0
i (Xi)

ᵀ) are bounded

away from zero almost surely.

(C6) Let Ω0
N be the covariance matrix of N−1/2

∑N
i=1G

0
i (Xi)(τ−I(εit < 0)). The eigenvalues

of Ω0
N are bounded away from zero and infinity almost surely.

We allow that {Wit} are weakly dependent across i and t, but need to satisfy the strong

mixing condition given in Condition (C1). Moreover, Condition (C1) implies that {Xi}
is marginally cross-sectional mixing, and {ft} is marginally temporally mixing. Similar

assumptions are used in Gao, Lu and Tjøstheim (2006) for an alpha–mixing condition in

a spatial data setting, and Dong, Gao and Peng (2016) for introducing a spatial mixing

condition in a panel data setting. Conditions (C2) and (C3) are commonly used in the

nonparametric smoothing literature, see for example, Horowitz and Lee (2005), and Ma,

Song and Wang (2013). Condition (C4) and (C5) are similar to Conditions A2, A5 and A7

of Connor, Matthias and Linton (2012).

Let 1l be the (J + 1) × 1 vector with the lth element as “1” and other elements as “0”.

Denote B(Xi) = {B1(X1i)
ᵀ, . . . , BJ(XJi)

ᵀ}ᵀ and

Zi = [{1, B(Xi)
ᵀ}ᵀ](1+JKN )×1. (4.1)

Let

B(x) = [diag{1, B1(x1)ᵀ, . . . , BJ(xJ)ᵀ}](1+J)×(1+JKN ) . (4.2)

Define

Λ0
Nt = N−1

∑N

i=1
E{pi (0 |Xi, ft )G

0
i (Xi)G

0
i (Xi)

ᵀ}. (4.3)

and

Σ0
Nt = τ(1− τ)(Λ0

Nt)
−1Ω0

N(Λ0
Nt)
−1. (4.4)

The theorem below presents the asymptotic distribution of the final estimator f̂t. Define

φNT =
√
KN/(NT ) +K

3/2
N N−3/4

√
logNT +K−rN . (4.5)

Let dNT be a sequence satisfying

dNT = O(φNT ). (4.6)
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Theorem 1. Suppose that Conditions (C1)-(C5) hold, and K4
NN

−1 = o(1), K−r+2
N (log T ) =

o(1) and K−1
N (logNT )(logN)4 = o(1). Suppose also that the algorithm in Section 3.1 con-

verges within a finite number of iterations. Then, for any t there is a stochastically bounded

sequence δN,jt such that as N →∞,

√
N(Σ0

Nt)
−1/2(f̂t − f 0

t − dNT δN,t)
D→ N (0, IJ+1),

where δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀ, dNT is given in (4.6), and IJ+1 is the (J + 1) × (J + 1)

identity matrix.

Remark 1: By using the asymptotic normality provided in 1, we can conduct inference for f 0
t

for each t, such as constructing the confidence interval. Note that in the above asymptotic

distribution, there is a bias term dNT δN,t involved. In order to let the asymptotic bias

negligible, we can further assume that KNT
−1 = o(1), K6

NN
−1(logNT )2 = o(1), NK−2r

N =

o(1) and r > 3. By using the cubic splines, which has the order m = 4 and letting r = m = 4,

we need NK−8
N = o(1). If we let KN � N1/7 and T � N% for some constant % > 1/7, then

the asymptotic bias is negligible and thus we have

√
N(Σ0

Nt)
−1/2(f̂t − f 0

t )→ N (0, IJ+1).

Next theorem establishes the rate of convergence of the final estimator ĝj(xj).

Theorem 2. Suppose that the same conditions as given in Theorem 1 hold. Then, for each

j, [∫
{ĝj(xj)− g0

j (xj)}2dxj

]1/2

= Op(φNT ) + op(N
−1/2), (4.7)

where φNT is given in (4.5).

Remark 2: The orders
√
KN/(NT ) and K−rN are from the noise and bias terms for

nonparametric estimation, respectively, and the order K
3/2
N N−3/4

√
logN from the approxi-

mation of the Bahadur representation in the quantile regression setting. This says that if

the order KN = O((NT )1/(2r+1)) is chosen, and provided r − α > 1/2, where T = O(Nα),

then the rate in (4.7) is OP ((NT )−r/(2r+1)), which is optimal, see for example, Chen and

Christensen (2015).

Remark 3. It is possible to develop inferential results for gj following Chen and Liao

(2012) and Chen and Pouzo (2015). As is usual in nonparametric estimation, the weak

cross-sectional and temporal dependence does not affect the limiting distribution, and so

standard techniques can be applied. In fact, one may conclude the estimation algorithm

with a kernel step and demonstrate the oracle efficiency property, Horowitz and Mammen

(2011).
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5 Covariance estimation and hypothesis testing for the

factors

In order to construct the confidence interval we need to estimate Ω0
N and Λ0

Nt, since they

are unknown. For estimation of Λ0
Nt, if we use its sample analogue, the conditional density

pi (0 |Xi, ft ) needs to be estimated. Instead of using this direct way, we use the Powell’s

kernel estimation idea in Powell (1991), and estimate Λ0
Nt by

Λ̂Nt = (Nh)−1
∑N

i=1
K

(
yit − f̂ut −

∑J
j=1 ĝj(Xji)f̂jt

h

)
Ĝi(Xi)Ĝi(Xi)

ᵀ, (5.1)

where Ĝi(Xi) = {1, ĝ1(X1i), . . . , ĝJ(XJi)}ᵀ, whileK(·) is the uniform kernelK(u) = 2−1I(|u| ≤
1) and h is a bandwidth.

First, we show that the estimator Λ̂Nt is a consistent estimator of Λ0
Nt given in the

theorem below.

Theorem 3. Suppose that the same conditions as given in Theorem 1 hold, and h → 0,

h−1φNT = o(1), h−1N−1/2 = O(1), where φNT is given in (4.5). Then, we have ||Λ̂Nt −
Λ0
Nt|| = op(1).

Moreover, the exact form of Ω0
N defined in Condition (C6) is given by

Ω0
N = (NT )−1

∑T

t=1
E

[{∑N

i=1
G0
i (Xi)(τ − I(εit < 0))

}{∑N

i=1
G0
i (Xi)(τ − I(εit < 0))

}ᵀ]
=
τ(1− τ)

N

∑N

i=1
E{G0

i (Xi)G
0
i (Xi)

ᵀ}+ (NT )−1
∑T

t=1

∑N

i 6=j
E(vitv

ᵀ
jt),

where vit = G0
i (Xi)(τ − I(εit < 0)) for i = 1, . . . , N . To estimate Ω0

N , its sample analogue is

not consistent. Kernel-based robust estimators that account for heteroskedasticity and cross-

sectional correlation (HAC) are developed (Conley, 1999), and are shown to be consistent

under a variety of sets of conditions. It requires to use a truncation lag or “bandwidth”,

which tends to infinity at a slower rate as N . As pointed out by Kiefer and Vogelsang (2005),

this is a convenient assumption mathematically to ensure consistency, but it is unrealistic

in finite sample studies. Adopting the idea in Kiefer and Vogelsang (2005), we let the

bandwidth M be proportional to the sample size n, i.e., M = bN for b ∈ (0, 1], and then we

derive the fixed-b asymptotics (Kiefer and Vogelsang; 2005) for the HAC estimator of Ω0
N

under the quantile setting. The HAC estimator is given as Ω̂N,M = T−1
∑T

t=1 Ω̂Nt,M , where

Ω̂Nt,M =
τ(1− τ)

N

∑N

i=1
Ĝi(Xi)Ĝi(Xi)

ᵀ +N−1
∑N

i 6=j
K∗
(
i− j
M

)
v̂itv̂

ᵀ
jt, (5.2)

where: v̂it = Ĝi(Xi)(τ − I(ε̂it < 0)) for i = 1, . . . , N , ε̂it = yit− f̂ut−
∑J

j=1 ĝj(Xji)f̂jt, K
∗(u)

is a symmetric kernel weighting function satisfying K∗(0) = 1, and |K∗(u)| ≤ 1, and M
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trims the sample autocovariances and acts as a truncation lag. Consistency of Ω̂N,M needs

that M → ∞ and M/N → 0. The following theorem provides the limiting distribution of

Ω̂N,M=bN when M = bN for b ∈ (0, 1].

Next, we will show asymptotic theory for the HAC covariance estimator under a sequence

where the smoothing parameter M equals to bN . Let Ω0 = limN→∞Ω0
N , and Ω0 can be

written as Ω0 = ΥΥᵀ, where Υ is a lower triangular matrix obtained from the Cholesky

decomposition of Ω0
t .

Theorem 4. Suppose that the same conditions as given in Theorem 1 hold, and φNTN
1/2 =

o(1), and K∗′′(u) exists for u ∈ [−1, 1] and is continuous. Let M = bN for b ∈ (0, 1]. Then

as N →∞,

Ω̂N,M=bN
D→ Υ

∫ 1

0

∫ 1

0

− 1

b2
K∗′′

(
r − s
b

)
BJ+1(r)BJ+1(s)ᵀdrdsΥᵀ,

where BJ+1(r) = WJ+1(r) − rWJ+1(1) denotes a (J + 1) × 1 vector of standard Brownian

bridges, and WJ+1(r) denotes a (J + 1)-vector of independent standard Wiener processes

where r ∈ [0, 1].

Theorem 4 establishes the limiting distribution of Ω̂N,M=bN , although Ω̂N,M=bN is an

inconsistent estimator of Ω0. By using the result in Theorem 4, we construct asymptotically

pivotal tests involving f 0
t .

Consider testing the null hypothesis H0: Rf 0
t = r against the alternative hypothesis H1:

Rf 0
t 6= r, where R is a q × (J + 1) matrix with rank q and r is a q × 1 vector. We construct

an F -type statistic given as

FNt,b = N(Rf̂t − r)ᵀ{Rτ(1− τ)Λ̂−1
NtΩ̂N,M=bN Λ̂−1

NtR
ᵀ}−1(Rf̂t − r)/q.

When q = 1, we can construct a t-type statistic:

TNt,b =
N1/2(Rf̂t − r)√

Rτ(1− τ)Λ̂−1
NtΩ̂N,M=bN Λ̂−1

Nt}−1Rᵀ

.

The limiting distributions of FNt,b and TNt,b under the null hypothesis are given in the

following theorem.

Theorem 5. Suppose that the same conditions as given in Theorem 1 hold, and φNTN
1/2 =

o(1), and K∗′′(u) exists for u ∈ [−1, 1] and is continuous. Let M = bN for b ∈ (0, 1]. Then

under the null hypothesis H0: Rf 0
t = r, as N →∞,

FNt,b
D→ {τ(1− τ)}−1Wq(1)ᵀ

{∫ 1

0

∫ 1

0

− 1

b2
K∗′′

(
r − s
b

)
Bq(r)Bq(s)

ᵀdrds

}−1

Wq(1)/q.
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If q = 1, then as N →∞,

TNt,b
D→ W1(1)√

τ(1− τ)
√∫ 1

0

∫ 1

0
− 1
b2
K∗′′

(
r−s
b

)
B1(r)B1(s)drds

.

Let Λ0
t = limN→∞ Λ0

Nt. The limiting distributions of FNt,b and TNt,b under the alternative

hypothesis H1: Rf 0
t = r + cN−1/2 are given in the following theorem.

Theorem 6. Let Υ∗t = (RΛ−1
t Ω0Λ−1

t Rᵀ)1/2. Suppose that the same conditions as given in

Theorem 1 hold, and φNTN
1/2 = o(1), and K∗′′(u) exists for u ∈ [−1, 1] and is continuous.

Let M = bN for b ∈ (0, 1]. Then under the alternative hypothesis H1: Rf 0
t = r+ cN−1/2, as

N →∞,

FNt,b
D→ {τ(1− τ)}−1{Υ∗−1

t c+Wq(1)}ᵀ×{∫ 1

0

∫ 1

0

− 1

b2
K∗′′

(
r − s
b

)
Bq(r)Bq(s)

ᵀdrds

}−1

{Υ∗−1
t c+Wq(1)}/q.

If q = 1, then as N →∞,

TNt,b
D→ Υ∗−1

t c+W1(1)√
τ(1− τ)

√∫ 1

0

∫ 1

0
− 1
b2
K∗′′

(
r−s
b

)
B1(r)B1(s)drds

.

Remark. If K∗(x) is the Bartlett kernel, then∫ 1

0

∫ 1

0

− 1

b2
K∗′′

(
r − s
b

)
Bq(r)Bq(s)

ᵀdrds

=
2

b

∫ 1

0

Bq(r)Bq(r)
ᵀdr − 1

b

∫ 1−b

0

{Bq(r + b)Bq(r)
ᵀ +Bq(r)Bq(r + b)ᵀ}dr.

These results allow one to test whether the factors are zero in a particular time period or

not. Our tests are robust to the form of the cross-sectional dependence in the idiosyncratic

error.

6 Application

In a series of important papers, Fama and French (hereafter denoted FF), building on earlier

work by Banz (1981), Basu (1977), Rosenberg, Reid and Lanstein (1985) and others, demon-

strate that there have been large return premia associated with size and value. These size and

value return premia are evident in US data for the period covered by the CRSP/Compustat

database (FF (1992)), in earlier US data (Davis (1994), and in non-US equity markets (FF

(1998), Hodrick, Ng and Sangmueller (1999)). FF (1993,1995,1996,1998) contended that

these return premia can be ascribed to a rational asset pricing paradigm in which the size

and value characteristics proxy for assets’ sensitivities to pervasive sources of risk in the
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economy. Haugen (1995) and Lakonoshik, Shleifer and Vishny (1994) argued that the ob-

served value and size return premia arise from market inefficiencies rather than from rational

risk premia associated with pervasive sources of risk. They argue that these characteristics do

not generate enough nondiversifiable risk to justify the observed premia. Similarly, MacKin-

lay (1995) argues that the return premia are too large relative to the return volatility of the

factor portfolios designed to capture these characteristics, and this creates a near-arbitrage

opportunity in the FF model. Daniel and Titman (1997) argued that the factor returns

associated with the characteristics are partly an artifact of the FF factor model estimation

methodology. Hence the accuracy and reliability of FF’s estimation procedure is a critical

issue in this research controversy. FF (1993) used a simple portfolio sorting approach to

estimate their factor model.

In our data analysis, we use all securities from Center for Research in Security Prices

(CRSP) which have complete daily return records from 2005 to 2013, and have two-digit

Standard Industrial Classification code (from CRSP), market capitalization (from Compus-

tat) and book value (from Compustat) records. We use daily returns in excess of the risk-free

return of 337 stocks. We consider the same four characteristic variables as given in Connor,

Matthias and Linton (2012), and Fan, Liao and Wang (2016), which are size, value, momen-

tum and volatility. Connor, Matthias and Linton (2012) provided some detailed descriptions

of these characteristics. They are calculated using the same method as described in Fan,

Liao and Wang (2016).

We fit the quantile regression model (2.1) for each year, so that there are T = 251

observations. By taking the same strategy as in Ma and He (2016), we select the number of

interior knots LN by minimizing the Bayesian information criterion (BIC) given as

BIC(LN ) = log{(NT )−1
∑N

i=1

∑T

t=1
ρτ (yit − f̂ut −

∑J

j=1
ĝj(Xji)f̂jt)}+

log(NT )

2NT
J(LN +m).

For the estimator Λ̂Nt given in (5.1), the optimal order for the bandwidth h is in the order

of N−1/5. Similar to Ma and He (2016), we let h = κN−1/5 in our numerical analysis and

take different values for κ. For the estimator Ω̂Nt,M=bN given in (5.2), we use different values

for b, and use the Bartlett kernel as suggested in Kiefer and Vogelsang (2005).

Figures 1-3 show the plots of the four estimated loading functions for the year of 2009,

2010, 2011, and 2012 at different quantiles τ = 0.2, 0.5 and 0.8. We observe that the

estimated loading functions have similar shapes for these four years. Moreover, for the size,

value and momentum characteristics, the estimated functions show a clear nonlinear pattern,

and at different quantiles, the curves are different for the same characteristic. For example,

for the size characteristic, the estimated loading function fluctuates around zero and it has

a sharp drop after the value of size variable exceeds certain value at the quantiles τ = 0.2

and 0.8. However, it has a smooth decreasing pattern for the median with τ = 0.5. For
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the momentum characteristic, the estimated function shows different curves at the three

quantiles.

Next, we let κ = 0.5, 1, 1.5 and b = 0.2, 0.4, 0.6, respectively, for calculation of Λ̂Nt and

Ω̂Nt,M=bN . Using the year of 2012, we test for the statistical significance of each factor at

each time point, based on the t-type statistic proposed and its distribution given in Theorem

5. Then for each factor, we find the percentage of the t-type statistics that are significant at

a 95% confidence level across the 251 time periods. Table 1 shows the annualized standard

deviations of the factor returns, the percentage of significant t-type statistics for each factor,

and the average p-value at τ = 0.5. We can see that the results for different values of κ

and b are consistent. Moreover, all five factors are statistically significant with the average

p-value smaller than 0.05.

7 Conclusions and discussion

We have taken for granted that the J factors are present in the sense that

p lim
T→∞

1

T

T∑
t=1

f 0
jt 6= 0 (7.1)

for j = 1, . . . , J. For the factors in our application this is quite a standard assumption, but

in some cases one might wish to test this because if this condition fails, then the right hand

side of (2.4) is close to zero and this equation can’t identify g0
j (xj). We outline below a test

of the hypothesis (7.1) based on the unstructured additive quantile regression 2.3). A more

limited objective is to test whether for a given time period t, fjt = 0, which we provide

above.

We are interested in testing the hypothesis that

H0Aj
: lim
T→∞

1

T

T∑
t=1

hjt(xj) = 0 for all xj, (7.2)

against the general alternative that limT→∞
1
T

∑T
t=1 hjt(xj) = µj(xj) with

∫
µj(xj)

2dPj(xj) >

0. We also may be interested in a joint test H0 = ∩j∈IJH0Aj
, where IJ is a set of integers, a

subset of {1, 2, . . . , J}. These are tests of the presence of a factor.

We let

τ̂j,n,T =

∫ (
1
T

∑T
t=1 ĥjt(xj)

)2

dPj(xj)− an,T
sn,T

, (7.3)

where ĥjt(·) is the estimated additive component function from the quantile additive model

at time t, while an,T , sn,T are constants to be determined. Under the null hypothesis (7.2)

we may show that

τ̂j,n,T
D→ N (0, 1),
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Table 1: Factor return statistics at τ = 0.5 for the year of 2012.

(c, b) Intercept Size Value Momentum Volatility

Annualized volatility 0.026 0.026 0.025 0.025 0.026

(0.5, 0.2) % Periods significant 92.00 63.35 65.74 66.14 77.69

Overall p-value < 0.001 0.011 0.010 0.011 < 0.001

Annualized volatility 0.023 0.022 0.022 0.022 0.023

(0.5, 0.4) % Periods significant 93.22 66.93 68.53 69.32 79.28

Overall p-value < 0.001 0.006 0.006 0.005 < 0.001

Annualized volatility 0.020 0.020 0.019 0.019 0.019

(0.5, 0.6) % Periods significant 93.62 72.11 71.71 71.31 81.67

Overal p-value < 0.001 0.003 0.003 0.002 < 0.001

Annualized volatility 0.028 0.032 0.027 0.027 0.029

(1.0, 0.2) % Periods significant 91.63 54.58 61.35 62.55 76.49

Overall p-value < 0.001 0.030 0.016 0.017 0.001

Annualized volatility 0.024 0.027 0.024 0.024 0.025

(1.0, 0.4) % Periods significant 93.23 60.96 65.34 67.73 76.89

Overall p-value < 0.001 0.018 0.009 0.008 < 0.001

Annualized volatility 0.021 0.025 0.021 0.020 0.021

(1.0, 0.6) % Periods significant 93.63 64.94 68.13 70.52 81.27

Overall p-value < 0.001 0.010 0.005 0.004 < 0.001

Annualized volatility 0.030 0.035 0.029 0.029 0.031

(1.5, 0.2) % Periods significant 91.63 51.39 58.17 60.96 75.29

Overall p-value < 0.001 0.043 0.020 0.022 0.002

Annualized volatility 0.026 0.031 0.026 0.025 0.027

(1.5, 0.4) % Periods significant 92.82 56.57 64.94 66.53 75.69

Overall p-value < 0.001 0.028 0.013 0.011 < 0.001

Annualized volatility 0.023 0.027 0.022 0.022 0.022

(1.5, 0.6) % Periods significant 93.63 64.14 66.93 69.32 78.49

Overall p-value < 0.001 0.017 0.006 0.005 < 0.001

16



Figure 1: The plots of the estimated loading functions for the year of 2009 (dotted-dashed

red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)

at τ = 0.2.
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while under the alternative we have τ̂j,n,T →∞ with probability one.

8 Appendix

We first introduce some notations which will be used throughout the Appendix. Let λmax (A) and

λmin (A) denote the largest and smallest eigenvalues of a symmetric matrix A, respectively. For an

m×n real matrix A, we denote ‖A‖∞ = max1≤i≤m
∑n

j=1 |Aij |. For any vector a = (a1, . . . , an)ᵀ ∈

Rn, denote ||a||∞ = max1≤i≤n |ai|. We first study the asymptotic properties of the initial estima-
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Figure 2: The plots of the estimated loading functions for the year of 2009 (dotted-dashed

red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)

at τ = 0.5.
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tors ĝ
[0]
j (xj) of g0

j (xj). The following theorem gives an asymptotic expression of ĝ
[0]
j (xj) and its

convergence rate that will be used in the proofs of Theorems 1 and 2.

Proposition 1. Let Conditions (C1)-(C4) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) =

o(1) and K−1
N (logNT )(logN)4 = o(1), then for every 1 ≤ j ≤ J ,

supxj∈[a,b] |ĝ
[0]
j (xj)− g0

j (xj)| = Op(KN/
√
NT +K2

NN
−3/4

√
logNT +K−rN ) + op(N

−1/2),[∫
{ĝ[0]
j (xj)− g0

j (xj)}2dxj
]1/2

= Op(
√
KN/(NT ) +K

3/2
N N−3/4

√
logNT +K−rN ) + op(N

−1/2).

(A.1)
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Figure 3: The plots of the estimated loading functions for the year of 2009 (dotted-dashed

red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)

at τ = 0.8.
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8.1 Proof of Proposition 1

We first present the following several lemmas which will be used in the proof of Proposition 1.

According to the result on page 149 of de Boor (2001), for h0
jt satisfying the smoothness condition

given in (C2), there exists θ0
jt ∈ RKn such that h0

jt(xj) = h̃0
jt(xj) + bjt(xj)

h̃0
jt(xj) = Bj(xj)

ᵀθ0
jt and sup

j,t
sup

xj∈[a,b]
|bjt(xj)| = O(K−rN ). (A.2)

Denote h̃0
t (x) = {h̃0

jt(xj), 1 ≤ j ≤ J}ᵀ, and

bt(x) =
∑J

j=1
h0
jt(xj)−B(x)ᵀθ0

t
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where B(x) = {B1(x1)ᵀ, . . . , BJ(xJ)ᵀ}ᵀ. Then by (A.2), we have

supx∈[a,b]J |bt(x)| = O(K−rN ).

Let θ0
t = (θ0ᵀ

1t , . . . ,θ
0ᵀ
Jt)

ᵀ. Then B(x)(h̃ut, θ̃
ᵀ
t )ᵀ = (h̃ut, h̃t(x)ᵀ)ᵀ and B(x)(h0

ut,θ
0ᵀ
t )ᵀ = (h0

ut, h̃
0
t (x)ᵀ)ᵀ,

where B(x) is defined in (4.2). We introduce some additional notation that were used in Koenker

and Bassett (1978), and Horowitz and Lee (2005). Let d(N) = (1 + JKN ). Let N = {1, . . . , N}

and S denote the collection of all d(N)-element subsets of N . Let M (s) denote the submatrix

(subvector) of a matrix (vector) M with rows (components) indexed by the elements of s ∈ S.

Let Z = (Z1, . . . , ZN )ᵀ, where Zi is defined in (4.1), and Yt = (yit, 1 ≤ i ≤ N)ᵀ. Then Z (s) is

the d(N)× d(N) matrix, whose rows are Zi’s with i ∈ s, and Yt (s) is the d(N)× 1 vector, whose

elements are yit’s with i ∈ s for each given t. We first give the Bernstein inequality for a φ-mixing

sequence, which is used through our proof.

Lemma 1. Let {ξi} be a sequence of centered real-valued random variables. Let Sn =
∑n

i=1 ξi.

Suppose the sequence has the φ-mixing coefficient satisfying φ(k) ≤ exp(−2ck) for some c > 0 and

supi≥1 |ξi| ≤M . Then there is a positive constant C1 depending only on c such that for all n ≥ 2

P (|Sn| ≥ ε) ≤ exp(− C1ε
2

v2n+M2 + εM(log n)2
),

where v2 = supi>0(var(ξi) + 2
∑

j>i |cov(ξi, ξj)|).

Proof. The result of Lemma 1 is given in Theorem 2 on page 275 of Merlevéde, Peligrad and Rio

(2009) when the sequence {ξi} has the α-mixing coefficient satisfying α(k) ≤ exp(−2ck) for some

c > 0. Thus, this result also holds for the sequence having the φ-mixing coefficient satisfying

φ(k) ≤ exp(−2ck), since α(k) ≤ φ(k) ≤ exp(−2ck).

Lemma 2. There is a subset s ∈ S such that the objective function (3.2) has at least one minimizer

of the form (h̃ut, θ̃
ᵀ
t )ᵀ = Z (s)−1 Yt (s), and (h̃ut, θ̃

ᵀ
t )ᵀ is a unique solution to (3.2) almost surely for

sufficiently large N .

Proof. The proof of this lemma is given in Lemma A.2 of Horowitz and Lee (2005).

We first obtain the Bahadur representation for ϑ̃t = (h̃ut, θ̃
ᵀ
t )ᵀ through the following lemmas.

To obtain the Bahadur representation for ϑ̃t, we basically extend the result established for the i.i.d.

case by Horowitz and Lee (2005) to the mixing distribution by following similar procedures as given

in Lemmas A.1-A.7 of Horowitz and Lee (2005), and we also need the results to hold uniformly in

t, which requires to apply the Bernstein’s inequality for mixing distributions in Lemma 1 and the

union bound of probability. Denote ϑt = (hut,θ
ᵀ
t )ᵀ and ϑ0

t = (h0
ut,θ

0ᵀ
t )ᵀ. Define

GtN,i(ϑt) = [τ − I{εit ≤ Zᵀ
i (ϑt − ϑ0

t )− bt(Xi)}]Zi,

G∗tN,i(ϑt) = [τ − Fi[{Zᵀ
i (ϑt − ϑ0

t )− bt(Xi)}|Xi, ft]]Zi,

where Fi(ε|Xi, ft) = P (εi ≤ ε|Xi, ft), and G̃tN,i(ϑt) = GtN,i(ϑt)−G∗tN,i(ϑt).
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Lemma 3. Under Conditions (C1) and (C2), and KNN
−1(logKNT )(logN)4 = o(1) and K−1

N =

o(1), sup1≤t≤T ||N−1
∑N

i=1 G̃tN,i(ϑ
0
t )|| = Op(K

1/2
N N−1/2

√
logKNT ).

Proof. It is easy to see that E{N−1
∑N

i=1 G̃tN,i(ϑ
0
t )} = 0. Write Zi = (Zi,1, . . . , Zi,d(N))

ᵀ. Let

G̃tN,i`(ϑt) = [τ − I{εit ≤ Zᵀ
i (ϑt − ϑ0

t )− bt(Xi)}]Zi,`

− [τ − Fi[{Zᵀ
i (ϑt − ϑ0

t )− bt(Xi)}|Xi, ft]]Zi,`,

where ` = 1, . . . , d(N), so that G̃tN,i(ϑ
0
t ) = {G̃tN,i`(ϑ0

t ), 1 ≤ ` ≤ d(N)}ᵀ and G̃tN,i`(ϑ
0
t ) =

[Fi[{−bt(Xi)}|Xi, ft]− I{εit ≤ −bt(Xi)}]Zi,`. Then for each `,

E{G̃tN,i`(ϑt)2} = E[V ar{I(εit ≤ −bt(Xi))|Xi, ft}Z2
i,`] � E(Z2

i,`) � 1,

and by Condition (C1), for i 6= i′,

|E{G̃tN,i`(ϑt)G̃tN,i′`(ϑt)}| ≤ 2{φ(|i′ − i|)}1/2[E{G̃tN,i`(ϑt)2}E{G̃tN,i`′(ϑt)2}]1/2

≤ c12K1e
−λ1|i′−i|/2,

for some constant 0 < c1 <∞. Hence, by the above results, we have

sup
i

[E{G̃tN,i`(ϑt)}2 +
∑

i′ 6=i
|Cov(G̃tN,i`(ϑt), G̃tN,i′`(ϑt))|]

≤ c2 + sup
i

∑
i′ 6=i

c12K1e
−λ1|i′−i|/2 ≤ c2 + c12K1(1− e−λ1/2)−1 ≤ c3

for some constants 0 < c2, c3 < ∞. Moreover, supi|G̃tN,i`(ϑt)| ≤ c4K
1/2
N for some constant 0 <

c4 < ∞. Thus, by the Bernstein’s inequality in Lemma 1, we have for N sufficiently large and

KNN
−1(logKNT )(logN)4 = o(1),

P

(
|N−1

∑N

i=1
G̃tN,i`(ϑt)| ≥ aN−1/2

√
logKNT

)
≤ exp(− C1a

2N(logKNT )

c3N + c2
4KN + aN1/2

√
logKNTc4K

1/2
N (logN)2

) ≤ (KNT )−C1a2/(3c3).

Then by the union bound of probability, we have

P

(
sup
t

sup
`
|N−1

∑N

i=1
G̃tN,i`(ϑt)| ≥ aN−1/2

√
logKNT

)
≤ d(N)T (KNT )−C1a2/(3c3).

Therefore,

P

(
sup

1≤t≤T
||N−1

∑N

i=1
G̃tN,i(ϑ

0
t )|| ≥ aK

1/2
N N−1/2

√
logKNT

)
≤ d(N)T (KNT )−C1a2/(3c3)

≤ (1 + JKN )T (KNT )−2.

by taking a large enough. The proof is complete.

Lemma 4. sup1≤t≤T ||N−1
∑N

i=1GtN,i(ϑ̃t)|| = Oa.s.(K
3/2
N N−1).
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Proof. The proof of this lemma follows the same procedure as in Lemma A.4 of Horowitz and Lee

(2005) by using the result in (A.9) which holds uniformly in t = 1, ..., T .

Lemma 5. Under Conditions (C1) and (C2), and K2
NN

−1(logNT )2(logN)8 = o(1) and K−1
N =

o(1),

sup
1≤t≤T

sup
||ϑt−ϑ0

t ||≤CK
1/2
N N−1/2

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

= Op(K
3/2
N N−3/4

√
logNT ).

Proof. Let BN = {ϑt : ||ϑt−ϑ0
t || ≤ CK

1/2
N N−1/2}. By taking the same strategy as given in Lemma

A.5 of Horowitz and Lee (2005), we cover the ball BN with cubes C = {C(ϑt,v)}, where C(ϑt,v) is a

cube containing (ϑt,v − ϑ0
t ) with sides of C{d(N)/N5}1/2 such that ϑt,v ∈ BN . Then the number

of the cubes covering the ball BN is V = (2N2)d(N). Moreover, we have ||(ϑt−ϑ0
t )− (ϑt,v−ϑ0

t )|| ≤
C{d(N)/N5/2} for any ϑt − ϑ0

t ∈ C(ϑt,v), where v = 1, . . . , V . First we can decompose

sup
ϑt∈BN

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

≤ max
1≤v≤V

sup
(ϑt−ϑ0

t )∈C(ϑt,v)

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑt,v)||

+ max
1≤v≤V

||N−1
∑N

i=1
G̃tN,i(ϑt,v)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

= ∆tN,1 + ∆tN,2 (A.3)

Let γN = C{d(N)/n5/2}. By the same argument as given in the proof of Lemma A.5 in Horowitz

and Lee (2005), we have

∆tN,1 ≤ max
1≤v≤V

|ΓtN,1v|+ max
1≤v≤V

|ΓtN,2v|, (A.4)

where

ΓtN,1v = N−1
∑N

i=1
||Zi||

[
Fi[Z

ᵀ
i (ϑt,v − ϑ0

t )− bt(Xi) + ||Zi||γN |Xi, ft]

−Fi[Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi)− ||Zi||γN |Xi, ft]
]
,

ΓtN,2v = N−1
∑N

i=1
ΓtN,2v,i = N−1

∑N

i=1
||Zi||

[
[I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi) + ||Zi||γN}

− Fi{Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi) + ||Zi||γN |Xi, ft}]

−[I{εit ≤ Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi)} − Fi{Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi)|Xi, ft}]
]
.

By Condition (C2), we have for some constants 0 < c1, c2 <∞,

sup
1≤t≤T

max
1≤v≤V

|ΓtN,1v| ≤ c1γN max
1≤i≤N

||Zi||||Zi|| ≤ c2{d(N)/N5/2}KN = O(K2
NN

−5/2). (A.5)

Next we will show the convergence rate for max1≤v≤V |ΓtN,2v|. It is easy to see that E(ΓtN,2v,i) = 0.

Also |ΓtN,2v,i| ≤ 4||Zi|| ≤ c1K
1/2
N for some constant 0 < c1 <∞. Moreover,

E
[
||Zi||I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi) + ||Zi||γN} − I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi)}

]2
� E{||Zi||2||Zi||γN} ≤ c∗2γNK

1/2
N ≤ c2K

3/2
N N−5/2,
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for some constants 0 < c∗2 < c2 < ∞. Hence E(ΓtN,2v,i)
2 ≤ c2K

3/2
N N−5/2. By Condition (C1), we

have for i 6= j,

|E(ΓtN,2v,iΓtN,2v,j)| ≤ 2φ(|j − i|)1/2{E(Γ2
tN,2v,i)E(Γ2

tN,2v,j)}1/2 ≤ 2c2φ(|j − i|)K3/2
N N−5/2.

Hence

E(ΓtN,2v,i)
2 + 2

∑
j>i
|E(ΓtN,2v,iΓtN,2v,j)|

≤ c2K
3/2
N N−5/2 + 4c2

∑N

k=1
K1e

−λ1k/2K
3/2
N N−5/2

≤ c2K
3/2
N N−5/2(1 + 4K1(1− e−λ1/2)−1) = c3K

3/2
N N−5/2,

where c3 = c2(1+4K1(1−e−λ1/2)−1). By Condition (C1), for each fixed t, the sequence {(Xi, ft, εit), 1 ≤
i ≤ N} has the φ-mixing coefficient φ(k) ≤ K1e

−λ1k for K1, λ1 > 0. Thus, by the Bernstein’s in-

equality given in Lemma 1, we have for N sufficiently large,

P
(
|ΓtN,2v| ≥ aK3/2

N N−1(logNT )3
)

≤ exp(−
C1(aK

3/2
N (logNT )3)2

c3K
3/2
N N−5/2N + c2

1KN + aK
3/2
N (logNT )3c1K

1/2
N log(N)2

) ≤ (NT )−c4a
2KN

for some constant 0 < c4 <∞. By the union bound of probability, we have

P

(
sup

1≤t≤T
max

1≤v≤V
|ΓtN,2v| ≥ aK3/2

N N−1(logNT )3

)
≤ (2N2)d(N)T (NT )−c4a

2KN ≤ 2d(N)N2(1+JKN )−c4a2KNT 1−c4a2KN .

Hence, taking a large enough, one has

P

(
sup

1≤t≤T
max

1≤v≤V
|ΓtN,2v| ≥ aK3/2

N N−1(logN)3

)
≤ 2KNN−KNT−KN .

Then we have

sup
1≤t≤T

max
1≤v≤V

|ΓtN,2v| = Op{K3/2
N N−1(logNT )3}. (A.6)

Next we will show the convergence rate for ∆tN,2. Let g̃tN,i,`(ϑt,v) be the `th element in G̃tN,i(ϑt,v)−
G̃tN,i(ϑ

0
t ) for ` = 1, . . . , d(N). It is easy to see that E{g̃tN,i,`(ϑt,v)} = 0. Also |g̃tN,i,`(ϑt,v)| ≤

4|Zi`| ≤ c1K
1/2
N for some constant 0 < c1 <∞. Moreover,

E
[
[I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi)} − I{εit ≤ −bt(Xi)}]Zi`

]2
≤ c′1||ϑt,v − ϑ0

t ||K
1/2
N ≤ c′1CK

1/2
N N−1/2K

1/2
N = c′1CKNN

−1/2

for some constant 0 < c′1 < ∞. Hence E(g̃tN,i,`(ϑt,v))
2 ≤ c′1CKNN

−1/2. By Condition (C1), we

have for i 6= j,

|E(g̃tN,i,`(ϑt,v)g̃tN,j,`(ϑt,v)| ≤ 4φ(|j − i|)1/2{E(Γ2
tN,2v,i)E(Γ2

tN,2v,j)}1/2.
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Hence

E(g̃tN,i,`(ϑt,v))
2 + 2

∑
j>i
|E(g̃tN,i,`(ϑt,v)g̃tN,j,`(ϑt,v)|

≤ c′1CKNN
−1/2 + 4

∑N

k=1
K1e

−λ1k/2c′1CKNN
−1/2

≤ c′1CKNN
−1/2(1 + 4K1(1− e−λ1/2)−1) = c2KNN

−1/2,

where c2 = c′1C(1 + 4K1(1− e−λ1/2)−1). Thus, by the Bernstein’s inequality given in Lemma 1 and

K2
NN

−1(logNT )2(logN)8 = o(1), we have for N sufficiently large,

P

(
|N−1

∑N

i=1
g̃tN,i,`(ϑt,v)| ≥ aKNN

−3/4
√

logNT

)
≤ exp(− C1(aKNN

1/4
√

logNT )2

c2KNN−1/2N + c2
1KN + aKNN1/4(logNT )1/2c1K

1/2
N (logN)2

) ≤ (NT )−c3a
2KN (A.7)

for some constant 0 < c3 <∞. By the union bound of probability, we have

P

(
sup

1≤t≤T
sup

1≤`≤d(N)
|N−1

∑N

i=1
g̃tN,i,`(ϑt,v)| ≥ aKNN

−3/4
√

logNT

)
≤ d(N)T (NT )−c3a

2KN .

Hence,

P

(
sup

1≤t≤T
||N−1

∑N

i=1
G̃tN,i(ϑt,v)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )|| ≥ aK

3/2
N N−3/4

√
logNT

)
≤ d(N)T (NT )−c3a

2KN .

By the union bound of probability again, we have

P

(
sup

1≤t≤T
|∆tN,2| ≥ aK3/2

N N−3/4
√

logNT

)
≤ (2N2)d(N)d(N)T (NT )−c3a

2KN .

Hence, taking a large enough, one has

P

(
sup

1≤t≤T
|∆tN,2| ≥ aK3/2

N N−3/4
√

logNT

)
≤ 2KNKNN

−KNT−KN .

Then we have

sup
1≤t≤T

|∆tN,2| = Op{K3/2
N N−3/4

√
logNT}. (A.8)

Therefore, by (A.3), (A.4), (A.5), (A.6) and (A.8), we have

sup
1≤t≤T

sup
ϑt∈BN

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

= Op{K2
NN

−5/2 +K
3/2
N N−1(logNT )3 +K

3/2
N N−3/4

√
logNT}

= Op(K
3/2
N N−3/4

√
logNT ).
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Let ΨNt = N−1
∑N

i=1 pi (0 |Xi, ft )ZiZ
ᵀ
i . By the same reasoning as the proofs for (ii) of Lemma

A.7 in Ma and Yang (2011), we have with probability approaching 1, as N → ∞, there exist

constants 0 < C1 ≤ C2 <∞ such that

C1 ≤ λmin(ΨNt) ≤ λmax(ΨNt) ≤ C2, (A.9)

uniformly in t = 1, ..., T .

Lemma 6. Under Conditions (C2) and (C3), as N →∞,

Ψ−1
NtG

∗
tN,i(ϑt) = −(ϑt − ϑ0

t ) +N−1Ψ−1
Nt

∑N

i=1
pi (0 |Xi, ft )Zibt(Xi) +R∗Nt,

where ||R∗Nt|| ≤ C∗{K
1/2
N ||ϑt − ϑ0

t ||2 +K
1/2−2r
N } for some constant 0 < C∗ <∞, uniformly in t.

Lemma 7. Under Condition (C2),

sup
1≤t≤T

||N−1Ψ−1
Nt

∑N

i=1
pi (0 |Xi, ft )Zibt(Xi)|| = O(K−rN ).

Proof. The proofs of Lemmas 6 and 7 follow the same procedure as in Lemmas A.6-A.7 of Horowitz

and Lee (2005) by using the results (A.2) and (A.9)

Lemma 8. Under Conditions (C1)-(C3), and K3
NN

−1 = o(1), K2
NN

−1(logNT )2(logN)8 = o(1)

and K−r+1
N (log T ) = o(1),

ϑ̃t − ϑ0
t = DNt,1 +DNt,2 +RNt, (A.10)

where

DNt,1 =

[
N−1

∑N

i=1
pi (0 |Xi, ft )ZiZ

ᵀ
i

]−1 [
N−1

∑N

i=1
Zi(τ − I(εit < 0))

]
, (A.11)

DNt,2 = Ψ−1
Nt

[
N−1

∑N

i=1
Zi{pi (0 |Xi, ft )

∑J

j=1
bjt(Xji)}

]
, (A.12)

uniformly in t, and the remaining term RNt satisfies

sup
1≤t≤T

||RNt|| = Op(K
3/2
N N−1 +K

3/2
N N−3/4

√
logNT +K

1/2−2r
N +N−1/2K

−r/2+1/2
N

√
logKNT )

= Op(K
3/2
N N−3/4

√
logNT +K

1/2−2r
N ) + op(N

−1/2).

Proof. By Lemma 6, we have

ϑ̃t − ϑ0
t = N−1Ψ−1

Nt

∑N

i=1
pi (0 |Xi, ft )Zibt(Xi)−Ψ−1

NtG
∗
tN,i(ϑ̃t) +R∗Nt.

Moreover,

Ψ−1
NtG

∗
tN,i(ϑ̃t) = Ψ−1

NtGtN,i(ϑ̃t)−Ψ−1
NtG̃tN,i(ϑ

0
t )−Ψ−1

Nt[G̃tN,i(ϑ̃t)− G̃tN,i(ϑ
0
t )].

Thus,

ϑ̃t − ϑ0
t = Ψ−1

NtN
−1
∑N

i=1
G̃tN,i(ϑ

0
t ) + Ψ−1

NtN
−1
∑N

i=1
pi (0 |Xi, ft )Zibt(Xi) +R∗∗Nt, (A.13)
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where

R∗∗Nt = −Ψ−1
NtN

−1
∑N

i=1
GtN,i(ϑ̃t) + Ψ−1

NtN
−1
∑N

i=1
[G̃tN,i(ϑ̃t)− G̃tN,i(ϑ0

t )] +R∗Nt. (A.14)

By Lemmas 4 and 5 and (A.9), we have

sup
1≤t≤T

||R∗∗Nt|| ≤ sup
1≤t≤T

||Ψ−1
Nt|| sup

1≤t≤T
||N−1

∑N

i=1
GtN,i(ϑ̃t)||

+ sup
1≤t≤T

||Ψ−1
Nt|| sup

1≤t≤T
||N−1

∑N

i=1
[G̃tN,i(ϑ̃t)− G̃tN,i(ϑ0

t )]||+ sup
1≤t≤T

||R∗Nt||

= Op(K
3/2
N N−1 + (K2

NN)−3/4
√

logNT +K
1/2−2r
N ).

Define GtN,i`(ϑ
0
t ) = {τ − I(εit ≤ 0)}Zi,` and GtN,i(ϑ

0
t ) = {GtN,i`(ϑ0

t ), 1 ≤ ` ≤ d(N)}. Then

E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )} = 0. Moreover,

E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )}2 ≤ E [I{εit ≤ −bt(Xi)} − I{εit ≤ 0}Zi,`]2 ≤ CK−rN

for some constant 0 < C <∞, and by Condition (C1), we have

E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )}{G̃tN,i′`(ϑ0
t )−GtN,i′`(ϑ0

t )}

≤ 2× 42{φ(|i′ − i|)}1/2[E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )}2E{G̃tN,i′`(ϑ0
t )−GtN,i′`(ϑ0

t )}2]1/2

≤ C ′K1e
−λ1|i′−i|/2K−rN .

Hence, by the above results, we have

E[N−1
∑N

i=1
{G̃tN,i`(ϑ0

t )−GtN,i`(ϑ0
t )}]2

≤ N−1CK−rN +N−2
∑

i 6=i′
C ′K1e

−λ1|i′−i|K−rN

≤ CN−1K−rN + C ′K1N
−2N(1− e−λ1/2)−1K−rN ≤ C

′′N−1K−rN ,

for some constant 0 < C ′′ <∞. Thus

E||N−1
∑N

i=1
{G̃tN,i(ϑ0

t )−GtN,i(ϑ0
t )}||2 =

∑d(N)

`=1
E[N−1

∑N

i=1
{G̃tN,i`(ϑ0

t )−GtN,i`(ϑ0
t )}]2

≤ C ′′(1 + JKN )N−1K−rN .

Therefore, by the Bernstein’s inequality and the union bound of probability, we have

sup
1≤t≤T

||N−1
∑N

i=1
{G̃tN,i(ϑ0

t )−GtN,i(ϑ0
t )}|| = Op(N

−1/2K
−r/2+1/2
N

√
logKNT ). (A.15)

Therefore, by (A.13), (A.14) and (A.15), we have ϑ̃t − ϑ0
t = DNt,1 +DNt,2 +RNt, where

sup
1≤t≤T

||RNt|| = Op(K
3/2
N N−1 + (K2

NN)−3/4
√

logNT +K
1/2−2r
N +N−1/2K

−r/2+1/2
N

√
logKNT ).
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Proof of Proposition 1. By (A.10) in Lemma 8, we have

h̃jt(xj)− h̃0
jt(xj) = 1ᵀj+1B(x)(DNt,1 +DNt,2) + 1ᵀj+1B(x)RNt,

and

sup
1≤t≤T

{N−1
∑N

i=1
(1ᵀj+1B(Xi)RNt)

2}1/2 ≤ sup
1≤t≤T

||RNt||[λmax{N−1
∑N

i=1
Bj(Xji)Bj(Xji)

ᵀ}]1/2

= Op(K
3/2
N N−3/4

√
logNT +K

1/2−2r
N ) + op(N

−1/2),

sup
1≤t≤T

sup
x∈[a,b]J

|1ᵀj+1B(x)RNt|

≤ sup
x∈[a,b]J

||B(x)ᵀ1j+1|| sup
1≤t≤T

||RNt||

= O(K
1/2
N )Op(K

3/2
N N−1 +K

3/2
N N−3/4

√
logNT +K

1/2−2r
N +N−1/2K

−r/2+1/2
N

√
logKNT )

= Op(K
2
NN

−3/4
√

logNT +K1−2r
N ) + op(N

−1/2),

by the assumption that K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1) and r > 2. Since h0

jt(xj) = h̃0
jt(xj) +

bjt(xj), then we have

h̃jt(xj)− h0
jt(xj) = 1ᵀj+1B(x)(DNt,1 +DNt,2)− bjt(xj) + 1ᵀj+1B(x)RNt.

Also by (A.2), we have sup1≤t≤T supx∈[a,b]J

∣∣∣1ᵀj+1B(x)DNt,2

∣∣∣ = Op(K
−r
N ). Then h̃jt(xj) − h0

jt(xj)

can be written as

h̃jt(xj)− h0
jt(xj) = 1ᵀj+1B(x)DNt,1 + ηN,jt(xj), (A.16)

where the remaining term ηN,jt(xj) satisfies

sup
1≤t≤T

[N−1
∑N

i=1
{ηN,jt(Xji)}2]1/2 = Op(K

−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2), (A.17)

sup
1≤t≤T

{
∫
ηN,jt(xj)

2dxj}1/2 = Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2),

sup
1≤t≤T

supxj∈[a,b] |ηN,jt(xj)| = Op(K
−r
N ) +Op(K

2
NN

−3/4
√

logNT ) + op(N
−1/2). (A.18)

Moreover, by Berntein’s inequality, we have sup1≤t≤T ||DNt,1|| = Op(
√
KN/N

√
logKNT ). Hence,

sup
1≤t≤T

sup
x∈[a,b]J

|1ᵀj+1B(x)DNt,1| = Op(
√

logKNTKN/
√
N),

sup
1≤t≤T

{N−1
∑N

i=1
(1ᵀj+1B(Xi)DNt,1)2}1/2 = Op(

√
logKNT

√
KN/N). (A.19)

Therefore, by (A.16), (A.17), (A.18) and (A.19), we have

sup
1≤t≤T

N−1
∑N

i=1
{h̃jt(Xji)− h0

jt(Xji)}2 = Op((logKNT )KN/N +N−2r),

sup
1≤t≤T

supxj∈[a,b] |h̃jt(xj)− h0
jt(xj)| = Op(

√
logKNTKNN

−1/2 +K−rN ). (A.20)
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Moreover, by ch ≤ N−1
∑N

i=1 h
0
jt(Xji)

2 ≤ Ch almost surely given in Condition (C3) and the

above result, we have with probability approaching 1, as N →∞, ch ≤ N−1
∑N

i=1 h̃jt(Xji)
2 ≤ Ch.

By (A.16), we have with probability approaching 1, as N →∞,

1/

√
N−1

∑N

i=1
h̃jt(Xji)2 − 1/

√
N−1

∑N

i=1
h0
jt(Xji)2

= C ′{N−1
∑N

i=1
h0
jt(Xji)

2 −N−1
∑N

i=1
h̃jt(Xji)

2}

= C ′N−1
∑N

i=1
{h̃jt(Xji)− h0

jt(Xji)}h0
jt(Xji)

= C ′N−1
∑N

i=1
1ᵀj+1B(x)DNt,1h

0
jt(Xji) + %tN (A.21)

for some constant 0 < C ′ <∞, where %tN = C ′N−1
∑N

i=1 ηN,jt(Xji)h
0
jt(Xji). Moreover by (A.17),

sup
1≤t≤T

|%tN | ≤ C ′ sup
1≤t≤T

[N−1
∑N

i=1
{ηN,jt(Xji)}2]1/2[N−1

∑N

i=1
{h0

jt(Xji)}2]1/2

= Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2). (A.22)

Hence by (A.16), (A.21) and the fact that f0
jt =

√
limN→∞N−1

∑N
i=1 h

0
jt(Xji)2, we have with

probability approaching 1, as N →∞,

h̃jt(xj)/

√
N−1

∑N

i=1
h̃jt(Xji)2 − h0

jt(xj)/f
0
jt

= {h̃jt(xj)− h0
jt(xj)}/

√
N−1

∑N

i=1
h̃jt(Xji)2 + h0

jt(xj){1/
√
N−1

∑N

i=1
h̃jt(Xji)2 − 1/f0

jt}

= 1ᵀj+1B(x)DNt,1/

√
N−1

∑N

i=1
h̃jt(Xji)2 + h0

jt(xj){1/
√
N−1

∑N

i=1
h̃jt(Xji)2 − 1/f0

jt}

+ ηN,jt(xj)/

√
N−1

∑N

i=1
h̃jt(Xji)2

= 1ᵀj+1B(x)DNt,1/f
0
jt + {1ᵀj+1B(x)DNt,1 + h0

jt(xj)}{1/
√
N−1

∑N

i=1
h̃jt(Xji)2 − 1/f0

jt}

+ C ′′ηN,jt(xj)

= 1ᵀj+1B(x)DNt,1/f
0
jt + {1ᵀj+1B(x)DNt,1 + h0

jt(xj)}C ′N−1
∑N

i=1
1ᵀj+1B(x)DNt,1h

0
jt(Xji)

+ C ′′′%tN + C ′′ηN,jt(xj)

for some constants 0 < C ′′, C ′′′ <∞.

Let %N = T−1
∑T

t=1C
′′′%tN and ηNT,j(xj) = T−1

∑T
t=1C

′′ηN,jt(xj). By (A.18) and (A.22), we

have

|%N | = Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2), (A.23)

{
∫
ηNT,j(xj)

2dxj}1/2 = Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2),

supxj∈[a,b] |ηNT,j(xj)| = Op(K
−r
N ) +Op(K

2
NN

−3/4
√

logNT ) + op(N
−1/2). (A.24)
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By the definitions of ĝ
[0]
j (xj) and g0

j (xj) given in (3.1) and (2.5), respectively, and h0
jt(Xji) =

g0
j (Xji)f

0
jt, we have with probability approaching 1, as (N,T )→∞,

ĝ
[0]
j (xj)− g0

j (xj) = ΦNTj,1(xj) + ΦNTj,2(xj) + ΦNTj,3(xj) + %N + ηNT,j(xj), (A.25)

where

ΦNTj,1(xj) = T−1
∑T

t=1
1ᵀj+1B(x)DNt,1/f

0
jt,

ΦNTj,2(xj) = C ′(TN)−1
∑T

t=1

∑N

i=1
1ᵀj+1B(Xi)DNt,1g

0
j (Xji)g

0
j (xj)(f

0
jt)

2,

ΦNTj,3(xj) = C ′(TN)−1
∑T

t=1
1ᵀj+1B(x)DNt,1

∑N

i=1
1ᵀj+1B(Xi)DNt,1g

0
j (Xji)f

0
jt.

Define ψit,` = Zi`(τ − I(εit < 0))(f0
jt)

2. Then E(ψit,`) = 0. Moreover, E(ψit,`)
2 ≤ c1 for some

constant 0 < c1 <∞, and by Condition (C1), we have

|E(ψit,`ψjs,`)| ≤ 2{φ(
√
|i− j|2 + |t− s|2)}1/2{E(ψit,`)

2E(ψjs,`)
2}1/2

≤ 2c1{φ(
√
|i− j|2 + |t− s|2)}1/2.

Hence by Condition (C1), we have

E((NT )−1
∑T

t=1

∑N

i=1
ψit,`)

2

= (NT )−2
∑

t,t′

∑
i,i′
E(ψit,`ψi′t′,`) ≤ 2c1(NT )−2

∑
t,t′

∑
i,i′
{φ(
√
|i− j|2 + |t− s|2)}1/2

≤ 2c1K1(NT )−2
∑

t,t′

∑
i,i′
e−λ1
√
|i−i′|2+|t−t′|2/2

≤ 2c1(NT )−2K1

∑
t,t′

∑
i,i′
e−(λ1/2)(|i−i′|+|t−t′|)

≤ 2c1K1(NT )−2(NT )(
∑T

k=0
e−(λ1/2)k)(

∑N

k=0
e−(λ1/2)k)

≤ 2c1K1(NT )−2(NT ){1− e−(λ1/2)}−2 = 2c1K1{1− e−(λ1/2)}−2(NT )−1.

Thus,

E

∥∥∥∥(NT )−1
∑T

t=1

∑N

i=1
Zi(τ − I(εit < 0))(f0

jt)
2

∥∥∥∥2

=
∑d(N)

`=1
E{(NT )−1

∑T

t=1

∑N

i=1
ψit,`}2 = O{KN (NT )−1}. (A.26)

Therefore, by Markov’s inequality we have∥∥∥∥(NT )−1
∑T

t=1

∑N

i=1
Zi(τ − I(εit < 0))(f0

jt)
2

∥∥∥∥ = Op[{KN (NT )−1}1/2].

Moreover, ||N−1
∑N

i=1 B(Xi)
ᵀ1j+1g

0
j (Xji)|| = Op(1) and supxj∈[a,b] |g0

j (xj)| ≤ C ′ for some constant

C ′ ∈ (0,∞) by Condition (C3). Hence by the above results and (A.9), we have

supxj∈[a,b] |ΦNTj,2(xj)| ≤ C ′ supxj∈[a,b] |g0
j (xj)| × ||N−1

∑N

i=1
B(Xi)

ᵀ1j+1g
0
j (Xji)|| × ||Ψ−1

N ||×∥∥∥∥(NT )−1
∑T

t=1

∑N

i=1
Zi(τ − I(εit < 0))(f0

jt)
2

∥∥∥∥ = Op{
√
KN/(NT )}.

(A.27)
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Moreover, by following the same procedure as the proof in (A.26), we have E||N−1
∑N

i=1 Zi(τ −
I(εit < 0))||2 = Op(KNN

−1). Then we have T−1
∑T

t=1 ||N−1
∑N

i=1 Zi(τ − I(εit < 0))||2 =

Op(KNN
−1). Hence,

supxj∈[a,b] |ΦNTj,3(xj)|

≤ T−1
∑T

t=1
supx∈[a,b]J{1

ᵀ
j+1B(x)DNt,1}2 supxj∈[a,b] |g0

j (xj)||f0
jt|

≤ C supx∈[a,b]J ||B(x)ᵀ1j+1||2||Ψ−1
N ||

2T−1
∑T

t=1
||N−1

∑N

i=1
Zi(τ − I(εit < 0))||2

= Op(K
2
NN

−1). (A.28)

By letting

ζNTj(xj) = ΦNTj,2(xj) + ΦNTj,3(xj) + %N + ηNT,j(xj), (A.29)

by (A.23), (A.24), (A.27) and (A.28), we have

supxj∈[a,b] |ζNTj(xj)| = Op(
√
KN/(NT ) +K2

NN
−1 +K2

NN
−3/4

√
logNT +K−rN ) + op(N

−1/2)

= Op(
√
KN/(NT ) +K2

NN
−3/4

√
logNT +K−rN ) + op(N

−1/2),

{
∫
ζNTj(xj)

2dxj}1/2 = Op(
√
KN/(NT ) +K

3/2
N N−3/4

√
logNT +K−rN ) + op(N

−1/2). (A.30)

Therefore, Proposition 1 follow from the above two results, (A.25) and (A.29). Moreover, by

the definition of DNt,1 given in (A.11), we have

ΦNTj,1(xj) = 1ᵀj+1B(x)Ψ−1
N

[
(NT )−1

∑T

t=1

∑N

i=1
Zi(τ − I(εit < 0))

]
(f0
jt)
−1.

Hence

supxj∈[a,b] |ΦNTj,1(xj)| ≤ C−1
h ||B(x)ᵀ1j+1|| × ||Ψ−1

N || × ||(NT )−1
∑T

t=1

∑N

i=1
Zi(τ − I(εit < 0))||

= Op{KN (NT )−1/2}

{
∫

ΦNTj,1(xj)
2dxj}1/2 ≤ C−1

h [λmax[E{Bj(Xji)Bj(Xji)
ᵀ]]1/2||Ψ−1

N ||×

||(NT )−1
∑T

t=1

∑N

i=1
Zi(τ − I(εit < 0))|| = Op{K1/2

N (NT )−1/2}.

Therefore, the result (A.1) follows from the above result, and (A.25), (A.29) and (A.30).

8.2 Proofs of Theorems 1 and 2

We first present the following several lemmas that will be used in the proofs of Theorems 1 and 2.

Lemmas 11-13 are used in the proof of Lemma 10, and Lemma 16 is used for the proof of Lemma

14. Lemmas 9, 10 and 14 are used in the proof of the main theorems. We define the infeasible

estimator f∗t = {f∗ut, (f∗jt, 1 ≤ j ≤ J)ᵀ}ᵀ as the minimizer of∑N

i=1
ρτ (yit − fut −

∑J

j=1
g0
j (Xji)fjt). (A.31)
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Lemma 9. Under Conditions (C1), (C2), (C4), (C5) and (C6), we have as N →∞,

√
N(Σ0

Nt)
−1/2(f∗t − f0

t )→ N (0, IJ+1),

where Σ0
Nt is given in (4.4).

Proof. By Bahadur representation for the φ-mixing case (see Babu (1989)), we have

f∗t − f0
t = Λ−1

Nt{N
−1
∑N

i=1
Q0
i (Xi)(τ − I(εit < 0))}+ υNt, (A.32)

and ||υNt|| = op(N
−1/2) for every t, where ΛNt = N−1

∑N
i=1 pi (0 |Xi, ft )Q

0
i (Xi)Q

0
i (Xi)

ᵀ. By

Conditions (C2), (C4) and (C5), we have that the eigenvalues of Λ0
Nt are bounded away from zero

and infinity. By similar reasoning to the proof for Theorem 2 in Lee and Robinson (2016), we have∥∥Λ−1
Nt

∥∥ = Op(1) and
∥∥ΛNt − Λ0

Nt

∥∥ = op(1). Thus, the asymptotic distribution in Lemma 9 can be

obtained directly by Condition (C6).

Recall that the initial estimator f̂
[0]
t given in (3.3) is defined in the same way as f∗t with g0

j (Xji)

replaced by ĝ
[0]
j (Xji) in (A.31). Then we have the following result for f̂

[0]
t .

Lemma 10. Let Conditions (C1)-(C5) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1)

and K−1
N (logNT )(logN)4 = o(1), then for any t there is a stochastically bounded sequence δN,jt

such that as N →∞,
√
N(f̂

[0]
t − f∗t − dNT δN,t) = op(1),

where δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀ and dNT is given in (4.6).

Proof. Denote g = {gj(·), 1 ≤ j ≤ J}. Define

LNt(ft, g) = N−1
∑N

i=1
ρτ (yit − fut −

∑J

j=1
gj(Xji)fjt)

−N−1
∑N

i=1
ρτ (yit − f0

ut −
∑J

j=1
gj(Xji)f

0
jt),

so that f∗t and f̂
[0]
t are the minimizers of LNt(ft, g

0) and LNt(ft, ĝ
[0]), respectively, where ĝ[0] =

{ĝ[0]
j (·), 1 ≤ j ≤ J} and g0 = {g0

j (·), 1 ≤ j ≤ J}. According to the result on page 149 of de Boor

(2001), for g0
j satisfying the smoothness condition given in (C2), there exists λ0

j ∈ RKn such that

g0
j (xj) = g̃0

j (xj) + rj(xj)

g̃0
j (xj) = Bj(xj)

ᵀλ0
j and sup

j
supxj∈[a,b] |rj(xj)| = O(K−rN ).

Since
∫
{ĝ[0]
j (xj)− g0

j (xj)}2dxj = Op(d
2
NT ) + op(N

−1/2) by Proposition 1, then there exists λj,NT ∈
RKN such that ĝ

[0]
j (xj) = Bj(xj)

ᵀλj,NT and ||λj,NT−λ0
j || = Op(d

2
NT )+op(N

−1/2). In the following,

we will show that for any gj(xj) = Bj(xj)
ᵀλj not depending on ft satisfying ||λj−λ0

j || ≤ C̃{dNT +

o(N−1/2)} for some constant 0 < C̃ <∞, letting f̃t be the minimizer of LNt(ft, g), we have

f̃t − f0
t − dNT δN,t = Λ−1

Nt{N
−1
∑N

i=1
Q0
i (Xi)(τ − I(εit < 0))}+ op(N

−1/2). (A.33)
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Hence the result in Lemma 10 follows from (A.32) and (A.33). We have ||f̃t − f∗t || = op(1), since

|LNt(ft, g)− LNt(ft, g0)|

≤ 2N−1
∑N

i=1
|
∑J

j=1
{gj(Xji)− g0

j (Xji)}fjt|+ 2N−1
∑N

i=1
|
∑J

j=1
{gj(Xji)− g0

j (Xji)}f0
jt|

≤ CLC̃{dNT + o(N−1/2)} = o(1),

for some constant 0 < CL < ∞, where the first inequality follows from the fact that |ρτ (u − v) −
ρτ (u)| ≤ 2|v|. Thus ||f̃t−f0

t || = op(1). Let X = (X1, . . . , XN )ᵀ, Qi(Xi) = {1, g1(X1i), . . . , gJ(XJi)}ᵀ

and F = {f1, . . . , fT }ᵀ. For gj(xj) = Bj(xj)
ᵀλj satisfying ||λj −λ0

j || ≤ C̃{dNT + o(N−1/2)} and ft

in a neighborhood of f0
t , write

LNt(ft, g) = E{LNt(ft, g)|X,F} − (ft − f0
t )ᵀ{WNt,1 − E(WNt,1|X,F)}

+WNt,2(ft, g)− E(WNt,2(ft, g)|X,F), (A.34)

where

WNt,1 = N−1
∑N

i=1
Qi(Xi)ψτ (yit − f0ᵀ

t Qi(Xi)), (A.35)

WNt,2(ft, g) = N−1
∑N

i=1
{ρτ (yit − fᵀt Qi(Xi))− ρτ (yit − f0ᵀ

t Qi(Xi)) (A.36)

+ (ft − f0
t )ᵀQi(Xi)ψτ (yit − f0ᵀ

t Qi(Xi))}.

In Lemma 11, we will show that as N →∞

E{LNt(ft, g)|X,F} = −(ft − f0
t )ᵀE(WNt,1|X,F)+

1

2
(ft − f0

t )ᵀΛ0
Nt(ft − f0

t ) + op(||ft − f0
t ||2),

where gj(xj) = Bj(xj)
ᵀλj , uniformly in ||λj − λ0

j || ≤ C̃{dNT + o(N−1/2)} and ||ft − f0
t || ≤ $N ,

where $N is any sequence of positive numbers satisfying $N = o(1). Substituting this into (A.34),

we have with probability approaching 1,

LNt(ft, g) = −(ft − f0
t )ᵀWNt,1+

1

2
(ft − f0

t )ᵀΛ0
N (ft − f0

t )

+WNt,2(ft, g)− E(WNt,2(ft, g)|X,F)+o(||ft − f0
t ||2).

In Lemma 12, we will show that WNt,2(ft, g)−E(WNt,2(ft, g)|X,F) =op(||ft− f0
t ||2 +N−1), where

gj(xj) = Bj(xj)
ᵀλj , uniformly in ||λj − λ0

j || ≤ C̃dNT and ||ft − f0
t || ≤ $N . Thus, we have

f̃t − f0
t = (Λ0

Nt)
−1WNt,1 + op(N

−1/2). Since ||(Λ0
Nt)
−1 − (ΛNt)

−1|| = op(1), we have

f̃t − f0
t = Λ−1

NtWNt,1 + op(N
−1/2). (A.37)

In Lemma 13, we will show that for any t there is a stochastically bounded sequence δN,jt such

that as N →∞,

WNt,1 = N−1
∑N

i=1
Q0
i (Xi)ψτ (εit) + dNT δN,t + op(N

−1/2). (A.38)

where δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀ and gj(xj) = Bj(xj)
ᵀλj , uniformly in ||λj − λ0

j || ≤ C̃{dNT +

o(N−1/2)}. Hence, result (A.33) follows from (A.37) and (A.38) directly. Then the proof is com-

plete.
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Lemma 11. Under Conditions (C2), (C4) and (C5),

E{LNt(ft, g)|X,F} = −(ft − f0
t )ᵀE(WNt,1|X,F)+

1

2
(ft − f0

t )ᵀΛ0
Nt(ft − f0

t ) + op(||ft − f0
t ||2),

uniformly in ||λj − λ0
j || ≤ C̃{dNT + o(N−1/2)} and ||ft − f0

t || ≤ $N , where gj(xj) = Bj(xj)
ᵀλj

and $N is any sequence of positive numbers satisfying $N = o(1).

Proof. By using the identity of Knight (1998) that

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0
(I(u ≤ s)− I(u ≤ 0))ds, (A.39)

we have

ρτ (yit − fᵀt Qi(Xi))− ρτ (yit − f0ᵀ
t Qi(Xi))

= −(ft − f0
t )ᵀQi(Xi)ψτ (yit − f0ᵀ

t Qi(Xi))

+

∫ (ft−f0t )ᵀQi(Xi)

0

(
I(yit − f0ᵀ

t Qi(Xi) ≤ s)− I(yit − f0ᵀ
t Qi(Xi) ≤ 0)

)
ds. (A.40)

By Lipschitz continuity of pi(ε|Xi, ft) given in Condition (C1) and boundedness of f0
jt in Con-

dition (C3), we have

Fi{f0ᵀ
t (Qi(Xi)−Q0

i (Xi)) + s|Xi, ft} − Fi{f0ᵀ
t (Qi(Xi)−Q0

i (Xi))|Xi, ft}

= spi{f0ᵀ
t (Qi(Xi)−Q0

i (Xi))|Xi, ft}+ o(s),

where o(·) holds uniformly in ||λj − λ0
j || ≤ C̃{dNT + o(N−1/2)} and ||ft − f0

t || ≤ $N . Then we

have

E{LNt(ft, g)|X,F}

= −(ft − f0
t )ᵀE(WNt,1|X,F) +N−1

∑N

i=1

∫ (ft−f0t )ᵀQi(Xi)

0
[Fi{f0ᵀ

t (Qi(Xi)−Q0
i (Xi)) + s|Xi, ft}

− Fi{f0ᵀ
t (Qi(Xi)−Q0

i (Xi))|Xi, ft}]ds

= −(ft − f0
t )ᵀE(WNt,1|X,F) +N−1

∑N

i=1

∫ (ft−f0t )ᵀQi(Xi)

0
[spi{f0ᵀ

t (Qi(Xi)−Q0
i (Xi))|Xi, ft}]ds

+ o

[
(ft − f0

t )ᵀ{N−1
∑N

i=1
Qi(Xi)Qi(Xi)

ᵀ}(ft − f0
t )

]
= −(ft − f0

t )ᵀE(WNt,1|X,F) +
1

2
(ft − f0

t )ᵀ×[
N−1

∑N

i=1
pi{f0ᵀ

t (Qi(Xi)−Q0
i (Xi))|Xi, ft}Qi(Xi)Qi(Xi)

ᵀ
]

(ft − f0
t )

+ o

[
(ft − f0

t )ᵀ{N−1
∑N

i=1
Qi(Xi)Qi(Xi)

ᵀ}(ft − f0
t )

]
. (A.41)

Since supxj∈[a,b] |gj(xj) − g0
j (xj)| = o(1), then supx∈X |f

0ᵀ
t (Qi(x) − Q0

i (x))| = o(1). By similar

reasoning to the proof for Theorem 2 in Lee and Robinson (2016), we haveN−1
∑N

i=1Qi(Xi)Qi(Xi)
ᵀ =

E{Qi(Xi)Qi(Xi)
ᵀ} + op(1). Hence, by these results and Condition (C4), we have the result in

Lemma 11.
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Lemma 12. Under Conditions (C2), (C4) and (C5), we have

WNt,2(ft, g)− E(WNt,2(ft, g)|X,F) =op(||ft − f0
t ||2 +N−1)

uniformly in ||λj − λ0
j || ≤ C̃{dNT + o(N−1/2)} and ||ft − f0

t || ≤ $N , where WNt,2(ft, g) is defined

in (A.36), gj(xj) = Bj(xj)
ᵀλj, and $N is any sequence of positive numbers satisfying $N = o(1).

Proof. By (A.40), we have

WNt,2i(ft, g) =

∫ (ft−f0t )ᵀQi(Xi)

0

(
I(yit − f0ᵀ

t Qi(Xi) ≤ s)− I(yit − f0ᵀ
t Qi(Xi) ≤ 0)

)
ds,

and thus

E(WNt,2i(ft, g)|Xi, ft)=

∫ (ft−f0t )ᵀQi(Xi)

0
[Fi{f0ᵀ

t (Qi(Xi)−Q0
i (Xi)) + s|Xi, ft}

− Fi{f0ᵀ
t (Qi(Xi)−Q0

i (Xi))|Xi, ft}]ds.

By following the same reasoning as the proof for (A.41), we have

sup
Xi∈[a,b]J

|E(WNt,2i(ft, g)|Xi, ft)−
1

2
(ft − f0

t )ᵀpi(0|Xi, ft)Qi(Xi)Qi(Xi)
ᵀ(ft − f0

t )| = op(||ft − f0
t ||2).

Hence with probability approaching 1, as N →∞,

sup
Xi∈[a,b]J

|E(WNt,2i(ft, g)|Xi, ft)| ≤ CW ||ft − f0
t ||2,

for some constant 0 < CW <∞. Moreover,

E{WNt,2i(ft, g)}2

= E[E[{
∫ (ft−f0t )ᵀQi(Xi)

0
(I(yit − f0ᵀ

t Qi(Xi) ≤ s)− I(yit − f0ᵀ
t Qi(Xi) ≤ 0))ds}2|Xi, ft]]

≤ E[E[|I(yit − f0ᵀ
t Qi(Xi) ≤ (ft − f0

t )ᵀQi(Xi))− I(yit − f0ᵀ
t Qi(Xi) ≤ 0)|

× {(ft − f0
t )ᵀQi(Xi)}2|Xi, ft]]

= E[E[|I(εit ≤ ftᵀQi(Xi)− f0ᵀ
t Qi(Xi)

0)− I(εit ≤ f0ᵀ
t (Qi(Xi)−Qi(Xi)

0)|

× {(ft − f0
t )ᵀQi(Xi)}2|Xi, ft]]

≤ C ′′E|(ft − f0
t )ᵀQi(Xi)|3 ≤ C ′′′E||ft − f0

t ||3 (A.42)

for some constants 0 < C ′′ <∞ and 0 < C ′′′ <∞. Therefore, for N →∞,

E{WNt,2(ft, g)− E(WNt,2(ft, g)|X,F)}2

= N−2
∑N

i=1
E [WNt,2i(ft, g)− E(WNt,2i(ft, g)|Xi, ft)]

2

≤ N−2
∑N

i=1
[2E{WNt,2i(ft, g)}2 + 2E[E(WNt,2i(ft, g)|Xi, ft)]

2]

≤ N−1(2C ′′′E||ft − f0
t ||3 + 2C2

WE||ft − f0
t ||4) ≤ C ′′′′N−1E||ft − f0

t ||3,
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for some constant 0 < C ′′′′ <∞. By following the same routine procedure as the proof in Lemma

5 by appyling the Bernstein’s inequality, we have

sup
||λj−λ0

j ||≤C̃dNT ,||ft−f0t ||≤$N

||ft − f0
t ||−3/2|WNt,2(ft, g)− E(WNt,2(ft, g)|X,F)| = Op(N

−1/2).

Hence, we have |WNt,2(ft, g) − E(WNt,2(ft, g)|X,F)| = Op(||ft − f0
t ||−3/2N−1/2), uniformly in

||λj − λ0
j || ≤ C̃dNT and ||ft − f0

t || ≤ $N . Since

N−1/2||ft − f0
t ||3/2 ≤ N−1||ft − f0

t ||1/2 + ||ft − f0
t ||2||ft − f0

t ||1/2

≤ N−1$N + ||ft − f0
t ||2$N ,

then we have WNt,2(ft, g)−E(WNt,2(ft, g)|X,F) =op(||ft−f0
t ||2 +N−1), uniformly in ||λj−λ0

j || ≤
C̃dNT and ||ft − f0

t || ≤ $N .

Lemma 13. Under Conditions (C1), (C2), (C4) and (C5), for any t there is a stochastically

bounded sequence δN,jt such that as N →∞,

WNt,1 = N−1
∑N

i=1
G0
i (Xi)ψτ (εit) + dNT δN,t + op(N

−1/2),

uniformly in ||λj −λ0
j || ≤ C̃{dNT + o(N−1/2)}, where WNt,1 is defined in (A.35), δN,t = (δN,jt, 0 ≤

j ≤ J)ᵀand gj(xj) = Bj(xj)
ᵀλj.

Proof. Write

WNt,1 = WNt,11 +WNt,12 +WNt,13, (A.43)

where

WNt,11 = N−1
∑N

i=1
Q0
i (Xi)ψτ (yit − f0ᵀ

t Q0
i (Xi)),

WNt,12 = (WNtj,12, 0 ≤ j ≤ J)ᵀ = N−1
∑N

i=1
(Qi(Xi)−Q0

i (Xi))ψτ (yit − f0ᵀ
t Q0

i (Xi)),

WNt,13 = (WNtj,13, 0 ≤ j ≤ J)ᵀ

= N−1
∑N

i=1
Qi(Xi){ψτ (yit − f0ᵀ

t Qi(Xi))− ψτ (yit − f0ᵀ
t Q0

i (Xi))}.

It is easy to see that E(WNtj,12) = 0. Also by the φ-mixing distribution condition given in Condition

(C1), we have var(WNtj,12) ≤ CW12N
−1d2

NT for some constant 0 < CW12 < ∞, then by following

the routine procedure as the proof in Lemma 5, we have

sup||λj−λ0
j ||≤C̃dNT

|WNtj,12| = op(N
−1/2). (A.44)

Moreover,

E(WNtj,13|X,F)=N−1
∑N

i=1
gj(Xji)E{I(yit − f0ᵀ

t Q0
i (Xi) ≤ 0)− I(yit − f0ᵀ

t Qi(Xi) ≤ 0)|Xi, ft}

= N−1
∑N

i=1
gj(Xji)

∫ 0

f0ᵀt (Qi(Xi)−Q0
i (Xi))

pi(s|Xi, ft)ds

= N−1
∑N

i=1
gj(Xji)pi(0|Xi, ft)f

0ᵀ
t (Q0

i (Xi)−Qi(Xi)) +O(d2
NT ) + o(N−1).
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Let

dNT δN,jt = N−1
∑N

i=1
gj(Xji)pi(0|Xi, ft)f

0ᵀ
t (Q0

i (Xi)−Qi(Xi)) +O(d2
NT ).

Since N−1
∑N

i=1{gj(Xji) − g0
j (Xji)}2 ≤ {C̃(dNT + o(N−1/2))}2, then as N → ∞, |dNT δN,jt| ≤

Cδ(dNT + o(N−1/2)) for some constant 0 < Cδ <∞. Therefore,

E(WNtj,13|X,F) = dNT δN,jt + o(N−1/2). (A.45)

Also by the φ–mixing condition given in Condition (C1), we have E{WNtj,13−E(WNtj,13|X,F)}2 ≤
C ′δN

−1dNT for some constant 0 < C ′δ <∞. Therefore, by following the procedure as the proof in

Lemma 5, we have

sup||λj−λ0
j ||≤C̃dNT

|WNtj,13 − E(WNtj,13|X,F)| =op(N−1/2). (A.46)

Therefore, the result in Lemma 13 is proved by (A.43), (A.44), (A.45) and (A.46).

Let λ = (λᵀ
1, . . . ,λ

ᵀ
J)ᵀ. For given f̂ [0], we obtain

λ̂[1] = arg min
λ
{(NT )−1

∑N

i=1

∑T

t=1
ρτ (yit − f̂ [0]

ut −
∑J

j=1
Bj(Xji)

ᵀλj f̂
[0]
jt )}.

Let ĝ
∗[1]
j (xj) = Bj(xj)

ᵀλ̂
[1]
j . The estimate for gj(xj) at the 1st step is

ĝ
[1]
j (xj) = ĝ

∗[1]
j (xj)/

√
N−1

∑N

i=1
ĝ
∗[1]
j (Xji)2.

We define the infeasible estimator of λ as

λ∗ = arg min
λ
{(NT )−1

∑N

i=1

∑T

t=1
ρτ (yit − f0

ut −
∑J

j=1
Bj(Xji)

ᵀλjf
0
jt)}.

Let g∗j (xj) = Bj(xj)
ᵀλ∗j and g̃∗j (xj) = g∗j (xj)/

√
N−1

∑N
i=1 g

∗
j (Xji)2.

Lemma 14. Let Conditions (C1)–(C5) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) =

o(1) and K−1
N (logNT )(logN)4 = o(1), then for every 1 ≤ j ≤ J ,[∫

{g̃∗j (xj)− g0
j (xj)}2dxj

]1/2

= Op(K
1/2
N (NT )−1/2 +K−rN ), (A.47)

and ∫
{ĝ[1]
j (xj)(xj)− g̃∗j (xj)}2dxj = Op(d

2
NT ) + op(N

−1/2). (A.48)

Therefore, for every 1 ≤ j ≤ J ,∫
{ĝ[1]
j (xj)− g0

j (xj)}2dxj = Op(d
2
NT ) + op(N

−1/2). (A.49)

Proof. Denote g̃0(x) = {g̃0
j (xj), 1 ≤ j ≤ J}ᵀ and g∗(x) = {g∗j (xj), 1 ≤ j ≤ J}ᵀ. Let λ0 =

(λ0ᵀ
1 , . . . ,λ

0ᵀ
J )ᵀ. Let B∗(x) = [diag [B1(x1)ᵀ, . . . , BJ(xJ)ᵀ]]J×JKN

. Then B∗(x)λ∗ = g∗(x) and

B∗(x)λ0 = g̃0(x). Let W 0
it = {Bj(Xji)

ᵀf0
jt, 1 ≤ j ≤ J}ᵀ,

ΨNT = (NT )−1
∑N

i=1

∑T

t=1
fε (0 |Xi, ft )W

0
itW

0ᵀ
it ,
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and r∗j,it = rj(Xji)f
0
jt. Moreover, define

UNT,1 = (NT )−1
∑N

i=1

∑T

t=1
W 0
it(τ − I(εit < 0)), (A.50)

UNT,2 = (NT )−1
∑N

i=1

∑T

t=1
W 0
itfε(0|Xi, ft)

(∑J

j=1
r∗j,it

)
. (A.51)

Let 1j be the J × 1 vector with the jth component being one and others being zero. By the same

procedure as the proof of Lemma 8, for K4
N (log(NT ))2(NT )−1 = o(1), we obtain the Bahadur

representation for λ∗ − λ0 as

λ∗ − λ0 = Ψ−1
NT (UN,1 + UN,2) +R∗NT (A.52)

and the remaining term R∗NT satisfies

||R∗NT || = Op(K
3/2
N (NT )−1 +K

3/2
N (NT )−3/4

√
log(NT ) +K

1/2−2r
N + (NT )−1/2K

−r/2+1/2
N )

= Op(K
3/2
N (NT )−3/4

√
log(NT ) +K

1/2−2r
N ) + op((NT )−1/2).

By (A.52) and following the same reasoning as the proof for (A.20), we have supxj∈[a,b] |g∗j (xj)−
g0
j (xj)| = Op(KN (NT )−1/2 +K−rN ), [

∫
{g∗j (xj)− g0

j (xj)}2dxj ]1/2 = Op(K
1/2
N (NT )−1/2 +K−rN ), and

[N−1
∑N

i=1{g∗j (Xji)− g0
j (Xji)}2]1/2 = Op(K

1/2
N (NT )−1/2 +K−rN ). Therefore, we have

{
√
N−1

∑N

i=1
g∗j (Xji)2}−1 − {

√
N−1

∑N

i=1
g0
j (Xji)2}−1 = Op(K

1/2
N (NT )−1/2 +K−rN ),

and thus

sup
xj∈[a,b]

|g̃∗j (xj)− g0
j (xj)| = Op(KN (NT )−1/2 +K−rN ),

[

∫
{g̃∗j (xj)− g0

j (xj)}2dxj ]1/2 = Op(K
1/2
N (NT )−1/2 +K−rN ).

Then the result (A.47) is proved. Define

L∗NT (f,λ) = (NT )−1
∑N

i=1

∑T

t=1
ρτ (yit − fut −

∑J

j=1
Bj(Xji)

ᵀλjfjt)

− (NT )−1
∑N

i=1

∑T

t=1
ρτ (yit − fut −

∑J

j=1
Bj(Xji)

ᵀλ0
jfjt).

Hence, λ̂[1] and λ∗ are the minimizers of L∗NT (f̂ [0],λ) and L∗NT (f0,λ), respectively. In Lemma 15,

we will show that

||λ̂[1] − λ0 −Ψ−1
NTUN,1|| = Op(dNT ) + op(N

−1/2). (A.53)

Hence, by (A.52), (A.53) and ||Ψ−1
NTUN,2|| = O(K−rN ), we have

||λ̂[1] − λ∗|| = Op(dNT ) + op(N
−1/2). (A.54)

Then we have
∫
{ĝ∗[1]
j (xj)−g∗j (xj)}2dxj = Op(d

2
NT ) and N−1

∑N
i=1{ĝ

∗[1]
j (xj)−g∗j (Xji)}2 = Op(d

2
NT ).

Thus,

{
√
N−1

∑N

i=1
ĝ
∗[1]
j (Xji)2}−1 − {

√
N−1

∑N

i=1
g∗j (Xji)2}−1 = Op(K

1/2
N (NT )−1/2 +K−rN ),

and the result (A.48) follows from the above results directly.
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Lemma 15. Let Conditions (C1)-(C4) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1)

and K−1
N (logNT )(logN)4 = o(1), then we have

||λ̂[1] − λ0 −Ψ−1
NTUN,1|| = Op(dNT ) + op(N

−1/2),

where UNT,1 is defined in (A.50).

Proof. By Lemma A.32 and (A.32), we have ||f̂ [0]
t − f0

t || ≤ Cf (dNT + N−1/2) for some constant

0 < Cf < ∞. Let Wit = {Bj(Xji)
ᵀfjt, 1 ≤ j ≤ J}ᵀ. Let f = (fᵀ1 , . . . , f

ᵀ
T )ᵀ satisfying that

||ft − f0
t || ≤ Cf (dNT +N−1/2). Write

L∗NT (f,λ)

= E{L∗NT (f,λ)|X,F} − (λ− λ0)ᵀ{VNT,1(f)− E(VNT,1(f)|X,F)}

+ VNT,2(f,λ)− E(VNT,2(f,λ)|X,F), (A.55)

where

VNT,1(f) = (NT )−1
∑N

i=1

∑T

t=1
Witψτ (yit − fut − λ0ᵀWit), (A.56)

VNT,2(f,λ) = (NT )−1
∑N

i=1

∑T

t=1
{ρτ (yit − fut − λᵀWit)− ρτ (yit − fut − λ0ᵀWit)

+ (λ− λ0)ᵀWitψτ (yit − fut − λ0ᵀWit)}.

By following the same reasoning as in the proofs of Lemmas 11 and 12, we have

E{L∗NT (f,λ)|X} = −(λ−λ0)ᵀE(VNT,1(f)|X,F)+
1

2
(λ−λ0)ᵀΨNT (λ−λ0)+op(||λ−λ0||2), (A.57)

VNT,2(f,λ)− E(VNT,2(f,λ)|X,F) =op(||λ− λ0||2 + (NT )−1), (A.58)

uniformly in ||ft − f0
t || ≤ Cf (dNT + N−1/2) and ||λ − λ0|| ≤ ςNT , where ςNT is any sequence of

positive numbers satisfying ςNT = o(1).Thus, by (A.55), (A.57) and (A.58), we have

L∗NT (f,λ) = −(λ− λ0)ᵀVNT,1(f)+
1

2
(λ− λ0)ᵀΨNT (λ− λ0)+op(||λ− λ0||2 + (NT )−1),

uniformly in ||ft − f0
t || ≤ Cf (dNT +N−1/2) and ||λ− λ0|| ≤ ςNT . Therefore, we have

λ̂[1] − λ0 = Ψ−1
NTVNT,1(f̂ [0]) + op{(NT )−1/2},

By following the same reasoning as the proof for (A.9), as (N,T )→∞ with probability approaching

1, we have ||Ψ−1
NT || ≤ C ′Ψ for some constant 0 < C ′Ψ < ∞. In Lemma 16, we will show that

||VNT,1(f̂ [0])−UNT,1|| = Op(dNT ) + op(N
−1/2). Therefore, the result in Lemma 15 follows from the

above results, and thus the proof is completed.

Lemma 16. Let Conditions (C1)-(C4) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1)

and K−1
N (logNT )(logN)4 = o(1), then we have

||VNT,1(f̂ [0])− UNT,1|| = Op(dNT ) + op(N
−1/2),

where VNT,1 and UNT,1 are defined in (A.56) and (A.50), respectively.
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Proof. Write

VNT,1(f) = VNT,11 + VNT,12(f) + VNT,13(f), (A.59)

where

VNT,11 = UNT,1 = (NT )−1
∑N

i=1

∑T

t=1
W 0
itψτ (εit),

VNT,12(f) = (NT )−1
∑N

i=1

∑T

t=1
(Wit −W 0

it)ψτ (εit)),

VNT,13(f) = (NT )−1
∑N

i=1

∑T

t=1
Wit{ψτ (yit − fut − λ0ᵀWit))− ψτ (εit)}.

Since ||N−1
∑N

i=1B(Xi)ψτ (εit)|| = Op(N
−1/2), we have with probability approaching 1,

sup
||ft−f0t ||≤Cf (dNT +N−1/2)

||VNT,12|| ≤ T−1
∑T

t=1
||N−1

∑N

i=1
B(Xi)ψτ (εit)||

× sup
||ft−f0t ||≤Cf (dNT +N−1/2)

||ft − f0
t || = O{N−1/2(dNT +N−1/2)} = o(N−1/2 + dNT ). (A.60)

By following the same procedure as the proof for (A.68), we have for any vector a ∈ RKNJ with

||a|| =1,

var(aᵀVNT,13(f)a) =O{KN (dNT +N−1/2)(NT )−1},

uniformly in ||ft − f0
t || ≤ Cf (dNT +N−1/2). Then by the procedure as the proof in Lemma 5, we

have

sup
||ft−f0t ||≤Cf (dNT +N−1/2)

||VNT,13(f)− E{VNT,13(f)}||=Op{K1/2
N (dNT +N−1/2)1/2(NT )−1/2}

= op(dNT ).

Hence,

||VNT,13(f̂ [0])− E{VNT,13(f̂ [0])}|| = op(dNT ). (A.61)

Let

κit(f) = f0
ut − fut +

∑J

j=1
(g̃0
j (Xji)(f

0
jt − fjt) + r∗j,it).

Then there exist constants 0 < C,C ′ <∞ such that

||E{VNT,13(f)|X,F}|| ≤ C||E[(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi){I(εit ≤ 0)− I(εit ≤ κit(f))}|X,F]||

≤ C ′||(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)κit(f)pi(0|Xi, ft)|| (A.62)

uniformly in ||ft − f0
t || ≤ Cf (dNT +N−1/2). Moreover, by (A.32) and Lemma 10, we have∥∥∥∥(NT )−1

∑N

i=1

∑T

t=1
Bi(Xi)κit(f̂

[0])pi(0|Xi, ft)

+(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)pi(0|Xi, ft)g̃

0(Xi)
ᵀ[Λ−1

N {N
−1
∑N

i=1
Q0
i (Xi)(τ − I(εit < 0))}]

∥∥∥∥
= O(dNT ) + op(N

−1/2). (A.63)

Since ||(NT )−1
∑T

t=1

∑N
i=1Q

0
i (Xi)(τ − I(εit < 0))|| = Op{(NT )−1/2}, and

||(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)pi(0|Xi, ft)|| = Op(1),
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we have∥∥∥∥(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)pi(0|Xi, ft)g̃

0(Xi)
ᵀ[Λ−1

N {N
−1
∑N

i=1
Q0
i (Xi)(τ − I(εit < 0))}]

∥∥∥∥
= Op{(NT )−1/2}. (A.64)

Therefore, by (A.62), (A.63), we have with probability approaching 1,

||E{VNT,13(f̂ [0])|X,F}|| = O(dNT ) + o(N−1/2). (A.65)

By (A.61) and (A.65), we have

||VNT,13(f̂ [0])|| = Op(dNT ) + op(N
−1/2). (A.66)

Therefore, the result in Lemma 16 follows from (A.59), (A.60), and (A.66) directly.

Proofs of Theorems 1 and 2. Based on (A.49) in Lemma 14, the result in Lemma 10 holds for f̂
[1]
t

with a different bounded sequence. Then the result (A.49) in Lemma 14 holds for ĝ
[2]
j (xj). This

process can be continued for any finite number of iterations. By assuming that the algorithm in

Section 3.1 converges at the (i+ 1)th step for any finite number i, the results in Lemmas 10 and 14

hold for f̂t = f̂
[i+1]
t and ĝj = ĝ

[i+1]
j (xj). Hence, Theorem 1 for f̂t follows from Lemmas 9 and 10,

directly, and Theorem 2 for ĝj is proved by using Lemma 14.

8.3 Proofs of Theorem 3

Proof. We prove the consistency of Λ̂Nt. Define

Λ̃Nt = (Nh)−1
∑N

i=1
K

(
yit − (f0

ut +
∑J

j=1 g
0
j (Xji)f

0
jt)

h

)
Q0
i (Xi)Q

0
i (Xi)

ᵀ,

and

Λ̂Nt = (Nh)−1
∑N

i=1
K

(
yit − (f̂ut +

∑J
j=1 ĝj(Xji)f̂jt)

h

)
Q̂i(Xi)Q̂i(Xi)

ᵀ.

We will show ||Λ̂Nt − Λ̃Nt|| = op(1) and ||Λ̃Nt − Λ0
Nt|| = op(1), respectively. Let d̂it(Xi) =

{f̂ut +
∑J

j=1 ĝj(Xji)f̂jt} − {f0
ut +

∑J
j=1 g

0
j (Xji)f

0
jt}. Then,

Λ̂Nt − Λ̃Nt = DNt,1 +DNt,2,

where

DNt,1 = (2Nh)−1
∑N

i=1
{I(|εit| ≤ h)− I(|εit − d̂it(Xi)| ≤ h)}Q0

i (Xi)Q
0
i (Xi)

ᵀ,

DNt,2 = (2Nh)−1
∑N

i=1
I(|εit − d̂it(Xi)| ≤ h){Q̂i(Xi)Q̂i(Xi)

ᵀ −Q0
i (Xi)Q

0
i (Xi)

ᵀ}.

Since there exist some constants 0 < cf , c1 <∞ such that with probability approaching 1,

E{d̂it(Xi)}2 =

∫
d̂2
it(x)fXi(x)dx ≤ cf

∫
d̂2
it(x)dx ≤ c1φ

2
NT + o(N−1),
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where φNT is given in (4.5), and the last inequality follows from the result in Theorem 2, then

there exists some constant 0 < c <∞ such that with probability approaching 1,

E||Λ̂Nt − Λ̃Nt|| ≤ c(2Nh)−1
∑N

i=1
E|d̂it(Xi)| × ||Q0

i (Xi)Q
0
i (Xi)

ᵀ||

≤ c(2Nh)−1
∑N

i=1
E{d̂it(Xi)}2E||Q0

i (Xi)Q
0
i (Xi)

ᵀ||2}1/2

≤ cc1/2
1 (2Nh)−1(

√
KN/(NT ) +K

3/2
N N−3/4

√
logN +K−rN )×∑N

i=1
{E||Q0

i (Xi)Q
0
i (Xi)

ᵀ||2}1/2.

By Condition (C3), we have supxj∈[a,b] |g0
j (xj)| ≤ C ′ for all j, for any vector a ∈RJ+1 and

||a||2 = 1, we have

aᵀQ0
i (Xi)Q

0
i (Xi)

ᵀa= {a0 +
∑J

j=1
g0
j (Xji)aj}2 ≤ (J + 1){a2

0 + g0
j (Xji)

2a2
j}

≤ (J + 1){a2
0 + (C ′)2a2

j} ≤ Ca

for some constant 0 < Ca <∞. Hence, ||Q0
i (Xi)Q

0
i (Xi)

ᵀ|| ≤ Ca, and thus we have

E||Λ̂Nt − Λ̃Nt|| ≤ cc1/2
1 (2Nh)−1(φNT + o(N−1/2))

∑N

i=1
Ca

= 2−1cc
1/2
1 Cah

−1(φNT + o(N−1/2)) = o(1)

by the assumption that h−1φNT = o(1) and h−1N−1/2 = O(1). Hence, we have ||DNt,1|| = op(1).

Moreover, for any vector a ∈RJ+1 and ||a||2 = 1, we have with probability approaching 1, there

exists a constant 0 < C <∞ such that

|aᵀDNt,2a|≤(2Nh)−1
∑N

i=1
|{a0 +

∑J

j=1
ĝj(Xji)aj}2 − {a0 +

∑J

j=1
g0
j (Xji)aj}2|

≤ C(2Nh)−1
∑N

i=1

∑J

j=1
|{ĝj(Xji)− g0

j (Xji)}aj |

≤ C(2h)−1
∑J

j=1
{N−1

∑N

i=1
{ĝj(Xji)− g0

j (Xji)}2a2
j}1/2

= O(h−1){O(φNT ) + o(N−1/2)} = o(1).

Hence, we have ||DNt,2|| = op(1). Therefore, ||Λ̂Nt− Λ̃Nt|| ≤ ||DNt,1||+ ||DNt,2|| = op(1). Next,

we will show ||Λ̃Nt − Λ0
Nt|| = op(1). Since

|E
{

(2h)−1I(|εit| ≤ h)− pi (0 |Xi ) |Xi, ft
}
|

= |(2h)−1h{pi (h∗ |Xi, ft ) + pi (−h∗∗ |Xi, ft )} − pi (0 |Xi, ft ) |

= |2−1[{pi (h∗ |Xi, ft )− pi (0 |Xi, ft )}+ {pi (−h∗∗ |Xi, ft )− pi (0 |Xi, ft )}]| ≤ c′h

for some constant 0 < c′ < ∞, where h∗ and h∗∗ are some values between 0 and h, and the last

inequality follows from Condition (C2), then by the above result and Condition (C5),

||E(Λ̃Nt − Λ0
Nt)|| = ||N−1

∑N

i=1
E[{(2h)−1I(|εit| ≤ h)− pi (0 |Xi, ft )}Q0

i (Xi)Q
0
i (Xi)

ᵀ]||

≤ c′h||N−1
∑N

i=1
EQ0

i (Xi)Q
0
i (Xi)

ᵀ|| = O(h) = o(1). (A.67)
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Moreover, by Conditions (C1), we have E{I(|εit| ≤ h)} ≤ 2C∗h for some constant C∗ ∈ (0,∞),

and then for any vector a ∈ R(J+1) with ||a|| =1, by Conditions (C1), (C2) and (C3), we have

var(aᵀΛ̃Nta)

= (2Nh)−2var

(∑N

i=1
I(|εit| ≤ h){a0 +

∑J

j=1
g0
j (Xji)aj}2

)
≤ (2Nh)−2

∑
i,i′

2{φ(|i− i′|)}1/2×(
E

[
I (|εit| ≤ h) {a0 +

∑J

j=1
g0
j (Xji)aj}4

])1/2(
E

[
I(|εi′t′ | ≤ h){a0 +

∑J

j=1
g0
j (Xji′)aj}4

])1/2

≤ (J + 1)2{a2
0 + C ′2a2

j}(2Nh)−2(2C∗h)2
∑

i,i′
2{φ(|i− i′|)}1/2

≤ (J + 1)2{a2
0 + C ′2a2

j}N−22C∗2K1

∑
i,i′
e−(λ1/2)(|i−i′|)

≤ (J + 1)2{a2
0 + C ′2a2

j}2C∗2K1N
−1{1− e−(λ1/2)} = O(N−1) = o(1). (A.68)

By (A.67) and (A.68), we have ||Λ̃Nt − Λ0
Nt|| = op(1). Hence, ||Λ̂Nt − Λ0

Nt|| ≤ ||Λ̂Nt − Λ̃Nt||+
||Λ̃Nt − Λ0

Nt|| = op(1).

8.4 Proofs of Theorem 4

Proof. Let S[rN ]t =
∑[rN ]

i=1 Q
0
i (Xi)(τ − I(εit < 0)), where [a] denotes the largest integer no greater

than a. Let M = bN . Define ΛNt(r) = N−1
∑[rN ]

i=1 pi (0 |Xi, ft )Q
0
i (Xi)Q

0
i (Xi)

ᵀ, zNt(r) =

N−1/2S[rN ]t, and

DbN (r) = N2

(
K∗
(

[rN ] + 1

bN

)
−K∗

(
[rN ]

bN

))
−
(
K∗
(

[rN ]

bN

)
−K∗

(
[rN ]− 1

bN

))
.

Denote K∗ij = K∗( i−jbN ), and ŵNt = τ(1−τ)
N

∑N
i=1 Q̂i(Xi)Q̂i(Xi)

ᵀ −N−1
∑N

i=1 v̂itv̂
ᵀ
it. Then

Ω̂Nt,N = N−1
∑N

i=1

∑N

j=1
v̂itK

∗
ij v̂

ᵀ
jt + ŵNt

= N−1
∑N

i=1
(v̂it

∑N

j=1
K∗ij v̂

ᵀ
jt) + ŵNt.

Define Ŝnt =
∑n

i=1 v̂it. By the assumptions in Theorem 1, φNTN
1/2 = o(1) and by the results

in Lemmas 9-16, we have

f̂t − f0
t = Λ−1

Nt{N
−1
∑N

i=1
Q0
i (Xi)(τ − I(εit < 0))}+ op(N

−1/2), (A.69)

sup
xj∈Xj

|ĝj(xj)− g0
j (xj)| = Op(φNT ) + op(N

−1/2) = op(N
−1/2). (A.70)

Let r ∈ (0, 1]. Let S̃[rN ]t =
∑[rN ]

i=1 Q
0
i (Xi)(τ − I(ε̂0

it < 0)), where ε̂0
it = yit−{f̂ut+

∑J
j=1 g

0
j (Xji)f̂jt}.

By Lemma 13, we have

||N−1/2Ŝ[rN ]t −N−1/2S̃[rN ]t|| = op(1). (A.71)

For any given ft ∈ RJ+1, define S[rN ]t(ft) =
∑[rN ]

i=1 Q
0
i (Xi)(τ − I(εit(ft) < 0)), where εit(ft) =

yit − {fut +
∑J

j=1 g
0
j (Xji)fjt}. Following similar arguments to the proof in Lemma 16, we have

sup
||ft−f0t ||≤C(dNT +N−1/2)

||N−1/2[S[rN ]t(ft)− S[rN ]t(f
0
t )− E[{S[rN ]t(ft)− S[rN ]t(f

0
t )}|X,F]]|| = op(1).
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Moreover,

N−1/2E[{S[rN ]t(ft)− S[rN ]t(f
0
t )}|X,F]

=
∑[rN ]

i=1
Q0
i (Xi)E[(I(εit(f

0
t ) < 0)− I(εit(ft) < 0))|Xi, ft], (A.72)

and thus by Taylor’s expansion, we have

||N−1/2E[{S[rN ]t(ft)− S[rN ]t(f
0
t )}|X,F]

−N−1/2
∑[rN ]

i=1
pi (0 |Xi, ft )Q

0
i (Xi)Q

0
i (Xi)

ᵀ(f0
t − ft)|| = op(1). (A.73)

Hence, by (A.71), (A.72) and (A.73), we have

N−1/2Ŝ[rN ]t = N−1/2
∑[rN ]

i=1
Q0
i (Xi)(τ − I(εit < 0))

−N−1/2
∑[rN ]

i=1
pi (0 |Xi, ft )Q

0
i (Xi)Q

0
i (Xi)

ᵀ(f̂t − f0
t ) + op(1).

This result, together with (A.69), implies

N−1/2Ŝ[rN ]t = zNt(r)− ΛNt(r){ΛNt(1)}−1zNt(1) + op(1). (A.74)

Thus, N−1/2ŜNt = op(1). By following the argument above again, we have ||N−1/2
∑N

j=1 v̂jtK
∗
jN −

N−1/2
∑N

j=1 vjtK
∗
jN || = Op(1). Also ||N−1/2

∑N
j=1 vjtK

∗
jN || = Op(1) by the weak law of large

numbers. Hence, ||N−1/2
∑N

j=1 v̂jtK
∗
jN || = Op(1). Therefore

N−1
∑N

j=1
v̂jtK

∗
jN Ŝ

ᵀ
N = Op(1)op(1) = op(1).

By (A.69) and (A.70), ŵNt = op(1). By this result and also applying the identity that∑N
l=1 albl = (

∑N−1
l=1 (al − al+1)

∑l
j=1 bj) + aN

∑N
l=1 bl to

∑N
j=1K

∗
ij v̂

ᵀ
j and then again to the sum

over i, we obtain

Ω̂Nt,M=bN = N−1
∑N−1

i=1
N−1

∑N−1

j=1
N2((K∗ij −K∗i,j+1)− (K∗i+1,j −K∗i+1,j+1))N−1/2ŜitN

−1/2Ŝᵀ
jt

+N−1
∑N

j=1
v̂jtK

∗
jN Ŝ

ᵀ
Nt + op(1),

and thus

Ω̂Nt,M=bN =
∑N−1

i=1

∑N−1

j=1
((K∗ij −K∗i,j+1)− (K∗i+1,j −K∗i+1,j+1))

Ŝit√
N

Ŝᵀ
jt√
N

+op(1). (A.75)

Moreover,

N2((K∗ij −K∗i,j+1)− (K∗i+1,j −K∗i+1,j+1)) = −DbN{(i− j)/N}. (A.76)

Also limN→∞DbN (r) = 1
b2
K∗′′( rb ), ||ΛNt(r)−rΛ

0
t || = op(1), where Λ0

t = limN→∞ Λ0
Nt and zNt(r)

D→
WJ+1(r)Υᵀ. Thus,

(ΛNt(r),zNt(r)
ᵀ, DbN (r))

D→
(
rΛ0

t ,ΥWJ+1(r)ᵀ,
1

b2
K∗′′

(r
b

))
. (A.77)
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Hence, by (A.74), (A.75), and (A.76), it follows that

Ω̂Nt,M=bN =

∫ 1

0

∫ 1

0
−DbN (r − s)[zNt(r)− ΛNt(r){ΛNt(1)}−1zNt(1)]

× [zNt(s)− ΛNt(s){ΛNt(1)}−1zNt(1)]ᵀdrds+ op(1). (A.78)

By the continuous mapping theorem,

Ω̂N,M=bN
D→ Υ

∫ 1

0

∫ 1

0
− 1

b2
K∗′′(

r − s
b

){WJ+1(r)− rWJ+1(1)}{WJ+1(s)− sWJ+1(1)}ᵀdrdsΥᵀ.

Then the proof is completed.

8.5 Proofs of Theorems 5 and 6

Proof. By (A.69), f̂t − f0
t = N−1/2ΛNt(1)−1zNt(1) + op(N

−1/2). Then under H0, we have

N1/2(Rf̂t − r) = RΛNt(1)−1zNt(1) + op(1). (A.79)

It directly follows from (A.77), (A.78) and (A.79) that

FNt,b
D→ {RΛ0−1

t ΥWJ+1(1)}ᵀ{Rτ(1− τ)Λ0−1
t

× (Υ

∫ 1

0

∫ 1

0
− 1

b2
K∗′′(

r − s
b

)BJ+1(r)BJ+1(s)ᵀdrdsΥᵀ)Λ0−1
t Rᵀ}−1

×RΛ0−1
t ΥWJ+1(1)/q.

Since RΛ0−1
t ΥWJ+1(1) is a q × 1 vector of normal random variables with mean zero and variance

RΛ0−1
t ΥΥᵀΛ0−1

t Rᵀ, RΛ0−1
t ΥWJ+1(1) can be written as Υ∗tWq(1), where Υ∗tΥ

∗ᵀ
t = RΛ0−1

t ΥΥᵀΛ0−1
t Rᵀ.

Then replacing RΛ0−1
t ΥWJ+1(1) by Υ∗tWq(1) and canceling Υ∗t in the above equation, we have the

result in Theorem 5. Moreover, under the alternative that H1: Rf0
t = r + cN−1/2, we have

N1/2(Rf̂t − r) = N1/2(Rf0
t − r) +RΛNt(1)−1zNt(1) + op(1)

= c+RΛNt(1)−1zNt(1) + op(1).

Thus by (A.77), we have

FNt,b
D→ {c+RΛ0−1

t ΥWJ+1(1)}ᵀ{Rτ(1− τ)Λ0−1
t

× (Υ

∫ 1

0

∫ 1

0
− 1

b2
K∗′′(

r − s
b

)BJ+1(r)BJ+1(s)ᵀdrdsΥᵀ)Λ0−1
t Rᵀ}−1

× {c+RΛ0−1
t ΥWJ+1(1)}/q.

Also c + RΛ0−1
t ΥWJ+1(1) ≡ c + Υ∗tWq(1) = Υ∗t (Υ

∗−1
t c + Wq(1)). Then the result in Theorem 6

follows from the above results. The proof is completed.
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