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Multi-Step Non- and Semi-Parametric Predictive Regressions for

Short and Long Horizon Stock Return Prediction1

Tingting Cheng‡, Jiti Gao∗ and Oliver Linton†

Nankai University‡, Monash University∗ and University of Cambridge†

Abstract

In this paper, we propose three new predictive models: the multi-step nonparametric

predictive regression model and the multi-step additive predictive regression model, in which

the predictive variables are locally stationary time series; and the multi-step time-varying

coefficient predictive regression model, in which the predictive variables are stochastically

nonstationary. We also establish the estimation theory and asymptotic properties for these

models in the short horizon and long horizon case. To evaluate the effectiveness of these

models, we investigate their capability of stock return prediction. The empirical results

show that all of these models can substantially outperform the traditional linear predictive

regression model in terms of both in-sample and out-of-sample performance. In addition,

we find that these models can always beat the historical mean model in terms of in-sample

fitting, and also for some cases in terms of the out-of-sample forecasting.

Keywords: Kernel estimator, locally stationary process, series estimator, stock return

prediction

JEL Classification: C14, C22, G17

1 Introduction

A fundamental issue in finance is whether future stock returns are predictable using publicly

available information. The seminal studies of Keim and Stambaugh (1986), Fama and French

(1988) and Campbell and Shiller (1988) empirically demonstrated that variables such as dividend

yield, book-to-market ratio, or interest rate spreads have significant predictive ability over future

stock returns. Fama (1991) interpreted these findings as evidence of time-varying risk premia

rather than as evidence against market efficiency. Although financial economists have identified

variables that predict stock returns through time, the “correct” predictive regression specification

has remained an open issue. Several researchers have focused on using linear models to predict

stock returns (see for example, Lewellen, 2004; Campbell and Shiller, 1988). A systematic

discussion on the performance of mostly linear predictive models is given by Welch and Goyal

(2008). However, as pointed out by Phillips (2015), there exists a potential misbalancing problem

1The second author would like to thank the Australian Research Council Discovery Grants Program for its

support under Grant numbers: DP150101012 and DP170104421.
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in the linear predictive regression model if some of the predictors have long memory and response

variable has short memory.

On the other hand, some other researchers considered nonlinear models to predict stock

returns. For example, Lettau and Van Nieuwerburgh (2008) suggested that after controlling

the structural shift in the mean of dividend yield, the evidence of stock return predictability is

much stronger. Chen and Hong (2010) developed a nonparametric predictability test to examine

whether there exists a kind of predictability for equity returns for both short and long horizons

and show that the nonparametric model can outperform the linear model. Scholz, Nielsen and

Sperlich (2015) used nonparametric and semiparametric techniques to investigate the prediction

of stock return over one–year horizon based on yearly data. Despite the significant volume of

subsequent research, the predictability debate, and many econometric issues, in terms of the

size and power of the existing tests, still remain unsolved (see for example, Stambaugh, 1999;

Campbell and Yogo, 2006).

In this paper, we consider nonparametric approaches that allow for both linear and nonlinear

predictability. A major issue in using nonparametric methods is the curse of dimensionality

(Stone, 1980), which limits the number of covariates that can be allowed for flexibly. A further

issue that affects the use of nonparametric methods is nonstationarity of predictor variables. To

mitigate the curse of dimensionality we propose three new predictive models: the multi-step

additive predictive regression model (APR), the multi-step time-varying coefficient predictive

regression model (TVCPR), and the multi-step nonparametric predictive regression model (NPR).

We use rescaled time as one of our covariates, which allows for variation over time in the predictive

relationships, a point emphasized by for example Pesaran and Timmermann (1995). A closely

related study is done by Kasparis, Andreou and Phillips (2015), which considered nonparametric

predictive regressions with the regressor being a highly persistent process. In our work, we

assume that the predictive variables are locally stationary time series in the NPR and APR

models and nonstationary in the TVCPR model. Note that locally stationary processes have

received a lot of attention. For example, Vogt (2012) studied nonparametric models allowing for

locally stationary regressors and a regression function that changes smoothly over time. Dong

and Linton (2016) studied nonparametric additive models that have deterministic time trend

and both stationary (or locally stationary) and integrated variables as components. Meanwhile,

varying coefficient time series models have been widely applied because of its flexibility, and

different theoretical results have been investigated (see for example, Cai et al., 2009; Cai, 2007;

Li et al., 2002; Phillips et al., 2017). We present the theoretical properties of our estimators of

the regression functions in the short horizon and long horizon case, where by long horizon we

mean that the horizon increases to infinity with the size of the sample. Many empirical studies
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consider the long horizon case and our results support the use of nonparametric methods in this

setting. To evaluate the effectiveness of these predictive models, we investigate their capability of

stock–return prediction. The empirical results show that all of these models can substantially

outperform the traditional linear predictive regression model in terms of both in-sample and

out-of-sample performance. In addition, we find that these models can always beat the historical

mean model in terms of in-sample fitting, and also for some cases in terms of the out-of-sample

forecasting. The outlook for nonparametric methods looks somewhat more promising than was

presented in Diebold and Nason (1990), although we acknowledge that the magnitude of the gain

provided by these methods is modest.

The rest of this paper is organized as follows. In Section 2, we describe our models (i.e. NPR,

APR, and TVCPR) in detail and establish asymptotic properties for the nonparametric estimators

of the predictive functions. In Section 3, we present implementation details of our proposed new

models, including bandwidth selection in kernel estimation for the NPR and TVCPR models and

choice of truncation parameter in sieve estimation for the APR model. In Section 4, we compare

the performance of these models on the prediction of stock returns with two main competing

methods. Section 5 concludes the paper. The proofs of the main results are given in an appendix.

2 Predictive models and estimation theory

In this section, we describe the NPR, TVCPR and APR models in Sections 2.1-2.3, respectively.

For each model, we establish the corresponding estimation theory and asymptotic properties.

2.1 The NPR model

Consider a nonparametric predictive regression model of the form

(1) yt+j = gj(τt, xt) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J,

where2 τt = t
n
, xt = (x1t , · · · , xdt )> is a locally stationary time series, gj(·) are unknown functions

of τt and xt, and et+j is a α-mixing error process. This model allows for variation over time in the

relationship between stock returns and the covariates xt and is completely general in the form of

the relationship. Typically, yt is (logarithmic) stock returns, but we may also be interested in

predicting prices. A locally stationary process is defined as follows (see Vogt (2012)).

Definition for Locally Stationary Process: Process {xt} is said to be locally stationary

if for each scaled time point τ ∈ [0, 1] there exists an associated process {xt(τ)} satisfying

2Robinson (1989) demonstrated that this “scaled time” requirement is necessary for the asymptotic justification

of the nonparametric smoothing estimators.
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(i) {xt(τ)} is strictly stationary with density fxt(τ)(x);

(ii) it holds that

(2) ‖xt − xt(τ)‖ ≤
(∣∣∣∣ tn − τ

∣∣∣∣+
1

n

)
Unt(τ) a.s.,

where Unt(τ) is a process of positive variables such that E[(Unt(τ))ρ] < C for some ρ > 0 and

C > 0 independent of τ, t and n, and ‖ · ‖ denotes an arbitrary norm on Rd.

It follows from the definition that a stationary process is also locally stationary. From the

above definition, we see that local stationarity accommodates a variety of financial datasets.

We are also interested in predicting long horizon returns
∑J

j=1 yt+j using the covariates

available up to and including time t. It follows from our specification that

(3) yt:t+J =
J∑
j=1

yt+j =
J∑
j=1

gj(τt, xt) +
J∑
j=1

et+j = g(τt, xt) + et:t+J ,

where g(τt, xt) =
∑J

j=1 gj(τt, xt), and et:t+J =
∑J

j=1 et+j . Note however that cov(et:t+J , es:s+J) 6= 0

when |t− s| < J , which must be allowed for in the distribution theory.

For each fixed j and a given point (τ, x), we use the local constant kernel method to estimate

gj(τ, x) by

(4) ĝj(τ, x) =
n∑
t=1

Wnt(τ, x;hj)yt+j with Wnt(τ, x;hj) =
K
(
τt−τ
hj

)∏d
i=1K

(
xit−xi
hj

)
∑n

s=1K
(
τs−τ
hj

)∏d
i=1K

(
xis−xi
hj

) ,
where x = (x1, · · · , xd)> for any vector x ∈ Rd, K(·) is a probability kernel function and hj is a

bandwidth parameter. For convenience, in this paper, we work with a product kernel and assume

that the bandwidth hj is the same for τ and xi (i = 1, 2, · · · , d), but the results can easily be

extended to the case involving non–product kernels and different bandwidths. We then define

our estimator of g(τ, x) to be the sum of the one dimensional estimators

(5) ĝ(τ, x) =
J∑
j=1

ĝj(τ, x).

Let f(τ, x) = fxt(τ)(x) denote the densities of the variables xt(τ). Define ∂0f(τ, x) =

∂f(τ, x)/∂τ , ∂if(τ, x) = ∂f(τ, x)/∂xi, ∂0gj(τ, x) = ∂gj(τ, x)/∂τ , ∂igj(τ, x) = ∂gj(τ, x)/∂xi,

∂20,0gj(τ, x) = ∂2gj(τ, x)/∂τ 2 and ∂2i,igj(τ, x) = ∂2gj(τ, x)/∂xi
2
, for i = 1, 2, · · · , d. Then we have

the following theorems; their proofs3 are given in Appendix A.1.

3Tingting: As explained in the proof of Theorem 2.1 below, two terms may be missing from Bj,x,τ . This is

because gj(τ, x) is a multivariate function, so you will need to decompose gj(τt, x+ hjw)− gj(τ, x) = gj(τt, x+

hjw)− gj(τt, x) + gj(τt, x)− gj(τ, x), and the second term is missing in your calculation or that by Vogt (2012).

Can you be more careful this time ? In addition, the notation of ∂igj(τ, x)∂if(τ, x) is confusing. Please see my

notation in equations (7) and (8) below.
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Theorem 2.1. Assume that Assumptions A.1.1–A.1.4 hold with β ≥ 4. Let nrhd+2
j → ∞

with r = min{ρ, 1}, in which ρ is defined in (2). Moreover, suppose that f(τ, x) > 0 and that

σ2
j (x) = E[e2t+j|xt = x] is continuous. Finally, let r > d+2

d+5
to ensure that the bandwidth hj can

be chosen to satisfy nhd+5
j → ch for a constant ch. Then for each given j and (τ, x), as n→∞,√
nhd+1

j (ĝj(τ, x)− gj(τ, x))→D N(Bj,τ,x, Vj,τ,x),(6)

where Bj,τ,x =
√
chκ2/2

∑d
i=0[2∂igj(τ, x)∂if(τ, x) + ∂2i,igj(τ, x)f(τ, x)]/f(τ, x) and

Vj,τ,x = κd+1
0 σ2

j (x)/f(τ, x) with κ0 =
∫
K2(u)du and κ2 =

∫
u2K(u)du.

The results are very similar to those for the standard local constant estimators with strictly

stationary regressors (see Page 63–64 in Chapter 2 of Li and Racine (2007)). Note however that

although we include rescaled time as a covariate, the large sample variance of the nonparametric

estimator depends only on the short run variance of the error term, not on its long run variance.

This is because the localization by the stochastic covariate effectively shuffles much of the

dependence out of the error term.

Define

Rj(τ, x) =
κ2
2
h2j

d∑
i=0

(
2
∂gj(τ, x)

∂xi

∂if(τ, x)

∂xi
+
∂2gj(τ, x)

∂x2i
f(τ, x)

)
/f(τ, x),(7)

bj(τ, x) =
∂gj(τ, x)

∂τ
hj µ(K, τ) +

1

2

∂2gj(τ, x)

∂τ 2
h2j σ

2(K, τ),(8)

where µ(K, τ) =
∫∞
0
uK(u)du I[τ = 0] +

∫ 0

−∞ uK(u)du I[τ = 1] +
∫∞
−∞ uK(u)du I[0 < τ < 1], and

σ2(K, τ) =
∫∞
0
u2K(u)du I[τ = 0] +

∫ 0

−∞ u
2K(u)du I[τ = 1] +

∫∞
−∞ u

2K(u)du I[0 < τ < 1].

Let BJ(τ, x;h) =
∑J

j=1 (Rj(τ, x) + bj(τ, x)), ΣJ(x) =
∑J

j=1 ρ
−(d+1)
j σ2

j (x) and V (τ, x) =

f−2(τ, x)f(x)κ0
∫
L2(v)dv, where L(v) =

∏d
i=1K(vi).

We then establish an asymptotic property for ĝ(τ, x) in the following theorem.

Theorem 2.2 Let Assumptions A.1.1–A.1.4 hold. Suppose that limn→∞ nh
d+1Σ−1J (x) =∞

and limn→∞ nh
d+1 Σ−1J (x)B2

J(τ, x;h) <∞ for each given (τ, x). Then as n→∞,

(9)
√
nhd+1 Σ−1J (x) (ĝ(τ, x)− g(τ, x)−BJ(τ, x;h))→D N (0, V (τ, x)) .

Theorems 2.1 and 2.2 show that each of gj(τ, x) can be consistently estimated and asymptoti-

cally normally distributed. Theorem 2.2 remains valid regardless of whether J is fixed or varying.

Some details for practical implementations (in particular, the choice of bandwidth hj) are

discussed in Section 3 before an empirical application is given in Section 4. The proofs of

Theorems 2.1–2.2 and Corollary 2.1 are given in Appendix A.1 below.
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2.2 The TVCPR model

Consider a time-varying coefficient predictive model of the form

(10) yt+j = x>t βj(τt) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J,

where xt is a d-dimensional vector of nonstationary time series, τt = t/n, βj(·) are unknown

functions defined on [0,1], and {et+j} is a stationary error process. This model is a special

case of the NPR model. It allows only conditionally linear predictability between the covariate

and response, although the parameters of that relationship are allowed to vary over time in an

arbitrary way.

For each given j, we use the local constant kernel method to estimate βj(τ) by

(11) β̂j(τ) =

(
n∑
t=1

xtx
>
t K

(
τt − τ
hj

))−1 n∑
t=1

xtyt+jK

(
τt − τ
hj

)
,

where K(·) is a probability kernel function and hj is a bandwidth parameter.

To develop the limit theory, we start with some regularity conditions to characterize the

nonstationary time series xt and the stationary error process et+j. We assume that xt is a unit

root process with generating mechanism xt = xt−1 + vt and the initial value x0 = OP (1). Then

(et+j, vt) are determined according to the linear process

wt,j = (v>t , et+j)
> =

∞∑
s=0

Φs,jεt−s,(12)

where Φs,j is a sequence of (d+ 1)× (d+ 1) matrices, and εt is a sequence of independent and

identically distributed random vectors with dimension (d+1). Partition Φs,j as Φs,j = [Φs,1,Φs,j,2]
>

so that

vt =
∞∑
s=0

Φ>s,1εt−s, et+j =
∞∑
s=0

Φ>s,j,2εt−s.(13)

By functional limit theory for a standardized linear process and noting that

n−1/2
bnrc∑
s=1

εs ⇒ Bε,r(Γ0)

with Bε,r(Γ0) being (d + 1)-dimensional Brownian motion (BM) with variance matrix Γ0, b·c
denotes the integer part and 0 < r ≤ 1, we have for t = bnrc,

xt√
n

=
1√
n

t∑
s=1

vs +
1√
n
x0 =

1√
n

bnrc∑
s=1

vs + op(1)⇒ Bd,r(Ωv),(14)
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n−1/2
bnrc∑
s=1

ws,j ⇒ Bd+1,r(Ωj), n
−1/2

bnrc∑
s=1

es+j ⇒ Br(Ωe,j)

where Bd+1,r(Ωj) = (Bd,r(Ωv)
>, Br(Ωe,j))

> is (d+ 1)-dimensional BM with variance matrix Ωj,

and

Ωj = Φj(1)>Γ0Φj(1) =

 Φ1(1)>Γ0Φ1(1) Φ1(1)>Γ0Φ2,j(1)

Φ2,j(1)>Γ0Φ1(1) Φ2,j(1)>Γ0Φ2,j(1)

 ≡
 Ωv Ωve,j

Ωev,j Ωe,j

 ,(15)

with Φj(1) =
∑∞

s=1 Φs,j , Φ1(1) =
∑∞

s=1 Φs,1, and Φ2,j(1) =
∑∞

s=1 Φs,j,2. Here Ωj is the partitioned

long run variance matrix of wt,j = (v>t , et+j)
>.

We define b ≡ bτ = Bd,τ (Ωv) and set

q =
b

(b>b)1/2
=

b

‖b‖
.

Let q⊥ be a d × (d − 1) orthogonal complement matrix such that Q = [q, q⊥], Q>Q = Id ,

where Id is the d× d identity matrix. The sample version of these quantities are given by

qn =
bn

(b>n bn)1/2
=

bn
‖bn‖

, bn ≡ bnτ =
1√
n
xτ(n),

where τ(n) = b(τ − hj)nc.
Let Qn = [qn, q

⊥
n ], Q>nQn = Id. Define Dnj = diag(n

√
hj, (nhj)Id−1). Write Bd+1,r(Ωj) =[

Bd,r(Ωv)
>, Br(Ωe,j)

]>
and define

∆τ =

 ∆τ (1) ∆τ (2)

∆τ (2)> ∆τ (3)

 , Γτ,j =

 Γτ,j(1)

Γτ,j(2)

 ,(16)

where the components of the partition are

∆τ (1) = b>b,

∆τ (2) =
√

2(b>b)1/2
{∫ 1

−1
B?
d,(r+1)/2(Ωv)

>K(r)dr

}
q⊥,

∆τ (3) = 2(q⊥)>
{∫ 1

−1
B?
d,(r+1)/2(Ωv)B

?
d,(r+1)/2(Ωv)

>K(r)dr

}
q⊥,

Γτ,j(1) = (2b>b)1/2
∫ 1

−1
K(r)dB?

(r+1)/2(Ωe,j),

Γτ,j(2) = 2(q⊥)>
{∫ 1

−1
K(r)B?

d,(r+1)/2(Ωv)dB
?
(r+1)/2(Ωe,j) +

1

2
∆ve,j

}
,

whereB?
d+1,r(Ωj) =

[
B?
d,r(Ωv)

>, B?
r (Ωe,j)

]>
is an independent copy ofBd+1,r(Ωj) =

[
B>d,r(Ωv), Br(Ωe,j)

]>
.
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We then establish the following theorem to state the asymptotic distribution of β̂j(τ); its

proof is given in Appendix A.2.

Theorem 2.3. Suppose that Assumptions A.2.1-A.2.3 are satisfied and n2h1+2γ1
j = o(1).

Then for each given j, as n→∞,

DnjQ
>
n

{
β̂j(τ)− βj(τ)

}
⇒ ∆−1τ Γτ,j,(17)

where τ is fixed 0 < τ < 1 such that ∆τ is nonsingular with probability 1.

2.3 The APR model

Consider a nonparametric additive predictive regression model of the form

(18) yt+j = βj(τt) +
d∑
i=1

gij(x
i
t) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J,

where τt = t/n, βj(·) and gij(·), for i = 1, · · · , d, are unknown smooth functions, xt = (x1t , · · · , xdt )>

is a locally stationary process, and et+j is an error term. Here, βj(·) is defined on [0, 1]. This

model allows for nonlinear predictability from the covariates to the response and it allows for time

variability through the intercept functions βj(·). It is also a special case of the NPR model but is

non-nested with the TVCPR model because it precludes interaction between rescaled time and

covariates, whereas the TVCPR model allows a limited form of interaction of the covariate effect

with time (the cross-partial with respect to xj and τt is zero for the additive model). Without

loss of generality and to simplify the notation, we assume that d = 1. So model (18) can be

simplified as

(19) yt+j = βj(τt) + gj(xt) + et+j, t = 1, 2, . . . , n, j = 1, 2, . . . , J.

In this paper, we use the series estimation method to estimate all the unknown functions in

model (19). Naturally, βj(·) and gj(·) belong to different function spaces as described below.

First, we assume that βj(·) ∈ L2[0, 1] = {u(τ) :
∫ 1

0
u(τ)dτ <∞}, in which the inner product

is given by 〈u1, u2〉 =
∫ 1

0
u1(τ)u2(τ)dτ and the induced norm is ‖u‖2 = 〈u, u〉. Let φ0(τ) = 1,

and for s ≥ 1, φs(τ) =
√

2 cos(πsτ). Then {φs(τ)} is an orthonormal basis in the Hilbert space

L2[0, 1], and can be used to expand the unknown continuous function βj(τ) ∈ L2[0, 1] into an

orthogonal series of the form:

(20) βj(τ) =
∞∑
s=0

cs,j,1 φs(τ), where cs,j,1 = 〈βj(τ), φs(τ)〉.

Note that {φs(τ)} can be replaced by any other orthonormal basis in L2[0, 1].

8



In order to expand gj(xt), suppose that the function gj(·) is in Hilbert space L2(V, dF (x)) =

{q(x) :
∫
V
q2(x)dF (x) < ∞}, where F (x) is a distribution on the support V that may not

be compact. The sequence {ps(x), s ≥ 0} is an orthonormal basis in L2(V, dF (x)), where an

inner product is given by 〈q1, q2〉 =
∫
V
q1(x)q2(x)dF (x) and the induced norm is ‖q‖2 = 〈q, q〉.

Hence, the unknown function gj(x) has an orthogonal series expansion in terms of the basis of

{ps(x), s ≥ 0},

(21) gj(x) =
∞∑
s=0

cs,j,2 ps(x), where cs,j,2 = 〈gj(x), ps(x)〉.

Let k1j and k2j be two positive integers. Let βk1j (τ) =
∑k1j

s=1 cs,j,1 φs(τ) be the truncation series

of βj(τ) with truncation parameter k1j, and γk1j =
∑∞

s=k1j+1 cs,j,1 φs(τ) be the corresponding

residual after truncation. It is easy to know that βk1j(τ)→ βj(τ) as k1j →∞ in pointwise sense

for smooth βj(τ). Similarly, let gk2j(x) =
∑k2j−1

s=0 cs,j,2 ps(x) and γk2j =
∑∞

s=k2j
cs,j,2 ps(x) be

the truncation series and the residual of gj(x), respectively. It follows that gk2j(x)→ gj(x), as

k2j →∞ under certain conditions.

Denote ϕk1j (τ) = (φ1(τ), · · · , φk1j (τ))> and c1j = (c1,j,1, · · · , ck1j ,j,1)>. Then we have βk1j (τ) =

ϕk1j(τ)>c1j. Denote also ak2j(x) = (p0(x), · · · , pk2j−1(x))> and c2j = (c0,j,2, · · · , ck2j−1,j,2)>.

Accordingly, gk2j(x) = ak2j(x)>c2j. Thus, model (19) can be written as

(22) yt+j = ϕk1j(τt)
>c1j + ak2j(xt)

>c2j + γk1j(τt) + γk2j(xt) + et+j, for t = 1, · · · , n.

Let y(j) = (yj, · · · , yn+j)>, c(j) = (c>1j, c
>
2j), e(j) = (ej, · · · , en+j)>, γ(j) = (γj(1), · · · , γj(n))>

where γj(t) = γk1j(τt) + γk2j(xt), t = 1, · · · , n, and

Bnkj =


ϕk1j(τ1)

> ak2j(x1)
>

...
...

ϕk1j(1)> ak2j(xn)>

(23)

be an n× kj matrix, where kj = k1j + k2j. Then equation (22) can be written as

(24) y(j) = Bnkjc(j) + γ(j) + e(j).

Then the ordinary least squares (OLS) estimator of c(j) is given by ĉ(j) = (ĉ>1j, ĉ
>
2j)
> =

(B>nkjBnkj)
−1B>nkjy(j). Therefore, for any τ ∈ [0, 1] and x ∈ V , we define β̂j(τ) = ϕk1j(τ)>ĉ1j and

ĝj(x) = ak2j(x)>ĉ2j as the estimators of the unknown functions βj(τ) and gj(x), respectively. As

a result, we can further write the above results as

(25) (β̂j(τ), ĝj(x))> = Φj(τ, x)>ĉ(j),
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where Φj(τ, x) is a block matrix given by

Φj(τ, x) =

 ϕk1j(τ) 0

0 ak2j(x)

 .(26)

Before establishing asymptotic properties for the estimators, we need some additional notation.

Define ∆nj =
[
Φj(τ, x)>U−1kj VkjU

−1
kj

Φj(τ, x)
]1/2

, where Ukj is a symmetric 2× 2 block matrix of

order kj × kj and Vkj is a 2× 2 symmetric block matrix of the form:

Ukj =

 U11 U12

U>12 U22

 and Vkj =

 V11 V12

V >12 V22

 .(27)

in which U11 = Ik1j , U12 =
∫ 1

0
ϕk1j(τ)E[ak2j(x1(τ))>]dτ with elements

∫ 1

0
φi(τ)E[ps(x1(τ))]dτ

for 1 ≤ i ≤ k1j, 0 ≤ s ≤ k2j − 1, and U22 =
∫ 1

0
E[ak2j(x1(τ))ak2j(x1(τ))>]dτ with elements∫ 1

0
E[pi(x1(τ))ps(x1(τ))>]dτ for i, s = 0, · · · , k2j − 1, V11 =

∫ 1

0
ϕk1j(τ)ϕk1j(τ)>σ2(τ)dτ , V12 =∫ 1

0
ϕk1j(τ)σ2(τ)E[ak2j(x1(τ))>]dτ and V22 =

∫ 1

0
σ2(τ)E[ak2j(x1(τ))ak2j(x1(τ))>]dτ .

We then establish the following theorems; their proofs are given in Appendix A.3.

Theorem 2.4. Suppose that uniformly over n, all the eigenvalues of Ukj and Vkj are positive,

and that Assumptions A.3.1-A.3.6 hold. Then, for any τ ∈ [0, 1] and x ∈ V , as n→∞, we have

∆−1nj

 √n[β̂j(τ)− βj(τ)]
√
n[ĝj(x)− gj(x)]

→D N(0, I2),(28)

where 0 is a 2-dimensional zero column vector.

Define mj(τ, x) = βj(τ) + gj(x), m̂j(τ, x) = β̂j(τ) + ĝj(x), m(τ, x) =
∑J

j=1mj(τ, x) and

m̂(τ, x) =
∑J

j=1 m̂j(τ, x). Define Ωnj = ∆nj∆nj = Φj(τ, x)>U−1kj VkjU
−1
kj

Φj(τ, x). Write

Ωnj =

 Ω11,j Ω12,j

Ω21,j Ω22,j

 .

and Σnj = Ω11,j + Ω22,j + 2Ω12,j.

Theorem 2.5 Let Assumptions A.3.1–A.3.6 hold. Then as n→∞,

(29)
√
nΓ
−1/2
nJ (m̂(τ, x)−m(τ, x))→D N (0, 1) ,

where ΓnJ =
∑J

j=1 Σnj.

Remark. (i) Note that Theorems 2.4 and 2.5 show that each of βj(τ) and gj(x) can be

consistently estimated and asymptotically normally distributed regardless of whether j is fixed

or not. Moreover, m(τ, x) and m(τ, x) can also be consistently estimated.
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(ii) Note also that Theorem 2.5 remains valid when J →∞.

Section 3 below discusses about how to choose the truncation parameters kj. The proofs of

Theorems 2.4–2.5 and Corollary 2.2 are given in Appendix A.3 below.

3 Implementation

In this section, we will discuss computational details on the implementation of the NPR, APR

and TVCPR models, particularly the bandwidth selection for the NPR and TVCPR models and

the truncation parameter choice for the APR model.

3.1 Bandwidth selection

As we mentioned in Section 2, we use the local constant kernel method to estimate the unknown

function gj(·) in the NPR model and βj(·) in the TVCPR model. It is generally accepted that

the performance of the kernel estimator is mainly determined by bandwidth. In the last thirty

years, there has been a comprehensive list of studies on the bandwidth selection. This section

focuses on the issue of how to choose ρj and h involved in hj = ρj h used in the estimation of

model (1). Similar discussion may be done for model (4).

Our approach is motivated by existing studies in Härdle et al. (1988), Härdle et al. (1989),

Fan and Gijbels (1995), Xia and Li (2002) and Cheng et al. (2014). Let us introduce the following

notation:

(30) Dj(hj) =
1

n

n∑
t=1

(ĝj(τt, xt)− gj(τt, xt))2w(τt, xt),

where w(·, ·) is a probability kernel function satisfying
∫∞
−∞

∫ 1

0
w2(τ, u)dτ du <∞.

Let ĥj be chosen such that it minimizes Dj(hj) over all possible {hj}. Let hj0 be chosen such

that it minimizes dj(hj) = E [Dj(hj)]. In view of both the establishment and the proofs of the

results in Xia and Li (2002), it can be shown that as n→∞

(31) n
3
10

(
ĥj
hj0
− 1

)
→D N(0, σ2

j0)

for each fixed j, where 0 < minj≥1 σ
2
j0 ≤ maxj≥1 σ

2
j0 <∞, and hj0 = ρj h0 with ρj = jβ or θj, in

which h0 > 0, β > 0 and θ > 1 will all be estimated in the rest of this section.

Using equation (31), we have for large enough n

(32) log

(
ĥj
hj0

)
= log

(
1 +

ĥj
hj0
− 1

)
≈ ĥj
hj0
− 1 ≡ n−

3
10 εj,

11



where εj = n
3
10

(
ĥj
hj0
− 1
)
→D N(0, σ2

j0).

This suggests an approximate regression model of the form

log
(
ĥj

)
= log (hj0) + ηj = log(h0) + log(ρj) + ηj(33)

=

log(h0) + β log(j) + ηj, if ρj = jβ,

log(h0) + j log(θ) + ηj, if ρj = θj,

where ηj = n−
3
10 εj can be viewed as a sequence of random errors with E[ηj ] = 0 and 0 < E

[
η2j
]

=

n−
3
5 σ2

j0.

We then focus the case of either ρj = jβ or ρj = θj . Let Zj = log(ĥj). For the case of ρj = jβ,

we can estimate β by an ordinary least squares (OLS) estimator of the form

(34) β̂ =

(
J∑
j=1

(
log(j)− log(J)

)2)−1 J∑
j=1

(
log(j)− log(J)

) (
Zj − Z

)
,

where log(J) = 1
J

∑J
j=1 log(j) and Z = 1

J

∑J
j=1 Zj.

Equations (33) and (34) imply that the following rate of convergence:

(35) β̂ − β = OP

((√
J log(J)

)−1
· n−

3
10

)
.

For the case of ρj = θj, the OLS estimator of γ = log(θ) is given by

(36) γ̂ =

(
J∑
j=1

(
j − J

)2)−1 J∑
j=1

(
j − J

) (
Zj − Z

)
,

where J = 1
J

∑J
j=1 j = (J+1)

2
.

Meanwhile, equations (33) and (36) imply a rate of convergence of the form:

(37) γ̂ − γ = OP

(
J−

3
2 · n−

3
10

)
.

We finally estimate h0 by ĥ0 = 1
J

∑J
j=1 ĥj ρ̂

−1
j , where ρ̂j = jβ̂ or θ̂j, in which θ̂ = eγ̂.

Equations (35) and (37) imply that the OLS estimators may have fast rates. If we do choose

h0 = n−
1
5 and assume that hj → 0 as (n, j)→ (∞,∞), there will be some restrictions on (J, n)

such that either J β̂ · n− 1
5 → 0 or θ̂J · n− 1

5 → 0 as (n, J)→ (∞,∞).

3.2 Truncation parameter choice

We use the series expansion method to estimate unknown functions βj(·) and gj(·) in the APR

model. A key issue in using the series method in practice is the choice of truncation parameters
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kj (k1j + k2j) in the orthogonal expansions. Since there is no universal guide for the choice of

such parameters, in this study, we choose the truncation parameters for the APR model through

the out-of-sample mean squared errors. The procedure is given as follows.

• We divide the sample into two sets, the initialization set with sample size n1 and validation

set with sample size n− n1.

• The initialization set is used to estimate the model for a given value of (k1j, k2j), then the

estimated model is used to forecast the response variable in the validation set, based on

which we compute the out-of-sample mean squared errors.

• We repeat the above procedure for all feasible values of (k1j, k2j).

• We then pick the optimal value of (k1j, k2j) which results in the smallest out-of-sample

mean squared errors.

In the following section, we will evaluate the effectiveness of these models by investigating

their capability of stock return prediction.

4 Stock return prediction using NPR, APR and TVCPR

In this section, we implement the NPR, APR and TVCPR models proposed in Section 2 to

predict stock return using dividend yield, book-to-market ratio and earning-price ratio. The price

and dividends data are from Center for Research in Security Prices (CRSP) data set, and we

focus on the value-weighted NYSE index so as to be consistent with existing research. Dividend

yield is calculated monthly on the value-weighted NYSE index, and it is defined as dividends

paid over the prior year divided by the current level of index. The returns data are from April

1963 to December 2011 with a total number of 585 data points. We investigated the prediction

for the excess value-weighted stock return (real return or excess return) which is defined by

the value-weighted return minus t-bill rate. Let x1t , x
2
t and x3t denote the dividend yield, the

book-to-market ratio and the earning-price ratio at time t, respectively. The time series plots

of the dividend yield, book-to-market ratio, earning-price ratio and excess value-weighted stock

returns are given in Figure 1.

In the following, we will examine the performance of the NPR, APR and TVCPR models

for predicting the stock return. For comparison purposes, we also considered the commonly

used historical mean model and the traditional linear predictive regression model. Therefore, we

predict stock returns using the following five models:

• Mean: yt+j = µ+ et+j;

13



Figure 1: Plot of dividend yield, book-to-market ratio, earning-price ratio and excess value-

weighted stock returns.
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• Linear: yt+j = αj + β1jx
1
t + β2jx

2
t + β3jx

3
t + et+j;

• NPR: yt+j = gj(τt, x
1
t , x

2
t , x

3
t ) + et+j;

• APR: yt+j = g0j (τt) +
∑3

i=1 g
i
j(x

i
t) + et+j;

• TVCPR: yt+j = β0j(τt) + β1j(τt)x1t + β2j(τt)x2t + β3j(τt)x3t + et+j.

Note that we use kernel method to estimate the unknown function gj(·) in the NPR model

and βij(·) in the TVCPR model, for i = 0, 1, 2, 3. As we know, the performance of the kernel

estimator is mainly determined by the choice of bandwidth.
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We use the series expansion method to estimate unknown functions gij(·), for i = 0, 1, 2, 3,

in the APR model. We define the truncation series with truncation parameter kij for gij(τ) as

gij(τ, kij) =
∑kij

s=1 cs,j,i φs(τ), for i = 0, 1, 2, 3, and let cij = (c1,j,i, · · · , ckij ,j,i)> and φs(τ) denote

an orthonormal basis. Here we choose φs(τ) =
√

2 cos(πsτ) for s ≥ 1. Then we estimate cij, for

i = 0, 1, 2, 3, by the ordinary least squares method. As discussed in Section 3, in this study, we

choose the truncation parameters for the APR model through the out-of-sample mean squared

errors. For different prediction steps, we may obtain different truncation parameters. For example,

we have c(1) = (3, 3, 1, 1)> and c(36) = (1, 1, 1, 1)>.

In what follows, we will evaluate the performance of all of these models from both in-sample

and out-of-sample performance.

4.1 Full sample estimation

In this section, we use the whole sample from April 1963 to December 2011 to evaluate the

in-sample performance of all of these models in terms of the coefficient of determination. For a

given predictive step j, the coefficient of determination can be calculated by

(38) R2
IS,j = 1−

∑n
t=1(yt+j − ŷt+j)2∑n
t=1(yt+j − yj)2

,

where yt+j is the observed stock return, ŷt+j is the corresponding predicted stock return and

yj = 1
n

∑n
t=1 yt+j, which is also the predicted return from historical mean model. Thus for the

historical mean model, R2
IS,j takes value of zero for all given values of j. From (38), it is easy to

see that R2
IS,j can be written as

(39) R2
IS,j = 1− MSEA

MSEM

,

where MSEM = 1/n
∑n

t=1(yt+j − yj)2 is the mean squared error of the historical mean model and

MSEA =
∑n

t=1(yt+j − ŷt+j)2 is the mean squared error of an alternative model which produces

the predicted value ŷt+j . Therefore, R2
IS,j can also indicate the relative ratio of the mean squared

errors between the historical mean model and the other models. If R2
IS,j for a certain model is

positive, then this model performs better than the historical mean model. Simply speaking, the

larger the R2
IS,j is, the better the corresponding model performs.

The results of R2
IS,j for different models with j = 1, 6, 12, 18, 24, 36 are presented in Table 1.

To see the behavior of R2
IS,j for different prediction steps, we also produce the plot of R2

IS,j for

these models with j = 1, · · · , 36 in Figure 2. From Table 1 and Figure 2, we find the following

facts.
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• The historical mean model has the smallest R2
IS,j among all the competing models. This

implies that in terms of in-sample fitting, the historical mean model has no advantage and

can be easily beat by other models.

• The NPR, APR and TVCPR models have larger R2
IS,j than the traditional historical mean

model and linear model, for j = 1, 2, · · · , 36. This means that the NPR, APR and TVCPR

models have better in-sample performance than the traditional parametric model.

• When the prediction step is smaller than 22, the APR model has better performance than

the NPR model, but when prediction step becomes large, the NPR and APR models have

similar performance.

• When j = 1, the TVCPR model has the largest R2
IS,j, which is 0.08355. Then with the

increase of j, R2
IS,j of the TVCPR model decreases rapidly and is smaller than that of the

APR model.

Table 1: Results of R2
IS,j for all the models.

Models j = 1 j = 6 j = 12 j = 18 j = 24 j = 36

Mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Linear 0.00751 0.00945 0.00609 0.00300 0.00173 0.00263

NPR 0.02855 0.04230 0.01810 0.01811 0.01548 0.01267

APR 0.04208 0.07118 0.02788 0.02360 0.01161 0.00740

TVCPR 0.08355 0.03941 0.01391 0.00991 0.00977 0.00804
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Figure 2: Plot of R2
IS,j with j = 1, 2, · · · , 36 for all the models.
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From the results in Table 1 and Figure 2, we observe that the NPR, APR and TVCPR models

have more advantages in terms of R2
IS,j. We also plot the pictures of estimated functions and

their 95% confidence intervals in Figure 3, including ĝj(τt, x
1
t , x

2
t , x

3
t ) in the NPR, β̂ij(τt), for

i = 0, 1, 2, 3 in the TVCPR and ĝ0j (τt) and ĝij(x
i
t), for i = 1, 2, 3 in the APR model.

As we are more interested in the predicted returns of the models, in Figure 4, we plot the

corresponding values produced by these models when j = 1 and j = 3. From Figure 4, we can

see that the predicted returns by the NPR, APR and TVCPR models, in particular the APR

model, are more volatile and are much closer to the true value of return than estimates generated

by both the linear model and the historical mean model.

4.2 Out-of-sample evaluation

In the existing literature, the general conclusion is that the evidence for stock return predictability

is predominantly in-sample while out-of-sample stock return forecast fails to beat the simple

historical mean forecast (see for example Welch and Goyal (2008)). To check whether it is still

true with the NPR, APR and TVCPR models, in this section, we evaluate the out-of-sample

performance of these models using the following expansive window scheme. The details are

described as follows.

• For the first window, we conduct the multi-step prediction based on n−1 observations. At the

point xn, we predict yn+1 using these n−1 pairs of observations {(x1, y2), (x2, y3), · · · , (xn−1, yn)}.
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Figure 3: Plot of estimated functions and 95% confidence intervals.
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The estimated value of yn+1 is denoted as ŷn+1. Then we use the observations

{(x1, y3), (x2, y4), · · · , (xn−2, yn), (xn−1, ŷn+1)}

to predict yn+2 at the point xn. Similarly, we predict yn+3 at the point xn using observations

{(x1, y4), (x2, y5), · · · , (xn−2, ŷn+1), (xn−1, ŷn+2)}.

Repeating such procedure, we obtain the predicted return series for yn+1, yn+2, · · · , yn+J
denoted as

ŷn+1,1, ŷn+1,2, · · · , ŷn+1,J .

• The second window is obtained by expanding the first window to include xn. At the

point xn+1, we conduct the multi-step prediction to predict yn+2, yn+3, · · · , yn+J+1 with the
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Figure 4: Plots of predicted returns by all the models when j = 1 (top panel) and j = 3 (bottom

panel).
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predicted values denoted as

ŷn+2,1, ŷn+2,2, · · · , ŷn+2,J .

• The procedure continues until we obtain the Rth window. At the point xn+R−1, we

conduct the multi-step prediction for yn+R, yn+R+1, · · · , yn+R+J−1 and the predicted values

are denoted as

ŷn+R,1, ŷn+R,2, · · · , ŷn+R,J .

We know that the out-of-sample forecast uses only the data available up to the time at which

the forecast is made. Therefore, for a given predictive step j, following the work by Campbell
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and Thompson (2008), we compute the out-of-sample R2, which is defined as

R2
OOS,j,n,R = 1−

∑R
r=1(yn+r,j − ŷn+r,j)2∑R
r=1(yn+r,j − yn+r,j)2

,

where ŷn+r,j is the j-th step predicted return in the r-th window, yn+r,j is the corresponding

observed return, yn+r,j is the sample mean of observations using the information up to n+ r − 1,

n is the sample size of the initial data to get a regression estimate at the start of evaluation

period, and R is the total number of expansive windows. Here we choose n = 241, that is, we

start the prediction of stock return in June 1983 and R = 308. The results of R2
OOS,j,n,R with

j = 1, 6, 12, 18, 24, 36 are presented in Table 2. We also plot R2
OOS,j,n,R with j taking values from

1 to 36 in Figure 5. From Table 2 and Figure 5, we can find that (1) overall, linear regression

model has the lowest R2
OOS,j,n,R and has no advantage compared with other competing models;

(2) the NPR model performs better than the APR model and the APR model outperforms the

TVCPR model for most of the predictive steps; (3) when the prediction step is between 17 and

20, the NPR model outperforms the historical mean model, but when the prediction step is small,

they have similar performance.

Table 2: Results of R2
OOS,j,n,R for all the models.

Models j=1 j=6 j=12 j=18 j=24 j=36

Mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Linear -0.02884 -0.03592 -0.02763 -0.02643 -0.01306 -0.01915

NPR -0.00160 -0.00053 -0.00665 0.00315 0.00245 -0.00119

APR -0.02037 -0.00478 -0.01409 -0.01824 -0.00800 -0.01960

TVCPR -0.02926 -0.02893 -0.01661 -0.01606 -0.01531 -0.02158
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Figure 5: Plot of R2
OOS,j,n,R with j = 1, 2, · · · , 36 for all the models.
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Apart from looking at behavior of R2
OOS,j,n,R of all of these models with the increase of

predictive steps, we also looked at the cumulative out-of-sample R2 for one particular given value

of j, that is, we look at the performance of R2
OOS,j,n,R with the increase of R. We produce the

plot for the cases of j = 1, j = 12 and j = 24 in Figure 6. Note that in Figure 6, we start the

plot for R ≥ 12 as it cannot tell much information when R is too small. From Figure 6, we can

see that in the cases of j = 1 and j = 12, when R increases, the historical mean model beat

other models, since the other four models have smaller cumulative out-of-sample R2 than that of

the historical mean model. However, when j = 24, we find that the NPR model has an absolute

advantage compared with the other four models.

We also plot the out-of-sample predicted return when j = 1 and j = 12 in Figure 7, from

which we can find that the NPR model generate more volatile predicted returns than the historical

mean model.
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Figure 6: Plots of cumulative R2
OOS,j,n,R with R ranging from 12 to 308 for all the models (top panel:

j=1; middle panel: j=12; bottom panel: j=24).
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Figure 7: Plots of out-of-sample predicted returns for all the models (top panel: j=1; bottom panel:

j=12).
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4.2.1 Long Horizon Return Prediction

We also examined the out-of-sample prediction for long horizon returns yn:n+J =
∑J

j=1 yn+j. We

define the out-of-sample R2 as follows.

R2
OOS,J,n,R = 1−

∑R
r=1(y

(r)
n:n+J − ŷ

(r)
n:n+J)2∑R

r=1(y
(r)
n:n+J −

∑J
j=1 yn+r,j)

2
,

where ŷ
(r)
n:n+J denotes the estimated value of y

(r)
n:n+J from the r-th expansive window. With

J = 2, 3, 4, 6, 12, we present the results of R2
OOS,J,n,R in Table 3, from which we can find that

when J is reasonably small, the NPR model performs best. When J takes values of 6 and 12,

historical mean model performs best. Among all the cases, the linear regression model may be

the last choice.

Table 3: Results of R2
OS,Jn,R for all the models.

Models J=2 J=3 J=4 J=6 J=12

Mean 0.00000 0.00000 0.00000 0.00000 0.00000

Linear -0.05407 -0.07740 -0.10983 -0.17632 -0.34089

NPR 0.00151 0.01835 0.01446 -0.01150 -0.02483

APR -0.03876 -0.05722 -0.07078 -0.08493 -0.12825

TVCPR -0.02599 -0.02783 -0.03857 -0.06367 -0.09306

We also computed the out-of-sample mean squared prediction errors for long horizon returns

yn:n+J =
∑J

j=1 yn+j given by

MSE =
1

R

R∑
r=1

(y
(r)
n:n+J − ŷ

(r)
n:n+J)2,

where ŷ
(r)
n:n+J is from the r-th expansive window.

With J = 2, 3, 4, 6, 12, we present the results of MSE in Table 4. From Table 4, we can

see the effect of different horizon J on the prediction accuracy measured by the mean squared

errors–MSEs. We find that when J is smaller than 4, the NPR model results in the smallest

value of MSE. In other cases, the historical mean model performs best in predicting yn:n+J .
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Table 4: Results of MSE for all the models.

Models J=2 J=3 J=4 J=6 J=12

Mean 0.00385 0.00579 0.00773 0.01179 0.02403

Linear 0.00406 0.00624 0.00858 0.01387 0.03223

NPR 0.00385 0.00568 0.00762 0.01192 0.02463

APR 0.00400 0.00612 0.00828 0.01279 0.02712

TVCPR 0.00395 0.00595 0.00803 0.01254 0.02627

4.3 Trading strategy

In this section, we propose an explicit trading strategy that switches between stocks and bonds

based on whether predicted stock returns are greater than a threshold. We also compare this

strategy with the buy and hold strategy that just holds stocks for the duration.

We first employ our proposed NPR, TVCPR and APR models to predict stock returns

respectively, and obtain their corresponding one-step-ahead forecasts, then we compare these

values with a chosen threshold. If the corresponding value is greater than the given threshold,

we put money in stock market; Otherwise we buy a risk free bond with rate r0 = 0.02/12 per

month. In this study, we consider six different thresholds to examine the performance of our

trading strategy with the buy and hold strategy in terms of profit. To check the robustness of

our proposed trading strategy, we consider three investment starting dates, i.e., May 1983, May

1993, and May 2003. We also assume that the cost such as transaction fee during the trading

could be ignored.

Tables 5– 7 show the results of stock return predictions that with NPR, TVCPR and APR

models respectively. From these results, we can see that there always exists some thresholds

under which our proposed strategies can outperform the buy and hold strategy in terms of profit.

For example, for the NPR model, the thresholds are 0.001,0.002 and 0.003; for the TVCPR

model, the thresholds are 0.001,0.005 and 0.006; and for the APR model, the thresholds are 0.001

and 0.002. As a result, we see that our propsoed trading strategies could be a better alternative

of the buy and hold strategy in reality.
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Table 5: Profit of trading strategy with the use of NPR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 7.9413 7.9413 7.7871 8.5917 1.6772 2.6091 7.4383

1993 May 2.9617 2.9617 2.9617 2.6624 1.1923 1.9554 2.7188

2003 May 0.7895 0.7895 0.7895 0.6543 0.4523 0.1871 0.6324

Table 6: Profit of trading strategy with the use of TVCPR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 11.9404 5.2708 6.2691 7.1274 8.9720 8.0030 7.4383

1993 May 3.7347 3.0305 3.0749 2.9902 3.0763 5.1143 2.7188

2003 May 1.0161 0.7895 0.7933 0.7501 0.7879 1.0190 0.6324

Table 7: Profit of trading strategy with the use of APR model.

Starting date
Our trading strategy with different threshold

Buy and hold
0.001 0.002 0.003 0.004 0.005 0.006

1983 May 10.4255 12.0673 9.1203 10.7768 9.4310 6.1093 7.4383

1993 May 2.8739 2.8739 2.5552 0.8061 0.2221 0.3799 2.7188

2003 May 0.7498 0.7498 0.6557 -0.0728 -0.2609 -0.1192 0.6324

5 Conclusions

In this paper, we have introduced the multi-step NPR and the APR models, in which the predictive

variables are locally stationary time series; and the TVCPR, in which the predictive variables

are nonstationary. Estimation theory and asymptotic properties have been established for all

of these models in both the short horizon and long horizon case. Moreover, we have employed

these models to investigate monthly stock return predictability over the period 1963-2011. The

empirical results show that all of these models can substantially outperform the traditional
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linear predictive regression model in terms of both in-sample and out-of-sample performance.

In addition, we find that these models can always beat the historical mean model in terms of

in-sample fitting, and also for some cases in terms of the out-of-sample forecasting. In particular,

we find that the NPR model performs relatively well, especially at predicting two, three, and

four month returns out of sample, where it beats all the alternative methods we have considered.

We also showed how our methods can be used to deliver a trading strategy that beats the buy

and hold strategy over our sample period.

Appendix

In this appendix, we provide the proofs of Theorem 2.1–Theorem 2.5. Section A.1–Section A.3

below provide the necessary assumptions and the proofs of the main results for the estimators in

the NPR, TVCPR and APR models, respectively.

A.1. The NPR model

First, we present some assumptions for the establishment of asymptotic properties for ĝj(τ, x),

g(τ, x) for the NPR model.

Assumption A.1.1 (i) The process {xt} is locally stationary according to the definition in

Section 2.1. (ii) It holds that maxj≥1 E|et+j|s ≤ C for some s ≥ 2 and C < ∞. (iii) The

array {(xt, et+1, · · · , et+J} is α–mixing with mixing coefficient α satisfying α(k) ≤ Ak−β

for some A <∞ and β > 2s−2
s−2 .

Assumption A.1.2 (i) gj(τ, x) is twice continuously partially differentiable with the first deriva-

tives ∂igj(τ, x) and second derivatives being denoted by ∂2isgj(τ, x) for i, s = 0, · · · , d. (ii)

The densities f(τ, x) := fxt(τ)(x) of the variables xt(τ) are smooth in τ for each time point

τ ∈ [0, 1]. In particular, f(τ, x) is differentiable with respect to τ for each x ∈ Rd, and the

derivative ∂0f(τ, x) := ∂f(τ, x)/∂τ is continuous. (iii) f(τ, x) is partially differentiable with

respect to x for each τ ∈ [0, 1]. The derivatives ∂if(τ, x) := ∂f(τ, x)/∂xi are continuous for

i = 1, · · · , d.

Assumption A.1.3 Let fxt and fxt,xt+l
be the densities of xt and (xt, xt+l), respectively. For any

compact set S ⊆ Rd, there exists a constant C = C(S) such that supt supx∈S fxt(x) ≤ C and

supt supx∈S E[|et+j|s|xt = x]fxt(x) ≤ C. Moreover, there exists a natural number l? < ∞
such that for all l ≥ l?, supt supx,x′∈S E[|et+j||et+j+l||xt = x, xt+l = x′]fxt,xt+l

(x, x′) ≤ C.
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Assumption A.1.4 (i) The kernel function K(·) is bounded and has compact support, that

is, K(v) = 0 for all |v| > C1 with some C1 < ∞. Also, the first moment is zero, that is,∫
vK(v)dv = 0. Furthermore, K is Lipschitz continuous, that is, |K(v)−K(v′)| ≤ L|v− v′|

for some L <∞ and all v, v′ ∈ R. (ii) Let hj = ρjh, where each ρj is a positive constant

and ρj →∞ as j →∞ and h→ 0 as n→∞. In addition, nhj →∞ as n→∞.

Assumption A.1.1 allows us to approximate the locally stationary variable xt by stationary

variable xt(τ) when τt is in a small neighborhood of τ . Assumption A.1.2(i) imposes smoothness

condition on the unknown functions, which is to guarantee a certain rate of the convergence.

Assumption A.1.4 is a standard assumption for kernel function K(·) and bandwidth hj.

Proof of Theorem 2.1.

Observe that

ĝj(τ, x)− gj(τ, x) =
1

f̂(τ, x)

(
ĝEj (τ, x) + ĝBj (τ, x)− gj(τ, x)f̂(τ, x)

)
,(40)

where we let L(x) =
∏d

i=1K(xi) and then write

f̂(τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
,

ĝEj (τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j,

ĝBj (τ, x) =
1

nhd+1
j

n∑
t=1

K

(
τt − τ
hj

)
L

(
xt − x
hj

)
gj(τt, xt).

Let Bj(τ, x) =
√
nhd+1

j

(
ĝBj (τ, x)− gj(τ, x)f̂(τ, x)

)
denote the bias part and Vj(τ, x) =√

nhd+1
j ĝEj (τ, x) denote the stochastic part.

Then we have (ĝj(τ, x)− gj(τ, x)) =
(
nhd+1

j

)−1/2
f̂(τ, x)−1 (Vj(τ, x) +Bj(τ, x)).

We then proceed with the following three steps to show the asymptotic normality of the

estimator ĝj(τ, x). The steps are similar to the proof4 of Theorem 4.3 in Vogt (2012).

• Recall that Bj,τ,x =
√
chκ2/2

∑d
i=0[2∂igj(u, x)∂if(τ, x) + ∂2i,igj(τ, x)f(τ, x)]/f(τ, x). Then

from (iii) in the proof of Theorem 4.2 in Vogt (2012), we can show that Bj(τ, x) converges

in probability to Bj,τ,x.

• By using the block argument, that is, decomposing Vj(τ, x) alternately into big blocks and

small blocks, we can neglect the small blocks and exploit the mixing conditions to replace

4Tingting: Please check the notation of Bj(τ, x) and Bj,τ,x to avoid any notational inconsistency between

the notation used in the proofs and that introduced in Theorems 2.1 and 2.2.

28



the big blocks by independent random variables. Then apply a Lindeberg theorem, we can

get that Vj(τ, x)→D N(0, κd+1
0 σ2(τ, x)f(τ, x)), where κ0 =

∫
K2(u)du. The proof is in the

same spirit as that for the standard strictly stationary setting. The variance of Vj(τ, x) can

be calculated by the same steps as in Theorem 1 of Hansen (2008).

• It is easy to show that f̂(τ, x)− f(τ, x) = oP (1) and f̂(τ, x)−1 = OP (1).

We then combine the above three points to complete the proof5 of Theorem 2.1.

Proof of Theorem 2.2.

Observe that

(ĝj(τ, x)− gj(τ, x)) =
(
nhd+1

j

)−1/2
f̂(τ, x)−1 (Vj(τ, x) +Bj(τ, x))(41)

=
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1)) ρ

−(d+1)/2
j Vj(τ, x)

+
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1)) ρ

−(d+1)/2
j Bj(τ, x),

which gives(
J∑
j=1

ĝj(τ, x)−
J∑
j=1

gj(τ, x)

)
(42)

=
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))

J∑
j=1

ρ
−(d+1)/2
j Vj(τ, x)

+
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))

J∑
j=1

ρ
−(d+1)/2
j Bj(τ, x)

≡
(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))SnJ(τ, x) +

(
nhd+1

)−1/2
f(τ, x)−1(1 + oP (1))RnJ(τ, x),

where

SnJ(τ, x) =
J∑
j=1

ρ
−(d+1)/2
j Vj(τ, x)(43)

=
(
nhd+1

)−1/2 n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
et+j

)
,

RnJ(τ, x) =
J∑
j=1

ρ
−(d+1)/2
j Bj(τ, x)(44)

=
(
nhd+1

)−1/2 n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
(gj(τt, xt)− gj(τ, x))

)
.

5Tingting: As mentioned briefly just above Theorem 2.1, you will need to provide a full proof. It looks to me

that there is something missing from the bias term. You may like to have a look at the proof of Theorem 2.2 to

see whether my derivations are correct or not.
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It is obvious that E[SnJ(τ, x)] = 0. It can also shown that

(45) E
[
S2
nJ(τ, x)

]
= (1 + o(1)) f(x)

∫
L2(u)du

∫
K2(v)dv

J∑
j=1

ρ
−(d+1)
j σ2

j (x).

In view of the α–mixing condition, using the big– and small– blocks approach, we can show

that as n→∞

(46)

(
J∑
j=1

ρ
−(d+1)
j σ2

j (x)

)−1/2
SnJ(τ, x)→D N

(
0, f(x)

∫
L2(u)du

∫
K2(v)dv

)
.

Meanwhile, we have a look at the bias term involving

n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
(gj(τt, xt)− gj(τ, x))

)
(47)

=
n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
(gj(τt, xt)− gj(τt, x))

)

+
n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
L

(
xt − x
hj

)
(gj(τt, x)− gj(τ, x))

)
≡ R1nJ(τ, x) +R2nJ(τ, x),

where

E [R1nJ(τ, x)](48)

=
n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

)
E

[
L

(
xt − x
hj

)
(gj(τt, xt)− gj(τt, x))

])

=
n∑
t=1

(
J∑
j=1

ρ
−(d+1)
j K

(
τt − τ
hj

) ∫
L

(
u− x
hj

)
(gj(τt, u)− gj(τt, x)) f(u)du

)

=
n∑
t=1

J∑
j=1

ρ
−(d+1)
j hdjK

(
τt − τ
hj

) (∫
L(w) (gj(τt, x+ hj w)− gj(τt, x)) f(x+ hj w)dw

)
,

= n(1 + o(1))
J∑
j=1

ρ
−(d+1)
j hdj

×
(∫ 1

0

K

(
u− τ
hj

) (∫
L(w) (gj(u, x+ hj w)− gj(u, x)) f(x+ hj w)dw

)
du

)
,

and6 similarly,

E [R2nJ(τ, x)](49)

6Tingting: Can you calculate the bias terms in (48) and (49) to see whether the bias expression in Theorem

2.2 is correct or not ?
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=
J∑
j=1

ρ
−(d+1)
j

n∑
t=1

K

(
τt − τ
hj

)
E

[
L

(
xt − x
hj

)]
(gj(τt, x)− gj(τ, x))

=
J∑
j=1

ρ
−(d+1)
j hdj

n∑
t=1

K

(
τt − τ
hj

)
(gj(τt, x)− gj(τ, x))

∫
L(w)f(x+ hj w)dw

= n(1 + o(1))
J∑
j=1

ρ
−(d+1)
j hdj

∫
L(w)f(x+ hj w)dw

×
(∫ 1

0

K

(
v − τ
hj

)
(gj(v, x)− gj(τ, x)) dv

)
.

Therefore, equations (41)–(49) complete the proof of Theorem 2.2.

A.2. The TVCPR model

In order to establish asymptotic properties for β̂j(·), we impose the following assumptions.

Assumptions A.2.1 Let εt be a d + 1–dimensional vector of independent and identically

distributed random variables with E[εt] = 0, Γ0 ≡ E[εtε
>
t ] > 0, and E[‖εt‖4+γ0 ] < ∞ for

γ0 > 0. The linear process coefficient matrices satisfy
∑∞

s=0 s‖Φs,j‖ <∞.

Assumptions A.2.2 βj(·) is continuous with |βj(τ + z)− βj(τ)| = O(|z|γ1) as z → 0 for some
1
2
< γ1 ≤ 1.

Assumptions A.2.3 (i) The kernel function K(·) is continuous, positive and has compact

support [−1, 1] with
∫ 1

−1K(v)dv = 1, and the first moment is zero, that is,
∫ 1

−1 vK(v)dv = 0.

(ii) The bandwidth hj satisfies hj → 0 and nhj →∞ as n→∞.

Assumption A.2.1 is a standard assumption for linear process. Assumptions A.2.2 and A.2.3

impose a smoothness condition on the functional coefficient βj(·) and some commonly-used

conditions on the kernel function and bandwidth.

Proof of Theorem 2.3. The proof follows that of Theorem 3.1 of Phillips et al. (2017).

A.3. The APR model

In order to establish asymptotic properties for β̂j(τ) and ĝj(x), we introduce the following

assumptions.

Assumption A.3.1 (i) {xt} is locally stationary with associated process {xt(τ)}, and all xt (1 ≤
t ≤ n) have the same compact support V = [amin, amax]. Moreover, the density f(τ, x) of

xt(τ) is smooth in τ . (ii) For each τ ∈ [0, 1], xt(τ) is a strictly stationary and α-mixing
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process with mixing coefficient α(i) such that
∑∞

i=1 α
δ/(2+δ)(i) < ∞ for some δ > 0. For

u 6= τ ∈ [0, 1], xt(τ) and xs(u) are uncorrelated for any t and s.

Assumption A.3.2 There exists an orthogonal function sequence {pi(x), i ≥ 0} on the support

[amin, amax] with respect to dF (x) such that supτ∈[0,1] supj≥0 E|pj(x1(τ))| <∞.

Assumption A.3.3 For all t and any τ ∈ [0, 1], xt(τ) is independent of {es,−∞ < s <∞}.

Assumption A.3.4 Suppose that there is a filtration sequence Fnt such that (et,Fn,t) form

a martingale difference sequence. Meanwhile, E(e2t |Fn,t−1) = σ2(τt) almost surely with

continuous and nonzero function σ(·) and for some q ≥ 4, max1≤t≤n E(|et|q|Fn,t−1) <∞.

Assumption A.3.5 (i)The functions βj(·) and gj(·) are continuously differentiable up to s1 and

s2, respectively. (ii)For βj(·) function, let
∫ 1

0
βj(r)dr = 0.

Assumption A.3.6 Suppose that as n → ∞, (i) nk
−(2s1−1)
1j = o(1) and nk

−(2s2−1)
2j = o(1) and

(ii) nk2jk
−2s1
1j = o(1), nk1jk

−s2
2j = o(1).

Assumptions A.3.1–A.3.4 allow us to approximate the locally stationary variable xt by

stationary variable xt(τ) when τt is in a small neighborhood of τ . In this paper, we require

the support of the locally stationary process to be compact. Assumption A.3.5 (i) imposes a

smoothness condition on the unknown functions, which is to guarantee a certain rate of the

convergence. Assumption A.3.5(ii) is an identification condition since in both the expansions of

βj(·) and gj(·), there is a constant term that could not be distinguished one from another in the

regression. Assumption A.3.6 imposes the rates of divergence on k1j and k2j, which guarantee

the convergence of the proposed estimators.

Proof of Theorem 2.4.

Let Dnj = diag(
√
nIk1j ,

√
nIk2j ) denote a diagonal matrix of kj×kj with kj = k1j +k2j . From

Lemma A.3 of Dong and Linton (2016), we have that ‖D−1nj B>nkjBnkjD
−1
nj − Ukj‖ = oP (1), then

we have

ĉ(j) = (B>nkjBnkj)
−1B>nkjy(j) = (B>nkjBnkj)

−1B>nkj(Bnkjc(j) + γ(j) + e(j))

= c(j) + (B>nkjBnkj)
−1B>nkj(γ(j) + e(j)).

Thus

ĉ(j) − c(j) = (B>nkjBnkj)
−1B>nkj(γ(j) + e(j)) = D−1nj (D−1nj B

>
nkj
BnkjD

−1
nj )−1D−1nj B

>
nkj

(γ(j) + e(j))

= D−1nj (Ukj + oP (1))−1D−1nj B
>
nkj

(γ(j) + e(j)) = D−1nj (U−1kj + oP (1))D−1nj B
>
nkj

(γ(j) + e(j)).
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Then we have

Dnj(ĉ(j) − c(j)) = (U−1kj + oP (1))D−1nj B
>
nkj

(γ(j) + e(j)).

Then, for any τ ∈ [0, 1] and x ∈ V , √n[β̂j(τ)− βj(τ)]
√
n[ĝj(x)]− gj(x)]

 = Φj(τ, x)>Dnj(ĉ(j) − c(j)) +

 √nγk1j(τ)
√
nγk2j(x)


= Φj(τ, x)>U−1kj D

−1
nj B

>
nkj

(γ(j) + e(j)) +

 √nγk1j(τ)
√
nγk2j(x)

 .

We then proceed with two main steps as follows.

• First, we can establish the asymptotic normality from Φj(τ, x)>U−1kj D
−1
nj B

>
nkj
e(j) by Cramér-

Wold theorem.

• Second, we can show that the remainder terms are asymptotically negligible.

For the proof of normality, we can write that Φj(τ, x)>U−1kj D
−1
nj B

>
nkj
e(j) =

∑n
t=1 ηntet+j , where

ηnt = Φj(τ, x)>U−1kj D
−1
nj

 φk1j(τt)

ak2j(xt)

 .

Recall that ∆nj =
[
Φj(τ, x)>U−1kj VkjU

−1
kj

Φj(τ, x)
]1/2

. By Cramér-Wold theorem and Corollary

3.1 of Hall and Heyde (1980), we can prove that ∆−1nj
∑n

t=1 ηntet+j →D N(0, Ikj ). The details are

similar to the proofs of Theorem 3.1 and 3.2 in Dong and Linton (2016).

Proof of Theorem 2.5.

Define Ωnj = ∆nj∆nj = Φj(τ, x)>U−1kj VkjU
−1
kj

Φj(τ, x).

Theorem 2.4 implies that for large enough n, we have √n[β̂j(τ)− βj(τ)]
√
n[ĝj(x)]− gj(x)]

 ≈D N(0,Ωnj).

Let

Ωnj =

 Ω11,j Ω12,j

Ω21,j Ω22,j

 .

Then we have

√
n
(
β̂j(τ) + ĝj(x)− βj(τ)− gj(x)

)
≈D N(0,Σnj),
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where Σnj = Ω11,j + Ω22,j + 2Ω12,j.

Define mj(τ, x) = βj(τ) + gj(x) and m̂j(τ, x) = β̂j(τ) + ĝj(x).

√
n (m̂j(τ, x)−mj(x, τ)) ≈D N(0,Σnj),

By the following definitions:

m̂(τ, x) =
J∑
j=1

m̂j(τ, x) and m(τ, x) =
J∑
j=1

mj(τ, x),

We then have as n→∞

(50)
√
nΣ
−1/2
nJ (m̂(τ, x)−m(τ, x))→D N (0, 1) ,

where ΣnJ =
∑J

j=1 Σnj .
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