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Abstract

Moment restriction semiparametric models, where both the dimension of parameter
and the number of restrictions are divergent and an unknown function is involved, are s-
tudied using the generalized method of moments (GMM) and sieve method dealing with
the nonparametric parameter. The consistency and normality for the GMM estimators
are established. Meanwhile, a new test statistic is proposed for over-identification is-
sue, which also is workable for the traditional moment restriction models. In addition,
the potential sparsity under our setting is investigated via the combination of GMM
methodology and penalty function approach. Numerical examples are used to verify

the established theory.

Key works: Generalized method of moments, high dimensional models, moment

restriction, over-identification, sieve method, sparsity
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1 Introduction and examples

We consider a class of moment restriction models where there are many Euclidean valued pa-

rameters as well as unknown infinite dimensional functional parameters. The setting includes



as a special case the partial linear regression model, Robinson [33], except in our case the
number of covariates in the linear part may be large, i.e., increase to infinity with sample size.
For example, there are often many binary covariates whose effect can be restricted to be lin-
ear without a great loss of generality. Our model framework specifies which variables affect
the outcome in a linear fashion and which variables affect the outcome nonlinearly. Non-
parametric and “parametric” components can both be of interest in applications but present
different statistical issues. Efficiency bounds and their achievability are quite different be-
tween the two cases. Inference procedures also differ substantially. In our framework, the
model components are known beforehand and are clearly demarcated, and we can compare
our results for the two different components with existing results in the relevant literatures.
However, the parametric component itself is growing in complexity, which raises some new
issues. We will use the Generalized Method of Moments (GMM) to deliver simultaneous
estimation of all unknown quantities from a large dimensional moment vector. There is a
considerable literature on GMM in parametric cases and recent work has mainly focussed on
the extension to either many moment conditions (Newey and Windmeijer [28], for example)
or to the case where the number of Euclidean parameters is finite but there are unknown
function-valued parameters (see, for example, Chen and Liao [11]; Chen et al. [12]). We will
provide inference techniques for the parametric and nonparametric components of our model.
Suppose that
Em(Vi,a' X, g(Z))] = 0, (L1)

for i =1,...,n, where m is a known vector of functions whose dimension q is large, i.e., ¢ =
q(n) — oo as n — oo. Here, v is an unknown Euclidean valued parameter whose dimension
p = p(n) — oo as n — oo, while ¢ is an unknown smooth function. The observed vector
variable V; typically represents a dependent variable and possible instrumental variables,
while the observed vectors X; and Z; are explanatory variables, where Z;,V; are of finite
dimension, but the dimension of X; may diverge. We will consider the case where the
parameter dimension p grows to infinity but is smaller than n, similar to Portnoy [30], Portnoy
[31] and Mammen [25]. This is the case in many applications. The moment restriction model
(1.1) features high dimensionality in two folds: a high dimensional Euclidean parameter (o)
that shows up in a single-index form, and a zero-mean function m(-) with divergent dimension
that usually represents an error term. In addition, it includes an infinite dimensional unknown
function g(-). Together this represents a new framework in the literature.

We suppose that a sample (V;, X;, Z; )™, is observed. We shall simultaneously estimate
a and g in parameter spaces defined below. As the function g can be regarded as an element
in some function space, which is infinite dimensional, all parameters are of high dimension.

Moreover, we are also interested in transformations of a and functionals of g for which we



have plug-in estimators once we obtain the estimates of a and g. Chen et al. [12] study a
fixed-dimensional moment restriction model containing an unknown function. The estimation
strategy can be two step or profiled two-steps depending on the context. A similar approach
is used again in Chen and Liao [11]. Kernel estimation techniques generally require an
additional (albeit related) estimating equation and either two-step or profile methods are
common, see, for example, Powell [32].

To illustrate the proposal of model (1.1), we give the following examples.

Example 1.1 (Conditional moment restrictions): Let W; be a sub-vector of (X;, Z; )" and
p(Y:, o' X;, g(Z;)) be a known J-dimensional vector of generalized residual function. Then,

(e, g) is determined by a conditional moment restriction
Elp(Y;, o X;, g(Z))|Wi] =0, almost surely.

Let @p(w) = (hi(w), ..., hx(w)) be a vector of functions that can approximate any square
integrable function of W in some sense arbitrarily as & — co. Then, the conditional restriction
implies

Elp(Y;, o' Xi, 9(Z:)) @ @(Wi)] = 0.

Denote m(V;, o' X;,9(Z;)) = p(Yi, ' X;,9(Z;)) @ & (W;) where V; = (Y;, W,)". Notice
that the dimension of m function is Jk which increases with k. Therefore, the pair (a, g) can
be solved from the unconditional moment equation E[m(V;, o’ X;, g(Z;))] = 0. For example,
suppose that A(Z;) = o' X; + ¢;, where A() is an unknown monotone function and (V;, X;)
are observed. Under the conditional moment restriction E(e|[W) = 0 for some vector of
instrumental variables W we may obtain unconditional moment restrictions like (1.1) with

A being the unknown function of interest.

Example 1.2 (High dimensional partially linear endogenous model): Let Y; = o' X; +
9(Z;)) + e, i = 1,...,n, where « € RP and e; is an error term such that Ele;] = 0 for
all i. Here, (X;, Z;) is endogenous in the sense that Ele;|X;, Z;] # 0. In the case where
the dimensionality of « is fixed, there are various results available in the literature (see, for
example, Robinson [33]; Gao and Liang [19]; Gao and Shi [20]; Hérdle et al. [24]). To deal
with the endogeneity, let W, be instrumental variable and define a set of valid instruments
Ai = A(W;) with dimension ¢ and ¢ > p.

Denote m(V;,a" X;, g(Z;)) = (Vi — o' X; — g(Z;))\i(W;) with V; = (Y;, W])". Then, we
have the moment condition E[m(Y;, W;,a" X;, g(Z;))] = 0, which can be used to identify the

parameter o and nonparametric function g(-).

Example 1.3 (Discrete maximum likelihood): Suppose that Y; assumes either 0 or 1,
and
P(Y; =1|X;, Z;) = F(a" X; + 9(Z)),
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fort=1,...,n, where a, X; € RP and Z; € R. The log likelihood function is

mH FY (" X; 4+ g(Z)[1 — F(a" X; + g(Z)] Y.
1=1
A sieve method can be used to estimate the unknown ¢(-), along with the estimate of «.
Suppose that the function g(-) can be approximated arbitrarily in some sense by a linear
combination of k known functions wrapped into a column vector ®.(-), i.e. g(z) — B ®(2)
is approaching zero in some sense as k — co. Thus, the estimate of (o, g) can be obtained

through maximizing

Qula, B) : mHFY o' X; + B Op(Z))[1 — F(a" X; + 57 ®p(Z:))]F Y,

=1

/\

to have @ and 3 (hence naturally §(z) = 8'®(2)). The first order condition gives

0Qn _ N~ Yi = F(a"Xi + BT 04(Z)|F (" Xi + BT ®4(Zi) | _
56 Z (@ Xs 1 FO(Z))L = Fla' X, + 5oz "
)
)

0Qn  ~=[Yi— F(o'Xi+ B Ou(Z))F(a" Xi + 8'0u(Z) .,
0B Z a'Xi+ fT0x(Z)[1 — F(a'X; + T (2 i)]cb’“(zz)—o’

for i = 1,...,n, which can be viewed as a sample version of moment condition, with m(-)

defined properly, E[m(Y;, Xi, ®x(Z:), o' X;, 87 ®r(Z:))] = 0.

Our strategy for dealing with the specification of model (1.1) is simple. Suppose that
g(-) belongs to a suitable Hilbert space. We then expand the function ¢(-) into an infinite
orthogonal series in terms of a basis in the Hilbert space, {¢;(2)}, say. As a result, g(z) can
be approximated by the partial sum Z?;& B;¢;(2) in the norm of the space. In this way, the
unknown function is completely parameterized, which enables us to estimate the parameter
vector o and the function ¢(-) in model (1.1) simultaneously. This procedure also avoids
high level assumptions in our study. By contrast, some high level conditions are engaged in
the relevant literature, such as Chen et al. [12] and Han and Phillips [22]. In addition, our
approach can be classified as a one-step GMM method, in contrast with the two-step GMM
study in the literature that engages an initial estimator. See, for example, Chen and Liao
[11].

In addition to the estimation of model (1.1), we also propose a new test statistic, to
the best of our knowledge, in order to tackle over-identification issue. Moreover, given the
divergence of the number of both regressors and moment restriction, it is desirable to consider
the situation for model (1.1) that possesses sparsity. That is, p > n but «a contains plenty
of zeros except that some so-called important coefficients are nonzero. To estimate the

parameters of interest under sparsity, often a penalty function should be combined with the
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objective function. It can be seen in the sequel that the variable selection and estimation
can be done simultaneously.

The rest of the paper is organized as follows. Section 2 gives the estimation procedure;
Section 3 provides the asymptotic theory for the estimator proposed in the preceding section;
Section 4 studies the over-identification issue. The sparsity in our model is investigated in
Section 5, followed by numerical evidence in Section 6; and the last section then concludes.

Throughout, || - || can be either Euclidean norm for vector or Frobenius norm for matrix,
or the norm of functions in function space that would not arise any ambiguity in the context;
® denotes Kronecker product for matrices or vectors; := means equal by definition; I, is the

identity matrix of dimension 7.

2 Estimation procedure

The unknown function g(z) can be a vector of functions or a multivariate function. Both of
these contexts are useful in practice and they may be dealt with similarly using sieve method.
For the sake of easy exposition, however, we suppose in this paper that g(z) is a single
multivariate function defined on Z C R?. Let g(z) € L*(Z,n(2)) = {f(2) : [, [*(z)7(2)dz <
oo} a Hilbert function space, where m(z) is a user-chosen density function on Z. The choice
of the density m(z) relates to how large the Hilbert space should be, since the thinner the tail
of the density is, the larger the space is. For example, L*(R,1/(1 + 22)) C L*(R, exp(—2z?)).
An inner product in the Hilbert space is given by (fi, fo) = [, f1(z)f2(2)7(2)dz, and hence
the induced norm ||f|| = \/(f, f) for any fi(z2), f2(2), f(z) € L2(Z,7T(z)). Two functions
f1(2), f2(z) € L*(Z,7(2)) are called orthogonal if (f, fo) = 0, and further are orthonormal
i |2l = 1 and || fofl = 1.

The parameter space for model (1.1) is defined as, © = {(a, f) :a € R?, f € L*(Z,7(2))},

which contains the true parameter (¢, g) as an interior point.

Assumption 2.1 Suppose that {p;(-)} is a complete orthonormal function sequence in
L*(Z,w(+)), that is, (pi(+), p;(-)) = dij the Kronecker delta.

Recall that any Hilbert space has a complete orthogonal sequence [see Theorem 5.4.7 in
15, p. 169]. In our setting, although ¢(-) is multivariate, the orthonormal sequence {p;(-)}
can be constructed from the tensor product of univariate orthogonal sequences. Thus, we
hereby briefly introduce some existing univariate orthonormal sequences only.

Generally speaking, an orthonormal sequence depends on its support on which it is defined
and the density by which the orthogonality is defined. Hermite polynomials form a complete

u?,

orthogonal sequence on R with respect to the density e™™"; Laguerre polynomials are a

U.

complete orthogonal sequence on [0,00) with density e™*; Legendre polynomials and also
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orthogonal trigonometric polynomials are complete orthogonal sequence on [0, 1] with the
uniform density; Chebyshev polynomials are complete orthogonal on [—1,1] with density
1/v/1 —u?. See, e.g. Chapter One of Gautschi [21].

For the function g(z) € L?(Z,7(z)), we may have an infinite orthogonal series expansion:
9(z) =) Byej(z), where §; = (g, ;). (2.1)
=0

The convergence of (2.1) normally can be understood in the sense of the norm in the space,
whereas in the situation where g(z) is smooth, the pointwise sense may hold. For positive
integer k, define gx(z) = Z?;é Bjpj(2) as a truncated series and 4 (2) = > 77, Bjp;(2) the
residue after truncation. Then, gi(z) — ¢(z) as k — oo in some sense. Note that gi(z)
is a parameterized version of g(z) in terms of the basis {(;(z)} where only the coefficients
remain unknown. This is the main advantage of the sieve method. In addition, the Parseval
equality gives > 27 A7 = [|g||* < oo, implying the attenuation of the coefficients. For better
exposition, denote ®x(2) = (¢o(2),...,06-1(2))" and 8 = (Bo,...,Bk_1)" two k-vectors.
Thus, gi(z) = 8" @x(2).

Our primary goal is to estimate («, g(+)), and the consistency studied below will be defined

in terms of a norm given by

I O = (lal + 1172) " (2:2)
where || - ||g denotes the Euclidean norm on R? and || f]| 2 signifies the norm on the Hilbert
space, of which the subscript may be suppressed whenever there is no ambiguity incurred.

As usual, in order to facilitate an implementation of nonlinear optimization, a should be
confined in a compact subset of R? and the truncated series gi(z) = 3" ®x(2) of g function
should be included in an expanding finite dimensional bounded subsets of L*(Z,7(z)). Tt
is noteworthy that in an infinite dimensional space, a bounded subset may not necessarily
be a compact set. A detailed discussion on the relationship for the compactness in infinite
dimensional space can be found in Chen and Pouzo [13]. Nevertheless, in the case that the
function m is linear in the second and the third arguments, such restrictions are not necessary

(we shall discuss this in Section 5 using an example).

Assumption 2.2 Suppose that By, and Bs, are positive reals diverging with n such that «
in model (1.1) is included in ©1, := {a € R? : ||a|| < By,} and for sufficient large n, gi(z)
is included in Og, = {b'®(2) : ||b]| < Ba,}.

Here, unlike in a general single-index model, we do not require ||«|| = 1 for identification.
This is because the function m(-) is known and hence we are able to identify any scaling for

«. It is also a convention on computation that the true parameter is assumed to be contained



within a bounded set [see 27, p. 1569], whereas the difference is that in this paper we allow
the bounds of a to diverge with the sample size since the dimensionality of o grows to infinity.

Meanwhile, since ||gx(2)|| = ||B]] < |lg|| it is clear that there exists an integer ng such
that gr(z) € ©a, for all n > ng. Similar to the orthogonal expansion in (2.1), for any
f(z) € L*(Z,n(2)), f(2) can be approximated by Z;:é bjp;i(2) = b' ®y(z) arbitrarily in the
sense of norm, where b; and b are defined similarly to 3; and (3, respectively. This means
that ©,, is approximating the function space with the increase of the sample size. Thus, the
parametric space can be approximated by ©, = 01, ® O,, as n — oo. In the literature,
Oy, is the so-called linear sieve space. More importantly, ©,, is bounded and compact. The
above setting is similar to but broader than that in Newey and Powell [27].

We rewrite the moment condition (1.1) as
E[m(Vi, o' X;, B'®1(Z;) + (Z;))] = 0. (2.3)
where 7, (+) is negligible for large k. We estimate « and (3 by

(@, B) = argmin |[|M,(a, b)||2, subject to ||a|| < By, and ||b|| < Ba,,
acRP,beRF

11 (2.4)
where M,(a,b) = —=Y m(V;,a’X;,b" ®,(Z))).
Van =
Here, the involvement of ¢ in M, (a,b) takes into account the divergence of the dimension
of the m function in order to avoid that ||M,(a, b)|| could be large even if each element is
small when we had not put ¢ into M, (a,b). However, this issue does not matter when the
vector—valued m function has a fixed dimension. In addition, from the proof of the theorems
below, the term /g in M, (a, b) can be replaced by some appropriately chosen function of g,
which normalizes the divergence of the norm of M, (a,b). For the sake of simplicity, we take

\/q in this paper. Then, naturally define

§(z) = B () (2.5)

for any z € Z as an estimator of g(z). In the next section we establish consistency of this
estimator in the sense that ||(§— 0,9(z) —g(2))|| =p 0 as n — oo where the norm is defined
in (2.2).

3 Asymptotic theory

3.1 Consistency

Before starting our asymptotic theory, we need to state some necessary assumptions.
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Assumption 3.1 Suppose that: (a) for each n, {V;, X, Z;}7 is an independent and iden-
tically distributed sequence; (b) for the density f7(z) of Z1, fz(z) < Cn(z) on the support
Z of Zy for some constant C; (c) the function m(-,-,-) is continuous in the second and third

arguments; (d) q(n) — p(n) > k.

The i.i.d. property in Assumption 3.1.a simplifies the presentation and some of the
calculations, although it is possible to relax it a dependent data setting. About Assumption
3.1.b, the relation between the densities of the variable Z; and the function space is widely
used in the literature. See, e.g. Condition A.2 and Proposition 2.1 of Belloni et al. [4, p.
347]. For Assumption 3.1.c, the continuity of the m function in the arguments where the
parameters are involved is weak and typically used functions satisfy it. In Assumption 3.1.d
we allow for possible overidentification of the parameter vector in the moment conditions,

and we shall discuss this issue further in the next section.

Assumption 3.2 Suppose that there is a unique function g(-) € L*(Z,n(2)) and for each
n there is a unique vector a € RP such that model (1.1) is satisfied. In other words, for any

0 > 0, there is an € > 0 such that

inf ¢ Y Em(V;,a' Xy, f(Z))]* > e
(a,f)€®
(a—a,f~g)l|>6

It is quite standard in the literature to assume such a uniqueness condition. Here again,
the squared norm is scaled down by its dimension due to the same reason as in the formulation
of M, in the last section, for which we do not mention repeatedly in what follows whenever

the norm is scaled.

Assumption 3.3 Suppose that for each n, there is a measurable positive function A(V, X, Z)
such that

¢ 2 Im(V,a1X, f1(Z)) = m(V,axX, fo(2))I| < A(V. X, Z)[|las — aul| + | f2(Z) — fo(Z)]]

for any (a1, f1), (az, fa) € O, where (V, X, Z) is any realization of (V;, X;, Z;) and the func-
tion A satisfies that max;>1 E[A*(V;, X;, Z;)] < oo uniformly in n.

This assumption is a kind of Lipschitz condition. The positive function A(V, X, Z) may
be viewed as the upper bound of the norm of the partial derivatives of ¢~'/?m(V,a’ X, w)
with respect to vector a and scalar w, respectively, and thus the condition is fulfilled if the
second moment of A(V,X,Z) is bounded. The assumption guarantees the approximation
m(Vi, ' X, BT ®r(Z;)) to m(V;, o' X4, g(Z;)), because

lm(Vi, o X;, 8" ®1(Z3)) — m(Vi, o Xy, g(Z))|



<A(Vi, Xi, Z)9(Z:) — B ®x(Zi) |l = Op(1)|lne ()l = 0p(1)

by virtue of Assumption 3.1(b). Also, it ensures that ||[Em(V;, o' X;, 8" ®x(Z;))|| = o(1) since
Em(V;,a" X;, 9(Z;)) = 0. More importantly,

qilEHm<V;7 aTXi7 f(Zl)) “2
<2¢7'E||m(V;,0,0)|| + 2E[A(V;, Xi, Zo)][|lall* + Ef (Z:)°] = O(B}, + B3,)

uniformly on (a, f) € O,,.

Theorem 3.1 (Consistency). In addition to Assumptions 2.1-2.2 and 3.1-3.3, suppose that

B? + B2 =o(n). Then, we have ||(@ — a,§(z) — g(2))|| =p 0 as n — cc.

The proof is given in Appendix B.

3.2 Limit distributions of the estimator

As the dimension of « diverges, we may not be able to establish a limit distribution for @ — «.
Instead, we shall aim at some finite dimensional transformations of o and functionals of g(z),
for which plug-in estimators are used.

Let .Z be a linear transformation from R? — R” with r > 1 fixed, and . = (Fy,..., %)’
with fixed s be a vector of functionals on L?(Z,7(z)). Normally, the transformation . can
be understood as an r X p matrix with rank r, while in the literature one usually takes r = 1.
See, e.g. Theorem 4.2 in Belloni et al. [4, p. 352] and several results such as Theorems
2 and 6 in Chang et al. [9]. Moreover, the elements of .# can be, as described in Newey
[26, p.151], the integral of In[g(z)] on some interval which stands for consumer’s surplus in
microeconomics, for example. Other examples include partial derivative function, average
partial derivative function and conditional partial derivative.

Thus, we shall consider the limit distributions of Z(a) — Z(«) and .Z (g) — Z(g).

Assumption 3.4 Suppose that the m function is differentiable with respect to its second
and third arguments up to the third order. Let the g function be smooth such that Assumption
A.2 in Appendiz A is satisfied.

The differentiability of the m function up to the third order makes the derivation of the
asymptotic distribution below much simpler than in some papers in the literature since it
enables us to expand the score function where the terms with higher order than the Hessian
matrix can be ignored. Certainly, this condition can be relaxed to have the derivatives of up
to the second order but for simplicity we retain it. It is well known that certain smoothness
order of the g function is required to get rid of the truncation residues. Such a requirement

is implicitly spelt out by Assumption A.2.



To investigate the asymptotics, denote the Score and Hessian functions

) 92 52
8_ ool o ART

S.(a,b) = ; |M,(a,b)|?,  H,(a,b):= 83;3 63;; | M, (a, b)]||?.
ob dbda’  ObdbT

Under certain conditions, the asymptotic behavior of H,(a, ) and S, (a, 3) is given by
Lemmas A.2 and A.3 in Appendix A.

Recall the Fréchet derivative operator for an operator from one Banach space to another.
Note that it is a bounded linear operator. In the current case, the Fréchet derivative of .7

at g(-) is an s-vector of functionals, denoted by .#'(g), such that
Z(9) = F(9) = F(9)G—9)+Ng.7—9),
where A(g,9 — g) = o(|[g — gl|)-
Theorem 3.2 (Normality). Let Assumptions 2.1-2.2, 3.1-3.4 and A.1-A.3 (given in Ap-

pendiz A) hold. Then

Z() - Z(«
N @ =2 4 N(0,1,4,)
F(9) — F(9)
as n — oo provided that /nX (0, F (9)v(2)")" = o(1), where 3, is given by the square

root of

Y2 =T, [V, V|7, 2, ) [, U | 'T), in which

Z 0
0 F'(g)x(-)'

r, =
(r+s)x(p+k)
En :E[m(‘/la OéTle g<Z1))m(‘/17 aTX17 Q(Zl))T]qu

o g [ FmVEa Xug(Z) ® X

o T T

~m(V1,a X1,9(Z b, (7
awm( 1, & 179( 1)) ® k( 1) (p+k)xq
provided that W,V is invertible, in which u and w stand for the second and the third argu-

ments of the vector function m(v,u,w), respectively.

The proof is given in Appendix B. Apart from the diverging dimensions of ¥,, and =,, and
the use of the transformation . and the functional .%, the form of the covariance matrices
Y32 is exactly the same as in the literature such as Hansen [23], Pakes and Pollard [29] and
Chen et al. [12].

The requirement of /n%,(0;, #' (g)ve(2)")" = o(1) is an undersmoothing condition,

playing a similar role to its counterpart in the literature, see, for example, the condition
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VnVi KP4 = 6(1) in Corollary 3.1 of Chen and Christensen [10, p. 454] and Comment 4.3
of Belloni et al. [4]. If r = 1, the transformation . will transform the vector « into a scalar,
Z(a) = aya, for some ap € R? and ag # 0. This is the case commonly encountered in the
literature. See, e.g. Chang et al. [9] and Belloni et al. [4].

It is clear that the convergence order of .Z (@ — «) is n~'/2, while that of .#(3) — .Z(g)
is proportional to (F'(g)®x(2)".#" @ (2))*/?n~1/2, which is similar to the result in Theorem
2 of Newey [26]. Here, the matrix in the front of n='/2 is of dimension s x s associated with
the derivative of functional .%. To understand how it affects the rate, consider a special case
that s = 1 and .% (g) = g(z) for some particular z, implying .Z (g) — % (9) = g(z) — g(z) and
Z'(g) = 1. Then, the matrix is a scalar and the rate becomes ||®;(2)||n~'/2, which coincides
with the rates of convergence in the literature. See, for example, Dong and Linton [14].

The result in above theorem does not rule out the weak instrument case where the matrix
¥, is close to singular, i.e. |X,| # 0 but |X,| — 0 with n at a certain rate. However, this
would reduce the convergence rate.

The limiting normal distribution involves unknown parameters in the matrix 3,. In
practice one would need a consistent estimator for this matrix. It is easily seen that the
consistent estimator, &, of 3, can be obtained if we replace o and g(-) in 2, by @ and §(-),

as well as the expectations in =, and W, by their sample versions. More precisely, let

where T',, is I',, with replacement of .Z’(g) by .#'(3) and
= 1 & ~T ~ ~T -~ T
== S Vi, @K G20V, 87X §(Z) ) (3.)
i=1

1<~ [ 2m(Vi,da" X, §(Z) @ X, 52)
i=1 %m(‘/maTXu/g\(Zl))T & q)k(Zz)

It is readily seen that EA]n — Y, —»p0asn — oo.

If a weight matrix is used in the minimization, the efficiency of the limit theorem may
be improved. Let W, = W, (a, ) be a g x g positive definite matrix depending on the
parameter and the data used in M,. Then, ||M,(a,b)|?, which measures the metric of
M, (a,b) from zero, can be substituted by M, (a,b)"W,(a,b)M,(a,b) in the minimization
of (2.4), which is also a measure of the metric for the vector M,(a,b) from zero but in terms
of the weight matrix W,,. Meanwhile, || M, (a,b)||?> can be viewed as a special case that W,
is the identity matrix. Definitely, W,, can not be close to singular to eschew the possibility
that M, (a,b)"W,(a,b)M,(a,b) may be close to zero when (a,b) is far from (o, 3).
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Proposition 3.1. Suppose that the eigenvalues of W, are bounded away from zero and above
from infinity uniformly in n, and that sup|a_ab-p)|<s, |Wn(a, b) = Wy | = op(1) with 6, =
o(1) when n large. Let (&,53) be the minimizer of M,(a,b) W,(a,b)M,(a,b) and define
i) = 0y(2)'B.

Then, (1) Under the same conditions in Theorem 3.1, the consistency of the weighted
estimator holds; (2) Under the same conditions the normality for the weighted estimator in

Theorem 3.2 holds with X2 replaced by
L[V, W, | ', W, 2, W, (W, W, ¥ 7T .
(3) If W,, = 21, the optimal covariance matrices is obtained, T,[V, =10 |7'T] .
The proof is given in Appendix B. Here, the optimal covariance is in the sense that
L, 9, W |-, WE, WV U, WU 7T > T, [V, ='W ')

for all W satisfying the conditions in the proposition. In practice, both =, and ¥,, can be
replaced by their sample versions of (3.1) and (3.2), so that the optimal covariance matrices
are easily estimable. Nonetheless, in order to obtain an optimal estimator one will need to
implement a two-step estimation method, as has normally been done in the literature, that
is, at the first step minimizing || M, (a, b)||? to have & and §(-) that are used to construct W,:
then at the second step one may minimize M, (a, b)TWnMn(a, b) to have a pair of optimal
estimators, (@, g(-)).

In addition to their earlier work by Cattaneo et al. [7] on a partially linear model, Cat-
taneo et al. [8] recently develop heteroskedasticity robust inference methods for the finite
dimensional parameters of a linear model in the presence of a large number of linearly es-
timated nuisance parameters in the case where essentially p is fixed but K(n) o n. In this
case, the function ¢(-) is not consistently estimated. We interpret the differencing approach
proposed by Yatchew [34] and Yatchew [35] for the partially linear model as being similar to
this, except that Cattaneo et al. [8] allow for heteroskedasticity and for a more complex type
of nuisance component. In our methodology we pay equal attention to the function g, which
itself can be of interest, see for example, Engle et al. [16]; Robinson [33]; Gao and Liang

[19]; Gao and Shi [20] and Hérdle et al. [24]. Our methodology is also robust to conditional
heteroskedasticity.

4 Statistical inference

4.1 Test of over-identification

Hansen [23] proposes the J-test for over-identification in the situation where both p and ¢
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are fixed but ¢ > p . This J-test has an asymptotic XZ_p distribution. In the case where
an unknown infinite dimensional parameter is involved but both p and ¢ are still fixed with
q > p, Chen and Liao [11] establish a statistic for over-identification testing that has an
F-distribution in large samples. As far as we are aware, the test statistic proposed below
seems a new one in the literature.

Because we also face an over-identification situation where ¢(n) —p(n) — oo, it is crucial

to test whether the moment restrictions are valid by investigating the following hypotheses:
Hy: Em(V;,a' Xi,9(Z;))] =0 for some (a,g) € O,
Versus
Hy: Em(Vi,a X;,h(Z;))] #0 for any (a,h) € O,
where O is defined in Section 2.
Define, for a € RP,b € R* and any x € RY such that ||x|| = 1,

1 = T T T
> w'm(Vi,a X, b 0k(Z)),

L bk) =—/——7—
n(av 7’%) Dn(a,b; K,) pa

where D, (a, b; k) = (S0, ['m(V;,a" X;, b" &4 (Z:))]2) /.

Under the null, by the procedure in Section 2 and Assumptions in Theorem 3.1, we have
the consistent estimator (@, g). The statistic L, (@, B: k) can be used to detect Hy against Hq,
as shown in Theorems 4.1 and 4.2 below. It is noteworthy that this test, as clearly indicated
from the proof, is also workable for the conventional moment restriction models with fixed p
and q. Before showing the asymptotic distribution under the null and the consistency under

the alternative for the test statistic, we introduce some necessary assumptions.

Assumption 4.1 Let m’(Q,g; k) = op(1) when n — oo, where we denote M (a, f; k) =
n~Y2N " ElR'm(Vi,a' X;, f(Z;))] for (a, f) € © and & such that k|| = 1.

Assumption 4.2 Suppose that (i) ¢°p = o(n) and ¢?k = o(n); and (ii) sup, vZ(z) =

o(q™') as, along with n — oo, k, p, ¢ — oo.

These are technical requirements. Noting E[m(V;, o' X;,9(Z;))] = 0, Assumption 4.1
requires that E[m(V;,a' X, f(Z;))] drops to zero very quickly when (a, f) approaches (a, g).
This in spirit is the same as Assumption 3.2 but here it is a sample version and the decay
of the expectation needs a certain rate. Similar assumption is also imposed by equation
(4.9) of Andrews [1, p. 58] and equation (5.2) of Belloni et al. [5, p. 774]. Assumption 4.2
(i) stipulates the relationships for p, ¢, k with n when they are diverging, while Assumption

4.2(i1) imposes a decay rate for the residue 77(z) uniformly for all z not slower than o(q™1).
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This particularly is satisfied for the case where z is located in some compact set in many

situations given that the g function is sufficiently smooth.

Theorem 4.1. Suppose that there is no zero function in the vector m of functions. Let
Assumptions 4.1-4.2 hold, under Hy and the conditions in Theorems 3.1 and 3.2 remain

true. For any k € R? such that ||| = 1,
Ln(a7 B) I{) —D N(07 1)7
as n — oo, where (@, B) is the estimator given by (2.4).

Notice that if there is a zero function in m, x'm can be a zero function for some particular
k. Thus, the requirement on the nonzero function is trivial. The theorem shows the normality

of the proposed statistic that enables us to make statistical inference.

Theorem 4.2. Suppose that the eigenvalues of E[m(Vy,a" X1, h(Z;))m(Vy,a" X1, h(Z1))"] are
uniformly bounded away from zero and infinity in n and (a,h) € ©. Under Hy, suppose
further that there exists a positive sequence 8, such that inf pyeo [|[Em(V;, a' X;, h(Z;))]|| >
6, and liminf, . \/nd, = oco. Then, for any vector a and b, there exists some k* € R? such

that ||c*|| = 1 and L,(a,b;k*) —p 00, as n — oo.

The condition on the eigenvalues is broadly adopted in the literature, see, e.g. Chang
et al. [9] and Belloni et al. [4]. In the special case where 0, = 0, the condition that
liminf, . v/nd, = oo is satisfied automatically, and this is the most commonly used as-
sumption in the literature, see, equation (24) of Chang et al. [9, p. 290]. However, we allow

1/2

for 0, — 0 with a rate slower than n~'/?. This means that the strongest signal (6,, = ) can

be weakened (9,, — 0) when our test statistic is used.

4.2 Wald test

The normality in Theorem 3.2 may be used for Wald test to detect, for example, Hiq :
Lo = R against Hqp 1 La # R for some transformation £ of r X p matrix and r-vector R;
Hoo : F(g) = S against Hay : -Z (g) # S for some s-vector functional . and s-vector S.

Let 32 = (I, 0,,,)32(I, 0,,)" and 32 = (0, 1,)32(0,y, I,)". Then, Theorem 3.2

implies that, under H,o and Hsg, respectively, we have
n(Za—R)'TN(La~R) 5 ¥ (r), and n(F(§) — 9T, (F(@) — 5) % x*(s),

respectively, when n — oc.
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5 Penalised GMM for model selection

In the high dimensional situation, the parameter o most likely have sparsity, particularly in
the ultra high dimensional case (i.e. p = ¢™ with 0 < a < 1). That is, there are plenty of
zeros in « while only a number of elements are nonzero. In addition, the coefficient vector
may also possess sparsity, since some of them may be zero, as argued in Belloni et al. [5, p.
761], let alone the fact of their attenuation such that coefficients are negligible statistically
when complexity is increasing. Hence, this section is devoted to the estimate of («, g) under
the sparsity.

In the literature, there are some studies on the variable selection in the frame work of
GMM and sparsity. Belloni et al. [5] propose the combination of least squares and L; type
lasso approach to select variables. While in a high dimensional conditional moment restriction
model, Fan and Liao [18] propose to use folded concave penalty function combined with
instrument variables. Caner [6] uses the same approach but a particular class of penalty
functions to select variables. As Caner [6, p. 271] argued, Lasso-type GMM estimator selects
correct model much more often compared with GMM-BIC and “downward testing” method
proposed by Andrews and Lu [2], we shall tackle the selection issue by the penalty function
in our GMM framework.

For convenience in this section, denote vy = (o', 87)" € RP™* the true parameter whose
dimension varies with the sample size. Trivially, we may write a = (qgg, agy)’ and § =
(Bogs Bon) s Where the vectors agpg and Byg contain all “important coefficients” from « and
3, respectively, as referred in the literature such as Fan and Liao [18], while agy and Soy
are identical to zero. In addition, vos = (g, Byg)" is referred to as an oracle model. Define
t = |vos| the dimension of vps which may diverge with n.

Let ¥ € RP™* be the estimated parameter of vy by the penalized GMM,

ptk

0=(@,5) = argmin  Qu(v) = [IMu(v)|” + D Pullvsl),
j=1

v=(aT,bT)T cRp+k

(5.1)
subject to ||a|| < By, and ||b|| < By,.

where M, (v) = M,(a,b), By, and By, are the same as in Section 2 and P,(-) is a penalty

function discussed later.

5.1 Oracle Property

Let T be the support of vg, i.e. T'={j: 1 <j <p+k,vg; # 0}. We may equivalently say T
is the oracle model. Moreover, for a generic vector v € RP** denote by vy the vector in RPT#

whose j-th element is that of v for j € T and zero otherwise. Also, define vg as the short
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version of v after eliminating all zeros in the position 7¢ (complement set of T°) from vr. In
the literature, the subspace V = {vp,v € RP**} is called “oracle space” of RP*. Certainly,
vy € V.

Recall that the score vector S, (-) denotes the partial derivative of ||M,(-)||? defined in
Section 3. Now, denote S,r(vs) the partial derivative of ||M,(v)||* with respect to v; for
j €T, at vr (bearing in mind that vg is the vector consisting of all nonzero elements in vy ).
Hence, the vector S,r(vs) has dimension ¢t = |T'| = |vg|. Also, define in a similar fashion
H,7r(vs) the Hessian matrix of ¢ x ¢ for || M, (v)]>.

Suppose that P,(-) belongs to the class of folded concave penalty functions in Fan and Li
[17]. For any v = (v1,--- ,v;)" € R" with v; # 0, V7, define
~ Bi(ug) — P (w)

Y

¢(v) = lim sup max Sup
e—0+ ]St (ul,uz)EO(‘UjLe) u2 N ul

where O(-,-) is the neighbourhood with specified center and radius, respectively, implying
that ¢(v) = max;<, —P)(|v;|) if P/ is continuous. Also, for the true parameter vy, let

1 . .
dnzémln{|voj|: vy; #0,7=0,--- ,p+k},

represent the strength of the signal. The following assumption is about the penalty function.

Assumption 5.1 The penalty function P,(u) satisfies (i) P,(0) = 0; (ii) P,(u) is concave,
nondecreasing on [0,00), and has a continuous derivative P’ (u) for u > 0; (iii)\v/t P.(d,) =

o(dy,); (iv) There exists ¢ > 0 such that SUp,coyg cd,) P(v) = 0(1).

There are many classes of functions that satisfy these conditions. For example, with
properly chosen tuning parameter, the L, penalty (0 < r < 1), hard-thresholding (Antoniadis
[3]), SCAD (Fan and Li [17]) and MCP (Zhang [36]) satisfy the requirements.

Denote the oracle model T' = T7 UT5 where T} is the set of indices of nonzero elements in

a and Ty that of §; accordingly, we have the decomposition t = p; + ky for their cardinalities.

Assumption 5.2 Suppose that Assumptions A.1-A.3 hold with p being replaced by p, and k
by ]{?1.

The assumption is the counterpart of Assumptions A.1-A.3 under sparsity. We first show

an oracle asympotic property about ¥ in the minimization of (5.1).

Lemma 5.1. In addition to Assumptions 5.1-5.2, suppose that (i) There ezists a positive
sequence a, = o(d,) such that ||S,r(ves)|| = Op(an); (i) For any € > 0, there exists a
constant C' = C(€) > 0 such that for all large n, P(Amin(Hyur(vos)) > C) > 1 —¢; (iii) For

any € > 0, 0 > 0 and any nonnegative sequence 1, = o(d,), there is an N > 0 such that
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whenever n > N,

lvr —vol[<7n

P ( sup  ||Hur(vr) — Hur(vo)]| < 5) >1—e
Then there exists a local minimizer v € V of

Qu(vr) = [ Ma(or)|* + ) Pullvs),
jeT
such that || — vo|| = Op(an + VtP.(dy,)). Moreover, for any arbitrary ¢ > 0, the local

manimizer U is strict with probability at least 1 — € for all large n.

The proof and the verification on the conditions of the lemma are relegated to Appendix

B. It is worth noting that, under additional condition stated below, we show in Appendix B

that ||Snr(ves)|| = Op(+y/t log(q)/n) and therefore we have || — vo|| = Op(y/t log(q)/n +
VP (dy)).

The oracle consistency in Lemma 5.1 is derived based on the knowledge of T', the support
of v9. To make the result useful, it is desirable to show that the local minimizer of @),

restricted on V is also a minimizer of Q,, on RP**.

Lemma 5.2. Addition to the conditions in Lemma 5.1, suppose that with probability ap-
proaching one, for v € V in Lemma 5.1, there exists a neighbourhood O; C RPY* of ¥ such

that for all v € Oy but v € V, we have
1M (or)[* = | Ma(0) > <> Pallvs])- (5.2)
€T
Then, (i) With probability close to unity arbitrarily, the © € V is a local minimizer in RPTE

of Qn(v) = | M, (0)||2 + S22 Po(Jv;|); (ii) For Ye > 0, the local minimizer T € V is strict

7=1
with probability at least 1 — € for all large n.

The proof and the verification on the conditions of the lemma are relegated to Appendix
B.

Assumption 5.3 There exist by, by > 0 such that (i) for any ¢ < q and u > 0,
P(ime(V, " X, B ®1(2))] > u) < exp(—(u/by)"™);

and (i) Var(my(V,a' X, 87®(2))) are uniformly bounded away from zero and above from
infinity for all €.

This assumption is often encountered in the literature such as Assumption 4.3 in Fan and
Liao [18]. Tt is known that there are many classes of distributions satisfying this condition,

e.g. normal distribution and exponential distribution and so on.
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For simplicity, denote Om the partial derivative of m; and F;s = diag(X;s, Prs(Z;)) a
t x 2 matrix where X;g is the sub-vector of X; consisting of all X;; for j € T1; ®s(Z;) is the
sub-vector of ®4(Z;) consisting of all ¢;(Z;) for j € 5.

Assumption 5.4 (i) There are constants C1,Cy > 0 such that Ay, (EIm’ (Vi,vieFis) @
Fis)(EOm' (Vi,vgsFis) ® Fis)") > C1 and Apax(EOmM' (Vi, v95Fis) ® Fis)(EIm' (V;, vos Fis)
Fis)") < C; (ii) Py(dy) = o(n™'/?) and maxjg vgj<d./a $(vs) = o(tlog(q))~/?); (iii)
t3/21og(q) = o(n), t32P!(d,)? = o(1), t max,er P,(|vo;|) = o(1).

All these are technical requirements on the Hessian matrix, the penalty function, the
relationship among the dimensions of important coefficients, the sparsity and the sample

size. There are several penalty functions that satisfy these conditions, for example, SCAD

and MCP with tuning parameter \,, = o(d,,). Thence, the conditions (ii) and (iii) are satisfied

if ty/log(q)/n +t32log(q)/n < A\, < d,,.

Theorem 5.1. Under Assumptions 2.1, 2.2, 3.1, 3.3 and 5.1-5./, there exists a local mini-

mizer © = (A%, ay)", (B, BY)"), for which we have (i)

lim P(@y = 0,8y =0) = 1.

n—oo

In addition, the local minimizer U is strict with probability arbitrarily close to one for all large
n.
(ii) Let T = {j : 1< j < p+k,0; #0}. Then,
lim P(T =T) =1.
n—oo

(111) Meanwhile, for the transformation Z,,, and s-vector functional F,

.f(&s) — g(aos)
F(9(2)) = F(9(2))

as n — oo provided that /n¥, 1(0), F'(9)v(2)")" = o(1), where S,p is given by the square

VS 5 N(0,I,),

root of

Y2 =D [ U ) T W Ep U (WU )7 in which

n’

Z 0
r,:= ,

0 ZF'(q)Pur(-)
(g) kT() (r+s)x(p1+k1)

Enr =E[m(V1, agsX1s, 9(Z1))m(V1, ags X1s, 9(Z1)) Ngxqs
%m(vh aE)SX157 g(Zl))T & Xlg
Zm(Vi, a0sX1s,9(21))" @ Opr(Z1)

\IjnT =K
(p1+k1)xq
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provided that W,V . is invertible, in which u and w stand for the second and the third

arguments of the vector function m(v,u,w), respectively.

The results (i) and (ii) indicate that under these conditions in the theorem we are able to
recover the sparsity in the model; meanwhile, the discussion on the result (iii) of the theorem

is similar to Theorem 3.2.

5.2 Global Property

In this section we shall show that under Assumption 3.2, the local minimizer in Theorem 5.1
is nearly global. Recall that Assumption 3.2 is an identification condition which excludes all

the other points to the minimizer of the objective function in population sense.

Theorem 5.2. Under Assumption 3.2 and those of Theorem 5.1, the local minimizer v
satisfies that, for any 0 > 0, there exists n > 0 such that
lim P (Qn(i}\) +n < inf Qn(v)) =1

n—00 l[o—vol|>6

Therefore, as indicated by Theorems 5.1 and 5.2, the minimization of (5.1) enables to
recover the sparsity in ultra high dimensional moment restriction models since ¢ > p + k
where ¢ can be as large as €™ for some € > 0. This is a bit different from Fan and Liao [18]
where there is no nonparametric function involved and ¢ = p (the number of IV is the same
as that of regressors). The consistency of the sparsity is given, and more importantly, the

inference can be done similar to the relative lower dimensional models (Theorem 3.2).

6 Simulation experiments

In this section, we are about to investigate the performance of the proposed estimators in

finite sample situation.

Example 6.1. This experiment uses the model in Example 1.1 of Section 1. Let vector
X; = (X, Xy;)" where X; assumes 1 and —1 with probability 1/2, respectively, Xy; ~
N(0,%,-1), where X, 1 = (04;) (p-1)x(p—1) With 0;; =1, 0, ; = 0.3 for |[i — j| =1 and 0;; = 0
for |i — j| > 1. Here, the first component of X is a discrete variable with which we intend to
show that our theoretical results do not confine in continuous variables. Let Z; be uniformly
distributed on (0, 1).

Suppose that E[Y; — o' X; — g(Z;)|Wi] = 0 with W; = Z;, and ¢(-) € L?[0,1] = {u(r) :
Jy u?(r)dr < 0o}, Let go(r) = 1, and for j > 1, ¢;(r) = V2 cos(mjr). Then, {p;(r)} is an or-

thonormal basis in the Hilbert space L?[0, 1]. In the experiment, put o = (0.4,0.1,0,---,0)" €
RP and g(z) = 2% + sin(z).
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Denote m(V;, o' X;, 9(Z;)) = (Y — o' X; — 9(Z;))®,(Z;) where V; = (Y;,W;), W; = Z; and
D,(-) = (o(+), -+ y4-1(-))". Notice that the dimension of m function is ¢ which increases
with the sample size n. Thus, the parameter (o, g) can be solved from unconditional moment
equations E[m(V;,a' X;,9(Z;))] =0 fori=1,--- n.

According to the estimation procedure in Section 2, define (@, B\) = argmin ||M,(a,b)|]?

acRP,becRF
where My(a,b) = 1370 m(V,,a X, b'®(Z)). Thus, @ and g(-) := BT®(-) are the
estimates of (a, g(+)).
Here, we emphasize that since the m function is linear in both o' X; and ¢(Z;), M,(a,b)
actually has a linear relationship with a and b,
M,(a,b) = 11y (Vi —a' X; — b ®,(Z;))®,(Z)
Van =

L C ) N e

Accordingly, (@, 5) has an explicit expression simply by OLS. This means that in any similar
situation the optimization in Section 2 does not need the compact restrictions.

For n = 200,500 and 1000, let £ = [Cyn™] with C; = 1 and 7, = 1/4, and p = [Con™]
with Cy = 1 and 75 = 1/5. Also, let ¢ = p+k+v (v > 0 specified in the experiments) satisfy
Assumption 3.1. The replication number of the experiment is M = 1000. We shall report
for the estimate of the g function the bias (denoted by By(n)), standard deviation (denoted
by m4(n)) and RMSE (denoted by II;(n)), that is,

By(n) =13 Sl (Z) — o' (Z0),
M n 1/2
() = (ﬁ S Sl - E(ZﬂP) ,

=
e
=
Il
A/
E‘H
3
ME
\'M:
)
N
|
Qi"\
N
=
~
=
[N}

~

where the superscript ¢ indicates the (-th replication, g(-) = ®(-)" 3 is the average of g(-)
over Monto Carlo replications £ = 1,---, M, g*(Z;) means the value of g evaluated for the
Z; in the /(-th replication.

Regarding of parameter a, we report the following quantities, B,(n) := |ja — a| and
M,(n) := median(||o — @l|), where @ is the average of @* and median(---) is the median
of the sequence over Monto Carlo replications. Notice that, due to the divergence of the
dimension, it might not make any sense to compare the estimated results for different sample

sizes.
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Table 1: Simulation of Example 5.1, ¢ =p+k + v

V= 2 V= 4
n 300 600 1000 n 300 600 1000

By(n) 0.0046 -0.0040 -0.0026 By(n) -0.0023 -0.0019  0.0006
mg(n)  0.3533  0.1965 0.1948 my(n) 0.1660  0.1530  0.1520
II,(n) 0.3401 0.1700 0.1682 I,(n)  0.1356 0.1217 0.1176

B,(n) 0.0700 0.0410 0.0684 B,(n) 0.0281 0.0271  0.0501
M,(n) 0.0355 0.0282 0.0665 M,(n) 0.0259 0.0244 0.0319

vV = ]/:8

n 300 600 1000 n 300 600 1000

By(n) 0.0023 0.0019 -0.0000 | By(n)  0.0009 0.0011 -0.0000
m,(n) 01544 0.1445 0.1444 | 7m,(n)  0.1482 0.1370 0.1359
M,(n) 0.1218 01092 01031 |I,(n) 0.1176 0.1015 0.0945

B,(n) 0.0124 0.0267 0.0265 B,(n) 0.0078 0.0048 0.0250

M,(n) 0.0254 0.0154 0.0464 M,(n) 0.0117 0.0098 0.0306

It can be seen that all of the statistical quantities about the estimator of g are reasonably
attenuated with the increase of both the sample size and v that provides more information
for the parameters to be estimated. For the quantities about the estimator of a, we observe
that they normally do not decrease with the sample size. This is because, as mentioned
before, the dimension of « is increasing with the sample size; and hence it does not make
sense to compare them among different sample sizes. However, we find that both quantities
decrease with the increase of v that gives more moment restrictions.

This is understandable. Because the conditional moment E[Y; — o' X; — g(Z;)|Z;] deter-
mines a function U(z) := E[Y; —a' X; —g(Z;)|Z; = z] and {p;(2)} is an orthornomal sequence
in the space that contains U(z), the greater the v is, the more axes in the space we use to

explain the unknown function U(z).

Example 6.2. This experiment uses the model in Example 1.3 in Section 1. Let the

distribution function F'(u) = exp(u)/[1 + exp(u)]. Y; assumes either 0 or 1, and
P(Y; = 11X;, Z;) = F(a' X + g(Z3)),
fori=1,--- ,n, where a, X; € R? and Z; € R. Here, let X; ~ N(0,%,), where X, = (0 ) pxp
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with 0,;, =1, 0,;, =05 for |i —j| =1 and 0, ; =0 for |i — j| > 1, and Z; ~ N(0,1). In this
experiment, put o = (0.5,0.3,0,--- ,0)" € RP and g(z) = z? +sin(z). The Hilbert space that
contains g(-) is L*(R,exp(—z7)). Let {p;(z),j > 0} be the sequence of Hermite polynomials
that forms an orthonormal basis in L?(R, exp(—2z?)).

Denote ®(2) = (po(2), -+, pr_1(2))" and similarly to Example 1.3, define

Qu, B) = [[ F¥ (0’ X; + 610 Z)[1 — F(o X, + 5 @4(Z))) Y,

=1
00, 90,\"
Mn<0576) = (%7 %)

and we have (a, B\) = argmin ||M,(a,b)||? and naturally g(-) := B\T(I)k() is the estimate of
acRr,beRk
9(-)-
For n = 200,500 and 1000, let &k = [C1n™] and p = [Cyn™] where C; and 7, i = 1, 2, take
the same values as in the preceding example. The replication number of the experiment is
M = 1000. We shall report the bias B,(n), standard deviation m,(n) and RMSE II (n) for

the estimator of g and B,(n) and M,(n) for the estimator of « defined in the above example.

Table 2: Simulation results for Example 5.2

n 300 600 1000 n 300 600 1000

Ba(n) 0.0130 0.0105 0.0065  B,(n) -0.0100 0.0059 0.0037
M.(n) 0.0125 0.0103 0.0075  7,(n) 0.3608 0.3128 0.2315
M,(n) 0.3320 0.2323 0.1732

The moment restriction model is exactly identified, since it is formulated from the partial
derivatives that imply ¢ = p + k. All results in Table 2 converge satisfactorily, though it
seems in this example the estimator of the g function converge a bit slower than the last
example. This might be because in the last example there is an explicit solution while this

example needs a minimization of the nonlinear distribution function to have the estimators.

7 Conclusion

A class of high dimensional semiparametric moment restriction models have been studied us-

ing the GMM and sieve method. The consistency and normality of the proposed estimators
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have obtained. A new test statistic has been proposed for over-identification testing where
the strong signal can be weakened when our test statistic is used. In addition, the poten-
tial sparsity of the model has been dealt with via the combination of GMM methodology
and penalty function approach. The theoretical results are verified through finite sample
experiments. We find that the more the number of the moment restrictions, the accurate
the estimates, although it may not be interesting to compare the estimates of the high—

dimensional parameters for different sample sizes.
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A Lemmas

Lemma A.1. Under Assumptions 2.1-2.2, 3.1-3.3 we have

1. [|My(a, B)|I* = Op (|l (2)[I?) + Op(n™").
2. Given B}, + B3, = o(n), Supja|<si,.|bl<B [|Mn(a,b)||72 = Op(1) for each § > 0, when

, l(a—ab—B8)[>6
n 1s large.
Proof. 1. Observe that
11 i
Mn Oévﬁ = |l—== m ‘/iaaTXlaﬁT(I) Z’L
[ M (ax, B)| ‘\@n; ( #(Zi))
IR I i
= [_me(‘/Z?aTXwﬁTq)k(Zl)) )
= "=
where we denote m(---) = (mq(---), -+ ,my(--+))". Moreover,
2
—ZE Zme (Vi, o' X;, BTk (Z:))
1< 1 <&
== Em(Vi, o' Xy, B @ ( Var | =Y me(Vi, o' X;, B ®n(Z;
P ZX: ¢ K Z ZZ:; o w(Z3))
1< 11 <
= Z [Em(Vi, o' Xy, 87 0u(20)]” + e ZZVar [me(Vi, o' X;, 87 ®1(2,))]
=1 (=1 i=1
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1 r T 11 -
= [Em(A, o’ X0, 8 eu(0))| + -2 3 Var(me(Vi,a” X1, 5 0u(21))

(=1

_—

r 11¢ fe

(=1

|
—

T T 2 11 T T
= [Em(Vi, o’ X0, 5 @u(Z0))|[" + - Ellm(Vi, o' Xu, 57 8(20))]
due to the property of the i.i.d. sequence.
Since E[m(V1,a" X1, g(Z1)) = 0, it follows from Assumption 3.3 that

H LEUA L XEA)
:é [E[m(Vi, o' X1, 8" ®(21)) — m(Vi, a" X1, B (1) + (20))] ||

<{E[A(V1, X3, Z0)]I(Z0) 1} < E[A(V1, X3, Z0))°Ely(Z0)]?
<Cllw(2)]I* = o(1),

by virtue of Assumption 3.1(b), and for the second term,
CElm(Vi, "X, 5102
<2 B|m(Vi,o X, g(Z))IF + 22 Ellm(Vi,o” X1, 87 8(20) = m(Vi " X1, 0(Z0)
=0(1) + E[A*(V1, X1, Z1)|w(Z20) ") = O(1)

by the dominated convergence theorem, implying the second term is O(n™1).

2. First, note that

1 T T
M, (a,b) — %Em(vl,a X1, b ®(21))

n

=—— ) [m(Vi,a' X;,b' ®,(Z;)) — Em(V;,a’ Xy, b ®r(Z)))].

It follows from the property of i.i.d. sequence and Assumption 3.3 that

2

1 T T
E HMn(a, b) — %Em(vl,a X1, b ®(Z1))

n

1 1 T T T T
n< 4 q
=1

11 T T -
<, ZElm(A,a X1, b'eu(Z)? = O(n™ (BT, + B3,)),

uniformly in (a,b'®.(z)) € O, by Assumption 3.3, which implies by the triangle inequality
that

1 T T
[ M:(a, b)|| — %H]Em(vha X1, b @(Z))]
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1 . : _
< HMn(a, b) — %Em(vba X1,b @k(zl))H = Op(n~Y*(By, + Bay)),

that is, | M,(a,b)|| = f||Em(V1,a X1, b"®(Z))) | +O0p(n~Y2(By,+ Bs,)) where the last ter-
m is 1ndependent of (a, b). This is equivalent to || M, (a,b)||* = %HEm(Vl, a' X1, b ®,(2))]*+
Op(n~Y (B}, + B2))) by basic algebra.

Second, for any ||b||> < Bs,, we have b'®,(z) € O,,. Also, ||b"®x(2) — g(2)]]? = ||b —
BII? + ||7%(2)||*> by the orthogonality of the basis sequence.

For any § > 0, let n be large (so k large) such that 6 > ||yx(2)||. Moreover, by Assumption
3.2, regarding of this 0 > 0 there exists an € > 0 such that

inf —|IEm(V;,a’ X, 2>
Jnty Em(Va X 2D >
II(a—Oéﬁf—g)||>5
Notice further that
. 1 T T 2
inf —|Em(Vi,a X;, b @(Z;))||
”aHSBlrquHSBQn q
l(a—c,b—p)||>d
- inf L Em(v,a’ X, b 0(2)2

IIaH<Bln [bll<B2n g
la—al*+|b—p5]* >4

1
> inf ~|Em(V;,a" X;, b @ (Z,))||?
”aHSBlanbHSBQn q
la—e?+[b—B112>6%—||lvx (2) II?
1
> inf ~[[Em(V;, 2’ X;, b 4(Z:))|>
(a,bT<I>k(z))€®n q
la—al2+[b" @ (2)— g( )2>42
> inf ~|Em(V;,a" X;, 2
>t SIEm(alX f(Z)]
||a*0‘H2+||f*gH2>52
> inf —||Em(V;,a" X;, 2>
> nt, o Em(Via' X f(Z) >

||(a—047f—9)||>5

due to ©,, C O, which, along with the approximation in the first part, is tantamount to the
assertion.

]

Denote m(v,u,w) = (my(v,u,w), - ,my(v,u,w))".
Since [|M,(a,b)[? = -1 320 (0, me(Vi,a X, b'®4(Z;)))” we have

1 K —
M, (a,b)||? =2— me(Vi,a' X;, b ®4(Z;
|| (a,b)] e ;2; o k(Zi))

xza (Vj,a" X;, b ®4(Z;)) X
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q

a 1 = T T
SplMa(a ) =2—5> % m(Vi,a' X;, b'04(Z)

qnz =1 i=1
X Z 5 5, b (Z)) i (Z;),
and
0? T B
oo ——||M,(a,b)]| —2q—Z 5o (Vi,a' X;, b ®(Z;))
/=1 i=1 j=1
X gmg(‘/»,aTX-,qu)k(Z-))XinT
+ 2—2 mg Z,a wa (Pk(Z))
qan /=1 i=1 j=1
2 T T

0? ) 2 0
=2— — X, b (7
S V(@ b)l| 2qn2 Z oome(Vi, a' Xi, b @y(Z)))
/=1 i=1 j=1
a T T T
Sme(Vy, a X, b @(Z5)) X Pu(Z:)

n

™ ou
1< - S
+ 2@; > me(Vi,a' Xi, b 0(Z;))

i=1 j=1
0? T T T
0? 9
ababTHM (a,b)] _QW;;;_W Vi,a' X;, b ®,(Z;))
0 T T
+2szzm€ zya Xzab (I)k(Z))
/=1 i=1 j=1
2

X 53 my(Vi,a' X;, 0" ®r(Z;))Pu(Z;)Pr(Z;)"

The unimportant constant shall be ignored in what follows.
Denote each block of H,(a,b) by

0? 9 0? 9
Hirfa,b) i== 2| My (a,b) . His(a,b) i= = |[M, (a, b)|
2
Hys(a,b) : 8b8bT”M (a,b)]? Hyi(a,b) =His(a,b)’,
and define

1< 0 : o : !
hi(a,g) 125 <E%mz(vma th(Zl))Xl) (E%me(vl,a X1,9(21))X1) ,
-1
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T

5, . '
E (%m(‘/ha Xlag(Zl))) ®X1

1

q

1< 0 : ) : !
h12(0479) 1252 <Ea—mz(v1704 Xl;Q(Zl))X1> (Ea—wme(vl,& X179<Z1))q)k(zl>> )

E (%m(vl,a Xy, g(Zl)))T ® ()

T

th(O{ g) _h12 Oé,g) )

1< 0 : o : !
hales0) =4 3 (EgmVia' Xosg( )02 ) (B, 0020002 )
e (o x a2 @0z B (L a0 0(200)) © @u(2)
_q w 1, 1,941 k41 Jw 1, 1,941 e\ 41
Denote
hiy(g) hiala, i
ho(cr, ) = u(@.9) hale,9) _ Ly (A1)
hoi1(a, g) hao(a,g) 9
where

U, —E Zm(Vi,a' X1, 9(Z1)) @ Xy
8 T T
Zm(V] X VA d.(Z
gom(Vi, o X1,9(Z1)) @ ®(Zy) (k) xq

Assumption A.1. When sample size is n, suppose that

i) E|m(Vi, X1, g(Z)|* = O(a), B[P = O(p) and E|[@(Z0)]|” = O(k):

(i) E||Zm(Vi,a"X1,9(Z1)|]° = Olg), and E ||Zm(Vi,a"X1,9(2Z1))||” = Ol);
(iii) EH m(Vy, o' X1, 9(Z1)) ®X1H =0O(pq), and
EH m(Vi, o' X1, 9(Z1)) @ ®i(Z1) H = O(kq);

(iv) E|Zm(Vi, o' X1, 9(21) @ X, (vq), and

E || Zem(vi,a Xi,0(2) @ 0(Z)0u(2) || = O(ka),

We have the following comments on the assumption. It is nature to alow that each
element of m function has the same second moment that suffices the first supposition in A.1(i).
Because the dimension p of X; diverges with n, in A.1(i) we allow the second moment E|| X}

diverges too, but, as can be seen in the proof of the following lemma, E|| X ||?

= O(p) may be

substituted with some appropriate increasing function of p; moreover, E||®(Z1)||> = O(k)
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can be true for many orthogonal sequences given the relation between the densities of Z;
and the L? space. In A.1(ii) we impose similar condition for the norm of the function’s first
partial derivatives. A.1(iii) and (iv) stipulate moment conditions for the norms of the tensor
product for regressor and the partial derivatives (the first and second, respectively) of the m

function.

Assumption A.2.

) [lve(2)?p* = o(1),  n7'p* = o(1);

(i) [w(2)[Pk* =o(1),  n7'k* = o(1).

Assumption A.2 stipulates the relations among truncation parameter k, the diverging
dimension p of the regressor and the sample size. Normally, ||7.(2)||> = O(k™") where T is
related with the smoothness order of the function g. See, for example, Newey [26]. Thus, the
assumption implicitly puts some conditions on the smoothness. Notice that the combination
of A.2(i) and (ii) implies ||y (2)||*pk = o(1) and n~'pk = o(1) which are used in the proof of
the following lemma.

Assumption A.3 The partial derivatives of m(v,u,w) satisfy

(i) ¢ 2 ||Zm(V,a1 X, f1(Z)) — &m(V, a3 X, fo(2))|| < AV, X, Z)[l|lar — as + | f1(Z) —
f2(Z)]] where E[A(V, X, Z)? ] < oo and E[A;(V, X, Z)?|X|]*] = O(p).

(ii) ¢ 2 || Zm(V,a]X, f1(Z)) — Zm(V,a3X, fo(2))|| < A2(V, X, Z)[[lay — as|| + | f1(Z) —
f2(2)|] where E[Ay(V, X, Z)? ] < oo and E[A5(V, X, 2)?||®r(2)]|?] = O(k).

The assumption is similar to Assumption 3.3 but stipulated for the partial derivatives with
additional requirements that E[A;(V, X, Z)?|| X|]?] = O(p) and E[Ay(V, X, Z2)?||®1(Z)|]?] =
O(k). This is the consequence of the partial derivatives and is reasonably diverging with the

related dimensions.

Lemma A.2. Under Assumptions 2.1-2.2 and A.1-A.3, (1) H,(«, B) is asymptotically almost
surely positive definite; (2) let hy(a, g) be defined in (A.1), and we then have ||H,(a, ) —

ho(a, g)|| = op(1) as n — oc.

Proof of Lemma A.2. (1) Split the matrix H,(a,8) := H,(c, ) + An(o, ) where H,(a, )
is a symmetric 2-by-2 block matrix with blocks

]:.,11( Z ( Za ‘/]705 j?ﬁTq)k(Zj))Xj>
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3

X (% 2 %mz(W,QTXi,ﬁTq’k(Zi))Xi) ,
N I (1<~ 9 .
Hyp(a, B) —a; (5 jﬂa m(Vi, o' X5, 3 q)k(Zj))Xj>
« (% a% (Vi X, B 04(Z >>¢>k<2>> ,
(o) =13 (1 P <vj,an,bT<I>k<Zj>><1>k<Zj>>
q=\n 18w

1M g
— Il
|

VRS
S|

awmé(VmaTXi,bT@k(Z’))‘%(Z’)) )
and Hy (o, ) = Hia(or, B)7, and A, (o, B) has blocks

Ay (o, B) :é (%Zme(v@',aTXi,ﬁTq)k(Zi)))

(=1 =1

x ( 8822 (Vo' X5, B 0(Z;) X, X] >
A12 éz ( Zme VmOé Xuﬁ (I)k< )))
X <% %mg(vﬁa X;, 8" 0(Z;)) X;9(Z;) > :

An(,B) =3 (% Zm4<v;7aTXi,ﬁT<bk<Zi>>>

X ( 3822 (Vi o' X, 80(Z ))‘Dk(zj)q)k(ZJ)T)»

and Ay (o, ) = Apa(a, )" To fulfill the assertion, we shall show

(i) H,(a, B) is almost surely positive definite and
(i) [|An(e, Bl = op(1).

Firstly, for any vectors a € R? and b € R* where either a # 0 or b # 0, we have

(a",b")Hy(a, B)(a",b")’

1<~ (1 ) i
25 2 <5;8u (Vj?a /3 CI),C( ))a X)
oty (1 Y ai (V0" X, B2 ))aX)
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(i Za%mz (Vi, o' X;, B'®k(Z;))b ®4(Z; ))

2
I G [(1& 0 r .
+5; (ﬁ;aw «(V;,a" X;, b ®4(Z;))b cbk(zj)>
SN (2 2 Za Ly X, bz 2) |
_QK:1 nj:l 3ume i b a ow e & 44, A e 7

which is almost surely positive. Hence, lffn(a, B) is almost surely positive definite.

Secondly, to show ||A,(«, )| = op(1), it suffices to prove the result for each block.
Indeed, appealing to the triangle inequality and Cauchy-Schwarz inequality,

q n 2
1A (a, B)|1? Sl >, (% > m(Vi,a' X, 5T‘I’k(Zz‘)))

q (=1 i=1
1« 0? ’
X—Z 32 me(Vy, o' X;, BT ®(Z,)) X; X

q /=1 ]

q 2 2
,1 )
=M (e, B)] 52 e m(Vy, o' X;, 87 ®(Z;)) X; X

/=1

Because || M, (a, 8)|> = Op(|[7(2)||*) + Op(n~') by Lemma A.1, we only need to deal with

the second factor. Note that
2

IS A S 2 v, 0 X, B (2) X, X

2 0> 2
S& Eme(VbO‘TXlaBT(I)k(Zl))XleT
=1

0? T T
—Z (8 sm(Vi, o X5, 8 ®(Z5)) X; X

2

—]E;—ng(vj,a X;, 8 ®(Z ))XX )

where by Assumption A.1 the first term is O(p?), while by the iid property for the second we

have

1 q
_ZE

q =1

1< 02 T T T
= agme(Vy, o' X5, B0 Z))) XX

n 4 ou?
J=1
2

82
11| & g2
_ﬁgzZEHE)Q W(Vy o' X5, BT 0k(2;)) XX — Eo me(V;, o' X;, 8 (Z;)) X; X;

/=1 j=1

2

me(Vj,a' X ﬁéd)ﬂX)

2
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11 52 ] 92 . . 1
- E‘ O (Vi Xy, B OR(Z0)) XX — B2 m(Vi, a" X1, 87 0p(Z0)) X0 X
=1

ou? ou?
2

<55 ZE‘ —me(Vi,a" Xy, BT ®(21)) X1 X]
=1

02 2
82

—O( -1 2)

:——E m(Vi,a' X1, B'®(Z,)) @ X, X|

by Assumption A.1, from which [|Ay(a, §)]1* = Op(|[(2)]|*p?*) + Op(n~'p?) = op(1).
Similarly,

q 2

1Az (, B)IF <[|Ma(a, B)= >

1
1=

n 2
PIEETURE W LICARENCS

and for the second factor using again the iid property, we have

1 e 0? ( ’
n < 8u8wm€

Vi, a' X;, 8 ®(Z;)X;90(Z;)

2

82
Judw

+211§E;
=

E me(Vi, ' X1, B7®(2,)) X191(Z1)

o2
oudw
o2
8u8
P

me(Vi,a' X1, BT ®(21)) X1Pk(Z1)"

2

me(Vi, 0" Xy, B ®1(Z1)) X1®1(Z1)"

2

wmz(vl, o' Xy, BT ®y(Z1)) X191(Z1)

2

82
oudw

me(Vi, o' X1, B ®(Z,)) X1®x(Z1)"

11 <
+2552E'

m(Vi,a' X1, 87 ®r(Z1)) @ X1Pk(Z1)"

2

2

32

m(Vi,a' X1, B'®(Z)) @ X19(Z1)"

ZO(pk') +O0(n™! pk),

which implies || Avs(a, B)|I? = Op(|l7u(2)|%pk) + Op(n~"pk) = 0p(1).
Furthermore,
2

1A22(c, B <[|Mn(er, B) ||2 Za me(Vi, o X;, 8 ®(Z;)) Pu(Z5) Pi(Z5)]
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where the second factor can be derived similarly

_ZE

§25 HE—gm(Vh a' X1, 8 0(Z1)) @ ©u(Z1)Ph(Z1)

Voo X, 5020202,

2

5 T
1 sz‘ %m(\/l,a X1, 8 ®k(21)) @ ®i(Z1)Pr(21)

~0(k?) + O™,
giving that || Ags(c, B)]|> = Op (|7 (2)]|?k?) + Op(n~1k?) = 0p(1). This finishes the assertion

(i)
Now, we show (ii). Because |H,(a, 8)—hn(a, 9)|| < [|An(a, B)||+ || Hp(a, B) —hola, 9)|| =
— hp(a, g)|| = op(1). It is

0p(1) + || Hu(er, B) — hu(e, )||, what we need to show is || H,(«, )

sufficient to show the result in block-sense. Indeed,

1:111(04,5) - hll(aag)
(% aumg(Vj,a LB P(Z ) ( Z—mz Vi,a' X;, B ®x(Z ))X)
J

_1 9
qé:l :18
—lzq: £ m (Vi,a' X1, 9(Z0) X £ m (Vi,a' X1, 9(Z0) X T
qul o e\V1, 1,941 1 o0 e\ V1, 1,941 1
—lqlnaVTXbeZXEaVXZX
—6Z:ZIEJ:1 %m€< j, & j?ﬁ k( )) %mé( Q g( )) J
« (L -0 (Vi, o' Xy, BT ®(2:)) X T
n - aumZ 1,0[ 79 k 7 7
1 <& 5, .
+ - E_mf(‘/ha X179<Z1))X1
q = ou
1< ) '
ﬁ me (Vi, o' X5, BT ®4(Z:)) X — E& me(Vi, o' X, 9(Z:)) X,
=1
2:[1+IQ, say.

Notice further that
0 T 0 T
(V). X, 9(Z)X, )

Z Z(aume Vjaa j,ﬁ (I)k(Zj))Xj_%
1<~ 0 VooTX 8 X !
% EZ%mf( i, z,ﬂ k(7))
n a . a T
2 ( me(Vy, 0 X, 9(2))X; — Egime(Vs, o Xj,g<zj>>Xj)
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1<~ 0 : : T
=N (Vi o X, BB Z) X |
X (n - aumﬁ(‘/:ma 176 k( Z)) 1)

Hence, using Cauchy-Schwarz inequality,

q

1
[rals S;Z

(=1

1 — 0 T T 9 T
—Z (%mf(‘/jaa Xj?ﬁ (I)k(ZJ)) - %me(v},& X]’g(Z]))> Xj

n <
Jj=1

18
<22

q /=1

2

1~ 0 fo T
5;%%4%,@ Xi, B ®r(Z:))X;

2

"D . 0 y
— Z (%mf(‘/jaa Xj?Q(Z]'))Xj - E%mg(Vj,a X]’g(ZJ))X]>

2

Z—mg Vi, o' Xy, 3T 04(2:)) X,

IIIH X 113 + 112 X 113, say.

Due to the i.i.d. property and the Law of Large Number (LLN, hereafter), I;; has the

same order in probability as

2

0 .
( my Vl,Oé X1, 5 (I)k(Zl)) - %me(vl,a X1>9(Z1))) Xy

1 2

0 T T 9 T
—q E (%m(‘/laa Xlaﬂ ¢1€<Z1)) - %m(‘/ha Xl’g(Zl))) ®X1

<E[A;1(V1, X1, 20| X1 |PJE [k (Z1)°] = O (Il (2)II7p),

while for I, by the iid property,

2

E[l,5] = ZZEH me(Vj, o' X, g (Zj))Xj—E%mg(%,aTXj,g(Zj))Xj
_11 ]EH_m@(V1 o' X1, 9(Z,)) Xy —Egmé(‘/l o' X1, 9(Z1)) X, 2
ng " ||ou ) ’ ou ’ ’
2
g%%éEH%mz(W,aTng(Zl))Xl
g%éE‘ 2 i 1,9z @ X | = 0tatp)

by Assumption A.1. Moreover, by virtue of the iid property and the LLN, I3 has the same

order in probability as

> |

3

2

E m@ ‘/;704 Xl7g<ZZ))X’L
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n 2

1 1 1 0 T T 0 T
n gz - {%mg(vi,a Xi, B 0(Z:)) = 5 -mu(Vi, @ Xi,g(Zi))} X;

(=1

1=1
2

1 0 T
- H]E_m(‘/l)a Xlug(Zl)) & Xl

2

oo
B | goma(Vio o' X 87 0(20) ~ SomdVia' Yo, o(20)] X,

2

—0() + ‘E Vi Xe 0 (21)) ~ SV, X19(Z0) | 8 X,

ou
<O(p) + (E[A:(Vi, X1, Z0)[w(Z20)[[1X:111])* < O(p) + O([lv(2)1%p)

due to Assumptions A.1 and A.3, implying that ||11]|> = Op(n~*p*)+Op(||7k(2)[|?p?) = op(1)
by Assumption A.2.
Now, we consider I5. Note that

q 2

1
122 S;Z

/=1

0 :
E%mg(‘/l, (07 X17 g<Zl))X1

1q
X —

1 a T
§26 HE%VTL(VhO& Xi1,9(Z1)) @ X3

2

%Z (aa mg(‘/z,Oé Xz,ﬁ (I)k( ))X Eaa mg(‘/“Oé Xl7g<Z ))X)

=1

2

n 2

! 4 S 0 ,
EZZI <%m<‘/z;@ X, 8 ®u(Zy)) — %m(Vi,a Xi,g(ZZ-))> ® X;

1

q

2
+ 2= HE m(Vy, o' X1, 9(Z1)) @ X3

Ly

q (=1

2

ou 0

I /0 0
_Z ( mg(‘/;,Oé leg(Z>>X E umf(‘/;aa XZ: (ZZ))XZ)
122121(]22 +]23), say.

By Assumption A.1, I5; = O(p). In addition, by the LLN I has the same order in
probability as

2

1 0 T T 0 T
L HIE (—m(Vl,oz Xy, 5 ®(20)) — -m(Va, Xl,g<ZI>>) ® X,

<(E[A; (Vi, X1, Z0) (201 X4 [D)* < O)ll(2)

using Assumption A.3; meanwhile, by the iid property,

2

0 . 5 T
Fllal = ZZE H_WWW Xi, 9(Z0) X = Bomi(Vi, 0" X, () X
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11<. || o . 0 T :
= E %mﬂ(vlaa X1,9(Z1)) Xy = Eomme(Vi, a0 Xo, g(Z1) X

55 — ou

1 1 2
S__ H_mﬁ ‘/17& Xl; (Zl))X

na3

1116 2
:——E' %m(‘/l, a' X1,9(Z1)) ® X1|| =0(n'p)

by Assumption A.1. Hence, || I||> = Op(n~'p*)+0p(||(2)||*p?) = 0p(1). Thus, || Hyi(a, B)—
hu (e, B)|I* = Op(1).

Moreover,

ﬁu(a, B) — hia(a, g)

! (l Y ai W(Vy, ' X;, 81 04(Z )( Z—me Vi, o X;, 8 @p(Z ))%(Z))

I (0 . P T .
g Z (E_mé(‘/l’a Xl’g(Zl))Xl) (E_mf(‘/ha leg(Zl))q)k(Zl))
1= Ou ou
I [Ix= 0 ro 9 T
:a - ﬁ 2 %mf(‘/jua X]aﬁ q)k(Z]))XJ — E%mg(‘/’ha X17g<Zl))X1

1N 0 9 . '
- Za—wme Vi, o' Xi, B ®u(Z:))0(Zi) = B (Vi Xl,g<zl>><1>k(zl)>
=13+ 1, say.

Similar to I, ||I3]|> = Op(n~'pk) + Op(||%(2)||*pk) = op(1) by Assumption A.2; and
similar to I, we may have ||[[4]|* = Op(n~'pk) + Op(||7k(2)||*pk) = op(1). We then have

| Hia(ax, B) = haa(a, B)]|* = op(1).
Finally, we derive similarly for Hyy (v, B) — has(a, ),

ﬁn(‘%ﬁ) — has(a, 9)

1 (1 (V0" X, B0 (2 >)<1>k(2>( Za—me Vi,a' X, 5@y (Z >><I>k<Z>>

q njl(?w

- %Z (E%mﬁ(vlvaTXl’g(Zl))q)k(Zl)) (E%mﬁ(vhaTXlag(Zl))q)k(Zl))
=1
:é (% Z E)%me(vj’a B q)k( ))q)k(z ) - Ea%mé(vlaOéTth(Zl))q)k(Zl)>
(=1 j=1
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><<% 83 (Vi o' Xi, 3T 04(Z ))<1>k(Z)>

1 %)
# o 2 (gt gz
Iy im (Vi, o' Xy, B ®(Z:))® (Z-)—Eim (Vi,a" X1, 9)®1(2)) T
n.zlaweu is k\Zs E\4i aweh 1,9)%r\ 41
=I5+ I, say

Using the same approach we have ||I5||*> = Op(n~'k?) + Op(||7%(2)]|?°k*) = op(1) and
I I6]|> = Op(n™'k?) + Op(||7(2)|I*k?*) = op(1) by Assumption A.2. The whole proof is
complete. [

Denote S, (a,b) = (S1,(a,b)", Sa,(a,b)")’, where

Sin(a,b) = ||M a,b)|* = ZZW Vi,a' X;, b ®(Z;))

=1 i=1

X Z o b ®L(Z)))X;
San(a,b) = HM b)[? = ps ZZW Vi,a' X;, b ®4(Z;))

=1 i=1

n

0 T T
Xy 5 Vira X5, b @u(Z5)) Pu(Z;).

We now focus on S,,(«, ) with sub-vectors Sy, («, 3) and Sa,(a, #). Define

q n

o :
szf ‘/Z,Oé Xzag(Zl)ﬂE%mg(‘/laa leg(Zl))Xlu

/=1 i=1

1. (0 r . 1 :
= {?E (%m(vh@ X1,9(Z1)) ®X1>] E;m(%,a Xi, 9(Z:)),

1
Sln(a7g> qn

qg n

1 P i
32n a g qn szf ‘/zaa Xzag(Z))E%mE(‘/laa leg(Zl))(I)k’<Z1)
(=1 i=1

— E]E (%m(Vl,a X1, 9(Z)) @ @k(zl))} %gm(%aTXi,g(Zi)),

and hence

T T\T 1 1 & T
Sn(a’g> - (Sln(a’g> 752n(a79) ) :5\1171527”(‘/170‘ Xl7g<ZZ))7 (AQ)
i=1

where W, is given by (A.1).
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Lemma A.3. Under Assumptions 2.1-2.2, 3.1, 8.3, A.1-A.3, as n — oo we have

15n(ct; B) = su(e, g)|| = op(1).

Proof. 1t is sufficient to show that ||S1, (o, 8)—s1n(c, )| = op(1) and || Son (e, 5)—s2n (v, 9)|| =
op(1). Observe that

3

1 1 T T !
=2 D me(Vi ' X, 51 (2) — (Vi 0 X 6(2)]
=1 i=1
1 i 8 T T
x = > 5ome(Vi ' X, 8 0(Z)) X,
11 T
+EZE mg(‘/;,@ Xiyg(Zi))
/=1 i=1
1 n a . T a T
X E j=1 %mﬁ(v}aa Xjaﬁ (Dk(Z])) B %mg(%,()& X]’g<Z])) Xj
11w T
_|__Z— me(Vi, oo X3, 9(Z;))
= "

1~/ 0 . 0 y
<=3 (a—u”“% 0" X;, () X; = B (Vi 0 Xwg<Zj>>Xj)
=0 + I, + ]37 say.

Then, using Cauchy-Schwarz inequality gives

HEDS (% S melVi, " Xi, 87 04(Z0)) — mo(Vi, 0" X, g(zm])

(=1 =1
IR ||l 9 i
X QZ EZ%mﬁ(VjﬂTXmﬁT@k(Zj))Xj
(=1 J=1

I:[11 X 112, say.

Observe further that

1< 1 < ’
E[111] = Y E <— > [me(Vi, o' Xi, B ®k(Zi) — ma(Vi, 0" X, Q(Zz‘))])
=1

=23 Var (% S lma(Vi, o' X, 5 0u(Z0) - mm,dx@-,gwi)ﬂ)

i=1

+ . (i ZE[me(V}, a' X, 81 ®(Z;)) — me(Vi, o' X, Q(Zz'))]>

i=1
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1 : 1 - T T T
=255 2 Varlme(Vi, o Xi, 5 0u(Z0)) = malVi, " X 9(21))

+ é Z (Eme(Vi, o' Xy, BT@k(Zl)))z
=1

11

e S Varlme(Vi, o' X1, ' 04(20)) — me(Vi, " Xs, g(Z0)]
Z 1

2 LB (Vi 0" X, 80 (2)|°

11 < : : T
<o S Elmi(Vi.a' X0, 8'94(20)) - mi(Va' X g(20)]
/=1

+ 3 [Em(Vi, " X1, 8" 04(20))
g%é]EHm(Vl,aTXl,ﬁT@k(Zﬂ) —m(Vi,a' X1,9(Z)))|?

L Bt 00220 = Vi X
S%E|A(V1,X1, Z)(20) 2+ E|A(VL, X, Z0)12) ()2
—o(n™) + Ol (2) 2

by Assumptions 3.1 and 3.3, the dominated convergence theorem and Cauchy-Schwarz in-
equality. Moreover, it is clear by Assumptions 3.3 and A.1 that

2

1 0
E|l5] < -E||— = .
1ol < ;5 5 o)

u

m(‘/17 aTXh Q(Zl)) ® Xl

Hence, I; = op(1) by Assumption A.2.
For I, by Cauchy-Schwarz inequality again,

2

I [1 < .

HES (Ezmm,a Xi,g<zi>>>
(=1 i=1

2

T 0 T

22121 X [22, say.

By virtue of the iid property and Assumption A.1,

]21 ZZEmZ V;,OC X’Lag(Z>>

6111

. 11 .
- ZEme(Vl,Oé X1,9(21))? = EgEHm(VhOé X1,9(20)|?
=0(n").
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Meanwhile, invoking of the LLN I3, has the same order in probability as

2

{—me Voo X0, S 020X~ oma(Vi, o X, g<zl>>x]

2

1. [@ o 0 .
:g E {%m(vl,a X1, (I)k(Zl)) ® Xy — %me(vl,a X1>g(Zl)) ®X1]
< [B[AL(Vi, X1, Z0) [y (Z) 1 X1 < O(lve(2)11%p)

=o(1)

due to Assumption A.3 and Cauchy-Schwarz inequality, implying Io = op(1).

Again, using Cauchy-Schwarz inequality gives

2
I [1< .
bt <23 (33 mavea otz

/=1 =1
I ([1 /0 9 2
X 5 Z E Z (%mﬁ(v;? O‘/TXJ'? g(Z]))XJ - E%””(%’ aTXj’ g(ZJ))XJ>
— || =

=0p(n™")Op(p) = Op(n™'p) = op(1)

due to the iid property and Assumption A.1. This finishes the proof of ||.S1,(«, 5)—s1(a, g)|| =

Op(l).
Now, we are to show ||Sa, (e, 8) — san(e, ¢g)|| = 0op(1). Note that

Sgn(Oé B) — san(a, g)

= ZZW Vi X, BT 0u(Z;)

/=1 i=1

x Z—mg (Vj, " X5, BT ®(Z;))r(Z;)

0
N q_nzsz Via! X“g(Z))Ea_me(VhOé X1,9(21))2x(Z1)
(=1 i=1

= 3D Vi Xe ()~ Ve i ()

/=1 i=1

XZ@ (Vi o' X5, B 0u(Z;)) P (Z;)

an Zng (Vi,a' X;, 9(Zy))

(=1 1=1
T 0 T
. Z (Vi X, P2 — (V' X, 0(2,) ) 84(2)

n

_|__2ng Vz,& Xzag(Z))

{=1 i=1
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( Z ow mo(Vi, o' X5, 9(Z;)) @i (Z;) _Ea%me(vl,04TX1,9(Z1))(1)k(Zl)>

::[4+[5+[67 say.

Note further by Cauchy-Schwarz inequality that

q

1
1141 ng

/=1

<% Z[mé(‘/;, OJTXZ‘, BT(I)k(ZZ)) - TI’LK(‘/Z‘, (ITXi, g(ZJ)])

Za (V30" X, 51 0u(2,)) 0u(Z))

321 (% Z[me(v@', o' X, BT O(Z;)) — me(V;, 0" X, Q(Zz))])

2

1 0 T T 9 T
_Z |:a_wme(‘/j7o¢ Xj,ﬁ CI)]C(Zj)) — a_wmf(‘/jaa X]ag(ZJ)):| (I)k(ZJ>

+ 21 (% Z[me(‘/z‘, a' X;, BT @(Z;)) — my(Vi, o' X5, g(ZJ)})

S (Vo X022

)

where due to Assumption A.3 the second term is the leading one, which by the LLN has the

same order as

q
%Z (Elme(Vi, o Xy, B 04(21)) — my(Vi, 0" Xy, 9(Z1))])°
/=1
1< d : ?
X EZ Ea—wmz(vl,@ X1,9(21))®1(Z1)

(=1
Bl (Vi " X5, 87 0u(21)) = m(Vi, " Xa,g(Z0))])

2

]_ a T
p HEé_mel’ a X1,9(Z1)) ® ®u(Z)

<|E[A(WV1, X1, Z)w(Z1)]]° O(k) < O(lln(2)[1°k) = o(1)

in probability by Assumption A.2 as n — oo.
Moreover, invoking Assumptions A.2-A.3, I5 = op(1). Finally,

2

I [1 < .

bt <237 (13-t otz
/=1 i=1

2

- [a%mg(‘/j, o' X, 9(Z;))Pu(Z;) — Ea%me(vm o' Xi, Q(Zi))q’k@i)}
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::Iﬁl X [627 say.

Here, Is; = I and thus E[l5;] = O(n™!). Meanwhile,

2

Ellp) =—— 3 Z E H 5 =me(V;, o' X;,9(Z)®n(Z;) — Ea%mg(vi, o' X, 9(Z:))®r(Z;)

2

11 ) : o :
=—— Z]E H ” me(Vi, o X1, 9(21))®1(Z1) — Ea—wme(vl,@ X1, 9(Z1))r(Z1)

d . 2
——]E H—m Vi,a' X1, 9(21)) ® ©4(Z1) — E%m(vba X1,9(21)) ® ®(Z1)

2

<—— H—m Vi, o' X1, 9(7Z1)) @ ®(Z))|] = O0(n k) = o(1)

appealing to Assumptions A.1-A.2, implying || /s> = op(n~'k) = op(1). The proof is com-
plete. O

B Proofs of the main results

Proof of Theorem 3.1. In Lemma A.1, we have shown that

(1) [[Mn(a, B)I* = op(1),

(i) SUPjaj<Byy,Ibl|<Ban [|Mn(a, b)[[ 7> = Op(1) for each § > 0.
| (a—cb—8)[>6

Fix € > 0 and § > 0. Assertion (ii) means that there exists a large but fixed M for which

lim sup P sup |M,(a,b)]| 2> M | <e.
l[al|<Bin,|[b]|<B2n
[(a—a,b—p)[|>6

Meanwhile, by the definition of the estimator and (i) we have

M, (a, B|? = inf M,(a,b 2 <M, a, B 2= 1),
H ( )H HaIISBli,IIbIISan H ( )H = || ( )” OP( )
which gives

P (IM @B > M) > 1.

It follows that, with probability of at least 1 — 2¢ for all n large enough,

1M (@, B > M > sup 1M, (a, b)[| 7.
HaHSBl'nv”bHSB?n
[(a—a,b—p)||>6
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Hence, the inclusion (@, 5) € {(a,b) : ||a|| < B, ||b|| < By, |[(a — a,b — 5)|| > ¢} holds
with probability at most 2,

timsup P ([I@—a, B - B)] > 0) < 2e.
As € and 0 are arbitrarily chosen, we have ||(a — a, = B)|| —p 0. Notice further that
1@ = o, 3(2) — g(NII* =ll@ — af|* + /[?(2) — g(2)]*7(2)dz
@ - al?+ [1(5 - 67 @u(z) - w(o)Pr()iz

=@ —all® + 118 = BIP + llw(=)]?
=@ = .8 = B)II” + [ (2)II* = 0,

as n, k — oo, by the orthogonality of the basis sequence, which then completes the proof.
O

-~

Proof of Theorem 3.2. By the first order condition S, (@, ) = 0, consistency and Taylor
expansion, we have expansion
0= 5u(@.5) = Sule8) + o) [ © ]
B—p

where higher order term is omitted. As shown in Lemmas A.2-A.3, under Assumptions
2.1-2.2, 3.1, 3.3 and A.1-A.3 in Appendix A, H,(«a, ) is asymptotically positive definite
and H,(«a, ) and S,(«, B) are approximated by h,(a, g) and s,(a, g) (defined in (A.1) and
(A.2)), respectively, that is, ||H,(«, 5) —hn(c, g)|| = op(1) and ||S,(a, B) — sn(c, g)|| = op(1).

Thence,
a—a« . )
G4 = —H,(a, 8)" Sn(a, B) = —hn(a, 9) sn(e, g)(1 + op(1)). (B.1)

Noting that g(z) — g(z) = @k(z)T(fj\ — B) — Yk(z), the linearity of Fréchet derivative and

ignoring the higher order term in the definition of Fréchet derivative,

£@) - Z)) Z(@—a)

7@ -79)) \F@GEE) - 9()
B 2@ - ) 0
\Fe G-5) \Fome)
B < 0 a—« 0
o seee) \G-5) \Fome



< 0 . 0
- — ] (e, 9) (e g) =
0 F'(9)Pi(2) F'(9)(2)

::Aln + A2n7 say.

Recall h,(a,g) = ¢0, ¥, and s,(a,9) = ¢, >0, m(Vi, o' Xi, g(Z;)) by (A1) and

T

(A.2). Hence, Ay, = 21, (0,07 )10, > m(Vi, @' X;, g(Z;)) where

Then, the covariance matrix of \/nAy, is
Y2 =, (U, U)W, E, W) (W, W)

in which 2, := E[m(V,a" X1, 9(Z,))m(Vy, " X1, 9(Z1))"]. Tt follows from the standard cen-
tral limit theorem that /nX 'Ay, —p N(0,1,,,) as n — oo. Then the assertion follows
because of \/nX1(0,, Z'(9)7k(2)")" = o(1), yielding v/nAz, = o(1). O

Proof of Proposition 3.1. The assertions (1) and (2) can be shown similarly to Lemmas 3.4
and 3.5 in Pakes and Pollard [29]. For brevity we omit the proof. For (3), factor =, = C,C},
and denote Q,, = [V, WV, 710, WC, and T}, = Q,, — [¥,,=, 10 710, (C1)". Tt follows that

T.T, = Q,Q;, — [0,=,"¥, ],
from which
L0, W =, WE, W U, WU 71T > T, 0,210 7T
for all W satisfying the conditions, in view of the nonnegative definiteness of 7,7}, . n

Proof of Theorem 4.1. By the conventional central limit theorem

n

n -1/2
<Z[’%Tm(‘/i7 aTXiJ g(Z”L))]Q) Z ﬁTm(‘/h aTXi7 g(Zz)) —D N<07 1)7

i=1
as n — oo for any k € R? such that ||| = 1.

Thus, the result follows immediately if we show

n

n —1/2
Ln(aJ 37 K/) - (Z[H}Tm<‘/ia aTXi7 g(Zl))]2> Z '%Tm(‘/ia OéTXiJ g(ZZ)) + OP(l)‘
i=1 i=1

Toward this end, we shall show

n

D@, B — = S W m(Vioa” X, g(Z0) = op(1); and

=1

1
n

(1).
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(2). =S > w'm(Vi,a'X;, BT ou(Z:)) — = > w'm(Vi, ' X, 9(Z)) = op(1).

\/ﬁ i=1 \/ﬁ i=1

(1). Notice that

n

= S (Vi o X ()P

i=1

S (VX G2~ (Vi X g(Z0))

and we shall show that the second term is op(1). First of all, we need the convergence
rate of ||@ — «||* and ||§— B)|?>. Tt follows from (B.1) in the proof of Theorem 3.2 that
(@=a)", (B—B)") has leading term hy(cv, g)~'s,(ct, g). Then, by the expressions of h, (e, )
and s,(c, g) it is readily seen that ||& — «]|2 = Op(q/n) and ||B — 8|12 = Op(q/n).

Moreover, by the first order Taylor expansion,

% > m(Vi, 87X, §(Z0)))7 = [T m(Vi, o’ X, g(Z:))
<=3 I8 (Vi @7 X6,§(20) = m(Vi, X, g(2))P

+2— Zlm (Vi @' X3, §(Z:)) = m(Vi, o Xi, 9(Z0))]||6"m(Vi, o X, 9(Z0))]

2
2 N | L om(Vi,a' Xi g(Z) i
“z 7)) —q(Z:
+ " 2 K w0 (g( z) g( 2))
2 — ;0m (‘/Z,C( XZ,Q(Z)) T T
2 _ . o' X, 9(Z
+ - 2 /{ 0 (Oz Oé) i |K/ m(V;,O( ug( Z))|
2 = Tam ‘/iaaTXiag ZZ ~ T T
2230 ( A Z) G(z) - 9(2)| 1K (Vi 0" X, 9(2)
=1
R 2 N ||om(Vi, o' Xy, g(Z: 2
S et o x
=1
. 4 = om(Vi, o' Xy, 9(Z)) i
. 2_ ) ) @ Z
+118 - 8l ng 70 @ 04(Z:)
om(Vi, o Xi, g(Z) I”
Z.
a ow 'Vk( z)
o (& amaa X g(Z)) P\ (< : )
i=1 i=1

44



om(V;, @ajji,g(zi)) G(Z) — g(Z:)

i=1

N 1/2 7 p 1/2
) (anm,a’xi,g(z)nﬁ)
i=1

=@ — alOp(gp) + 1|18 = BIPOp(gk) + sup~7(2)0r(q) = op(1)

by Assumptions A.1 and 4.2, where Cauchy-Schwarz inequality is used to show the last two
sums are of smaller order. Thus, the assertion of (1) holds.

(2). We first consider

a, fir) = fzn (Via' Xi, f(Z) — Em(Vioa' Xo, £(Z))), (B.2)

for any x € R? such that ||x]| = 1 and (a, f) € ©. Because of the convergence in Theorem
3.2, we eventually will show v, (@, g; k) — va(a, g; k) = op(1).
Notice by the first order Taylor expansion that

m(Vi,a' X;, f(Z;)) = m(Vi, o' X, g(Z))

- a(;fi’ 92 (o x, 1 20 a(;? WD) (4(z) - g(2)),

for all (a, f) in the neighbourhood of («, g), where f has the form b’ ®;(-). Thus

i sup lvn(a, fir) — vn(a, g; k)| > 1
I(a,f)—(e.g)ll<d
<P sup
ll(a.f)—(e.g)ll<d
P sup
||(azf)7(a7g)H<6
<P sup
lI(a,f)—(e.g)ll<d
+ P sup _
) —(ag)l<8 | VT
1 n
+ P sup _
ll(a,f)=(ag)lI<8 | VTV

<P sup
ll(a,f)—(evg)ll<d

T2 Y G ) X~ B a o)X > n/2)

® o w(Zi) — Er' %’Yk(zi)] > 77/4>

1 -
{ma—m){i—E rom ]
1

lvp(a—a)ll > n/2>

1 ;0 L0
+P sup {H _mq)k(z) Ex _mq)k ||\/— b —B)|| > n/4
I(a,f)—(ag)lI<é || Vk <= ow
1 ¢ rOm :0m
+P sup {lﬁ (Zi) — Bk —(Z; )} > /4
(n(a,f)—(a,gwa n<=1| ow Ow
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=1, + I + 13717 say.

Observe by the classical CLT that

1 om L0m B
_np - |:K] 8u Xz — Ex %X{| = Op(l),
1 «— :O0m :0m

It follows that if || /p(a—a)|| and ||Vk(b — B)|| are sufficient small, I1,, < &/3 and I», < /3.
Meanwhile, using the condition that \/nsup, |[7x(z)|| = o(1) we have I3, < e/3. This shows
that, in view of Theorem 3.2, when n is large, P (|v,(@,g; k) — vn(e, g5 k)| > 1) < € for any
given €, > 0.

Furthermore, since

|
(]
R—u
3
=
2)
>
w)

(I)k(Zz)) — m(‘/’n OCTXia g<ZZ))]

= vn(@, 35 5) — va(a, g 5) + /i, (@, 33 K),
the assertion of (2) holds by virtue of Assumption 4.1. This finishes the proof. O
Proof of Theorem 4.2. Because for any (a,b) and x with ||s| = 1,
%Dn(a, bi k) = (B[ m(Vi,a X0, b @p(Z0))2) 72 + op(1)
= (K" E[m(Vi,a' X1, b'®4(Z1))m(Vi,a' X1, b'®4(21))]6)* + 0p(1),

which is bounded away from zero and infinity in probability, it suffices to show that there is

some k* with ||k*|| = 1 such that

\/_ZR*Tm Vi,a' X;, b’ ®,(Z;)) =p 00

as n — oo for any (a,b) € RPTF,
Note by the Law of Large Number that

\/_ZK, m(Vi,a' X;, b ®,(Z;)) = \/E—Zka m(Vi,a' X;, b ®r(Z;))

=vn{E[x"'m(V;,a' X;, b ®4(Z;))] + op(1)}.

Let w* = Elm(V,,a' X, b'®,(2,)))/ | Elm(Vi,a X, b'®,(Z,))]]. Then,
fzn*Tm Vi, X, b'0,(Z,)) = Vil | Em(Vi, 2" Xo b 0u(Z0)]l| + 0p (1)}

Nﬁ{(a},gge 1E[m(V;,a X, M(Z:))]|| + 0p(1)} > V/n(dn + 0p(1)) —p oo,

as n — 00, which finishes the proof. [
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Proof of Lemma 5.1. Define p, = a, + v/t P.(d,) and then p, = o(1) by Assumption 5.1.
Denote N, = {v € RP** . |up — vg|| < po7} for 7 > 0. Let ON; be the boundary of A/;.

Also, define an event

Aur) = {Qulw) < inf @uon) |

On the event A, (7), by the continuity of (),,(v) with respect to v; for j € T', there exists a
local minimizer of @, (vr) inside N;,. That is, there exists a local minimizer ¥ € V of Q,,(vr)
such that ||[v — vg|| < 7p,. Therefore, it suffices to show that for Ve > 0, there exists a 7 > 0
such that P(A, (7)) > 1 — € for all large n.

For any v € ON,, viz. |[ur — vg|| = Tp,, there is an v* lying on the segment joining v and

vg such that by the mean value theorem,

1

Qn(vr) — Qn(vo) =(vs — vos)" Sur(vos) + 5(115 — vos) Har(v%) (vs — vos)

+ > [Pallvsi]) = Pallvos1)],

jET
where vgg and vg are defined before, so is vg.

Invoking the condition ||.S,7(vos)|| = Op(a,), for Ve > 0, there exists a C; > 0 such that
the event A; given below satisfies P(A;) > 1 — ¢/4 for all large n, where

Ay = {(vs — vos) Snr(vos) > —Chan||vs — vosl|}.

Also, by Condition (ii) and for this €, there exists a Cy such that P(Ay) > 1 — ¢/4 for all

large n, where
Ay = {(vs — vos)" Hur(vos) (vs — vos) > Callvs — vos||*}-

Meanwhile, define event A3 = {||Hnr(vos) — Har(vE)|| > C2/4}. By Condition (iii) and
llor —vol| = [|[vs —vos|| = Tpn, for any 7, P(As) > 1—¢€/4 for all large n. Hence, Ay C A2NA;
where

T . 3
Ay = {(vs — vos) Hur(vs)(vs — vos) > 102”@5 — vos|*}.

On the other hand, it follows from Lemma B.1 in Fan and Liao [18] that ;[P (|vs;]) —
P.(|vos;])] = =Vt Pi(d,)|lvs — vos||. Whence, for any v € N, on A; N Ay,

Quler) = Quten) 2par ($purCa = Cutn = VER@))

For p, = a, + vt P.(d,), Cia, + /1t P'(d,) < (C1 4 1)p,. Thus, choosing 7 > 8(C; +1)/3Cs
yields that Q,(vr) — @n(ve) > 0 uniformly on v € ON,. Tt follows that for all large n, with
T > 8(01 + 1)/302, P(An(T)) > P(A1 N A4) >1—ce.
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We next show that the local minimizer, denoted by v € V), is strict with a probability

arbitrarily close to one. For each h # 0, define

P’ _p
/w(h) = lim sup sup _ n(u2) n(ul) ‘
e—0t  (u1,u2)€0(|h|,€) Uy — Uy

By the concavity, 1(-) > 0. For any v € N, let Q(v) = H,r(vs) — diag(¢(vs1), -+, ¥ (vst))-
It suffices to show that () is positive definite with probability arbitrarily close to unity. On
the event As = {¢(Vs) < SUD, co(us.cd,) P(Vs)} Where Us is the t-vector consisting of nonzero

elements of v, and ¢ is the same in (iv) of Assumption 5.1, we have

max ¢ (Ug;) < ¢(vs) < sup  o(vg).
J<t vg€0(vos,cdn)

Let A(; = {HHnT(@\S) — HnT(UOS)H < 02/4} and A7 = {)\min(HnT(UOS)) > 02} Then, for any
u € R" with ||u|| = 1, it follows from (iv) of Assumption 5.1 that

u' Q@) u =u" Hyr(Us)u — u' diag(y (Us1), -+, ¥ (Tse) u

>u' Hyr(vos)u — [u' [Hyr(Ds) — Hyur(vos)]ul — 151354 Y (Usy)

>3Cy /4 — sup  P(vg) > Cy/4

vs€O0(vos,cdn)

on the event A; N Ag N A7 for all large n.

Finally, we are about to show that P(As N Ag N A7) > 1 —¢€ As P(A;) > 1 —¢, it
suffices to show P(A; N Ag) > 1 — € for Ve > 0. Indeed, due to p, = o(d,,), P(As) > P(vs €
O(wos, cdy)) > 1 — €/2 for all large n. Also,

P(A§) <P(AG, [0 = voll < pn) + P[0 — voll > pn)

<P ( sup  |[Hpr(vs) — Hor(vos)|| > 02/4> +e/4 < ¢/2.

vs€0(vgs,cdn)
0
Proof of Lemma 5.2. Recall that ¥ € V is a local minimizer of @, (vr). Hence, there is a

small neighbourhood O; of ¥ such that for any v € O; with v € V we have Q,,(v) < Q,(vr).
However, by the condition of (5.2),

Qn(vr) = Qu(v) = My (vr) | = M (@) * = Y Palloy]) < 0. (B-3)
J¢T
This means Q,(v) < @,(v), yielding the first assertion, while, from which and the last

statement of Lemma 5.1, the second assertion is also implied. O
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Verification of Conditions in Lemma 5.1 Condition (i): Notice that S,7(vos) =
Do | Mo (00) I? = 2A,,(vos) My, (vo), where

1 & T T
An(vos) = Jan > om" (Vi vpsFis) © Fis.
i=1

By Assumption 5.2, ||A,(ves)|| = Op(v/t). Meanwhile, due to Em(-) = 0 at the true
parameter, by virtue of Assumption 5.3, Bernstein inequality and Bonferroni inequality,

there exist C' > 0, for any u > 0,

P (rggf —Zme Vi, vgsFis)| > )
< — o
qnlglgch (‘n ;me(‘/z,vosﬂs) > U>

<exp(logq — Cu?/n).

Hence, maxe<q |2 30 me(Vi, 00 Xis, BogPrs(Zi))| = Op(y/1og(q)/n), which then gives
H \/—n Zm Vi, OlostS, ﬁ05®k5< ))H OP( log(Q)/n)' (B'4)

Accordingly, ||S,r(vos)|| = Op(1/t log(q)/n).
Condition (ii): It is clear that H,r(vs) = 24, (vs)An(vs)" + 241, (vs) M, (vr) where

1 O : .
Ain(vs) = W Z *m(V;, vosFis) © FigFyg.

Here, 0*m stands for the second order partial derivative of m with respect to its arguments
where the parameter is involved.

As shown in Lemma A.2 that A, (vs)A,(vs)" is almost surely positive definite, while
similar to the verification of Condition (i), the second term is op(1). Thus, using Assumption
5.4, the condition can be verified using arguments similar to Fan and Liao [18].

Condition (iii): Observe that

nr(vs) — Hyr(vos)
=2[An(vs) An(vs)" — An(vos) An(vos) ] + 2A1n (vs) My (vr) + 241, (vos) M (vo)
=2[An(vs) — (Uos)]An(Us)T] + 24, (vos)[An(vs) — An(Uos)]T]
+ 2A1,(vs) Mn(vr) 4 2A15(vos) My (vo),

and each term is op(1), from which the condition follows.

Verification of the condition in Lemma 5.2: Let ¥ € V be the minimizer of Q,,.

We shall show that there is a neighbourhood of ¥ in which for any v € V), the condition of
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(5.2) holds, that is, || M, (vr)||* — || My (v)[|> < 3,47 Pa(|vs]). This is tantamount to showing
Qn(UT> < Qn(v>
Using the mean value theorem, there exists a v, on the segment joining vy and v such

that
HMN(UT)HQ - HMn(U)HQ :Sn(v*)T(UT - U) = Sn(v*)TvTca

where T is the complement set of T w.r.t. {1,--- ,p+k} and noting v = vy + vye for any v.
Here, we know |18, (vos)|| = Op(y/tlog(q)/n), [V — vl = Op(y/tlog(q)/n + vt Pi(dy)).
In a small neighbourhood of v, O(v,r,/(p + k)) say, where r, is a sufficient small number,
|Sn(v)|| = Op(+/tlog(q)/n) uniformly holds in v and sup,co ||[v — 0|1 < 7.
On the other hand, for some p € (0,1), > .7 Pu(lvs]) = ZMT’U#O v | Pl (p]vj])
ZjéfT,vj 0 [vj| Py (rs) by the nonincreasingness of P (u). Let r, so small that P (r,)
P (0%)/2. Hence, 3 o5 Pu(1B)]) > Cry, in probability.

Then, by virtue of Assumption 5.4 and following a similar argument as Fan and Liao [18],

>
>

the condition is verified.

Proof of Theorem 5.1. (i) and (ii). As shown in Lemma 5.2, if @,,(v) has a local minimizer

0 = (Vg,0y)", then Uy = 0 with probability arbitrarily close to one for large n, which implies

the assertion (i) and P(T C T) — 1.
On the other hand,

P(T ¢ T)=P(3j € T,5; = 0) < P(3j € T, Jvo; — 0;] > |vo;])

<P(max |vg; — Uj| = dn) < P([[v = ol = dn) = o(1),
J

implying P(T C T) — 1. Accordingly, P(T =T) — 1.

(iii). Let © = (Ug,0y)" be the local minimizer of @,(v) where Uy = 0 with probabil-

ity arbitrarily close to one. Define P!([vs|) := (P.(|vs1]), -+, P.(|0s:]))" and sgn(vg) :=
(Sgn(i}\sl% e 7Sgn(i}\5t>>T-

By the Karush-Kuhn-Tucker (KKT) condition,

Sur(Us) = —P,([vs]) © sgn(vs),

where the operator ¢ is the product in elementwise.

It follows from Taylor theorem that
Spr(Vs) = Snr(vos) + Hur(vos)(¥s — vos),
where a higher order term is ignored, which further implies
U5 — vos =Hnr(vos) ™' [Snr(Vs) — Snr(vos)]
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= — Hyur(vos) ™ [Snr(vos) + P ([Us]) o sgn(Ts))]
= — hur(aos, 9) " [sar(aos, 9) + P ([0s]) o sgn(@s)](1 + 0p(1))
under the condition for ¢t = p; +k; by Lemmas A.2 and A.3 where h,r (s, g) and spr(aos, g)

are the counterparts of h,(«, g) and s,(«, g), respectively, under the oracle model T'.

Similar to the proof of Theorem 3.2, by §(z) 1= ®yr(2)" Bs,

.Z(&s) — g(Oéos) _ Fn(@\s B UOS) n 0
FHE) - F(9(=) Fghn(2)
o Dohr(aos 9) sur(aos, 9) + Po(lTs) osen@s)] + |
F'(9)(2)

Notice that the structure
-1 1 T \—1 = T
Pnhnraos, 9)7 sur(aos, ) = —Un(CurWr) ™ Yar > m(Vi, apsXis, g(Z:)
i=1

is standard, so that invoking classical central limit theorem gives

VS A haraos, ) sur(aos, 9) % N0, L)

as n — oo. It remains to show /nX 1P (|Us|) o sgn(vs) = op(1). Similar to Lemma C.2 of

Fan and Liao [18] we may show that

1P ([os]) o sgn(@s)l| = Op(  max — ¢(vs)y/tlog(q)/n + F,(dn)).

lvs—vos|I<dy, /4
Note also that ¥, has fixed dimension and its eigenvalues are bounded from zero and above.

Thus, the assertion holds under Assumption 5.4. This finishes the proof. O

Proof of Theorem 5.2. Recall that © = (0g,0y) and P(oy = 0) — 1. Also, recall the
notation o = (ag,0", Bfg, 0")".

First, we shall show that || M, (07)||? = Op(t*/? log(q) /n+t*/2P’(d,)*+t+/log(q) /nP.(d,)).
Notice that || M, (vr)||> = [|M,(vo)||? + | My (07)||* — || M (o) || and by the mean value theo-

rem,

1M (7)1 = [| Mo (vo) I =Sir(v5) (s — vos)

=Sy (vos)" (B — vog) + [Snr(vE) — Snr(ves)]' (B — vos).

where v§ is a point on the segment joining vg and wvps.

Notice further,

[Sur(vos)” (Vs — vos)| < [1Sur (vos)[|[0s — vos|l = Op(tlog(q)/n + t+/log(q) /nF, (dn))

o1



due to ||Sur(ves)|| = Op(\/t log(q)/n) and ||Us — vos|| = Op(\/t log(q)/n + \/ZP,’L(d

Meanwhile, it follows from Assumption 5.2 that

|[Snr(v5) = Sur(vos)] (Vs — vos)| < [|Snr(v§) — Sur(vosl||[Vs — vos||
<Op(V1) % — vos]|[|Ts — vos|| < Op(V1)|[Ds — vos?
=0p(t**log(q)/n + t**Pl(d,)?).

The assertion then follows by noting from (B.4) that || M, (vo)||* = log(q)/n.

Second, we shall show that Q,,(vr) = Op(t*?log(q) /n+t>2P!(d,)*+t\/log(q) /nP.(d

t maxjer Py(|vg;])). Indeed, using the mean value theorem again

Y Palol) <D Pallvosl) + Y Prllug; D)0 — v

jeT JET JjET
<tmax P, (Joo; ) + > " Pl(dy)|5; — vo]
JjeT

<t max P (Jvo|) + VP, ()]0 = woll,
J

from which the assertion follows.

Now, for any 6 > 0,

inf () > inf || M, (v)|?
||v—vo||>5Q (v) 2 llo— ||>5|| @
= inf - m(Vi,v' Fy)
||v wol|>8 q Z
1 1 n 2
inf Em(Vy,v" B)|? inf ={=Y mV,v'F)—Em(V;,v'F
T ool =6 2¢ ” 1 Rl lv—vo|>68 q ; ( ) (% 1)
= f Em(Vy,v'F —1/2
= o 12]”% 2q” m(Vi,v F1)|| +op(n™"/%)
= inf —HEm(Vl,a X1, f(Z)| + op(n™"?),

l(a=a,f=g)lIZ+Ivk ()1l q

n)+

due to the relation ||[v —w|| = [[a—af|+ b= = [la—a| + || f — 9]l = || (2)]|. As a result,

by Assumption 3.2, there exists € > 0 such that infj,_,>s Qn(v) > € for sufficient large n.

Taking 0 < n < e,

P(@Qn(v) +n> inf Qn(v))

lv—voll =6

=P(Qn(vr) +n> inf  Qn(v))+o(1)

[v—vol| =6

P(Qu(Er) +1> )+ P( inf_ Quv) <9 +o()

<P(Qn(vr) > €e—n)+o(1) = o(1)

because Q,(vr) = op(1).
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