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Abstract

The linear regression model is widely used in empirical work in Economics, Statis-

tics, and many other disciplines. Researchers often include many covariates in their

linear model specification in an attempt to control for confounders. We give infer-

ence methods that allow for many covariates and heteroskedasticity. Our results are

obtained using high-dimensional approximations, where the number of included co-

variates are allowed to grow as fast as the sample size. We find that all of the usual

versions of Eicker-White heteroskedasticity consistent standard error estimators for

linear models are inconsistent under this asymptotics. We then propose a new het-

eroskedasticity consistent standard error formula that is fully automatic and robust to

both (conditional) heteroskedasticity of unknown form and the inclusion of possibly

many covariates. We apply our findings to three settings: parametric linear models

with many covariates, linear panel models with many fixed effects, and semiparamet-

ric semi-linear models with many technical regressors. Simulation evidence consistent

with our theoretical results is also provided. The proposed methods are also illustrated

with an empirical application.

Keywords: high-dimensional models, linear regression, many regressors, heteroskedastic-

ity, standard errors.
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1 Introduction

A key goal in empirical work is to estimate the structural, causal, or treatment effect of some

variable on an outcome of interest, such as the impact of a labor market policy on outcomes

like earnings or employment. Since many variables measuring policies or interventions are

not exogenous, researchers often employ observational methods to estimate their effects.

One important method is based on assuming that the variable of interest can be taken as

exogenous after controlling for a suffi ciently large set of other factors or covariates. A major

problem that empirical researchers face when employing selection-on-observables methods

to estimate structural effects is the availability of many potential covariates. This problem

has become even more pronounced in recent years because of the widespread availability of

large (or high-dimensional) new data sets.

Not only it is often the case that substantive discipline-specific theory (or intuition) will

suggest a large set of variables that might be important, but also researchers usually prefer

to include additional “technical”controls constructed using indicator variables, interactions,

and other non-linear transformations of those variables. Therefore, many empirical studies

include very many covariates in order to control for as broad array of confounders as possible.

For example, it is common practice to include dummy variables for many potentially over-

lapping groups based on age, cohort, geographic location, etc. Even when some controls are

dropped after valid covariate selection (Belloni, Chernozhukov, and Hansen (2014)), many

controls usually may remain in the final model specification. For example, Angrist and Hahn

(2004) discuss when to include many covariates in treatment effect models.

We present valid inference methods that explicitly account for the presence of possibly

many controls in linear regression models under (conditional) heteroskedasticity. We consider

the setting where the object of interest is β in a model of the form

yi,n = β′xi,n + γ ′nwi,n + ui,n, i = 1, . . . , n, (1)

where yi,n is a scalar outcome variable, xi,n is a regressor of small (i.e., fixed) dimension d,
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wi,n is a vector of covariates of possibly “large”dimension Kn, and ui,n is an unobserved

error term. Two important cases discussed in more detail below, are “flexible” paramet-

ric modeling of controls via basis expansions such as higher-order powers and interactions

(i.e., a series-based formulation of the partially linear regression model), and models with

many dummy variables such as multi-way fixed effects and interactions thereof in panel data

models. In both cases conducting OLS-based inference on β in (1) is straightforward when

the error ui,n is homoskedastic and/or the dimension Kn of the nuisance covariates is mod-

eled as a vanishing fraction of the sample size. The latter modeling assumption, however,

is inappropriate in applications with many dummy variables and does not deliver a good

distributional approximation when many covariates are included.

Motivated by the above observations, this paper studies the consequences of allowing the

error ui,n in (1) to be (conditionally) heteroskedastic in a setting where the covariate wi,n is

permitted to be high-dimensional in the sense that Kn is allowed, but not required, to be a

non-vanishing fraction of the sample size. Our main purpose is to investigate the possibility

of constructing heteroskedasticity-consistent variance estimators for the OLS estimator of β

in (1) without (necessarily) assuming any special structure on the part of the covariate wi,n.

We present two main results. First, we provide high-level suffi cient conditions guaranteeing

a valid Gaussian distributional approximation to the finite sample distribution of the OLS

estimator of β, allowing for the dimension of the nuisance covariates to be “large”relative

to the sample size (i.e., Kn/n 6→ 0). Second, we characterize the large sample properties

of a class of variance estimators, and use this characterization to obtain both negative and

positive results. The negative finding is that the Eicker-White estimator is inconsistent in

general, as are popular variants of this estimator. The positive result gives conditions under

which an alternative heteroskedasticity-robust variance estimator (described in more detail

below) is consistent. The main condition needed for our constructive results is a high-level

assumption on the nuisance covariates requiring in particular that their number be strictly

less than half of the sample size. As a by-product, we also find that among the popular HCk

class of standard errors estimators for linear models, a variant of the HC3 estimator delivers
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standard errors that are asymptotically upward biased in general. Thus, standard OLS

inference employing HC3 standard errors will be asymptotically valid, albeit conservative,

even in high-dimensional settings where the number of covariate wi,n is large relative to the

sample size, i.e., when Kn/n 6→ 0.

Our results contribute to the already sizeable literature on heteroskedasticity-robust vari-

ance estimators for linear regression models, a recent review of which is given by MacKinnon

(2012). Important papers whose results are related to ours include White (1980), MacKinnon

and White (1985), Wu (1986), Chesher and Jewitt (1987), Shao and Wu (1987), Chesher

(1989), Cribari-Neto, Ferrari, and Cordeiro (2000), Kauermann and Carroll (2001), Bera,

Suprayitno, and Premaratne (2002), Stock and Watson (2008), Cribari-Neto and da Glo-

ria A. Lima (2011), Müller (2013), and Abadie, Imbens, and Zheng (2014). In particular,

Bera, Suprayitno, and Premaratne (2002) analyze some finite sample properties of a variance

estimator similar to the one whose asymptotic properties are studied herein. They use un-

biasedness or minimum norm quadratic unbiasedness to motivate a variance estimator that

is similar in structure to ours, but their results are obtained for fixed Kn and n and is silent

about the extent to which consistent variance estimation is even possible when Kn/n 6→ 0.

This paper also adds to the literature on high-dimensional linear regression where the

number of regressors grow with the sample size; see, e.g., Huber (1973), Koenker (1988),

Mammen (1993), El Karoui, Bean, Bickel, Lim, and Yu (2013), Zheng, Jiang, Bai, and He

(2014), Li and Müller (2017), and references therein. In particular, Huber (1973) showed that

fitted regression values are not asymptotically normal when the number of regressors grows

as fast as sample size, while Mammen (1993) obtained asymptotic normality for arbitrary

contrasts of OLS estimators in linear regression models where the dimension of the covariates

is at most a vanishing fraction of the sample size. More recently, El Karoui, Bean, Bickel,

Lim, and Yu (2013) showed that, if a Gaussian distributional assumption on regressors

and homoskedasticity is assumed, then certain estimated coeffi cients and contrasts in linear

models are asymptotically normal when the number of regressors grow as fast as sample

size, but do not discuss inference results (even under homoskedasticity). Our result in
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Theorem 1 below shows that certain contrasts of OLS estimators in high-dimensional linear

models are asymptotically normal under fairly general regularity conditions. Intuitively, we

circumvent the problems associated with the lack of asymptotic Gaussianity in general high-

dimensional linear models by focusing exclusively on a small subset of regressors when the

number of covariates gets large. We give inference results by constructing heteroskedasticity

consistent standard errors without imposing any distributional assumption or other very

specific restrictions on the regressors. In particular, we do not require the coeffi cients γn to

be consistently estimated; in fact, they will not be in most of our examples discussed below.

Our high-level conditions allow for Kn ∝ n and restrict the data generating process

in fairly general and intuitive ways. In particular, our generic suffi cient condition on the

nuisance covariates wi,n covers several special cases of interest for empirical work. For

example, our results encompass (and weakens in certain sense) those reported in Stock and

Watson (2008), who investigated the one-way fixed effects panel data regression model and

showed that the conventional Eicker-White heteroskedasticity-robust variance estimator is

inconsistent, being plagued by a non-negligible bias problem attributable to the presence of

many covariates (i.e., the fixed effects). The very special structure of the covariates in the

one-way fixed effects estimator enables an explicit characterization of this bias, and also leads

to a direct plug-in consistent bias-corrected version of the Eicker-White variance estimator.

The generic variance estimator proposed herein essentially reduces to this bias-corrected

variance estimator in the special case of the one-way fixed effects model, even though our

results are derived from a different perspective and generalize to other settings.

Furthermore, our general inference results can be used when many multi-way fixed effects

and similar discrete covariates are introduced in a linear regression model, as it is usually

the case in social interaction and network settings. For example, in a very recent contri-

bution, Verdier (2017) develops new results for two-way fixed effect design and projection

matrices, and use them to verify our high-level conditions in linear models with two-way

unobserved heterogeneity and sparsely matched data (which can also be interpreted as a

network setting). These results provide another interesting and empirically relevant illustra-
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tion of our generic theory. Verdier (2017) also develops inference results able to handle time

series dependence in his specific context, which are not covered by our assumptions because

we impose independence in the cross-sectional dimension of the (possibly grouped) data.

The rest of this paper is organized as follows. Section 2 presents the variance estimators

we study and gives a heuristic description of their main properties. Section 3 introduces

our general framework, discusses high-level assumptions and illustrates the applicability of

our methods using three leading examples. Section 4 gives the main results of the paper.

Section 5 reports the results of a Monte Carlo experiment, while 6 illustrates our methods

using an empirical application. Section 7 concludes. Proofs and additional methodological

and numerical results are reported in the online supplemental appendix.

2 Overview of Results

For the purposes of discussing distribution theory and variance estimators associated with

the OLS estimator β̂n of β in (1), when possibly the Kn-dimensional nuisance covariates

wi,n is of “large”dimension and/or the parameters γn cannot be estimated consistently, it

is convenient to write the estimator in “partialled out”form as

β̂n = (
n∑
i=1

v̂i,nv̂
′
i,n)−1(

n∑
i=1

v̂i,nyi,n), v̂i,n =
n∑
j=1

Mij,nxj,n,

whereMij,n = 1(i = j)−w′i,n(
∑n

k=1 wk,nw
′
k,n)−1wj,n, 1(·) denotes the indicator function, and

the relevant inverses are assumed to exist. Defining Γ̂n =
∑n

i=1 v̂i,nv̂
′
i,n/n, the objective is

to establish a valid Gaussian distributional approximation of the finite sample distribution

of the OLS estimator β̂n, and then find an estimator Σ̂n of the variance of
∑n

i=1 v̂i,nui,n/
√
n

such that

Ω̂−1/2n

√
n(β̂n − β)→d N (0, I), Ω̂n = Γ̂−1n Σ̂nΓ̂

−1
n , (2)

in which case asymptotic valid inference on β can be conducted in the usual way by employing

the distributional approximation β̂n
a∼ N (β, Ω̂n/n). Our assumptions below will ensure that
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β̂n remains
√
n-consistent because we show in the supplemental appendix that Ω̂−1n = Op(1)

even when Kn/n 6→ 0.

Our first result, Theorem 1 below, gives suffi cient conditions for a valid Gaussian approxi-

mation of the distribution of the infeasible statisticΩ
−1/2
n
√
n(β̂n−β), whereΩn = Γ̂−1n ΣnΓ̂

−1
n

and Σn denotes the variance of
∑n

i=1 v̂i,nui,n/
√
n, even when possibly Kn/n 6→ 0 and the

linear regression model exhibits conditional heteroskedasticity. This result, in turn, gives the

basic ingredient for discussing valid variance estimation in high-dimensional linear regression

models. Defining ûi,n =
∑n

j=1Mij,n(yj,n − β̂
′
nxj,n), standard choices of Σ̂n in the fixed-Kn

case include the homoskedasticity-only estimator

Σ̂HO
n = σ̂2nΓ̂n, σ̂2n =

1

n− d−Kn

n∑
i=1

û2i,n,

and the Eicker-White-type estimator

Σ̂EW
n =

1

n

n∑
i=1

v̂i,nv̂
′
i,nû

2
i,n.

Perhaps not too surprisingly, in Theorem 2 below, we find that consistency of Σ̂HO
n under

homoskedasticity holds quite generally even for models with many covariates. In contrast,

construction of a heteroskedasticity-robust estimator of Σn is more challenging, as it turns

out that consistency of Σ̂EW
n generally requires Kn to be a vanishing fraction of n.

To fix ideas, suppose (yi,n,x
′
i,n,w

′
i,n) are i.i.d. over i. It turns out that, under certain

regularity conditions,

Σ̂EW
n =

1

n

n∑
i=1

n∑
j=1

M2
ij,nv̂i,nv̂

′
i,nE[u2j,n|xj,n,wj,n] + op(1),

whereas a requirement for (2) to hold is that the estimator Σ̂n satisfies

Σ̂n =
1

n

n∑
i=1

v̂i,nv̂
′
i,nE[u2i,n|xi,n,wi,n] + op(1). (3)
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The difference between the leading terms in the expansions is non-negligible in general unless

Kn/n → 0. In recognition of this problem with Σ̂EW
n , we study the more general class of

estimators of the form

Σ̂n(κn) =
1

n

n∑
i=1

n∑
j=1

κij,nv̂i,nv̂
′
i,nû

2
j,n,

where κij,n denotes element (i, j) of a symmetric matrix κn = κn(w1,n, . . . ,wn,n). Estimators

that can be written in this fashion include Σ̂EW
n (which corresponds to κn = In) as well as

variants of the so-called HCk estimators, k ∈ {1, 2, 3, 4}, reviewed by Long and Ervin (2000)

and MacKinnon (2012), among many others. To be specific, a natural variant of HCk is

obtained by choosing κn to be diagonal with κii,n = Υi,nM
−ξi,n
ii,n , where (Υi,n, ξi,n) = (1, 0) for

HC0 (and corresponding to Σ̂EW
n ), (Υi,n, ξi,n) = (n/(n−Kn), 0) for HC1, (Υi,n, ξi,n) = (1, 1)

for HC2, (Υi,n, ξi,n) = (1, 2) for HC3, and (Υi,n, ξi,n) = (1,min(4, nMii,n/Kn)) for HC4. See

Sections 4.3 for more details.

In Theorem 3 below, we show that all of the HCk-type estimators, which correspond to

a diagonal choice of κn, have the shortcoming that they do not satisfy (3) when Kn/n9 0.

On the other hand, it turns out that a certain non-diagonal choice of κn makes it possible to

satisfy (3) even if Kn is a non-vanishing fraction of n. To be specific, it turns out that (under

regularity conditions and) under mild conditions under the weights κij,n, Σ̂n(κn) satisfies

Σ̂n(κn) =
1

n

n∑
i=1

n∑
j=1

n∑
k=1

κik,nM
2
kj,nv̂i,nv̂

′
i,nE[u2j,n|xj,n,wj,n] + op(1), (4)

suggesting that (3) holds with Σ̂n = Σ̂n(κn) provided κn is chosen in such a way that

n∑
k=1

κik,nM
2
kj,n = 1(i = j), 1 ≤ i, j ≤ n. (5)

Accordingly, we define

Σ̂HC
n = Σ̂n(κHCn ) =

1

n

n∑
i=1

n∑
j=1

κHCij,nv̂i,nv̂
′
i,nû

2
j,n,
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where, with Mn denoting the matrix with element (i, j) given by Mij,n and � denoting the

Hadamard product,

κHCn =


κHC11,n · · · κHC1n,n
...

. . .
...

κHCn1,n · · · κHCnn,n

 =


M2
11,n · · · M2

1n,n

...
. . .

...

M2
n1,n · · · M2

nn,n


−1

= (Mn �Mn)−1.

The estimator Σ̂HC
n is well defined whenever Mn �Mn is invertible, a simple suffi cient con-

dition for which is thatMn < 1/2, where

Mn = 1− min
1≤i≤n

Mii,n.

The fact thatMn < 1/2 implies invertibility of Mn�Mn is a consequence of the Gershgorin

circle theorem. For details, see Section 3 in the supplemental appendix. More importantly,

a slight strengthening of the conditionMn < 1/2 will be shown to be suffi cient for (2) and

(3) to hold with Σ̂n = Σ̂HC
n . Our final result, Theorem 4 below, formalizes this finding (see

also the supplemental appendix for further intuition underlying this result).

The key intuition underlying our variance estimation result is that, even though each con-

ditional variance E[u2i,n|xi,n,wi,n] cannot be well estimated due to the curse of dimensionality,

an averaged version such as the leading term in (3) can be estimated consistently. Thus,

taking Ê[u2i,n|xi,n,wi,n] =
∑n

k=1 κik,nû
2
k,n as an estimator of E[u2i,n|xi,n,wi,n], plugging into

the leading term in (3), and computing conditional expectations, we obtain the leading term

in (4). To make this leading term equal to the desired target
∑n

i=1 v̂i,nv̂
′
i,nE[u2i,n|xi,n,wi,n],

it is natural to require

n∑
j=1

n∑
k=1

κik,nM
2
kj,nE[u2j,n|xj,n,wj,n] = E[u2i,n|xi,n,wi,n] 1 ≤ i ≤ n.

Since E[u2i,n|xi,n,wi,n] are unknown, our variance estimator solves (5), which generates enough

equations to solve for all n(n− 1)/2 possibly distinct elements in κHCn .
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Remark 1. Σ̂HC
n = n−1

∑n
i=1 v̂i,nv̂

′
i,nũ

2
i,n with ũ

2
i,n =

∑n
j=1 κ

HC
ij,nû

2
j,n, and therefore ũ

2
i,n can be

interpreted as a bias-corrected “estimator”of (the conditional expectation of) u2i,n.

3 Setup

This section introduces a general framework encompassing several special cases of linear-in-

parameters regression models of the form (1). We first present generic high-level assumptions,

and then discuss their implications as well as some easier to verify suffi cient conditions. Fi-

nally, to close this setup section, we briefly discuss three motivating leading examples: linear

regression models with increasing dimension, muti-way fixed effect linear models, and semi-

parametric semi-linear regression. Technical details and related results for these examples

are given in the supplemental appendix.

3.1 Framework

Suppose {(yi,n,x′i,n,w′i,n) : 1 ≤ i ≤ n} is generated by (1). Let ‖ · ‖ denote the Euclidean

norm, set Xn = (x1,n, . . . ,xn,n), and for a collection Wn of random variables satisfying

E[wi,n|Wn] = wi,n, define the constants

%n =
1

n

n∑
i=1

E[R2i,n], Ri,n = E[ui,n|Xn,Wn],

ρn =
1

n

n∑
i=1

E[r2i,n], ri,n = E[ui,n|Wn],

χn =
1

n

n∑
i=1

E[‖Qi,n‖2], Qi,n = E[vi,n|Wn],

where vi,n = xi,n−(
∑n

j=1 E[xj,nw
′
j,n])(

∑n
j=1 E[wj,nw

′
j,n])−1wi,n is the population counterpart

of v̂i,n. Also, define

Cn = max
1≤i≤n

{E[U4i,n|Xn,Wn] + E[‖Vi,n‖4|Wn] + 1/E[U2i,n|Xn,Wn]}+ 1/λmin(E[Γ̃n|Wn])},
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where Ui,n = yi,n − E[yi,n|Xn,Wn], Vi,n = xi,n − E[xi,n|Wn], Γ̃n =
∑n

i=1 Ṽi,nṼ
′
i,n/n, and

Ṽi,n =
∑n

j=1Mij,nVj,n.

We impose the following three high-level conditions. Let λmin(·) denote the minimum

eigenvalue of its argument, and limn→∞an = lim supn→∞ an for any sequence an.

Assumption 1 (Sampling) C[Ui,n, Uj,n|Xn,Wn] = 0 for i 6= j and max1≤i≤Nn #Ti,n =

O(1), where #Ti,n is the cardinality of Ti,n and where {Ti,n : 1 ≤ i ≤ Nn} is a partition of

{1, . . . , n} such that {(Ut,n, Vt,n) : t ∈ Ti,n} are independent over i conditional on Wn.

Assumption 2 (Design) P[λmin(
∑n

i=1 wi,nw
′
i,n) > 0] → 1, limn→∞Kn/n < 1, and Cn =

Op(1).

Assumption 3 (Approximations) χn = O(1), %n + n(%n − ρn) + nχn%n = o(1), and

max1≤i≤n ‖v̂i,n‖/
√
n = op(1).

3.2 Discussion of Assumptions

Assumptions 1—3 are meant to be high-level and general, allowing for different linear-in-

parameters regression models. We now discuss the main restrictions imposed by these

assumptions. We further illustrate them in the following subsection using more specific

examples.

3.2.1 Assumption 1

This assumption concerns the sampling properties of the observed data. It generalizes clas-

sical i.i.d. sampling by allowing for groups or “clusters”of finite but possibly heterogeneous

size with arbitrary intra-group dependence, which is very common in the context of fixed

effects linear regression models. As currently stated, this assumption does not allow for

dependence in the error terms across units, and therefore excludes clustered, spacial or time

series dependence in the sample. We conjecture our main results extend to the latter cases,
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though here we focus on i.n.i.d. (conditionally) heteroskedastic models only, and hence rele-

gate the extension to errors exhibiting clustered, spacial or time series dependence for future

work. Assumption 1 reduces to classical i.i.d. sampling when Nn = n, Ti,n = {i} [implying

max1≤i≤Nn #Ti,n = 1], and all observations have the same distribution.

3.2.2 Assumption 2

This assumption concerns basic design features of the linear regression model. The first two

restrictions are mild and reflect the main goal of this paper, that is, analyzing linear regression

models with many nuisance covariates wi,n. In practice, the first restriction regarding the

minimum eigenvalue of the design matrix
∑n

i=1 wi,nw
′
i,n is always imposed by removing

redundant (i.e., linearly dependent) covariates; from a theoretical perspective this condition

requires either restrictions on the distributional relationship of such covariates or some form

of trimming leading to selection of included covariates (e.g., most software packages remove

covariates leading to “too”small eigenvalues of the design matrix by means of some hard-

thresholding rule).

On the other hand, the last condition, Cn = Op(1),may be restrictive in some settings: for

example, if the covariates have unbounded support (e.g., they are normally distributed) and

heteroskedasticity is unbounded (e.g., unbounded multiplicative heteroskedasticity), then

the assumption may fail. Simple suffi cient conditions for Cn = Op(1) can be formulated

when the covariates have compact support, or the heteroskedasticity is multiplicative and

bounded, because in these cases it is easy to bound the conditional moments of the error

terms. It would be useful to know whether the condition Cn = Op(1) can be relaxed to a

version involving only unconditional moments, though we conjecture this weaker assumption

will require a different method of proof (see the supplemental appendix for details).

3.2.3 Assumption 3

This assumption requires two basic approximations to hold. First, concerning bias, condi-

tions on %n are related to the approximation quality of the linear-in-parameters model (1)
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for the “long” conditional expectation E[yi,n|Xn,Wn]. Similarly, conditions on ρn and χn

are related to linear-in-parameters approximations for the “short”conditional expectations

E[yi,n|Wn] and E[xi,n|Wn], respectively. All these approximations are measured in terms

of population mean square error, and are at the heart of empirical work employing linear-

in-parameters regression models. Depending on the model of interest, different suffi cient

conditions can be given for these assumptions. Here we briefly mention the most simple one:

(a) if E[ui,n|Xn,Wn] = 0 for all i and n, which can be interpreted as exogeneity (e.g., no

misspecification bias), then 0 = ρn = n(%n− ρn) +nχn%n for all n; and (b) if E[‖xi,n‖2] <∞

for all i and n, then χn = O(1). Other suffi cient conditions are discussed below.

Second, the high-level condition max1≤i≤n ‖v̂i,n‖/
√
n = op(1) restricts the distributional

relationship between the finite dimensional covariate of interest xi,n and the high-dimensional

nuisance covariate wi,n. This condition can be interpreted as a negligibility condition and

thus comes close to minimal for the central limit theorem to hold. At the present level of

generality it seems diffi cult to formulate primitive suffi cient conditions for this restriction

that cover all cases of interest, but for completeness we mention that under mild moment

conditions it suffi ces to require that one of the following conditions hold (see Lemma SA-7

in the supplemental appendix for details and weaker conditions):

(i)Mn = op(1), or

(ii) χn = o(1), or

(iii) max1≤i≤n
∑n

j=1 1(Mij,n 6= 0) = op(n
1/3).

Each of these conditions is interpretable. First,Mn ≥ Kn/n because
∑n

i=1Mii,n = n−Kn

and a necessary condition for (i) is therefore that Kn/n→ 0. Conversely, because

Mn ≤
Kn

n

1−min1≤i≤nMii,n

1−max1≤i≤nMii,n

,

the conditionKn/n→ 0 is suffi cient for (i) whenever the design is “approximately balanced”

in the sense that (1 − min1≤i≤nMii,n)/(1 − max1≤i≤nMii,n) = Op(1). In other words, (i)

requires and effectively covers the case where it is assumed that Kn is a vanishing fraction
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of n. In contrast, conditions (ii) and (iii) can hold also when Kn is a non-vanishing fraction

of n, which is the case of primary interest in this paper.

Because (ii) is a requirement on the accuracy of the approximation E[xi,n|wi,n] ≈ δ′nwi,n

with δn = E[wi,nw
′
i,n]−1E[wi,nx

′
i,n], primitive conditions for it are available when, for exam-

ple, the elements of wi,n are approximating functions. Indeed, in such cases one typically

has χn = O(K−αn ) for some α > 0, so condition (ii) not only accommodates Kn/n9 0, but

actually places no upper bound on the magnitude of Kn in important special cases. This

condition also holds when wi,n are dummy variables or discrete covariates, as we discuss in

more detail below.

Finally, condition (iii), and its underlying higher-level condition described in the supple-

mental appendix, is useful to handle cases wherewi,n cannot be interpreted as approximating

functions, but rather just many different covariates included in the linear model specifica-

tion. This condition is a “sparsity” condition on the projection matrix Mn, which allows

for Kn/n 9 0. The condition is easy to verify in certain cases, including those where “lo-

cally bounded” approximating functions or fixed effects are used (see below for concrete

examples).

3.3 Motivating Examples

We briefly mention three motivating examples of linear-in-parameter regression models cov-

ered by our results. All technical details are given in the supplemental appendix.

3.3.1 Linear Regression Model with Increasing Dimension

This leading example has a long tradition in statistics and econometrics. The model takes (1)

as the data generating process (DGP), typically with i.i.d. data and the exogeneity condition

E[ui,n|xi,n,wi,n] = 0. However, our assumptions only require nE[(E[ui,n|xi,n,wi,n])2] = o(1),

and hence (1) can be interpreted as a linear-in-parameters mean-square approximation to

the unknown conditional expectation E[yi,n|xi,n,wi,n]. Either way, β̂n is the standard OLS

estimator.
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Setting Wn = (w1,n, . . . ,wn,n), Nn = n, Ti,n = {i} and max1≤i≤Nn #Ti,n = 1, Assump-

tions 1—2 are standard, while Assumption 3 is satisfied provided that E[‖xi,n‖2] < ∞ [im-

plying χn = O(1)], nE[(E[ui,n|xi,n,wi,n])2] = o(1) [implying n(%n − ρn) + nχn%n = o(1)],

and max1≤i≤n ‖v̂i,n‖/
√
n = op(1). Primitive suffi cient conditions for the latter negligibil-

ity condition can be given as discussed above. For example, under regularity conditions,

χn = o(1) if either (a) E[xi,n|wi,n] = δ′wi,n, (b) the nuisance covariates are discrete and a

saturated dummy variables model is used, or (c) wi,n are constructed using sieve functions.

Alternatively, max1≤i≤n
∑n

j=1 1(Mij,n 6= 0) = op(n
1/3) is satisfied provided the distribution of

the nuisance covariates wi,n generates a projection matrix Mn that is approximately a band

matrix (see below for concrete examples). Precise regularity conditions for this example are

given in Section 4.1 of the supplemental appendix.

3.3.2 Fixed Effects Panel Data Regression Model

A second class of examples covered by our results are linear panel data models with multi-

way fixed effects and related models such as those encountered in networks, spillovers or

social interactions settings. A common feature in these examples is the presence of possibly

many dummy variables in wi,n, capturing unobserved heterogeneity or other unobserved ef-

fects across units (e.g., network link or spillover effect). In many applications the number

of distinct dummy-type variables is large because researchers often include multi-group in-

dicators, interactions thereof, and similar regressors obtained from factor variables. In these

complicated models the nuisance covariates need to be estimated explicitly, even in simple

linear regression problems, because it is not possible to difference out the multi-way indicator

variables for estimation and inference.

Stock and Watson (2008) consider heteroskedasticity-robust inference for the one-way

fixed effect panel data regression model

Yit = αi + β′Xit + Uit, i = 1, . . . , N, t = 1, . . . , T, (6)
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where αi ∈ R is an individual-specific intercept, Xit is a regressor of dimension d, and Uit

is an scalar error term, and the following assumptions are satisfied. To map this model

into our framework, suppose that {(Ui1, . . . , UiT ,X′i1 . . . ,X′iT ) : 1 ≤ i ≤ n} are independent

over i, E[Uit|Xi1 . . . ,XiT ] = 0, and E[UitUis|Xi1 . . . , XiT ] = 0 for t 6= s. Then, setting

n = NT , Kn = N , γn = (α1, . . . , αN)′, and (y(i−1)T+t,n,x
′
(i−1)T+t,n, u(i−1)T+t,n,w

′
(i−1)T+t,n) =

(Yit,X
′
it, Uit, e

′
i,N), 1 ≤ i ≤ N and 1 ≤ t ≤ T , where ei,N ∈ RN is the i-th unit vector of

dimension N , the model (6) is also of the form (1) and β̂n is the fixed effects estimator of

β. In general, this model does not satisfy an i.i.d. assumption, but Assumption 1 enables

us to employ results for independent random variables when developing asymptotics. In

particular, unlike Stock and Watson (2008), we do not require (Ui1, . . . , UiT ,X
′
i1 . . . ,X

′
iT )

to be i.i.d. over i, nor we require any kind of stationarity on the part of (Uit,X
′
it). The

amount of variance heterogeneity permitted is quite large, since we basically only require

V[Yit|Xi1, . . . ,XiT ] = E[U2it|Xi1, . . . ,XiT ] to be bounded and bounded away from zero. (On

the other hand, serial correlation is assumed away because our assumptions imply that

C[Yit, Yis|Xi1, . . . ,XiT ] = 0 for t 6= s.) In other respects this model is in fact more tractable

than the previous models due to the special nature of the covariates wi,n, that is, a dummy

variable for each unit i = 1, . . . , N .

In this one-way fixed effects example, Kn/n = 1/T and therefore a high-dimensional

model corresponds to a short panel model: max1≤i≤n
∑n

j=1 1(Mij,n 6= 0) = T and hence the

negligibility condition holds easily. If T ≥ 2, our asymptotic Gaussian approximation for the

distribution of the least-squares estimator β̂n is valid (see Theorem 1), despite the coeffi cients

γn not being consistently estimated. On the other hand, consistency of our generic variance

estimator requires T ≥ 3 [implying Kn/n < 1/2]; see Theorems 3 and 4. Further details

are given in Section 4.2 of the supplemental appendix, where we also discuss a case-specific

consistent variance estimator when T = 2.

Our generic results go beyond one-way fixed effect linear regression models, as they

can be used to obtain valid inference in other contexts where multi-way fixed effects or

similar discrete regressors are included. For a second concrete example, consider the recent
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work of Verdier (2017, and references therein) in the context of linear models with two-

way unobserved heterogeneity and sparsely matched data. This model is isomorphic to a

network model, where students and teacher (or workers and firms, for another example) are

“matched”or “connected”over time, but potential unobserved heterogeneity at both levels is

a concern. In this setting, under random sampling, Verdier (2017) offers primitive conditions

for our high-level assumptions when two-way fixed effect models are used for estimation and

inference. In particular, using a clever Markov chain argument (see his Lemma 1), he is

able to provide different restriction on T and the number of matches in the network to

ensure consistent variance estimation using the methods developed in this paper. To give

one concrete example, he finds that if T ≥ 5 and for any pair of teachers (firms), the number

of students (workers) assigned to both teachers (firms) in the pair is either zero or greater

than three, then our key high-level condition in Theorem 4 below is verified.

3.3.3 Semiparametric Partially Linear Model

Another model covered by our results is the partially linear model

yi = β′xi + g(zi) + εi, i = 1, . . . , n, (7)

where xi and zi are explanatory variables, εi is an error term satisfying E[εi|xi, zi] = 0,

the function g(z) is unknown, and sampling is i.i.d. across i is assumed. Suppose {pk(z) :

k = 1, 2, · · · } are functions having the property that linear combinations can approximate

square-integrable functions of z well, in which case g(zi) ≈ γ ′npn(zi) for some γn, where

pn(z) = (p1(z), . . . ,pKn(z))′. Defining yi,n = yi, xi,n = xi, wi,n = pn(zi), and ui,n =

εi + g(zi)−γ ′nwi,n, the model (7) is of the form (1), and β̂n is the series estimator of β; see,

e.g., Donald and Newey (1994) and Cattaneo, Jansson, and Newey (2017) and references

therein.

Constructing the basis pn(zi) in applications may require using a largeKn, either because

the underlying functions are not smooth enough or because dim(zi) is large. For example,
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if a p = 3 cubic polynomial expansion is used, also known as a power series of order 3,

then dim(wi) = (p+ dim(zi))!/(p! dim(zi)!) = 286 when dim(zi) = 10, and therefore flexible

estimation and inference using the semi-linear model (7) with a sample size of n = 1, 000

gives Kn/n = 0.286. For further technical details on series-based methods see, e.g., Newey

(1997), Chen (2007), Cattaneo and Farrell (2013), and Belloni, Chernozhukov, Chetverikov,

and Kato (2015), and references therein. For another example, when the basis functions

pn(z) are constructed using partitioning estimators, the OLS estimator of β becomes a

subclassification estimator, a method that has been proposed in the literature on program

evaluation and treatment effects; see, e.g., Cochran (1968), Rosenbaum and Rubin (1983),

Cattaneo and Farrell (2011), and references therein. When a Partitioning estimator of order

0 is used, the semi-linear model becomes a one-way fixed effects linear regression model,

where each dummy variable corresponds to one (disjoint) partition on the support of zi; in

this case, Kn is to the number of partitions or fixed effects included in the estimation.

Our primitive regularity conditions for this example include

%n = min
γ∈RKn

E[|g(zi)− γ ′pn(zi)|2] = o(1), χn = min
δ∈RKn×d

E[‖E[xi|zi]− δ′pn(zi)‖2] = O(1),

n%nχn = o(1), and the negligibility condition max1≤i≤n ‖v̂i,n‖/
√
n = op(1). A key finding

implied by these regularity conditions is that we only require minimal smoothness conditions

on g(zi) and E[xi|zi]. The negligibility condition is automatically satisfied if χn = o(1), as

discussed above, but in fact our results do not require any approximation of E[xi|zi], as

usually assumed in the literature, provided a “locally supported”basis is used; i.e., any basis

pn(z) that generates an approximately band projection matrix Mn; examples of such basis

include partitioning and spline estimators. See Section 4.3 in the supplemental appendix for

further discussion and technical details.
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4 Results

This section presents our main theoretical results for inference in linear regression mod-

els with many covariates and heteroskedasticity. Mathematical proofs, and other technical

results that may be of independent interest, are given in the supplemental appendix.

4.1 Asymptotic Normality

As a means to the end of establishing (2), we give an asymptotic normality result for β̂n

which may be of interest in its own right.

Theorem 1 Suppose Assumptions 1—3 hold. Then,

Ω−1/2n

√
n(β̂n − β)→d N (0, I), Ωn = Γ̂−1n ΣnΓ̂

−1
n , (8)

where Σn =
∑n

i=1 v̂i,nv̂
′
i,nE[U2i,n|Xn,Wn]/n.

In the literature on high-dimensional linear models, Mammen (1993) obtains a similar

asymptotic normality result as in Theorem 1 but under the condition K1+δ
n /n→ 0 for δ > 0

restricted by certain moment condition on the covariates. In contrast, our result only requires

limn→∞Kn/n < 1, but imposes a different restriction on the high-dimensional covariates

(e.g., condition (i), (ii) or (iii) discussed previously) and furthermore exploits the fact that

the parameter of interest is given by the first d coordinates of the vector (β′,γ ′n)′ (i.e., in

Mammen (1993) notation, it considers the case c = (ι′,0′)′ with ι denoting a d-dimensional

vector of ones and 0 denoting a Kn-dimensional vector of zeros).

In isolation, the fact that Theorem 1 removes the requirement Kn/n→ 0 may seem like

little more than a subtle technical improvement over results currently available. It should

be recognized, however, that conducting inference turn out to be considerably harder when

Kn/n 6→ 0. The latter is an important insight about large-dimensional models that cannot

be deduced from results obtained under the assumptionKn/n→ 0, but can be obtained with

the help of Theorem 1. In addition, it is worth mentioning that Theorem 1 is a substantial
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improvement over Cattaneo, Jansson, and Newey (2017, Theorem 1) because here it is not

required that Kn → ∞ nor χn = o(1) – a different method of proof is also used. This

improvement applies not only to the partially linear model example, but more generally to

linear models with many covariates, because Theorem 1 applies to quite general form of

nuisance covariate wi,n beyond specific approximating basis functions. In the specific case of

the partially linear model, this implies that we are able to weaken smoothness assumptions

(or the curse of dimensionality), otherwise required to satisfy the condition χn = o(1).

Remark 2. Theorem 1 concerns only distributional properties of β̂n. First, this theorem

implies
√
n-consistency of β̂n because Ω−1n = Op(1) (see Lemmas SA-1 and SA-2 of the

supplemental appendix). Second, this theorem does require nor imply consistency of

the (implicit) least squares estimate of γn, as in fact such a result will not be true in

most applications with many nuisance covariateswn,i. For example, in a partially linear

model (7) the approximating coeffi cients γn will not be consistently estimated unless

Kn/n→ 0, or in a one-way fixed effect panel data model (6) the unit-specific coeffi cients

in γn will not be consistently estimated unless Kn/n = 1/T → 0. Nevertheless,

Theorem 1 shows that β̂n can still be root-n asymptotically normal under fairly general

conditions; this result is due to the intrinsic linearity and additive separability of the

model (1).

4.2 Variance Estimation

Achieving (2), the counterpart of (8) in which the unknown matrix Σn is replaced by the es-

timator Σ̂n, requires additional assumptions. One possibility is to impose homoskedasticity.

Theorem 2 Suppose the assumptions of Theorem 1 hold. If E[U2i,n|Xn,Wn] = σ2n, then (2)

holds with Σ̂n = Σ̂HO
n .

This result shows in quite some generality that homoskedastic inference in linear models

remains valid even when Kn is proportional to n, provided the variance estimator incorpo-

rates a degrees-of-freedom correction, as Σ̂HO
n does.
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Establishing (2) is also possible when Kn is assumed to be a vanishing fraction of n,

as is of course the case in the usual fixed-Kn linear regression model setup. The following

theorem establishes consistency of the conventional standard error estimator Σ̂EW
n under the

assumptionMn →p 0, and also derives an asymptotic representation for estimators of the

form Σ̂n(κn) without imposing this assumption, which is useful to study the asymptotic

properties of other members of the HCk class of standard error estimators.

Theorem 3 Suppose the assumptions of Theorem 1 hold.

(a) IfMn →p 0, then (2) holds with Σ̂n = Σ̂EW
n .

(b) If ‖κn‖∞ = max1≤i≤n
∑n

j=1 |κij,n| = Op(1), then

Σ̂n(κn) =
1

n

n∑
i=1

n∑
j=1

n∑
k=1

κik,nM
2
kj,nv̂i,nv̂

′
i,nE[U2j,n|Xn,Wn] + op(1).

The conclusion of part (a) typically fails when the condition Kn/n→ 0 is dropped. For

example, when specialized to κn = In part (b) implies that in the homoskedastic case (i.e.,

when the assumptions of Theorem 2 are satisfied) the standard estimator Σ̂EW
n is asymptot-

ically downward biased in general (unless Kn/n → 0). In the following section we make

this result precise and discuss similar results for other popular variants of the HCk standard

error estimators mentioned above.

On the other hand, because
∑

1≤k≤n κ
HC
ik,nM

2
kj,n = 1(i = j) by construction, part (b)

implies that Σ̂HC
n is consistent provided ‖κHCn ‖∞ = Op(1). A simple condition for this to occur

can be stated in terms ofMn. Indeed, ifMn < 1/2, then κHCn is diagonally dominant and it

follows from Theorem 1 of Varah (1975) that

‖κHCn ‖∞ ≤
1

1/2−Mn

.

As a consequence, we obtain the following theorem, whose conditions can hold even if

Kn/n9 0.
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Theorem 4 Suppose the assumptions of Theorem 1 hold.

If P[Mn < 1/2]→ 1 and if 1/(1/2−Mn) = Op(1), then (2) holds with Σ̂n = Σ̂HC
n .

Because Mn ≥ Kn/n, a necessary condition for Theorem 4 to be applicable is that

limn→∞Kn/n < 1/2. When the design is balanced, that is, when M11,n = . . . = Mnn,n (as

occurs in the panel data model (6)), the condition limn→∞Kn/n < 1/2 is also suffi cient, but

in general it seems diffi cult to formulate primitive suffi cient conditions for the assumption

made about Mn in Theorem 4. In practice, the fact that Mn is observed means that the

condition Mn < 1/2 is verifiable, and therefore unless Mn is found to be “close” to 1/2

there is reason to expect Σ̂HC
n to perform well.

Remark 3. Our main results for linear models concern large-sample approximations for the

finite-sample distribution of the usual t-statistics. An alternative, equally automatic

approach is to employ the bootstrap and closely related resampling procedures (see,

among others, Freedman (1981), Mammen (1993), Gonçalvez and White (2005), Kline

and Santos (2012)). Assuming Kn/n9 0, Bickel and Freedman (1983) demonstrated

an invalidity result for the bootstrap. We conjecture that similar results can be ob-

tained for other resampling procedures. Furthermore, we also conjecture that employ-

ing appropriate resampling methods on the “bias-corrected” residuals ũ2i,n (Remark

1) can lead to valid inference procedures. Investigating these conjectures, however,

is beyond the scope of this paper. Following the recommendation of a reviewer, we

explored the numerical performance of the standard nonparametric bootstrap in our

simulation study, where we found that indeed bootstrap validity seems to fail in the

high-dimensional settings we considered.

4.3 HCk Standard Errors with Many Covariates

The HCk variance estimators are very popular in empirical work, and in our context are of

the form Σ̂n(κn) with κij,n = 1(i = j)Υi,nM
−ξi,n
ii,n for some choice of (Υi,n, ξi,n). See Long and

Ervin (2000) and MacKinnon (2012) for reviews. Theorem 3(b) can be used to formulate
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conditions, including Kn/n → 0, under which these estimators are consistent in the sense

that

Σ̂n(κn) = Σn + op(1), Σn =
1

n

n∑
i=1

v̂i,nv̂
′
i,nE[U2i,n|Xn,Wn].

More generally, Theorem 3(b) shows that, if κij,n = 1(i = j)Υi,nM
−ξi,n
ii,n , then

Σ̂n(κn) = Σ̄n(κn) + op(1), Σ̄n(κn) =
1

n

n∑
i=1

n∑
j=1

Υi,nM
−ξi,n
ii,n M2

ij,nv̂i,nv̂
′
i,nE[U2j,n|Xn,Wn].

We therefore obtain the following (mostly negative) results about the properties of HCk

estimators when Kn/n9 0, that is, when potentially many covariates are included.

HC0: (Υi,n, ξi,n) = (1, 0). If E[U2j,n|Xn,Wn] = σ2n, then

Σ̄n(κn) = Σn −
σ2n
n

n∑
i=1

(1−Mii,n)v̂i,nv̂
′
i,n ≤ Σn,

with n−1
∑n

i=1(1−Mii,n)v̂i,nv̂
′
i,n 6= op(1) in general (unlessKn/n→ 0). Thus, Σ̂n(κn) =

Σ̂EW
n is inconsistent in general. In particular, inference based on Σ̂EW

n is asymptotically

liberal (even) under homoskedasticity.

HC1: (Υi,n, ξi,n) = (n/(n−Kn), 0). If E[U2j,n|Xn,Wn] = σ2n and ifM11,n = . . . = Mnn,n, then

Σ̄n(κn) = Σn, but in general this estimator is inconsistent when Kn/n9 0 (and so is

any other scalar multiple of Σ̂EW
n ).

HC2: (Υi,n, ξi,n) = (1, 1). If E[U2j,n|Xn,Wn] = σ2n, then Σ̄n(κn) = Σn, but in general this

estimator is inconsistent under heteroskedasticity when Kn/n 9 0. For instance, if

d = 1 and if E[U2j,n|Xn,Wn] = v̂2j,n, then

Σ̄n(κn)−Σn =
1

n

n∑
i=1

n∑
j=1

[
M2

ij,n

2
(M−1

ii,n +M−1
jj,n)− 1(i = j)]v̂2i,nv̂

2
j,n 6= op(1)

in general (unless Kn/n→ 0).
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HC3: (Υi,n, ξi,n) = (1, 2). Inference based on this estimator is asymptotically conservative

because

Σ̄n(κn)−Σn =
1

n

n∑
i=1

n∑
j=1,j 6=i

M−2
ii,nM

2
ij,nv̂i,nv̂

′
i,nE[U2j,n|Xn,Wn] ≥ 0,

where n−1
∑n

i=1

∑n
j=1,j 6=iM

−2
ii,nM

2
ij,nv̂i,nv̂

′
i,nE[U2j,n|Xn,Wn] 6= op(1) in general (unless

Kn/n→ 0).

HC4: (Υi,n, ξi,n) = (1,min(4, nMii,n/Kn)). If M11,n = . . . = Mnn,n = 2/3 (as occurs when

T = 3 in the fixed effects panel data model), then HC4 reduces to HC3, so this

estimator is also inconsistent in general.

Among other things these results show that (asymptotically) conservative inference in

linear models with many covariates (i.e., even when K/n 6→ 0) can be conducted using

standard linear methods (and software), provided the HC3 standard errors are used.

In the numerical work reported in the following sections and the supplemental appendix,

we present evidence comparing all these standard error estimators. In particular, we find

that indeed standard OLS-based confidence intervals employing HC3 standard errors are

always quite conservative. Furthermore, we also find that our proposed variance estimator

Σ̂HC
n delivers confidence intervals with close-to-correct empirical coverage.

5 Simulations

We conducted a simulation study to assess the finite sample properties of our proposed

inference methods as well as those of other standard inference methods available in the

literature. Based on the generic linear regression model (1), we consider 15 distinct data

generating processes (DGPs) motivated by the three examples discussed above. To conserve

space, here we only discuss results from Model 1, a representative case, but the supplemental

appendix contains the full set of results and further details (see Table 1 in the supplement

for a synopsis of the DGPs used).
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We discuss results for a linear model (1) with i.i.d. data, n = 700, d = 1 and xi,n ∼

Normal(0, 1), wi,n = 1(vi,n ≥ 2.5) with vi,n ∼ Normal(0, IKn), and ui,n ∼ Normal(0, 1), all

independent of each other. Thus, this design considers (possibly overlapping) sparse dummy

variables enteringwi,n; each column assigns a value of 1 to approximately five units out of n =

700. We set β = 1 and γn = 0, and considered five different model dimensions: dim(wi,n) =

Kn ∈ {1, 71, 141, 211, 281}. In the supplemental appendix we also present results for more

sparse dummy variables in the context of one-way and two-way linear panel data regression

models, and for non-binary covariates wi,n in both increasing dimension linear regression

settings and semiparametric partially linear regression settings (where γn 6= 0 and wi,n is

constructed using power series expansions). Furthermore, we also consider an asymmetric

and a bimodal distribution for the unobservable error terms. In all cases the numerical

results are qualitatively similar to those discussed herein. For each DGP, we investigate both

homoskedastic as well as (conditional on xi,n and/or wi,n) heteroskedastic models, following

closely the specifications in Stock and Watson (2008) and MacKinnon (2012). In particular,

our heteroskedastic model takes the form: V[ui,n|xi,n,wi,n] = κu(1 + (t(xi,n) + ι′wi,n)2)

and V[xi,n|wi,n] = κv(1 + (ι′wi,n)2), where the constants κu and κv are chosen so that

V[ui,n] = V[xi,n] = 1, and t(a) = a1(−2 ≤ a ≤ 2) + 2 sgn(a)(1− 1(−2 ≤ a ≤ 2)).

We conducted S = 5, 000 simulations to study the finite sample performance of 16 con-

fidence intervals: eight based on a Gaussian approximation and eight based on a bootstrap

approximation. Our paper offers theory for Gaussian-based inference methods, but we also

included bootstrap-based inference methods for completeness (as discussed in Remark 3, the

bootstrap is invalid when Kn ∝ n in linear regression models). For each inference method,

we report both average coverage frequency and interval length of 95% nominal confidence

intervals; the latter provides a summary of effi ciency/power for each inference method. To

be more specific, for α = 0.05, the confidence intervals take the form:

I` =

 β̂n − q−1`,1−α/2 ·

√
Ω̂n,`

n
, β̂n − q−1`,α/2 ·

√
Ω̂n,`

n

 , Ω̂n,` = Γ̂−1n Σ̂n,`Γ̂
−1
n ,
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where q−1`,a = q−1` (a) and q`(a) denotes a cumulative distribution function, and Σ̂n,` with

` ∈ {HO0, HO1, HC0, HC1, HC2, HC3, HC4, HCK} corresponds the variance estimators dis-

cussed in Sections 2 and 4.3. Gaussian-based methods set q(a) equal to the standard normal

distribution for all `, while bootstrap-based methods are based on the nonparametric boot-

strap distributional approximation to the distribution of the t-test T` = (β̂n − β)/
√

Ω̂n,`/n.

The empirical coverage of these 16 confidence intervals are reported in Panel (a) of Table

1. In addition, Panel (b) of Table 1 reports the average interval length of each confidence

intervals, which is computed as L` = (q−1`,1−α/2 − q
−1
`,α/2) ·

√
Ω̂n,`/n, which offers a summary of

finite sample power/effi ciency of each inference method.

The main findings from the simulation study are in line with our theoretical results. To

be precise, we find that the confidence interval estimators constructed using our proposed

standard errors formula Σ̂HC
n , denoted HCK, offer close-to-correct empirical coverage. The

alternative heteroskedasticity consistent standard errors currently available in the literature

lead to confidence intervals that could deliver substantial under or over coverage depending on

the design and degree of heteroskedasticity considered. We also find that inference based on

HC3 standard errors is conservative, a general asymptotic result that is formally established

in this paper. Bootstrap-based methods seem to perform better than their Gaussian-based

counterparts, but they never outperform our proposed Gaussian-based inference procedure

nor do they provide close-to-correct empirical coverage across all cases. Finally, our proposed

confidence intervals also exhibit very good average interval length.

6 Empirical Illustration

We illustrate the different linear regression inference methods discussed in this paper using a

real data set to study the effect of ability on earnings. In particular, we employ the dataset

constructed by Carneiro, Heckman, and Vytlacil (2011, CHV, hereafter). [The dataset

is available at https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2754.]. The

data comes from the 1979 National Longitudinal Survey of Youth (NLSY79), which surveys
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individuals born in 1957—1964 and includes basic demographic, economic and educational

information for each individual. It also includes a well-known proxy for ability (beyond

schooling and work experience): the Armed Forces Qualification Test (AFQT), which gives

a measure usually understood as a proxy for their intrinsic ability for the respondent. This

data has been used repeatedly to either control for or estimate the effects of ability in empir-

ical studies in economics and other disciplines. See CHV for further details and references.

The sample is composed of white males of ages between 28 and 34 years of old in 1991, at

most 5 siblings, and with at least incomplete secondary education. We split the sample into

individuals with high school dropouts and high school graduates, and individuals with some

college, college graduates, and postgraduates. For each subsample, we consider the linear

regression model (1) with yi,n = log(wagesi), where wagesi is the log wage in 1991 of unit

i, xi,n = afqti denotes the (adjusted) standardized AFQT score for unit i, and wi,n collects

several survey, geographic and dummy variables for unit i. In particular, wi,n includes the 14

covariates described in CHV (Table 2, p. 2763), a dummy variable for wether the education

level was completed, eight cohort fixed effects, county fixed effects, and cohort-county fixed

effects. For our illustration, we further restrict the sample to units in counties with at least

3 survey respondents, giving a total of Kn = 122 and n = 436 (Kn/n = 0.280,Mn = 0.422)

for high school educated units and Kn = 123 and n = 452 (Kn/n = 0.272, Mn = 0.411)

college educated units.

The empirical findings are reported in Table 2. For high school educated individuals, we

find an estimated returns to ability of β̂ = 0.060. The statistical significance of this effect,

however, depends on the inference method employed. If homoskedastic consistent standard

errors are used, then the effect is statistical significant (p-values are 0.010 and 0.029 for unad-

justed and degrees-of-freedom adjusted standard errors, respectively). If heteroskedasticity

consistent standard errors are used, the default method in most empirical studies, then the

statistical significance depends on the which inference method is used; see Section 4.3. In

particular, HC0 also gives a statistically significant result (p-value is 0.020), while HC1 and

HC2 deliver marginal significance (both p-values are 0.048). On the other hand, HC3 and
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HC4 give p-values of 0.092 and 0.122, respectively, and hence suggest that the point estimate

is not statistically distinguishable from zero. Finally, our proposed standard error, HCK,

gives a p-value of 0.058, also making β̂ = 0.060 statistically insignificant at the conventional

5-pecent level. In contrast, for college educated individuals, we find an effect of β̂ = 0.091,

and all inference methods indicate that this estimated returns to ability is statistically sig-

nificant at conventional levels. In particular, HC3 and our proposed standard errors HCK

give p-values of 0.037 and 0.017, respectively.

This illustrative empirical application showcases the role of our proposed inference method

for empirical work employing linear regression with possibly many covariates; in this applica-

tion, Kn large relative to n (Kn/n ≈ 0.3 ) is quite natural due to the presence of many county

and cohort fixed effects. Specifically, when studying the effect of ability on earnings for high

school educated individuals, the statistical significance of the results crucially depend on the

inference methods used: as predicted by our theoretical findings, inference methods that are

not robust to the inclusion of many covariates tend to deliver statistically significant results,

while methods that are robust (HC3 is asymptotically conservative and HCK is asymptot-

ically correct) do not deliver statistically significant results, giving an example where the

empirical conclusion may change depending on whether the presence of many covariates is

taken into account when conducting inference. In contrast, the empirical findings for college

educated individuals appear to be statistically significant and robust across all inference

methods.

7 Conclusion

We established asymptotic normality of the OLS estimator of a subset of coeffi cients in

high-dimensional linear regression models with many nuisance covariates, and investigated

the properties of several popular heteroskedasticity-robust standard error estimators in this

high-dimensional context. We showed that none of the usual formulas deliver consistent

standard errors when the number of covariates is not a vanishing proportion of the sample
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size. We also proposed a new standard error formula that is consistent under (conditional)

heteroskedasticity and many covariates, which is fully automatic and does not assume special,

restrictive structure on the regressors.

Our results concern high-dimensional models where the number of covariates is at most

a non-vanishing fraction of the sample size. A quite recent related literature concerns ultra-

high-dimensional models where the number of covariates is much larger than the sample

size, but some form of (approximate) sparsity is imposed in the model; see, e.g., Belloni,

Chernozhukov, and Hansen (2014), Farrell (2015), Belloni, Chernozhukov, Hansen, and

Fernandez-Val (2017), and references therein. In that setting, inference is conducted after

covariate selection, where the resulting number of selected covariates is at most a vanishing

fraction of the sample size (usually much smaller). An implication of the results obtained

in this paper is that the latter assumption cannot be dropped if post covariate selection

inference is based on conventional standard errors. It would therefore be of interest to inves-

tigate whether the methods proposed herein can be applied also for inference post covariate

selection in ultra-high-dimensional settings, which would allow for weaker forms of sparsity

because more covariates could be selected for inference.
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Table 2: Empirical Application (Returns to Ability, AFQT Score).

(a) Secondary Education

Outcome: log(wages)

β̂ 0.060

Std.Err. p-value
HO0 0.023 0.010
HO1 0.028 0.029
HC0 0.026 0.020
HC1 0.030 0.048
HC2 0.030 0.048
HC3 0.036 0.092
HC4 0.039 0.122
HCK 0.032 0.058

Kn 122
n 436
Kn/n 0.280
Mn 0.422

(b) College Education

Outcome: log(wages)

β̂ 0.091

Std.Err. p-value
HO0 0.032 0.005
HO1 0.038 0.016
HC0 0.033 0.006
HC1 0.039 0.018
HC2 0.038 0.016
HC3 0.044 0.037
HC4 0.048 0.058
HCK 0.038 0.017

Kn 123
n 452
Kn/n 0.272
Mn 0.411

33


	cemmap WORKING_PAPER_COVER



